The Formation Mechanism of Hydrogels.
Lu, Liyan; Yuan, Shiliang; Wang, Jing; Shen, Yun; Deng, Shuwen; Xie, Luyang; Yang, Qixiang
2017-06-12
Hydrogels are degradable polymeric networks, in which cross-links play a vital role in structure formation and degradation. Cross-linking is a stabilization process in polymer chemistry that leads to the multi-dimensional extension of polymeric chains, resulting in network structures. By cross-linking, hydrogels are formed into stable structures that differ from their raw materials. Generally, hydrogels can be prepared from either synthetic or natural polymers. Based on the types of cross-link junctions, hydrogels can be categorized into two groups: the chemically cross-linked and the physically cross-linked. Chemically cross-linked gels have permanent junctions, in which covalent bonds are present between different polymer chains, thus leading to excellent mechanical strength. Although chemical cross-linking is a highly resourceful method for the formation of hydrogels, the cross-linkers used in hydrogel preparation should be extracted from the hydrogels before use, due to their reported toxicity, while, in physically cross-linked gels, dissolution is prevented by physical interactions, such as ionic interactions, hydrogen bonds or hydrophobic interactions. Physically cross-linked methods for the preparation of hydrogels are the alternate solution for cross-linker toxicity. Both methods will be discussed in this essay. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Enzymatically cross-linked tilapia gelatin hydrogels: physical, chemical, and hybrid networks.
Bode, Franziska; da Silva, Marcelo Alves; Drake, Alex F; Ross-Murphy, Simon B; Dreiss, Cécile A
2011-10-10
This Article investigates different types of networks formed from tilapia fish gelatin (10% w/w) in the presence and absence of the enzymatic cross-linker microbial transglutaminase. The influence of the temperature protocol and cross-linker concentration (0-55 U mTGase/g gelatin) was examined in physical, chemical, and hybrid gels, where physical gels arise from the formation of triple helices that act as junction points when the gels are cooled below the gelation point. A combination of rheology and optical rotation was used to study the evolution of the storage modulus (G') over time and the number of triple helices formed for each type of gel. We attempted to separate the final storage modulus of the gels into its chemical and physical contributions to examine the existence or otherwise of synergism between the two types of networks. Our experiments show that the gel characteristics vary widely with the thermal protocol. The final storage modulus in chemical gels increased with enzyme concentration, possibly due to the preferential formation of closed loops at low cross-linker amount. In chemical-physical gels, where the physical network (helices) was formed consecutively to the covalent one, we found that below a critical enzyme concentration the more extensive the chemical network is (as measured by G'), the weaker the final gel is. The storage modulus attributed to the physical network decreased exponentially as a function of G' from the chemical network, but both networks were found to be purely additive. Helices were not thermally stabilized. The simultaneous formation of physical and chemical networks (physical-co-chemical) resulted in G' values higher than the individual networks formed under the same conditions. Two regimes were distinguished: at low enzyme concentration (10-20 U mTGase/g gelatin), the networks were formed in series, but the storage modulus from the chemical network was higher in the presence of helices (compared to pure chemical gels); at higher enzyme concentration (30-40 U mTGase/g gelatin), strong synergistic effects were found as a large part of the covalent network became ineffective upon melting of the helices.
Dual Sulfide-Disulfide Crosslinked Networks with Rapid and Room Temperature Self-Healability.
An, So Young; Noh, Seung Man; Nam, Joon Hyun; Oh, Jung Kwon
2015-07-01
Polymer-based crosslinked networks with intrinsic self-repairing ability have emerged due to their built-in ability to repair physical damages. Here, novel dual sulfide-disulfide crosslinked networks (s-ssPxNs) are reported exhibiting rapid and room temperature self-healability within seconds to minutes, with no extra healing agents and no change under any environmental conditions. The method to synthesize these self-healable networks utilizes a combination of well-known crosslinking chemistry: photoinduced thiol-ene click-type radical addition, generating lightly sulfide-crosslinked polysulfide-based networks with excess thiols, and their oxidation, creating dynamic disulfide crosslinkages to yield the dual s-ssPxNs. The resulting s-ssPxN networks show rapid self-healing within 30 s to 30 min at room temperature, as well as self-healing elasticity with reversible viscoelastic properties. These results, combined with tunable self-healing kinetics, demonstrate the versatility of the method as a new means to synthesize smart multifunctional polymeric materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Viscoplastic fracture transition of a biopolymer gel.
Frieberg, Bradley R; Garatsa, Ray-Shimry; Jones, Ronald L; Bachert, John O; Crawshaw, Benjamin; Liu, X Michael; Chan, Edwin P
2018-06-13
Physical gels are swollen polymer networks consisting of transient crosslink junctions associated with hydrogen or ionic bonds. Unlike covalently crosslinked gels, these physical crosslinks are reversible thus enabling these materials to display highly tunable and dynamic mechanical properties. In this work, we study the polymer composition effects on the fracture behavior of a gelatin gel, which is a thermoreversible biopolymer gel consisting of denatured collagen chains bridging physical network junctions formed from triple helices. Below the critical volume fraction for chain entanglement, which we confirm via neutron scattering measurements, we find that the fracture behavior is consistent with a viscoplastic type process characterized by hydrodynamic friction of individual polymer chains through the polymer mesh to show that the enhancement in fracture scales inversely with the squared of the mesh size of the gelatin gel network. Above this critical volume fraction, the fracture process can be described by the Lake-Thomas theory that considers fracture as a chain scission process due to chain entanglements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad
The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less
Daniel, William F. M.; Xie, Guojun; Vatankhah Varnoosfaderani, Mohammad; ...
2017-02-24
The goal of this study is to use ABA triblock copolymers with central bottlebrush B segments and crystalline linear chain A segments to demonstrate the effect of side chains on the formation and mechanical properties of physical networks cross-linked by crystallites. For this purpose, a series of bottlebrush copolymers was synthesized consisting of central amorphous bottlebrush polymer segments with a varying degree of polymerization (DP) of poly(n-butyl acrylate) (PnBA) side chains and linear tail blocks of crystallizable poly(octadecyl acrylate-stat-docosyl acrylate) (poly(ODA-stat-DA)). The materials were generated by sequential atom transfer radical polymerization (ATRP) steps starting with a series of bifunctional macroinitiatorsmore » followed by the growth of two ODA-stat-DA linear-chain tails and eventually growing poly(nBA) side chains with increasing DPs. Crystallization of the poly(ODA-stat-DA) tails resulted in a series of reversible physical networks with bottlebrush strands bridging crystalline cross-links. They displayed very low moduli of elasticity of the order of 10 3–10 4 Pa. These distinct properties are due to the bottlebrush architecture, wherein densely grafted side chains play a dual role by facilitating disentanglement of the network strands and confining crystallization of the linear-chain tails. This combination leads to physical cross-linking of supersoft networks without percolation of the crystalline phase. The cross-link density was effectively controlled by the DP of the side chains with respect to the DP of the linear tails (n A). Furthermore, shorter side chains allowed for crystallization of the linear tails of neighboring bottlebrushes, while steric repulsion between longer side chains hindered the phase separation and crystallization process and prevented network formation.« less
Effect of polyfunctional monomers on properties of radiation crosslinked EPDM/waste tire dust blend
NASA Astrophysics Data System (ADS)
Yasin, Tariq; Khan, Sajid; Nho, Young-Chang; Ahmad, Rashid
2012-04-01
In this study, waste tire dust is recycled as filler and blended with ethylene-propylene diene monomer (EPDM) rubber. Three different polyfuntional monomers (PFMs) are incorporated into the standard formulation and irradiated under electron beam at different doses up to maximum of 100 kGy. The combined effects of PFMs and absorbed dose on the physical properties of EPDM/WTD blend are measured and compared with sulfur crosslinked formulation. Thermogravimetric analysis showed that radiation developed better crosslinked network with higher thermal stability than sulfur crosslinked structure. The physical properties of radiation crosslinked blend are similar to the sulfur crosslinked blend. The absence of toxic chemicals/additives in radiation crosslinked blends made them an ideal candidate for many applications such as roof sealing sheets, water retention pond, playground mat, sealing profile for windows etc.
Assembly kinetics determine the architecture of α-actinin crosslinked F-actin networks.
Falzone, Tobias T; Lenz, Martin; Kovar, David R; Gardel, Margaret L
2012-05-29
The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and crosslinking determine the architecture of reconstituted actin networks formed with α-actinin crosslinks. Crosslink-mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semiflexible biopolymer networks.
Jalani, Ghulam; Jung, Chan Woo; Lee, Jae Sang; Lim, Dong Woo
2014-01-01
Stimuli-responsive, polymer-based nanostructures with anisotropic compartments are of great interest as advanced materials because they are capable of switching their shape via environmentally-triggered conformational changes, while maintaining discrete compartments. In this study, a new class of stimuli-responsive, anisotropic nanofiber scaffolds with physically and chemically distinct compartments was prepared via electrohydrodynamic cojetting with side-by-side needle geometry. These nanofibers have a thermally responsive, physically-crosslinked compartment, and a chemically-crosslinked compartment at the nanoscale. The thermally responsive compartment is composed of physically crosslinkable poly(N-isopropylacrylamide) poly(NIPAM) copolymers, and poly(NIPAM-co-stearyl acrylate) poly(NIPAM-co-SA), while the thermally-unresponsive compartment is composed of polyethylene glycol dimethacrylates. The two distinct compartments were physically crosslinked by the hydrophobic interaction of the stearyl chains of poly(NIPAM-co-SA) or chemically stabilized via ultraviolet irradiation, and were swollen in physiologically relevant buffers due to their hydrophilic polymer networks. Bicompartmental nanofibers with the physically-crosslinked network of the poly(NIPAM-co-SA) compartment showed a thermally-triggered shape change due to thermally-induced aggregation of poly(NIPAM-co-SA). Furthermore, when bovine serum albumin and dexamethasone phosphate were separately loaded into each compartment, the bicompartmental nanofibers with anisotropic actuation exhibited decoupled, controlled release profiles of both drugs in response to a temperature. A new class of multicompartmental nanofibers could be useful for advanced nanofiber scaffolds with two or more drugs released with different kinetics in response to environmental stimuli. PMID:24872702
NASA Astrophysics Data System (ADS)
Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.
2006-02-01
We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology
Darabi, Mohammad Ali; Khosrozadeh, Ali; Mbeleck, Rene; Liu, Yuqing; Chang, Qiang; Jiang, Junzi; Cai, Jun; Wang, Quan; Luo, Gaoxing; Xing, Malcolm
2017-08-01
The advent of conductive self-healing (CSH) hydrogels, a class of novel materials mimicking human skin, may change the trajectory of the industrial process because of their potential applications in soft robots, biomimetic prostheses, and health-monitoring systems. Here, the development of a mechanically and electrically self-healing hydrogel based on physically and chemically cross-linked networks is reported. The autonomous intrinsic self-healing of the hydrogel is attained through dynamic ionic interactions between carboxylic groups of poly(acrylic acid) and ferric ions. A covalent cross-linking is used to support the mechanical structure of the hydrogel. Establishing a fair balance between the chemical and physical cross-linking networks together with the conductive nanostructure of polypyrrole networks leads to a double network hydrogel with bulk conductivity, mechanical and electrical self-healing properties (100% mechanical recovery in 2 min), ultrastretchability (1500%), and pressure sensitivity. The practical potential of CSH hydrogels is further revealed by their application in human motion detection and their 3D-printing performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Assembly Kinetics Determine the Architecture of α-actinin Crosslinked F-actin Networks
Falzone, Tobias T.; Lenz, Martin; Kovar, David R.; Gardel, Margaret L.
2013-01-01
The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and cross-linking determine the architecture of reconstituted actin networks formed with α-actinin cross-links. Cross-link mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semi-flexible biopolymer networks. PMID:22643888
Elasticity in Physically Cross-Linked Amyloid Fibril Networks.
Cao, Yiping; Bolisetty, Sreenath; Adamcik, Jozef; Mezzenga, Raffaele
2018-04-13
We provide a constitutive model of semiflexible and rigid amyloid fibril networks by combining the affine thermal model of network elasticity with the Derjaguin-Landau-Vervey-Overbeek (DLVO) theory of electrostatically charged colloids. When compared to rheological experiments on β-lactoglobulin and lysozyme amyloid networks, this approach provides the correct scaling of elasticity versus both concentration (G∼c^{2.2} and G∼c^{2.5} for semiflexible and rigid fibrils, respectively) and ionic strength (G∼I^{4.4} and G∼I^{3.8} for β-lactoglobulin and lysozyme, independent from fibril flexibility). The pivotal role played by the screening salt is to reduce the electrostatic barrier among amyloid fibrils, converting labile physical entanglements into long-lived cross-links. This gives a power-law behavior of G with I having exponents significantly larger than in other semiflexible polymer networks (e.g., actin) and carrying DLVO traits specific to the individual amyloid fibrils.
Elasticity in Physically Cross-Linked Amyloid Fibril Networks
NASA Astrophysics Data System (ADS)
Cao, Yiping; Bolisetty, Sreenath; Adamcik, Jozef; Mezzenga, Raffaele
2018-04-01
We provide a constitutive model of semiflexible and rigid amyloid fibril networks by combining the affine thermal model of network elasticity with the Derjaguin-Landau-Vervey-Overbeek (DLVO) theory of electrostatically charged colloids. When compared to rheological experiments on β -lactoglobulin and lysozyme amyloid networks, this approach provides the correct scaling of elasticity versus both concentration (G ˜c2.2 and G ˜c2.5 for semiflexible and rigid fibrils, respectively) and ionic strength (G ˜I4.4 and G ˜I3.8 for β -lactoglobulin and lysozyme, independent from fibril flexibility). The pivotal role played by the screening salt is to reduce the electrostatic barrier among amyloid fibrils, converting labile physical entanglements into long-lived cross-links. This gives a power-law behavior of G with I having exponents significantly larger than in other semiflexible polymer networks (e.g., actin) and carrying DLVO traits specific to the individual amyloid fibrils.
NASA Astrophysics Data System (ADS)
Li, Lun; Wei, Sixiao; Tian, Xin; Hsieh, Li-Tse; Chen, Zhijiang; Pham, Khanh; Lyke, James; Chen, Genshe
2018-05-01
In the current global positioning system (GPS), the reliability of information transmissions can be enhanced with the aid of inter-satellite links (ISLs) or crosslinks between satellites. Instead of only using conventional radio frequency (RF) crosslinks, the laser crosslinks provide an option to significantly increase the data throughput. The connectivity and robustness of ISL are needed for analysis, especially for GPS constellations with laser crosslinks. In this paper, we first propose a hybrid GPS communication architecture in which uplinks and downlinks are established via RF signals and crosslinks are established via laser links. Then, we design an optical crosslink assignment criteria considering the practical optical communication factors such as optical line- of-sight (LOS) range, link distance, and angular velocity, etc. After that, to further improve the rationality of establishing crosslinks, a topology control algorithm is formulated to optimize GPS crosslink networks at both physical and network layers. The RF transmission features for uplink and downlink and optical transmission features for crosslinks are taken into account as constraints for the optimization problem. Finally, the proposed link establishment criteria are implemented for GPS communication with optical crosslinks. The designs of this paper provide a potential crosslink establishment and topology control algorithm for the next generation GPS.
Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions.
Guo, Mingyu; Pitet, Louis M; Wyss, Hans M; Vos, Matthijn; Dankers, Patricia Y W; Meijer, E W
2014-05-14
Hydrogels were prepared with physical cross-links comprising 2-ureido-4[1H]-pyrimidinone (UPy) hydrogen-bonding units within the backbone of segmented amphiphilic macromolecules having hydrophilic poly(ethylene glycol) (PEG). The bulk materials adopt nanoscopic physical cross-links composed of UPy-UPy dimers embedded in segregated hydrophobic domains dispersed within the PEG matrix as comfirmed by cryo-electron microscopy. The amphiphilic network was swollen with high weight fractions of water (w(H2O) ≈ 0.8) owing to the high PEG weight fraction within the pristine polymers (w(PEG) ≈ 0.9). Two different PEG chain lengths were investigated and illustrate the corresponding consequences of cross-link density on mechanical properties. The resulting hydrogels exhibited high strength and resilience upon deformation, consistent with a microphase separated network, in which the UPy-UPy interactions were adequately shielded within hydrophobic nanoscale pockets that maintain the network despite extensive water content. The cumulative result is a series of tough hydrogels with tunable mechanical properties and tractable synthetic preparation and processing. Furthermore, the melting transition of PEG in the dry polymer was shown to be an effective stimulus for shape memory behavior.
Fracture Simulation of Highly Crosslinked Polymer Networks: Triglyceride-Based Adhesives
NASA Astrophysics Data System (ADS)
Lorenz, Christian; Stevens, Mark; Wool, Richard
2003-03-01
The ACRES program at the U. of Delaware has shown that triglyceride oils derived from plants are a favorable alternative to the traditional adhesives. The triglyceride networks are formed from an initial mixture of styrene monomers, free-radical initiators and triglycerides. We have performed simulations to study the effect of physical composition and physical characteristics of the triglyceride network on the strength of triglyceride network. A coarse-grained, bead-spring model of the triglyceride system is used. The average triglyceride consists of 6 beads per chain, the styrenes are represented as a single bead and the initiators are two bead chains. The polymer network is formed using an off-lattice 3D Monte Carlo simulation, in which the initiators activate the styrene and triglyceride reactive sites and then bonds are randomly formed between the styrene and active triglyceride monomers producing a highly crosslinked polymer network. Molecular dynamics simulations of the network under tensile and shear strains were performed to determine the strength as a function of the network composition. The relationship between the network structure and its strength will also be discussed.
Transient Binding and Viscous Dissipation in Semi-flexible Polymer Networks
NASA Astrophysics Data System (ADS)
Lieleg, Oliver; Claessens, Mireille; Bausch, Andreas
2008-03-01
Nature specifically chooses from a myriad of actin binding proteins (ABPs) to tailor the cytoskeletal microstructure. Herein, cells rely on the dynamics of the cytoskeleton as its structural and mechanical adaptability is crucial to allow for dynamic processes. A molecular understanding of such biological complexity calls for an in vitro system with well-defined structural rearrangements and cross-linker dynamics to elucidate the physical origin of the unique viscoelastic properties of cells. As we present here, the frequency-dependent viscoelastic response of cross-linked in vitro actin networks is determined by the binding kinetics of cross-linking molecules. Independent from the particular network structure, the viscous dissipation (loss modulus) exhibits a pronounced minimum in an intermediate frequency which is dominated by elasticity. We show that in this frequency regime the molecular origin of the viscoelastic response is given by the non-static nature of actin/ABP bonds as they are subjugated to chemical on/off kinetics. The time scale of the resulting stress release is set by the lifetime distribution of the cross-linking molecule and therefore can be tuned independently from other relaxation mechanisms. We speculate that unbinding of distinct cross-links might be the molecular mechanism employed by cells for mechanosensing.
Hydrogels in a historical perspective: from simple networks to smart materials.
Buwalda, Sytze J; Boere, Kristel W M; Dijkstra, Pieter J; Feijen, Jan; Vermonden, Tina; Hennink, Wim E
2014-09-28
Over the past decades, significant progress has been made in the field of hydrogels as functional biomaterials. Biomedical application of hydrogels was initially hindered by the toxicity of crosslinking agents and limitations of hydrogel formation under physiological conditions. Emerging knowledge in polymer chemistry and increased understanding of biological processes resulted in the design of versatile materials and minimally invasive therapies. Hydrogel matrices comprise a wide range of natural and synthetic polymers held together by a variety of physical or chemical crosslinks. With their capacity to embed pharmaceutical agents in their hydrophilic crosslinked network, hydrogels form promising materials for controlled drug release and tissue engineering. Despite all their beneficial properties, there are still several challenges to overcome for clinical translation. In this review, we provide a historical overview of the developments in hydrogel research from simple networks to smart materials. Copyright © 2014 Elsevier B.V. All rights reserved.
3D cell entrapment in crosslinked thiolated gelatin-poly(ethylene glycol) diacrylate hydrogels
Fu, Yao; Xu, Kedi; Zheng, Xiaoxiang; Giacomin, A. Jeffrey; Mix, Adam W.; Kao, Weiyuan John
2012-01-01
The combined use of natural ECM components and synthetic materials offers an attractive alternative to fabricate hydrogel-based tissue engineering scaffolds to study cell-matrix interactions in three-dimensions (3D). A facile method was developed to modify gelatin with cysteine via a bifunctional PEG linker, thus introducing free thiol groups to gelatin chains. A covalently crosslinked gelatin hydrogel was fabricated using thiolated gelatin and poly(ethylene glycol) diacrylate (PEGdA) via thiol-ene reaction. Unmodified gelatin was physically incorporated in a PEGdA-only matrix for comparison. We sought to understand the effect of crosslinking modality on hydrogel physicochemical properties and the impact on 3D cell entrapment. Compared to physically incorporated gelatin hydrogels, covalently crosslinked gelatin hydrogels displayed higher maximum weight swelling ratio (Qmax), higher water content, significantly lower cumulative gelatin dissolution up to 7 days, and lower gel stiffness. Furthermore, fibroblasts encapsulated within covalently crosslinked gelatin hydrogels showed extensive cytoplasmic spreading and the formation of cellular networks over 28 days. In contrast, fibroblasts encapsulated in the physically incorporated gelatin hydrogels remained spheroidal. Hence, crosslinking ECM protein with synthetic matrix creates a stable scaffold with tunable mechanical properties and with long-term cell anchorage points, thus supporting cell attachment and growth in the 3D environment. PMID:21955690
NASA Astrophysics Data System (ADS)
Ejiasi, Angel
The effect of physical, chemical, and biological cues on the behavior of smooth muscle cells (SMCs) and attachment of marine organisms was investigated. Both hydrophilic and amphiphilic crosslinked polymer networks with varying chemical and mechanical properties were used to direct biological responses. Poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels were fabricated with tunable mechanical properties by varying the di-functional monomer concentration in the feed composition. Amphiphilic hydrogels composed of 2-hydroxyethyl methacrylate (HEMA), 1,3-bis(3-methacryloxypropyl)tetrakis(trimethylsiloxy)disiloxane (MPTSDS), and tris(trimethylsiloxy)-3-methacryloxypropylsilane (TRIS) were copolymerized using ultraviolet (UV) light and a photo-initiator. Hydrogels prepared with varying concentration of di-functional monomer, MPTSDS, exhibited an order of magnitude difference in elastic moduli. Not only were the bulk material properties influenced by the crosslinking agent concentration in the feed composition, but the surface properties (i.e., contact angle and hysteresis) were influenced as well. Modulus (E) has been reported to be positively correlated with the settlement of marine organisms. However, this was not the case for the amphiphilic gels tested against biomolecules and marine organisms. Stiffer gels inhibited fouling of proteins and marine organism, Ulva linza, to a greater extent than the softer gels. Furthermore, the network structure, in regards to the molecular weight between crosslinks Mc, was found to have a greater influence on fouling. A strong correlation was observed between protein adsorption and Mc of the amphiphilic crosslinked networks compared to just the modulus and surface energy (Upsilon) alone. A higher correlation was also obtained between Mc and Ulva sporeling biomass than between sporeling biomass and elastic modulus E, exhibiting R² value of 0.98 and 0.38, respectively. The percent removal of sporeling biomass growth was shown to be positively correlated with the (E Upsilon) 1/2, which is a contrast to what has previously been reported. Again, there was a higher correlation between Mc and percent removal of sporeling biomass than between (E Upsilon)1/2 and percent removal of sporelings (R² value of 0.83 and 0.57, respectively). The differences in biofouling ability is most likely due to differences in mesh size between hydrogel compositions. Biomolecule accumulation and absorption was made easier by the larger mesh size in hydrogels with lower crosslinking concentration in the feed composition. The influence of chemical and physical properties on mammalian cells was also investigated. Amphiphilic crosslinked networks were fabricated with tunable mechanical properties and their ability to modulate smooth muscle cell (SMC) phenotype was studied by assessing cell proliferation. Bioactive molecules, Arg-Gly-Asp-Ser (RGDS), were incorporated into the crosslinked matrix to promote adhesion and facilitate cell growth. The elastic modulus of the substrate and the concentration of RGDS were shown to positively correlate with the attachment and proliferation of SMCs; indicating that the physic-chemical network properties play a large role in behavior of unicellular organisms.
Effect of pH on chitosan hydrogel polymer network structure.
Xu, Hongcheng; Matysiak, Silvina
2017-06-29
Chitosan is a molecule that can form water-filled 3D polymer networks with a wide range of applications. A new coarse-grained model for chitosan hydrogel was developed to explore its pH-dependent self-assembly behavior and mechanical properties. Our results indicate that the underlying polymer physical crosslinking pattern induced by solution pH has a significant effect on hydrogel elastic moduli. With this model, we obtain pH-dependent structural and mechanical property changes in agreement with experimental observations, and provide a molecular mechanism behind the changes in polymer crosslinking patterns.
Modeling semiflexible polymer networks
NASA Astrophysics Data System (ADS)
Broedersz, C. P.; MacKintosh, F. C.
2014-07-01
This is an overview of theoretical approaches to semiflexible polymers and their networks. Such semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies have been motivated by their importance in biology. Indeed, cross-linked networks of semiflexible polymers form a major structural component of tissue and living cells. Reconstituted networks of such biopolymers have emerged as a new class of biological soft matter systems with remarkable material properties, which have spurred many of the theoretical developments discussed here. Starting from the mechanics and dynamics of individual semiflexible polymers, the physics of semiflexible bundles, entangled solutions, and disordered cross-linked networks are reviewed. Finally, recent developments on marginally stable fibrous networks, which exhibit critical behavior similar to other marginal systems such as jammed soft matter, are discussed.
NASA Astrophysics Data System (ADS)
Tabatabai, A. P.; Urbach, J. S.; Blair, D. L.; Kaplan, D. L.
2014-03-01
We present experimental results on the rheology on electrogels derived from aqueous solutions of reconstituted Bombyx Mori silk fibroin protein. Through electrochemistry, the silk protein solution develops local pH changes resulting in the assembly of protein into a weak gel. We determine the physical properties of the electrogels by performing rheology and observe that they exhibit the characteristics of a crosslinked biopolymer network. Interestingly, we find that these silk gels exhibit linear elasticity over a range of up to two orders of magnitude larger than most crosslinked biopolymer networks. Moreover, the nonlinear rheology exhibits a strain-stiffening behavior that is fundamentally different than the strain-stiffening observed in crosslinked biopolymers. Through rheological techniques we aim to understand this distinctive material that cannot be explained by current polymeric models. This work is supported by a grant from the AFOSR FA9550-07-1-0130.
Effect of crosslink torsional stiffness on elastic behavior of semiflexible polymer networks
NASA Astrophysics Data System (ADS)
Hatami-Marbini, H.
2018-02-01
Networks of semiflexible filaments are building blocks of different biological and structural materials such as cytoskeleton and extracellular matrix. The mechanical response of these systems when subjected to an applied strain at zero temperature is often investigated numerically using networks composed of filaments, which are either rigidly welded or pinned together at their crosslinks. In the latter, filaments during deformation are free to rotate about their crosslinks while the relative angles between filaments remain constant in the former. The behavior of crosslinks in actual semiflexible networks is different than these idealized models and there exists only partial constraint on torques at crosslinks. The present work develops a numerical model in which two intersecting filaments are connected to each other by torsional springs with arbitrary stiffness. We show that fiber networks composed of rigid and freely rotating crosslinks are the limiting case of the present model. Furthermore, we characterize the effects of stiffness of crosslinks on effective Young's modulus of semiflexible networks as a function of filament flexibility and crosslink density. The effective Young's modulus is determined as a function of the mechanical properties of crosslinks and is found to vanish for networks composed of very weak torsional springs. Independent of the stiffness of crosslinks, it is found that the effective Young's modulus is a function of fiber flexibility and crosslink density. In low density networks, filaments primarily bend and the effective Young's modulus is much lower than the affine estimate. With increasing filament bending stiffness and/or crosslink density, the mechanical behavior of the networks becomes more affine and the stretching of filaments depicts itself as the dominant mode of deformation. The torsional stiffness of the crosslinks significantly affects the effective Young's modulus of the semiflexible random fiber networks.
Self-repairable polyurethane networks by atmospheric carbon dioxide and water.
Yang, Ying; Urban, Marek W
2014-11-03
Sugar moieties were incorporated into cross-linked polyurethane (PUR) networks in an effort to achieve self-repairing in the presence of atmospheric carbon dioxide (CO2) and water (H2O). When methyl-α-D-glucopyranoside (MGP) molecules are reacted with hexamethylene diisocyanate trimer (HDI) and polyethylene glycol (PEG) to form cross-linked MGP-polyurethane (PUR) networks, these materials are capable of self-repairing in air. This process requires atmospheric amounts of CO2 and H2O, thus resembling plant behavior of carbon fixation during the photosynthesis cycle. Molecular processes responsible for this unique self-repair process involve physical diffusion of cleaved network segments as well as the formation of carbonate and urethane linkages. Unlike plants, MGP-PUR networks require no photo-initiated reactions, and they are thus capable of repair in darkness under atmospheric conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fabrication of elastomeric silk fibers.
Bradner, Sarah A; Partlow, Benjamin P; Cebe, Peggy; Omenetto, Fiorenzo G; Kaplan, David L
2017-09-01
Methods to generate fibers from hydrogels, with control over mechanical properties, fiber diameter, and crystallinity, while retaining cytocompatibility and degradability, would expand options for biomaterials. Here, we exploited features of silk fibroin protein for the formation of tunable silk hydrogel fibers. The biological, chemical, and morphological features inherent to silk were combined with elastomeric properties gained through enzymatic crosslinking of the protein. Postprocessing via methanol and autoclaving provided tunable control of fiber features. Mechanical, optical, and chemical analyses demonstrated control of fiber properties by exploiting the physical cross-links, and generating double network hydrogels consisting of chemical and physical cross-links. Structure and chemical analyses revealed crystallinity from 30 to 50%, modulus from 0.5 to 4 MPa, and ultimate strength 1-5 MPa depending on the processing method. Fabrication and postprocessing combined provided fibers with extensibility from 100 to 400% ultimate strain. Fibers strained to 100% exhibited fourth order birefringence, revealing macroscopic orientation driven by chain mobility. The physical cross-links were influenced in part by the drying rate of fabricated materials, where bound water, packing density, and microstructural homogeneity influenced cross-linking efficiency. The ability to generate robust and versatile hydrogel microfibers is desirable for bottom-up assembly of biological tissues and for broader biomaterial applications. © 2017 Wiley Periodicals, Inc.
Dependence of physical and mechanical properties on polymer architecture for model polymer networks
NASA Astrophysics Data System (ADS)
Guo, Ruilan
Effect of architecture at nanoscale on the macroscopic properties of polymer materials has long been a field of major interest, as evidenced by inhomogeneities in networks, multimodal network topologies, etc. The primary purpose of this research is to establish the architecture-property relationship of polymer networks by studying the physical and mechanical responses of a series of topologically different PTHF networks. Monodispersed allyl-tenninated PTHF precursors were synthesized through "living" cationic polymerization and functional end-capping. Model networks of various crosslink densities and inhomogeneities levels (unimodal, bimodal and clustered) were prepared by endlinking precursors via thiol-ene reaction. Thermal characteristics, i.e., glass transition, melting point, and heat of fusion, of model PTHF networks were investigated as functions of crosslink density and inhomogeneities, which showed different dependence on these two architectural parameters. Study of freezing point depression (FPD) of solvent confined in swollen networks indicated that the size of solvent microcrystals is comparable to the mesh size formed by intercrosslink chains depending on crosslink density and inhomogeneities. Relationship between crystal size and FPD provided a good reflection of the existing architecture facts in the networks. Mechanical responses of elastic chains to uniaxial strains were studied through SANS. Spatial inhomogeneities in bimodal and clustered networks gave rise to "abnormal butterfly patterns", which became more pronounced as elongation ratio increases. Radii of gyration of chains were analyzed at directions parallel and perpendicular to stretching axis. Dependence of Rg on lambda was compared to three rubber elasticity models and the molecular deformation mechanisms for unimodal, bimodal and clustered networks were explored. The thesis focused its last part on the investigation of evolution of free volume distribution of linear polymer (PE) subjected to uniaxial strain at various temperatures using a combination of MD, hard sphere probe method and Voronoi tessellation. Combined effects of temperature and strain on free volume were studied and mechanism of formation of large and ellipsoidal free volume voids was explored.
Yang, Yali; Bai, Mo; Klug, William S.; Levine, Alex J.
2012-01-01
We determine the time- and force-dependent viscoelastic responses of reconstituted networks of microtubules that have been strongly crosslinked by biotin-streptavidin bonds. To measure the microscale viscoelasticity of such networks, we use a magnetic tweezers device to apply localized forces. At short time scales, the networks respond nonlinearly to applied force, with stiffening at small forces, followed by a reduction in the stiffening response at high forces, which we attribute to the force-induced unbinding of crosslinks. At long time scales, force-induced bond unbinding leads to local network rearrangement and significant bead creep. Interestingly, the network retains its elastic modulus even under conditions of significant plastic flow, suggesting that crosslinker breakage is balanced by the formation of new bonds. To better understand this effect, we developed a finite element model of such a stiff filament network with labile crosslinkers obeying force-dependent Bell model unbinding dynamics. The coexistence of dissipation, due to bond breakage, and the elastic recovery of the network is possible because each filament has many crosslinkers. Recovery can occur as long as a sufficient number of the original crosslinkers are preserved under the loading period. When these remaining original crosslinkers are broken, plastic flow results. PMID:23577042
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Brad H.; Wheeler, David R.; Black, Hayden T.
Physical stress relaxation in rubbery, thermoset polymers is limited by cross-links, which impede segmental motion and restrict relaxation to network defects, such as chain ends. In parallel, the cure shrinkage associated with thermoset polymerizations leads to the development of internal residual stress that cannot be effectively relaxed. Recent strategies have reduced or eliminated such cure stress in thermoset polymers largely by exploiting chemical relaxation processes, wherein temporary cross-links or otherwise transient bonds are incorporated into the polymer network. In this paper, we explore an alternative approach, wherein physical relaxation is enhanced by the incorporation of organometallic sandwich moieties into themore » backbone of the polymer network. A standard epoxy resin is cured with a diamine derivative of ferrocene and compared to conventional diamine curing agents. The ferrocene-based thermoset is clearly distinguished from the conventional materials by reduced cure stress with increasing cure temperature as well as unique stress relaxation behavior above its glass transition in the fully cured state. The relaxation experiments exhibit features characteristic of a physical relaxation process. Furthermore, the cure stress is observed to vanish precipitously upon deliberate introduction of network defects through an increasing imbalance of epoxy and amine functional groups. Finally, we postulate that these beneficial properties arise from fluxional motion of the cyclopentadienyl ligands on the polymer backbone.« less
Douglas, Alison M.; Fragkopoulos, Alexandros A.; Gaines, Michelle K.; Lyon, L. Andrew; Fernandez-Nieves, Alberto
2017-01-01
In regenerative medicine, natural protein-based polymers offer enhanced endogenous bioactivity and potential for seamless integration with tissue, yet form weak hydrogels that lack the physical robustness required for surgical manipulation, making them difficult to apply in practice. The use of higher concentrations of protein, exogenous cross-linkers, and blending synthetic polymers has all been applied to form more mechanically robust networks. Each relies on generating a smaller network mesh size, which increases the elastic modulus and robustness, but critically inhibits cell spreading and migration, hampering tissue regeneration. Here we report two unique observations; first, that colloidal suspensions, at sufficiently high volume fraction (ϕ), dynamically assemble into a fully percolated 3D network within high-concentration protein polymers. Second, cells appear capable of leveraging these unique domains for highly efficient cell migration throughout the composite construct. In contrast to porogens, the particles in our system remain embedded within the bulk polymer, creating a network of particle-filled tunnels. Whereas this would normally physically restrict cell motility, when the particulate network is created using ultralow cross-linked microgels, the colloidal suspension displays viscous behavior on the same timescale as cell spreading and migration and thus enables efficient cell infiltration of the construct through the colloidal-filled tunnels. PMID:28100492
NASA Astrophysics Data System (ADS)
Douglas, Alison M.; Fragkopoulos, Alexandros A.; Gaines, Michelle K.; Lyon, L. Andrew; Fernandez-Nieves, Alberto; Barker, Thomas H.
2017-01-01
In regenerative medicine, natural protein-based polymers offer enhanced endogenous bioactivity and potential for seamless integration with tissue, yet form weak hydrogels that lack the physical robustness required for surgical manipulation, making them difficult to apply in practice. The use of higher concentrations of protein, exogenous cross-linkers, and blending synthetic polymers has all been applied to form more mechanically robust networks. Each relies on generating a smaller network mesh size, which increases the elastic modulus and robustness, but critically inhibits cell spreading and migration, hampering tissue regeneration. Here we report two unique observations; first, that colloidal suspensions, at sufficiently high volume fraction (ϕ), dynamically assemble into a fully percolated 3D network within high-concentration protein polymers. Second, cells appear capable of leveraging these unique domains for highly efficient cell migration throughout the composite construct. In contrast to porogens, the particles in our system remain embedded within the bulk polymer, creating a network of particle-filled tunnels. Whereas this would normally physically restrict cell motility, when the particulate network is created using ultralow cross-linked microgels, the colloidal suspension displays viscous behavior on the same timescale as cell spreading and migration and thus enables efficient cell infiltration of the construct through the colloidal-filled tunnels.
Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications
Zhao, Fei; Shi, Ye; Pan, Lijia; ...
2017-06-26
Conductive polymers have attracted significant interest over the past few decades because they synergize the advantageous features of conventional polymeric materials and organic conductors. With rationally designed nanostructures, conductive polymers can further exhibit exceptional mechanical, electrical, and optical properties because of their confined dimensions at the nanoscale level. Among various nanostructured conductive polymers, conductive polymer gels (CPGs) with synthetically tunable hierarchical 3D network structures show great potential for a wide range of applications, such as bioelectronics, and energy storage/conversion devices owing to their structural features. CPGs retain the properties of nanosized conductive polymers during the assembly of the nanobuilding blocksmore » into a monolithic macroscopic structure while generating structure-derived features from the highly cross-linked network. In this Account, we review our recent progress on the synthesis, properties, and novel applications of dopant cross-linked CPGs. We first describe the synthetic strategies, in which molecules with multiple functional groups are adopted as cross-linkers to cross-link conductive polymer chains into a 3D molecular network. These cross-linking molecules also act as dopants to improve the electrical conductivity of the gel network. The microstructure and physical/chemical properties of CPGs can be tuned by controlling the synthetic conditions such as species of monomers and cross-linkers, reaction temperature, and solvents. By incorporating other functional polymers or particles into the CPG matrix, hybrid gels have been synthesized with tailored structures. These hybrid gel materials retain the functionalities from each component, as well as enable synergic effects to improve mechanical and electrical properties of CPGs. We then introduce the unique structure-derived properties of the CPGs. The network facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. CPGs also provide high surface area and solvent compatibility, similar to natural gels. With these improved properties, CPGs have been explored to enable novel conceptual devices in diverse applications from smart electronics and ultrasensitive biosensors, to energy storage and conversion devices. CPGs have also been adopted for developing hybrid materials with multifunctionalities, such as stimuli responsiveness, self-healing properties, and super-repellency to liquid. With synthetically tunable physical/chemical properties, CPGs emerge as a unique material platform to develop novel multifunctional materials that have the potential to impact electronics, energy, and environmental technologies. Our hope is that this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of CPGs.« less
Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Fei; Shi, Ye; Pan, Lijia
Conductive polymers have attracted significant interest over the past few decades because they synergize the advantageous features of conventional polymeric materials and organic conductors. With rationally designed nanostructures, conductive polymers can further exhibit exceptional mechanical, electrical, and optical properties because of their confined dimensions at the nanoscale level. Among various nanostructured conductive polymers, conductive polymer gels (CPGs) with synthetically tunable hierarchical 3D network structures show great potential for a wide range of applications, such as bioelectronics, and energy storage/conversion devices owing to their structural features. CPGs retain the properties of nanosized conductive polymers during the assembly of the nanobuilding blocksmore » into a monolithic macroscopic structure while generating structure-derived features from the highly cross-linked network. In this Account, we review our recent progress on the synthesis, properties, and novel applications of dopant cross-linked CPGs. We first describe the synthetic strategies, in which molecules with multiple functional groups are adopted as cross-linkers to cross-link conductive polymer chains into a 3D molecular network. These cross-linking molecules also act as dopants to improve the electrical conductivity of the gel network. The microstructure and physical/chemical properties of CPGs can be tuned by controlling the synthetic conditions such as species of monomers and cross-linkers, reaction temperature, and solvents. By incorporating other functional polymers or particles into the CPG matrix, hybrid gels have been synthesized with tailored structures. These hybrid gel materials retain the functionalities from each component, as well as enable synergic effects to improve mechanical and electrical properties of CPGs. We then introduce the unique structure-derived properties of the CPGs. The network facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. CPGs also provide high surface area and solvent compatibility, similar to natural gels. With these improved properties, CPGs have been explored to enable novel conceptual devices in diverse applications from smart electronics and ultrasensitive biosensors, to energy storage and conversion devices. CPGs have also been adopted for developing hybrid materials with multifunctionalities, such as stimuli responsiveness, self-healing properties, and super-repellency to liquid. With synthetically tunable physical/chemical properties, CPGs emerge as a unique material platform to develop novel multifunctional materials that have the potential to impact electronics, energy, and environmental technologies. Our hope is that this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of CPGs.« less
Multifunctional Nanostructured Conductive Polymer Gels: Synthesis, Properties, and Applications.
Zhao, Fei; Shi, Ye; Pan, Lijia; Yu, Guihua
2017-07-18
Conductive polymers have attracted significant interest over the past few decades because they synergize the advantageous features of conventional polymeric materials and organic conductors. With rationally designed nanostructures, conductive polymers can further exhibit exceptional mechanical, electrical, and optical properties because of their confined dimensions at the nanoscale level. Among various nanostructured conductive polymers, conductive polymer gels (CPGs) with synthetically tunable hierarchical 3D network structures show great potential for a wide range of applications, such as bioelectronics, and energy storage/conversion devices owing to their structural features. CPGs retain the properties of nanosized conductive polymers during the assembly of the nanobuilding blocks into a monolithic macroscopic structure while generating structure-derived features from the highly cross-linked network. In this Account, we review our recent progress on the synthesis, properties, and novel applications of dopant cross-linked CPGs. We first describe the synthetic strategies, in which molecules with multiple functional groups are adopted as cross-linkers to cross-link conductive polymer chains into a 3D molecular network. These cross-linking molecules also act as dopants to improve the electrical conductivity of the gel network. The microstructure and physical/chemical properties of CPGs can be tuned by controlling the synthetic conditions such as species of monomers and cross-linkers, reaction temperature, and solvents. By incorporating other functional polymers or particles into the CPG matrix, hybrid gels have been synthesized with tailored structures. These hybrid gel materials retain the functionalities from each component, as well as enable synergic effects to improve mechanical and electrical properties of CPGs. We then introduce the unique structure-derived properties of the CPGs. The network facilitates both electronic and ionic transport owing to the continuous pathways for electrons and hierarchical pores for ion diffusion. CPGs also provide high surface area and solvent compatibility, similar to natural gels. With these improved properties, CPGs have been explored to enable novel conceptual devices in diverse applications from smart electronics and ultrasensitive biosensors, to energy storage and conversion devices. CPGs have also been adopted for developing hybrid materials with multifunctionalities, such as stimuli responsiveness, self-healing properties, and super-repellency to liquid. With synthetically tunable physical/chemical properties, CPGs emerge as a unique material platform to develop novel multifunctional materials that have the potential to impact electronics, energy, and environmental technologies. We hope that this Account promotes further efforts toward synthetic control, fundamental investigation, and application exploration of CPGs.
da Silva, Marcelo A; Bode, Franziska; Grillo, Isabelle; Dreiss, Cécile A
2015-04-13
Small-angle neutron scattering (SANS) was used to characterize the nanoscale structure of enzymatically cross-linked chitosan/gelatin hydrogels obtained from two protocols: a pure chemical cross-linking process (C), which uses the natural enzyme microbial transglutaminase, and a physical-co-chemical (PC) hybrid process, where covalent cross-linking is combined with the temperature-triggered gelation of gelatin, occurring through the formation of triple-helices. SANS measurements on the final and evolving networks provide a correlation length (ξ), which reflects the average size of expanding clusters. Their growth in PC gels is restricted by the triple-helices (ξ ∼ 10s of Å), while ξ in pure chemical gels increases with cross-linker concentration (∼100s of Å). In addition, the shear elastic modulus in PC gels is higher than in pure C gels. Our results thus demonstrate that gelatin triple helices provide a template to guide the cross-linking process; overall, this work provides important structural insight to improve the design of biopolymer-based gels.
Porous Cross-Linked Polyimide Networks
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor); Guo, Haiquan (Inventor)
2015-01-01
Porous cross-linked polyimide networks are provided. The networks comprise an anhydride end-capped polyamic acid oligomer. The oligomer (i) comprises a repeating unit of a dianhydride and a diamine and terminal anhydride groups, (ii) has an average degree of polymerization of 10 to 50, (iii) has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups, and (iv) has been chemically imidized to yield the porous cross-linked polyimide network. Also provided are porous cross-linked polyimide aerogels comprising a cross-linked and imidized anhydride end-capped polyamic acid oligomer, wherein the oligomer comprises a repeating unit of a dianhydride and a diamine, and the aerogel has a density of 0.10 to 0.333 g/cm.sup.3 and a Young's modulus of 1.7 to 102 MPa. Also provided are thin films comprising aerogels, and methods of making porous cross-linked polyimide networks.
Miao, Tianxin; Fenn, Spencer L.; Charron, Patrick N.; Oldinski, Rachael A.
2015-01-01
β-cyclodextrin (β-CD), with a lipophilic inner cavity and hydrophilic outer surface, interacts with a large variety of non-polar guest molecules to form non-covalent inclusion complexes. Conjugation of β-CD onto biomacromolecules can form physically-crosslinked hydrogel networks upon mixing with a guest molecule. Herein describes the development and characterization of self-healing, thermo-responsive hydrogels, based on host-guest inclusion complexes between alginate-graft-β-CD and Pluronic® F108 (poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)). The mechanics, flow characteristics, and thermal response were contingent on the polymer concentrations, and the host-guest molar ratio. Transient and reversible physical crosslinking between host and guest polymers governed self-assembly, allowing flow under shear stress, and facilitating complete recovery of the material properties within a few seconds of unloading. The mechanical properties of the dual-crosslinked, multi-stimuli responsive hydrogels were tuned as high as 30 kPa at body temperature, and are advantageous for biomedical applications such as drug delivery and cell transplantation. PMID:26509214
Stress Relaxation in Epoxy Thermosets via a Ferrocene-Based Amine Curing Agent
Jones, Brad H.; Wheeler, David R.; Black, Hayden T.; ...
2017-06-29
Physical stress relaxation in rubbery, thermoset polymers is limited by cross-links, which impede segmental motion and restrict relaxation to network defects, such as chain ends. In parallel, the cure shrinkage associated with thermoset polymerizations leads to the development of internal residual stress that cannot be effectively relaxed. Recent strategies have reduced or eliminated such cure stress in thermoset polymers largely by exploiting chemical relaxation processes, wherein temporary cross-links or otherwise transient bonds are incorporated into the polymer network. In this paper, we explore an alternative approach, wherein physical relaxation is enhanced by the incorporation of organometallic sandwich moieties into themore » backbone of the polymer network. A standard epoxy resin is cured with a diamine derivative of ferrocene and compared to conventional diamine curing agents. The ferrocene-based thermoset is clearly distinguished from the conventional materials by reduced cure stress with increasing cure temperature as well as unique stress relaxation behavior above its glass transition in the fully cured state. The relaxation experiments exhibit features characteristic of a physical relaxation process. Furthermore, the cure stress is observed to vanish precipitously upon deliberate introduction of network defects through an increasing imbalance of epoxy and amine functional groups. Finally, we postulate that these beneficial properties arise from fluxional motion of the cyclopentadienyl ligands on the polymer backbone.« less
Stress Relaxation in Epoxy Thermosets via a Ferrocene-Based Amine Curing Agent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Brad H.; Wheeler, David R.; Black, Hayden T.
Physical stress relaxation in rubbery, thermoset polymers is limited by cross-links, which impede segmental motion and restrict relaxation to network defects, such as chain ends. In parallel, the cure shrinkage associated with thermoset polymerizations leads to the development of internal residual stress that cannot be effectively relaxed. Recent strategies have reduced or eliminated such cure stress in thermoset polymers largely by exploiting chemical relaxation processes, wherein temporary cross-links or otherwise transient bonds are incorporated into the polymer network. In this paper, we explore an alternative approach, wherein physical relaxation is enhanced by the incorporation of organometallic sandwich moieties into themore » backbone of the polymer network. A standard epoxy resin is cured with a diamine derivative of ferrocene and compared to conventional diamine curing agents. The ferrocene-based thermoset is clearly distinguished from the conventional materials by reduced cure stress with increasing cure temperature as well as unique stress relaxation behavior above its glass transition in the fully cured state. The relaxation experiments exhibit features characteristic of a physical relaxation process. Furthermore, the cure stress is observed to vanish precipitously upon deliberate introduction of network defects through an increasing imbalance of epoxy and amine functional groups. Finally, we postulate that these beneficial properties arise from fluxional motion of the cyclopentadienyl ligands on the polymer backbone.« less
Rongen, Jan J; van Bochove, Bas; Hannink, Gerjon; Grijpma, Dirk W; Buma, Pieter
2016-11-01
Photo-crosslinked networks prepared from three-armed methacrylate functionalized PTMC oligomers (PTMC-tMA macromers) are attractive materials for developing an anatomically correct meniscus scaffold. In this study, we evaluated cell specific biocompatibility, in vitro and in vivo degradation behavior of, and tissue response to, such PTMC networks. By evaluating PTMC networks prepared from PTMC-tMA macromers of different molecular weights, we were able to assess the effect of macromer molecular weight on the degradation rate of the PTMC network obtained after photo-crosslinking. Three photo-crosslinked networks with different crosslinking densities were prepared using PTMC-tMA macromers with molecular weights 13.3, 17.8, and 26.7 kg/mol. Good cell biocompatibility was demonstrated in a proliferation assay with synovium derived cells. PTMC networks degraded slowly, but statistically significant, both in vitro as well as subcutaneously in rats. Networks prepared from macromers with higher molecular weights demonstrated increased degradation rates compared to networks prepared from initial macromers of lowest molecular weight. The degradation process took place via surface erosion. The PTMC networks showed good tissue tolerance during subcutaneous implantation, to which the tissue response was characterized by the presence of fibrous tissue and encapsulation of the implants. Concluding, we developed cell and tissue biocompatible, photo-crosslinked PTMC networks using PTMC-tMA macromers with relatively high molecular weights. These photo-crosslinked PTMC networks slowly degrade by a surface erosion process. Increasing the crosslinking density of these networks decreases the rate of surface degradation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2823-2832, 2016. © 2016 Wiley Periodicals, Inc.
Choi, Dongkil; Lee, Woojin; Park, Jinwon; Koh, Wongun
2008-01-01
In this study, poly(ethylene glycol) (PEG)-based hydrogels having different network structures were synthesized by UV-initiated photopolymerization and used for the enzyme immobilization. PEGs with different molecular weight were acrylated by derivatizing both ends with acryloyl chloride and photopolymerization of PEG-diacrylate (PEG-DA) yielded crosslinked hydrogel network within 5 seconds. Attachment of acrylate groups and gelation were confirmed by ATR/FT-IR and FT-Raman spectroscopy. Network structures of hydrogels could be easily controlled by changing the molecular weight (MW) of PEG-DA and characterized by calculating molecular weight between crosslinks and mesh size from the swelling measurement. Synthesis of hydrogels with higher MW of PEG produced less crosslinked hydrogels having higher water content, larger value of Mc and mesh size, which resulted in enhanced mass transfer but loss of mechanical properties. For the enzyme immobilization, glucose oxidase (GOX) was immobilized inside PEG hydrogels by means of physical entrapment and covalent immobilization. Encapsulated GOX were covalently bound to PEG backbone using acryloyl-PEG-N-hydroxysuccinimide and maintained their activity over a week period without leakage. Kinetic study indicated that immobilized enzyme inside hydrogel prepared from higher MW of PEG possessed lower apparent Km (Michaelis-Menten constant) and higher activity.
Flory-Stockmayer analysis on reprocessable polymer networks
NASA Astrophysics Data System (ADS)
Li, Lingqiao; Chen, Xi; Jin, Kailong; Torkelson, John
Reprocessable polymer networks can undergo structure rearrangement through dynamic chemistries under proper conditions, making them a promising candidate for recyclable crosslinked materials, e.g. tires. This research field has been focusing on various chemistries. However, there has been lacking of an essential physical theory explaining the relationship between abundancy of dynamic linkages and reprocessability. Based on the classical Flory-Stockmayer analysis on network gelation, we developed a similar analysis on reprocessable polymer networks to quantitatively predict the critical condition for reprocessability. Our theory indicates that it is unnecessary for all bonds to be dynamic to make the resulting network reprocessable. As long as there is no percolated permanent network in the system, the material can fully rearrange. To experimentally validate our theory, we used a thiol-epoxy network model system with various dynamic linkage compositions. The stress relaxation behavior of resulting materials supports our theoretical prediction: only 50 % of linkages between crosslinks need to be dynamic for a tri-arm network to be reprocessable. Therefore, this analysis provides the first fundamental theoretical platform for designing and evaluating reprocessable polymer networks. We thank McCormick Research Catalyst Award Fund and ISEN cluster fellowship (L. L.) for funding support.
Yu, Chen; Tang, Xiaozhi; Liu, Shaowei; Yang, Yuling; Shen, Xinchun; Gao, Chengcheng
2018-05-22
In this study, Laponite RD (LRD) cross-linked hydrogels consisting of starch, polyvinyl alcohol (PVA) were prepared by freezing/thawing process and the influence of LRD content on structure and properties of hydrogels was investigated. FTIR showed a new structure of hydrogen bonding might result from cross-linking reactions between LRD and polymers. X-ray diffraction (XRD) analysis showed that high degree of exfoliation of LRD clay layers had occurred during the preparation of hydrogels. The synergistic effect of physical cross-linking by freeze/thaw cycles and by LRD led to more porous, uniform and stable network, which was shown in SEM images. The melting temperature decreased and thermal stability got improved with the increase of LRD content. Reswelling ratios of hydrogels had the highest value when LRD content was 10%. Additionally, cadmium ion absorption capacity of the hydrogel was studied and the results showed that increasing the concentration of LRD increased absorption ratio and amount of Cd 2+ ion in the solution. In a word, LRD could be used as a physical crosslinker and reinforced agent for starch-PVA based hydrogels and the formed hydrogels could be used as novel type and high capacity absorbent materials in heavy metal removing processes. Copyright © 2018. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Fei, Pengzhan; Cavicchi, Kevin
2011-03-01
A new ABA triblock copolymer of poly(styrene-block- methylacrylate-random-octadecylacrylate-block-styrene) (PS-b- PMA-r-PODA-b-PS) was synthesized by reversible addition fragmentation chain transfer polymerization. The triblock copolymer can generate a three-dimensional, physically crosslinked network by self-assembly, where the glassy PS domains physically crosslink the midblock chains. The side chain crystallization of the polyoctadecylacrylare (PODA) side chain generates a second reversible network enabling shape memory properties. Shape memory tests by uniaxial deformation and recovery of molded dog-bone shape samples demonstrate that shape fixities above 96% and shape recoveries above 98% were obtained for extensional strains up to 300%. An outstanding advantage of this shape memory material is that it can be very easily shaped and remolded by elevating the temperature to 140circ; C, and after remolding the initial shape memory properties are totally recovered by eliminating the defects introduced by the previous deformation cycling.
The rational design of recognitive polymeric networks for sensing applications
NASA Astrophysics Data System (ADS)
Noss, Kimberly Ryanne Dial
Testosterone recognitive networks were synthesized with varying feed crosslinking percentages and length of the bi-functional crosslinking agent to analyze the effect of changing structural parameters on template binding properties such as affinity, selectivity, capacity, and diffusional transport. The crosslinking percentage of the crosslinking monomer ethylene glycol dimethacrylate was varied from 50% to 90% and associated networks experienced a 2 fold increase in capacity and a 4 fold increase in affinity with the equilibrium association constants, Ka, ranging from 0.32 +/- 0.02 x 10 4 M-1 to 1.3 +/- 0.1 x 104 M -1, respectively. The higher concentration of crosslinking monomer increased the crosslinking points available for inter-chain stabilization creating an increased number of stable cavities for template association. However, by increasing the length of the crosslinking agent and increasing the feed crosslinking percentage from 77% crosslinked poly(methacrylic acid- co-ethylene glycol dimethacrylate) (poly(MAA-co-EGDMA)) to 50% crosslinked poly(methacrylic acid-co-poly(ethylene glycol)200 dimethacrylate) (poly(MAA-co-PEG200DMA)), the mesh size of the network increased resulting in an increased template diffusion coefficient from (2.83 +/- 0.06) x 109 cm2/s to (4.3 +/- 0.06) x 109 cm2/s, respectively, which is approximately a 40% faster template diffussional transport. A 77% crosslinked poly (MAA-co-PEG200DMA) recognitive network had an association constant of (0.20 +/- 0.05) x 104 M -1 and bound (0.72 +/- 0.04) x 10-2 mmol testosterone/g dry polymer, which was less by 6 and 3 fold, respectively, compared to a similarly crosslinked poly(MAA-co-EGDMA) recognitive network. Structural manipulation of the macromolecular architecture illustrates the programmability of recognitive networks for specific template binding parameters and diffusional transport, which may lead to enhanced imprinted sensor materials and successful integration onto sensor platforms.
NASA Astrophysics Data System (ADS)
Bee, Soo-Tueen; Sin, Lee Tin; Hoe, Tie Teck; Ratnam, C. T.; Bee, Soo Ling; Rahmat, A. R.
2018-05-01
The purpose of this work was to investigate the effects of montmorillonite (MMT) loading level and electron beam irradiation on the physical-mechanical properties and thermal stability of ethylene vinyl acetate (EVA)- devulcanised waste rubber blends. The addition of MMT particles has significantly increased the d-spacing and interchain separation of deflection peak (0 0 2) of MMT particles. This indicates that MMT particles have effectively intercalated in polymer matrix of EVA-devulcanised waste rubber blends. Besides, the application of electron beam irradiation dosages <150 kGy could also significantly induce the effective intercalation effect of MMT particles in polymer matrix by introducing crosslinking networks. The increasing of electron beam irradiation dosages up to 250 kGy has gradually increased the gel content of all EVA-devulcanized rubber blends by inducing the formation of crosslinking networks in polymer matrix. Also, the tensile strength of all EVA-devulcanized waste rubber blends was gradually increased when irradiated up to 150 kGy. This is due to the occurrence of crosslinking networks by irradiation could significantly provide reinforcement effect to polymer matrix by effectively transferring the stress applied on polymer matrix throughout the whole polymer matrix.
Mechanically tunable actin networks using programmable DNA based cross-linkers
NASA Astrophysics Data System (ADS)
Schnauss, Joerg; Lorenz, Jessica; Schuldt, Carsten; Kaes, Josef; Smith, David
Cells employ multiple cross-linkers with very different properties. Studies of the entire phase space, however, were infeasible since they were restricted to naturally occurring cross-linkers. These components cannot be controllably varied and differ in many parameters. We resolve this limitation by forming artificial actin cross-linkers, which can be controllably varied. The basic building block is DNA enabling a well-defined length variation. DNA can be attached to actin binding peptides with known binding affinities. We used bulk rheology to investigate mechanical properties of these networks. We were able to reproduce mechanical features of actin networks cross-linked by fascin by using a short version of our artificial complex with a high binding affinity. Additionally, we were able to resemble findings for the cross-linker alpha-actinin by employing a long cross-linker with a low binding affinity. Between these natural limits we investigated three different cross-linker lengths each with two different binding affinities. With these controlled variations we are able to precisely screen the phase space of cross-linked actin networks by changing only one specific parameter and not the entire set of properties as in the case of naturally occurring cross-linking complexes.
Li, Nan; Chen, Wei; Chen, Guangxue; Tian, Junfei
2017-09-01
TEMPO-oxidized cellulose nanofibers/polyacrylamide/gelatin shape memory hydrogels were successfully fabricated through a facile in-situ free-radical polymerization method, and double network was formed by chemically cross-linked polyacrylamide (PAM) network and physically cross-linked gelatin network. TEMPO-oxidized cellulose nanofibers (TOCNs) were introduced to improve the mechanical properties of the hydrogel. The structure, shape memory behaviors and mechanical properties of the resulting composite gels with varied gel compositions were investigated. The results obtained from those different studies revealed that TOCNs, gelatin, and PAM could mix with each other homogeneously. Due to the thermoreversible nature of the gelatin network, the composite hydrogels exhibited attractive thermo-induced shape memory properties. In addition, good mechanical properties (strength >200kPa, strain >650%) were achieved. Such composite hydrogels with good shape memory behavior and enhanced mechanical strength would be an attractive candidate for a wide variety of applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Effect of Cross-Linking on Free Volume Properties of PEG Based Thiol-Ene Networks
NASA Astrophysics Data System (ADS)
Ramakrishnan, Ramesh; Vasagar, Vivek; Nazarenko, Sergei
According to the Fox and Loshaek theory, in elastomeric networks, free volume decreases linearly with the cross-link density increase. The aim of this study is to show whether the poly(ethylene glycol) (PEG) based multicomponent thiol-ene elastomeric networks demonstrate this model behavior? Networks with a broad cross-link density range were prepared by changing the ratio of the trithiol crosslinker to PEG dithiol and then UV cured with PEG diene while maintaining 1:1 thiol:ene stoichiometry. Pressure-volume-temperature (PVT) data of the networks was generated from the high pressure dilatometry experiments which was fit using the Simha-Somcynsky Equation-of-State analysis to obtain the fractional free volume of the networks. Using Positron Annihilation Lifetime Spectroscopy (PALS) analysis, the average free volume hole size of the networks was also quantified. The fractional free volume and the average free volume hole size showed a linear change with the cross-link density confirming that the Fox and Loshaek theory can be applied to this multicomponent system. Gas diffusivities of the networks showed a good correlation with free volume. A free volume based model was developed to describe the gas diffusivity trends as a function of cross-link density.
Self-healing and thermoreversible rubber from supramolecular assembly.
Cordier, Philippe; Tournilhac, François; Soulié-Ziakovic, Corinne; Leibler, Ludwik
2008-02-21
Rubbers exhibit enormous extensibility up to several hundred per cent, compared with a few per cent for ordinary solids, and have the ability to recover their original shape and dimensions on release of stress. Rubber elasticity is a property of macromolecules that are either covalently cross-linked or connected in a network by physical associations such as small glassy or crystalline domains, ionic aggregates or multiple hydrogen bonds. Covalent cross-links or strong physical associations prevent flow and creep. Here we design and synthesize molecules that associate together to form both chains and cross-links via hydrogen bonds. The system shows recoverable extensibility up to several hundred per cent and little creep under load. In striking contrast to conventional cross-linked or thermoreversible rubbers made of macromolecules, these systems, when broken or cut, can be simply repaired by bringing together fractured surfaces to self-heal at room temperature. Repaired samples recuperate their enormous extensibility. The process of breaking and healing can be repeated many times. These materials can be easily processed, re-used and recycled. Their unique self-repairing properties, the simplicity of their synthesis, their availability from renewable resources and the low cost of raw ingredients (fatty acids and urea) bode well for future applications.
Equilibrium & Nonequilibrium Fluctuation Effects in Biopolymer Networks
NASA Astrophysics Data System (ADS)
Kachan, Devin Michael
Fluctuation-induced interactions are an important organizing principle in a variety of soft matter systems. In this dissertation, I explore the role of both thermal and active fluctuations within cross-linked polymer networks. The systems I study are in large part inspired by the amazing physics found within the cytoskeleton of eukaryotic cells. I first predict and verify the existence of a thermal Casimir force between cross-linkers bound to a semi-flexible polymer. The calculation is complicated by the appearance of second order derivatives in the bending Hamiltonian for such polymers, which requires a careful evaluation of the the path integral formulation of the partition function in order to arrive at the physically correct continuum limit and properly address ultraviolet divergences. I find that cross linkers interact along a filament with an attractive logarithmic potential proportional to thermal energy. The proportionality constant depends on whether and how the cross linkers constrain the relative angle between the two filaments to which they are bound. The interaction has important implications for the synthesis of biopolymer bundles within cells. I model the cross-linkers as existing in two phases: bound to the bundle and free in solution. When the cross-linkers are bound, they behave as a one-dimensional gas of particles interacting with the Casimir force, while the free phase is a simple ideal gas. Demanding equilibrium between the two phases, I find a discontinuous transition between a sparsely and a densely bound bundle. This discontinuous condensation transition induced by the long-ranged nature of the Casimir interaction allows for a similarly abrupt structural transition in semiflexible filament networks between a low cross linker density isotropic phase and a higher cross link density bundle network. This work is supported by the results of finite element Brownian dynamics simulations of semiflexible filaments and transient cross-linkers. I speculate that cells take advantage of this equilibrium effect by tuning near the transition point, where small changes in free cross-linker density will affect large structural rearrangements between free filament networks and networks of bundles. Cells are naturally found far from equilibrium, where the active influx of energy from ATP consumption controls the dynamics. Motor proteins actively generate forces within biopolymer networks, and one may ask how these differ from the random stresses characteristic of equilibrium fluctuations. Besides the trivial observation that the magnitude is independent of temperature, I find that the processive nature of the motors creates a temporally correlated, or colored, noise spectrum. I model the network with a nonlinear scalar elastic theory in the presence of active driving, and study the long distance and large scale properties of the system with renormalization group techniques. I find that there is a new critical point associated with diverging correlation time, and that the colored noise produces novel frequency dependence in the renormalized transport coefficients. Finally, I study marginally elastic solids which have vanishing shear modulus due to the presence of soft modes, modes with zero deformation cost. Although network coordination is a useful metric for determining the mechanical response of random spring networks in mechanical equilibrium, it is insufficient for describing networks under external stress. In particular, under-constrained networks which are fluid-like at zero load will dynamically stiffen at a critical strain, as observed in numerical simulations and experimentally in many biopolymer networks. Drawing upon analogies to the stress induced unjamming of emulsions, I develop a kinetic theory to explain the rigidity transition in spring and filament networks. Describing the dynamic evolution of non-affine deformation via a simple mechanistic picture, I recover the emergent nonlinear strain-stiffening behavior and compare this behavior to the yield stress flow seen in soft glassy fluids. I extend this theory to account for coordination number inhomogeneities and predict a breakdown of universal scaling near the critical point at sufficiently high disorder, and discuss the utility for this type of model in describing biopolymer networks.
The role of actin networks in cellular mechanosensing
NASA Astrophysics Data System (ADS)
Azatov, Mikheil
Physical processes play an important role in many biological phenomena, such as wound healing, organ development, and tumor metastasis. During these processes, cells constantly interact with and adapt to their environment by exerting forces to mechanically probe the features of their surroundings and generating appropriate biochemical responses. The mechanisms underlying how cells sense the physical properties of their environment are not well understood. In this thesis, I present my studies to investigate cellular responses to the stiffness and topography of the environment. In order to sense the physical properties of their environment, cells dynamically reorganize the structure of their actin cytoskeleton, a dynamic network of biopolymers, altering the shape and spatial distribution of protein assemblies. Several observations suggest that proteins that crosslink actin filaments may play an important role in cellular mechanosensitivity. Palladin is an actin-crosslinking protein that is found in the lamellar actin network, stress fibers and focal adhesions, cellular structures that are critical for mechanosensing of the physical environment. By virtue of its close interactions with these structures in the cell, palladin may play an important role in cell mechanics. However, the role of actin crosslinkers in general, and palladin in particular, in cellular force generation and mechanosensing is not well known. I have investigated the role of palladin in regulating the plasticity of the actin cytoskeleton and cellular force generation in response to alterations in substrate stiffness. I have shown that the expression levels of palladin modulate the forces exerted by cells and their ability to sense substrate stiffness. Perturbation experiments also suggest that palladin levels in cells altered myosin motor activity. These results suggest that the actin crosslinkers, such as palladin, and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis. In addition to stiffness, the local geometry or topography of the surface has been shown to modulate the movement, morphology, and cytoskeletal organization of cells. However, the effect of topography on fluctuations of intracellular structures, which arise from motor driven activity on a viscoelastic actin network are not known. I have used nanofabricated substrates with parallel ridges to show that the cell shape, the actin cytoskeleton and focal adhesions all align along the direction of the ridges, exhibiting a biphasic dependence on the spacing between ridges. I further demonstrated that palladin bands along actin stress fibers undergo a complex diffusive motion with velocities aligned along the direction of ridges. These results provide insight into the mechanisms of cellular mechanosensing of the environment, suggesting a complex interplay between the actin cytoskeleton and cellular adhesions in coordinating cellular response to surface topography. Overall, this work has advanced our understanding of mechanisms that govern cellular responses to their physical environment.
Porous Cross-Linked Polyimide-Urea Networks
NASA Technical Reports Server (NTRS)
Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor)
2015-01-01
Porous cross-linked polyimide-urea networks are provided. The networks comprise a subunit comprising two anhydride end-capped polyamic acid oligomers in direct connection via a urea linkage. The oligomers (a) each comprise a repeating unit of a dianhydride and a diamine and a terminal anhydride group and (b) are formulated with 2 to 15 of the repeating units. The subunit was formed by reaction of the diamine and a diisocyanate to form a diamine-urea linkage-diamine group, followed by reaction of the diamine-urea linkage-diamine group with the dianhydride and the diamine to form the subunit. The subunit has been cross-linked via a cross-linking agent, comprising three or more amine groups, at a balanced stoichiometry of the amine groups to the terminal anhydride groups. The subunit has been chemically imidized to yield the porous cross-linked polyimide-urea network. Also provided are wet gels, aerogels, and thin films comprising the networks, and methods of making the networks.
Interpenetrating polymer networks from acetylene terminated materials
NASA Technical Reports Server (NTRS)
Connell, J. W.; Hergenrother, P. M.
1989-01-01
As part of a program to develop high temperature/high performance structural resins for aerospace applications, the chemistry and properties of a novel class of interpenetrating polymer networks (IPNs) were investigated. These IPNs consist of a simple diacetylenic compound (aspartimide) blended with an acetylene terminated arylene ether oligomer. Various compositional blends were prepared and thermally cured to evaluate the effect of crosslink density on resin properties. The cured IPNs exhibited glass transition temperatures ranging from 197 to 254 C depending upon the composition and cure temperature. The solvent resistance, fracture toughness and coefficient of thermal expansion of the cured blends were related to the crosslink density. Isothermal aging of neat resin moldings, adhesive and composite specimens showed a postcure effect which resulted in improved elevated temperature properties. The chemistry, physical and mechanical properties of these materials will be discussed.
Self-Consistent Field Lattice Model for Polymer Networks.
Tito, Nicholas B; Storm, Cornelis; Ellenbroek, Wouter G
2017-12-26
A lattice model based on polymer self-consistent field theory is developed to predict the equilibrium statistics of arbitrary polymer networks. For a given network topology, our approach uses moment propagators on a lattice to self-consistently construct the ensemble of polymer conformations and cross-link spatial probability distributions. Remarkably, the calculation can be performed "in the dark", without any prior knowledge on preferred chain conformations or cross-link positions. Numerical results from the model for a test network exhibit close agreement with molecular dynamics simulations, including when the network is strongly sheared. Our model captures nonaffine deformation, mean-field monomer interactions, cross-link fluctuations, and finite extensibility of chains, yielding predictions that differ markedly from classical rubber elasticity theory for polymer networks. By examining polymer networks with different degrees of interconnectivity, we gain insight into cross-link entropy, an important quantity in the macroscopic behavior of gels and self-healing materials as they are deformed.
Tough Self-Healing Elastomers by Molecular Enforced Integration of Covalent and Reversible Networks.
Wu, Jinrong; Cai, Li-Heng; Weitz, David A
2017-10-01
Self-healing polymers crosslinked by solely reversible bonds are intrinsically weaker than common covalently crosslinked networks. Introducing covalent crosslinks into a reversible network would improve mechanical strength. It is challenging, however, to apply this concept to "dry" elastomers, largely because reversible crosslinks such as hydrogen bonds are often polar motifs, whereas covalent crosslinks are nonpolar motifs. These two types of bonds are intrinsically immiscible without cosolvents. Here, we design and fabricate a hybrid polymer network by crosslinking randomly branched polymers carrying motifs that can form both reversible hydrogen bonds and permanent covalent crosslinks. The randomly branched polymer links such two types of bonds and forces them to mix on the molecular level without cosolvents. This enables a hybrid "dry" elastomer that is very tough with fracture energy 13500 Jm -2 comparable to that of natural rubber. Moreover, the elastomer can self-heal at room temperature with a recovered tensile strength 4 MPa, which is 30% of its original value, yet comparable to the pristine strength of existing self-healing polymers. The concept of forcing covalent and reversible bonds to mix at molecular scale to create a homogenous network is quite general and should enable development of tough, self-healing polymers of practical usage. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shear rheological characterization of gel healing response and construction of rheo-PIV system
NASA Astrophysics Data System (ADS)
Bawiskar, Abhishek D.
Thermo-reversible gels are solvent-filled 3D networks of polymer chains interconnected by physical (transient) crosslinks. On applying a high shear stress, the crosslinks are broken and these gels show a typical stress-strain behavior due to cohesive fracture of the gel. When heated above a critical temperature and cooled back to room temperature, all the crosslinks are re-formed. Interestingly, partial to full recovery of broken crosslinks is also observed by simply letting the gel stand at room temperature. In this study, the fracture and healing behavior of a model acrylic triblock copolymer gel has been characterized by shear rheometry. A mathematical model has also been proposed to better understand the mechanics at the molecular level and predict the healing time of a system. A rheo-PIV system was built as part of the project, to observe and confirm the bulk healing process in situ. Spontaneous self-healing behavior has immense potential in controlled drug delivery systems, coatings, food and various other applications.
Applewhite, Derek A.; Grode, Kyle D.; Duncan, Mara C.; Rogers, Stephen L.
2013-01-01
Actin and microtubule dynamics must be precisely coordinated during cell migration, mitosis, and morphogenesis—much of this coordination is mediated by proteins that physically bridge the two cytoskeletal networks. We have investigated the regulation of the Drosophila actin-microtubule cross-linker Short stop (Shot), a member of the spectraplakin family. Our data suggest that Shot's cytoskeletal cross-linking activity is regulated by an intramolecular inhibitory mechanism. In its inactive conformation, Shot adopts a “closed” conformation through interactions between its NH2-terminal actin-binding domain and COOH-terminal EF-hand-GAS2 domain. This inactive conformation is targeted to the growing microtubule plus end by EB1. On activation, Shot binds along the microtubule through its COOH-terminal GAS2 domain and binds to actin with its NH2-terminal tandem CH domains. We propose that this mechanism allows Shot to rapidly cross-link dynamic microtubules in response to localized activating signals at the cell cortex. PMID:23885120
Motion in partially and fully cross-linked F-actin networks
NASA Astrophysics Data System (ADS)
Morris, Eliza; Ehrlicher, Allen; Weitz, David
2012-02-01
Single molecule experiments have measured stall forces and procession rates of molecular motors on isolated cytoskeletal fibers in Newtonian fluids. But in the cell, these motors are transporting cargo through a highly complex cytoskeletal network. To compare these single molecule results to the forces exerted by motors within the cell, an evaluation of the response of the cytoskeletal network is needed. Using magnetic tweezers and fluorescence confocal microscopy we observe and quantify the relationship between bead motion and filament response in F-actin networks both partially and fully cross-linked with filamin We find that when the transition from full to partial cross-linking is brought about by a decrease in cross-linker concentration there is a simultaneous decline in the elasticity of the network, but the response of the bead remains qualitatively similar. However, when the cross-linking is reduced through a shortening of the F-actin filaments the bead response is completely altered. The characteristics of the altered bead response will be discussed here.
Lafont, U; van Zeijl, H; van der Zwaag, S
2012-11-01
Synthetic systems with intrinsic self-repairing or self-healing abilities have emerged during the past decade. In this work, the influence of the cross-linker and chain rigidity on the healing ability of thermoset rubbers containing disulfide bonds have been investigated. The produced materials exhibit adhesive and cohesive self-healing properties. The recovery of these two functionalities upon the thermally triggered healing events has shown to be highly dependent on the network cross-link density and chain rigidity. As a result, depending on the rubber thermoset intrinsic physical properties, the thermal mending leading to full cohesive recovery can be achieved in 20-300 min at a modest healing temperature of 65 °C. The adhesive strength ranges from 0.2 to 0.5 MPa and is fully recovered even after multiple failure events.
Effect of Rubber Polarity on Cluster Formation in Rubbers Cross-Linked with Diels–Alder Chemistry
2017-01-01
Diels–Alder chemistry has been used for the thermoreversible cross-linking of furan-functionalized ethylene/propylene (EPM) and ethylene/vinyl acetate (EVM) rubbers. Both furan-functionalized elastomers were successfully cross-linked with bismaleimide to yield products with a similar cross-link density. NMR relaxometry and SAXS measurements both show that the apolar EPM-g-furan precursor contains phase-separated polar clusters and that cross-linking with polar bismaleimide occurs in these clusters. The heterogeneously cross-linked network of EPM-g-furan contrasts with the homogeneous network in the polar EVM-g-furan. The heterogeneous character of the cross-links in EPM-g-furan results in a relatively high Young’s modulus, whereas the more uniform cross-linking in EVM-g-furan results in a higher tensile strength and elongation at break. PMID:29213149
Desmosine-Inspired Cross-Linkers for Hyaluronan Hydrogels
NASA Astrophysics Data System (ADS)
Hagel, Valentin; Mateescu, Markus; Southan, Alexander; Wegner, Seraphine V.; Nuss, Isabell; Haraszti, Tamás; Kleinhans, Claudia; Schuh, Christian; Spatz, Joachim P.; Kluger, Petra J.; Bach, Monika; Tussetschläger, Stefan; Tovar, Günter E. M.; Laschat, Sabine; Boehm, Heike
2013-06-01
We designed bioinspired cross-linkers based on desmosine, the cross-linker in natural elastin, to prepare hydrogels with thiolated hyaluronic acid. These short, rigid cross-linkers are based on pyridinium salts (as in desmosine) and can connect two polymer backbones. Generally, the obtained semi-synthetic hydrogels are form-stable, can withstand repeated stress, have a large linear-elastic range, and show strain stiffening behavior typical for biopolymer networks. In addition, it is possible to introduce a positive charge to the core of the cross-linker without affecting the gelation efficiency, or consequently the network connectivity. However, the mechanical properties strongly depend on the charge of the cross-linker. The properties of the presented hydrogels can thus be tuned in a range important for engineering of soft tissues by controlling the cross-linking density and the charge of the cross-linker.
A large deformation viscoelastic model for double-network hydrogels
NASA Astrophysics Data System (ADS)
Mao, Yunwei; Lin, Shaoting; Zhao, Xuanhe; Anand, Lallit
2017-03-01
We present a large deformation viscoelasticity model for recently synthesized double network hydrogels which consist of a covalently-crosslinked polyacrylamide network with long chains, and an ionically-crosslinked alginate network with short chains. Such double-network gels are highly stretchable and at the same time tough, because when stretched the crosslinks in the ionically-crosslinked alginate network rupture which results in distributed internal microdamage which dissipates a substantial amount of energy, while the configurational entropy of the covalently-crosslinked polyacrylamide network allows the gel to return to its original configuration after deformation. In addition to the large hysteresis during loading and unloading, these double network hydrogels also exhibit a substantial rate-sensitive response during loading, but exhibit almost no rate-sensitivity during unloading. These features of large hysteresis and asymmetric rate-sensitivity are quite different from the response of conventional hydrogels. We limit our attention to modeling the complex viscoelastic response of such hydrogels under isothermal conditions. Our model is restricted in the sense that we have limited our attention to conditions under which one might neglect any diffusion of the water in the hydrogel - as might occur when the gel has a uniform initial value of the concentration of water, and the mobility of the water molecules in the gel is low relative to the time scale of the mechanical deformation. We also do not attempt to model the final fracture of such double-network hydrogels.
Assessing the Strength Enhancement of Heterogeneous Networks of Miscible Polymer Blends
NASA Astrophysics Data System (ADS)
Giller, Carl; Roland, Mike
2013-03-01
At the typical crosslink densities of elastomers, the failure properties vary inversely with mechanical stiffness, so that compounding entails a compromise between stiffness and strength. Our approach to circumvent this conventional limitation is by forming networks of two polymers that: (i) are thermodynamically miscible, whereby the chemical composition is uniform on the segmental level; and (ii) have markedly different reactivities for network formation. The resulting elastomer consists of one highly crosslinked component and one that is lightly or uncrosslinked. This disparity in crosslinking causes their respective contributions to the network mechanical response to differ diametrically. Earlier results showed some success with this approach for thermally crosslinked blends of 1,2-polybutadiene (PVE) and polyisoprene (PI), as well as ethylene-propylene copolymer (EPM) and ethylene-propylene-diene random terpolymer (EPDM), taking advantage of their differing reactivities to sulfur. In this work we demonstrate the miscibility of polyisobutylene (PIB) with butyl rubber (BR) (a copolymer of PIB and polyisoprene) and show that networks in which only the BR is crosslinked possess greater tensile strengths than neat BR over the same range of moduli. Office of Naval Research
Liang, Ting; van Kuringen, Huub P C; Mulder, Dirk J; Tan, Shuai; Wu, Yong; Borneman, Zandrie; Nijmeijer, Kitty; Schenning, Albertus P H J
2017-10-11
In this work, the decisive role of rigidity, orientation, and order in the smectic liquid crystalline network on the anisotropic proton and adsorbent properties is reported. The rigidity in the hydrogen-bonded polymer network has been altered by changing the cross-link density, the order by using different mesophases (smectic, nematic, and isotropic phases), whereas the orientation of the mesogens was controlled by alignment layers. Adding more cross-linkers improved the integrity of the polymer films. For the proton conduction, an optimum was found in the amount of cross-linker and the smectic organization results in the highest anhydrous proton conduction. The polymer films show anisotropic proton conductivity with a 54 times higher conductivity in the direction perpendicular to the molecular director. After a base treatment of the smectic liquid crystalline network, a nanoporous polymer film is obtained that also shows anisotropic adsorption of dye molecules and again straight smectic pores are favored over disordered pores in nematic and isotropic networks. The highly cross-linked films show size-selective adsorption of dyes. Low cross-linked materials do not show this difference due to swelling, which decreases the order and creates openings in the two-dimensional polymer layers. The latter is, however, beneficial for fast adsorption kinetics.
Physical properties and biocompatibility of chitosan/soy blended membranes.
Silva, S S; Santos, M I; Coutinho, O P; Mano, J F; Reis, R L
2005-06-01
Blends of polysaccharides and proteins are a source for the development of novel materials with interesting and tailorable properties, with potential to be used in a range of biomedical applications. in this work a series of blended membranes composed by chitosan and soy protein isolate was prepared by solvent casting methodology. in addition, cross-linking was performed in situ with glutaraldehyde solutions in the range 5x10(-3)-0.1 M. Furthermore, the influence of the composition and cross-linking on the degradation behaviour, water uptake and cell adhesion was investigated. The obtained results showed that the incorporation of chitosan, associated to network formation by cross linking, promoted a slight decrease of water absorption and a slower degradability of the membranes. Moreover, direct contact biocompatibility studies, with L929 cells, indicate that the cross-linking enhances the capability of the material to support cell growth.
Design and Application of Nanogel-Based Polymer Networks
NASA Astrophysics Data System (ADS)
Dailing, Eric Alan
Crosslinked polymer networks have wide application in biomaterials, from soft hydrogel scaffolds for cell culture and tissue engineering to glassy, high modulus dental restoratives. Composite materials formed with nanogels as a means for tuning network structure on the nanoscale have been reported, but no investigation into nanogels as the primary network component has been explored to this point. This thesis was dedicated to studying network formation from the direct polymerization of nanogels and investigating applications for these unique materials. Covalently crosslinked polymer networks were synthesized from polymerizable nanogels without the use of reactive small monomers or oligomers. Network properties were controlled by the chemical and physical properties of the nanogel, allowing for materials to be designed from nanostructured macromolecular precursors. Nanogels were synthesized from a thermally initiated solution free radical polymerization of a monomethacrylate, a dimethacrylate, and a thiol-based chain transfer agent. Monomers with a range of hydrophilic and hydrophobic character were copolymerized, and polymerizable groups were introduced through an alcohol-isocyanate click reaction. Nanogels were dispersible in water up to 75 wt%, including nanogels that contained a relatively high fraction of a conventionally water-insoluble component. Nanogels with molecular weights that ranged from 10's to 100's of kDa and hydrodynamic radii between 4 and 10 nm were obtained. Macroscopic crosslinked polymer networks were synthesized from the photopolymerization of methacrylate-functionalized nanogels in inert solvent, which was typically water. The nanogel composition and internal branching density affected both covalent and non-covalent interparticle interactions, which dictated the final mechanical properties of the networks. Nanogels with progressively disparate hydrophilic and hydrophobic character were synthesized to explore the potential for creating densely crosslinked, small monomer free dental materials. Nanogel-based networks showed no decrease in flexural modulus between the dry and water-equilibrated states in contrast to nanogel-monomer composites that exhibited a decrease in modulus upon water infiltration. The nanogel networks also exhibited higher conversion and lower volumetric shrinkage compared to the composite networks. Adhesive nanogels were designed with amphiphilic character and specific hydrogen-bonding groups. These nanogels gelled within 10 s of low intensity UV light exposure and demonstrated the ability to bond strongly to both hydrophilic and hydrophobic substrates that were dry or under water. Nanogel-based coatings were explored as a means to create multistructured, multifunctional polymer networks. Shape memory polymers were coated with nanogels through a dip-coating and subsequent photocrosslinking method. The presence of the coating did not affect the shape recovery of the polymer, and coatings formed with dexamethasone-loaded nanogels were demonstrated to release a physiologically relevant amount of the anti-inflammatory drug. These materials have potential application as minimally invasive implantable devices. Coatings were also formed from interfacial redox polymerizations. Nanogels with varying crosslinking density were coated onto dexamethasone-loaded networks, which had the effect of changing the diffusion coefficient of dexamethasone as it was released from the core network. A fluorescein-loaded nanogel was coated onto a rhodamine-loaded network, which provided multidrug release from both the coating and the core material through two distinct release profiles.
Physical aging in graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Kong, E. S. W.
1983-01-01
Sub-Tg annealing has been found to affect the properties of graphite/epoxy composites. The network epoxy studied was based on the chemistry of tetraglycidyl 4,4'-diamino-diphenyl methane (TGDDM) crosslinked by 4,4'-diamino-diphenyl sulfone (DDS). Differential scanning calorimetry, thermal mechanical analysis, and solid-state cross-polarized magic-angle-spinning nuclear magnetic resonance spectroscopy have been utilized in order to characterize this process of recovery towards thermodynamic equilibrium. The volume and enthalpy recovery as well as the 'thermoreversibility' aspects of the physical aging are discussed. This nonequilibrium and time-dependent behavior of network epoxies are considered in view of the increasingly wide applications of TGDDM-DDS epoxies as matrix materials of structural composites in the aerospace industry.
Bin Imran, Abu; Esaki, Kenta; Gotoh, Hiroaki; Seki, Takahiro; Ito, Kohzo; Sakai, Yasuhiro; Takeoka, Yukikazu
2014-10-08
Stimuli-sensitive hydrogels changing their volumes and shapes in response to various stimulations have potential applications in multiple fields. However, these hydrogels have not yet been commercialized due to some problems that need to be overcome. One of the most significant problems is that conventional stimuli-sensitive hydrogels are usually brittle. Here we prepare extremely stretchable thermosensitive hydrogels with good toughness by using polyrotaxane derivatives composed of α-cyclodextrin and polyethylene glycol as cross-linkers and introducing ionic groups into the polymer network. The ionic groups help the polyrotaxane cross-linkers to become well extended in the polymer network. The resulting hydrogels are surprisingly stretchable and tough because the cross-linked α-cyclodextrin molecules can move along the polyethylene glycol chains. In addition, the polyrotaxane cross-linkers can be used with a variety of vinyl monomers; the mechanical properties of the wide variety of polymer gels can be improved by using these cross-linkers.
Bin Imran, Abu; Esaki, Kenta; Gotoh, Hiroaki; Seki, Takahiro; Ito, Kohzo; Sakai, Yasuhiro; Takeoka, Yukikazu
2014-01-01
Stimuli-sensitive hydrogels changing their volumes and shapes in response to various stimulations have potential applications in multiple fields. However, these hydrogels have not yet been commercialized due to some problems that need to be overcome. One of the most significant problems is that conventional stimuli-sensitive hydrogels are usually brittle. Here we prepare extremely stretchable thermosensitive hydrogels with good toughness by using polyrotaxane derivatives composed of α-cyclodextrin and polyethylene glycol as cross-linkers and introducing ionic groups into the polymer network. The ionic groups help the polyrotaxane cross-linkers to become well extended in the polymer network. The resulting hydrogels are surprisingly stretchable and tough because the cross-linked α-cyclodextrin molecules can move along the polyethylene glycol chains. In addition, the polyrotaxane cross-linkers can be used with a variety of vinyl monomers; the mechanical properties of the wide variety of polymer gels can be improved by using these cross-linkers. PMID:25296246
Welsch, Nicole; Lyon, L Andrew
2017-01-01
We present a systematic study of self-cross-linked microgels formed by precipitation polymerization of oligo ethylene glycol methacrylates. The cross-linking density of these microgels and, thus, the network flexibility can be easily tuned through the modulation of the reaction temperature during polymerization. Microgels prepared in absence of any difunctional monomer, i.e. cross-linker, show enhanced deformability and particle spreading on solid surfaces as compared to microgels cross-linked with varying amounts of poly(ethylene glycol diacrylate) (PEG-DA) in addition to self-crosslinking. Particles prepared at low reaction temperatures exhibit the highest degree of spreading due to the lightly cross-linked and flexible polymer network. Moreover, AFM force spectroscopy studies suggest that cross-linker-free microgels constitute of a more homogeneous polymer network than PEG-DA cross-linked particles and have elastic moduli at the particle apex that are ~5 times smaller than the moduli of 5 mol-% PEG-DA cross-linked microgels. Resistive pulse sensing experiments demonstrate that microgels prepared at 75 and 80°C without PEG-DA are able to deform significantly to pass through nanopores that are smaller than the microgel size. Additionally, we found that polymer network flexibility of microgels is a useful tool to control the formation of particle dewetting patterns. This offers a promising new avenue for build-up of 2D self-assembled particle structures with patterned chemical and mechanical properties.
Lyon, L. Andrew
2017-01-01
We present a systematic study of self-cross-linked microgels formed by precipitation polymerization of oligo ethylene glycol methacrylates. The cross-linking density of these microgels and, thus, the network flexibility can be easily tuned through the modulation of the reaction temperature during polymerization. Microgels prepared in absence of any difunctional monomer, i.e. cross-linker, show enhanced deformability and particle spreading on solid surfaces as compared to microgels cross-linked with varying amounts of poly(ethylene glycol diacrylate) (PEG-DA) in addition to self-crosslinking. Particles prepared at low reaction temperatures exhibit the highest degree of spreading due to the lightly cross-linked and flexible polymer network. Moreover, AFM force spectroscopy studies suggest that cross-linker-free microgels constitute of a more homogeneous polymer network than PEG-DA cross-linked particles and have elastic moduli at the particle apex that are ~5 times smaller than the moduli of 5 mol-% PEG-DA cross-linked microgels. Resistive pulse sensing experiments demonstrate that microgels prepared at 75 and 80°C without PEG-DA are able to deform significantly to pass through nanopores that are smaller than the microgel size. Additionally, we found that polymer network flexibility of microgels is a useful tool to control the formation of particle dewetting patterns. This offers a promising new avenue for build-up of 2D self-assembled particle structures with patterned chemical and mechanical properties. PMID:28719648
Optical and mechanical behaviors of glassy silicone networks derived from linear siloxane precursors
NASA Astrophysics Data System (ADS)
Jang, Heejun; Seo, Wooram; Kim, Hyungsun; Lee, Yoonjoo; Kim, Younghee
2016-01-01
Silicon-based inorganic polymers are promising materials as matrix materials for glass fiber composites because of their good process ability, transparency, and thermal property. In this study, for utilization as a matrix precursor for a glass-fiber-reinforced composite, glassy silicone networks were prepared via hydrosilylation of linear/pendant Si-H polysiloxanes and the C=C bonds of viny-lterminated linear/cyclic polysiloxanes. 13C nuclear magnetic resonance spectroscopy was used to determine the structure of the cross-linked states, and a thermal analysis was performed. To assess the mechanical properties of the glassy silicone networks, we performed nanoindentation and 4-point bending tests. Cross-linked networks derived from siloxane polymers are thermally and optically more stable at high temperatures. Different cross-linking agents led to final networks with different properties due to differences in the molecular weights and structures. After stepped postcuring, the Young's modulus and the hardness of the glassy silicone networks increased; however, the brittleness also increased. The characteristics of the cross-linking agent played an important role in the functional glassy silicone networks.
Maier, M; Müller, K W; Heussinger, C; Köhler, S; Wall, W A; Bausch, A R; Lieleg, O
2015-05-01
Actin binding proteins (ABPs) not only set the structure of actin filament assemblies but also mediate the frequency-dependent viscoelastic moduli of cross-linked and bundled actin networks. Point mutations in the actin binding domain of those ABPs can tune the association and dissociation dynamics of the actin/ABP bond and thus modulate the network mechanics both in the linear and non-linear response regime. We here demonstrate how the exchange of a single charged amino acid in the actin binding domain of the ABP fascin triggers such a modulation of the network rheology. Whereas the overall structure of the bundle networks is conserved, the transition point from strain-hardening to strain-weakening sensitively depends on the cross-linker off-rate and the applied shear rate. Our experimental results are consistent both with numerical simulations of a cross-linked bundle network and a theoretical description of the bundle network mechanics which is based on non-affine bending deformations and force-dependent cross-link dynamics.
Influence of different crosslinking treatments on the physical properties of collagen membranes.
Charulatha, V; Rajaram, A
2003-02-01
The physical properties of collagen-based biomaterials are profoundly influenced by the method and extent of crosslinking. In this study, the influence of various crosslinking treatments on the physical properties of reconstituted collagen membranes was assessed. Five crosslinking agents viz., GTA, DMS, DTBP, a combination of DMS and GTA and acyl azide method were used to stabilize collagen matrices. Crosslinking density, swelling ratio, thermo-mechanical properties, stress-strain characteristics and resistance to collagenase digestion were determined to evaluate the physical properties of crosslinked matrices. GTA treatment induced the maximum number of crosslinks (13) while DMS treatment induced the minimum (7). Of the two diimidoesters (DMS and DTBP), DTBP was a more effective crosslinking agent due to the presence of disulphide bonds in the DTBP crosslinks. T(s) for DTBP and DMS crosslinked collagen were 80 degrees C and 70 degrees C, and their HIT values were 5.4 and 2.85MN/m(2), respectively. Low concentration of GTA (0.01%) increased the crosslinking density of an already crosslinked matrix (DMS treated matrix) from 7 to 12. Lowest fracture energy was observed for the acyl azide treated matrix (0.61MJ/m(3)) while the highest was observed for the GTA treated matrix (1.97MJ/m(3)). The tensile strength of GTA treated matrix was maximum (12.4MPa) and that of acyl azide treated matrix was minimum (7.2MPa). GTA, DTBP and acyl azide treated matrices were equally resistant to collagenase degradation with approximately 6% solubilization after 5h while the DMS treated was least stable with 52.4% solubilization after the same time period. The spatial orientation of amino acid side chain residues on collagen plays an important role in determining the crosslinking density and consequent physical properties of the collagen matrix.
Han, Biao; Chery, Daphney R; Yin, Jie; Lu, X Lucas; Lee, Daeyeon; Han, Lin
2016-01-28
This study investigates the roles of two distinct features of ionically cross-linked polyelectrolyte networks - ionic cross-links and fixed charges - in determining their nanomechanical properties. The layer-by-layer assembled poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) network is used as the model material. The densities of ionic cross-links and fixed charges are modulated through solution pH and ionic strength (IS), and the swelling ratio, elastic and viscoelastic properties are quantified via an array of atomic force microscopy (AFM)-based nanomechanical tools. The roles of ionic cross-links are underscored by the distinctive elastic and viscoelastic nanomechanical characters observed here. First, as ionic cross-links are highly sensitive to solution conditions, the instantaneous modulus, E0, exhibits orders-of-magnitude changes upon pH- and IS-governed swelling, distinctive from the rubber elasticity prediction based on permanent covalent cross-links. Second, ionic cross-links can break and self-re-form, and this mechanism dominates force relaxation of PAH/PAA under a constant indentation depth. In most states, the degree of relaxation is >90%, independent of ionic cross-link density. The importance of fixed charges is highlighted by the unexpectedly more elastic nature of the network despite low ionic cross-link density at pH 2.0, IS 0.01 M. Here, the complex is a net charged, loosely cross-linked, where the degree of relaxation is attenuated to ≈50% due to increased elastic contribution arising from fixed charge-induced Donnan osmotic pressure. In addition, this study develops a new method for quantifying the thickness of highly swollen polymer hydrogel films. It also underscores important technical considerations when performing nanomechanical tests on highly rate-dependent polymer hydrogel networks. These results provide new insights into the nanomechanical characters of ionic polyelectrolyte complexes, and lay the ground for further investigation of their unique time-dependent properties.
Obadia, Mona M; Mudraboyina, Bhanu P; Serghei, Anatoli; Montarnal, Damien; Drockenmuller, Eric
2015-05-13
Exploiting exchangeable covalent bonds as dynamic cross-links recently afforded a new class of polymer materials coined as vitrimers. These permanent networks are insoluble and infusible, but the network topology can be reshuffled at high temperatures, thus enabling glasslike plastic deformation and reprocessing without depolymerization. We disclose herein the development of functional and high-value ion-conducting vitrimers that take inspiration from poly(ionic liquid)s. Tunable networks with high ionic content are obtained by the solvent- and catalyst-free polyaddition of an α-azide-ω-alkyne monomer and simultaneous alkylation of the resulting poly(1,2,3-triazole)s with a series of difunctional cross-linking agents. Temperature-induced transalkylation exchanges of C-N bonds between 1,2,3-triazolium cross-links and halide-functionalized dangling chains enable recycling and reprocessing of these highly cross-linked permanent networks. They can also be recycled by depolymerization with specific solvents able to displace the transalkylation equilibrium, and they display a great potential for applications that require solid electrolytes with excellent mechanical performances and facile processing such as supercapacitors, batteries, fuel cells, and separation membranes.
NASA Astrophysics Data System (ADS)
Gurmessa, Bekele; Fitzpatrick, Robert; Valdivia, Jonathon; Anderson, Rae M. R.
Actin, the most abundant protein in eukaryotic cells, is a semi-flexible biopolymer in the cytoskeleton that plays a crucial structural and mechanical role in cell stability, motion and replication, as well as muscle contraction. Most of these mechanically driven structural changes in cells stem from the complex viscoelastic nature of entangled actin networks and the presence of a myriad of proteins that cross-link actin filaments. Despite their importance, the mechanical response of actin networks is not yet well understood, particularly at the molecular level. Here, we use optical trapping - coupled with fluorescence microscopy - to characterize the microscale stress response and induced filament deformations in entangled and cross-linked actin networks subject to localized mechanical perturbations. In particular, we actively drive a microsphere 10 microns through an entangled or cross- linked actin network at a constant speed and measure the resistive force that the deformed actin filaments exert on the bead during and following strain. We simultaneously visualize and track individual sparsely-labeled actin filaments to directly link force response to molecular deformations, and map the propagation of the initially localized perturbation field throughout the rest of the network (~100 um). By varying the concentration of actin and cross-linkers we directly determine the role of crosslinking and entanglements on the length and time scales of stress propagation, molecular deformation and relaxation mechanisms in actin networks.
Influence of network topology on the swelling of polyelectrolyte nanogels.
Rizzi, L G; Levin, Y
2016-03-21
It is well-known that the swelling behavior of ionic nanogels depends on their cross-link density; however, it is unclear how different topologies should affect the response of the polyelectrolyte network. Here we perform Monte Carlo simulations to obtain the equilibrium properties of ionic nanogels as a function of salt concentration Cs and the fraction f of ionizable groups in a polyelectrolyte network formed by cross-links of functionality z. Our results indicate that the network with cross-links of low connectivity result in nanogel particles with higher swelling ratios. We also confirm a de-swelling effect of salt on nanogel particles.
Aslanides, Ioannis M; Dessi, Claudia; Georgoudis, Panagiotis; Charalambidis, Georgios; Vlassopoulos, Dimitris; Coutsolelos, Athanassios G; Kymionis, George; Mukherjee, Achyut; Kitsopoulos, Theofanis N
2016-04-01
The effect of ultraviolet (UV)-riboflavin cross-linking (CXL) has been measured primarily using the strip extensometry technique. We propose a simple and reliable methodology for the assessment of CXL treatment by using an established rheologic protocol based on small amplitude oscillatory shear (SAOS) measurements. It provides information on the average cross-link density and the elastic modulus of treated cornea samples. Three fresh postmortem porcine corneas were used to study the feasibility of the technique, one serving as control and two receiving corneal collagen cross-linking treatment. Subsequently, five pairs of fresh postmortem porcine corneas received corneal collagen cross-linking treatment with riboflavin and UVA-irradiation (370 nm; irradiance of 3 mW/cm2) for 30 minutes (Dresden protocol); the contralateral porcine corneas were used as control samples. After the treatment, the linear viscoelastic moduli of the corneal samples were measured using SAOS measurements and the average cross-linking densities extracted. For all cases investigated, the dynamic moduli of the cross-linked corneas were higher compared to those of the corresponding control samples. The increase of the elastic modulus of the treated samples was between 122% and 1750%. The difference was statistically significant for all tested samples (P = 0.018, 2-tailed t-test). We report a simple and accurate methodology for quantifying the effects of cross-linking on porcine corneas treated with the Dresden protocol by means of SAOS measurements in the linear regime. The measured dynamic moduli, elastic and viscous modulus, represent the energy storage and energy dissipation, respectively. Hence, they provide a means to assess the changing physical properties of the cross-linked collagen networks after CXL treatment.
Zhang, Yue; Ye, Fangmao; Sun, Wei; Yu, Jiangbo; Wu, I-Che; Rong, Yu; Zhang, Yong
2015-01-01
This paper describes a synthetic approach for photocrosslinkable polyfluorene (pc-PFO) semiconducting polymer dots, and demonstrates their superior ability to crosslink and form 3-D intermolecular polymer networks. The crosslinked pc-PFO Pdots are equipped with excellent encapsulating ability of functional small molecules. Optimum conditions of light irradiation on pc-PFO Pdots were investigated and clarified by using polymer thin films as a model. By employing the optimal light irradiation conditions, we successfully crosslinked pc-PFO Pdots and studied their particle sizes, photophysical, and colloidal properties. Single-particle imaging and dynamic-light-scattering measurements were conducted to understand the behaviors of photocrosslinked Pdots. Our results indicate pc-PFO Pdots can be easily photocrosslinked and the crosslinked species have excellent colloidal stability, physical and chemical stability, fluorescence brightness, and specific binding properties for cellular labeling. Considering that optical stimulus can work remotely, cleanly, and non-invasively, this study should pave the way for a promising approach to further develop stimuli-responsive ultrabright and versatile Pdot probes for biomedical imaging. PMID:25709806
Preparation of stir bars for sorptive extraction using sol-gel technology.
Liu, Wenmin; Wang, Hanwen; Guan, Yafeng
2004-08-06
A sol-gel coating method for the preparation of extractive phase on bars used in sorptive microextraction is described. The extraction phase of poly(dimethylsiloxane) is partially crosslinked with the sol-gel network, and the most part is physically incorporated in the network. Three aging steps at different temperatures are applied to complete the crosslinking process. Thirty-micrometer-thick coating layer is obtained by one coating process. The improved coating shows good thermal stability up to 300 degrees C. Spiked aqueous samples containing n-alkanes, polycyclic aromatic hydrocarbons and organophosphorus pesticides were analyzed by using the sorptive bars and GC. The results demonstrate that it is suitable for both aploar and polar analytes. The detection limit for chrysene is 7.44 ng/L, 0.74 ng/L for C19 and 0.9 ng/L for phorate. The extraction equilibration can be reached in less than 15 min by supersonic extraction with the bars of 30 microm coating layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahmud, Maznah; Radiation Processing Technology Division, Malaysian Nuclear Agency, 43000 Kajang, Selangor; Daik, Rusli
Poly(vinylpyrrolidone) (PVP)-crosslinked chitosan hydrogels were prepared by gamma radiation at various doses; 1, 3 5, 7, 10, 15, 20, 25 and 30kGy. Gamma radiation was used as a crosslinking tool which requires no chemical initiator, no heating process and need no purification step on the end products obtained. The hydrogel formulations were composed of 6% chitosan with average molecular weight (Mw) = 48 800 g/mol and 14% PVP with Mw = 10 000 g/mol in 2% lactic acid. Physical properties of hydrogels such as gel fraction and swelling property at pH 5.5 and pH 7.0 as well as syneresis activitymore » were determined. It was found that different radiation dose induces different effect on hydrogels’ network formed. Morphological study of hydrogels has been carried out by scanning electron microscope (SEM). From these preliminary evaluations, it can be concluded that gamma radiation is an effective tool for network development of hydrogels and it also induces enhancement on characteristics of hydrogels synthesized.« less
Resemblance of actin-binding protein/actin gels to covalently crosslinked networks
NASA Astrophysics Data System (ADS)
Janmey, Paul A.; Hvidt, Søren; Lamb, Jennifer; Stossel, Thomas P.
1990-05-01
THE maintainance of the shape of cells is often due to their surface elasticity, which arises mainly from an actin-rich cytoplasmic cortex1,2. On locomotion, phagocytosis or fission, however, these cells become partially fluid-like. The finding of proteins that can bind to actin and control the assembly of, or crosslink, actin filaments, and of intracellular messages that regulate the activities of some of these actin-binding proteins, indicates that such 'gel sol' transformations result from the rearrangement of cortical actin-rich networks3. Alternatively, on the basis of a study of the mechanical properties of mixtures of actin filaments and an Acanthamoeba actin-binding protein, α-actinin, it has been proposed that these transformations can be accounted for by rapid exchange of crosslinks between actin filaments4: the cortical network would be solid when the deformation rate is greater than the rate of crosslink exchange, but would deform or 'creep' when deformation is slow enough to permit crosslinker molecules to rearrange. Here we report, however, that mixtures of actin filaments and actin-binding protein (ABP), an actin crosslinking protein of many higher eukaryotes, form gels Theologically equivalent to covalently crosslinked networks. These gels do not creep in response to applied stress on a time scale compatible with most cell-surface movements. These findings support a more complex and controlled mechanism underlying the dynamic mechanical properties of cortical cytoplasm, and can explain why cells do not collapse under the constant shear forces that often exist in tissues.
Shao, Li; Sun, Jifu; Hua, Bin; Huang, Feihe
2018-05-08
Here a novel fluorescent supramolecular cross-linked polymer network with aggregation induced enhanced emission (AIEE) properties was constructed via pillar[5]arene-based host-guest recognition. Furthermore, the supramolecular polymer network can be used for explosive detection in both solution and thin films.
A structural study of F-actin - filamin networks
NASA Astrophysics Data System (ADS)
Ahrens-Braunstein, Ashley; Nguyen, Lam; Hirst, Linda
2010-03-01
The cell's ability to move and contract is attributed to the semi-flexible filamentous protein, F -actin, one of the three filaments in the cytoskeleton. Actin bundling can be formed by a cross-linking actin binding protein (ABP) filamin. By examining filamin's cross-linking abilities at different concentrations and molar ratios, we can study the flexibility, structure and multiple network formations created when cross-linking F-actin with this protein. We have studied the phase diagram of this protein system using fluorescence microscopy, analyzing the network structures observed in the context of a coarse grained molecular dynamics simulation carried out by our group.
Chen, Yi; Tang, Zhenghai; Zhang, Xuhui; Liu, Yingjun; Wu, Siwu; Guo, Baochun
2018-06-26
Covalently cross-linked rubbers are renowned for their high elasticity that play an indispensable role in various applications including tires, seals, medical implants. Development of self-healing and malleable rubbers is highly desirable as it allows for damage repair and reprocessibility to extend the lifetime and alleviate environmental pollution. Herein, we propose a facile approach to prepare permanently cross-linked yet self-healing and recyclable diene-rubber by programming dynamic boronic ester linkages into the network. The network is synthesized through one-pot thermally initiated thiol-ene "click" reaction between a novel dithiol-containing boronic ester cross-linker and commonly used styrene-butadiene rubber (SBR) without modifying the macromolecular structure. The resulted samples are covalently cross-linked and possess relatively high mechanical strength which can be readily tailored by varying boronic ester content. Owning to the transesterification of boronic ester bonds, the samples can alter network topologies, endowing the materials with self-healing ability and malleability.
Effect of mixed Ge/Si cross-linking on the physical properties of amorphous Ge-Si-Te networks
NASA Astrophysics Data System (ADS)
Gunasekera, K.; Boolchand, P.; Micoulaut, M.
2014-04-01
Amorphous GexSixTe1-2x glasses are studied as a function of composition by a combination of experimental and theoretical methods, allowing for a full description of the network structure in relationship with physico-chemical properties. Calorimetric and thermal measurements reveal that such glasses display an anomalous behavior across a range of compositions xc1=7.5% and
Xu, Shiai; Song, Xiaoxue; Cai, Yangben
2016-07-29
In order to enhance the compatibilization and interfacial adhesion between epoxy and liquid carboxyl-terminated butadiene acrylonitrile (CTBN) rubber, an initiator was introduced into the mixture and heated to initiate the cross-linking reaction of CTBN. After the addition of curing agents, the CTBN/epoxy blends with a localized interpenetrating network structure were prepared. The mechanical properties and morphologies of pre-crosslinked and non-crosslinked CTBN/epoxy blends were investigated. The results show that the tensile strength, elongation at break and impact strength of pre-crosslinked CTBN/epoxy blends are significantly higher than those of non-crosslinked CTBN/epoxy blends, which is primarily due to the enhanced interfacial strength caused by the chemical bond between the two phases and the localized interpenetrating network structure. Both pre-crosslinked and non-crosslinked CTBN/epoxy blends show a bimodal distribution of micron- and nano-sized rubber particles. However, pre-crosslinked CTBN/epoxy blends have smaller micron-sized rubber particles and larger nano-sized rubber particles than non-crosslinked CTBN/epoxy blends. The dynamic mechanical analysis shows that the storage modulus of pre-crosslinked CTBN/epoxy blends is higher than that of non-crosslinked CTBN/epoxy blends. The glass transition temperature of the CTBN phase in pre-crosslinked CTBN/epoxy blends increases slightly compared with the CTBN/epoxy system. The pre-crosslinking of rubber is a promising method for compatibilization and controlling the morphology of rubber-modified epoxy materials.
Xu, Shiai; Song, Xiaoxue; Cai, Yangben
2016-01-01
In order to enhance the compatibilization and interfacial adhesion between epoxy and liquid carboxyl-terminated butadiene acrylonitrile (CTBN) rubber, an initiator was introduced into the mixture and heated to initiate the cross-linking reaction of CTBN. After the addition of curing agents, the CTBN/epoxy blends with a localized interpenetrating network structure were prepared. The mechanical properties and morphologies of pre-crosslinked and non-crosslinked CTBN/epoxy blends were investigated. The results show that the tensile strength, elongation at break and impact strength of pre-crosslinked CTBN/epoxy blends are significantly higher than those of non-crosslinked CTBN/epoxy blends, which is primarily due to the enhanced interfacial strength caused by the chemical bond between the two phases and the localized interpenetrating network structure. Both pre-crosslinked and non-crosslinked CTBN/epoxy blends show a bimodal distribution of micron- and nano-sized rubber particles. However, pre-crosslinked CTBN/epoxy blends have smaller micron-sized rubber particles and larger nano-sized rubber particles than non-crosslinked CTBN/epoxy blends. The dynamic mechanical analysis shows that the storage modulus of pre-crosslinked CTBN/epoxy blends is higher than that of non-crosslinked CTBN/epoxy blends. The glass transition temperature of the CTBN phase in pre-crosslinked CTBN/epoxy blends increases slightly compared with the CTBN/epoxy system. The pre-crosslinking of rubber is a promising method for compatibilization and controlling the morphology of rubber-modified epoxy materials. PMID:28773762
Ionic Modification Turns Commercial Rubber into a Self-Healing Material.
Das, Amit; Sallat, Aladdin; Böhme, Frank; Suckow, Marcus; Basu, Debdipta; Wiessner, Sven; Stöckelhuber, Klaus Werner; Voit, Brigitte; Heinrich, Gert
2015-09-23
Invented by Charles Goodyear, chemical cross-linking of rubbers by sulfur vulcanization is the only method by which modern automobile tires are manufactured. The formation of these cross-linked network structures leads to highly elastic properties, which substantially reduces the viscous properties of these materials. Here, we describe a simple approach to converting commercially available and widely used bromobutyl rubber (BIIR) into a highly elastic material with extraordinary self-healing properties without using conventional cross-linking or vulcanising agents. Transformation of the bromine functionalities of BIIR into ionic imidazolium bromide groups results in the formation of reversible ionic associates that exhibit physical cross-linking ability. The reversibility of the ionic association facilitates the healing processes by temperature- or stress-induced rearrangements, thereby enabling a fully cut sample to retain its original properties after application of the self-healing process. Other mechanical properties, such as the elastic modulus, tensile strength, ductility, and hysteresis loss, were found to be superior to those of conventionally sulfur-cured BIIR. This simple and easy approach to preparing a commercial rubber with self-healing properties offers unique development opportunities in the field of highly engineered materials, such as tires, for which safety, performance, and longer fatigue life are crucial factors.
Xu, Chuanhui; Cao, Liming; Lin, Baofeng; Liang, Xingquan; Chen, Yukun
2016-07-13
Introducing ionic associations is one of the most effective approaches to realize a self-healing behavior for rubbers. However, most of commercial rubbers are nonpolar rubbers without now available functional groups to be converted into ionic groups. In this paper, our strategy was based on a controlled peroxide-induced vulcanization to generate massive ionic cross-links via polymerization of zinc dimethacrylate (ZDMA) in natural rubber (NR) and exploited it as a potential self-healable material. We controlled vulcanization process to retard the formation of covalent cross-link network, and successfully generated a reversible supramolecular network mainly constructed by ionic cross-links. Without the restriction of covalent cross-linkings, the NR chains in ionic supramolecular network had good flexibility and mobility. The nature that the ionic cross-links was easily reconstructed and rearranged facilitating the self-healing behavior, thereby enabling a fully cut sample to rejoin and retain to its original properties after a suitable self-healing process at ambient temperature. This study thus demonstrates a feasible approach to impart an ionic association induced self-healing function to commercial rubbers without ionic functional groups.
Delgado, Luis M.; Bayon, Yves; Pandit, Abhay
2015-01-01
Collagen-based devices, in various physical conformations, are extensively used for tissue engineering and regenerative medicine applications. Given that the natural cross-linking pathway of collagen does not occur in vitro, chemical, physical, and biological cross-linking methods have been assessed over the years to control mechanical stability, degradation rate, and immunogenicity of the device upon implantation. Although in vitro data demonstrate that mechanical properties and degradation rate can be accurately controlled as a function of the cross-linking method utilized, preclinical and clinical data indicate that cross-linking methods employed may have adverse effects on host response, especially when potent cross-linking methods are employed. Experimental data suggest that more suitable cross-linking methods should be developed to achieve a balance between stability and functional remodeling. PMID:25517923
Advancing reversible shape memory by tuning the polymer network architecture
Li, Qiaoxi; Zhou, Jing; Vatankhah-Varnoosfaderani, Mohammad; ...
2016-02-02
Because of counteraction of a chemical network and a crystalline scaffold, semicrystalline polymer networks exhibit a peculiar behavior—reversible shape memory (RSM), which occurs naturally without applying any external force and particular structural design. There are three RSM properties: (i) range of reversible strain, (ii) rate of strain recovery, and (iii) decay of reversibility with time, which can be improved by tuning the architecture of the polymer network. Different types of poly(octylene adipate) networks were synthesized, allowing for control of cross-link density and network topology, including randomly cross-linked network by free-radical polymerization, thiol–ene clicked network with enhanced mesh uniformity, and loosemore » network with deliberately incorporated dangling chains. It is shown that the RSM properties are controlled by average cross-link density and crystal size, whereas topology of a network greatly affects its extensibility. In conclusion, we have achieved 80% maximum reversible range, 15% minimal decrease in reversibility, and fast strain recovery rate up to 0.05 K –1, i.e., ca. 5% per 10 s at a cooling rate of 5 K/min.« less
Wei, Zhao; Lewis, Daniel M; Xu, Yu; Gerecht, Sharon
2017-08-01
Gradient hydrogels have been developed to mimic the spatiotemporal differences of multiple gradient cues in tissues. Current approaches used to generate such hydrogels are restricted to a single gradient shape and distribution. Here, a hydrogel is designed that includes two chemical cross-linking networks, biofunctional, and self-healing networks, enabling the customizable formation of modular gradient hydrogel construct with various gradient distributions and flexible shapes. The biofunctional networks are formed via Michael addition between the acrylates of oxidized acrylated hyaluronic acid (OAHA) and the dithiol of matrix metalloproteinase (MMP)-sensitive cross-linker and RGD peptides. The self-healing networks are formed via dynamic Schiff base reaction between N-carboxyethyl chitosan (CEC) and OAHA, which drives the modular gradient units to self-heal into an integral modular gradient hydrogel. The CEC-OAHA-MMP hydrogel exhibits excellent flowability at 37 °C under shear stress, enabling its injection to generate gradient distributions and shapes. Furthermore, encapsulated sarcoma cells respond to the gradient cues of RGD peptides and MMP-sensitive cross-linkers in the hydrogel. With these superior properties, the dual cross-linked CEC-OAHA-MMP hydrogel holds significant potential for generating customizable gradient hydrogel constructs, to study and guide cellular responses to their microenvironment such as in tumor mimicking, tissue engineering, and stem cell differentiation and morphogenesis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Technical Reports Server (NTRS)
Wilkes, G. L.
1982-01-01
The effects of physical aging on the material properties of some linear and network macromolecular glasses are discussed. The free volume concept is used to describe this behavior. The effect of physical aging on properties of some uniaxial graphite/fiber epoxy resin composites is investigated using stress relaxation in both tensile and flexural modes. The matrix polymers used were resins both of which are based on a 4,4-methylenedianiline derivative of epichlorohydrin with diamino diphenyl sulfone (DDS) as the curing agent. The matrix resin, as used in the practical application in composites, not fully cured and the glass transition of the network was dependent on the curing schedule. The physical aging of the bulk crosslinked epoxy was found to depend on the annealing temperature, and the T sub g of the resin. The physical aging of the composite, monitored by the stress relaxation method, was found to be dependent on the testing direction.
USDA-ARS?s Scientific Manuscript database
Novel biobased crosslinked polymer networks were prepared from vegetable oil with 2,5-furan diacrylate as a difunctional stiffener through UV photopolymerization, and the mechanical properties of the resulting films were evaluated. The vegetable oil raw materials used were acrylated epoxidized soybe...
Biodegradable Photo-Crosslinked Thin Polymer Networks Based on Vegetable Oil Hydroxyfatty Acids
USDA-ARS?s Scientific Manuscript database
Novel crosslinked thin polymer networks based on vegetable oil hydroxyfatty acids (HFAs) were prepared by UV photopolymerization and their mechanical properties were evaluated. Two raw materials, castor oil and 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) were used as sources of mono- and di-HFAs, r...
Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration
NASA Astrophysics Data System (ADS)
Vatankhah-Varnosfaderani, Mohammad; Keith, Andrew N.; Cong, Yidan; Liang, Heyi; Rosenthal, Martin; Sztucki, Michael; Clair, Charles; Magonov, Sergei; Ivanov, Dimitri A.; Dobrynin, Andrey V.; Sheiko, Sergei S.
2018-03-01
Active camouflage is widely recognized as a soft-tissue feature, and yet the ability to integrate adaptive coloration and tissuelike mechanical properties into synthetic materials remains elusive. We provide a solution to this problem by uniting these functions in moldable elastomers through the self-assembly of linear-bottlebrush-linear triblock copolymers. Microphase separation of the architecturally distinct blocks results in physically cross-linked networks that display vibrant color, extreme softness, and intense strain stiffening on par with that of skin tissue. Each of these functional properties is regulated by the structure of one macromolecule, without the need for chemical cross-linking or additives. These materials remain stable under conditions characteristic of internal bodily environments and under ambient conditions, neither swelling in bodily fluids nor drying when exposed to air.
Supramolecular motifs in dynamic covalent PEG-hemiaminal organogels
Fox, Courtney H.; ter Hurrne, Gijs M.; Wojtecki, Rudy J.; Jones, Gavin O.; Horn, Hans W.; Meijer, E. W.; Frank, Curtis W.; Hedrick, James L.; García, Jeannette M.
2015-01-01
Dynamic covalent materials are stable materials that possess reversible behaviour triggered by stimuli such as light, redox conditions or temperature; whereas supramolecular crosslinks depend on the equilibrium constant and relative concentrations of crosslinks as a function of temperature. The combination of these two reversible chemistries can allow access to materials with unique properties. Here, we show that this combination of dynamic covalent and supramolecular chemistry can be used to prepare organogels comprising distinct networks. Two materials containing hemiaminal crosslink junctions were synthesized; one material is comprised of dynamic covalent junctions and the other contains hydrogen-bonding bis-hemiaminal moieties. Under specific network synthesis conditions, these materials exhibited self-healing behaviour. This work reports on both the molecular-level detail of hemiaminal crosslink junction formation as well as the macroscopic behaviour of hemiaminal dynamic covalent network (HDCN) elastomeric organogels. These materials have potential applications as elastomeric components in printable materials, cargo carriers and adhesives. PMID:26174864
Competing dynamic phases of active polymer networks
NASA Astrophysics Data System (ADS)
Freedman, Simon; Banerjee, Shiladitya; Dinner, Aaron R.
Recent experiments on in-vitro reconstituted assemblies of F-actin, myosin-II motors, and cross-linking proteins show that tuning local network properties can changes the fundamental biomechanical behavior of the system. For example, by varying cross-linker density and actin bundle rigidity, one can switch between contractile networks useful for reshaping cells, polarity sorted networks ideal for directed molecular transport, and frustrated networks with robust structural properties. To efficiently investigate the dynamic phases of actomyosin networks, we developed a coarse grained non-equilibrium molecular dynamics simulation of model semiflexible filaments, molecular motors, and cross-linkers with phenomenologically defined interactions. The simulation's accuracy was verified by benchmarking the mechanical properties of its individual components and collective behavior against experimental results at the molecular and network scales. By adjusting the model's parameters, we can reproduce the qualitative phases observed in experiment and predict the protein characteristics where phase crossovers could occur in collective network dynamics. Our model provides a framework for understanding cells' multiple uses of actomyosin networks and their applicability in materials research. Supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program.
NASA Astrophysics Data System (ADS)
Schwarz, J. M.; Zhang, Tao; Das, Moumita
2013-03-01
At the leading edge of a crawling cell, the actin cytoskeleton extends itself in a particular direction via a branched crosslinked network of actin filaments with some overall alignment. This network is known as the lamellipodium. Branching via the complex Arp2/3 occurs at a reasonably well-defined angle of 70 degrees from the plus end of the mother filament such that Arp2/3 can be modeled as an angle-constraining crosslinker. Freely-rotating crosslinkers, such as alpha-actinin, are also present in lamellipodia. Therefore, we study the interplay between these two types of crosslinkers, angle-constraining and free-rotating, both analytically and numerically, to begin to quantify the mechanics of lamellipodia. We also investigate how the orientational ordering of the filaments affects this interplay. Finally, while role of Arp2/3 as a nucleator for filaments along the leading edge of a crawling cell has been studied intensely, much less is known about its mechanical contribution. Our work seeks to fill in this important gap in modeling the mechanics of lamellipodia.
Interrelation of electret properties of polyethylene foam from the method of cross-linking
NASA Astrophysics Data System (ADS)
Gilmanov, I. R.; Galikhanov, M. F.; Gilmanova, A. R.
2017-09-01
The electret properties of chemically cross-linked polyethylene foam and physically cross-linked polyethylene foam have been studied. It has been shown that chemically cross-linked polyethylene foam has higher surface potential, effective surface charge density and electric field strength compared to physically bonded polyethylene foam. This is due to the presence of molecules and fragments of dicumyl peroxide, which can play the role of traps for injection charge carriers, a greater degree of cross-linking and with the oxidation of polyethylene, which occurs during irradiation during physical cross-linking. When the foam is deformed, its electret properties are reduced, and when the volume is relaxed, they are restored. This is due to the partial mutual compensation of homo- and heterocharge during compression and the return of the structure of the gas-filled polymer to its former position when the load is removed.
McCall, Patrick M.; Gardel, Margaret L.; Munro, Edwin M.
2017-01-01
Actomyosin-based cortical flow is a fundamental engine for cellular morphogenesis. Cortical flows are generated by cross-linked networks of actin filaments and myosin motors, in which active stress produced by motor activity is opposed by passive resistance to network deformation. Continuous flow requires local remodeling through crosslink unbinding and and/or filament disassembly. But how local remodeling tunes stress production and dissipation, and how this in turn shapes long range flow, remains poorly understood. Here, we study a computational model for a cross-linked network with active motors based on minimal requirements for production and dissipation of contractile stress: Asymmetric filament compliance, spatial heterogeneity of motor activity, reversible cross-links and filament turnover. We characterize how the production and dissipation of network stress depend, individually, on cross-link dynamics and filament turnover, and how these dependencies combine to determine overall rates of cortical flow. Our analysis predicts that filament turnover is required to maintain active stress against external resistance and steady state flow in response to external stress. Steady state stress increases with filament lifetime up to a characteristic time τm, then decreases with lifetime above τm. Effective viscosity increases with filament lifetime up to a characteristic time τc, and then becomes independent of filament lifetime and sharply dependent on crosslink dynamics. These individual dependencies of active stress and effective viscosity define multiple regimes of steady state flow. In particular our model predicts that when filament lifetimes are shorter than both τc and τm, the dependencies of effective viscosity and steady state stress on filament turnover cancel one another, such that flow speed is insensitive to filament turnover, and shows a simple dependence on motor activity and crosslink dynamics. These results provide a framework for understanding how animal cells tune cortical flow through local control of network remodeling. PMID:29253848
Kataoka, Toshikazu; Ishioka, Yumi; Mizuhata, Minoru; Minami, Hideto; Maruyama, Tatsuo
2015-10-21
We prepared a heterogeneous double-network (DN) ionogel containing a low-molecular-weight gelator network and a polymer network that can exhibit high ionic conductivity and high mechanical strength. An imidazolium-based ionic liquid was first gelated by the molecular self-assembly of a low-molecular-weight gelator (benzenetricarboxamide derivative), and methyl methacrylate was polymerized with a cross-linker to form a cross-linked poly(methyl methacrylate) (PMMA) network within the ionogel. Microscopic observation and calorimetric measurement revealed that the fibrous network of the low-molecular-weight gelator was maintained in the DN ionogel. The PMMA network strengthened the ionogel of the low-molecular-weight gelator and allowed us to handle the ionogel using tweezers. The orthogonal DNs produced ionogels with a broad range of storage elastic moduli. DN ionogels with low PMMA concentrations exhibited high ionic conductivity that was comparable to that of a neat ionic liquid. The present study demonstrates that the ionic conductivities of the DN and single-network, low-molecular-weight gelator or polymer ionogels strongly depended on their storage elastic moduli.
NASA Astrophysics Data System (ADS)
Komianos, James E.; Papoian, Garegin A.
2018-04-01
Current understanding of how contractility emerges in disordered actomyosin networks of nonmuscle cells is still largely based on the intuition derived from earlier works on muscle contractility. In addition, in disordered networks, passive cross-linkers have been hypothesized to percolate force chains in the network, hence, establishing large-scale connectivity between local contractile clusters. This view, however, largely overlooks the free energy of cross-linker binding at the microscale, which, even in the absence of active fluctuations, provides a thermodynamic drive towards highly overlapping filamentous states. In this work, we use stochastic simulations and mean-field theory to shed light on the dynamics of a single actomyosin force dipole—a pair of antiparallel actin filaments interacting with active myosin II motors and passive cross-linkers. We first show that while passive cross-linking without motor activity can produce significant contraction between a pair of actin filaments, driven by thermodynamic favorability of cross-linker binding, a sharp onset of kinetic arrest exists at large cross-link binding energies, greatly diminishing the effectiveness of this contractility mechanism. Then, when considering an active force dipole containing nonmuscle myosin II, we find that cross-linkers can also serve as a structural ratchet when the motor dissociates stochastically from the actin filaments, resulting in significant force amplification when both molecules are present. Our results provide predictions of how actomyosin force dipoles behave at the molecular level with respect to filament boundary conditions, passive cross-linking, and motor activity, which can explicitly be tested using an optical trapping experiment.
Zhang, Caixia; Liu, Yuhong; Liu, Zhifeng; Zhang, Hongyu; Cheng, Qiang; Yang, Congbin
2017-03-07
Poly(vinylphosphonic acid) (PVPA) cross-linked networks on Ti 6 Al 4 V show superlubricity behavior when sliding against polytetrafluoroethylene in water-based lubricants. The superlubricity can occur but only with the existence of salt ions in the polymer cross-linked networks. This is different from the phenomenon in most polymer brushes. An investigation into the mechanism revealed that cations and anions in the lubricants worked together to yield the superlubricity even under harsh conditions. It is proposed that the preferential interactions of cations with PVPA molecules rather than water molecules are the main reason for the superlubricity in water-based lubricants. The interaction of anions with water molecules regulates the properties of the tribological interfaces, which influences the magnitude of the friction coefficient. Owing to the novel cross-linked networks and the interactions between cations and polymer molecules, their superlubricity can be maintained even at a high salt ion concentration of 5 M. These excellent properties make PVPA-modified Ti 6 Al 4 V a potential candidate for application in artificial implants.
Modeling Cytoskeletal Active Matter Systems
NASA Astrophysics Data System (ADS)
Blackwell, Robert
Active networks of filamentous proteins and crosslinking motor proteins play a critical role in many important cellular processes. One of the most important microtubule-motor protein assemblies is the mitotic spindle, a self-organized active liquid-crystalline structure that forms during cell division and that ultimately separates chromosomes into two daughter cells. Although the spindle has been intensively studied for decades, the physical principles that govern its self-organization and function remain mysterious. To evolve a better understanding of spindle formation, structure, and dynamics, I investigate course-grained models of active liquid-crystalline networks composed of microtubules, modeled as hard spherocylinders, in diffusive equilibrium with a reservoir of active crosslinks, modeled as hookean springs that can adsorb to microtubules and and translocate at finite velocity along the microtubule axis. This model is investigated using a combination of brownian dynamics and kinetic monte carlo simulation. I have further refined this model to simulate spindle formation and kinetochore capture in the fission yeast S. pombe. I then make predictions for experimentally realizable perturbations in motor protein presence and function in S. pombe.
Alpha-actinin binding kinetics modulate cellular dynamics and force generation
Ehrlicher, Allen J.; Krishnan, Ramaswamy; Guo, Ming; Bidan, Cécile M.; Weitz, David A.; Pollak, Martin R.
2015-01-01
The actin cytoskeleton is a key element of cell structure and movement whose properties are determined by a host of accessory proteins. Actin cross-linking proteins create a connected network from individual actin filaments, and though the mechanical effects of cross-linker binding affinity on actin networks have been investigated in reconstituted systems, their impact on cellular forces is unknown. Here we show that the binding affinity of the actin cross-linker α-actinin 4 (ACTN4) in cells modulates cytoplasmic mobility, cellular movement, and traction forces. Using fluorescence recovery after photobleaching, we show that an ACTN4 mutation that causes human kidney disease roughly triples the wild-type binding affinity of ACTN4 to F-actin in cells, increasing the dissociation time from 29 ± 13 to 86 ± 29 s. This increased affinity creates a less dynamic cytoplasm, as demonstrated by reduced intracellular microsphere movement, and an approximate halving of cell speed. Surprisingly, these less motile cells generate larger forces. Using traction force microscopy, we show that increased binding affinity of ACTN4 increases the average contractile stress (from 1.8 ± 0.7 to 4.7 ± 0.5 kPa), and the average strain energy (0.4 ± 0.2 to 2.1 ± 0.4 pJ). We speculate that these changes may be explained by an increased solid-like nature of the cytoskeleton, where myosin activity is more partitioned into tension and less is dissipated through filament sliding. These findings demonstrate the impact of cross-linker point mutations on cell dynamics and forces, and suggest mechanisms by which such physical defects lead to human disease. PMID:25918384
Prabhu, Prabhakara; Dubey, Akhilesh; Parth, Vinod; Ghate, Vivek
2015-01-01
Background: Hydrogel is a cross-linked network of polymers. Water penetrates these network causing swelling and giving the hydrogel a soft and rubbery consistency and there by maintaining the integrity of the membrane. Due to the drawback of conventional therapy for ocular delivery, hydrogel membranes containing the combination of gentamicin (GT) sulfate and dexamethasone (DX) were formulated for the treatment of conjunctivitis. The objective of this study was to formulate and evaluate the hydrogel membranes containing the combination of GT and DX for the treatment of conjunctivitis. Materials and Methods: In the present investigation, hydrogel membranes were prepared by using polymers such as gelatin, polyvinyl alcohol, and chitosan, which were cross-linked using physical/chemical methods. Results: The cross-linking of the membranes was confirmed by Fourier transform infra-red studies. The pH of the membranes ranged from 7.19 to 7.45 and drug content ranged from 69.82% to 89.19%. The hydrogels showed a considerably good swelling ratio ranging from 22.5% to 365.56%. The in vitro drug release study showed that there was a slow and sustained release of the drug from the membranes which were sufficiently cross-linked and followed zero order release. In vivo studies showed that the severity of conjunctivitis was remarkably lowered at day 3 with hydrogel membrane compared to marketed eye drops. Results of unpaired t-test of significance between two groups indicated that the hydrogel membrane showed a better response in the treatment of conjunctivitis compared to the marketed products. Stability studies proved that the formulations could be stable when stored at room temperature. Conclusion: Results of the study indicated that it is possible to develop a safe and physiologically effective hydrogels which are patient compliant. PMID:26682192
Lou, Junzhe; Stowers, Ryan; Nam, Sungmin; Xia, Yan; Chaudhuri, Ovijit
2018-02-01
The physical and architectural cues of the extracellular matrix (ECM) play a critical role in regulating important cellular functions such as spreading, migration, proliferation, and differentiation. Natural ECM is a complex viscoelastic scaffold composed of various distinct components that are often organized into a fibrillar microstructure. Hydrogels are frequently used as synthetic ECMs for 3D cell culture, but are typically elastic, due to covalent crosslinking, and non-fibrillar. Recent work has revealed the importance of stress relaxation in viscoelastic hydrogels in regulating biological processes such as spreading and differentiation, but these studies all utilize synthetic ECM hydrogels that are non-fibrillar. Key mechanotransduction events, such as focal adhesion formation, have only been observed in fibrillar networks in 3D culture to date. Here we present an interpenetrating network (IPN) hydrogel system based on HA crosslinked with dynamic covalent bonds and collagen I that captures the viscoelasticity and fibrillarity of ECM in tissues. The IPN hydrogels exhibit two distinct processes in stress relaxation, one from collagen and the other from HA crosslinking dynamics. Stress relaxation in the IPN hydrogels can be tuned by modulating HA crosslinker affinity, molecular weight of the HA, or HA concentration. Faster relaxation in the IPN hydrogels promotes cell spreading, fiber remodeling, and focal adhesion (FA) formation - behaviors often inhibited in other hydrogel-based materials in 3D culture. This study presents a new, broadly adaptable materials platform for mimicking key ECM features of viscoelasticity and fibrillarity in hydrogels for 3D cell culture and sheds light on how these mechanical and structural cues regulate cell behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
1987-04-01
polymers such as poly[ diallyl dimethyl ammonium chloride] , poly [vinylbenzyl trimethyl ammonium chloride], poly[styrene sulfonic acid , sodium salt] and...poly[acrylic acid ], which would ordinarily dissolve from the electrode surface in aqueous solution unless crosslinked into a network, and several...Irradiation on a Water-Soluble Polymer: DDAC 8 E. Electrochemistry of DDAC Networks on Platinum and Graphite 10 F. Poly [acrylic acid ] Films on Graphite
Physical aging of linear and network epoxy resins
NASA Technical Reports Server (NTRS)
Kong, E. S.-W.; Wilkes, G. L.; Mcgrath, J. E.; Banthia, A. K.; Mohajer, Y.; Tant, M. R.
1981-01-01
Network and linear epoxy resins principally based on the diglycidyl ether of bisphenol-A and its oligomers are prepared and studied using diamine and anhydride crosslinking agents. Rubber modified epoxies and a carbon fiber reinforced composite are also investigated. All materials display time-dependent changes when stored at temperatures below the glass transition temperature after quenching (sub-T/g/ annealing). Solvent sorption experiments initiated after different sub-T(g) annealing times demonstrate that the rate of solvent uptake can be indirectly related to the free volume of the epoxy resins. Residual thermal stresses and water are found to have little effect on the physical aging process, which affects the sub-T(g) properties of uniaxial carbon fiber reinforced epoxy material. Finally, the importance of the recovery phenomenon which affects the durability of epoxy glasses is considered.
A Crosslinker Based on a Tethered Electrophile for Mapping Kinase-Substrate Networks
Riel-Mehan, Megan M; Shokat, Kevan M
2014-01-01
SUMMARY Despite the continuing progress made towards mapping kinase signaling networks, there are still many phosphorylation events for which the responsible kinase has not yet been identified. We are interested in addressing this problem through forming covalent crosslinks between a peptide substrate and the corresponding phosphorylating kinase. Previously we reported a dialdehyde-based kinase binding probe capable of such a reaction with a peptide containing a cysteine substituted for the phosphorylatable ser/thr/tyr residue. Here, we examine the yield of a previously reported dialdehyde-based probe, and report that the dialdehyde based probes possesses a significant limitation in terms of crosslinked kinase-substrate product yield. To address this limitation, we develop a crosslinking scheme based on a kinase activity-based probe, and this new cross-linker provides an increase in efficiency and substrate specificity, including in the context of cell lysate. PMID:24746561
Soft matter: rubber and networks
NASA Astrophysics Data System (ADS)
McKenna, Gregory B.
2018-06-01
Rubber networks are important and form the basis for materials with properties ranging from rubber tires to super absorbents and contact lenses. The development of the entropy ideas of rubber deformation thermodynamics provides a powerful framework from which to understand and to use these materials. In addition, swelling of the rubber in the presence of small molecule liquids or solvents leads to materials that are very soft and ‘gel’ like in nature. The review covers the thermodynamics of polymer networks and gels from the perspective of the thermodynamics and mechanics of the strain energy density function. Important relationships are presented and experimental results show that the continuum ideas contained in the phenomenological thermodynamics are valid, but that the molecular bases for some of them remain to be fully elucidated. This is particularly so in the case of the entropic gels or swollen networks. The review is concluded with some perspectives on other networks, ranging from entropic polymer networks such as thermoplastic elastomers to physical gels in which cross-link points are formed by glassy or crystalline domains. A discussion is provided for other physical gels in which the network forms a spinodal-like decomposition, both in thermoplastic polymers that form a glassy network upon phase separation and for colloidal gels that seem to have a similar behavior.
Cross-Linker Unbinding and Self-Similarity in Bundled Cytoskeletal Networks
NASA Astrophysics Data System (ADS)
Lieleg, O.; Bausch, A. R.
2007-10-01
The macromechanical properties of purely bundled in vitro actin networks are not only determined by the micromechanical properties of individual bundles but also by molecular unbinding events of the actin-binding protein (ABP) fascin. Under high mechanical load the network elasticity depends on the forced unbinding of individual ABPs in a rate dependent manner. Cross-linker unbinding in combination with the structural self-similarity of the network enables the introduction of a concentration-time superposition principle—broadening the mechanically accessible frequency range over 8 orders of magnitude.
Inter-crosslinking network gels having both shape memory and high ductility
NASA Astrophysics Data System (ADS)
Amano, Yoshitaka; Hidema, Ruri; Furukawa, Hidemitsu
2012-04-01
Medical treatment for injuries should be easy and quick in many accidents. Plasters or bandages are frequently used to wrap and fix injured parts. If plasters or bandages have additional smart functions, such as cooling, removability and repeatability, they will be much more useful and effective. Here we propose innovative biocompatible materials, that is, nontoxic high-strength shape-memory gels as novel smart medical materials. These smart gels were prepared from two monomers (DMAAm and SA), a polymer (HPC), and an inter-crosslinking agent (Karenz-MOI). In the synthesis of the gels, 1) a shape-memory copolymer network is made from the DMAAm and the SA, and 2) the copolymer and the HPC are crosslinked by the Karenz-MOI. Thus the crosslinking points are connected only between the different polymers. This is our original technique of developing a new network structure of gels, named Inter-Crosslinking Network (ICN). The ICN gels achieve high ductility, going up to 700% strain in tensile tests, while the ICN gels contain about 44% water. Moreover the SA has temperature dependence due to its crystallization properties; thus the ICN gels obtain shape memory properties and are named ICN-SMG. While the Young's modulus of the ICN-SMG is large below their crystallization temperature and the gels behave like plastic materials, the modulus becomes smaller above the temperature and the gels turn back to their original shape.
Modification of polylactide bioplastic using hyperbranched polymer based nanostructures
NASA Astrophysics Data System (ADS)
Bhardwaj, Rahul
Polylactide (PLA) is the most well known renewable resource based biodegradable polymer. The inherent brittleness and poor processability of PLA pose considerable technical challenges and limit its range of commercial applications. The broad objective of this research was to investigate novel pathways for polylactide modification to enhance its mechanical and rheological properties. The focus of this work was to tailor the architecture of a dendritic hyperbranched polymer (HBP) and study its influence on the mechanical and rheological properties of PLA bioplastic. The hyperbranched polymers under consideration are biodegradable aliphatic hydroxyl-functional hyperbranched polyesters having nanoscale dimensions, unique physical properties and high peripheral functionalities. This work relates to identifying a new and industrially relevant research methodology to develop PLA based nanoblends having outstanding stiffness-toughness balance. In this approach, a hydroxyl functional hyperbranched polymer was crosslinked in-situ with a polyanhydride (PA) in the PLA matrix during melt processing, leading to the generation of new nanoscale hyperbranched polymer based domains in the PLA matrix. Transmission electron microscopy and atomic force microscopy revealed the "sea-island" morphology of PLA-crosslinked HBP blends. The domain size of a large portion of the crosslinked HBP particles in PLA matrix was less than 100 nm. The presence of crosslinked hyperbranched polymers exhibited more than 500% and 800% improvement in the tensile toughness and elongation at break values of PLA, respectively, with a minimal sacrifice of tensile strength and modulus as compared to unmodified PLA. The toughening mechanism of PLA in the presence of crosslinked HBP particles was comprised of shear yielding and crazing. The volume fraction of crosslinked HBP particles and matrix ligament thickness (inter-particle distance) were found to be the critical parameters for the toughening of PLA. The maximum average matrix ligament thickness was 114 nm for a toughened polylactide nanoblend and correlated well with the theoretical prediction of the matrix ligament thickness. Fourier transform infrared spectroscopy and dynamic mechanical thermal analysis proved the crosslinking of the HBP phase in the PLA matrix. The crosslinked HBP was effective at hydroxyl (-OH) to anhydride molar ratios of: 2:1, 1:1 or 1:2. The glass transition temperature values of the crosslinked HBP phase at these molar ratios were observed to deviate from the predictions made by the Fox equation. The hydrophilic nature of the hyperbranched polymer was altered to hydrophobic by incorporation of polyanhydride crosslinker, as demonstrated by the increase in the contact angle with water. Rheological studies showed that there was a network formation in the PLA matrix after in-situ crosslinking of HBP. The HBP was found to reduce the melt viscosity of PLA dramatically and this effect was maintained even after its in-situ crosslinking in the PLA matrix. Finally, the current research unwraps the new opportunities provided by the unique physical and chemical properties of highly functional hyperbranched polymers in generating new nanostructured multiphase polymer systems with enhanced properties.
Photoinitiator-Free Synthesis of Endothelial Cell Adhesive and Enzymatically Degradable Hydrogels
Jones, Derek R.; Marchant, Roger E.; von Recum, Horst; Gupta, Anirban Sen; Kottke-Marchant, Kandice
2015-01-01
We report on a photoinitiator-free synthetic method of incorporating bioactivity into poly(ethylene glycol) (PEG) hydrogels in order to control physical properties, enzymatic biodegradability and cell-specific adhesiveness of the polymer network, while eliminating the need for UV-mediated photopolymerization. To accomplish this, hydrogel networks were polymerized using Michael addition with four-arm PEG acrylate (10 kDa), using a collagenase sensitive peptide (CSP) as a crosslinker, and introducing an endothelial cell adhesive peptide either terminally (RGD) or attached to the crosslinking peptide sequence (CSP-RGD). The efficiency of the Michael addition reactions were determined by NMR and Ellman’s assay. Successful decoupling of cell adhesivity and physical properties was demonstrated by quantifying and comparing the swelling ratios and Young’s Moduli of various hydrogel formulations. Degradation profiles were established by incubating functionalized hydrogels in collagenase solutions (0.0 – 1.0 µg/mL), demonstrating that functionalized hydrogels degraded at a rate dependent upon collagenase concentration. Moreover, it was shown that the degradation rate was independent of CSP-RGD concentration. Cell attachment and proliferation on functionalized hydrogels were compared for various RGD concentrations, providing evidence that cell attachment and proliferation were directly related to relative amounts of the CSP-RGD combination peptide. An increase in cell viability was achieved using Michael addition techniques when compared to UV-polymerization, and was assessed by a LIVE/DEAD fluorescence assay. This photoinitiator-free method shows promise in creating hydrogel-based tissue engineering scaffolds allow for decoupled cell adhesivity and physical properties and that render greater cell viability. PMID:25462848
Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization.
Kim, Min-A; Jang, Dawon; Tejima, Syogo; Cruz-Silva, Rodolfo; Joh, Han-Ik; Kim, Hwan Chul; Lee, Sungho; Endo, Morinobu
2016-03-23
Large efforts have been made over the last 40 years to increase the mechanical strength of polyacrylonitrile (PAN)-based carbon fibers (CFs) using a variety of chemical or physical protocols. In this paper, we report a new method to increase CFs mechanical strength using a slow heating rate during the carbonization process. This new approach increases both the carbon sp(3) bonding and the number of nitrogen atoms with quaternary bonding in the hexagonal carbon network. Theoretical calculations support a crosslinking model promoted by the interstitial carbon atoms located in the graphitic interlayer spaces. The improvement in mechanical performance by a controlled crosslinking between the carbon hexagonal layers of the PAN based CFs is a new concept that can contribute further in the tailoring of CFs performance based on the understanding of their microstructure down to the atomic scale.
Zhuang, Chen; Shi, Chengmei; Tao, Furong; Cui, Yuezhi
2017-12-01
The functionalized cellulose ester MCN was firstly synthesized and used to cross-link gelatin by amidation between -NH 2 in gelatin and active ester groups in MCN to form a composite polymer network Gel-MCN, which was confirmed by Van Slyke method, FTIR, XRD and TGA-DTG spectra. The model drug omeprazole was loaded in Gel-MCN composites mainly by electrostatic interaction and hydrogen bonds, which were certified by FTIR, XRD and TGA-DSC. Thermal stability, anti-biodegradability, mechanical property and surface hydrophobicity of the composites with different cross-linking extents and drug loading were systematically investigated. SEM images demonstrated the honeycomb structural cells of cross-linked gelatin networks and this ensured drug entrapment. The drug release mechanism was dominated by a combined effect of diffusion and degradation, and the release rate decreased with cross-linking degree increased. The developed drug delivery system had profound significance in improving pesticide effect and bioavailability of drugs. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Zhang, Quan-Ping; Liu, Jun-Hua; Liu, Hai-Dong; Jia, Fei; Zhou, Yuan-Lin; Zheng, Jian
2017-10-01
Adding ceramic or conductive fillers into polymers for increasing permittivity is a direct and effective approach to enhance the actuation strain of dielectric elastomer actuators (DEAs). Unfortunately, the major dielectric loss caused by weak interfaces potentially harms the electro-mechanical stability and lifetime of DEAs. Here, we construct a desired macromolecular network with a long chain length and low cross-link density to reduce the elastic modulus of silicone elastomers. Selecting a high molecular weight of polymethylvinylsiloxane and a low dose of the cross-linker leads the soft but tough networks with rich entanglements, poor cross-links, and a low amount of defects. Then, a ductile material with low elastic modulus but high elongation at break is obtained. It accounts for much more excellent actuation strain of Hl in comparison to that of the other silicone elastomers. Importantly, without other fillers, the ultralow dielectric loss, conductivity, and firm networks possibly promote the electro-mechanical stability and lifetime for the DEA application.
Inoue, Motoki; Sasaki, Makoto; Taguchi, Tetsushi
2012-01-01
Gelatins were crosslinked with organic acids and treated with alkali to impart to them endothelialization and anti-thrombogenic properties. These matrices were characterized by biochemical and physicochemical techniques. The amounts of residual amino groups in the matrices decreased with increasing crosslinker concentration. The matrices with the highest crosslinking densities showed excellent endothelial cell adhesion and proliferation. In addition, the adhesion of platelets and formation of fibrin networks on the matrices were suppressed with increasing crosslinker concentration. The matrices also exhibited excellent biodegradability, and the degradation rate decreased with increasing crosslinking density. All the organic acid-crosslinked alkali-treated gelatins showed excellent anti-thrombogenic and endothelialization properties, superior to those of glutaraldehyde-crosslinked alkali-treated gelatins. PMID:27877542
Held, Michael A; Tan, Li; Kamyab, Abdolreza; Hare, Michael; Shpak, Elena; Kieliszewski, Marcia J
2004-12-31
Extensins are cell wall hydroxyproline-rich glycoproteins that form covalent networks putatively involving tyrosyl and lysyl residues in cross-links catalyzed by one or more extensin peroxidases. The precise cross-links remain to be chemically identified both as network components in muro and as enzymic products generated in vitro with native extensin monomers as substrates. However, some extensin monomers contain variations within their putative cross-linking motifs that complicate cross-link identification. Other simpler extensins are recalcitrant to isolation including the ubiquitous P3-type extensin whose major repetitive motif, Hyp)(4)-Ser-Hyp-Ser-(Hyp)(4)-Tyr-Tyr-Tyr-Lys, is of particular interest, not least because its Tyr-Tyr-Tyr intramolecular isodityrosine cross-link motifs are also putative candidates for further intermolecular cross-linking to form di-isodityrosine. Therefore, we designed a set of extensin analogs encoding tandem repeats of the P3 motif, including Tyr --> Phe and Lys --> Leu variations. Expression of these P3 analogs in Nicotiana tabacum cells yielded glycoproteins with virtually all Pro residues hydroxylated and subsequently arabinosylated and with likely galactosylated Ser residues. This was consistent with earlier analyses of P3 glycopeptides isolated from cell wall digests and the predictions of the Hyp contiguity hypothesis. The tyrosine-rich P3 analogs also contained isodityrosine, formed in vivo. Significantly, these isodityrosine-containing analogs were further cross-linked in vitro by an extensin peroxidase to form the tetra-tyrosine intermolecular cross-link amino acid di-isodityrosine. This is the first identification of an inter-molecular cross-link amino acid in an extensin module and corroborates earlier suggestions that di-isodityrosine represents one mechanism for cross-linking extensins in muro.
Muzaffer Ahmet Karaaslan; Mandla A. Tshabalala; Gisela Buschle-Diller
2012-01-01
Semi-interpenetrating network hydrogel films were prepared using hemicellulose and chemically crosslinked chitosan. Hemicellulose was extracted from aspen by using a novel alkaline treatment and characterized by HPSEC, and consisted of a mixture of high and low molecular weight polymeric fractions. HPLC analysis of the acid hydrolysate of the hemicellulose showed that...
Enzyme-catalyzed crosslinkable hydrogels: emerging strategies for tissue engineering.
Teixeira, Liliana S Moreira; Feijen, Jan; van Blitterswijk, Clemens A; Dijkstra, Pieter J; Karperien, Marcel
2012-02-01
State-of-the-art bioactive hydrogels can easily and efficiently be formed by enzyme-catalyzed mild-crosslinking reactions in situ. Yet this cell-friendly and substrate-specific method remains under explored. Hydrogels prepared by using enzyme systems like tyrosinases, transferases and lysyl oxidases show interesting characteristics as dynamic scaffolds and as systems for controlled release. Increased attention is currently paid to hydrogels obtained via crosslinking of precursors by transferases or peroxidases as catalysts. Enzyme-mediated crosslinking has proven its efficiency and attention has now shifted to the development of enzymatically crosslinked hydrogels with higher degrees of complexity, mimicking extracellular matrices. Moreover, bottom-up approaches combining biocatalysts and self-assembly are being explored for the development of complex nano-scale architectures. In this review, the use of enzymatic crosslinking for the preparation of hydrogels as an innovative alternative to other crosslinking methods, such as the commonly used UV-mediated photo-crosslinking or physical crosslinking, will be discussed. Photo-initiator-based crosslinking may induce cytotoxicity in the formed gels, whereas physical crosslinking may lead to gels which do not have sufficient mechanical strength and stability. These limitations can be overcome using enzymes to form covalently crosslinked hydrogels. Herewith, we report the mechanisms involved and current applications, focusing on emerging strategies for tissue engineering and regenerative medicine. Copyright © 2011 Elsevier Ltd. All rights reserved.
Memory Dynamics in Cross-linked Actin Networks
NASA Astrophysics Data System (ADS)
Scheff, Danielle; Majumdar, Sayantan; Gardel, Margaret
Cells demonstrate the remarkable ability to adapt to mechanical stimuli through rearrangement of the actin cytoskeleton, a cross-linked network of actin filaments. In addition to its importance in cell biology, understanding this mechanical response provides strategies for creation of novel materials. A recent study has demonstrated that applied stress can encode mechanical memory in these networks through changes in network geometry, which gives rise to anisotropic shear response. Under later shear, the network is stiffer in the direction of the previously applied stress. However, the dynamics behind the encoding of this memory are unknown. To address this question, we explore the effect of varying either the rigidity of the cross-linkers or the length of actin filament on the time scales required for both memory encoding and over which it later decays. While previous experiments saw only a long-lived memory, initial results suggest another mechanism where memories relax relatively quickly. Overall, our study is crucial for understanding the process by which an external stress can impact network arrangement and thus the dynamics of memory formation.
Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro
NASA Astrophysics Data System (ADS)
Shin, J. H.; Gardel, M. L.; Mahadevan, L.; Matsudaira, P.; Weitz, D. A.
2004-06-01
The organization of individual actin filaments into higher-order structures is controlled by actin-binding proteins (ABPs). Although the biological significance of the ABPs is well documented, little is known about how bundling and cross-linking quantitatively affect the microstructure and mechanical properties of actin networks. Here we quantify the effect of the ABP scruin on actin networks by using imaging techniques, cosedimentation assays, multiparticle tracking, and bulk rheology. We show how the structure of the actin network is modified as the scruin concentration is varied, and we correlate these structural changes to variations in the resultant network elasticity.
Star polymers as unit cells for coarse-graining cross-linked networks
NASA Astrophysics Data System (ADS)
Molotilin, Taras Y.; Maduar, Salim R.; Vinogradova, Olga I.
2018-03-01
Reducing the complexity of cross-linked polymer networks by preserving their main macroscale properties is key to understanding them, and a crucial issue is to relate individual properties of the polymer constituents to those of the reduced network. Here we study polymer networks in a good solvent, by considering star polymers as their unit elements, and first quantify the interaction between their centers of masses. We then reduce the complexity of a network by replacing sets of its bridged star polymers by equivalent effective soft particles with dense cores. Our coarse graining allows us to approximate complex polymer networks by much simpler ones, keeping their relevant mechanical properties, as illustrated in computer experiments.
3D Microperiodic Hydrogel Scaffolds for Robust Neuronal Cultures
Hanson Shepherd, Jennifer N.; Parker, Sara T.; Shepherd, Robert F.; Gillette, Martha U.; Lewis, Jennifer A.; Nuzzo, Ralph G.
2011-01-01
Three-dimensional (3D) microperiodic scaffolds of poly(2-hydroxyethyl methacrylate) (pHEMA) have been fabricated by direct-write assembly of a photopolymerizable hydrogel ink. The ink is initially composed of physically entangled pHEMA chains dissolved in a solution of HEMA monomer, comonomer, photoinitiator and water. Upon printing 3D scaffolds of varying architecture, the ink filaments are exposed to UV light, where they are transformed into an interpenetrating hydrogel network of chemically cross-linked and physically entangled pHEMA chains. These 3D microperiodic scaffolds are rendered growth compliant for primary rat hippocampal neurons by absorption of polylysine. Neuronal cells thrive on these scaffolds, forming differentiated, intricately branched networks. Confocal laser scanning microscopy reveals that both cell distribution and extent of neuronal process alignment depend upon scaffold architecture. This work provides an important step forward in the creation of suitable platforms for in vitro study of sensitive cell types. PMID:21709750
Physically incorporated extraction phase of solid-phase microextraction by sol-gel technology.
Liu, Wenmin; Hu, Yuan; Zhao, Jinghong; Xu, Yuan; Guan, Yafeng
2006-01-13
A sol-gel method for the preparation of solid-phase microextraction (SPME) fiber was described and evaluated. The extraction phase of poly(dimethysiloxane) (PDMS) containing 3% vinyl group was physically incorporated into the sol-gel network without chemical bonding. The extraction phase itself is then partly crosslinked at 320 degrees C, forming an independent polymer network and can withstand desorption temperature of 290 degrees C. The headspace extraction of BTX by the fiber SPME was evaluated and the detection limit of o-xylene was down to 0.26 ng/l. Extraction and determination of organophosphorus pesticides (OPPs) in water, orange juice and red wine by the SPME-GC thermionic specified detector (TSD) was validated. Limits of detection of the method for OPPs were below 10 ng/l except methidathion. Relative standard deviations (RSDs) were in the range of 1-20% for pesticides being tested.
NASA Astrophysics Data System (ADS)
Fang, Chunliu; Toh, Xin Ni; Yao, Qiaofeng; Julius, David; Hong, Liang; Lee, Jim Yang
2013-03-01
Four series of semi-interpenetrating polymer network (SIPN) membranes are fabricated by thermally cross-linking aminated BPPO (brominated poly(2,6-dimethyl-1,4-phenylene oxide)) with different epoxide cross-linkers in the presence of sulfonated PPO (SPPO). The cross-link structure and hydrophobicity are found to impact the membrane morphology strongly - smaller and more hydrophobic cross-links form narrow and well-connected hydrophilic channels whereas bulky and less hydrophobic cross-links form wide but less-connected hydrophilic channels. The membranes of the former can support facile proton transport and suppress methanol crossover to result in higher proton conductivity and lower methanol permeability than the membranes of the latter. The membranes are also fabricated into membrane electrode assemblies (MEAs) and tested in single-stack direct methanol fuel cells (DMFCs). It is found that some of these SIPN membranes can surpass Nafion® 117 in maximum power density, demonstrating their potential as a proton exchange membrane (PEM) for the DMFCs.
Interlayer shear behaviors of graphene-carbon nanotube network
NASA Astrophysics Data System (ADS)
Qin, Huasong; Liu, Yilun
2017-09-01
The interlayer shear resistance plays an important role in graphene related applications, and different mechanisms have been proposed to enhance its interlayer load capacity. In this work, we performed molecular dynamics (MD) simulations and theoretical analysis to study interlayer shear behaviors of three dimensional graphene-carbon (3D-GC) nanotube networks. The shear mechanical properties of carbon nanotubes (CNTs) crosslink with different diameters are obtained which is one order of magnitude larger than that of other types of crosslinks. Under shear loading, 3D-GC exhibits two failure modes, i.e., fracture of graphene sheet and failure of CNT crosslink, determined by the diameter of CNT crosslink, crosslink density, and length of 3D-GC. A modified tension-shear chain model is proposed to predict the shear mechanical properties and failure mode of 3D-GC, which agrees well with MD simulation results. The results presented in this work may provide useful insights for future development of high-performance 3D-GC materials.
Microscale Mechanics of Actin Networks During Dynamic Assembly and Dissociation
NASA Astrophysics Data System (ADS)
Gurmessa, Bekele; Robertson-Anderson, Rae; Ross, Jennifer; Nguyen, Dan; Saleh, Omar
Actin is one of the key components of the cytoskeleton, enabling cells to move and divide while maintaining shape by dynamic polymerization, dissociation and crosslinking. Actin polymerization and network formation is driven by ATP hydrolysis and varies depending on the concentrations of actin monomers and crosslinking proteins. The viscoelastic properties of steady-state actin networks have been well-characterized, yet the mechanical properties of these non-equilibrium systems during dynamic assembly and disassembly remain to be understood. We use semipermeable microfluidic devices to induce in situ dissolution and re-polymerization of entangled and crosslinked actin networks, by varying ATP concentrations in real-time, while measuring the mechanical properties during disassembly and re-assembly. We use optical tweezers to sinusoidally oscillate embedded microspheres and measure the resulting force at set time-intervals and in different regions of the network during cyclic assembly/disassembly. We determine the time-dependent viscoelastic properties of non-equilibrium network intermediates and the reproducibility and homogeneity of network formation and dissolution. Results inform the role that cytoskeleton reorganization plays in the dynamic multifunctional mechanics of cells. NSF CAREER Award (DMR-1255446) and a Scialog Collaborative Innovation Award funded by Research Corporation for Scientific Advancement (Grant No. 24192).
Rheology and microrheology of materials at the air-water interface
NASA Astrophysics Data System (ADS)
Walder, Robert Benjamin
2008-10-01
The study of materials at the air-water interface is an important area of research in soft condensed matter physics. Films at the air-water interface have been a system of interest to physics, chemistry and biology for the last 20 years. The unique properties of these surface films provide ideal models for 2-d films, surface chemistry and provide a platform for creating 2 dimensional analogue materials to cellular membranes. Measurements of the surface rheology of cross-linked F-actin networks associated with a lipid monolayer at the air-water interface of a Langmuir monolayer have been performed. The rheological measurements are made using a Couette cell. These data demonstrate that the network has a finite elastic modulus that grows as a function of the cross-linking concentration. We also note that under steady-state flow the system behaves as a power law fluid in which the effective viscosity decreases with imposed shear. A Langmuir monolayer trough that is equipped for simultaneous microrheology and standard rheology measurements has been constructed. The central elements are the trough itself with a full range of optical tools accessing the air-water interface from below the trough and a portable knife-edge torsion pendulum that can access the interface from above. The ability to simultaneously measure the mechanical response of Langmuir monolayers on very different length scales is an important step for our understanding of the mechanical response of two-dimensional viscoelastic networks. The optical tweezer microrheometer is used to study the micromechanical properties of Langmuir monolayers. Microrheology measurements are made a variety of surface pressures that correspond to different ordered phases of the monolayer. The complex shear modulus shows an order of magnitude increase for the liquid condensed phase of DPPC compared to the liquid expanded phase.
Encoding Hydrogel Mechanics via Network Cross-Linking Structure.
Schweller, Ryan M; West, Jennifer L
2015-05-11
The effects of mechanical cues on cell behaviors in 3D remain difficult to characterize as the ability to tune hydrogel mechanics often requires changes in the polymer density, potentially altering the material's biochemical and physical characteristics. Additionally, with most PEG diacrylate (PEGDA) hydrogels, forming materials with compressive moduli less than ∼10 kPa has been virtually impossible. Here, we present a new method of controlling the mechanical properties of PEGDA hydrogels independent of polymer chain density through the incorporation of additional vinyl group moieties that interfere with the cross-linking of the network. This modification can tune hydrogel mechanics in a concentration dependent manner from <1 to 17 kPa, a more physiologically relevant range than previously possible with PEG-based hydrogels, without altering the hydrogel's degradation and permeability. Across this range of mechanical properties, endothelial cells (ECs) encapsulated within MMP-2/MMP-9 degradable hydrogels with RGDS adhesive peptides revealed increased cell spreading as hydrogel stiffness decreased in contrast to behavior typically observed for cells on 2D surfaces. EC-pericyte cocultures exhibited vessel-like networks within 3 days in highly compliant hydrogels as compared to a week in stiffer hydrogels. These vessel networks persisted for at least 4 weeks and deposited laminin and collagen IV perivascularly. These results indicate that EC morphogenesis can be regulated using mechanical cues in 3D. Furthermore, controlling hydrogel compliance independent of density allows for the attainment of highly compliant mechanical regimes in materials that can act as customizable cell microenvironments.
Mechano-responsive hydrogels crosslinked by reactive block copolymer micelles
NASA Astrophysics Data System (ADS)
Xiao, Longxi
Hydrogels are crosslinked polymeric networks that can swell in water without dissolution. Owing to their structural similarity to the native extracelluar matrices, hydrogels have been widely used in biomedical applications. Synthetic hydrogels have been designed to respond to various stimuli, but mechanical signals have not incorporated into hydrogel matrices. Because most tissues in the body are subjected to various types of mechanical forces, and cells within these tissues have sophisticated mechano-transduction machinery, this thesis is focused on developing hydrogel materials with built-in mechano-sensing mechanisms for use as tissue engineering scaffolds or drug release devices. Self-assembled block copolymer micelles (BCMs) with reactive handles were employed as the nanoscopic crosslinkers for the construction of covalently crosslinked networks. BCMs were assembled from amphiphilic diblock copolymers of poly(n-butyl acrylate) and poly(acrylic acid) partially modified with acrylate. Radical polymerization of acrylamide in the presence of micellar crosslinkers gave rise to elastomeric hydrogels whose mechanical properties can be tuned by varying the BCM composition and concentration. TEM imaging revealed that the covalently integrated BCMs underwent strain-dependent reversible deformation. A model hydrophobic drug, pyrene, loaded into the core of BCMs prior to the hydrogel formation, was dynamically released in response to externally applied mechanical forces, through force-induced reversible micelle deformation and the penetration of water molecules into the micelle core. The mechano-responsive hydrogel has been studied for tissue repair and regeneration purposes. Glycidyl methacrylate (GMA)-modified hyaluronic acid (HA) was photochemically crosslinked in the presence of dexamethasone (DEX)-loaded crosslinkable BCMs. The resultant HA gels (HAxBCM) contain covalently integrated micellar compartments with DEX being sequestered in the hydrophobic core. Compared to the traditional HA gels prepared by radical crosslinking of HAGMA, HAxBCM gels exhibited improved drug loading and release capacity. Moreover, compressive forces exerted on the gels were transmitted to the crosslinked BCMs, resulting in a force-modulated DEX release on demand. Micelle mobility in the crosslinked networks was analyzed by fluorescence correlation spectroscopy using nile red loaded BCMs. The anti-inflammatory activities of DEX-releasing HAxBCM gels were evaluated via the in vitro culture of lipopolysaccharide-activated macrophages.
Topological structure and mechanics of glassy polymer networks.
Elder, Robert M; Sirk, Timothy W
2017-11-22
The influence of chain-level network architecture (i.e., topology) on mechanics was explored for unentangled polymer networks using a blend of coarse-grained molecular simulations and graph-theoretic concepts. A simple extension of the Watts-Strogatz model is proposed to control the graph properties of the network such that the corresponding physical properties can be studied with simulations. The architecture of polymer networks assembled with a dynamic curing approach were compared with the extended Watts-Strogatz model, and found to agree surprisingly well. The final cured structures of the dynamically-assembled networks were nearly an intermediate between lattice and random connections due to restrictions imposed by the finite length of the chains. Further, the uni-axial stress response, character of the bond breaking, and non-affine displacements of fully-cured glassy networks were analyzed as a function of the degree of disorder in the network architecture. It is shown that the architecture strongly affects the network stability, flow stress, onset of bond breaking, and ultimate stress while leaving the modulus and yield point nearly unchanged. The results show that internal restrictions imposed by the network architecture alter the chain-level response through changes to the crosslink dynamics in the flow regime and through the degree of coordinated chain failure at the ultimate stress. The properties considered here are shown to be sensitive to even incremental changes to the architecture and, therefore, the overall network architecture, beyond simple defects, is predicted to be a meaningful physical parameter in the mechanics of glassy polymer networks.
Metal-coordination: Using one of nature’s tricks to control soft material mechanics
Holten-Andersen, Niels; Jaishankar, Aditya; Harrington, Matthew; Fullenkamp, Dominic E.; DiMarco, Genevieve; He, Lihong; McKinley, Gareth H.; Messersmith, Phillip B.; Lee, Ka Yee C.
2015-01-01
Growing evidence supports a critical role of dynamic metal-coordination crosslinking in soft biological material properties such as self-healing and underwater adhesion1. Using bio-inspired metal-coordinating polymers, initial efforts to mimic these properties have shown promise2. Here we demonstrate how bio-inspired aqueous polymer network mechanics can be easily controlled via metal-coordination crosslink dynamics; metal ion-based crosslink stability control allows aqueous polymer network relaxation times to be finely tuned over several orders of magnitude. In addition to further biological material insights, our demonstration of this compositional scaling mechanism should provide inspiration for new polymer material property-control designs. PMID:26413297
Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization
Kim, Min-A; Jang, Dawon; Tejima, Syogo; Cruz-Silva, Rodolfo; Joh, Han-Ik; Kim, Hwan Chul; Lee, Sungho; Endo, Morinobu
2016-01-01
Large efforts have been made over the last 40 years to increase the mechanical strength of polyacrylonitrile (PAN)-based carbon fibers (CFs) using a variety of chemical or physical protocols. In this paper, we report a new method to increase CFs mechanical strength using a slow heating rate during the carbonization process. This new approach increases both the carbon sp3 bonding and the number of nitrogen atoms with quaternary bonding in the hexagonal carbon network. Theoretical calculations support a crosslinking model promoted by the interstitial carbon atoms located in the graphitic interlayer spaces. The improvement in mechanical performance by a controlled crosslinking between the carbon hexagonal layers of the PAN based CFs is a new concept that can contribute further in the tailoring of CFs performance based on the understanding of their microstructure down to the atomic scale. PMID:27004752
Synthesis of hydrogel via click chemistry for DNA electrophoresis.
Finetti, Chiara; Sola, Laura; Elliott, Jim; Chiari, Marcella
2017-09-01
This work introduces a novel sieving gel for DNA electrophoresis using a classical click chemistry reaction, the copper (I)-catalyzed azide-alkyne cycloaddition (CuAAC), to cross-link functional polymer chains. The efficiency of this reaction provides, under mild conditions, hydrogels with near-ideal network connectivity and improved physical properties. Hydrogel formation via click chemistry condensation of functional polymers does not involve the use of toxic monomers and UV initiation. The performance of the new hydrogel in the separation of double stranded DNA fragments was evaluated in the 2200 TapeStation system, an analytical platform, recently introduced by Agilent that combines the advantages of CE in terms of miniaturization and automation with the simplicity of use of slab gel electrophoresis. The click gel enables addition of florescent dyes prior to electrophoresis with considerable improvement of resolution and separation efficiency over conventional cross-linked polyacrylamide gels. Copyright © 2017 Elsevier B.V. All rights reserved.
Gu, Zhen; Zhang, Xian; Ding, Xin; Bao, Chao; Fang, Fei; Li, Shiyuan; Zhou, Haifeng; Xue, Meng; Wang, Huan; Tian, Xingyou
2014-08-28
This article studied the influence of silica (SiO2) particles on the crosslinked network and the molecular mobility of ethylene-propylene-diene (EPDM) rubber chains by dynamic mechanical analysis (DMA). When SiO2 fraction is lower than 8 phr, the chain segments that participate in the glass-rubber transition (α transition) decrease with increasing the SiO2 content, while the whole crosslinked network is almost unaffected by the presence of SiO2. When the SiO2 fraction increases to about 20 phr, there appears a new tan δ peak (α' transition) above the α transition. This could be because the crosslinking reaction took place only on a small scale and the formed network became gradually incomplete when the content of the particles exceeded some critical value, and the α' transition is attributed primarily to the motion of non-elastic network chains loosely attached to the three-dimensional network. However, at SiO2 loadings higher than 40 phr, the crosslinking density was kept basically constant. The α' transition is hindered by a restriction of the chain mobility due to SiO2. The different changes of α' transition depended on the two coupled effects of SiO2, including restricting the chain mobility and decreasing the crosslinking density. Correspondingly, with increasing the mobility of EPDM chains and SiO2-induced strengthening, the mechanical properties of EPDM composite are dramatically improved. With the addition of 20 phr of SiO2 in the EPDM, a 113% increase in the elongation at break, a 510% increase in the fracture energy, and a 283% increase in the tensile strength are achieved.
Abolmaali, Samira Sadat; Tamaddon, Ali; Yousefi, Gholamhossein; Javidnia, Katayoun; Dinarvand, Rasoul
2014-01-01
A functional polycation nanonetwork was developed for delivery of water soluble chemotherapeutic agents. The complexes of polyethyleneimine grafted methoxy polyethylene glycol (PEI-g-mPEG) and Zn(2+) were utilized as the micellar template for cross-linking with dithiodipropionic acid, followed by an acidic pH dialysis to remove the metal ion from the micellar template. The synthesis method was optimized according to pH, the molar ratio of Zn(2+), and the cross-link ratio. The atomic force microscopy showed soft, discrete, and uniform nano-networks. They were sensitive to the simulated reductive environment as determined by Ellman's assay. They showed few positive ζ potential and an average hydrodynamic diameter of 162±10 nm, which decreased to 49±11 nm upon dehydration. The ionic character of the nano-networks allowed the achievement of a higher-loading capacity of methotrexate (MTX), approximately 57% weight per weight, depending on the cross-link and the drug feed ratios. The nano-networks actively loaded with MTX presented some suitable properties, such as the hydrodynamic size of 117±16 nm, polydispersity index of 0.22, and a prolonged swelling-controlled release profile over 24 hours that boosted following reductive activation of the nanonetwork biodegradation. Unlike the PEI ionomer, the nano-networks provided an acceptable cytotoxicity profile. The drug-loaded nano-networks exhibited more specific cytotoxicity against human hepatocellular carcinoma cells if compared to free MTX at concentrations above 1 μM. The enhanced antitumor activity in vitro might be attributed to endocytic entry of MTX-loaded nano-networks that was found in the epifluorescence microscopy experiment for the fluorophore-labeled nano-networks.
Abolmaali, Samira Sadat; Tamaddon, Ali; Yousefi, Gholamhossein; Javidnia, Katayoun; Dinarvand, Rasoul
2014-01-01
A functional polycation nanonetwork was developed for delivery of water soluble chemotherapeutic agents. The complexes of polyethyleneimine grafted methoxy polyethylene glycol (PEI-g-mPEG) and Zn2+ were utilized as the micellar template for cross-linking with dithiodipropionic acid, followed by an acidic pH dialysis to remove the metal ion from the micellar template. The synthesis method was optimized according to pH, the molar ratio of Zn2+, and the cross-link ratio. The atomic force microscopy showed soft, discrete, and uniform nano-networks. They were sensitive to the simulated reductive environment as determined by Ellman’s assay. They showed few positive ζ potential and an average hydrodynamic diameter of 162±10 nm, which decreased to 49±11 nm upon dehydration. The ionic character of the nano-networks allowed the achievement of a higher-loading capacity of methotrexate (MTX), approximately 57% weight per weight, depending on the cross-link and the drug feed ratios. The nano-networks actively loaded with MTX presented some suitable properties, such as the hydrodynamic size of 117±16 nm, polydispersity index of 0.22, and a prolonged swelling-controlled release profile over 24 hours that boosted following reductive activation of the nanonetwork biodegradation. Unlike the PEI ionomer, the nano-networks provided an acceptable cytotoxicity profile. The drug-loaded nano-networks exhibited more specific cytotoxicity against human hepatocellular carcinoma cells if compared to free MTX at concentrations above 1 μM. The enhanced antitumor activity in vitro might be attributed to endocytic entry of MTX-loaded nano-networks that was found in the epifluorescence microscopy experiment for the fluorophore-labeled nano-networks. PMID:24944513
Reversible Thermoset Adhesives
NASA Technical Reports Server (NTRS)
Mac Murray, Benjamin C. (Inventor); Tong, Tat H. (Inventor); Hreha, Richard D. (Inventor)
2016-01-01
Embodiments of a reversible thermoset adhesive formed by incorporating thermally-reversible cross-linking units and a method for making the reversible thermoset adhesive are provided. One approach to formulating reversible thermoset adhesives includes incorporating dienes, such as furans, and dienophiles, such as maleimides, into a polymer network as reversible covalent cross-links using Diels Alder cross-link formation between the diene and dienophile. The chemical components may be selected based on their compatibility with adhesive chemistry as well as their ability to undergo controlled, reversible cross-linking chemistry.
Stress-enhanced gelation: a dynamic nonlinearity of elasticity.
Yao, Norman Y; Broedersz, Chase P; Depken, Martin; Becker, Daniel J; Pollak, Martin R; Mackintosh, Frederick C; Weitz, David A
2013-01-04
A hallmark of biopolymer networks is their sensitivity to stress, reflected by pronounced nonlinear elastic stiffening. Here, we demonstrate a distinct dynamical nonlinearity in biopolymer networks consisting of filamentous actin cross-linked by α-actinin-4. Applied stress delays the onset of relaxation and flow, markedly enhancing gelation and extending the regime of solidlike behavior to much lower frequencies. We show that this macroscopic network response can be accounted for at the single molecule level by the increased binding affinity of the cross-linker under load, characteristic of catch-bond-like behavior.
Elliott, Winston H; Bonani, Walter; Maniglio, Devid; Motta, Antonella; Tan, Wei; Migliaresi, Claudio
2015-06-10
Catering the hydrogel manufacturing process toward defined viscoelastic properties for intended biomedical use is important to hydrogel scaffolding function and cell differentiation. Silk fibroin hydrogels may undergo "physical" cross-linking through β-sheet crystallization during high pressure carbon dioxide treatment, or covalent "chemical" cross-linking by genipin. We demonstrate here that time-dependent mechanical properties are tunable in silk fibroin hydrogels by altering the chronological order of genipin cross-linking with β-sheet formation. Genipin cross-linking before β-sheet formation affects gelation mechanics through increased molecular weight, affecting gel morphology, and decreasing stiffness response. Alternately, genipin cross-linking after gelation anchored amorphous regions of the protein chain, and increasing stiffness. These differences are highlighted and validated through large amplitude oscillatory strain near physiologic levels, after incorporation of material characterization at molecular and micron length scales.
Das, Dipankar; Zhang, Shengmin; Noh, Insup
2018-01-24
A biocompatible hybrid film has been fabricated using alginate (Alg), α-tricalcium phosphate (α-TCP) microparticle and calcium chloride through ionic crosslinking as a biomaterial. The 'screeding method' (like a concrete finishing process) has been employed to develop the Alg-α-TCP film. For this method, the Alg/α-TCP blend has been prepared using an ultra-sonicator and then put on a glass slide. After that, the excess volume of blend has been cut off by skidding another slide along with the surface of the blend to achieve proper grade and flatness. The mechanical strength and flexibility of the film (Alg-α-TCP) has been controlled by changing its compositions. The crosslinking phenomenon has been confirmed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), 13 C nuclear magnetic resonance (NMR), x-ray diffraction and thermogravimetric analyses. The ATR-FTIR and 13 C NMR analysis results suggest that carboxylate groups of the alginate are ionically cross-linked with Ca 2+ ions, while the α-TCP particles reside in the network by physical interaction. The micro-fatigue test results imply high tensile strength (up to 257 MPa) and flexibility (up to 13% elongation) of the Alg-α-TCP hybrid films. The SEM analysis suggests the α-TCP particles are homogeneously distributed on the surface of Alg-α-TCP films, whereas cross-sectional images confirmed the presence of α-TCP in the cross-linked network. TGA results demonstrated that thermal stability of the hybrid film was enhanced due to ionic crosslinking and interfacial interaction between alginate and α-TCP. The incorporation of α-TCP particles diminished the swelling ratio of the hybrid film. The in vitro bone cell (MC3T3) culture and cytotoxicity tests showed that the hybrid film is biocompatible. The hybrid film releases bovine serum albumin and dimethyloxaloylglycine in a controlled way at pH 7 and 7.4, and 37 °C. Overall, the biocompatible Alg-α-TCP hybrid film with excellent mechanical strength and flexibility could be applied as an interfacial film in tissue engineering.
A model for structural changes of reconstituted fibroin gels during deformation
NASA Astrophysics Data System (ADS)
Jin, Peiran; Olmsted, Peter; Georgetown University, Physics Department Team
Silk from silkworms has been used in the textile industry for thousands of years. Recently, a physical electrogel(e-gel) was made by reconstituting Bombyx mori silk into stable aqueous solutions and then applying small DC electric field. The e-gels exhibit distinctive strain hardening and are partially recoverable from strain. To explain these phenomena, we build a coarse grained model of fibroin protein polymers, which comprise crystallizable domains and amorphous domains. We find that the kinetics of unfolding and folding of crystalline domains changes the number and functionality of crosslinks in the physical network, and thus contributes to the strain hardening of the gel and the non-recoverable strain. Georgetown University and the Ives Foundation.
Thomas, V; Kumari, T V; Jayabalan, M
2001-01-01
The effect of physical cross-linking in candidate cycloaliphatic and hydrophobic poly(urethane urea) (4,4'-methylenebis(cyclohexylisocyanate), H(12)MDI/hydroxy-terminated polybutadiene, HTPBD/hexamethylenediamine, HDA) and poly(ether urethane urea)s (H(12)MDI/HTPBD-PTMG/HDA) on the in vitro calcification and blood-material interaction was studied. All the candidate poly(urethane urea)s and poly(ether urethane urea)s elicit acceptable hemolytic activity, cytocompatibility, calcification, and blood compatibility in vitro. The studies on blood-material interaction reveal that the present poly(urethane urea)s are superior to polystyrene microtiter plates which were used for the studies on blood-material interaction. The present investigation reveals the influence of physical cross-link density on biological interaction differently with poly(urethane urea) and poly(ether urethane urea)s. The higher the physical cross-link density in the poly(urethane urea)s, the higher the calcification and consumption of WBC in whole blood. On the other hand, the higher the physical cross-link density in the poly(ether urethane urea)s, the lesser the calcification and consumption of WBC in whole blood. However a reverse of the above trend has been observed with the platelet consumption in the poly(urethane urea)s and poly(ether urethane urea)s.
High-Temperature Shape Memory Polymers
NASA Technical Reports Server (NTRS)
Yoonessi, Mitra; Weiss, Robert A.
2012-01-01
physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing radiation ( radiation, neutrons), or by chemical crosslinking to form a covalent permanent network. With respect to other shape memory polymers, this invention is novel in that it describes the use of a thermoplastic composition that can be thermally molded or solution-cast into complex "permanent" shapes, and then reheated or redissolved and recast from solution to prepare another shape. It is also unique in that the shape memory behavior is provided by a non-polymer additive.
Collagen crosslinks in chondromalacia of the patella.
Väätäinen, U; Kiviranta, I; Jaroma, H; Arokosi, J; Tammi, M; Kovanen, V
1998-02-01
The aim of the study was to determine collagen concentration and collagen crosslinks in cartilage samples from chondromalacia of the patella. To study the extracellular matrix alterations associated to chondromalacia, we determined the concentration of collagen (hydroxyproline) and its hydroxylysylpyridinoline and lysylpyridinoline crosslinks from chondromalacia foci of the patellae in 12 patients and 7 controls from apparently normal cadavers. The structure of the collagen network in 8 samples of grades II-IV chondromalacia was examined under polarized light microscopy. The full-thickness cartilage samples taken with a surgical knife from chondromalacia lesions did not show changes in collagen, hydroxylysylpyridinoline and lysylpyridinoline concentration as compared with the controls. Polarized light microscopy showed decreased birefringence in the superficial cartilage of chondromalacia lesions, indicating disorganization or disappearance of collagen fibers in this zone. It is concluded that the collagen network shows gradual disorganization with the severity of chondromalacia lesion of the patella without changes in the concentration or crosslinks of collagen.
A Three-Dimensional Computational Model of Collagen Network Mechanics
Lee, Byoungkoo; Zhou, Xin; Riching, Kristin; Eliceiri, Kevin W.; Keely, Patricia J.; Guelcher, Scott A.; Weaver, Alissa M.; Jiang, Yi
2014-01-01
Extracellular matrix (ECM) strongly influences cellular behaviors, including cell proliferation, adhesion, and particularly migration. In cancer, the rigidity of the stromal collagen environment is thought to control tumor aggressiveness, and collagen alignment has been linked to tumor cell invasion. While the mechanical properties of collagen at both the single fiber scale and the bulk gel scale are quite well studied, how the fiber network responds to local stress or deformation, both structurally and mechanically, is poorly understood. This intermediate scale knowledge is important to understanding cell-ECM interactions and is the focus of this study. We have developed a three-dimensional elastic collagen fiber network model (bead-and-spring model) and studied fiber network behaviors for various biophysical conditions: collagen density, crosslinker strength, crosslinker density, and fiber orientation (random vs. prealigned). We found the best-fit crosslinker parameter values using shear simulation tests in a small strain region. Using this calibrated collagen model, we simulated both shear and tensile tests in a large linear strain region for different network geometry conditions. The results suggest that network geometry is a key determinant of the mechanical properties of the fiber network. We further demonstrated how the fiber network structure and mechanics evolves with a local formation, mimicking the effect of pulling by a pseudopod during cell migration. Our computational fiber network model is a step toward a full biomechanical model of cellular behaviors in various ECM conditions. PMID:25386649
Poursamar, S Ali; Lehner, Alexander N; Azami, Mahmoud; Ebrahimi-Barough, Somayeh; Samadikuchaksaraei, Ali; Antunes, A P M
2016-06-01
In this study porous gelatin scaffolds were prepared using in-situ gas foaming, and four crosslinking agents were used to determine a biocompatible and effective crosslinker that is suitable for such a method. Crosslinkers used in this study included: hexamethylene diisocyanate (HMDI), poly(ethylene glycol) diglycidyl ether (epoxy), glutaraldehyde (GTA), and genipin. The prepared porous structures were analyzed using Fourier Transform Infrared Spectroscopy (FT-IR), thermal and mechanical analysis as well as water absorption analysis. The microstructures of the prepared samples were analyzed using Scanning Electron Microscopy (SEM). The effects of the crosslinking agents were studied on the cytotoxicity of the porous structure indirectly using MTT analysis. The affinity of L929 mouse fibroblast cells for attachment on the scaffold surfaces was investigated by direct cell seeding and DAPI-staining technique. It was shown that while all of the studied crosslinking agents were capable of stabilizing prepared gelatin scaffolds, there are noticeable differences among physical and mechanical properties of samples based on the crosslinker type. Epoxy-crosslinked scaffolds showed a higher capacity for water absorption and more uniform microstructures than the rest of crosslinked samples, whereas genipin and GTA-crosslinked scaffolds demonstrated higher mechanical strength. Cytotoxicity analysis showed the superior biocompatibility of the naturally occurring genipin in comparison with other synthetic crosslinking agents, in particular relative to GTA-crosslinked samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Probing coal architecture by magnetic resonance microscopy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Botto, R. E.; Clifford, D. J.; Gregory, D. M.
1999-02-24
Time-resolved MRM investigations of a well-characterized suite of cross-linked polymers have yielded information on the nature of the solvent transport dynamics and mechanical relaxation of the networks. Network response parameters were then used to assess the macroscopic properties and cross-link densities of polymers with the degree of curing. This new approach is presently being developed to elucidate the complex macromolecular nature of coals and the variation with coal rank.
NASA Astrophysics Data System (ADS)
Fu, Guopeng; Dempsey, Janel; Izaki, Kosuke; Adachi, Kaoru; Tsukahara, Yasuhisa; Kyu, Thein
2017-08-01
In an effort to fabricate highly conductive, stable solid-state polymer electrolyte membranes (PEM), polyethylene glycol bis-carbamate (PEGBC) was synthesized via condensation reaction between polyethylene glycol diamine and ethylene carbonate. Subsequently, dimethacrylate groups were chemically attached to both ends of PEGBC to afford polyethylene glycol-bis-carbamate dimethacrylate (PEGBCDMA) precursor having crosslinking capability. The melt-mixed ternary mixtures consisting of PEGBCDMA, succinonitrile plasticizer, and lithium trifluorosulphonyl imide salt were completely miscible in a wide compositional range. Upon photo-crosslinking, the neat PEGBCDMA network was completely amorphous exhibiting higher tensile strength, modulus, and extensibility relative to polyethylene glycol diacrylate (PEGDA) counterpart. Likewise, the succinonitrile-plasticized PEM network containing PEGBCDMA remained completely amorphous and transparent upon photo-crosslinking, showing superionic conductivity, improved thermal stability, and superior tensile properties with improved capacity retention during charge/discharge cycling as compared to the PEGDA-based PEM.
Drying Affects the Fiber Network in Low Molecular Weight Hydrogels
2017-01-01
Low molecular weight gels are formed by the self-assembly of a suitable small molecule gelator into a three-dimensional network of fibrous structures. The gel properties are determined by the fiber structures, the number and type of cross-links and the distribution of the fibers and cross-links in space. Probing these structures and cross-links is difficult. Many reports rely on microscopy of dried gels (xerogels), where the solvent is removed prior to imaging. The assumption is made that this has little effect on the structures, but it is not clear that this assumption is always (or ever) valid. Here, we use small angle neutron scattering (SANS) to probe low molecular weight hydrogels formed by the self-assembly of dipeptides. We compare scattering data for wet and dried gels, as well as following the drying process. We show that the assumption that drying does not affect the network is not always correct. PMID:28631478
Chemistry and Processing of Nanostructured Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, G A; Baumann, T F; Hope-Weeks, L J
2002-01-18
Nanostructured materials can be formed through the sol-gel polymerization of inorganic or organic monomer systems. For example, a two step polymerization of tetramethoxysilane (TMOS) was developed such that silica aerogels with densities as low as 3 kg/m{sup 3} ({approx} two times the density of air) could be achieved. Organic aerogels based upon resorcinol-formaldehyde and melamine-formaldehyde can also be prepared using the sol-gel process. Materials of this type have received significant attention at LLNL due to their ultrafine cell sizes, continuous porosity, high surface area and low mass density. For both types of aerogels, sol-gel polymerization depends upon the transformation ofmore » these monomers into nanometer-sized clusters followed by cross-linking into a 3-dimensional gel network. While sol-gel chemistry provides the opportunity to synthesize new material compositions, it suffers from the inability to separate the process of cluster formation from gelation. This limitation results in structural deficiencies in the gel that impact the physical properties of the aerogel, xerogel or nanocomposite. In order to control the properties of the resultant gel, one should be able to regulate the formation of the clusters and their subsequent cross-linking. Towards this goal, we are utilizing dendrimer chemistry to separate the cluster formation from the gelation so that new nanostructured materials can be produced. Dendrimers are three-dimensional, highly branched macromolecules that are prepared in such a way that their size, shape and surface functionality are readily controlled. The dendrimers will be used as pre-formed clusters of known size that can be cross-linked to form an ordered gel network.« less
NASA Astrophysics Data System (ADS)
Tempel, M.; Isenberg, G.; Sackmann, E.
1996-08-01
We have studied the sol-gel transition, the viscoelastic and the structural properties of networks constituted of semiflexible actin filaments cross-linked by α-actinin. Cross-linking was regulated in a reversible way by varying the temperature through the association-dissociation equilibrium of the actin-α-actinin system. Viscoelastic parameters [shear storage modulus G'(ω), phase shift tan(Φ)(ω), creep compliance J(t)] were measured as a function of temperature and actin-to-cross-linker ratio by a magnetically driven rotating disc rheometer. G'(ω) and tan(Φ)(ω) were studied at a frequency ω corresponding to the elastic plateau regime of the G'(ω) versus ω spectrum of the purely entangled solution. The microstructure of the networks was viewed by negative staining electron microscopy (EM). The phase shift tan(Φ) (or equivalently the viscosity η) diverges and reaches a maximum when approaching the apparent gel point from lower and higher temperatures, and the maximum defines the gel point (temperature Tg). The elastic plateau modulus G'N diverges at temperatures beyond this gel point T
Healy, Deirdre; Nash, Maria; Gorleov, Alexander; Thompson, Kerry; Dockery, Peter; Rochev, Yury
2017-11-01
The primary aim of this investigation was to determine the biocompatibility and cell culture potential of a newly designed class of thermoresponsive polymers. The attractiveness of these polymers lies in the fact that they swell rather than dissolve when the temperature is reduced below their respective lower critical solution temperature, due to the incorporation of octadecyl methacrylate (ODMA). The ODMA monomer acts as a physical crosslinker, preventing polymer dissolution upon temperature reduction. Two polymers were studied in this investigation poly(N isorpoylacrylamide (NIPAm)(99.25%)-co-ODMA(0.75%)) and poly(NIPAm(65%)-co-N-tert-butylacrylamide (NtBAm)(34.25%)-co-ODMA(0.75%)). Thin thermoresponsive films of the polymers were prepared via spin coating. 3T3 cells were then seeded on the prepared films and cell viability was assessed quantitatively through cell viability and activity assays and qualitatively by light microscopy. Cells were successfully seeded and grown on the poly(NIPAm-co-ODMA) and poly(NIPAm-co-NtBAm-co-ODMA) copolymer films after film modification with cell adhesion promoters (CAPs). Cell sheets successfully detached from the CAP coated poly(NIPAm-co-ODMA) platforms upon temperature reduction. Copyright © 2017 Elsevier B.V. All rights reserved.
Ishiwata, Takumi; Furukawa, Yuki; Sugikawa, Kouta; Kokado, Kenta; Sada, Kazuki
2013-04-10
Until now, seamless fusion of metal-organic frameworks (MOFs) and covalently cross-linked polymer gels (PG) at molecular level has been extremely rare, since these two matters have been regarded as opposite, that is, hard versus soft. In this report, we demonstrate transformation of cubic MOF crystals to PG via inner cross-linking of the organic linkers in the void space of MOF, followed by decomposition of the metal coordination. The obtained PG behaved as a polyelectrolyte gel, indicating the high content of ionic groups inside. Metal ions were well adsorbed in the PG due to its densely packed carboxylate groups. A chimera-type hybrid material consisting of MOF and PG was obtained by partial hydrolysis of resulting cross-linked MOF. The shape of resulting PG network well reflected the crystal structure of MOF employed as a template. Our results will connect the two different network materials that have been ever studied in the two different fields to provide new soft and hard hybrid materials, and the unique copolymerization in the large void space of the MOF will open a new horizon toward "ideal network polymers" never prepared before now.
Actin-induced dimerization of palladin promotes actin-bundling
Vattepu, Ravi; Yadav, Rahul; Beck, Moriah R
2015-01-01
A subset of actin binding proteins is able to form crosslinks between two or more actin filaments, thus producing structures of parallel or networked bundles. These actin crosslinking proteins interact with actin through either bivalent binding or dimerization. We recently identified two binding sites within the actin binding domain of palladin, an actin crosslinking protein that plays an important role in normal cell adhesion and motility during wound healing and embryonic development. In this study, we show that actin induces dimerization of palladin. Furthermore, the extent of dimerization reflects earlier comparisons of actin binding and bundling between different domains of palladin. On the basis of these results we hypothesized that actin binding may promote a conformational change that results in dimerization of palladin, which in turn may drive the crosslinking of actin filaments. The proximal distance between two actin binding sites on crosslinking proteins determines the ultrastructural properties of the filament network, therefore we also explored interdomain interactions using a combination of chemical crosslinking experiments and actin cosedimentation assays. Limited proteolysis data reveals that palladin is less susceptible to enzyme digestion after actin binding. Our results suggest that domain movements in palladin are necessary for interactions with actin and are induced by interactions with actin filaments. Accordingly, we put forth a model linking the structural changes to functional dynamics. PMID:25307943
NASA Astrophysics Data System (ADS)
Ryan, Catherine; Alcock, Emma; Buttimer, Finbarr; Schmidt, Michael; Clarke, David; Pemble, Martyn; Bardosova, Maria
2017-12-01
We present a study of a range of cross-linked chitosan composites with potential antimicrobial applications. They were formed by cross-linking chitosan and siloxane networks and by introducing silver and gold nanoparticles (NPs). The aim was to investigate whether adding the metal NPs to the chitosan-siloxane composite would lead to a material with enhanced antimicrobial ability as compared to chitosan itself. The composites were synthesised in hydrogel form with the metal NPs embedded in the cross-linked chitosan network. Spectroscopic and microscopic techniques were employed to investigate the structural properties of the composite and the tensile strength of the structures was measured. It was found that the addition of metal NPs did not influence the mechanical strength of the composite. A crystal violet attachment assay results displayed a significant reduction in the attachment of E. coli to the cross-linked chitosan surfaces. Release profile tests suggest that the metal NPs do not contribute to the overall antimicrobial activity under neutral conditions. The contribution to the mechanical and antimicrobial properties from cross-linking with siloxane is significant, giving rise to a versatile, durable, antimicrobial material suitable for thin film formation, wound dressings or the coating of various surfaces where robustness and antimicrobial control are required.
Ryan, Catherine; Alcock, Emma; Buttimer, Finbarr; Schmidt, Michael; Clarke, David; Pemble, Martyn; Bardosova, Maria
2017-01-01
Abstract We present a study of a range of cross-linked chitosan composites with potential antimicrobial applications. They were formed by cross-linking chitosan and siloxane networks and by introducing silver and gold nanoparticles (NPs). The aim was to investigate whether adding the metal NPs to the chitosan-siloxane composite would lead to a material with enhanced antimicrobial ability as compared to chitosan itself. The composites were synthesised in hydrogel form with the metal NPs embedded in the cross-linked chitosan network. Spectroscopic and microscopic techniques were employed to investigate the structural properties of the composite and the tensile strength of the structures was measured. It was found that the addition of metal NPs did not influence the mechanical strength of the composite. A crystal violet attachment assay results displayed a significant reduction in the attachment of E. coli to the cross-linked chitosan surfaces. Release profile tests suggest that the metal NPs do not contribute to the overall antimicrobial activity under neutral conditions. The contribution to the mechanical and antimicrobial properties from cross-linking with siloxane is significant, giving rise to a versatile, durable, antimicrobial material suitable for thin film formation, wound dressings or the coating of various surfaces where robustness and antimicrobial control are required. PMID:28804527
Ryan, Catherine; Alcock, Emma; Buttimer, Finbarr; Schmidt, Michael; Clarke, David; Pemble, Martyn; Bardosova, Maria
2017-01-01
We present a study of a range of cross-linked chitosan composites with potential antimicrobial applications. They were formed by cross-linking chitosan and siloxane networks and by introducing silver and gold nanoparticles (NPs). The aim was to investigate whether adding the metal NPs to the chitosan-siloxane composite would lead to a material with enhanced antimicrobial ability as compared to chitosan itself. The composites were synthesised in hydrogel form with the metal NPs embedded in the cross-linked chitosan network. Spectroscopic and microscopic techniques were employed to investigate the structural properties of the composite and the tensile strength of the structures was measured. It was found that the addition of metal NPs did not influence the mechanical strength of the composite. A crystal violet attachment assay results displayed a significant reduction in the attachment of E. coli to the cross-linked chitosan surfaces. Release profile tests suggest that the metal NPs do not contribute to the overall antimicrobial activity under neutral conditions. The contribution to the mechanical and antimicrobial properties from cross-linking with siloxane is significant, giving rise to a versatile, durable, antimicrobial material suitable for thin film formation, wound dressings or the coating of various surfaces where robustness and antimicrobial control are required.
F-actin cross-linking enhances the stability of force generation in disordered actomyosin networks
NASA Astrophysics Data System (ADS)
Jung, Wonyeong; Murrell, Michael P.; Kim, Taeyoon
2015-12-01
Myosin molecular motors and actin cross-linking proteins (ACPs) are known to mediate the generation and transmission of mechanical forces within the cortical F-actin cytoskeleton that drive major cellular processes such as cell division and migration. However, how motors and ACPs interact collectively over diverse timescales to modulate the time-dependent mechanical properties of the cytoskeleton remains unclear. In this study, we present a three-dimensional agent-based computational model of the cortical actomyosin network to quantitatively determine the effects of motor activity and the density and kinetics of ACPs on the accumulation and maintenance of mechanical tension within a disordered actomyosin network. We found that motors accumulate large stress quickly by behaving as temporary cross-linkers although this stress is relaxed over time unless there are sufficient passive ACPs to stabilize the network. Stabilization by ACPs helps motors to generate forces up to their maximum potential, leading to significant enhancement of the efficiency and stability of stress generation. Thus, we demonstrated that the force-dependent kinetics of ACP dissociation plays a critical role for the accumulation and sustainment of stress and the structural remodeling of networks.
Fang, Chunliu; Julius, David; Tay, Siok Wei; Hong, Liang; Lee, Jim Yang
2012-06-07
This paper describes the synthesis of ion-pair-reinforced semi-interpenetrating polymer networks (SIPNs) as proton exchange membranes (PEMs) for the direct methanol fuel cells (DMFCs). Specifically, sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO), a linear polymer proton source, was immobilized in a brominated PPO (BPPO) network covalently cross-linked by ethylenediamine (EDA). The immobilization of SPPO in the SIPN network was accomplished not only by the usual means of mechanical interlocking but also by ion pair formation between the sulfonic acid groups of SPPO and the amine moieties formed during the cross-linking reaction of BPPO with EDA. Through the ion pair interactions, the immobilization of SPPO polymer in the BPPO network was made more effective, resulting in a greater uniformity of sulfonic acid cluster distribution in the membrane. The hydrophilic amine-containing cross-links also compensated for some of the decrease in proton conductivity caused by ion pair formation. The SIPN membranes prepared as such showed good proton conductivity, low methanol permeability, good mechanical properties, and dimensional stability. Consequently, the PPO based SIPN membranes were able to deliver a higher maximum power density than Nafion, demonstrating the potential of the SIPN structure for PEM designs.
NASA Astrophysics Data System (ADS)
Vatankhah-Varnosfaderani, Mohammad; Daniel, William F. M.; Zhushma, Alexandr P.; Li, Qiaoxi; Morgan, Benjamin J.; Matyjaszewski, Krzysztof; Armstrong, Daniel P.; Dobrynin, Andrey V.; Sheyko, Sergei S.; Spontak, Richard J.
2017-04-01
Electroactive polymers (EAPs) refer to a broad range of relatively soft materials that change size and/or shape upon application of an electrical stimulus. Of these, dielectric elastomers (DEs) generated from either chemically- or physically-crosslinked polymer networks afford the highest levels of electroactuation strain, thereby making this class of EAPs the leading technology for artificial-muscle applications. While mechanically prestraining elastic networks remarkably enhances DEs electroactuation, external prestrain protocols severely limit both actuator performance and device implementation due to gradual DE stress relaxation and the presence of a cumbersome load frame. These drawbacks have persisted with surprisingly minimal advances in the actuation of single-component elastomers since the dawn of the "pre-strain era" introduced by Pelrine et al. (Science, 2000). In this work, we present a bottom-up, molecular-based strategy for the design of prestrain-free (freestanding) DEs derived from covalently-crosslinked bottlebrush polymers. This architecture, wherein design factors such as crosslink density, graft density and graft length can all be independently controlled, yields inherently strained polymer networks that can be readily adapted to a variety of chemistries. To validate the use of these molecularly-tunable materials as DEs, we have synthesized a series of bottlebrush silicone elastomers in as-cast shapes. Examination of these materials reveals that they undergo giant electroactuation strains (>300%) at relatively low fields (<10 V/m), thereby outperforming all commercial DEs to date and opening new opportunities in responsive soft-material technologies (e.g., robotics). The molecular design approach to controlling (electro)mechanical developed here is independent of chemistry and permits access to an unprecedented range of actuation properties from elastomeric materials with traditionally modest electroactuation performance (e.g., polydimethylsiloxane, PDMS). Experimental results obtained here compare favorably with theoretical predictions and demonstrate that the unique behavior of these materials is a direct consequence of the molecular architecture.
Mesoscopic Simulations of Crosslinked Polymer Networks
NASA Astrophysics Data System (ADS)
Megariotis, Grigorios; Vogiatzis, Georgios G.; Schneider, Ludwig; Müller, Marcus; Theodorou, Doros N.
2016-08-01
A new methodology and the corresponding C++ code for mesoscopic simulations of elastomers are presented. The test system, crosslinked ds-1’4-polyisoprene’ is simulated with a Brownian Dynamics/kinetic Monte Carlo algorithm as a dense liquid of soft, coarse-grained beads, each representing 5-10 Kuhn segments. From the thermodynamic point of view, the system is described by a Helmholtz free-energy containing contributions from entropic springs between successive beads along a chain, slip-springs representing entanglements between beads on different chains, and non-bonded interactions. The methodology is employed for the calculation of the stress relaxation function from simulations of several microseconds at equilibrium, as well as for the prediction of stress-strain curves of crosslinked polymer networks under deformation.
NASA Astrophysics Data System (ADS)
Quynh, Tran Minh; Mai, Hoang Hoa; Lan, Pham Ngoc
2013-02-01
Poly(L-lactic acid)s (PLLAx) were synthesized from L-lactic acid by polycondensation. Different stereocomplexes were also obtained with equimolar mixtures of synthesized PLLAx and a commercial PDLA. The stereocomplexes were crosslinked with triallyl isocyanurate (TAIC) by gamma irradiation. Crosslinking density increased with radiation doses, the heavier the crosslinking network, the lower its swelling degree. The crosslinking structures were introduced in the stereocomplexes inhibiting the mobility for crystallization of PLLA molecules. Thermal and mechanical properties of PLA stereocomplexes were remarkably enhanced by radiation induced crosslinking. PLA stereocomplex does not seem to be degraded by PLLA degrading microorganisms existing in compost at room temperature, but the synthesized PLLA was significantly degraded.
Covalent adaptable networks: smart, reconfigurable and responsive network systems.
Kloxin, Christopher J; Bowman, Christopher N
2013-09-07
Covalently crosslinked materials, classically referred to as thermosets, represent a broad class of elastic materials that readily retain their shape and molecular architecture through covalent bonds that are ubiquitous throughout the network structure. These materials, in particular in their swollen gel state, have been widely used as stimuli responsive materials with their ability to change volume in response to changes in temperature, pH, or other solvent conditions and have also been used in shape memory applications. However, the existence of a permanent, unalterable shape and structure dictated by the covalently crosslinked structure has dramatically limited their abilities in this and many other areas. These materials are not generally reconfigurable, recyclable, reprocessable, and have limited ability to alter permanently their stress state, topography, topology, or structure. Recently, a new paradigm has been explored in crosslinked polymers - that of covalent adaptable networks (CANs) in which covalently crosslinked networks are formed such that triggerable, reversible chemical structures persist throughout the network. These reversible covalent bonds can be triggered through molecular triggers, light or other incident radiation, or temperature changes. Upon application of this stimulus, rather than causing a temporary shape change, the CAN structure responds by permanently adjusting its structure through either reversible addition/condensation or through reversible bond exchange mechanisms, either of which allow the material to essentially reequilibrate to its new state and condition. Here, we provide a tutorial review on these materials and their responsiveness to applied stimuli. In particular, we review the broad classification of these materials, the nature of the chemical bonds that enable the adaptable structure, how the properties of these materials depend on the reversible structure, and how the application of a stimulus causes these materials to alter their shape, topography, and properties.
NASA Astrophysics Data System (ADS)
McKinnon, Daniel Devaud
This thesis focuses on studying the extension of motor axons through synthetic poly(ethylene glycol) PEG hydrogels that have been modified with biochemical functionalities to render them more biologically relevant. Specifically, the research strategy is to encapsulate embryonic stem cell-derived motor neurons (ESMNs) in synthetic PEG hydrogels crosslinked through three different chemistries providing three mechanisms for dynamically tuning material properties. First, a covalently crosslinked, enzymatically degradable hydrogel is developed and exploited to study the biophysical dynamics of axon extension and matrix remodeling. It is demonstrated that dispersed motor neurons require a battery of adhesive peptides and growth factors to maintain viability and extend axons while those in contact with supportive neuroglial cells do not. Additionally, cell-degradable crosslinker peptides and a soft modulus mimicking that of the spinal cord are requirements for axon extension. However, because local degradation of the hydrogel results in a cellular environment significantly different than that of the bulk, enzymatically degradable peptide crosslinkers were replaced with reversible covalent hydrazone bonds to study the effect of hydrogel modulus on axon extension. This material is characterized in detail and used to measure forces involved in axon extension. Finally, a hydrogel with photocleavable linkers incorporated into the network structure is exploited to explore motor axon response to physical channels. This system is used to direct the growth of motor axons towards co-cultured myotubes, resulting in the formation of an in vitro neural circuit.
Construction of monomer-free, highly crosslinked, water-compatible polymers.
Dailing, E A; Lewis, S H; Barros, M D; Stansbury, J W
2014-12-01
Polymeric dental adhesives require the formation of densely crosslinked network structures to best ensure mechanical strength and durability in clinical service. Monomeric precursors to these materials typically consist of mixtures of hydrophilic and hydrophobic components that potentially undergo phase separation in the presence of low concentrations of water, which is detrimental to material performance and has motivated significant investigation into formulations that reduce this effect. We have investigated an approach to network formation based on nanogels that are dispersed in inert solvent and directly polymerized into crosslinked polymers. Monomers of various hydrophilic or hydrophobic characteristics were copolymerized into particulate nanogels bearing internal and external polymerizable functionality. Nanogel dispersions were stable at high concentrations in acetone or, with some exceptions, in water and produced networks with a wide range of mechanical properties. Networks formed rapidly upon light activation and reached high conversion with extremely low volumetric shrinkage. Prepolymerizing monomers into reactive nanostructures significantly changes how hydrophobic materials respond to water compared with networks obtained from polymerizations involving free monomer. The modulus of fully hydrated networks formed solely from nanogels was shown to equal or exceed the modulus in the dry state for networks based on nanogels containing a hydrophobic dimethacrylate and hydrophilic monomethacrylate, a result that was not observed in a hydroxyethyl methacrylate (HEMA) homopolymer or in networks formed from nanogels copolymerized with HEMA. These results highlight the unique approach to network development from nanoscale precursors and properties that have direct implications in functional dental materials. © International & American Associations for Dental Research.
Anisotropically Swelling Gels Attained through Axis-Dependent Crosslinking of MOF Crystals.
Ishiwata, Takumi; Kokado, Kenta; Sada, Kazuki
2017-03-01
Anisotropically deforming objects have attracted considerable interest for use in molecular machines and artificial muscles. Herein, we focus on a new approach based on the crystal crosslinking of organic ligands in a pillared-layer metal-organic framework (PLMOF). The approach involves the transformation from crosslinked PLMOF to polymer gels through hydrolysis of the coordination bonds between the organic ligands and metal ions, giving a network polymer that exhibits anisotropic swelling. The anisotropic monomer arrangement in the PLMOF underwent axis-dependent crosslinking to yield anisotropically swelling gels. Therefore, the crystal crosslinking of MOFs should be a useful method for creating actuators with designable deformation properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Developing Mesoscale Model of Fibrin-Platelet Network Representing Blood Clotting =
NASA Astrophysics Data System (ADS)
Sun, Yueyi; Nikolov, Svetoslav; Bowie, Sam; Alexeev, Alexander; Lam, Wilbur; Myers, David
Blood clotting disorders which prevent the body's natural ability to achieve hemostasis can lead to a variety of life threatening conditions such as, excessive bleeding, stroke, or heart attack. Treatment of these disorders is highly dependent on understanding the underlying physics behind the clotting process. Since clotting is a highly complex multi scale mechanism developing a fully atomistic model is currently not possible. We develop a mesoscale model based on dissipative particle dynamics (DPD) to gain fundamental understanding of the underlying principles controlling the clotting process. In our study, we examine experimental data on clot contraction using stacks of confocal microscopy images to estimate the crosslink density in the fibrin networks and platelet location. Using this data we reconstruct the platelet rich fibrin network and study how platelet-fibrin interactions affect clotting. Furthermore, we probe how different system parameters affect clot contraction. ANSF CAREER Award DMR-1255288.
Synthesis and characterization of a novel hyaluronic acid hydrogel.
Zhao, X
2006-01-01
Hyaluronic acid (hyaluronan, HA) has many medical applications as a biomaterial. To enhance its biostability, a novel hydrogel of cross-linked hyaluronic acid was prepared using a double cross-linking process, which involves building cross-linkages between hydroxyl group pairs and carboxyl group pairs. The present study explored a number of cross-linking processes in order to obtain different degrees of cross-linking, which were evaluated by the measurement of water absorption capacity as an index of the gel network density. To gain a better understanding of the stability of the gel, the chemical structure and particularly the rheological behaviour of the cross-linked HA, which included the influences of factors, such as degree of cross-linking, HA concentration and gel particle size, were investigated. The in vitro biostability against hyaluronidase and free radical degradation was tested to show that the cross-linked hydrogel had improved resistance to in vitro hyaluronidase and free radical degradation.
Biomimetic Phases of Microtubule-Motor Mixtures
NASA Astrophysics Data System (ADS)
Ross, Jennifer
2014-03-01
We try to determine the universal principles of organization from the molecular scale that gives rise to architecture on the cellular scale. We are specifically interested in the organization of the microtubule cytoskeleton, a rigid, yet versatile network in most cell types. Microtubules in the cell are organized by motor proteins and crosslinkers. This work applies the ideas of statistical mechanics and condensed matter physics to the non-equilibrium pattern formation behind intracellular organization using the microtubule cytoskeleton as the building blocks. We examine these processes in a bottom-up manner by adding increasingly complex protein actors into the system. Our systematic experiments expose nature's laws for organization and has large impacts on biology as well as illuminating new frontiers of non-equilibrium physics.
Gel-forming reagents and uses thereof for preparing microarrays
Golova, Julia; Chernov, Boris; Perov, Alexander
2010-11-09
New gel-forming reagents including monomers and cross-linkers, which can be applied to gel-drop microarray manufacturing by using co-polymerization approaches are disclosed. Compositions for the preparation of co-polymerization mixtures with new gel-forming monomers and cross-linker reagents are described herein. New co-polymerization compositions and cross-linkers with variable length linker groups between unsaturated C.dbd.C bonds that participate in the formation of gel networks are disclosed.
Controlling toughness and dynamics of polymer networks via mussel-inspired dynamical bonds
NASA Astrophysics Data System (ADS)
Filippidi, Emmanouela
For dry, thermoset, polymer systems increasing the degree of cross-linking increases the elastic modulus. However, it simultaneously compromises the elongation under tension, usually reducing the overall total energy dissipated before fracture (toughness). Dynamic reformable bonds and complex network topologies have been used to circumnavigate this issue with moderate success, mainly in hydrated network systems. Hydration, however, which swells these networks limits how far one could increase the modulus, while their chemistry prevents improvement of the mechanics upon drying. Employing the mussel byssus-inspired strategy of iron-catechol coordination bonds, we have synthesized and studied epoxy networks comprising covalently attached catechol moieties capable of forming additional iron-catechol complex cross-links that still function in dry conditions. In such a fashion, we create a high modulus, high elongation, high toughness material. The iron-catechol coordination bonds play multiple roles that enhance the mechanical performance of the system: at low strain and fast strain rates, they act like permanent cross-links with bonding strength similar to covalent bonds, but start disassociating at high elongation. They are also reformable, enabling material self-healing in a matter of minutes in the absence of load. Finally, the dissociative crosslink cleavage alters the local chain topology, creating length scales that unfold upon elongation. The elegance of this system lies on its general versatility. Both the polymer and metal ion can be used as control parameters to study the interplay of covalent and dynamical bonds as well as explore the limits of the design of elastomers with enhanced toughness. MRSEC of NSF Award No. DMR-1121053.
Martinez, Adam W; Caves, Jeffrey M; Ravi, Swathi; Li, Wehnsheng; Chaikof, Elliot L
2014-01-01
Recombinant elastin-like protein polymers are increasingly being investigated as component materials of a variety of implantable medical devices. This is chiefly a result of their favorable biological properties and the ability to tailor their physical and mechanical properties. In this report, we explore the potential of modulating the water content, mechanical properties, and drug release profiles of protein films through the selection of different crosslinking schemes and processing strategies. We find that the selection of crosslinking scheme and processing strategy has a significant influence on all aspects of protein polymer films. Significantly, utilization of a confined, fixed volume, as well as vapor-phase crosslinking strategies, decreased protein polymer equilibrium water content. Specifically, as compared to uncrosslinked protein gels, water content was reduced for genipin (15.5%), glutaraldehyde (GTA, 24.5%), GTA vapor crosslinking (31.6%), disulfide (SS, 18.2%) and SS vapor crosslinking (25.5%) (P<0.05). Distinct crosslinking strategies modulated protein polymer stiffness, strain at failure and ultimate tensile strength (UTS). In all cases, vapor-phase crosslinking produced the stiffest films with the highest UTS. Moreover, both confined, fixed volume and vapor-phase approaches influenced drug delivery rates, resulting in decreased initial drug burst and release rates as compared to solution phase crosslinking. Tailored crosslinking strategies provide an important option for modulating the physical, mechanical and drug delivery properties of protein polymers. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Kulkarni, Raghavendra V; Patel, Foram S; Nanjappaiah, H M; Naikawadi, Akram A
2014-08-01
Interpenetrated polymer network (IPN) microparticles of sterculia gum and sodium alginate loaded with repaglinide were developed by ionic gelation and emulsion crosslinking method. The drug entrapment efficiency was as high as 91%. FTIR and TG analyses confirmed the crosslinking and IPN formation. Microparticles have demonstrated the drug release up to 24h depending upon type of crosslinking agents; the glutaraldehyde treatment of ionically crosslinked microparticles has resulted in decreased drug release rate. The in-vivo anti-diabetic activity performed on streptozotocin induced diabetic rats indicated that the pristine repaglinide has shown maximum percentage reduction of elevated blood glucose within 3h and then the percentage reduction in blood glucose was decreased. In the case of rats treated with KA8 IPN microparticles, percentage reduction of elevated glucose was slow as compared to pristine drug within 3h, but it was gradually increased to 81.27% up to 24h. Copyright © 2014 Elsevier B.V. All rights reserved.
XLinkDB 2.0: integrated, large-scale structural analysis of protein crosslinking data
Schweppe, Devin K.; Zheng, Chunxiang; Chavez, Juan D.; Navare, Arti T.; Wu, Xia; Eng, Jimmy K.; Bruce, James E.
2016-01-01
Motivation: Large-scale chemical cross-linking with mass spectrometry (XL-MS) analyses are quickly becoming a powerful means for high-throughput determination of protein structural information and protein–protein interactions. Recent studies have garnered thousands of cross-linked interactions, yet the field lacks an effective tool to compile experimental data or access the network and structural knowledge for these large scale analyses. We present XLinkDB 2.0 which integrates tools for network analysis, Protein Databank queries, modeling of predicted protein structures and modeling of docked protein structures. The novel, integrated approach of XLinkDB 2.0 enables the holistic analysis of XL-MS protein interaction data without limitation to the cross-linker or analytical system used for the analysis. Availability and Implementation: XLinkDB 2.0 can be found here, including documentation and help: http://xlinkdb.gs.washington.edu/. Contact: jimbruce@uw.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153666
Increasing Mechanical Strength of Gelatin Hydrogels by Divalent Metal Ion Removal
Xing, Qi; Yates, Keegan; Vogt, Caleb; Qian, Zichen; Frost, Megan C.; Zhao, Feng
2014-01-01
The usage of gelatin hydrogel is limited due to its instability and poor mechanical properties, especially under physiological conditions. Divalent metal ions present in gelatin such as Ca2+ and Fe2+ play important roles in the gelatin molecule interactions. The objective of this study was to determine the impact of divalent ion removal on the stability and mechanical properties of gelatin gels with and without chemical crosslinking. The gelatin solution was purified by Chelex resin to replace divalent metal ions with sodium ions. The gel was then chemically crosslinked by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). Results showed that the removal of divalent metal ions significantly impacted the formation of the gelatin network. The purified gelatin hydrogels had less interactions between gelatin molecules and form larger-pore network which enabled EDC to penetrate and crosslink the gel more efficiently. The crosslinked purified gels showed small swelling ratio, higher crosslinking density and dramatically increased storage and loss moduli. The removal of divalent ions is a simple yet effective method that can significantly improve the stability and strength of gelatin hydrogels. The in vitro cell culture demonstrated that the purified gelatin maintained its ability to support cell attachment and spreading. PMID:24736500
Synthesis of polymer networks containing degradable polyacetal segments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goethals, E.J.; Trossaert, G.G.; Hartmann, P.J.
1993-12-31
In recent years, intensive research has been done in order to prepare different types of degradable polyacetal containing networks. In the present presentation four different routes for the production of polyacetal containing networks are described: (1) free radical copolymerization of {alpha},{omega}-(meth)acrylate terminated polyacetals (2) hydrosilylation reactions of {alpha},{omega}-allyl terminated poly-(1,3-dioxolane) with a multifunctional silane (3) modification of {alpha}{omega}-hydroxy terminated poly-(1,3-dioxepane) through reaction with 3-isocyanato propyl triethoxysilane and subsequent cross-linking under influence of H{sub 2}O and (4) synthesis of multifunctional hydroxy-terminated polyacetals, followed by cross-linking with di-isocyanates.
Evaluation of synthesized cross linked polyvinyl alcohol as potential disintegrant.
Patel, Ashok R; Vavia, Pradeep R
2010-01-01
The present study deals with evaluation of crosslinked poly vinyl alcohol (PVA) as a potential disintegrant. Crosslinking of PVA was carried out using glutaraldehyde as a crosslinker, in presence of acidic conditions. The crosslinking reaction was optimized for a) polymer: crosslinker ratio; b) temperature requirement and c) reaction duration. Certain physical parameters of the disintegrant (including sedimentation volume, hydration capacity, specific surface area and bulk and tap density) were determined and compared to the known disintegrants. Characterization was carried out using FT-IR, DSC, XRD, SEM and Photo microscopy studies. The developed excipient was also studied for acute toxicity in rats and found to be safe for oral use. Disintegration property of formed product was compared to known disintegrant (Ac-Di-Sol) and it was found to give better results. The disintegration mechanism of developed disintegrant was postulated based on results obtained from various physical evaluations including: Study of effect of disintegrant concentration, fillers, and hardness, mode of incorporation and method of granulation on disintegration activity. By changing the condition parameters of well known crosslinking reaction of PVA, we obtained a crosslinked product which had excellent disintegration activity, good flow and optimal tableting properties.
Tough Al-alginate/poly(N-isopropylacrylamide) hydrogel with tunable LCST for soft robotics.
Zheng, Wen Jiang; An, Ning; Yang, Jian Hai; Zhou, Jinxiong; Chen, Yong Mei
2015-01-28
Tough Al-alginate/poly(N-isopropylacrylamide) (PNIPAM) hydrogel has been synthesized by introducing an interpenetrating network with hybrid physically cross-linked alginate and chemically cross-linked PNIPAM. Varying the concentration of AlCl3 regulates the mechanical properties of the tough hydrogel and tunes its lower critical solution temperature (LCST) as well. The tough Al-alginate/PNIPAM exhibits 6.3 ± 0.3 MPa of compressive stress and 9.95 of uniaxial stretch. Tunability of LCST is also achieved in a wide range within 22.5-32 °C. A bending beam actuator and a four-arm gripper made of bilayer (Na-alginate/PNIPAM)/(Al-alginate/PNIPAM) hydrogel as prototype of all-hydrogel soft robotics are demonstrated. A finite element (FE) simulation model is developed to simulate the deformation of the soft robotics. The FE simulation not only reproduces the deformation process of performed experiments but also predicts more complicated devices that can be explored in the future. This work broadens the application of temperature-responsive PNIPAM-based hydrogels.
Photoactive Self-Shaping Hydrogels as Noncontact 3D Macro/Microscopic Photoprinting Platforms.
Liao, Yue; An, Ning; Wang, Ning; Zhang, Yinyu; Song, Junfei; Zhou, Jinxiong; Liu, Wenguang
2015-12-01
A photocleavable terpolymer hydrogel cross-linked with o-nitrobenzyl derivative cross-linker is shown to be capable of self-shaping without losing its physical integrity and robustness due to spontaneous asymmetric swelling of network caused by UV-light-induced gradient cleavage of chemical cross-linkages. The continuum model and finite element method are used to elucidate the curling mechanism underlying. Remarkably, based on the self-changing principle, the photosensitive hydrogels can be developed as photoprinting soft and wet platforms onto which specific 3D characters and images are faithfully duplicated in macro/microscale without contact by UV light irradiation under the cover of customized photomasks. Importantly, a quick response (QR) code is accurately printed on the photoactive hydrogel for the first time. Scanning QR code with a smartphone can quickly connect to a web page. This photoactive hydrogel is promising to be a new printing or recording material. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Alginate-hydroxypropylcellulose hydrogel microbeads for alkaline phosphatase encapsulation.
Karewicz, A; Zasada, K; Bielska, D; Douglas, T E L; Jansen, J A; Leeuwenburgh, S C G; Nowakowska, M
2014-01-01
There is a growing interest in using proteins as therapeutics agents. Unfortunately, they suffer from limited stability and bioavailability. We aimed to develop a new delivery system for proteins. ALP, a model protein, was successfully encapsulated in the physically cross-linked sodium alginate/hydroxypropylcellulose (ALG-HPC) hydrogel microparticles. The obtained objects had regular, spherical shape and a diameter of ∼4 µm, as confirmed by optical microscopy and SEM analysis. The properties of the obtained microbeads could be controlled by temperature and additional coating or crosslinking procedures. The slow, sustained release of ALP in its active form with no initial burst effect was observed for chitosan-coated microspheres at pH = 7.4 and 37 °C. Activity of ALP released from ALG/HPC microspheres was confirmed by the occurance of effectively induced mineralization. SEM and AFM images revealed formation of the interpenetrated three-dimensional network of mineral, originating from the microbeads' surfaces. FTIR and XRD analyses confirmed formation of hydroxyapatite.
Thomas, Martin George; Abraham, Eldho; Jyotishkumar, P; Maria, Hanna J; Pothen, Laly A; Thomas, Sabu
2015-11-01
Nanocellulose fibers having an average diameter of 50nm were isolated from raw jute fibers by steam explosion process. The isolation of nanocellulose from jute fibers by this extraction process is proved by SEM, XRD, FTIR, birefringence and TEM characterizations. This nanocellulose was used as the reinforcing agent in natural rubber (NR) latex along with crosslinking agents to prepare crosslinked nanocomposite films. The effects of nanocellulose loading on the morphology and mechanics of the nanocomposites have been carefully analyzed. Significant improvements in the Young's modulus and tensile strength of the nanocomposite were observed because of the reinforcing ability of the nanocellulose in the rubber matrix. A mechanism is suggested for the formation of the Zn-cellulose complex. The three-dimensional network of cellulose nanofibers (cellulose/cellulose network and Zn/cellulose network) in the NR matrix plays a major role in improving the properties of the crosslinked nanocomposites. Copyright © 2015 Elsevier B.V. All rights reserved.
Photopolymerized dynamic hydrogels with tunable viscoelastic properties through thioester exchange.
Brown, Tobin E; Carberry, Benjamin J; Worrell, Brady T; Dudaryeva, Oksana Y; McBride, Matthew K; Bowman, Christopher N; Anseth, Kristi S
2018-04-04
The extracellular matrix (ECM) constitutes a viscoelastic environment for cells. A growing body of evidence suggests that the behavior of cells cultured in naturally-derived or synthetic ECM mimics is influenced by the viscoelastic properties of these substrates. Adaptable crosslinking strategies provide a means to capture the viscoelasticity found in native soft tissues. In this work, we present a covalent adaptable hydrogel based on thioester exchange as a biomaterial for the in vitro culture of human mesenchymal stem cells. Through control of pH, gel stoichiometry, and crosslinker structure, viscoelastic properties in these crosslinked networks can be modulated across several orders of magnitude. We also propose a strategy to alter these properties in existing networks by the photo-uncaging of the catalyst 4-mercaptophenylacetic acid. Mesenchymal stem cells encapsulated in thioester hydrogels are able to elongate in 3D and display increased proliferation relative to those in static networks. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kwon, Sohyun; Rao, Anil H. N.; Kim, Tae-Hyun
2018-01-01
Azide-assisted terminal crosslinking of methyl morpholinium-functionalized poly(arylene ether sulfone) block copolymers yields products (xMM-PESs) suitable for use as anion exchange membranes. By combining the advantages of bulky morpholinium conductors and our unique polymer network crosslinked only at the termini of the polymer chains, we can produce AEMs that after the crosslinking show minimal loss in conductivity, yet with dramatically reduced water uptake. Terminal crosslinking also significantly increases the thermal, mechanical and chemical stability levels of the membranes. A high ion conductivity of 73.4 mS cm-1 and low water uptake of 26.1% at 80 °C are obtained for the crosslinked membrane with higher amount of hydrophilic composition, denoted as xMM-PES-1.5-1. In addition, the conductivity of the crosslinked xMM-PES-1.5-1 membrane exceeds that of its non-crosslinked counterpart (denoted as MM-PES-1.5-1) above 60 °C at 95% relative humidity because of its enhanced water retention capacity caused by the terminally-crosslinked structure.
Design & synthesis of silicone elastomer networks with tunable physico-chemical characteristics
NASA Astrophysics Data System (ADS)
Willoughby, Julie Ann-Crowe
2007-05-01
We have engineered functional surfaces via the manipulation of silicone elastomers (SEs). The most common silicone, poly(dimethylsiloxane) PDMS, can be both challenging and advantageous in the design of surfaces due to its inherent inertness and flexibility of the siloxane backbone. This unique polymer is approaching a $10 billion dollar market attributed to its formulation in a wide array of applications; from the personal care industry to the electronics industry. While it can be used for many applications, surface design with PDMS usually requires a chemical or physical modification of the polymeric network. In addition, surface characteristics are tailored for specific functions since there is not one surface that fits all end-uses. In studying the intrinsic behavior of engineered SEs, we asked questions regarding surface stability, environmental conformation and adaptability, and tuning physical features. We report on the formation of responsive surfaces with tailorable surface-reconstruction kinetics and switching hysteresis by thiol-ene radical addition of mercaptoalkanols with variable lengths to poly(vinylmethylsiloxane) networks. Exposing the modified surfaces to water led to a rearrangement of the hydrophilic alkanes at the surface. The rearrangement kinetics decreases with increasing number of the methylene spacers (n) in the mercaptoalkanol. The response kinetics is found to be very fast for n = 2 and 6. For instance, upon exposing to water, the water contact angle on 3-mercaptopropanol-based surfaces decreases by ≈35° at the rate of 2°/second. The high flexibility of the siloxane backbone endows these materials with switching longevity; the materials were able to switch their wettability over 10 cycles with minimum hysteresis. Increasing the number of methylene spacers to n = 11 decreases the surface reorganization dramatically. Formation of semi-crystalline regions in such materials (detected via IR) is responsible for initial "sluggish" kinetics and eventual surface "freezing". The effects of surface chemistry and topology on cellular adhesion and proliferation have been studied extensively in the past. However, little work exists that aims at probing the effects of surface morphology and elastic modulus on cell behavior. To achieve timely and comprehensive experimental design, there is need for the availability of novel substrata with tunable mechanical properties (or compliance) at the micro and meso-scale level ranging from individual cells to whole tissues. Despite expansive research that has targeted the understanding of cellular response to its host scaffold, the choice of material and extrapolation of findings from one cell/material system to another has proven difficult. Thus establishing general relationships between substrate compliance and cell behavior cannot be considered independent of the material and cell type. In our work, we have explored creating surfaces from SEs comprising gradients in stiffness (or elastic modulus), by controlling the degree of cross-linking. Network regions consisting of higher cross-linking demonstrate a greater elastic modulus. We present two methods to control the mechanical properties of silicone elastomers. The first technique utilizes interdiffusion of multiple SEs with varied molecular weights that are subsequently cross-linked into a network. The second method involves synthesizing a UV-curable SE. This method controls the degree of cross-linking by regulating the intensity of the UV light via a transparency with tunable transmittance placed on top of the SE film. Our results show that it is possible to generate compliance gradients through either route, enabling a large range of both gradient patterns and stiffness.
De Gregorio, G L; Giannuzzi, R; Cipolla, M P; Agosta, R; Grisorio, R; Capodilupo, A; Suranna, G P; Gigli, G; Manca, M
2014-11-21
We here report the implementation of poly[(3-N-methylimidazoliumpropyl)methylsiloxane-co-dimethylsiloxane]iodides as suitable polymeric hosts for a novel class of in situ cross-linkable iodine/iodide-based gel-electrolytes for dye-sensitized solar cells. The polymers are first partially quaternized and then subjected to a thermal cross-linking which allows the formation of a 3D polymeric network which is accompanied by a dramatic enhancement of the ionic conductivity.
Byrnes, James R; Duval, Cédric; Wang, Yiming; Hansen, Caroline E; Ahn, Byungwook; Mooberry, Micah J; Clark, Martha A; Johnsen, Jill M; Lord, Susan T; Lam, Wilbur A; Meijers, Joost C M; Ni, Heyu; Ariëns, Robert A S; Wolberg, Alisa S
2015-10-15
Factor XIII(a) [FXIII(a)] stabilizes clots and increases resistance to fibrinolysis and mechanical disruption. FXIIIa also mediates red blood cell (RBC) retention in contracting clots and determines venous thrombus size, suggesting FXIII(a) is a potential target for reducing thrombosis. However, the mechanism by which FXIIIa retains RBCs in clots is unknown. We determined the effect of FXIII(a) on human and murine clot weight and composition. Real-time microscopy revealed extensive RBC loss from clots formed in the absence of FXIIIa activity, and RBCs exhibited transient deformation as they exited the clots. Fibrin band-shift assays and flow cytometry did not reveal crosslinking of fibrin or FXIIIa substrates to RBCs, suggesting FXIIIa does not crosslink RBCs directly to the clot. RBCs were retained in clots from mice deficient in α2-antiplasmin, thrombin-activatable fibrinolysis inhibitor, or fibronectin, indicating RBC retention does not depend on these FXIIIa substrates. RBC retention in clots was positively correlated with fibrin network density; however, FXIIIa inhibition reduced RBC retention at all network densities. FXIIIa inhibition reduced RBC retention in clots formed with fibrinogen that lacks γ-chain crosslinking sites, but not in clots that lack α-chain crosslinking sites. Moreover, FXIIIa inhibitor concentrations that primarily block α-, but not γ-, chain crosslinking decreased RBC retention in clots. These data indicate FXIIIa-dependent retention of RBCs in clots is mediated by fibrin α-chain crosslinking. These findings expose a newly recognized, essential role for fibrin crosslinking during whole blood clot formation and consolidation and establish FXIIIa activity as a key determinant of thrombus composition and size. © 2015 by The American Society of Hematology.
Byrnes, James R.; Duval, Cédric; Wang, Yiming; Hansen, Caroline E.; Ahn, Byungwook; Mooberry, Micah J.; Clark, Martha A.; Johnsen, Jill M.; Lord, Susan T.; Lam, Wilbur A.; Meijers, Joost C. M.; Ni, Heyu; Ariëns, Robert A. S.
2015-01-01
Factor XIII(a) [FXIII(a)] stabilizes clots and increases resistance to fibrinolysis and mechanical disruption. FXIIIa also mediates red blood cell (RBC) retention in contracting clots and determines venous thrombus size, suggesting FXIII(a) is a potential target for reducing thrombosis. However, the mechanism by which FXIIIa retains RBCs in clots is unknown. We determined the effect of FXIII(a) on human and murine clot weight and composition. Real-time microscopy revealed extensive RBC loss from clots formed in the absence of FXIIIa activity, and RBCs exhibited transient deformation as they exited the clots. Fibrin band-shift assays and flow cytometry did not reveal crosslinking of fibrin or FXIIIa substrates to RBCs, suggesting FXIIIa does not crosslink RBCs directly to the clot. RBCs were retained in clots from mice deficient in α2-antiplasmin, thrombin-activatable fibrinolysis inhibitor, or fibronectin, indicating RBC retention does not depend on these FXIIIa substrates. RBC retention in clots was positively correlated with fibrin network density; however, FXIIIa inhibition reduced RBC retention at all network densities. FXIIIa inhibition reduced RBC retention in clots formed with fibrinogen that lacks γ-chain crosslinking sites, but not in clots that lack α-chain crosslinking sites. Moreover, FXIIIa inhibitor concentrations that primarily block α-, but not γ-, chain crosslinking decreased RBC retention in clots. These data indicate FXIIIa-dependent retention of RBCs in clots is mediated by fibrin α-chain crosslinking. These findings expose a newly recognized, essential role for fibrin crosslinking during whole blood clot formation and consolidation and establish FXIIIa activity as a key determinant of thrombus composition and size. PMID:26324704
[Advances in the research of application of hydrogels in three-dimensional bioprinting].
Yang, J; Zhao, Y; Li, H H; Zhu, S H
2016-08-20
Hydrogels are three-dimensional networks made of hydrophilic polymer crosslinked through covalent bonds or physical intermolecular attractions, which can contain growth media and growth factors to support cell growth. In bioprinting, hydrogels are used to provide accurate control over cellular microenvironment and to dramatically reduce experimental repetition times, meanwhile we can obtain three-dimensional cell images of high quality. Hydrogels in three-dimensional bioprinting have received a considerable interest due to their structural similarities to the natural extracellular matrix and polyporous frameworks which can support the cellular proliferation and survival. Meanwhile, they are accompanied by many challenges.
Weak Bond-Based Injectable and Stimuli Responsive Hydrogels for Biomedical Applications
Ding, Xiaochu; Wang, Yadong
2017-01-01
Here we define hydrogels crosslinked by weak bonds as physical hydrogels. They possess unique features including reversible bonding, shear thinning and stimuli-responsiveness. Unlike covalently crosslinked hydrogels, physical hydrogels do not require triggers to initiate chemical reactions for in situ gelation. The drug can be fully loaded in a pre-formed hydrogel for delivery with minimal cargo leakage during injection. These benefits make physical hydrogels useful as delivery vehicles for applications in biomedical engineering. This review focuses on recent advances of physical hydrogels crosslinked by weak bonds: hydrogen bonds, ionic interactions, host-guest chemistry, hydrophobic interactions, coordination bonds and π-π stacking interactions. Understanding the principles and the state of the art of gels with these dynamic bonds may give rise to breakthroughs in many biomedical research areas including drug delivery and tissue engineering. PMID:29062484
Effect of pendent chains on the interfacial properties of thin polydimethylsiloxane (PDMS) networks.
Landherr, Lucas J T; Cohen, Claude; Archer, Lynden A
2011-05-17
The interfacial properties of end-linked polydimethylsiloxane (PDMS) films on silicon are examined. Thin cross-linked PDMS films (∼10 μm thick) were synthesized over a self-assembled monolayer supported on a silicon wafer. By systematically varying the concentration of monofunctional PDMS in a mixture with telechelic precursor molecules, structures ranging from near-ideal elastic networks to poorly cross-linked networks composed of a preponderance of dangling/pendent chains were synthesized. Lateral force microscopy (LFM) employing bead probes was used to quantify the effect of network structure on the interfacial friction coefficient and residual force. Indentation measurements employing an AFM in force mode were used to characterize the elastic modulus and the pull-off force for the films as a function of pendent chain content. These measurements were complemented with conventional mechanical rheometry measurements on similar thick network films to determine their bulk rheological properties. All networks studied manifested interfacial friction coefficients substantially lower than that of bare silicon. PDMS networks with the lowest pendent chain content displayed friction coefficients close to 1 order of magnitude lower than that of bare silicon, whereas networks with the highest pendent chain content manifested friction coefficients about 3 times lower than that of bare silicon. At intermediate sliding velocities, a crossover in the interfacial friction coefficient was observed, wherein cross-linked PDMS films with the least amount of pendent chains exhibit the highest friction coefficient. These observations are discussed in terms of the structure of the films and relaxation dynamics of elastic strands and dangling chains in tethered network films.
NASA Technical Reports Server (NTRS)
Nicholson, Lee M.; Whitley, Karen S.; Gates, Thomas S.
2001-01-01
Durability and long-term performance are among the primary concerns for the use of advanced polymer matrix composites (PMCs) in modern aerospace structural applications. For a PMC subJected to long-term exposure at elevated temperatures. the viscoelastic nature of the polymer matrix will contribute to macroscopic changes in composite stiffness, strength and fatigue life. Over time. changes in the polymer due to physical aging will have profound effects on tile viscoelastic compliance of the material, hence affecting its long-term durability. Thus, the ability to predict material performance using intrinsic properties, such as crosslink density and molecular weight, would greatly enhance the efficiency of design and development of PMCs. The objective of this paper is to discuss and present the results of an experimental study that considers the effects of crosslink density, molecular weight and temperature on the viscoelastic behavior including physical aging of an advanced polymer. Five distinct variations in crosslink density were used to evaluate the differences in mechanical performance of an advanced polyimide. The physical aging behavior was isolated by conducting sequenced, short-term isothermal creep compliance tests in tension. These tests were performed over a range of sub-glass transition temperatures. The material constants, material master curves and physical aging-related parameters were evaluated as a function of temperature crosslink density and molecular weight using time-temperature and time-aging time superposition techniques.
Improvement on Physical Properties of Pullulan Films by Novel Cross-Linking Strategy.
Chen, Chieh-Ting; Chen, Kuan-I; Chiang, Hsin-Han; Chen, Yu-Kuo; Cheng, Kuan-Chen
2017-01-01
Pullulan based films possess several advantages, including high transparency, low toxicity, good biodegradability, good mechanical properties, and low oxygen permeability, are preferable for food packaging. The application of pullulan films on food packaging, however, has inherent disadvantage of high water solubility. In this study, glutaraldehyde and glycerol were used as the cross-linking reagent and the plasticizer respectively to improve water resistance and physical properties of the pullulan films. Effects of cross-linking degree on physical properties, including water absorptions, swelling behaviors, water vapor permeability and tensile strengths of films were evaluated. FTIR results demonstrated that the pullulan films were successfully cross-linked by glutaraldehyde. The tensile strength of pullulan films could be enhanced significantly (P < 0.05) when glutaraldehyde was between 1% and 5% (w/w); nevertheless, the amount of glutaraldehyde above 20% (w/w) led to films brittleness. With the addition of glycerol as a plasticizer enhanced the extensibility of films as well as the hydrophilicity, resulting in higher water vapor permeability. © 2016 Institute of Food Technologists®.
Voorhaar, Lenny; De Meyer, Bernhard; Du Prez, Filip; Hoogenboom, Richard
2016-10-01
The preparation of physically crosslinked hydrogels from quasi ABA-triblock copolymers with a water-soluble middle block and hydrophobic end groups is reported. The hydrophilic monomer N-acryloylmorpholine is copolymerized with hydrophobic isobornyl acrylate via a one-pot sequential monomer addition through reversible addition fragmentation chain-transfer (RAFT) polymerization in an automated parallel synthesizer, allowing systematic variation of polymer chain length and hydrophobic-hydrophilic ratio. Hydrophobic interactions between the outer blocks cause them to phase-separate into larger hydrophobic domains in water, forming physical crosslinks between the polymers. The resulting hydrogels are studied using rheology and their self-healing ability after large strain damage is shown. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Xianfeng; Murthy, N. Sanjeeva; Becker, Matthew L.; Latour, Robert A.
2016-01-01
A multiscale modeling approach is presented for the efficient construction of an equilibrated all-atom model of a cross-linked poly(ethylene glycol) (PEG)-based hydrogel using the all-atom polymer consistent force field (PCFF). The final equilibrated all-atom model was built with a systematic simulation toolset consisting of three consecutive parts: (1) building a global cross-linked PEG-chain network at experimentally determined cross-link density using an on-lattice Monte Carlo method based on the bond fluctuation model, (2) recovering the local molecular structure of the network by transitioning from the lattice model to an off-lattice coarse-grained (CG) model parameterized from PCFF, followed by equilibration using high performance molecular dynamics methods, and (3) recovering the atomistic structure of the network by reverse mapping from the equilibrated CG structure, hydrating the structure with explicitly represented water, followed by final equilibration using PCFF parameterization. The developed three-stage modeling approach has application to a wide range of other complex macromolecular hydrogel systems, including the integration of peptide, protein, and/or drug molecules as side-chains within the hydrogel network for the incorporation of bioactivity for tissue engineering, regenerative medicine, and drug delivery applications. PMID:27013229
Electrolyte membrane, methods of manufacture thereof and articles comprising the same
Tamaki, Ryo [Santa Clarita, CA; Rice, Steven Thomas [Scotia, NY; Yeager, Gary William [Rexford, NY
2012-06-12
Disclosed herein is a method of forming an electrolyte membrane comprising forming a mixture; the mixture comprising a polyhydroxy compound, an aromatic polyhalide compound and an alkali metal hydroxide; disposing the mixture on a porous substrate; reacting the mixture to form a proton conductor; and crosslinking the proton conductor to form a cross-linked proton-conducting network. Disclosed herein too is an article comprising a porous substrate; and a crosslinked proton conductor disposed on the porous substrate.
Bio-inspired network optimization in soft materials — Insights from the plant cell wall
NASA Astrophysics Data System (ADS)
Vincent, R. R.; Cucheval, A.; Hemar, Y.; Williams, M. A. K.
2009-01-01
The dynamic-mechanical responses of ionotropic gels made from the biopolymer pectin have recently been investigated by microrheological experiments and found to exhibit behaviour indicative of semi-flexible polymer networks. In this work we investigate the gelling behaviour of pectin systems in which an enzyme (pectinmethylesterase, PME) is used to liberate ion-binding sites on initially inert polymers, while in the presence of ions. This is in contrast to the previous work, where it was the release of ions (rather than ion-binding groups) that was controlled and the polymers had pre-existing cross-linkable moieties. In stark contrast to the semi-flexible network paradigm of biological gels and the previous work on pectin, the gels studied herein exhibit the properties of chemically cross-linked networks of flexible polymers.
Photo-induced Mass Transport through Polymer Networks
NASA Astrophysics Data System (ADS)
Meng, Yuan; Anthamatten, Mitchell
2014-03-01
Among adaptable materials, photo-responsive polymers are especially attractive as they allow for spatiotemporal stimuli and response. We have recently developed a macromolecular network capable of photo-induced mass transport of covalently bound species. The system comprises of crosslinked chains that form an elastic network and photosensitive fluorescent arms that become mobile upon irradiation. We form loosely crosslinked polymer networks by Michael-Addition between multifunctional thiols and small molecule containing acrylate end-groups. The arms are connected to the network by allyl sulfide, that undergoes addition-fragmentation chain transfer (AFCT) in the presence of free radicals, releasing diffusible fluorophore. The networks are loaded with photoinitiator to allow for spatial modulation of the AFCT reactions. FRAP experiments within bulk elastomers are conducted to establish correlations between the fluorophore's diffusion coefficient and experimental variables such as network architecture, temperature and UV intensity. Photo-induced mass transport between two contacted films is demonstrated, and release of fluorophore into a solvent is investigated. Spatial and temporal control of mass transport could benefit drug release, printing, and sensing applications.
NASA Astrophysics Data System (ADS)
Jin, Kailong; Li, Lingqiao; Torkelson, John
Rubber tires illustrate well the issues ranging from economic loss to environmental problems and sustainability issues that arise with spent, covalently crosslinked polymers. A nitroxide-mediated polymerization (NMP) strategy has been developed that allows for one-step synthesis of recyclable crosslinked polymers from monomers or polymers that contain carbon-carbon double bonds amenable to radical polymerization. Resulting materials possess dynamic alkoxyamine crosslinks that undergo reversible decrosslinking as a function of temperature. Using polybutadiene as starting material, and styrene, an appropriate nitroxide molecule and bifunctional initiator for initial crosslinking, a model for tire rubber can be produced by reaction at temperatures comparable to those employed in tire molding. Upon cooling, the crosslinks are made permanent due to the extraordinarily strong temperature dependence of the reverisible nitroxide capping and uncapping reaction. Based on thermomechanical property characterization, when the original crosslinked model rubber is chopped into bits and remolded in the melt state, a well-consolidated material is obtained which exhibits full recovery of properties reflecting crosslink density after multiple recycling steps.
Fabrication of chemically cross-linked porous gelatin matrices.
Bozzini, Sabrina; Petrini, Paola; Altomare, Lina; Tanzi, Maria Cristina
2009-01-01
The aim of this study was to chemically cross-link gelatin, by reacting its free amino groups with an aliphatic diisocyanate. To produce hydrogels with controllable properties, the number of reacting amino groups was carefully determined. Porosity was introduced into the gelatin-based hydrogels through the lyophilization process. Porous and non-porous matrices were characterized with respect to their chemical structure, morphology, water uptake and mechanical properties. The physical, chemical and mechanical properties of the porous matrices are related to the extent of their cross-linking, showing that they can be controlled by varying the reaction parameters. Water uptake values (24 hours) vary between 160% and 200% as the degree of cross-linking increases. The flexibility of the samples also decreases by changing the extent of cross-linking. Young's modulus shows values between 0.188 KPa, for the highest degree, and 0.142 KPa for the lowest degree. The matrices are potential candidates for use as tissue-engineering scaffolds by modulating their physical chemical properties according to the specific application.
Interaction and the structures of coal
NASA Astrophysics Data System (ADS)
Opaprakasit, Pakorn
The origin of a decrease in the amount of soluble material from coal upon a reflux treatment has been investigated in an attempt to obtain insight into the nature of the interaction in the macromolecular network structure of coal. This decrease in the extractable material is a result of an increase in the amount of physical cross-links associated with secondary interactions. The alternate possibility of covalent cross-link formation by ether linkage was found to be unlikely because the coal hydroxyl content remains unchanged upon heat treatment. The functional groups responsible for forming these physical cross-links and their contents vary from coal to coal with coal rank. Carboxylate/cation complexes, similar to those found in ionomers, dominate in low rank coal. In high rank coal, the clusters involving pi-cation interactions were observed. Both mechanisms seem to play a role in mid rank coals. These physical cross-links are responsible for a lowering of the extraction yield of coal, but are disrupted by a treatment with acid solution, resulting in an increase in the extraction yield. As a consequence, the cross-links in coal structure should be classified into two types; a "permanent" covalent cross-link, which break under extreme conditions such as chemical reaction and pyrolysis, and "reversible" cross-links, largely associated with ionomer-like structure and pi-cation interactions. The interaction between a "magic" solvent of N-methylpyrollidone and carbon disulfide (NMP/CS2) and its role in the unusual extractability enhancement of Upper Freeport coal has also been investigated. The results strongly suggest that NMP/CS2 mixed solvents form complexes with cations. These mixed solvents are capable of forming a solid complex with cations from NaOH and some simple salts, such as NaCl and LiCl. Given that Upper Freeport coal contains a large amount of mineral matter, it is not surprising that these types of complexes could be formed in the present of the mixed solvents, which in turn enhances the coal extraction yield. Finally, the evidence for the presence of a glass transition temperature in coal was examined. The results from Differential Scanning Calorimetry showed that no transition similar to the Tg can be observed in bulk coal or its low-molecular weight fraction, pyridine soluble extracted material, at a temperature near 110°C. In contrast, an irreversible transition that is due to water evaporation has been found. Thermomechanical measurements, which are very sensitive to the presence of a Tg in synthetic polymers, also provided no evidence for a Tg below temperatures where chemical reactions occur. Additionally, the results from Thermomechanical Analysis showed an expansion in size when the coal was heated to 300°C, which is associated with a "caking" process. The degree of expansion during this "caking" process is about five times greater in the direction perpendicular to the bedding plane than the parallel, indicating an accommodation of anisotropic strain relaxation, which was generated in the direction perpendicular to the bedding plane during the coalification process.
NASA Astrophysics Data System (ADS)
Yasin, Tariq; Ahmed, Shamshad; Ahmed, Munir; Yoshii, Fumio
2005-06-01
An investigation has been undertaken to find out the effect of concentration of different polyfunctional monomers (PFMs) on the physical properties of the acrylonitrile-butadiene rubber (NBR) crosslinked by electron beam (EB). The PFMs used were diethylene glycol dimethacrylate, trimethylol propane trimethacrylate and trimethylol propane triacrylate. The physical properties of EB-irradiated NBR sheets were evaluated by measuring the tensile strength, elongation percent at break, hardness and gel fraction. The results showed a remarkable increase in tensile strength, hardness and gel fraction as the concentration of PFMs was increased from 1 part per hundred (phr) to 5 phr in the NBR samples whereas elongation percent decreased in a steady manner. The improvement in physical properties of radiation crosslinked NBR in the presence of PFMs may be attributed to its increased crosslinking density as observed by the corresponding increase in gel content.
Mikhailov, Sergey N; Zakharova, Alexandra N; Drenichev, Mikhail S; Ershov, Andrey V; Kasatkina, Mariya A; Vladimirov, Leonid V; Novikov, Valentin V; Kildeeva, Natalia R
2016-01-01
In medical and pharmaceutical applications, chitosan is used as a component of hydrogels-macromolecular networks swollen in water. Chemical hydrogels are formed by covalent links between the crosslinking reagents and amino functionalities of chitosan. To date, the most commonly used chitosan crosslinkers are dialdehydes, such as glutaraldehyde (GA). We have developed novel GA like crosslinkers with additional functional groups-dialdehyde derivatives of uridine (oUrd) and nucleotides (oUMP and oAMP)-leading to chitosan-based biomaterials with new properties. The process of chitosan crosslinking was investigated in details and compared to crosslinking with GA. The rates of crosslinking with oUMP, oAMP, and GA were essentially the same, though much higher than in the case of oUrd. The remarkable difference in the crosslinking properties of nucleoside and nucleotide dialdehydes can be clearly attributed to the presence of the phosphate group in nucleotides that participates in the gelation process through ionic interactions with the amino groups of chitosan. Using NMR spectroscopy, we have not observed the formation of aldimine bonds. It can be concluded that the real number of crosslinks needed to cause gelation of chitosan chains may be less than 1%.
Surface-attached orthogonal gradient hydrogels
NASA Astrophysics Data System (ADS)
Chinnayan Kannan, Pandiyarajan; Genzer, Jan
Gradient materials play a significant role in the creation of artificial implants due to their potential to reduce stress concentration when two or more structures with different mechanical properties are joined together, e . g . , tendon, a fibrous protein that connects the soft and hard muscle tissues in our body. We employ free radical polymerization to synthesize random copolymers containing 90% of N-isopropyl acrylamide (NIPAAm), 5% photo-active methacrylyloxybenzophenone (MABP) and 5% thermally-active styrenesulfonylazide (SSAz) crosslinkers. The presence of MABP and SSAz facilitates adjusting gel density on a flat support in two orthogonal directions by spatially and independently controlling UV dosage and temperature. The swelling behavior (α) of the gels in water and methanol is examined using a spectroscopic ellipsometry and the degree of swelling depends on the extent of crosslinking that ranges from α = 1-1.2 (highly crosslinked gels) to α = 4-5 (loosely crosslinked gels). We compare the network properties surface-attached gels and un-attached identical counterparts and confirm that the linear swelling ratio of surface-attached networks is higher than that of the corresponding un-attached gels.
Red cell membrane skeleton: structure-function relationships.
Palek, J; Liu, S C
1980-01-01
This papaer reviews our present understanding of ultrastructure, organization, and functional characteristics of the erythrocyte membrane cytoskeleton. This two-dimensional fibrillar network of submembrane proteins can be visualized after extraction of lipids and integral membrane proteins by Triton X-100. Current data suggest that the major structural components of the cytoskeleton are heterodimers of double-stranded spectrin that form tetramers by head-to-head associations. The tetramers may be connected into a fibrillar meshwork by oligomers of actin. The control of membrane integrity by this network is illustrated by examples of two hemolyotic anemias characterized by marked membrane instability and vesiculation: 1) hereditary spherocytic anemia of the house mouse associated with spectrin deficiency and 2) hereditary pyropoikilocytosis, a hemolytic anemia in man characterized by thermal instability of the membrane and the presence of abnormal spectrin, which exhibits an increased propensity to thermal denaturation. Stabilization of the cytoskeletal network by covalent cross-links between the nearest cytoskeletal and integral membrane proteins results in a decrease of membrane deformability and a fixation of erythrocytes in their abnormal shape. Such cross-linkings include: 1) transamidative cross-links produced by introduction of Ca2+ (>0.5 mM) into fresh erythrocytes, and 2) intermolecular disulfide couplings, which are formed after extensive oxidation of fresh erythrocytes or after mild oxidation of ATP-depleted, but not fresh, erythrocytes. The significance of these cross-links in stabilization of shape of abnormal erythrocytes such as schistocytes remains to be determined. We conclude that spectrin and actin form a fibrillar submembrane network that plays an important role in control of membrane integrity, erythrocyte deformability, and stabilization of cells in abnormal shapes.
Network confinement and heterogeneity slows nanoparticle diffusion in polymer gels
NASA Astrophysics Data System (ADS)
Parrish, Emmabeth; Caporizzo, Matthew A.; Composto, Russell J.
2017-05-01
Nanoparticle (NP) diffusion was measured in polyacrylamide gels (PAGs) with a mesh size comparable to the NP size, 21 nm. The confinement ratio (CR), NP diameter/mesh size, increased from 0.4 to 3.8 by increasing crosslinker density and from 0.4 to 2.1 by adding acetone, which collapsed the PAGs. In all gels, NPs either became localized, moving less than 200 nm, diffused microns, or exhibited a combination of these behaviors, as measured by single particle tracking. Mean squared displacements (MSDs) of mobile NPs decreased as CR increased. In collapsed gels, the localized NP population increased and MSD of mobile NPs decreased compared to crosslinked PAGs. For all CRs, van Hove distributions exhibited non-Gaussian displacements, consistent with intermittent localization of NPs. The non-Gaussian parameter increased from a maximum of 1.5 for crosslinked PAG to 5 for collapsed PAG, consistent with greater network heterogeneity in these gels. Diffusion coefficients decreased exponentially as CR increased for crosslinked gels; however, in collapsed gels, the diffusion coefficients decreased more strongly, which was attributed to network heterogeneity. Collapsing the gel resulted in an increasingly tortuous pathway for NPs, slowing diffusion at a given CR. Understanding how gel structure affects NP mobility will allow the design and enhanced performance of gels that separate and release molecules in membranes and drug delivery platforms.
Lin, Yinan; Xia, Xiaoxia; Shang, Ke; Elia, Roberto; Huang, Wenwen; Cebe, Peggy; Leisk, Gary; Omenetto, Fiorenzo; Kaplan, David L
2013-08-12
Electrochemically controlled, reversible assembly of biopolymers into hydrogel structures is a promising technique for on-demand cell or drug encapsulation and release systems. An electrochemically sol-gel transition has been demonstrated in regenerated Bombyx mori silk fibroin, offering a controllable way to generate biocompatible and reversible adhesives and other biomedical materials. Despite the involvement of an electrochemically triggered electrophoretic migration of the silk molecules, the mechanism of the reversible electrogelation remains unclear. It is, however, known that the freshly prepared silk electrogels (e-gels) adopt a predominantly random coil conformation, indicating a lack of cross-linking as well as thermal, mechanical, and morphological stabilities. In the present work, the tuning of covalent and physical β-sheet cross-links in silk hydrogels was studied for programming the structural properties. Scanning electron microscopy (SEM) revealed delicate morphology, including locally aligned fibrillar structures, in silk e-gels, preserved by combining glutaraldehyde-cross-linking and ethanol dehydration. Fourier transform infrared (FTIR) spectroscopic analysis of either electrogelled, vortex-induced or spontaneously formed silk hydrogels showed that the secondary structure of silk e-gels was tunable between non-β-sheet-dominated and β-sheet-dominated states. Dynamic oscillatory rheology confirmed the mechanical reinforcement of silk e-gels provided by controlled chemical and physical cross-links. The selective incorporation of either chemical or physical or both cross-links into the electrochemically responsive, originally unstructured silk e-gel should help in the design for electrochemically responsive protein polymers.
NASA Astrophysics Data System (ADS)
Melillo, Matthew Joseph
Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from sealants and marine-antifouling coatings to medical devices and absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into and leach out of PDMS networks is of critical importance for the design and use in another application - microfluidic devices. The growing use of PDMS in microfluidic devices raises the concern that some researchers may use this material without fully understanding all of its advantages, drawbacks, and intricacies. The primary goal of this Ph.D. dissertation is to elucidate PDMS network molecular structure to macroscopic property relationships and to demonstrate how molecular architecture can alter dynamic mechanical and wetting characteristics. We prepare PDMS materials by using vinyl/ tetrakis(dimethylsiloxy)silane (TDSS) and silanol/ tetraethylorthosilicate (TEOS) combinations of PDMS end-groups and crosslinkers as two model systems. Under constant curing conditions, we systematically study the effects of polymer molecular weight, loading of crosslinker, and end-group chemical functionality on the extent of gelation and the dynamic mechanical and water wetting properties of end-linked PDMS networks. The extent of the gelation reaction is determined using the Soxhlet extraction to quantify the amount of material that did and did not participate in the crosslinking reactions, termed the gel and sol fractions, respectively. We use the Miller-Macosko model in conjunction with the gel fraction and precise chemical composition (i.e., stoichiometric ratio and molecular weight) to determine the fractions of elastic and pendant material, the molecular weight between chemical crosslinks, and the average effective functionality of the crosslinker molecule. Based on dynamic mechanical testing, we find that the maximum storage moduli are achieved at optimal stoichiometric conditions in the vinyl/TDSS and commercial PDMS-based Sylgard 184 composite, but only keep improving with additional crosslinker in the silanol/TEOS systems due to in situ TEOS aggregation. We relate molecular network topology to mechanical properties using outputs from the Miller-Macosko model in the vinyl/TDSS system. The elastic fraction and storage modulus correlate well, as do the pendant fraction and the loss tangent, demonstrating the importance of each fraction in bulk mechanical properties. By studying the dynamic behavior of water droplets wetting PDMS substrates, we observe non-linear wetting behaviors that are markedly different from linear behaviors seen on glassy polymer substrates. The non-linear behavior is only observed prior to extraction, while after extraction, both systems demonstrate behavior similar to glassy polymers. This reveals the dramatic role small amounts of uncrosslinked materials present in the sol fraction play in the surface wetting dynamics of PDMS materials. We further demonstrate the role of uncrosslinked material by adding silicone oils into otherwise fully crosslinked PDMS networks and study their wetting properties. Through careful formulation and preparation of PDMS materials, compared to simply mixing two formulations present in Sylgard 184, one can apply polymer network models to glean useful information about network topology. The benefits of doing so outweigh the costs. We stress the importance of performing Soxhlet extraction to remove unreacted components from PDMS materials, even when using optimal stoichiometry. These mobile molecules that remain after crosslinking can alter significantly wetting behavior and readily leach into liquid environments. However, it is equally important to stress that Soxhlet extraction will not remove all unreacted material. Some will always remain in PDMS, which is often the practice in preparing microfluidic devices. While Sylgard 184 is very well suited for some applications, the results presented in this dissertation demonstrate to researchers that the material does have its limitations and that other options are available. These findings will aid in the design and implementation of reliable microfluidic devices and other PDMS-based materials that encounter liquid interfaces.
NASA Astrophysics Data System (ADS)
Chung, Yongjin; Ahn, Yeonjoo; Christwardana, Marcelinus; Kim, Hansung; Kwon, Yongchai
2016-04-01
New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL-1, they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL-1 GOx displays a high electron transfer rate, followed by excellent catalytic activity and EBC performance.New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL-1, they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL-1 GOx displays a high electron transfer rate, followed by excellent catalytic activity and EBC performance. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00902f
Patel, Alpesh; Dolatshahi-Pirouz, Alireza; Zhang, Hongbin; Rangarajan, Kaushik; Iviglia, Giorgio; Shin, Su-Ryon; Hussain, Mohammad Asif
2015-01-01
Carbon nanotube (CNT)-based nanocomposites often possess properties such as high stiffness, electrical conductivity, and thermal stability and have been studied for various biomedical and biotechnological applications. However, the current design approaches utilize CNTs as physical filler, and thus, the true potential of CNT-based nanocomposites has not been achieved. Here, we introduce a general approach of fabricating stiff, elastomeric nanocomposites from poly(glycerol sebacate) (PGS) and CNTs. The covalent crosslinking between the nanotubes and polymer chains resulted in novel property combinations that are not observed in conventional nanocomposites. The addition of 1% CNTs resulted a five-fold increase in the tensile modulus and a six-fold increase in compression modulus compared with PGS alone, which is far superior to the previously reported studies for CNT-based nanocomposites. Despite significant increase in mechanical stiffness, the elasticity of the network was not compromised and the resulting nanocomposites showed more than 94% recovery. This study demonstrates that the chemical conjugation of CNTs to a PGS backbone results in stiff and elastomeric nanocomposites. Additionally, in vitro studies using human mesenchymal stem cells (hMSCs) indicated that the incorporation of CNTs to PGS network significantly enhanced the differentiation potential of the seeded hMSCs rendering them potentially suitable for applications ranging from scaffolding in musculoskeletal tissue engineering to biosensors in biomedical devices. PMID:26146547
A Sulfilimine Bond Identified in Collagen IV
Vanacore, Roberto; Ham, Amy-Joan L.; Voehler, Markus; Sanders, Charles R.; Conrads, Thomas P.; Veenstra, Timothy D.; Sharpless, K. Barry; Dawson, Philip E.; Hudson, Billy G.
2010-01-01
Collagen IV networks are ancient proteins of basement membranes that underlie epithelia in metazoa from sponge to human. The networks provide structural integrity to tissues and serve as ligands for integrin cell-surface receptors. They are assembled by oligomerization of triple-helical protomers and are covalently cross-linked, a key reinforcement that stabilizes networks. We used Fourier-transform ion cyclotron resonance mass spectrometry and nuclear magnetic resonance spectroscopy to show that a sulfilimine bond (-S=N-) crosslinks hydroxylysine-211 and methionine-93 of adjoining protomers, a bond not previously found in biomolecules. This bond, the nitrogen analog of a sulfoxide, appears to have arisen at the divergence of sponge and cnidaria, an adaptation of the extracellular matrix in response to mechanical stress in metazoan evolution. PMID:19729652
Vulpe, Raluca; Le Cerf, Didier; Dulong, Virginie; Popa, Marcel; Peptu, Catalina; Verestiuc, Liliana; Picton, Luc
2016-12-01
The elaboration of chemically crosslinked hydrogels based on collagen (C), hyaluronanic acid (HA) and sericin (S) with different polymer ratios was investigated by in-situ rheology. This reaction was performed via amide or ester bond reaction activated by carbodiimide, in pure water. Prior to molecule crosslinking, the rheological behaviour of the biopolymers (alone or in mixture) was characterized in a semi-dilute concentration regime. Both flow and dynamic measurements showed that uncrosslinked collagen alone appears to be rather elastic with yield stress properties, whereas uncrosslinked HA alone appears to be rather shear thinning and viscoelastic in agreement with entangled polymer behaviour. Sericin exhibited Newtonian low viscosity behaviour according to its very low molar mass. Before crosslinking, HA exhibited viscoelastic behaviour at concentrations above the critical entangled concentration (C*) in the mixtures, thus HA shows promise as a matrix for future crosslinked networks, whereas sericin did not significantly modify the rheology. During the reaction, followed by rheology, the kinetics were slower for pure HA systems compared with the mixtures (i.e., with added collagen and/or to a lesser extent sericin). At the same time, the final network of hydrogels (i.e., the elastic modulus) was more structured in the mixture based systems. This result is explained by ester bonds (the only possibility for pure HA systems), which are less favourable and reactive than amide bonds (possible with sericin and collagen). The presence of collagen in the HA matrix reinforced the hydrogel network. SEM studies confirmed the structure of the hydrogels, and in vitro degradability was globally consistent with the effect of the selected enzyme according to the hydrogel composition. All the elaborated hydrogels were non-cytotoxic in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.
Influence of Network Structure on Glass Transition Temperature of Elastomers
Bandzierz, Katarzyna; Reuvekamp, Louis; Dryzek, Jerzy; Dierkes, Wilma; Blume, Anke; Bielinski, Dariusz
2016-01-01
It is generally believed that only intermolecular, elastically-effective crosslinks influence elastomer properties. The role of the intramolecular modifications of the polymer chains is marginalized. The aim of our study was the characterization of the structural parameters of cured elastomers, and determination of their influence on the behavior of the polymer network. For this purpose, styrene-butadiene rubbers (SBR), cured with various curatives, such as DCP, TMTD, TBzTD, Vulcuren®, DPG/S8, CBS/S8, MBTS/S8 and ZDT/S8, were investigated. In every series of samples a broad range of crosslink density was obtained, in addition to diverse crosslink structures, as determined by equilibrium swelling and thiol-amine analysis. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) were used to study the glass transition process, and positron annihilation lifetime spectroscopy (PALS) to investigate the size of the free volumes. For all samples, the values of the glass transition temperature (Tg) increased with a rise in crosslink density. At the same time, the free volume size proportionally decreased. The changes in Tg and free volume size show significant differences between the series crosslinked with various curatives. These variations are explained on the basis of the curatives’ structure effect. Furthermore, basic structure-property relationships are provided. They enable the prediction of the effect of curatives on the structural parameters of the network, and some of the resulting properties. It is proved that the applied techniques—DSC, DMA, and PALS—can serve to provide information about the modifications to the polymer chains. Moreover, on the basis of the obtained results and considering the diversified curatives available nowadays, the usability of “part per hundred rubber” (phr) unit is questioned. PMID:28773731
Liang, Yingkai; Kiick, Kristi L
2016-02-08
Novel, liposome-cross-linked hybrid hydrogels cross-linked by the Michael-type addition of thiols with maleimides were prepared via the use of maleimide-functionalized liposome cross-linkers and thiolated polyethylene glycol (PEG) polymers. Gelation of the materials was confirmed by oscillatory rheology experiments. These hybrid hydrogels are rendered degradable upon exposure to thiol-containing molecules such as glutathione (GSH), via the incorporation of selected thioether succinimide cross-links between the PEG polymers and liposome nanoparticles. Dynamic light scattering (DLS) characterization confirmed that intact liposomes were released upon network degradation. Owing to the hierarchical structure of the network, multiple cargo molecules relevant for chemotherapies, namely doxorubicin (DOX) and cytochrome c, were encapsulated and simultaneously released from the hybrid hydrogels, with differential release profiles that were driven by degradation-mediated release and Fickian diffusion, respectively. This work introduces a facile approach for the development of advanced, hybrid drug delivery vehicles that exhibit novel chemical degradation.
Large strain deformation behavior of polymeric gels in shear- and cavitation rheology
NASA Astrophysics Data System (ADS)
Hashemnejad, Seyed Meysam; Kundu, Santanu
Polymeric gels are used in many applications including in biomedical and in food industries. Investigation of mechanical responses of swollen polymer gels and linking that to the polymer chain dynamics are of significant interest. Here, large strain deformation behavior of two different gel systems and with different network architecture will be presented. We consider biologically relevant polysaccharide hydrogels, formed through ionic and covalent crosslinking, and physically associating triblock copolymer gels in a midblock selective solvent. Gels with similar low-strain shear modulus display distinctly different non-linear rheological behavior in large strain shear deformation. Both these gels display strain-stiffening behavior in shear-deformation prior to macroscopic fracture of the network, however, only the alginate gels display negative normal stress. The cavitation rheology data show that the critical pressure for cavitation is higher for alginate gels than that observed for triblock gels. These distinctly different large-strain deformation behavior has been related to the gel network structure, as alginate chains are much stiffer than the triblock polymer chains.
Controlled release of therapeutics using interpenetrating polymeric networks.
Aminabhavi, Tejraj M; Nadagouda, Mallikarjuna N; More, Uttam A; Joshi, Shrinivas D; Kulkarni, Venkatrao H; Noolvi, Malleshappa N; Kulkarni, Padmakar V
2015-04-01
The ever-increasing developments in pharmaceutical formulations have led to the widespread use of biodegradable polymers in various forms and configurations. In particular, interpenetrating network (IPN) and semi-IPN polymer structures that are capable of releasing drugs in a controlled manner have gained much wider importance in recent years. Recently, IPNs and semi-IPNs have emerged as innovative materials of choice in controlled release (CR) of drugs as the release from these systems depends on pH of the media and temperature in addition to the nature of the system. These networks can be prepared as smart hydrogels following chemical or physical crosslinking methods to show remarkable drug release patterns compared to single polymer systems. A large number of IPNs and semi-IPNs have been reported in the literature. The present review is focused on the preparation methods and their CR properties with reference to anticancer, anti-asthmatic, antibiotic, anti-inflammatory, anti-tuberculosis and antihypertensive drugs, as majority of these drugs have been reported to be the ideal choices for using IPNs and semi-IPNs.
Shankar, K Gopal; Gostynska, Natalia; Montesi, Monica; Panseri, Silvia; Sprio, Simone; Kon, Elizaveta; Marcacci, Maurilio; Tampieri, Anna; Sandri, Monica
2017-02-01
The present study aims to investigate the physical-chemical and biological features exhibited by porous scaffolds for regeneration of cartilaginous tissues obtained through stabilization of 3D gelatin hydrogels by physical (DHT), chemical (BDDGE) and natural (Genipin) cross-linking approaches. The study aimed at comparatively assessing the porous microstructure and the long-term resistance of the scaffolds upon degradation in wet physiological conditions (37°C, pH=7.4). The degree of cross-linking increases as function of incorporation of cross-linkers which was maximum up to 73% for BDDGE. The infrared spectroscopy and thermal analysis confirmed the gelatin structure was preserved during the cross-linking treatments. Mechanical properties of the scaffolds were analysed by static and dynamic compression test, which showed different viscoelastic behaviour upon various cross-linking strategies. The biological performance of the scaffolds investigated using human chondrocytes showed good cell adhesion, viability and proliferation, as well as extensive 3D scaffold colonization. Besides, the analysis of gene expression related to the formation of new chondral tissue reported increasing ability with time in the formation of new extra-cellular matrix. In conclusion, out of three different cross-linking methods, the gelatin scaffolds subjected to dehydrothermal treatment (DHT) represented to be the most favourable 3D scaffold for cartilage regeneration. Copyright © 2016 Elsevier B.V. All rights reserved.
Huang, Min; Hou, Yi; Li, Yubao; Wang, Danqing; Zhang, Li
2017-01-01
Abstract A dual network hydrogel made up of polyvinylalcohol (PVA) crosslinked by borax and polyvinylpyrrolidone (PVP) was prepared by means of freezing-thawing circles. Here PVP was incorporated by linking with PVA to form a network structure, while the introduction of borax played the role of crosslinking PVA chains to accelerate the formation of a dual network structure in PVA/PVP composite hydrogel, thus endowing the hydrogel with high mechanical properties. The effects of both PVP and borax on the hydrogels were evaluated by comparing the two systems of PVA/PVP/borax and PVA/borax hydrogels. In the former system, adding 4.0% PVP not only increased the water content and the storage modulus but also enhanced the mechanical strength of the final hydrogel. But an overdose of PVP just as more than 4.0% tended to undermine the structure of hydrogels, and thus deteriorated hydrogels’ properties because of the weakened secondary interaction between PVP and PVA. Likewise, increasing borax could promote the gel crosslinking degree, thus making gels show a decrease in water content and swelling ratio, meanwhile shrinking the pores inside the hydrogels and finally enhancing the mechanical strength of hydrogels prominently. The developed hydrogel with high performances holds great potential for applications in biomedical and industrial fields. PMID:29491822
Pillai, Jisha Jayadevan; Thulasidasan, Arun Kumar Theralikattu; Anto, Ruby John; Chithralekha, Devika Nandan; Narayanan, Ashwanikumar; Kumar, Gopalakrishnapillai Sankaramangalam Vinod
2014-07-15
The hydrogel based system is found to be rarely reported for the delivery of hydrophobic drug due to the incompatibility of hydrophilicity of the polymer network and the hydrophobicity of drug. This problem can be solved by preparing semi-interpenetrating network of cross-linked polymer for tuning the hydrophilicity so as to entrap the hydrophobic drugs. The current study is to develop a folic acid conjugated cross-linked pH sensitive, biocompatible polymeric hydrogel to achieve a site specific drug delivery. For that, we have synthesized a folic acid conjugated PEG cross-linked acrylic polymer (FA-CLAP) hydrogel and investigated its loading and release of curcumin. The formed polymer hydrogel was then conjugated with folic acid for the site specific delivery of curcumin to cancer cells and then further characterized and conducted the cell uptake and cytotoxicity studies on human cervical cancer cell lines (HeLa). In this study, we synthesized folic acid conjugated cross-linked acrylic hydrogel for the delivery of hydrophobic drugs to the cancer site. Poly (ethyleneglycol) (PEG) diacrylate cross-linked acrylic polymer (PAA) was prepared via inverse emulsion polymerization technique and later conjugated it with folic acid (FA-CLAP). Hydrophobic drug curcumin is entrapped into it and investigated the entrapment efficiency. Characterization of synthesized hydogel was done by using Fourier Transform-Infrared spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), Differential Scanning Calorimetry (DSC). Polymerization and folate conjugation was confirmed by FT-IR spectroscopy. The release kinetics of drug from the entrapped form was studied which showed initial burst release followed by sustained release due to swelling and increased cross-linking. In vitro cytotoxicity and cell uptake studies were conducted in human cervical cancer (HeLa) cell lines. Results showed that curcumin entrapped folate conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel showed higher cellular uptake than the non folate conjugated form. So this can be suggested as a better delivery system for site specific release of hydrophobic cancer drugs.
DSC investigation of bovine hide collagen at varying degrees of crosslinking and humidities.
Schroepfer, Michaela; Meyer, Michael
2017-10-01
Bovine hide collagen (nonCLC; non-CrossLinked Collagen) was analysed by differential scanning calorimetry (DSC) at different hydration degrees and compared with hide collagen samples crosslinked with glutaraldehyde (CLC-GA) and chromium(III) ions (CLC-Cr), respectively. Crosslinking and drying were confirmed to increase the denaturation temperature. Different regions were assigned, that reflect the variation of the influence of water on the denaturation temperature. Furthermore, at moderate hydration degrees, the enthalpies of non-crosslinked collagen increase compared to the fully hydrated state. This reflects a glue-like action of water in the range of 25% hydration. Crosslinking of bovine hide collagen decreases the enthalpy by 25% in the fully hydrated state, even at very low levels of crosslinking This can be explained by intensive effects of the crosslinking agent on the hydration network of the collagen molecules, assuming that the enthalpies are principally a result of hydrogen bonding. At very low water contents DSC peaks of CLC-Cr completely disappear. This could be explained by competition between hydroxosulfochromate(III) complexes and collagen for water. Copyright © 2017 Elsevier B.V. All rights reserved.
Infrared microspectroscopic determination of collagen cross-links in articular cartilage
NASA Astrophysics Data System (ADS)
Rieppo, Lassi; Kokkonen, Harri T.; Kulmala, Katariina A. M.; Kovanen, Vuokko; Lammi, Mikko J.; Töyräs, Juha; Saarakkala, Simo
2017-03-01
Collagen forms an organized network in articular cartilage to give tensile stiffness to the tissue. Due to its long half-life, collagen is susceptible to cross-links caused by advanced glycation end-products. The current standard method for determination of cross-link concentrations in tissues is the destructive high-performance liquid chromatography (HPLC). The aim of this study was to analyze the cross-link concentrations nondestructively from standard unstained histological articular cartilage sections by using Fourier transform infrared (FTIR) microspectroscopy. Half of the bovine articular cartilage samples (n=27) were treated with threose to increase the collagen cross-linking while the other half (n=27) served as a control group. Partial least squares (PLS) regression with variable selection algorithms was used to predict the cross-link concentrations from the measured average FTIR spectra of the samples, and HPLC was used as the reference method for cross-link concentrations. The correlation coefficients between the PLS regression models and the biochemical reference values were r=0.84 (p<0.001), r=0.87 (p<0.001) and r=0.92 (p<0.001) for hydroxylysyl pyridinoline (HP), lysyl pyridinoline (LP), and pentosidine (Pent) cross-links, respectively. The study demonstrated that FTIR microspectroscopy is a feasible method for investigating cross-link concentrations in articular cartilage.
Liquid droplets of cross-linked actin filaments
NASA Astrophysics Data System (ADS)
Weirich, Kimberly; Banerjee, Shiladitya; Dasbiswas, Kinjal; Vaikuntanathan, Suriyanarayan; Gardel, Margaret
Soft materials constructed from biomolecules self-assemble into a myriad of structures that work in concert to support cell physiology. One critical soft material is the actin cytoskeleton, a viscoelastic gel composed of cross-linked actin filaments. Although actin networks are primarily known for their elastic properties, which are crucial to regulating cell mechanics, the viscous behavior has been theorized to enable shape changes and flows. We experimentally demonstrate a fluid phase of cross-linked actin, where cross-linker condenses dilute short actin filaments into spindle-shaped droplets, or tactoids. Tactoids have shape dynamics consistent with a continuum model of liquid crystal droplets. The cross-linker, which acts as a long range attractive interaction, analogous to molecular cohesion, controls the tactoid shape and dynamics, which reports on the liquid's interfacial tension and viscosity. We investigate how the cross-linker properties and filament length influence the liquid properties. These results demonstrate a novel mechanism to control organization of the actin cytoskeleton and provide insight into design principles for complex, macromolecular liquid phases.
Arp2/3 Complex from Acanthamoeba Binds Profilin and Cross-links Actin Filaments
Mullins, R. Dyche; Kelleher, Joseph F.; Xu, James; Pollard, Thomas D.
1998-01-01
The Arp2/3 complex was first purified from Acanthamoeba castellanii by profilin affinity chromatography. The mechanism of interaction with profilin was unknown but was hypothesized to be mediated by either Arp2 or Arp3. Here we show that the Arp2 subunit of the complex can be chemically cross-linked to the actin-binding site of profilin. By analytical ultracentrifugation, rhodamine-labeled profilin binds Arp2/3 complex with a Kd of 7 μM, an affinity intermediate between the low affinity of profilin for barbed ends of actin filaments and its high affinity for actin monomers. These data suggest the barbed end of Arp2 is exposed, but Arp2 and Arp3 are not packed together in the complex exactly like two actin monomers in a filament. Arp2/3 complex also cross-links actin filaments into small bundles and isotropic networks, which are mechanically stiffer than solutions of actin filaments alone. Arp2/3 complex is concentrated at the leading edge of motile Acanthamoeba, and its localization is distinct from that of α-actinin, another filament cross-linking protein. Based on localization and actin filament nucleation and cross-linking activities, we propose a role for Arp2/3 in determining the structure of the actin filament network at the leading edge of motile cells. PMID:9529382
Dong, Shoubin; Huang, Zetao; Tang, Liqun; Zhang, Xiaoyang; Zhang, Yongrou; Jiang, Yi
2017-07-01
The extracellular matrix (ECM) provides structural and biochemical support to cells and tissues, which is a critical factor for modulating cell dynamic behavior and intercellular communication. In order to further understand the mechanisms of the interactive relationship between cell and the ECM, we developed a three-dimensional (3D) collagen-fiber network model to simulate the micro structure and mechanical behaviors of the ECM and studied the stress-strain relationship as well as the deformation of the ECM under tension. In the model, the collagen-fiber network consists of abundant random distributed collagen fibers and some crosslinks, in which each fiber is modeled as an elastic beam and a crosslink is modeled as a linear spring with tensile limit, it means crosslinks will fail while the tensile forces exceed the limit of spring. With the given parameters of the beam and the spring, the simulated tensile stress-strain relation of the ECM highly matches the experimental results including damaged and failed behaviors. Moreover, by applying the maximal inscribed sphere method, we measured the size distribution of pores in the fiber network and learned the variation of the distribution with deformation. We also defined the alignment of the collagen-fibers to depict the orientation of fibers in the ECM quantitatively. By the study of changes of the alignment and the damaged crosslinks against the tensile strain, this paper reveals the comprehensive mechanisms of four stages of 'toe', 'linear', 'damage' and 'failure' in the tensile stress-strain relation of the ECM which can provide further insight in the study of cell-ECM interaction.
Continuum mechanical model for cross-linked actin networks with contractile bundles
NASA Astrophysics Data System (ADS)
Ferreira, J. P. S.; Parente, M. P. L.; Natal Jorge, R. M.
2018-01-01
In the context of a mechanical approach to cell biology, there is a close relationship between cellular function and mechanical properties. In recent years, an increasing amount of attention has been given to the coupling between biochemical and mechanical signals by means of constitutive models. In particular, on the active contractility of the actin cytoskeleton. Given the importance of the actin contraction on the physiological functions, this study propose a constitutive model to describe how the filamentous network controls its mechanics actively. Embedded in a soft isotropic ground substance, the network behaves as a viscous mechanical continuum, comprised of isotropically distributed cross-linked actin filaments and actomyosin bundles. Trough virtual rheometry experiments, the present model relates the dynamics of the myosin motors with the network stiffness, which is to a large extent governed by the time-scale of the applied deformations/forces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsai, Tsung-Han; Ertem, S. Piril; Maes, Ashley M.
2015-01-28
Random copolymers of isoprene and 4-vinylbenzyl chloride (VBCl) with varying compositions were synthesized via nitroxide-mediated polymerization. Subsequent quaternization afforded solvent processable and cross-linkable ionomers with a wide range of ion exchange capacities (IECs). Solution cast membranes were thermally cross-linked to form anion exchange membranes. Cross-linking was achieved by taking advantage of the unsaturations on the polyisoprene backbone, without added cross-linkers. A strong correlation was found between water uptake and ion conductivity of the membranes: conductivities of the membranes with IECs beyond a critical value were found to be constant related to their high water absorption. Environmentally controlled small-angle X-ray scatteringmore » experiments revealed a correlation between the average distance between ionic clusters and the ion conductivity, indicating that a well-connected network of ion clusters is necessary for efficient ion conduction and high ion conductivity.« less
Geven, Mike A; Barbieri, Davide; Yuan, Huipin; de Bruijn, Joost D; Grijpma, Dirk W
2015-01-01
Composite materials of photo-crosslinked poly(trimethylene carbonate) and nanoscale hydroxyapatite were prepared and their mechanical characteristics for application as orbital floor implants were assessed. The composites were prepared by solvent casting poly(trimethylene carbonate) macromers with varying amounts of nano-hydroxyapatite and subsequent photo-crosslinking. The incorporation of the nano-hydroxyapatite into the composites was examined by thermogravimetric analysis, scanning electron microscopy and gel content measurements. The mechanical properties were investigated by tensile testing and trouser tearing experiments. Our results show that nano-hydroxyapatite particles can readily be incorporated into photo-crosslinked poly(trimethylene carbonate) networks. Compared to the networks without nano-hydroxyapatite, incorporation of 36.3 wt.% of the apatite resulted in an increase of the E modulus, yield strength and tensile strength from 2.2 MPa to 51 MPa, 0.5 to 1.4 N/mm2 and from 1.3 to 3.9 N/mm2, respectively. We found that composites containing 12.4 wt.% nano-hydroxyapatite had the highest values of strain at break, toughness and average tear propagation strength (376% , 777 N/mm2 and 3.1 N/mm2, respectively).
Through the looking glass: Unraveling the network structure of coal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregory, D. M.; Stec, D. F.; Botto, R. E.
1999-12-23
Since the original idea by Sanada and Honda of treating coal as a three-dimensional cross-linked network, coal structure has been probed by monitoring ingress of solvents using traditional volumetric or gravimetric methods. However, using these techniques has allowed only an indirect observation of the swelling process. More recently, the authors have developed magnetic resonance microscopy (MRM) approaches for studying solvent ingress in polymeric systems, about which fundamental aspects of the swelling process can be deduced directly and quantitatively. The aim of their work is to utilize solvent transport and network response parameters obtained from these methods to assess fundamental propertiesmore » of the system under investigation. Polymer and coal samples have been studied to date. Numerous swelling parameters measured by magnetic resonance microscopy are found to correlate with cross-link density of the polymer network under investigation. Use of these parameters to assess the three-dimensional network structure of coal is discussed.« less
Epoxy thermoset networks derived from vegetable oils and their blends
NASA Astrophysics Data System (ADS)
Ryu, Chang; Ravalli, Matthew
2015-03-01
Epoxidized vegetable oils (EVOs), such as epoxidized soybean oil and linseed oils were prepared by the partial oxidation of the unsaturated double bonds in vegetable oils and used as monomers for preparing epoxy thermoset materials based on the cationic polymerization. These EVOs have been used to prepare epoxy thermosets of different network densities by cationic polymerization using onium salt catalyst. The crosslinked epoxy thermosets provide an ideal platform to study the structure-property-relationships of networked polymers. In particular, rheological studies on the epoxidized vegetable oil thermosets have been performed to measure the molecular weights between crosslinks (Mx) in the epoxy thermosets and to ultimately elucidate the role of functionality of epoxy groups in EVO on the mechanical and thermophysical properties of the epoxy thermoset materials. NSF DMR POLYMERS 1308617.
Mechanics of composite actin networks: in vitro and cellular perspectives
NASA Astrophysics Data System (ADS)
Upadhyaya, Arpita
2014-03-01
Actin filaments and associated actin binding proteins play an essential role in governing the mechanical properties of eukaryotic cells. Even though cells have multiple actin binding proteins (ABPs) that exist simultaneously to maintain the structural and mechanical integrity of the cellular cytoskeleton, how these proteins work together to determine the properties of actin networks is not well understood. The ABP, palladin, is essential for the integrity of cell morphology and movement during development. Palladin coexists with alpha-actinin in stress fibers and focal adhesions and binds to both actin and alpha-actinin. To obtain insight into how mutually interacting actin crosslinking proteins modulate the properties of actin networks, we have characterized the micro-structure and mechanics of actin networks crosslinked with palladin and alpha-actinin. Our studies on composite networks of alpha-actinin/palladin/actin show that palladin and alpha-actinin synergistically determine network viscoelasticity. We have further examined the role of palladin in cellular force generation and mechanosensing. Traction force microscopy revealed that TAFs are sensitive to substrate stiffness as they generate larger forces on substrates of increased stiffness. Contrary to expectations, knocking down palladin increased the forces generated by cells, and also inhibited the ability to sense substrate stiffness for very stiff gels. This was accompanied by significant differences in the actin organization and adhesion dynamics of palladin knock down cells. Perturbation experiments also suggest altered myosin activity in palladin KD cells. Our results suggest that the actin crosslinkers such as palladin and myosin motors coordinate for optimal cell function and to prevent aberrant behavior as in cancer metastasis.
NASA Astrophysics Data System (ADS)
Nguyen, Dan; Saleh, Omar
Active fluctuations - non-directed fluctuations attributable, not to thermal energy, but to non-equilibrium processes - are thought to influence biology by increasing the diffusive motion of biomolecules. Dense DNA regions within cells (i.e. chromatin) are expected to exhibit such phenomena, as they are cross-linked networks that continually experience propagating forces arising from dynamic cellular activity. Additional agitation within these gene-encoding DNA networks could have potential genetic consequences. By changing the local mobility of transcriptional machinery and regulatory proteins towards/from their binding sites, and thereby influencing transcription rates, active fluctuations could prove to be a physical means of modulating gene expression. To begin probing this effect, we construct genetic DNA hydrogels, as a simple, reconstituted model of chromatin, and quantify transcriptional output from these hydrogels in the presence/absence of active fluctuations.
Supramolecular Organization of the α121-α565 Collagen IV Network*
Robertson, Wesley E.; Rose, Kristie L.; Hudson, Billy G.; Vanacore, Roberto M.
2014-01-01
Collagen IV is a family of 6 chains (α1-α6), that form triple-helical protomers that assemble into supramolecular networks. Two distinct networks with chain compositions of α121 and α345 have been established. These oligomerize into separate α121 and α345 networks by a homotypic interaction through their trimeric noncollagenous (NC1) domains, forming α121 and α345 NC1 hexamers, respectively. These are stabilized by novel sulfilimine (SN) cross-links, a covalent cross-link that forms between Met93 and Hyl211 at the trimer-trimer interface. A third network with a composition of α1256 has been proposed, but its supramolecular organization has not been established. In this study we investigated the supramolecular organization of this network by determining the chain identity of sulfilimine-cross-linked NC1 domains derived from the α1256 NC1 hexamer. High resolution mass spectrometry analyses of peptides revealed that sulfilimine bonds specifically cross-link α1 to α5 and α2 to α6 NC1 domains, thus providing the spatial orientation between interacting α121 and α565 trimers. Using this information, we constructed a three-dimensional homology model in which the α565 trimer shows a good chemical and structural complementarity to the α121 trimer. Our studies provide the first chemical evidence for an α565 protomer and its heterotypic interaction with the α121 protomer. Moreover, our findings, in conjunction with our previous studies, establish that the six collagen IV chains are organized into three canonical protomers α121, α345, and α565 forming three distinct networks: α121, α345, and α121-α565, each of which is stabilized by sulfilimine bonds between their C-terminal NC1 domains. PMID:25006246
Ductile thermoset polymers via controlling network flexibility.
Hameed, N; Salim, N V; Walsh, T R; Wiggins, J S; Ajayan, P M; Fox, B L
2015-06-18
We report the design and synthesis of a polymer structure from a cross-linkable epoxy-ionic liquid system which behaves like a hard and brittle epoxy thermoset, perfectly ductile thermoplastic and an elastomer, all depending on controllable network compositions.
Kristufek, Samantha L; Yang, Guozhen; Link, Lauren A; Rohde, Brian J; Robertson, Megan L; Wooley, Karen L
2016-08-23
The natural polyphenolic compound quercetin was functionalized and cross-linked to afford a robust epoxy network. Quercetin was selectively methylated and functionalized with glycidyl ether moieties using a microwave-assisted reaction on a gram scale to afford the desired monomer (Q). This quercetin-derived monomer was treated with nadic methyl anhydride (NMA) to obtain a cross-linked network (Q-NMA). The thermal and mechanical properties of this naturally derived network were compared to those of a conventional diglycidyl ether bisphenol A-derived counterpart (DGEBA-NMA). Q-NMA had similar thermal properties [i.e., glass transition (Tg ) and decomposition (Td ) temperatures] and comparable mechanical properties (i.e., Young's Modulus, storage modulus) to that of DGEBA-NMA. However, it had a lower tensile strength and higher flexural modulus at elevated temperatures. The application of naturally derived, sustainable compounds for the replacement of commercially available petrochemical-based epoxies is of great interest to reduce the environmental impact of these materials. Q-NMA is an attractive candidate for the replacement of bisphenol A-based epoxies in various specialty engineering applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Xu, Chuanhui; Cao, Liming; Huang, Xunhui; Chen, Yukun; Lin, Baofeng; Fu, Lihua
2017-08-30
In most cases, the strength of self-healing supramolecular rubber based on noncovalent bonds is in the order of KPa, which is a challenge for their further applications. Incorporation of conventional fillers can effectively enhance the strength of rubbers, but usually accompanied by a sacrifice of self-healing capability due to that the filler system is independent of the reversible supramolecular network. In the present work, in situ reaction of methacrylic acid (MAA) and excess zinc oxide (ZnO) was realized in natural rubber (NR). Ionic cross-links in NR matrix were obtained by limiting the covalent cross-linking of NR molecules and allowing the in situ polymerization of MAA/ZnO. Because of the natural affinity between Zn 2+ ion-rich domains and ZnO, the residual nano ZnO participated in formation of a reversible ionic supramolecular hybrid network, thus having little obstructions on the reconstruction of ionic cross-links. Meanwhile, the well dispersed residual ZnO could tailor the mechanical properties of NR by changing the MAA/ZnO molar ratios. The present study thus provides a simple method to fabricate a new self-healing NR with tailorable mechanical properties that may have more potential applications.
In-situ cross linking of polyvinyl alcohol. [application to battery separator films
NASA Technical Reports Server (NTRS)
Philipp, W. H.; Hsu, L. C.; Sheibley, D. W. (Inventor)
1981-01-01
A method of producing a crosslinked polyvinyl alcohol structure, such as a battery separator membrane or electrode envelope is described. An aqueous solution of a film-forming polyvinyl alcohol is admixed with an aldehyde crosslinking agent a basic pH to inhibit crosslinking. The crosslinking agent, perferably a dialdehyde such as glutaraldehyde, is used in an amount of from about 1/2 to about 20% of the theoretical amount required to crosslink all of the hydroxyl groups of the polymer. The aqueous admixture is formed into a desired physical shape, such as by casting a sheet of the solution. The sheet is then dried to form a self-supporting film. Crosslinking is then effected by immersing the film in aqueous acid solution. The resultant product has excellent properties for use as a battery separator.
Strain-Induced Alignment in Collagen Gels
Vader, David; Kabla, Alexandre; Weitz, David; Mahadevan, Lakshminarayana
2009-01-01
Collagen is the most abundant extracellular-network-forming protein in animal biology and is important in both natural and artificial tissues, where it serves as a material of great mechanical versatility. This versatility arises from its almost unique ability to remodel under applied loads into anisotropic and inhomogeneous structures. To explore the origins of this property, we develop a set of analysis tools and a novel experimental setup that probes the mechanical response of fibrous networks in a geometry that mimics a typical deformation profile imposed by cells in vivo. We observe strong fiber alignment and densification as a function of applied strain for both uncrosslinked and crosslinked collagenous networks. This alignment is found to be irreversibly imprinted in uncrosslinked collagen networks, suggesting a simple mechanism for tissue organization at the microscale. However, crosslinked networks display similar fiber alignment and the same geometrical properties as uncrosslinked gels, but with full reversibility. Plasticity is therefore not required to align fibers. On the contrary, our data show that this effect is part of the fundamental non-linear properties of fibrous biological networks. PMID:19529768
Recycling tires? Reversible crosslinking of poly(butadiene).
Trovatti, Eliane; Lacerda, Talita M; Carvalho, Antonio J F; Gandini, Alessandro
2015-04-01
Furan-modified poly(butadiene) prepared by the thiol-ene click reaction is crosslinked with bismaleimides through the Diels-Alder reaction, giving rise to a novel recyclable elastomer. This is possible because of the thermal reversibility of the adducts responsible for the formation of the network. The use of this strategy provides the possibility to produce recyclable tires. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Peles, Zachi; Zilberman, Meital
2012-01-01
Naturally derived materials are becoming widely used in the biomedical field. Soy protein has advantages over various types of natural proteins employed for biomedical applications due to its low price, non-animal origin and relatively long storage time and stability. In the current study soy protein isolate (SPI) was investigated as a matrix for wound dressing applications. The antibiotic drug gentamicin was incorporated into the matrix for local controlled release and, thus, protection against bacterial infection. Homogeneous yellowish films were cast from aqueous solutions. After cross-linking they combined high tensile strength and Young's modulus with the desired ductility. The plasticizer type, cross-linking agent and method of cross-linking were found to strongly affect the tensile properties of the SPI films. Selected SPI films were tested for relevant physical properties and the gentamicin release profile. The cross-linking method affected the degree of water uptake and the weight loss profile. The water vapor transmission rate of the films was in the desired range for wound dressings (∼2300 g m(-2) day(-1)) and was not affected by the cross-linking method. The gentamicin release profile exhibited a moderate burst effect followed by a decreasing release rate which was maintained for at least 4 weeks. Diffusion was the dominant release mechanism of gentamicin from cross-linked SPI films. Appropriate selection of the process parameters yielded SPI wound dressings with the desired mechanical and physical properties and drug release behavior to protect against bacterial infection. These unique structures are thus potentially useful as burn and ulcer dressings. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Switching "on" and "off" the adhesion in stimuli-responsive elastomers.
Kaiser, S; Radl, S V; Manhart, J; Ayalur-Karunakaran, S; Griesser, T; Moser, A; Ganser, C; Teichert, C; Kern, W; Schlögl, S
2018-03-28
The present work aims at the preparation of dry adhesives with switchable bonding properties by using the reversible nature of the [4πs+4πs] cycloaddition of anthracenes. Photo-responsive hydrogenated carboxylated nitrile butadiene rubber with photo-responsive pendant anthracene groups is prepared by one-pot synthesis. The formation of 3D networks relies on the photodimerization of the anthracene moieties upon UV exposure (λ > 300 nm). Controlled cleavage of the crosslink sites is achieved by either deep UV exposure (λ = 254 nm) or thermal dissociation at 70 °C. The kinetics of the optical and thermal cleavage routes are compared in thin films using UV-vis spectroscopy and their influence on the reversibility of the network is detailed. Going from thin films to free standing samples the modulation of the network structure and thermo-mechanical properties over repeated crosslinking and cleavage cycles are characterized by low-field NMR spectroscopy and dynamic mechanical analysis. The applicability of the stimuli-responsive networks as adhesives with reversible bonding properties is demonstrated. The results evidence that the reversibility of the crosslinking reaction enables a controlled switching "on" and "off" of adhesion properties. The recovery of the adhesion force amounts to 75 and 80% for photo- and thermal dissociation, respectively. Spatial control of adhesion properties is evidenced by adhesion force mapping experiments of photo-patterned films.
Unterberger, Michael J; Holzapfel, Gerhard A
2014-11-01
The protein actin is a part of the cytoskeleton and, therefore, responsible for the mechanical properties of the cells. Starting with the single molecule up to the final structure, actin creates a hierarchical structure of several levels exhibiting a remarkable behavior. The hierarchy spans several length scales and limitations in computational power; therefore, there is a call for different mechanical modeling approaches for the different scales. On the molecular level, we may consider each atom in molecular dynamics simulations. Actin forms filaments by combining the molecules into a double helix. In a model, we replace molecular subdomains using coarse-graining methods, allowing the investigation of larger systems of several atoms. These models on the nanoscale inform continuum mechanical models of large filaments, which are based on worm-like chain models for polymers. Assemblies of actin filaments are connected with cross-linker proteins. Models with discrete filaments, so-called Mikado models, allow us to investigate the dependence of the properties of networks on the parameters of the constituents. Microstructurally motivated continuum models of the networks provide insights into larger systems containing cross-linked actin networks. Modeling of such systems helps to gain insight into the processes on such small scales. On the other hand, they call for verification and hence trigger the improvement of established experiments and the development of new methods.
MTCL1 crosslinks and stabilizes non-centrosomal microtubules on the Golgi membrane.
Sato, Yoshinori; Hayashi, Kenji; Amano, Yoshiko; Takahashi, Mikiko; Yonemura, Shigenobu; Hayashi, Ikuko; Hirose, Hiroko; Ohno, Shigeo; Suzuki, Atsushi
2014-11-04
Recent studies have revealed the presence of a microtubule subpopulation called Golgi-derived microtubules that support Golgi ribbon formation, which is required for maintaining polarized cell migration. CLASPs and AKAP450/CG-NAP are involved in their formation, but the underlying molecular mechanisms remain unclear. Here, we find that the microtubule-crosslinking protein, MTCL1, is recruited to the Golgi membranes through interactions with CLASPs and AKAP450/CG-NAP, and promotes microtubule growth from the Golgi membrane. Correspondingly, MTCL1 knockdown specifically impairs the formation of the stable perinuclear microtubule network to which the Golgi ribbon tethers and extends. Rescue experiments demonstrate that besides its crosslinking activity mediated by the N-terminal microtubule-binding region, the C-terminal microtubule-binding region plays essential roles in these MTCL1 functions through a novel microtubule-stabilizing activity. These results suggest that MTCL1 cooperates with CLASPs and AKAP450/CG-NAP in the formation of the Golgi-derived microtubules, and mediates their development into a stable microtubule network.
Non-equilibrium fluctuations of a semi-flexible filament driven by active cross-linkers
NASA Astrophysics Data System (ADS)
Weber, I.; Appert-Rolland, C.; Schehr, G.; Santen, L.
2017-11-01
The cytoskeleton is an inhomogeneous network of semi-flexible filaments, which are involved in a wide variety of active biological processes. Although the cytoskeletal filaments can be very stiff and embedded in a dense and cross-linked network, it has been shown that, in cells, they typically exhibit significant bending on all length scales. In this work we propose a model of a semi-flexible filament deformed by different types of cross-linkers for which one can compute and investigate the bending spectrum. Our model allows to couple the evolution of the deformation of the semi-flexible polymer with the stochastic dynamics of linkers which exert transversal forces onto the filament. We observe a q-2 dependence of the bending spectrum for some biologically relevant parameters and in a certain range of wave numbers q, as observed in some experiments. However, generically, the spatially localized forcing and the non-thermal dynamics both introduce deviations from the thermal-like q-2 spectrum.
Kong, Bong Ju; Kim, Ayoung; Park, Soo Nam
2016-08-20
In the present study, the properties of hydrogel systems based on hyaluronic acid (HA)-hydroxyethyl cellulose (HEC) were investigated for effective transdermal delivery of isoliquiritigenin (ILTG). Hydrogels were synthesized by chemical cross-linking, and network structures were characterised using scanning electron microscopy (SEM) and surface area analyser. Texture properties and swelling of HA-HEC hydrogels were found to be closely linked to cross-linker concentration and swelling medium. Water in HA-HEC hydrogels was found to exist mostly in the form of free water. The viscoelasticity and the network stabilization of the hydrogels were analysed via rheological studies. The release kinetics of the hydrogel followed Fickian diffusion mechanism. In an in vitro skin penetration study, the system substantially improved the delivery of ILTG into the skin. These results indicate that the hydrogel system composed of HA and HEC has potential as a transdermal delivery system, with cross-linking density and the swelling medium influencing the properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Alexander, Shirin; Dunnill, Charles W; Barron, Andrew R
2016-03-15
The assembly of temperature/pH sensitive complex microparticle structures through chemisorption and physisorption provides a responsive system that offers application as routes to immobilization of proppants in-situ. Thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) along with energy dispersive X-ray analysis (EDX) have been used to characterize a series of bi-functionalized monolayers and/or multilayers grown on alumina microparticles and investigate the reactive nature of both temperature sensitive cross-linker (epoxy resin) with the layers and pH-responsive bridging layer (polyetheramine). The bifunctional acids, behaving as molecular anchors, allow for a controlled reaction with a cross-linker (resin or polymer) with the formation of networks, which is either irreversible or reversible based on the nature of the cross-linker. The networks results in formation of porous hierarchical particles that offer a potential route to the creation of immobile proppant pack. Copyright © 2015 Elsevier Inc. All rights reserved.
Bank, R A; Tekoppele, J M; Janus, G J; Wassen, M H; Pruijs, H E; Van der Sluijs, H A; Sakkers, R J
2000-07-01
The brittleness of bone in patients with osteogenesis imperfecta (OI) has been attributed to an aberrant collagen network. However, the role of collagen in the loss of tissue integrity has not been well established. To gain an insight into the biochemistry and structure of the collagen network, the cross-links hydroxylysylpyridinoline (HP) and lysylpyridinoline (LP) and the level of triple helical hydroxylysine (Hyl) were determined in bone of OI patients (types I, III, and IV) as well as controls. The amount of triple helical Hyl was increased in all patients. LP levels in OI were not significantly different; in contrast, the amount of HP (and as a consequence the HP/LP ratio and the total pyridinoline level) was significantly increased. There was no relationship between the sum of pyridinolines and the amount of triple helical Hyl, indicating that lysyl hydroxylation of the triple helix and the telopeptides are under separate control. Cross-linking is the result of a specific three-dimensional arrangement of collagens within the fibril; only molecules that are correctly aligned are able to form cross-links. Inasmuch as the total amount of pyridinoline cross-links in OI bone is similar to control bone, the packing geometry of intrafibrillar collagen molecules is not disturbed in OI. Consequently, the brittleness of bone is not caused by a disorganized intrafibrillar collagen packing and/or loss of cross-links. This is an unexpected finding, because mutant collagen molecules with a random distribution within the fibril are expected to result in disruptions of the alignment of neighboring collagen molecules. Pepsin digestion of OI bone revealed that collagen located at the surface of the fibril had lower cross-link levels compared with collagen located at the inside of the fibril, indicating that mutant molecules are not distributed randomly within the fibril but are located preferentially at the surface of the fibril.
Tunable Enzymatic Activity and Enhanced Stability of Cellulase Immobilized in Biohybrid Nanogels.
Peng, Huan; Rübsam, Kristin; Jakob, Felix; Schwaneberg, Ulrich; Pich, Andrij
2016-11-14
This paper reports a facile approach for encapsulation of enzymes in nanogels. Our approach is based on the use of reactive copolymers able to get conjugated with enzyme and build 3D colloidal networks or biohybrid nanogels. In a systematic study, we address the following question: how the chemical structure of nanogel network influences the biocatalytic activity of entrapped enzyme? The developed method allows precise control of the enzyme activity and improvement of enzyme resistance against harsh store conditions, chaotropic agents, and organic solvents. The nanogels were constructed via direct chemical cross-linking of water-soluble reactive copolymers poly(N-vinylpyrrolidone-co-N-methacryloxysuccinimide) with proteins such as enhanced green fluorescent protein (EGFP) and cellulase in water-in-oil emulsion. The water-soluble reactive copolymers with controlled amount of reactive succinimide groups and narrow dispersity were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Poly(ethylene glycol) bis(3-aminopropyl) and branched polyethylenimine were utilized as model cross-linkers to optimize synthesis of nanogels with different architectures in the preliminary experiments. Biofluorescent nanogels with different loading amount of EGFP and varying cross-linking densities were obtained. We demonstrate that the biocatalytic activity of cellulase-conjugated nanogels (CNG) can be elegantly tuned by control of their cross-linking degrees. Circular dichroism (CD) spectra demonstrated that the secondary structures of the immobilized cellulase were changed in the aspect of α-helix contents. The secondary structures of cellulase in highly cross-linked nanogels were strongly altered compared with loosely cross-linked nanogels. The fluorescence resonance energy transfer (FRET) based study further revealed that nanogels with lower cross-linking degree enable higher substrate transport rate, providing easier access to the active site of the enzyme. The biohybrid nanogels demonstrated significantly improved stability in preserving enzymatic activity compared with free cellulase. The functional biohybrid nanogels with tunable enzymatic activity and improved stability are promising candidates for applications in biocatalysis, biomass conversion, or energy utilization fields.
NASA Astrophysics Data System (ADS)
Cha, Min Suc; Jeong, Hwan Yeop; Shin, Hee Young; Hong, Soo Hyun; Kim, Tae-Ho; Oh, Seong-Geun; Lee, Jang Yong; Hong, Young Taik
2017-09-01
A series of polysulfone-based crosslinked anion exchange membranes (AEMs) with primary diamine-based crosslinkers has been prepared via simple a crosslinking process as low-cost and durable membranes for vanadium redox flow batteries (VRFBs). Chloromethylated polysulfone is used as a precursor polymer for crosslinked AEMs (CAPSU-x) with different degrees of crosslinking. Among the developed AEMs, CAPSU-2.5 shows outstanding dimensional stability and anion (Cl-, SO42-, and OH-) conductivity. Moreover, CAPSU-2.5 exhibits much lower vanadium ion permeability (2.72 × 10-8 cm2 min-1) than Nafion 115 (2.88 × 10-6 cm2 min-1), which results in an excellent coulombic efficiency of 100%. The chemical and operational stabilities of the membranes have been investigated via ex situ soaking tests in 0.1 M VO2+ solution and in situ operation tests for 100 cycles, respectively. The excellent chemical, physical, and electrochemical properties of the CAPSU-2.5 membrane make it suitable for use in VRFBs.
Turasan, Hazal; Barber, Emma A; Malm, Morgan; Kokini, Jozef L
2018-06-01
This study discovered through FTIR, FT-Raman and rheological measurements that glutaraldehyde binds to zein through the amine groups of glutamine turns by replacing the already-bonded oleic acid molecules and forming imine structures. As a secondary crosslinking mechanism, glutaraldehyde unfolds some of the α-helices and turns them into β-sheets. While crosslinking resulted in stiffer and less ductile zein films, it made the surface of the films rougher, measured using AFM, and more hydrophilic, measured using WCA. In the crosslinking conditions in this study, the number of crosslinks estimated from rubber elasticity theory were not enough to change the water vapor permeability of the films significantly. Improving the understanding of crosslinking mechanism and its effects on physical and chemical properties of zein films can be useful to develop stiffer, stronger and more durable platforms for biodegradable biosensors, microfluidic devices or scaffolds. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ma, Hairan; Forssell, Pirkko; Kylli, Petri; Lampi, Anna-Maija; Buchert, Johanna; Boer, Harry; Partanen, Riitta
2012-06-20
Sodium caseinate was modified by transglutaminase catalyzed cross-linking reaction prior to the emulsification process in order to study the effect of cross-linking on the oxidative stability of protein stabilized emulsions. The extent of the cross-linking catalyzed by different dosages of transglutaminase was investigated by following the ammonia production during the reaction and using SDS-PAGE gel. O/W emulsions prepared with the cross-linked and non-cross-linked sodium caseinates were stored for 30 days under the same conditions. Peroxide value measurement, oxygen consumption measurement, and headspace gas chromatography analysis were used to study the oxidative stability of the emulsions. The emulsion made of the cross-linked sodium caseinate showed an improved oxidative stability with reduced formation of fatty acid hydroperoxides and volatiles and a longer period of low rate oxygen consumption. The improving effect of transglutaminase catalyzed cross-linking could be most likely attributed to the enhanced physical stability of the interfacial protein layer against competitive adsorption by oil oxidation products.
Krishnakumar, Gopal Shankar; Gostynska, Natalia; Dapporto, Massimiliano; Campodoni, Elisabetta; Montesi, Monica; Panseri, Silvia; Tampieri, Anna; Kon, Elizaveta; Marcacci, Maurilio; Sprio, Simone; Sandri, Monica
2018-01-01
This study focuses on the development of novel bone-like scaffolds by bio-inspired, pH-driven, mineralization of type I collagen matrix with magnesium-doped hydroxyapatite nanophase (MgHA/Coll). To this aim, this study evaluates the altered modifications in the obtained composite due to different crosslinkers such as dehydrothermal treatment (DHT), 1,4-butanediol diglycidyl ether (BDDGE) and ribose in terms of morphological, physical-chemical and biological properties. The physical-chemical properties of the composites evaluated by XRD, FTIR, ICP and TGA demonstrated that the chemical mimesis of bone was effectively achieved using the in-lab biomineralization process. Furthermore, the presence of various crosslinkers greatly promoted beneficial enzymatic resistivity and swelling ability. The morphological results revealed highly porous and fibrous micro-architecture with total porosity above 85% with anisotropic pore size within the range of 50-200μm in all the analysed composites. The mechanical behaviour in response to compressive forces demonstrated enhanced compressive modulus in all crosslinked composites, suggesting that mechanical behaviour is largely dependent on the type of crosslinker used. The biomimetic compositional and morphological features of the composites elicited strong cell-material interaction. Therefore, the results showed that by activating specific crosslinking mechanisms, hybrid composites can be designed and tailored to develop tissue-specific biomimetic biomaterials for hard tissue engineering. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sekkar, Venkataraman; Alex, Ancy Smitha; Kumar, Vijendra; Bandyopadhyay, G. G.
2018-01-01
Polyurethane networks between hydroxyl terminated polybutadiene (HTPB) and butanediol (BD) were prepared using toluene diisocyanate (TDI) as the curative. HTPB and BD were taken at equivalent ratios viz.: 1:0, 1:1, 1:2, 1:4, and 1:8. Crosslink density (CLD) was theoretically calculated using α-model equations developed by Marsh. CLD for the polyurethane networks was experimentally evaluated from equilibrium swell and stress-strain data. Young's modulus and Mooney-Rivlin approaches were adopted to calculate CLD from stress-strain data. Experimentally obtained CLD values were enormously higher than theoretical values especially at higher BD/HTPB equivalent ratios. The difference in the theoretical and experimental values for CLD was explained in terms of local crystallization due to the formation of hard segments and hydrogen bonded interactions.
Sinz, Andrea
2014-12-01
During the last 15 years, chemical cross-linking combined with mass spectrometry (MS) and computational modeling has advanced from investigating 3D-structures of isolated proteins to deciphering protein interaction networks. In this article, the author discusses the advent, the development and the current status of the chemical cross-linking/MS strategy in the context of recent technological developments. A direct way to probe in vivo protein-protein interactions is by site-specific incorporation of genetically encoded photo-reactive amino acids or by non-directed incorporation of photo-reactive amino acids. As the chemical cross-linking/MS approach allows the capture of transient and weak interactions, it has the potential to become a routine technique for unraveling protein interaction networks in their natural cellular environment.
Xu, Yongxiang; Yuan, Shenpo; Han, Jianmin; Lin, Hong; Zhang, Xuehui
2017-11-15
The development of scaffolds to mimic the gradient structure of natural tissue is an important consideration for effective tissue engineering. In the present study, a physical cross-linking chitosan hydrogel with gradient structures was fabricated via a step-by-step cross-linking process using sodium tripolyphosphate and sodium hydroxide as sequential cross-linkers. Chitosan hydrogels with different structures (single, double, and triple layers) were prepared by modifying the gelling process. The properties of the hydrogels were further adjusted by varying the gelling conditions, such as gelling time, pH, and composition of the crosslinking solution. Slight cytotoxicity was showed in MTT assay for hydrogels with uncross-linking chitosan solution and non-cytotoxicity was showed for other hydrogels. The results suggest that step-by-step cross-linking represents a practicable method to fabricate scaffolds with gradient structures. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Stam, Samantha; Gardel, Margaret
Viscoelastic networks of biopolymers coordinate the motion of intracellular objects during transport. These networks have nonlinear mechanical properties due to events such as filament buckling or breaking of cross-links. The influence of such nonlinear properties on the time and length scales of transport is not understood. Here, we use in vitro networks of actin and the motor protein myosin II to clarify how intracellular forces regulate active diffusion. We observe two transitions in the mean-squared displacement of cross-linked actin with increasing motor concentration. The first is a sharp transition from initially subdiffusive to diffusive-like motion that requires filament buckling but does not cause net contraction of the network. Further increase of the motor density produces a second transition to network rupture and ballistic actin transport. This corresponds with an increase in the correlation of motion and thus may be caused when forces propagate far enough for global motion. We conclude that filament buckling and overall network contraction require different amounts of force and produce distinct transport properties. These nonlinear transitions may act as mechanical switches that can be turned on to produce observed motion within cells.
Protein-engineered block-copolymers as stem cell delivery vehicles
NASA Astrophysics Data System (ADS)
Heilshorn, Sarah
2015-03-01
Stem cell transplantation is a promising therapy for a myriad of debilitating diseases and injuries; however, current delivery protocols are inadequate. Transplantation by direct injection, which is clinically preferred for its minimal invasiveness, commonly results in less than 5% cell viability, greatly inhibiting clinical outcomes. We demonstrate that mechanical membrane disruption results in significant acute loss of viability at clinically relevant injection rates. As a strategy to protect cells from these damaging forces, we show that cell encapsulation within hydrogels of specific mechanical properties will significantly improve viability. Building on these fundamental studies, we have designed a reproducible, bio-resorbable, customizable hydrogel using protein-engineering technology. In our Mixing-Induced Two-Component Hydrogel (MITCH), network assembly is driven by specific and stoichiometric peptide-peptide binding interactions. By integrating protein science methodologies with simple polymer physics models, we manipulate the polypeptide chain interactions and demonstrate the direct ability to tune the network crosslinking density, sol-gel phase behavior, and gel mechanics. This is in contrast to many other physical hydrogels, where predictable tuning of bulk mechanics from the molecular level remains elusive due to the reliance on non-specific and non-stoichiometric chain interactions for network formation. Furthermore, the hydrogel network can be easily modified to deliver a variety of bioactive payloads including growth factors, peptide drugs, and hydroxyapatite nanoparticles. Through a series of in vitro and in vivo studies, we demonstrate that these materials may significantly improve transplanted stem cell retention and function.
Hönes, Roland; Rühe, Jürgen
2018-05-08
Metallic superhydrophobic surfaces (SHSs) combine the attractive properties of metals, such as ductility, hardness, and conductivity, with the favorable wetting properties of nanostructured surfaces. Moreover, they promise additional benefits with respect to corrosion protection. For the modification of the intrinsically polar and hydrophilic surfaces of metals, a new method has been developed to deposit a long-term stable, highly hydrophobic coating, using nanostructured Ni surfaces as an example. Such substrates were chosen because the deposition of a thin Ni layer is a common choice for enhancing corrosion resistance of other metals. As the hydrophobic coating, we propose a thin film of an extremely hydrophobic fluoropolymer network. To form this network, a thin layer of a fluoropolymer precursor is deposited on the Ni substrate which includes a comonomer that is capable of C,H insertion cross-linking (CHic). Upon UV irradiation or heating, the cross-linker units become activated and the thin glassy film of the precursor is transformed into a polymer network that coats the surface conformally and permanently, as shown by extensive extraction experiments. To achieve an even higher stability, the same precursor film can also be transformed into a chemically surface-attached network by depositing a self-assembled monolayer of an alkane phosphonic acid on the Ni before coating with the precursor. During cross-linking, by the same chemical process, the growing polymer network will simultaneously attach to the alkane phosphonic acid layer at the surface of the metal. This strategy has been used to turn fractal Ni "nanoflower" surfaces grown by anisotropic electroplating into SHSs. The wetting characteristics of the obtained nanostructured metallic surfaces are studied. Additionally, the corrosion protection effect and the significant mechanical durability are demonstrated.
Novel actin crosslinker superfamily member identified by a two step degenerate PCR procedure.
Byers, T J; Beggs, A H; McNally, E M; Kunkel, L M
1995-07-24
Actin-crosslinking proteins link F-actin into the bundles and networks that constitute the cytoskeleton. Dystrophin, beta-spectrin, alpha-actinin, ABP-120, ABP-280, and fimbrin share homologous actin-binding domains and comprise an actin crosslinker superfamily. We have identified a novel member of this superfamily (ACF7) using a degenerate primer-mediated PCR strategy that was optimized to resolve less-abundant superfamily sequences. The ACF7 gene is on human chromosome 1 and hybridizes to high molecular weight bands on northern blots. Sequence comparisons argue that ACF7 does not fit into one of the existing families, but represents a new class within the superfamily.
Bio-Inspired Metal-Coordination Dynamics: A Unique Tool for Engineering Soft Matter Mechanics
NASA Astrophysics Data System (ADS)
Holten-Andersen, Niels
Growing evidence supports a critical role of metal-coordination in soft biological material properties such as self-healing, underwater adhesion and autonomous wound plugging. Using bio-inspired metal-binding polymers, initial efforts to mimic these properties with metal-coordination crosslinked polymer materials have shown promise. In addition, with polymer network mechanics strongly coupled to coordinate crosslink dynamics material properties can be easily tuned from visco-elastic fluids to solids. Given their exploitation in desirable material applications in Nature, bio-inspired metal-coordinate complex crosslinking provides an opportunity to further advance synthetic polymer materials design. Early lessons from this pursuit are presented.
Interfacial friction and adhesion of cross-linked polymer thin films swollen with linear chains.
Zhang, Qing; Archer, Lynden A
2007-07-03
The preparation and interfacial properties of a new type of tethered, thin-film lubricant coating are presented. These coatings are composed of three components: a dense self-assembled monolayer (SAM) underlayer that presents reactive vinyl groups at its surface; a cross-linked polydimethylsiloxane (PDMS) overlayer that is covalently tethered to the SAM; and free, mobile linear PDMS chains dispersed in the network. We investigate the influence of the molecular weight (Ms) and concentration of the free PDMS chains on the structure and equilibrium swelling properties of the cross-linked films. Using a bead-probe lateral force microscopy measurement technique, we also quantify the interfacial friction and adhesion characteristics of surfaces functionalized with these coatings. We find that both the volume fraction and the molecular weight of free PDMS molecules in the coatings influence their interfacial friction and adhesion properties. For example, the addition of short PDMS chains in dry, cross-linked PDMS thin films yields tethered surface coatings with ultralow friction coefficients (mu = 5.2 x 10(-3)). An analysis based on classical lubrication theory suggests that the reduction in friction force produced by free polymer is a consequence of the gradual separation of asperities on opposing surfaces and the consequent substitution of solid-solid friction by viscous drag of the free polymer chains in the network.
Network Confinement and Heterogeneity Slows Nanoparticle Diffusion in Polymer Gels
NASA Astrophysics Data System (ADS)
Parrish, Emmabeth; Caporizzo, Matthew; Composto, Russell
Nanoparticle (NP) diffusion was measured in polyacrylamide gels (PAG) with a mesh size comparable to NP size, 20nm. The confinement ratio (CR), NP diameter/mesh, increased from 0.4 to 3.8 by increasing crosslinker density and 0.4 to 2 by adding acetone, which collapsed PAG. In all gels, NPs either became localized (<200nm) or diffused microns, as measured by single particle tracking. Mean squared displacements (MSD) of mobile NPs decreased as CR increased. In collapsed gels, the localized NP population increased and MSD of mobile NPs decreased compared to crosslinked PAG. For all CRs, van Hove distributions exhibited non-Gaussian displacements consistent with intermittent localization of NPs. The non-Gaussian parameter increased from a maximum of 1.5 for crosslinked PAG to 5 for collapsed PAG, consistent with greater network heterogeneity. Diffusion coefficients, D, decreased exponentially as CR increased for crosslinked gels, but in collapsed gels D decreased more strongly, suggesting CR alone was insufficient to capture diffusion. Collapsing the gel resulted in an increasingly tortuous pathway for NPs, slowing diffusion at a given CR. Understanding how gel structure affects NP mobility will allow the design of gels with improved ability to separate and release molecules. ACS/PRF 54028-ND7, NSF/MWN DMR-1210379.
Ibrahim, Samir; Kang, Qian K; Ramamurthi, Anand
2009-01-01
In recent studies, we showed that exogenous hyaluronic acid oligomers (HA-o) stimulate functional endothelialization, though native long-chain HA is more bioinert and possibly more biocompatible. Thus, in this study, hydrogels containing high molecular weight (HMW) HA (1×106 Da) and HA oligomer mixtures (HA-o: 0.75–10 kDa) were created by crosslinking with divinyl sulfone (DVS). The incorporation of HA oligomers was found to compromise the physical and mechanical properties of the gels (rheology, apparent crosslinking density, swelling ratio, degradation) and to very mildly enhance inflammatory cell recruitment in vivo; increasing the DVS crosslinker content within the gels in general, had the opposite effect, though the relatively high concentration of DVS within these gels (necessary to create a solid gel) also stimulated a mild sub-cutaneous inflammatory response in vivo and VCAM-1 expression by ECs cultured atop; ICAM-expression levels remained very low irrespective extent of DVS crosslinking or HA-o content. The greatest EC attachment and proliferation (MTT assay) was observed on gels that contained the highest amount of HA-o. The study shows that the beneficial EC response to HA oligomers and biocompatibility of HA is mostly unaltered by their chemical derivatization and crosslinking into a hydrogel. However, the study also demonstrates that the relatively high concentrations of DVS, necessary to create solid gels, compromises their biocompatibility. Moreover, the poor mechanics of even these heavily crosslinked gels, in the context of vascular implantation, necessitates the investigation of other, more appropriate crosslinking agents. Alternately, the outcomes of this study may be used to guide an approach based on chemical immobilization and controlled surface-presentation of both bioactive HA oligomers and more biocompatible HMW HAon synthetic or tissue engineered grafts already in use, without the use of a crosslinker, so that improved, predictable, and functional endothelialization can be achieved, and the need to create a mechanically compliant biomaterial for standalone use, circumvented. PMID:20186732
Hydrogels of poly(ethylene glycol): mechanical characterization and release of a model drug.
Iza, M; Stoianovici, G; Viora, L; Grossiord, J L; Couarraze, G
1998-03-02
Thermosensitive polymer networks were synthesized from poly(ethylene glycol), hexamethylene diisocyanate and 1,2,6-hexanetriol in stoichiometric proportions. By varying the amount of 1,2,6-hexanetriol and the molar mass of the poly(ethylene glycol), a wide range of networks with different crosslinking densities was prepared. The networks obtained were characterized by the temperature dependence of their degree of equilibrium swelling in water and by their Young's moduli. For each network, the molecular weight between crosslinks was estimated. The structure of the hydrogels was analysed with respect to scaling laws, and it was found that the results obtained with PEG 1500 and PEG 6000 hydrogels are in agreement with theoretical predictions, whereas those obtained with PEG 400 hydrogels are in disagreement. The release properties of PEG hydrogels were studied by the determination of the diffusion coefficient for acebutolol chlorhydrate and by an analysis of the effect of temperature on these coefficients. Finally, these release properties were correlated with the swelling and structural properties of the hydrogels.
Carbon Nanofiber Incorporated Silica Based Aerogels with Di-Isocyanate Cross-Linking
NASA Technical Reports Server (NTRS)
Vivod, Stephanie L.; Meador, Mary Ann B.; Capadona, Lynn A.; Sullivan, Roy M.; Ghosn, Louis J.; Clark, Nicholas; McCorkle, Linda
2008-01-01
Lightweight materials with excellent thermal insulating properties are highly sought after for a variety of aerospace and aeronautic applications. (1) Silica based aerogels with their high surface area and low relative densities are ideal for applications in extreme environments such as insulators for the Mars Rover battery. (2) However, the fragile nature of aerogel monoliths prevents their widespread use in more down to earth applications. We have shown that the fragile aerogel network can be cross-linked with a di-isocyanate via amine decorated surfaces to form a conformal coating. (3) This coating reinforces the neck regions between secondary silica particles and significantly strengthens the aerogels with only a small effect on density or porosity. Scheme 1 depicts the cross-linking reaction with the di-isocyanate and exhibits the stages that result in polymer cross-linked aerogel monoliths.
Anion exchange membrane crosslinked in the easiest way stands out for fuel cells
NASA Astrophysics Data System (ADS)
Hossain, Md. Masem; Wu, Liang; Liang, Xian; Yang, Zhengjin; Hou, Jianqiu; Xu, Tongwen
2018-06-01
Covalent crosslinking is an effective method to stabilize anion exchange membranes (AEMs) against water swelling and high alkaline environment, yet complicated process is required. We report herein a straightforward approach to prepare highly crosslinked, transparent and flexible AEM by simply immersing a halo-alkylated polymer (e.g., brominated poly-(2,6-dimethyl-phenylene oxide)) based membrane in aqueous dimethylamine solution at room temperature and the following methylation. During this crosslinking process, a robust self-crosslinking network is formed which shows a gel fraction in N-methyl-2-pyrrolidone of (up to) 94%. Self-crosslinked membranes show low water uptakes (20-42%) and dimensional swelling (9-16%) compared to non-crosslinked membrane but good hydroxide conductivities (up to 26 mS cm-1) at room temperature. Besides, the resulting membranes show some interesting features: the membranes do not immensely change its room temperature water swelling properties at high temperature but exhibits good hydroxide conductivities (up to 60 mS cm-1 at 80 °C). Noting that, the self-crosslinked AEM reported here has no β-hydrogens, exhibiting extremely high alkaline stability (no decline in hydroxide conductivity in 1 M KOH at 60 °C for 360h). Membrane electrode assembly consists of fabricated membrane shows moderate fuel cell performance reaching peak power density 31 mW cm-2 at 60 °C in a H2/O2 alkaline fuel cell.
Takaoka, Anna; Babar, Natasha; Hogan, Julia; Kim, MiJung; Price, Marianne O.; Price, Francis W.; Trokel, Stephen L.; Paik, David C.
2016-01-01
Purpose Current literature contains scant information regarding the extent of enzymatic collagen cross-linking in the keratoconus (KC) cornea. The aim of the present study was to examine levels of enzymatic lysyl oxidase–derived cross-links in stromal collagen in KC tissue, and to correlate the cross-link levels with collagen fibril stability as determined by thermal denaturation temperature (Tm). Methods Surgical KC samples (n = 17) and Eye-Bank control (n = 11) corneas of age 18 to 68 years were analyzed. The samples were defatted, reduced (NaBH4), hydrolyzed (6N HCl at 110°C for 18 hours), and cellulose enriched before analysis by C8 high-performance liquid chromatography equipped with parallel fluorescent and mass detectors in selective ion monitoring mode (20 mM heptafluorobutyric acid/methanol 70:30 isocratic at 1 mL/min). Nine different cross-links were measured, and the cross-link density was determined relative to collagen content (determined colorimetrically). The Tm was determined by differential scanning calorimetry. Results Cross-links detected were dihydroxylysinonorleucine (DHLNL), hydroxylysinonorleucine, lysinonorleucine (LNL), and histidinohydroxylysinonorleucine in both control and KC samples. Higher DHLNL levels were detected in KC, whereas the dominant cross-link, LNL, was decreased in KC samples. Decreased LNL levels were observed among KC ≤ 40 corneas. There was no difference in total cross-link density between KC samples and the controls. Pyridinolines, desmosines, and pentosidine were not detected. There was no notable correlation between cross-link levels with fibril instability as determined by Tm. Conclusions Lower levels of LNL in the KC cornea suggest that there might be a cross-linking defect either in fibrillar collagen or the microfibrillar elastic network composed of fibrillin. PMID:26780316
Szczepanski, Caroline R.; Stansbury, Jeffrey W.
2014-01-01
A mechanism for polymerization shrinkage and stress reduction was developed for heterogeneous networks formed via ambient, photo-initiated polymerization-induced phase separation (PIPS). The material system used consists of a bulk homopolymer matrix of triethylene glycol dimethacrylate (TEGDMA) modified with one of three non-reactive, linear prepolymers (poly-methyl, ethyl and butyl methacrylate). At higher prepolymer loading levels (10–20 wt%) an enhanced reduction in both shrinkage and polymerization stress is observed. The onset of gelation in these materials is delayed to a higher degree of methacrylate conversion (~15–25%), providing more time for phase structure evolution by thermodynamically driven monomer diffusion between immiscible phases prior to network macro-gelation. The resulting phase structure was probed by introducing a fluorescently tagged prepolymer into the matrix. The phase structure evolves from a dispersion of prepolymer at low loading levels to a fully co-continuous heterogeneous network at higher loadings. The bulk modulus in phase separated networks is equivalent or greater than that of poly(TEGDMA), despite a reduced polymerization rate and cross-link density in the prepolymer-rich domains. PMID:25418999
Melman, L; Jenkins, E D; Hamilton, N A; Bender, L C; Brodt, M D; Deeken, C R; Greco, S C; Frisella, M M; Matthews, B D
2011-04-01
Biologic meshes have unique physical properties as a result of manufacturing techniques such as decellularization, crosslinking, and sterilization. The purpose of this study is to directly compare the biocompatibility profiles of five different biologic meshes, AlloDerm(®) (non-crosslinked human dermal matrix), PeriGuard(®) (crosslinked bovine pericardium), Permacol(®) (crosslinked porcine dermal matrix), Strattice(®) (non-crosslinked porcine dermal matrix), and Veritas(®) (non-crosslinked bovine pericardium), using a porcine model of ventral hernia repair. Full-thickness fascial defects were created in 20 Yucatan minipigs and repaired with the retromuscular placement of biologic mesh 3 weeks later. Animals were euthanized at 1 month and the repair sites were subjected to tensile testing and histologic analysis. Samples of unimplanted (de novo) meshes and native porcine abdominal wall were also analyzed for their mechanical properties. There were no significant differences in the biomechanical characteristics between any of the mesh-repaired sites at 1 month postimplantation or between the native porcine abdominal wall without implanted mesh and the mesh-repaired sites (P > 0.05 for all comparisons). Histologically, non-crosslinked materials exhibited greater cellular infiltration, extracellular matrix (ECM) deposition, and neovascularization compared to crosslinked meshes. While crosslinking differentiates biologic meshes with regard to cellular infiltration, ECM deposition, scaffold degradation, and neovascularization, the integrity and strength of the repair site at 1 month is not significantly impacted by crosslinking or by the de novo strength/stiffness of the mesh.
Self-Assembly of Polysaccharides Gives Rise to Distinct Mechanical Signatures in Marine Gels
Pletikapić, G.; Lannon, H.; Murvai, Ü.; Kellermayer, M.S.Z.; Svetličić, V.; Brujic, J.
2014-01-01
Marine-gel biopolymers were recently visualized at the molecular level using atomic force microscopy (AFM) to reveal fine fibril-forming networks with low to high degrees of cross-linking. In this work, we use force spectroscopy to quantify the intra- and intermolecular forces within the marine-gel network. Combining force measurements, AFM imaging, and the known chemical composition of marine gels allows us to identify the microscopic origins of distinct mechanical responses. At the single-fibril level, we uncover force-extension curves that resemble those of individual polysaccharide fibrils. They exhibit entropic elasticity followed by extensions associated with chair-to-boat transitions specific to the type of polysaccharide at high forces. Surprisingly, a low degree of cross-linking leads to sawtooth patterns that we attribute to the unraveling of polysaccharide entanglements. At a high degree of cross-linking, we observe force plateaus that arise from unzipping, as well as unwinding, of helical bundles. Finally, the complex 3D network structure gives rise to force staircases of increasing height that correspond to the hierarchical peeling of fibrils away from the junction zones. In addition, we show that these diverse mechanical responses also arise in reconstituted polysaccharide gels, which highlights their dominant role in the mechanical architecture of marine gels. PMID:25028877
Enzymic cross-linkage of monomeric extensin precursors in vitro. [Lycopersicon esculentum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everdeen, D.S.; Kiefer, S.; Willard, J.J.
Rapidly growing tomato (Lycopersicon esculentum) cell suspension cultures contain transiently high levels of cell surface, salt-elutable, monomeric precursors to the covalently cross-linked extensin network of the primary cell wall. Thus, the authors purified a highly soluble monomeric extensin substrate from rapidly growing cells, and devised a soluble in vitro cross-linking assay based on Superose-6 fast protein liquid chromatography separation, which resolved extensin monomers from the newly formed oligomers within 25 minutes. Salt elution of slowly growing (early stationary phase) cells yielded little or no extensin monomers but did give a highly active enzymic preparation that specifically cross-linked extensin monomers inmore » the presence of hydrogen peroxide, judging from: (a) a decrease in the extensin monomer peak on fast protein liquid chromatography gel filtration, (b) appearance of oligomeric peaks, and (c) direct electron microscopical observation of the cross-linked oligomers. The cross-linking reaction had a broad pH optimum between 5.5 and 6.5. An approach to substrate saturation of the enzyme required extensin monomer concentrations of 20 to 40 milligrams per milliliter. Preincubation with catalase completely inhibited the cross-linking reaction, which was highly dependent on hydrogen peroxide and optimal at 15 to 50 micromolar. They therefore identified the cross-linking activity as extensin peroxidase.« less
Zhang, Yaqing; Zhang, Xiangmei; Xu, Ling; Wei, Shicheng; Zhai, Maolin
2015-01-01
Ionizing radiation effectively cross-links collagen into network with enhanced anti-degradability and biocompatibility, while radiation-cross-linked collagen scaffold lacks flexibility, satisfactory surface appearance, and performs poor in cell penetration and ingrowth. To make the radiation-cross-linked collagen scaffold to serve as an ideal artificial dermis, dextran was incorporated into collagen. Scaffolds with the collagen/dextran (Col/Dex) ratios of 10/0, 7/3, and 5/5 were fabricated via (60)Co γ-irradiation cross-linking, followed by lyophilization. The morphology, microstructure, physicochemical, and biological properties were investigated. Compared with pure collagen, scaffolds with dextran demonstrated more porous appearance, enhanced hydrophilicity while the cross-linking density was lower with the consequence of larger pore size, higher water uptake, as well as reduced stiffness. Accelerated degradation was observed when dextran was incorporated in both the in vitro and in vivo assays, which led to earlier integration with cell and host tissue. The effect of dextran on degradation was ascribed to the decreased cross-linking density, looser microstructure, more porous and hydrophilic surface. Considering the better appearance, softness, moderate degradation rate due to controllable cross-linking degree and good biocompatibility as well, radiation-cross-linked collagen/dextran scaffolds are expected to serve as promising artificial dermal substitutes.
Self-Healing Nanocomposite Hydrogel with Well-Controlled Dynamic Mechanics
NASA Astrophysics Data System (ADS)
Li, Qiaochu; Mishra, Sumeet; Chen, Pangkuan; Tracy, Joseph; Holten-Andersen, Niels
Network dynamics is a crucial factor that determines the macroscopic self-healing rate and efficiency in polymeric hydrogel materials, yet its controllability is seldom studied in most reported self-healing hydrogel systems. Inspired by mussel's adhesion chemistry, we developed a novel approach to assemble inorganic nanoparticles and catechol-decorated PEG polymer into a hydrogel network. When utilized as reversible polymer-particle crosslinks, catechol-metal coordination bonds yield a unique gel network with dynamic mechanics controlled directly by interfacial crosslink structure. Taking advantage of this structure-property relationship at polymer-particle interfaces, we next designed a hierarchically structured hybrid gel with two distinct relaxation timescales. By tuning the relative contribution of the two hierarchical relaxation modes, we are able to finely control the gel's dynamic mechanical behavior from a viscoelastic fluid to a stiff solid, yet preserving its fast self-healing property without the need for external stimuli.
Rapid Self-healing Nanocomposite Hydrogel with Tunable Dynamic Mechanics
NASA Astrophysics Data System (ADS)
Li, Qiaochu; Mishra, Sumeet; Chapman, Brian; Chen, Pangkuan; Tracy, Joseph; Holten-Andersen, Niels
The macroscopic healing rate and efficiency in self-repairing hydrogel materials are largely determined by the dissociation dynamics of their polymer network, which is hardly achieved in a controllable manner. Inspired by mussel's adhesion chemistry, we developed a novel approach to assemble inorganic nanoparticles and catechol-decorated PEG polymer into a hydrogel network. When utilized as reversible polymer-particle crosslinks, catechol-metal coordination bonds yield a unique gel network with dynamic mechanics controlled directly by interfacial crosslink structure. Taking advantage of this structure-property relationship at polymer-particle interfaces, we designed a hierarchically structured hybrid gel with two distinct relaxation timescales. By tuning the relative contribution of the two relaxation modes, we are able to finely control the gel's dynamic mechanical behavior from a viscoelastic fluid to a stiff solid, yet preserving its rapid self-healing property without the need for external stimuli.
Zhao, Yanyan; Kuai, Long; Liu, Yanguo; Wang, Pengpeng; Arandiyan, Hamidreza; Cao, Sufeng; Zhang, Jie; Li, Fengyun; Wang, Qing; Geng, Baoyou; Sun, Hongyu
2015-01-01
A facile one-step solution reaction route for growth of novel MoS2 nanorose cross-linked by 3D rGO network, in which the MoS2 nanorose is constructed by single-layered or few-layered MoS2 nanosheets, is presented. Due to the 3D assembled hierarchical architecture of the ultrathin MoS2 nanosheets and the interconnection of 3D rGO network, as well as the synergetic effects of MoS2 and rGO, the as-prepared MoS2-NR/rGO nanohybrids delivered high specific capacity, excellent cycling and good rate performance when evaluated as an anode material for lithium-ion batteries. Moreover, the nanohybrids also show excellent hydrogen-evolution catalytic activity and durability in an acidic medium, which is superior to MoS2 nanorose and their nanoparticles counterparts. PMID:25735416
Synthesis and properties of hemicelluloses-based semi-IPN hydrogels.
Peng, Feng; Guan, Ying; Zhang, Bing; Bian, Jing; Ren, Jun-Li; Yao, Chun-Li; Sun, Run-Cang
2014-04-01
Hemicelluloses were extracted from holocellulose of bamboo by alkaline treatment. The phosphorylated poly(vinyl alcohol) (P-PVA) samples with various substitution degrees were prepared through the esterification of PVA and phosphoric acid. A series of hydrogels of semi-interpenetrating polymeric networks (semi-IPN) composed of hemicelluloses-g-poly(acrylic acid) (HM-g-PAA) and the phosphorylated poly(vinyl alcohol) (P-PVA) were prepared by radical polymerization using potassium persulphate (KPS) as initiator. The HM-g-PAA networks were crosslinked by N,N-methylenebisacrylamide (MBA) as a crosslinking agent in the presence of linear P-PVA. FT-IR results confirmed that the hydrogels comprised a porous crosslink structure of P-PVA and HM with side chains that carried carboxylate and phosphorylate groups. SEM observations indicated that the incorporation of P-PVA induced highly porous structure, and P-PVA was uniformly dispersed in the polymeric network. The interior network structures of the semi-IPN matrix became more porous with increasing P-PVA. The TGA results showed that the thermo-decomposing temperature and thermal stability were increased effectively for intruding the chain of P-PVA. The maximum equilibrium swelling ratio of hydrogels in distilled water and 0.9 wt% sodium chloride solutions was up to 1085 g g(-1) and 87 g g(-1), respectively. The compressive strength increased with increasing the MBA/HM and P-PVA/HM ratios, and decreased with the increment of AA/HM ratio. Copyright © 2014 Elsevier B.V. All rights reserved.
Reactive polymer fused deposition manufacturing
Kunc, Vlastimil; Rios, Orlando; Love, Lonnie J.; Duty, Chad E.; Johs, Alexander
2017-05-16
Methods and compositions for additive manufacturing that include reactive or thermosetting polymers, such as urethanes and epoxies. The polymers are melted, partially cross-linked prior to the depositing, deposited to form a component object, solidified, and fully cross-linked. These polymers form networks of chemical bonds that span the deposited layers. Application of a directional electromagnetic field can be applied to aromatic polymers after deposition to align the polymers for improved bonding between the deposited layers.
Micro-thermal analysis of polyester coatings
NASA Astrophysics Data System (ADS)
Fischer, Hartmut R.
2010-04-01
The application and suitability of micro-thermal analysis to detect changes in the chemical and physical properties of coating due to ageing and especially photo-degradation is demonstrated using a model polyester coating based on neopentyl glycol isophthalic acid. The changes in chemical structure like chain scission and cross-linking are manifested by a shift of the LTA detectable Tg and by a change of the slope of the part of the LTA graph responsible for the penetration of the hot sensor into the material after passing the glass transition temperature. As such LTA is a valuable tool to have a quick look into coating surfaces and especially their ageing. The photo-degradation of polyester in air leads to the formation of a cross-linked network at a surface layer of about 3-4 μm coupled with an increase in hardness and of the glass transition temperature by ˜90 K, the effect is less drastic for a photo-degradation in a nitrogen environment. Moreover, the presence of a non-equilibrium dense surface layer with a higher Tg formed during the drying of the coating formulation and the film solidification can be shown.
Chen, Kai; Xu, Jing; Luft, J Christopher; Tian, Shaomin; Raval, Jay S; DeSimone, Joseph M
2014-07-16
Lowering the modulus of hydrogel particles could enable them to bypass in vivo physical barriers that would otherwise filter particles with similar size but higher modulus. Incorporation of electrolyte moieties into the polymer network of hydrogel particles to increase the swelling ratio is a straightforward and quite efficient way to decrease the modulus. In addition, charged groups in hydrogel particles can also help secure cargoes. However, the distribution of charged groups on the surface of a particle can accelerate the clearance of particles. Herein, we developed a method to synthesize highly swollen microgels of precise size with near-neutral surface charge while retaining interior charged groups. A strategy was employed to enable a particle to be highly cross-linked with very small mesh size, and subsequently PEGylated to quench the exterior amines only without affecting the internal amines. Acidic degradation of the cross-linker allows for swelling of the particles to microgels with a desired size and deformability. The microgels fabricated demonstrated extended circulation in vivo compared to their counterparts with a charged surface, and could potentially be utilized in in vivo applications including as oxygen carriers or nucleic acid scavengers.
Furqan Muhammad, Iqbal; Mahmood, Ahmad; Aysha, Rashid
2016-01-01
A super-absorbent hydrogel was developed by crosslinking of 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) and acrylic acid with hydroxypropyl methylcellulose (HPMC) for controlled release drug delivery of captopril, a well known antihypertensive drug. Acrylic acid and AMPS were polymerized and crosslinked with HPMC by free radical polymerization, a widely used chemical crosslinking method. N,N'-methylenebisacrylamide (MBA) and potassium persulfate (KPS) were added as cross-linker and initiator, respectively. The hydrogel formulation was loaded with captopril (as model drug). The concentration of captopril was monitored at 205 nm using UV spectrophotometer. Equilibrium swelling ratio was determined at pH 2, 4.5 and 7.4 to evaluate the pH responsiveness of the formed hydrogel. The super-absorbent hydrogels were evaluated by FTIR, SEM, XRD, and thermal analysis (DSC and TGA). The formation of new copolymeric network was determined by FTIR, XRD, TGA and DSC analysis. The hydrogel formulations with acrylic acid and AMPS ratio of 4: 1 and lower amounts of crosslinker had shown maximum swelling. Moreover, higher release rate of captopril was observed at pH 7.4 than at pH 2, because of more swelling capacity of copolymer with increasing pH of the aqueous medium. The present research work confirms the development of a stable hydrogel comprising of HPMC with acrylic acid and AMPS. The prepared hydrogels exhibited pH sensitive behav-ior. This superabsorbent composite prepared could be a successful drug carrier for treating hypertension.
Swelling and tensile properties of starch glycerol system with various crosslinking agents
NASA Astrophysics Data System (ADS)
Mohamed, R.; Mohd, N.; Nurazzi, N.; Siti Aisyah, M. I.; Fauzi, F. Mohd
2017-07-01
Brittle properties of starch had been overcome by the modification process. In this work, sago starch is being modified with variable amount of plasticiser, namely glycerol at 20 and 40% and crosslinking agent had been added to the system. The film of the modification and characterizations of the starch glycerol system with various crosslinking systems were produced by casting method. The film properties of the starch glycerol system were then characterized by tensile strength (mechanical properties) and swelling (physical properties). The modification of the starch glycerol had improved that system by increasing the tensile strength, modulus however lowering its elongation. The increasing in percentage of the water absorption and also swelling are due to the intrinsic hydroxyl groups presence from the starch and glycerol itself that can attract more water to the system. Upon crosslinking, films casted with chemicals namely, glyoxal, malonic acid, borax, PEG were characterised. It was found that, all the film of sago starch crosslinked and undergoing easy film formation. From this modification, borax and malonic acid crosslinking agent had been determined as the best crosslinking agent to the starch glycerol system.
Crosslinkable coatings from phosphorylcholine-based polymers.
Lewis, A L; Cumming, Z L; Goreish, H H; Kirkwood, L C; Tolhurst, L A; Stratford, P W
2001-01-01
2-Methacryloyloxyethyl phosphorylcholine (MPC) was synthesised and then used in the preparation of crosslinked polymer membranes with lauryl methacrylate, hydroxypropyl methacrylate and trimethoxysilylpropyl methacrylate (crosslinker) comonomers. Some physical aspects of the membrane properties were evaluated in order to establish the basis for the synthesis of a series of post-crosslinkable polymers. These materials were made by copolymerisation of the constituent monomers via a free radical method, and characterised using NMR, FT-IR, viscometry and elemental analysis. The optimum crosslink density and conditions required for curing coatings of these polymers were investigated using atomic force microscopy (AFM) and showed the inclusion of 5 mol% silyl crosslinking agent to be ideal. A nanoindentation technique was employed to determine if the coating developed elasticity upon crosslinking. The biological properties of the coatings were evaluated using a variety of protein adsorption assays and blood contacting experiments, and an enzyme immunoassay was developed to detect E. coli in order to assess the level of bacterial adhesion to these biomaterials. Polymers of this type were shown to be very useful as coating materials for improving the biocompatibility of, or reducing the levels of adherent bacteria to medical devices.
Chitosan membranes for tissue engineering: comparison of different crosslinkers.
Ruini, F; Tonda-Turo, C; Chiono, V; Ciardelli, G
2015-11-03
Chitosan (CS), a derivative of the naturally occurring biopolymer chitin, is an attractive material for biomedical applications thanks to its biocompatibility, biodegradability, antibacterial properties and ability to enhance cell adhesion and growth compared to other biopolymers. However, the physical and mechanical stability of CS based materials in aqueous solutions is limited and crosslinking agents are required to increase CS performances in a biological environment. In this work, the effect of three highly-biocompatible crosslinkers as genipin (GP), γ-glycidoxypropyltrimethoxysilane (GPTMS), dibasic sodium phosphate (DSP) and a combination of GPTMS and DSP (GPTMS_DSP) on CS physicochemical, thermal, morphological, mechanical properties, swelling and degradation behavior was investigated. Infrared spectroscopy and thermogravimetric analyses confirmed the chemical reaction between CS and the different crosslinkers. CS wettability was enhanced when CS was DSP ionically crosslinked showing contact angle values of about 65° and exhibiting a higher swelling behavior compared to covalently crosslinked films. Moreover, all the crosslinking methods analyzed improved the stability of CS in aqueous media, showed model molecule permeation in time and increased the mechanical properties when compared with non-crosslinked films. The possibility to tailor the final properties of CS scaffolds through crosslinking is a key strategy in applying CS in different biomedical and tissue engineering applications. The obtained results reveal that the optimization of the crosslinking mechanism provides CS membrane properties required in different biomedical applications.
Chitosan in Molecularly-Imprinted Polymers: Current and Future Prospects.
Xu, Long; Huang, Yun-An; Zhu, Qiu-Jin; Ye, Chun
2015-08-07
Chitosan is widely used in molecular imprinting technology (MIT) as a functional monomer or supporting matrix because of its low cost and high contents of amino and hydroxyl functional groups. The various excellent properties of chitosan, which include nontoxicity, biodegradability, biocompatibility, and attractive physical and mechanical performances, make chitosan a promising alternative to conventional functional monomers. Recently, chitosan molecularly-imprinted polymers have gained considerable attention and showed significant potential in many fields, such as curbing environmental pollution, medicine, protein separation and identification, and chiral-compound separation. These extensive applications are due to the polymers' desired selectivity, physical robustness, and thermal stability, as well as their low cost and easy preparation. Cross-linkers, which fix the functional groups of chitosan around imprinted molecules, play an important role in chitosan molecularly-imprinted polymers. This review summarizes the important cross-linkers of chitosan molecularly-imprinted polymers and illustrates the cross-linking mechanism of chitosan and cross-linkers based on the two glucosamine units. Finally, some significant attempts to further develop the application of chitosan in MIT are proposed.
Chemical cross-linking of polypropylenes towards new shape memory polymers.
Raidt, Thomas; Hoeher, Robin; Katzenberg, Frank; Tiller, Joerg C
2015-04-01
In this work, syndiotactic polypropylene (sPP) as well as isotactic polypropylene (iPP) are cross-linked to gain a shape memory effect. Both prepared PP networks exhibit maximum strains of 700%, stored strains of up to 680%, and recoveries of nearly 100%. While x-iPP is stable for many cycles, x-sPP ruptures after the first shape-memory cycle. It is shown by wide-angle X-ray scattering (WAXS) experiments that cross-linked iPP exhibits homoepitaxy in the temporary, stretched shape but in contrast to previous reports it contains a higher amount of daughter than mother crystals. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yamasaki, Lilyan C; De Vito Moraes, André G; Barros, Mathew; Lewis, Steven; Francci, Carlos; Stansbury, Jeffrey W; Pfeifer, Carmem S
2013-09-01
To evaluate "low-shrink" composites in terms of polymerization kinetics, stress development and mechanical properties. "Low-shrink" materials (Kalore/KAL, N'Durance/NDUR, and Filtek P90/P90) and one control (Esthet X HD/EHD) were tested. Polymerization stress (PS) was measured using the Instron 5565 tensometer. Volumetric shrinkage (VS) was determined by the ACTA linometer. Elastic modulus (E) and flexural strength (FS) were obtained by a three-point bending test. Degree of conversion (DC) and polymerization rate (Rp) were determined by NIR spectroscopy (6165cm(-1) for dimethacrylates; 4156 and 4071cm(-1) for P90). Photopolymerization was performed at 740mW/cm(2)×27s. Glass transition temperature (Tg), degree of heterogeneity and crosslink density were obtained in a DMA for the fully cured specimens. Analysis of extracts was done by (1)H NMR. Data were analyzed with one-way ANOVA/Tukey's test (α=0.05). The control presented the highest shrinkage and Tg. P90 showed the highest modulus, and NDUR demonstrated the highest conversion. The polymerization rates were comparable for all materials. NDUR and KAL had the highest and the lowest network homogeneity, respectively. The multifunctional P90 had the highest crosslink density, with no difference between other composites. The control had the greatest stress development, similar to NDUR. Crosslinking density and polymer network homogeneity were influenced by degree of conversion and monomer structure. Not all "low-shrink" composites reduced polymerization stress. P90 and NDUR had no leachable monomers, which was also a function of high crosslinking (P90) and high conversion (NDUR). Copyright © 2013 Academy of Dental Materials. All rights reserved.
Ge, Xueping; Ye, Qiang; Song, Linyong; Misra, Anil; Spencer, Paulette
2015-04-01
The effects of polymerization kinetics and chemical miscibility on the crosslinking structure and mechanical properties of polymers cured by visible-light initiated free-radical/cationic ring-opening hybrid photopolymerization are determined. A three-component initiator system is used and the monomer system contains methacrylates and epoxides. The photopolymerization kinetics is monitored in situ by Fourier transform infrared-attenuated total reflectance. The crosslinking structure is studied by modulated differential scanning calorimetry and dynamic mechanical analysis. X-ray microcomputed tomography is used to evaluate microphase separation. The mechanical properties of polymers formed by hybrid formed by free-radical polymerization. These investigations mark the first time that the benefits of the chain transfer reaction between epoxy and hydroxyl groups of methacrylate, on the crosslinking network and microphase separation during hybrid visible-light initiated photopolymerization, have been determined.
Biodegradable chitosan nanogels crosslinked with genipin.
Arteche Pujana, Maite; Pérez-Álvarez, Leyre; Cesteros Iturbe, Luis Carlos; Katime, Issa
2013-05-15
Chitosan nanoparticles crosslinked with genipin were prepared by reverse microemulsion that allowed to obtain highly monodisperse (3-20 nm by TEM) nanogels. The incorporation of genipin into chitosan was confirmed and quantitatively evaluated by UV-vis and (1)H NMR. Loosely crosslinked chitosan networks showed higher water solubility at neutral pHs than pure chitosan. The hydrodynamic diameter of the genipin-chitosan nanogels ranged from 270 to 390 nm and no remarkable differences were found when the crosslinking degree was varied. The hydrodynamic diameters of the nanoparticles increased slightly at acidic pH and the protonation of ionizable amino groups with the pH was confirmed by the zeta potential measurements. The biocompatible and biodegradable nature, as well as the colloidal and monodisperse particle size of the prepared nanogels, make them attractive candidates for a large variety of biomedical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Yun; Sniekers, Jeroen; Malaquias, João C.; Van Goethem, Cedric; Binnemans, Koen; Fransaer, Jan; Vankelecom, Ivo F. J.
2018-02-01
A stable and eco-friendly anion-exchange membrane (AEM) was prepared and applied in a non-aqueous all-copper redox flow battery (RFB). The AEM was prepared via a simple procedure, leading to a cross-linked structure containing quaternary ammonium groups without involvement of harmful trimethylamine. A network was thus constructed which ensured both ion transport and solvent resistance. The ion exchange capacity (IEC) of the membrane was tuned from 0.49 to 1.03 meq g-1 by varying the content of the 4, 4‧-bipyridine crosslinking agent. The membrane showed a good anion conductivity and retention of copper ions. As a proof of principle, a RFB single cell with this crosslinked membrane yielded a coulombic efficiency of 89%, a voltage efficiency of 61% and an energy efficiency of 54% at 7.5 mA cm-2.
Controlling Hydrogel Mechanics via Bio-Inspired Polymer-Nanoparticle Bond Dynamics.
Li, Qiaochu; Barrett, Devin G; Messersmith, Phillip B; Holten-Andersen, Niels
2016-01-26
Interactions between polymer molecules and inorganic nanoparticles can play a dominant role in nanocomposite material mechanics, yet control of such interfacial interaction dynamics remains a significant challenge particularly in water. This study presents insights on how to engineer hydrogel material mechanics via nanoparticle interface-controlled cross-link dynamics. Inspired by the adhesive chemistry in mussel threads, we have incorporated iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network to obtain hydrogels cross-linked via reversible metal-coordination bonds at Fe3O4 NP surfaces. Unique material mechanics result from the supra-molecular cross-link structure dynamics in the gels; in contrast to the previously reported fluid-like dynamics of transient catechol-Fe(3+) cross-links, the catechol-Fe3O4 NP structures provide solid-like yet reversible hydrogel mechanics. The structurally controlled hierarchical mechanics presented here suggest how to develop hydrogels with remote-controlled self-healing dynamics.
Radiation crosslinking of highly plasticized PVC
NASA Astrophysics Data System (ADS)
Mendizabal, E.; Cruz, L.; Jasso, C. F.; Burillo, G.; Dakin, V. I.
1996-02-01
To improve the physical properties of highly plasticized PVC, the polymer was crosslinked by gamma irradiation using a dose rate of 91 kGy/h. The effect of plasticizer type was studied by using three different plasticizers, 2,2,4-trimethyl-1,3-pentanediol diisobutyrate (TXIB), di(2-ethyl hexyl) phthalate (DOP), and di(2-ethylhexyl terephthalate) (DOTP), and varying irradiation doses. Gel content was determined by soxhlet extraction, tensile measurements were made on a universal testing machine and the mechano-dynamic measurements were made in a dynamic rheometer. It was found that a considerable bonding of plasticizer molecules to macromolelcules takes place along with crosslinking, so that the use of the solvent extraction method for measuring the degree of crosslinking can give erroneous information. Radiation-chemical crosslinking yield ( Gc) and molecular weight of interjunctions chains ( Mc), were calculated for different systems studied. Addition of ethylene glycol dimethacrylate (EGDM) as a crosslinking coagent and dioctyl tin oxide (DOTO) as a stabilizer was also studied. Plasticizers extraction resistance was increased by irradiation treatment.
Cross-Linking Molecules Modify Composite Actin Networks Independently
NASA Astrophysics Data System (ADS)
Schmoller, K. M.; Lieleg, O.; Bausch, A. R.
2008-09-01
While cells make use of many actin binding proteins (ABPs) simultaneously to tailor the mechanical properties of the cytoskeleton, the detailed interplay of different ABPs is not understood. By a combination of macrorheological measurements and confocal microscopy, we show that the ABPs fascin and filamin modify the structural and viscoelastic properties of composite in vitro actin networks independently. The outnumbering ABP dictates the local network structure and therefore also dominates the macromechanical network response.
Synthesis of Poly(Propylene Fumarate)
Kasper, F. Kurtis; Tanahashi, Kazuhiro; Fisher, John P.; Mikos, Antonios G.
2010-01-01
This protocol describes the synthesis of 500 – 4000 Da poly(propylene fumarate) by a two-step reaction of diethyl fumarate and propylene glycol through a bis(hydroxypropyl) fumarate diester intermediate. Purified PPF can be covalently crosslinked to form degradable polymer networks, which have been widely explored for biomedical applications. The properties of crosslinked PPF networks depend upon the molecular properties of the constituent polymer, such as the molecular weight. The purity of the reactants and the exclusion of water from the reaction system are of utmost importance in the generation of high-molecular-weight PPF products. Additionally, the reaction time and temperature influence the molecular weight of the PPF product. The expected time required to complete this protocol is 3 d. PMID:19325548
Novel Concepts of MS-Cleavable Cross-linkers for Improved Peptide Structure Analysis
NASA Astrophysics Data System (ADS)
Hage, Christoph; Falvo, Francesco; Schäfer, Mathias; Sinz, Andrea
2017-10-01
The chemical cross-linking/mass spectrometry (MS) approach is gaining increasing importance as an alternative method for studying protein conformation and for deciphering protein interaction networks. This study is part of our ongoing efforts to develop innovative cross-linking principles for a facile and efficient assignment of cross-linked products. We evaluate two homobifunctional, amine-reactive, and MS-cleavable cross-linkers regarding their potential for automated analysis of cross-linked products. We introduce the bromine phenylurea (BrPU) linker that possesses a unique structure yielding a distinctive fragmentation pattern on collisional activation. Moreover, BrPU delivers the characteristic bromine isotope pattern and mass defect for all cross-linker-decorated fragments. We compare the fragmentation behavior of the BrPU linker with that of our previously described MS-cleavable TEMPO-Bz linker (which consists of a 2,2,6,6-tetramethylpiperidine-1-oxy moiety connected to a benzyl group) that was developed to perform free-radical-initiated peptide sequencing. Comparative collisional activation experiments (collision-induced dissociation and higher-energy collision-induced dissociation) with both cross-linkers were conducted in negative electrospray ionization mode with an Orbitrap Fusion mass spectrometer using five model peptides. As hypothesized in a previous study, the presence of a cross-linked N-terminal aspartic acid residue seems to be the prerequisite for the loss of an intact peptide from the cross-linked products. As the BrPU linker combines a characteristic mass shift with an isotope signature, it presents a more favorable combination for automated assignment of cross-linked products compared with the TEMPO-Bz linker. [Figure not available: see fulltext.
Yakacki, Christopher M.; Shandas, Robin; Lanning, Craig; Rech, Bryan; Eckstein, Alex; Gall, Ken
2009-01-01
Shape-memory materials have been proposed in biomedical device design due to their ability to facilitate minimally invasive surgery and recover to a predetermined shape in-vivo. Use of the shape-memory effect in polymers is proposed for cardiovascular stent interventions to reduce the catheter size for delivery and offer highly controlled and tailored deployment at body temperature. Shape-memory polymer networks were synthesized via photopolymerization of tert-butyl acrylate and poly (ethylene glycol) dimethacrylate to provide precise control over the thermomechanical response of the system. The free recovery response of the polymer stents at body temperature was studied as a function of glass transition temperature (Tg), crosslink density, geometrical perforation, and deformation temperature, all of which can be independently controlled. Room temperature storage of the stents was shown to be highly dependent on Tg and crosslink density. The pressurized response of the stents is also demonstrated to depend on crosslink density. This polymer system exhibits a wide range of shape-memory and thermomechanical responses to adapt and meet specific needs of minimally invasive cardiovascular devices. PMID:17296222
Stoyneva, Veselina; Momekova, Denitsa; Kostova, Bistra; Petrov, Petar
2014-01-01
Original pH sensitive cryogels, based on two biodegradable natural polymers chitosan (CS) and 2-hydroxyethylcellulose (HEC), were obtained via cryogenic treatment of semi-dilute aqueous solutions and UV induced crosslinking in frozen state. H₂O₂ and N,N'-methylenebisacrylamide (BisAAm) were used as photoinitiator and crosslinking agent, respectively. BisAAm facilitated the formation of polymer co-network and increased both the gel fraction yield and mechanical strength of cryogels. The influence of chitosan content on the physico-mechanical properties of HEC-CS cryogels was investigated. In general, the increase of CS fraction in the polymer co-network increased the degree of swelling and enhanced significantly the storage modulus of materials. All HEC-CS cryogels obtained were opalescent sponge-like materials, which quickly release/uptake water due to their open porous structure. The incorporation of CS provided pH dependent swelling and good bioadhesive properties of cryogels. HEC-CS cryogels were further exploited as drug delivery systems of the highly water soluble drug metronidazole belonging to BCS Class l. Copyright © 2013 Elsevier Ltd. All rights reserved.
Jimenez-Vergara, Andrea C; Lewis, John; Hahn, Mariah S; Munoz-Pinto, Dany J
2018-04-01
Accurate characterization of hydrogel diffusional properties is of substantial importance for a range of biotechnological applications. The diffusional capacity of hydrogels has commonly been estimated using the average molecular weight between crosslinks (M c ), which is calculated based on the equilibrium degree of swelling. However, the existing correlation linking M c and equilibrium swelling fails to accurately reflect the diffusional properties of highly crosslinked hydrogel networks. Also, as demonstrated herein, the current model fails to accurately predict the diffusional properties of hydrogels when polymer concentration and molecular weight are varied simultaneously. To address these limitations, we evaluated the diffusional properties of 48 distinct hydrogel formulations using two different photoinitiator systems, employing molecular size exclusion as an alternative methodology to calculate average hydrogel mesh size. The resulting data were then utilized to develop a revised correlation between M c and hydrogel equilibrium swelling that substantially reduces the limitations associated with the current correlation. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1339-1348, 2018. © 2017 Wiley Periodicals, Inc.
Wakaskar, Rajesh R; Bathena, Sai Praneeth R; Tallapaka, Shailendra B; Ambardekar, Vishakha V; Gautam, Nagsen; Thakare, Rhishikesh; Simet, Samantha M; Curran, Stephen M; Singh, Rakesh K; Dong, Yuxiang; Vetro, Joseph A
2015-03-01
Determine the feasibility and potential benefit of peripherally cross-linking the shell of core-shell polymer micelles on the premature release of physically loaded hydrophobic drug in whole blood and subsequent potency against solid tumors. Individual Pluronic F127 polymer micelles (F127 PM) peripherally cross-linked with ethylenediamine at 76% of total PEO blocks (X-F127 PM) were physically loaded with combretastatin A4 (CA4) by the solid dispersion method and compared to CA4 physically loaded in uncross-linked F127 PM, CA4 in DMSO in vitro, or water-soluble CA4 phosphate (CA4P) in vivo. X-F127 PM had similar CA4 loading and aqueous solubility as F127 PM up to 10 mg CA4 / mL at 22.9 wt% and did not aggregate in PBS or 90% (v/v) human serum at 37°C for at least 24 h. In contrast, X-F127 PM decreased the unbound fraction of CA4 in whole blood (fu) and increased the mean plasma residence time and subsequent potency of CA4 against the vascular function and growth of primary murine 4T1 breast tumors over CA4 in F127 PM and water-soluble CA4P after IV administration. Given that decreasing the fu is an indication of decreased drug release, peripherally cross-linking the shell of core-shell polymer micelles may be a simple approach to decrease premature release of physically loaded hydrophobic drug in the blood and increase subsequent potency in solid tumors.
Force Exertion and Transmission in Cross-Linked Actin Networks
NASA Astrophysics Data System (ADS)
Stam, Samantha
Cells are responsive to external cues in their environment telling them to proliferate or migrate within their surrounding tissue. Sensing of cues that are mechanical in nature, such stiffness of a tissue or forces transmitted from other cells, is believed to involve the cytoskeleton of a cell. The cytoskeleton is a complex network of proteins consisting of polymers that provide structural support, motor proteins that remodel these structures, and many others. We do not yet have a complete understanding of how cytoskeletal components respond to either internal or external mechanical force and stiffness. Such an understanding should involve mechanisms by which constituent molecules, such as motor proteins, are responsive to mechanics. Additionally, physical models of how forces are transmitted through biopolymer networks are necessary. My research has focused on networks formed by the cytoskeletal filament actin and the molecular motor protein myosin II. Actin filaments form networks and bundles that form a structural framework of the cell, and myosin II slides actin filaments. In this thesis, we show that stiffness of an elastic load that opposes myosin-generated actin sliding has a very sharp effect on the myosin force output in simulations. Secondly, we show that the stiffness and connectivity of cytoskeletal filaments regulates the contractility and anisotropy of network deformations that transmit force on material length scales. Together, these results have implications for predicting and interpreting the deformations and forces in biopolymeric active materials.
Natural and Synthetic Biohydrogels Design, Characterization, Network Structure Imaging and Modeling
NASA Astrophysics Data System (ADS)
Marmorat, Clement
Biocompatible hydrogels can be derived from materials that are naturally obtained, such as proteins or polysaccharides, or synthetic, such as poloxamers. In order to be classified as biocompatible, these water-swollen networks can not trigger a toxic response once introduced into a biological or physiological environment and, therefore, must be immunoneutral. Hyaluronic acid hydrogels can be great candidates for tissue engineering applications as long as the cross-linking chemistry and process does not affect the biocompatibility of the natural protein matrix. Thermoreversible hydrogels have the advantage of undergoing a sol/gel phase transition at specific temperatures. Thus, they are excellent candidates for biomedical applications such as drug delivery systems, wound healing coatings or cellular scaffolds. Although these hydrogels can be used in their natural form without further modification or chemical alteration, the original protein or polymer matrix is often strengthened by the use of a crosslinking agent to achieve a specific set of properties. In the case of gelatin fibril formation at low temperatures or the micellization of triblock copolymers in solution with temperature increase, the natural phase transition is modified when crosslinkers are introduced to alter the biohydrogels properties and, ultimately, disturb the system's equilibrium. By using spectroscopy techniques, rheology and cryo-imaging we investigated several biocompatible polymeric networks in their natural form as well as their engineered structures to better understand the mechanisms of gelation and artificial internal re-organization of the networks. Natural and synthetic biohydrogels were designed and their mechanical properties were characterized before imaging. Models that better describe the relationship between network configuration and resulting mechanical properties showed great agreement with experimental mesh size observations. Finally, a novel set of hybrid gels was developed and exhibited outstanding thermomechanical properties.
Colloid Surface Chemistry Critically Affects Multiple Particle Tracking Measurements of Biomaterials
Valentine, M. T.; Perlman, Z. E.; Gardel, M. L.; Shin, J. H.; Matsudaira, P.; Mitchison, T. J.; Weitz, D. A.
2004-01-01
Characterization of the properties of complex biomaterials using microrheological techniques has the promise of providing fundamental insights into their biomechanical functions; however, precise interpretations of such measurements are hindered by inadequate characterization of the interactions between tracers and the networks they probe. We here show that colloid surface chemistry can profoundly affect multiple particle tracking measurements of networks of fibrin, entangled F-actin solutions, and networks of cross-linked F-actin. We present a simple protocol to render the surface of colloidal probe particles protein-resistant by grafting short amine-terminated methoxy-poly(ethylene glycol) to the surface of carboxylated microspheres. We demonstrate that these poly(ethylene glycol)-coated tracers adsorb significantly less protein than particles coated with bovine serum albumin or unmodified probe particles. We establish that varying particle surface chemistry selectively tunes the sensitivity of the particles to different physical properties of their microenvironments. Specifically, particles that are weakly bound to a heterogeneous network are sensitive to changes in network stiffness, whereas protein-resistant tracers measure changes in the viscosity of the fluid and in the network microstructure. We demonstrate experimentally that two-particle microrheology analysis significantly reduces differences arising from tracer surface chemistry, indicating that modifications of network properties near the particle do not introduce large-scale heterogeneities. Our results establish that controlling colloid-protein interactions is crucial to the successful application of multiple particle tracking techniques to reconstituted protein networks, cytoplasm, and cells. PMID:15189896
Design properties of hydrogel tissue-engineering scaffolds
Zhu, Junmin; Marchant, Roger E
2011-01-01
This article summarizes the recent progress in the design and synthesis of hydrogels as tissue-engineering scaffolds. Hydrogels are attractive scaffolding materials owing to their highly swollen network structure, ability to encapsulate cells and bioactive molecules, and efficient mass transfer. Various polymers, including natural, synthetic and natural/synthetic hybrid polymers, have been used to make hydrogels via chemical or physical crosslinking. Recently, bioactive synthetic hydrogels have emerged as promising scaffolds because they can provide molecularly tailored biofunctions and adjustable mechanical properties, as well as an extracellular matrix-like microenvironment for cell growth and tissue formation. This article addresses various strategies that have been explored to design synthetic hydrogels with extracellular matrix-mimetic bioactive properties, such as cell adhesion, proteolytic degradation and growth factor-binding. PMID:22026626
Lignin plays a negative role in the biochemical process for producing lignocellulosic biofuels.
Zeng, Yining; Zhao, Shuai; Yang, Shihui; Ding, Shi-You
2014-06-01
A biochemical platform holds the most promising route toward lignocellulosic biofuels, in which polysaccharides are hydrolyzed by cellulase enzymes into simple sugars and fermented to ethanol by microbes. However, these polysaccharides are cross-linked in the plant cell walls with the hydrophobic network of lignin that physically impedes enzymatic deconstruction. A thermochemical pretreatment process is often required to remove or delocalize lignin, which may also generate inhibitors that hamper enzymatic hydrolysis and fermentation. Here we review recent advances in understanding lignin structure in the plant cell walls and the negative roles of lignin in the processes of converting biomass to biofuels. Perspectives and future directions to improve the biomass conversion process are also discussed. Copyright © 2013. Published by Elsevier Ltd.
A Systematic Evaluation of Collagen Crosslinks in the Human Cervix
Zork, Noelia M; Myers, Kristin Marie; Yoshida, Ms. Kyoko; Cremers, Serge; Jiang, Hongfeng; Ananth, Cande V; Wapner, Ronald; Kitajewski, Jan; Vink, Joy
2014-01-01
Objective The mechanical strength of the cervix relies on crosslinking of the tissue’s collagen network. Clinically, the internal os is functionally distinct from the external os. We sought to detect specific collagen crosslinks in human cervical tissue and determine if crosslink profiles were similar at the internal and external os. Study Design Transverse slices of cervical tissue were obtained at the internal and external os from 13 non-pregnant, premenopausal women undergoing a benign hysterectomy. To understand how crosslinks were distributed throughout the entire cervix and at the internal and external os, biopsies were obtained from three circumferential zones in four quadrants from each slice. Biopsies were pulverized, lyophilized, reduced with sodium borohydride, hydrolyzed with hydrochloric acid and reconstituted in heptafluorobutyric acid buffer. Hydroxyproline was measured by ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS), converted to total collagen, and normalized by dry weight. Collagen crosslinks pyridinoline (PYD), deoxypyridinoline (DPD), dihydroxylysinonorleucine (DHLNL), and the nonenzymatic advanced glycation end product pentosidine [PEN] were measured by UPLC-ESI-MS/MS and reported as crosslink density ratio (crosslink:total collagen). Generalized estimated equation analysis was used to compare results between the internal and external os and to compare quadrants and zones within slices from the internal and external os to determine if crosslink profiles were similar. Results 592 samples from 13 patients were analyzed. Collagen crosslinks are detectable in the human cervix by UPLC-ESI-MS/MS. When comparing all samples from the internal and external os, similar levels of collagen content, PYD, DHLNL and DPD were found but PEN density was higher at the external os (0.005 vs 0.004, P=0.001). When comparing all internal os samples, significant heterogeneity was found in collagen content and crosslink densities across zones and quadrants. The external os exhibited heterogeneity only across zones. Conclusion Collagen crosslinks (PYD, DPD, DHLNL, and PEN) are detectable by UPLC-ESI-MS/MS in the human cervix. The internal os exhibits significant collagen crosslink heterogeneity compared to the external os. Further studies are needed to evaluate how collagen crosslink heterogeneity correlates to the mechanical strength and function of the human cervix. PMID:25281365
Stem Cells on Biomaterials for Synthetic Grafts to Promote Vascular Healing
Babczyk, Patrick; Conzendorf, Clelia; Klose, Jens; Schulze, Margit; Harre, Kathrin; Tobiasch, Edda
2014-01-01
This review is divided into two interconnected parts, namely a biological and a chemical one. The focus of the first part is on the biological background for constructing tissue-engineered vascular grafts to promote vascular healing. Various cell types, such as embryonic, mesenchymal and induced pluripotent stem cells, progenitor cells and endothelial- and smooth muscle cells will be discussed with respect to their specific markers. The in vitro and in vivo models and their potential to treat vascular diseases are also introduced. The chemical part focuses on strategies using either artificial or natural polymers for scaffold fabrication, including decellularized cardiovascular tissue. An overview will be given on scaffold fabrication including conventional methods and nanotechnologies. Special attention is given to 3D network formation via different chemical and physical cross-linking methods. In particular, electron beam treatment is introduced as a method to combine 3D network formation and surface modification. The review includes recently published scientific data and patents which have been registered within the last decade. PMID:26237251
Ning, Wenxiu; Yu, Yanan; Xu, Honglin; Liu, Xiaofei; Wang, Daiwei; Wang, Jing; Wang, Yingchun; Meng, Wenxiang
2016-10-10
For adaptation to complex cellular functions, dynamic cytoskeletal networks are required. There are two major components of the cytoskeleton, microtubules and actin filaments, which form an intricate network maintaining an exquisite cooperation to build the physical basis for their cellular function. However, little is known about the molecular mechanism underlying their synergism. Here, we show that in Caco2 epithelial cells, noncentrosomal microtubules crosstalk with F-actin through their minus ends and contribute to the regulation of focal adhesion size and cell migration. We demonstrate that ACF7, a member of the spectraplakin family of cytoskeletal crosslinking proteins, interacts with Nezha (also called CAMSAP3) at the minus ends of noncentrosomal microtubules and anchors them to actin filaments. Those noncentrosomal microtubules cooperate with actin filaments through retrograde flow to keep their length and orientation perpendicular to the cell edge as well as regulate focal adhesion size and cell migration. Copyright © 2016 Elsevier Inc. All rights reserved.
Niosome-loaded cold-set whey protein hydrogels.
Abaee, Arash; Madadlou, Ashkan
2016-04-01
The α-tocopherol-carrying niosomes with mean diameter of 5.7 μm were fabricated and charged into a transglutaminase-cross-linked whey protein solution that was subsequently gelled with glucono delta-lactone. Encapsulation efficiency of α-tocopherol within niosomes was ≈80% and encapsulation did not influence the radical scavenging activity of α-tocopherol. Fourier transform infrared (FTIR) spectroscopy suggested formation of ε-(γ-glutamyl) lysine cross-linkages by transglutaminase and that enzymatic cross-linking increased proteins hydrophobicity. FTIR also proposed hydrogen bonding between niosomes and proteins. Dynamic rheometry indicated that transglutaminase cross-linking and niosomes charging of the protein solution enhanced the gelation process. However, charging the cross-linked protein solution with niosomal suspension resulted in lower elastic modulus (G') of the subsequently formed gel compared with both non-cross-linked niosome-loaded and cross-linked niosome-free counterparts. Electron microscopy indicated a discontinuous network for the niosome-loaded cross-linked sample. Niosome loading into the protein gel matrix increased its swelling extent in the enzyme-free simulated gastric fluid. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tan, Dan; Li, Qiang; Zhang, Mei-Jun; Liu, Chao; Ma, Chengying; Zhang, Pan; Ding, Yue-He; Fan, Sheng-Bo; Tao, Li; Yang, Bing; Li, Xiangke; Ma, Shoucai; Liu, Junjie; Feng, Boya; Liu, Xiaohui; Wang, Hong-Wei; He, Si-Min; Gao, Ning; Ye, Keqiong; Dong, Meng-Qiu; Lei, Xiaoguang
2016-01-01
To improve chemical cross-linking of proteins coupled with mass spectrometry (CXMS), we developed a lysine-targeted enrichable cross-linker containing a biotin tag for affinity purification, a chemical cleavage site to separate cross-linked peptides away from biotin after enrichment, and a spacer arm that can be labeled with stable isotopes for quantitation. By locating the flexible proteins on the surface of 70S ribosome, we show that this trifunctional cross-linker is effective at attaining structural information not easily attainable by crystallography and electron microscopy. From a crude Rrp46 immunoprecipitate, it helped identify two direct binding partners of Rrp46 and 15 protein-protein interactions (PPIs) among the co-immunoprecipitated exosome subunits. Applying it to E. coli and C. elegans lysates, we identified 3130 and 893 inter-linked lysine pairs, representing 677 and 121 PPIs. Using a quantitative CXMS workflow we demonstrate that it can reveal changes in the reactivity of lysine residues due to protein-nucleic acid interaction. DOI: http://dx.doi.org/10.7554/eLife.12509.001 PMID:26952210
Photo-Cross-Linked Anion Exchange Membranes with Improved Water Management and Conductivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ertem, S. Piril; Tsai, Tsung-Han; Donahue, Melissa M.
Robust, cross-linked anion exchange membranes (AEMs) were prepared from solvent-processable polyisoprene- ran -poly(vinylbenzyltrimethylammonium chloride) (PI- ran -P- [VBTMA][Cl]) ionomers via photoinitiated thiol - ene chem- istry. Two series of membranes were prepared choosing two dithiol cross-linkers, 1,10-decanedithiol and 2,2 ' - (ethylenedioxy)diethanethiol, selected for their di ff erent hydro- phobicities. A strong correlation was found between the choice of dithiol cross-linker, water uptake, morphology, and the ion conductivity of the membranes. Results were compared with previous fi ndings of thermally cross-linked AEMs from analogous random copolymers. Comparably high chloride ion conductivities were obtained at low to moderate ion exchange capacitiesmore » (IECs) with signi fi cantly low water uptake values. It was shown that by choosing a hydrophilic cross-linker ion cluster formation may be suppressed and ion conduction improved. This study highlights that it is possible to promote ion conductivities for low IEC membranes (<1 mmol/g) by forming well- connected, ion conducting network morphology. This observation paves the way for mechanically robust ion conducting membranes with enhanced conductivities and better water management.« less
A nonaffine network model for elastomers undergoing finite deformations
NASA Astrophysics Data System (ADS)
Davidson, Jacob D.; Goulbourne, N. C.
2013-08-01
In this work, we construct a new physics-based model of rubber elasticity to capture the strain softening, strain hardening, and deformation-state dependent response of rubber materials undergoing finite deformations. This model is unique in its ability to capture large-stretch mechanical behavior with parameters that are connected to the polymer chemistry and can also be easily identified with the important characteristics of the macroscopic stress-stretch response. The microscopic picture consists of two components: a crosslinked network of Langevin chains and an entangled network with chains confined to a nonaffine tube. These represent, respectively, changes in entropy due to thermally averaged chain conformations and changes in entropy due to the magnitude of these conformational fluctuations. A simple analytical form for the strain energy density is obtained using Rubinstein and Panyukov's single-chain description of network behavior. The model only depends on three parameters that together define the initial modulus, extent of strain softening, and the onset of strain hardening. Fits to large stretch data for natural rubber, silicone rubber, VHB 4905 (polyacrylate rubber), and b186 rubber (a carbon black-filled rubber) are presented, and a comparison is made with other similar constitutive models of large-stretch rubber elasticity. We demonstrate that the proposed model provides a complete description of elastomers undergoing large deformations for different applied loading configurations. Moreover, since the strain energy is obtained using a clear set of physical assumptions, this model may be tested and used to interpret the results of computer simulation and experiments on polymers of known microscopic structure.
USDA-ARS?s Scientific Manuscript database
Zein, the dominant protein present in the co-products of the bio-ethanol industry, is a resource that is currently under-utilized. This is mainly due to poor physical properties and solvent sensitivity. It has been found by various researchers that treatment of zein with suitable cross-linking rea...
3D freeform printing of silk fibroin.
Rodriguez, Maria J; Dixon, Thomas A; Cohen, Eliad; Huang, Wenwen; Omenetto, Fiorenzo G; Kaplan, David L
2018-04-15
Freeform fabrication has emerged as a key direction in printing biologically-relevant materials and structures. With this emerging technology, complex structures with microscale resolution can be created in arbitrary geometries and without the limitations found in traditional bottom-up or top-down additive manufacturing methods. Recent advances in freeform printing have used the physical properties of microparticle-based granular gels as a medium for the submerged extrusion of bioinks. However, most of these techniques require post-processing or crosslinking for the removal of the printed structures (Miller et al., 2015; Jin et al., 2016) [1,2]. In this communication, we introduce a novel method for the one-step gelation of silk fibroin within a suspension of synthetic nanoclay (Laponite) and polyethylene glycol (PEG). Silk fibroin has been used as a biopolymer for bioprinting in several contexts, but chemical or enzymatic additives or bulking agents are needed to stabilize 3D structures. Our method requires no post-processing of printed structures and allows for in situ physical crosslinking of pure aqueous silk fibroin into arbitrary geometries produced through freeform 3D printing. 3D bioprinting has emerged as a technology that can produce biologically relevant structures in defined geometries with microscale resolution. Techniques for fabrication of free-standing structures by printing into granular gel media has been demonstrated previously, however, these methods require crosslinking agents and post-processing steps on printed structures. Our method utilizes one-step gelation of silk fibroin within a suspension of synthetic nanoclay (Laponite), with no need for additional crosslinking compounds or post processing of the material. This new method allows for in situ physical crosslinking of pure aqueous silk fibroin into defined geometries produced through freeform 3D printing. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Löwenberg, Candy; Balk, Maria; Wischke, Christian; Behl, Marc; Lendlein, Andreas
2017-04-18
The ability of hydrophilic chain segments in polymer networks to strongly interact with water allows the volumetric expansion of the material and formation of a hydrogel. When polymer chain segments undergo reversible hydration depending on environmental conditions, smart hydrogels can be realized, which are able to shrink/swell and thus alter their volume on demand. In contrast, implementing the capacity of hydrogels to switch their shape rather than volume demands more sophisticated chemical approaches and structural concepts. In this Account, the principles of hydrogel network design, incorporation of molecular switches, and hydrogel microstructures are summarized that enable a spatially directed actuation of hydrogels by a shape-memory effect (SME) without major volume alteration. The SME involves an elastic deformation (programming) of samples, which are temporarily fixed by reversible covalent or physical cross-links resulting in a temporary shape. The material can reverse to the original shape when these molecular switches are affected by application of a suitable stimulus. Hydrophobic shape-memory polymers (SMPs), which are established with complex functions including multiple or reversible shape-switching, may provide inspiration for the molecular architecture of shape-memory hydrogels (SMHs), but cannot be identically copied in the world of hydrophilic soft materials. For instance, fixation of the temporary shape requires cross-links to be formed also in an aqueous environment, which may not be realized, for example, by crystalline domains from the hydrophilic main chains as these may dissolve in presence of water. Accordingly, dual-shape hydrogels have evolved, where, for example, hydrophobic crystallizable side chains have been linked into hydrophilic polymer networks to act as temperature-sensitive temporary cross-links. By incorporating a second type of such side chains, triple-shape hydrogels can be realized. Considering the typically given light permeability of hydrogels and the fully hydrated state with easy permeation by small molecules, other types of stimuli like light, pH, or ions can be employed that may not be easily used in hydrophobic SMPs. In some cases, those molecular switches can respond to more than one stimulus, thus increasing the number of opportunities to induce actuation of these synthetic hydrogels. Beyond this, biopolymer-based hydrogels can be equipped with a shape switching function when facilitating, for example, triple helix formation in proteins or ionic interactions in polysaccharides. Eventually, microstructured SMHs such as hybrid or porous structures can combine the shape-switching function with an improved performance by helping to overcome frequent shortcomings of hydrogels such as low mechanical strength or volume change upon temporary cross-link cleavage. Specifically, shape switching without major volume alteration is possible in porous SMHs by decoupling small volume changes of pore walls on the microscale and the macroscopic sample size. Furthermore, oligomeric rather than short aliphatic side chains as molecular switches allow stabilization of the sample volumes. Based on those structural principles and switching functionalities, SMHs have already entered into applications as soft actuators and are considered, for example, for cell manipulation in biomedicine. In the context of those applications, switching kinetics, switching forces, and reversibility of switching are aspects to be further explored.
Isaksson, Hanna; Harjula, Terhi; Koistinen, Arto; Iivarinen, Jarkko; Seppänen, Kari; Arokoski, Jari P A; Brama, Pieter A; Jurvelin, Jukka S; Helminen, Heikki J
2010-12-01
We characterized the composition and mechanical properties of cortical bone during maturation and growth and in adult life in the rabbit. We hypothesized that the collagen network develops earlier than the mineralized matrix. Growth was monitored, and the rabbits were euthanized at birth (newborn), and at 1, 3, 6, 9, and 18 months of age. The collagen network was assessed biochemically (collagen content, enzymatic and non-enzymatic cross-links) in specimens from the mid-diaphysis of the tibia and femur and biomechanically (tensile testing) from decalcified whole tibia specimens. The mineralized matrix was analyzed using pQCT and 3-point bend tests from intact femur specimens. The collagen content and the Young's modulus of the collagen matrix increased significantly until the rabbits were 3 months old, and thereafter remained stable. The amount of HP and LP collagen cross-links increased continuously from newborn to 18 months of age, whereas PEN cross-links increased after 6 months of age. Bone mineral density and the Young's modulus of the mineralized bone increased until the rabbits were at least 6 months old. We concluded that substantial changes take place during the normal process of development in both the biochemical and biomechanical properties of rabbit cortical bone. In cortical bone, the collagen network reaches its mature composition and mechanical strength prior to the mineralized matrix. © 2010 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Melillo, Matthew; Walker, Edwin; Klein, Zoe; Efimenko, Kirill; Genzer, Jan
Poly(dimethylsiloxane) (PDMS) is one of the most common elastomers, with applications ranging from medical devices to absorbents for water treatment. Fundamental understanding of how liquids spread on the surface of and absorb into PDMS networks is of critical importance for the design and use of another application - microfluidic devices. We have systematically studied the effects of polymer molecular weight, loading of tetra-functional crosslinker, end-group chemical functionality, the extent of dilution of the curing mixture, and gelation kinetics on the mechanical and surface properties of end-linked PDMS networks. The gel and sol fractions, storage and loss moduli, liquid swelling ratios, and water contact angles have all been shown to vary greatly based on the aforementioned variables. Similar trends were observed for the commercial PDMS material, Sylgard-184. Our results have confirmed theories predicting the relationships between modulus and swelling and we've also applied the theory of Macosko-Miller to estimate extent of reaction of crosslinker and polymer groups. Methods for determining the molecular weight between crosslinks from swelling, mechanical, and gelation theories were applied to ascertain their similarities and differences in an effort to identify the most accurate method. These findings will aid in the design and implementation of efficient microfluidics and other PDMS-based materials that involve the transport of liquids.
Self-assembly of polysaccharides gives rise to distinct mechanical signatures in marine gels.
Pletikapić, G; Lannon, H; Murvai, Ü; Kellermayer, M S Z; Svetličić, V; Brujic, J
2014-07-15
Marine-gel biopolymers were recently visualized at the molecular level using atomic force microscopy (AFM) to reveal fine fibril-forming networks with low to high degrees of cross-linking. In this work, we use force spectroscopy to quantify the intra- and intermolecular forces within the marine-gel network. Combining force measurements, AFM imaging, and the known chemical composition of marine gels allows us to identify the microscopic origins of distinct mechanical responses. At the single-fibril level, we uncover force-extension curves that resemble those of individual polysaccharide fibrils. They exhibit entropic elasticity followed by extensions associated with chair-to-boat transitions specific to the type of polysaccharide at high forces. Surprisingly, a low degree of cross-linking leads to sawtooth patterns that we attribute to the unraveling of polysaccharide entanglements. At a high degree of cross-linking, we observe force plateaus that arise from unzipping, as well as unwinding, of helical bundles. Finally, the complex 3D network structure gives rise to force staircases of increasing height that correspond to the hierarchical peeling of fibrils away from the junction zones. In addition, we show that these diverse mechanical responses also arise in reconstituted polysaccharide gels, which highlights their dominant role in the mechanical architecture of marine gels. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Accelerated healing of full-thickness wounds by genipin-crosslinked silk sericin/PVA scaffolds.
Aramwit, Pornanong; Siritienthong, Tippawan; Srichana, Teerapol; Ratanavaraporn, Juthamas
2013-01-01
Silk sericin has recently been studied for its advantageous biological properties, including its ability to promote wound healing. This study developed a delivery system to accelerate the healing of full-thickness wounds. Three-dimensional scaffolds were fabricated from poly(vinyl alcohol) (PVA), glycerin (as a plasticizer) and genipin (as a crosslinking agent), with or without sericin. The physical and biological properties of the genipin-crosslinked sericin/PVA scaffolds were investigated and compared with those of scaffolds without sericin. The genipin-crosslinked sericin/PVA scaffolds exhibited a higher compressive modulus and greater swelling in water than the scaffolds without sericin. Sericin also exhibited controlled release from the scaffolds. The genipin-crosslinked sericin/PVA scaffolds promoted the attachment and proliferation of L929 mouse fibroblasts. After application to full-thickness rat wounds, the wounds treated with genipin-crosslinked sericin/PVA scaffolds showed a significantly greater reduction in wound size, collagen formation and epithelialization compared with the control scaffolds without sericin but lower numbers of macrophages and multinucleated giant cells. These results indicate that the delivery of sericin from the novel genipin-crosslinked scaffolds efficiently healed the wound. Therefore, these genipin-crosslinked sericin/PVA scaffolds represent a promising candidate for the accelerated healing of full-thickness wounds. Copyright © 2013 S. Karger AG, Basel.
Tibbits, Andrew C; Yan, Yushan S; Kloxin, Christopher J
2017-07-01
Ene-functionalized ionic liquids with a range of different cationic groups and counteranions react stoichiometrically within a tetrathiol-divinyl ether formulation within 20 minutes to form thiol-ene polymers with measurable ionic conductivities via a photoinitiated polymerization and crosslinking reaction. Dynamic mechanical analysis indicates that these networks are more spatially heterogeneous and possess higher glass transition temperatures (T g ) compared with thiol-ene formulations without charge. While tuning the molar content of ionic liquid monomer is one method for adjusting the crosslink and charge densities of the thiol-ene polymeric ionic liquid networks, the presence of cation-anion interactions also plays a critical role in dictating the thermomechanical and conductive properties. Particularly, while cationic structure effects are not significant on the polymer properties, the use of a weakly coordinating hydrophobic anion (bistriflimide) instead of bromide-based networks results in an apparent decrease in hydrated ion conductivity (7.4 to 1.5 mS cm -1 ) and T g (-9.6 to -17.8 °C). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
McBride, Matthew K; Podgorski, Maciej; Chatani, Shunsuke; Worrell, Brady T; Bowman, Christopher N
2018-06-21
Ductile, cross-linked films were folded as a means to program temporary shapes without the need for complex heating cycles or specialized equipment. Certain cross-linked polymer networks, formed here with the thiol-isocyanate reaction, possessed the ability to be pseudoplastically deformed below the glass transition, and the original shape was recovered during heating through the glass transition. To circumvent the large forces required to plastically deform a glassy polymer network, we have utilized folding, which localizes the deformation in small creases, and achieved large dimensional changes with simple programming procedures. In addition to dimension changes, three-dimensional objects such as swans and airplanes were developed to demonstrate applying origami principles to shape memory. We explored the fundamental mechanical properties that are required to fold polymer sheets and observed that a yield point that does not correspond to catastrophic failure is required. Unfolding occurred during heating through the glass transition, indicating the vitrification of the network that maintained the temporary, folded shape. Folding was demonstrated as a powerful tool to simply and effectively program ductile shape-memory polymers without the need for thermal cycling.
Goldmann, W H; Hess, D; Isenberg, G
1999-03-01
We employed quasi-elastic light scattering and electron microscopy to investigate the influence of intact talin and talin tail fragment on actin filament dynamics and network structure. Using these methods, we confirm previous reports that intact talin induces cross-linking as well as filament shortening on actin networks. We now show that the effect of intact talin as well as talin tail fragment on actin networks is controlled by pH and ionic strength. At pH 7.5, actin filament dynamics in the presence of intact talin and talin tail fragment are characterized by a rapid decay of the dynamic structure factor and by a square root power law for the stretched exponential decay which is in contrast with the theory for pure actin solutions. At pH 6 and low ionic strength, intact talin cross-links actin filaments more tightly than talin tail fragment. Talin head fragment showed no effect on actin networks, indicating that the actin binding sites reside probably exclusively within the tail domain.
Zhang, Hanwei; Qadeer, Aisha; Chen, Weiliam
2011-01-01
In situ gelable interpenetrating double network hydrogels composed of thiolated chitosan (Chitosan-NAC) and oxidized dextran (Odex), completely devoid of potentially cytotoxic small molecule crosslinkers and do not require complex maneuvers or catalysis, have been formulated. The interpenetrating network structure is created by Schiff base formations and disulfide bond inter-crosslinkings through exploiting the disparity of their reaction times. Compare to the auto-gelable thiolated chitosan hydrogels that typically require a relatively long time span for gelation to occur, the Odex/Chitosan-NAC composition solidifies rapidly and forms a well-developed three-dimensional network in a short time span. Compare to typical hydrogels derived from natural materials, the Odex/Chitosan-NAC hydrogels are mechanically strong and resist degradation. The cytotoxicity potential of the hydrogels was determined by an in vitro viability assay using fibroblast as a model cell and the results reveal that the hydrogels are non-cytotoxic. In parallel, in vivo results from subdermal implantation in mice models demonstrate that this hydrogel is not only highly resistant to degradation but also induces very mild tissue response. PMID:21410248
Sibanda, Wilbert; Pillay, Viness; Danckwerts, Michael P; Viljoen, Alvaro M; van Vuuren, Sandy; Khan, Riaz A
2004-03-12
A Plackett-Burman design was employed to develop and optimize a novel crosslinked calcium-aluminum-alginate-pectinate oilisphere complex as a potential system for the in vitro site-specific release of Mentha piperita, an essential oil used for the treatment of irritable bowel syndrome. The physicochemical and textural properties (dependent variables) of this complex were found to be highly sensitive to changes in the concentration of the polymers (0%-1.5% wt/vol), crosslinkers (0%-4% wt/vol), and crosslinking reaction times (0.5-6 hours) (independent variables). Particle size analysis indicated both unimodal and bimodal populations with the highest frequency of 2 mm oilispheres. Oil encapsulation ranged from 6 to 35 mg/100 mg oilispheres. Gravimetric changes of the crosslinked matrix indicated significant ion sequestration and loss in an exponential manner, while matrix erosion followed Higuchi's cube root law. Among the various measured responses, the total fracture energy was the most suitable optimization objective (R2 = 0.88, Durbin-Watson Index = 1.21%, Coefficient of Variation (CV) = 33.21%). The Lagrangian technique produced no significant differences (P > .05) between the experimental and predicted total fracture energy values (0.0150 vs 0.0107 J). Artificial Neural Networks, as an alternative predictive tool of the total fracture energy, was highly accurate (final mean square error of optimal network epoch approximately 0.02). Fused-coated optimized oilispheres produced a 4-hour lag phase followed by zero-order kinetics (n > 0.99), whereby analysis of release data indicated that diffusion (Fickian constant k1 = 0.74 vs relaxation constant k2 = 0.02) was the predominant release mechanism.
Pedron, S; Peinado, C; Bosch, P; Benton, J A; Anseth, K S
2011-01-01
High-throughput methods allow rapid examination of parameter space to characterize materials and develop new polymeric formulations for biomaterials applications. One limitation is the difficulty of preparing libraries and performing high-throughput screening with conventional instrumentation and sample preparation. Here, we describe the fabrication of substrate materials with controlled gradients in composition by a rapid method of micromixing followed by a photopolymerization reaction. Specifically, poly(ethylene glycol) dimethacrylate was copolymerized with a hyperbranched multimethacrylate (P1000MA or H30MA) in a gradient manner. The extent of methacrylate conversion and the final network composition were determined by near-infrared spectroscopy, and mechanical properties were measured by nanoindentation. A relationship was observed between the elastic modulus and network crosslinking density. Roughness and hydrophilicity were increased on surfaces with a higher concentration of P1000MA. These results likely relate to a phase segregation process of the hyperbranched macromer that occurs during the photopolymerization reaction. On the other hand, the decrease in the final conversion in H30MA polymerization reactions was attributed to the lower termination rate as a consequence of the softening of the network. Valvular interstitial cell attachment was evaluated on these gradient substrates as a demonstration of studying cell morphology as a function of the local substrate properties. Data revealed that the presence of P1000MA affects cell–material interaction with a higher number of adhered cells and more cell spreading on gradient regions with a higher content of the multifunctional crosslinker. PMID:21105168
Fatigue Behavior of IM7/BMI 5250-4 Composite at Room and Elevated Temperatures
2015-03-01
to the ancient Egyptians and their use of clay bricks reinforced with straw, but it is most commonly used in steel-reinforce concrete today [5, p...the temperature increases during the first part of the cure cycle, the viscosity of the resin decreases until the resin becomes a fluid. At about 165...C, the viscosity reaches a minimum value then begins to rise. During the hold at 191°C, a continuous cross-linked network is formed. Crosslinking
Marrocchi, Assunta; Adriaensens, Peter; Bartollini, Elena; ...
2015-10-09
For a novel class of polystyrene-based gel-type resins (SPACeR, SP), containing the large 1,4-bis (4-vinylphenoxy)benzene cross-linker, is introduced; SP-immobilized 1,5,7-triazabicyclo [4.4.0]dec-5-ene (TBD) and triethylamine (TEA) bases are synthesized and characterized in terms of their structural, thermal and morphological features, and their catalytic efficiency in a series of fundamental chemical transformations under solvent-free conditions is investigated.
Reentrant behaviour in polyvinyl alcohol-borax hydrogels
NASA Astrophysics Data System (ADS)
Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.
2018-01-01
Polyvinyl alcohol (PVA) hydrogels, cross-linked with varying concentrations of borax, were studied with small angle neutron scattering (SANS), x-ray diffraction (XRD) and differential thermal analysis (DTA). The SANS data satisfy the Ornstein-Zernike approximation. The hydrogels are modelled as PVA chains bound by borate cross-links. Water occupies the spaces within the three-dimensional hydrogel network. The mesh size ξ indicates reentrant behaviour i.e. at first, ξ increases and later decreases as a function of borax concentration. The behaviour is explained on the basis of the balance between the charged di-diol cross-links and the shielding by free ions in the solvent. XRD and DTA show the molecular size of water in the solvent and the glass transition temperature commensurate with reentrant behaviour.
Hydrothermal growth of cross-linked hyperbranched copper dendrites using copper oxalate complex
NASA Astrophysics Data System (ADS)
Truong, Quang Duc; Kakihana, Masato
2012-06-01
A facile and surfactant-free approach has been developed for the synthesis of cross-linked hyperbranched copper dendrites using copper oxalate complex as a precursor and oxalic acid as a reducing and structure-directing agent. The synthesized particles are composed of highly branched nanostructures with unusual cross-linked hierarchical networks. The formation of copper dendrites can be explained in view of both diffusion control and aggregation-based growth model accompanied by the chelation-assisted assembly. Oxalic acid was found to play dual roles as reducing and structure-directing agent based on the investigation results. The understanding on the crystal growth and the roles of oxalic acid provides clear insight into the formation mechanism of hyperbranched metal dendrites.
The Development of a High-Throughput/Combinatorial Workflow for the Study of Porous Polymer Networks
2012-04-05
poragen composition , poragen level, and cure temperature. A total of 216 unique compositions were prepared. Changes in opacity of the blends as they cured...allowed for the identification of compositional variables and process variables that enabled the production of porous networks. Keywords: high...in polymer network cross-link density,poragen composition , poragen level, and cure temperature. A total of 216 unique compositions were prepared
Synthesis, Characterization, and Antibacterial Activity of Cross-Linked Chitosan-Glutaraldehyde
Li, Bin; Shan, Chang-Lin; Zhou, Qing; Fang, Yuan; Wang, Yang-Li; Xu, Fei; Han, Li-Rong; Ibrahim, Muhammad; Guo, Long-Biao; Xie, Guan-Lin; Sun, Guo-Chang
2013-01-01
This present study deals with synthesis, characterization and antibacterial activity of cross-linked chitosan-glutaraldehyde. Results from this study indicated that cross-linked chitosan-glutaraldehyde markedly inhibited the growth of antibiotic-resistant Burkholderia cepacia complex regardless of bacterial species and incubation time while bacterial growth was unaffected by solid chitosan. Furthermore, high temperature treated cross-linked chitosan-glutaraldehyde showed strong antibacterial activity against the selected strain 0901 although the inhibitory effects varied with different temperatures. In addition, physical-chemical and structural characterization revealed that the cross-linking of chitosan with glutaraldehyde resulted in a rougher surface morphology, a characteristic Fourier transform infrared (FTIR) band at 1559 cm−1, a specific X-ray diffraction peak centered at 2θ = 15°, a lower contents of carbon, hydrogen and nitrogen, and a higher stability of glucose units compared to chitosan based on scanning electron microscopic observation, FTIR spectra, X-ray diffraction pattern, as well as elemental and thermo gravimetric analysis. Overall, this study indicated that cross-linked chitosan-glutaraldehyde is promising to be developed as a new antibacterial drug. PMID:23670533
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, David Edward; Barber, John L.
From quantum chemistry simulations using density functional theory, we obtain the total electronic energy of an eight-atom sulfur chain as its end-to-end distance is extended until S–S bond rupture occurs. We find that a sulfur chain can be extended by about 40% beyond its nominally straight conformation, where it experiences rupture at an end-to-end tension of about 1.5 nN. Using this rupture force as the chain failure limit in an explicit polymer network simulation model (EPnet), we predict the tensile failure stress for sulfur crosslinked (vulcanized) natural rubber. Furthermore, quantitative agreement with published experimental data for the failure stress ismore » obtained in these simulations if we assume that only about 30% of the sulfur chains produce viable network crosslinks. Surprisingly, we also find that the failure stress of a rubber network does not scale linearly with the chain failure force limit.« less
A Facile and General Approach to Recoverable High-Strain Multishape Shape Memory Polymers.
Li, Xingjian; Pan, Yi; Zheng, Zhaohui; Ding, Xiaobin
2018-03-01
Fabricating a single polymer network with no need to design complex structures to achieve an ideal combination of tunable high-strain multiple-shape memory effects and highly recoverable shape memory property is a great challenge for the real applications of advanced shape memory devices. Here, a facile and general approach to recoverable high-strain multishape shape memory polymers is presented via a random copolymerization of acrylate monomers and a chain-extended multiblock copolymer crosslinker. As-prepared shape memory networks show a large width at the half-peak height of the glass transition, far wider than current classical multishape shape memory polymers. A combination of tunable high-strain multishape memory effect and as high as 1000% recoverable strain in a single chemical-crosslinking network can be obtained. To the best of our knowledge, this is the first thermosetting material with a combination of highly recoverable strain and tunable high-strain multiple-shape memory effects. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mechanics of membrane bulging during cell-wall disruption in Gram-negative bacteria
NASA Astrophysics Data System (ADS)
Daly, Kristopher E.; Huang, Kerwyn Casey; Wingreen, Ned S.; Mukhopadhyay, Ranjan
2011-04-01
The bacterial cell wall is a network of sugar strands crosslinked by peptides that serve as the primary structure for bearing osmotic stress. Despite its importance in cellular survival, the robustness of the cell wall to network defects has been relatively unexplored. Treatment of the Gram-negative bacterium Escherichia coli with the antibiotic vancomycin, which disrupts the crosslinking of new material during growth, leads to the development of pronounced bulges and eventually of cell lysis. Here, we model the mechanics of the bulging of the cytoplasmic membrane through pores in the cell wall. We find that the membrane undergoes a transition between a nearly flat state and a spherical bulge at a critical pore radius of ~20 nm. This critical pore size is large compared to the typical distance between neighboring peptides and glycan strands, and hence pore size acts as a constraint on network integrity. We also discuss the general implications of our model to membrane deformations in eukaryotic blebbing and vesiculation in red blood cells.
Hanson, David Edward; Barber, John L.
2017-11-20
From quantum chemistry simulations using density functional theory, we obtain the total electronic energy of an eight-atom sulfur chain as its end-to-end distance is extended until S–S bond rupture occurs. We find that a sulfur chain can be extended by about 40% beyond its nominally straight conformation, where it experiences rupture at an end-to-end tension of about 1.5 nN. Using this rupture force as the chain failure limit in an explicit polymer network simulation model (EPnet), we predict the tensile failure stress for sulfur crosslinked (vulcanized) natural rubber. Furthermore, quantitative agreement with published experimental data for the failure stress ismore » obtained in these simulations if we assume that only about 30% of the sulfur chains produce viable network crosslinks. Surprisingly, we also find that the failure stress of a rubber network does not scale linearly with the chain failure force limit.« less
Determinants of fluidlike behavior and effective viscosity in cross-linked actin networks.
Kim, Taeyoon; Gardel, Margaret L; Munro, Ed
2014-02-04
The actin cortex has a well-documented ability to rapidly remodel and flow while maintaining long-range connectivity, but how this is achieved remains poorly understood. Here, we use computer simulations to explore how stress relaxation in cross-linked actin networks subjected to extensional stress depends on the interplay between network architecture and turnover. We characterize a regime in which a network response is nonaffine and stress relaxation is governed by the continuous dissipation of elastic energy via cyclic formation, elongation, and turnover of tension-bearing elements. Within this regime, for a wide range of network parameters, we observe a constant deformation (creep) rate that is linearly proportional to the rate of filament turnover, leading to a constant effective viscosity that is inversely proportional to turnover rate. Significantly, we observe a biphasic dependence of the creep rate on applied stress: below a critical stress threshold, the creep rate increases linearly with applied stress; above that threshold, the creep rate becomes independent of applied stress. We show that this biphasic stress dependence can be understood in terms of the nonlinear force-extension behavior of individual force-transmitting network elements. These results have important implications for understanding the origins and control of viscous flows both in the cortex of living cells and in other polymer networks. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Yang, Yali; Valentine, Megan T
2013-01-01
The microtubule (MT) cytoskeleton is essential in maintaining the shape, strength, and organization of cells. Its spatiotemporal organization is fundamental for numerous dynamic biological processes, and mechanical stress within the MT cytoskeleton provides an important signaling mechanism in mitosis and neural development. This raises important questions about the relationships between structure and mechanics in complex MT structures. In vitro, reconstituted cytoskeletal networks provide a minimal model of cell mechanics while also providing a testing ground for the fundamental polymer physics of stiff polymer gels. Here, we describe our development and implementation of a broad tool kit to study structure-mechanics relationships in reconstituted MT networks, including protocols for the assembly of entangled and cross-linked MT networks, fluorescence imaging, microstructure characterization, construction and calibration of magnetic tweezers devices, and mechanical data collection and analysis. In particular, we present the design and assembly of three neodymium iron boron (NdFeB)-based magnetic tweezers devices optimized for use with MT networks: (1) high-force magnetic tweezers devices that enable the application of nano-Newton forces and possible meso- to macroscale materials characterization; (2) ring-shaped NdFeB-based magnetic tweezers devices that enable oscillatory microrheology measurements; and (3) portable magnetic tweezers devices that enable direct visualization of microscale deformation in soft materials under applied force. Copyright © 2013 Elsevier Inc. All rights reserved.
Production in Pichia pastoris of protein-based polymers with small heterodimer-forming blocks.
Domeradzka, Natalia E; Werten, Marc W T; de Vries, Renko; de Wolf, Frits A
2016-05-01
Some combinations of leucine zipper peptides are capable of forming α-helical heterodimeric coiled coils with very high affinity. These can be used as physical cross-linkers in the design of protein-based polymers that form supramolecular structures, for example hydrogels, upon mixing solutions containing the complementary blocks. Such two-component physical networks are of interest for many applications in biomedicine, pharmaceutics, and diagnostics. This article describes the efficient secretory production of A and B type leucine zipper peptides fused to protein-based polymers in Pichia pastoris. By adjusting the fermentation conditions, we were able to significantly reduce undesirable proteolytic degradation. The formation of A-B heterodimers in mixtures of the purified products was confirmed by size exclusion chromatography. Our results demonstrate that protein-based polymers incorporating functional heterodimer-forming blocks can be produced with P. pastoris in sufficient quantities for use in future supramolecular self-assembly studies and in various applications. © 2015 Wiley Periodicals, Inc.
Elastic Coupling of Nascent apCAM Adhesions to Flowing Actin Networks
Mejean, Cecile O.; Schaefer, Andrew W.; Buck, Kenneth B.; Kress, Holger; Shundrovsky, Alla; Merrill, Jason W.; Dufresne, Eric R.; Forscher, Paul
2013-01-01
Adhesions are multi-molecular complexes that transmit forces generated by a cell’s acto-myosin networks to external substrates. While the physical properties of some of the individual components of adhesions have been carefully characterized, the mechanics of the coupling between the cytoskeleton and the adhesion site as a whole are just beginning to be revealed. We characterized the mechanics of nascent adhesions mediated by the immunoglobulin-family cell adhesion molecule apCAM, which is known to interact with actin filaments. Using simultaneous visualization of actin flow and quantification of forces transmitted to apCAM-coated beads restrained with an optical trap, we found that adhesions are dynamic structures capable of transmitting a wide range of forces. For forces in the picoNewton scale, the nascent adhesions’ mechanical properties are dominated by an elastic structure which can be reversibly deformed by up to 1 µm. Large reversible deformations rule out an interface between substrate and cytoskeleton that is dominated by a number of stiff molecular springs in parallel, and favor a compliant cross-linked network. Such a compliant structure may increase the lifetime of a nascent adhesion, facilitating signaling and reinforcement. PMID:24039928
Thermoreversible networks for moldable photo-responsive elastomers (Presentation Recording)
NASA Astrophysics Data System (ADS)
Kornfield, Julia A.; Kurji, Zuleikha
2015-10-01
Soft-solids that retain the responsive optical anisotropy of liquid crystals (LC) can be used as mechano-optical, electro-optical and electro-mechanical elements. We use self-assembly of block copolymers to create reversible LC gels and elastomers that flow at elevated temperatures and physically cross link upon cooling. In the melt, they can be spun, coated or molded. Segregation of the end-blocks forms uniform and uniformly spaced crosslinks. Matched sets of block copolymers are synthesized from a single "prepolymer." Specifically, we begin with polymers having polystyrene (PS) end blocks and a poly(1,2-butadiene) midblock. The pendant vinyl groups along the backbone of the midblock are used to graft mesogens, converting it to a side-group LC polymer (SGLCP). In the present case, cyanobiphenyl groups are used as the nonphotoresponsive mesogens and azobenzene groups are used as photoresponsive mesogens. Here we show that matched pairs of block copolymers, with and without photo-responsive mesogens, provide model systems in which the optical density can be adjusted while holding other properties fixed (cross-link density, modulus, birefringence, isotropic-nematic transition temperature). For example, a triblock in which the SGLCP block has 95% cyanobiphenyl and 5% azo side groups is miscible with one having 100% cyanobiphenyl side groups. Simply blending the two gives a series of LC elastomers that have from 0 to 5% azo, while having all other physical properties matched. Results will be presented that show the outcomesof this approach to systematic and largely independent control of optical density and photo-mechanical sensitivity.
NASA Astrophysics Data System (ADS)
Yokoyama, Yasunori; Tanaka, Hikaru; Yano, Shunsuke; Takahashi, Hiroshi; Kikukawa, Takashi; Sonoyama, Masashi; Takenaka, Koshi
2017-05-01
We previously discovered the correlation between light-induced chromophore color change of a photo-receptor membrane protein bacteriorhodopsin (bR) and its two-dimensional crystalline state in the membrane. To apply this phenomenon to a novel optical memory device, it is necessary that bR molecules are immobilized as maintaining their structure and functional properties. In this work, a poly(vinyl alcohol) (PVA) hydrogel with physical cross-linkages (hydrogen bonds between PVA chains) that resulted from repeated freezing-and-thawing (FT) cycles was used as an immobilization medium. To investigate the effects of physically cross-linked PVA gelation on the structure and function of bR in purple membranes (PMs), spectroscopic techniques were employed against PM/PVA immobilized samples prepared with different FT cycle numbers. Visible circular dichroism spectroscopy strongly suggested PM stacking during gelation. X-ray diffraction data also indicated the PM stacking as well as its native-like crystalline lattice even after gelation. Time-resolved absorption spectroscopy showed that bR photocycle behaviors in PM/PVA immobilized samples were almost identical to that in suspension. These results suggested that a physically cross-linked PVA hydrogel is appropriate for immobilizing membrane proteins in terms of maintaining their structure and functionality.
Courcelles, Mathieu; Coulombe-Huntington, Jasmin; Cossette, Émilie; Gingras, Anne-Claude; Thibault, Pierre; Tyers, Mike
2017-07-07
Protein cross-linking mass spectrometry (CL-MS) enables the sensitive detection of protein interactions and the inference of protein complex topology. The detection of chemical cross-links between protein residues can identify intra- and interprotein contact sites or provide physical constraints for molecular modeling of protein structure. Recent innovations in cross-linker design, sample preparation, mass spectrometry, and software tools have significantly improved CL-MS approaches. Although a number of algorithms now exist for the identification of cross-linked peptides from mass spectral data, a dearth of user-friendly analysis tools represent a practical bottleneck to the broad adoption of the approach. To facilitate the analysis of CL-MS data, we developed CLMSVault, a software suite designed to leverage existing CL-MS algorithms and provide intuitive and flexible tools for cross-platform data interpretation. CLMSVault stores and combines complementary information obtained from different cross-linkers and search algorithms. CLMSVault provides filtering, comparison, and visualization tools to support CL-MS analyses and includes a workflow for label-free quantification of cross-linked peptides. An embedded 3D viewer enables the visualization of quantitative data and the mapping of cross-linked sites onto PDB structural models. We demonstrate the application of CLMSVault for the analysis of a noncovalent Cdc34-ubiquitin protein complex cross-linked under different conditions. CLMSVault is open-source software (available at https://gitlab.com/courcelm/clmsvault.git ), and a live demo is available at http://democlmsvault.tyerslab.com/ .
NASA Astrophysics Data System (ADS)
Yan, Ning; Capezzuto, Filomena; Buonocore, Giovanna G.; Tescione, Fabiana; Lavorgna, Marino; Xia, Hesheng; Ambrosio, Luigi
2015-12-01
Borate adducts, originated from hydrolysis of sodium tetraborate decahydrate (borax), have been used to crosslink chitosan (CS) and graphene oxide (GO) nanosheets for the production of innovative composite sustainable materials. CS/GO film consisting of 10wt% borax and 1wt% GO exhibits a significant improvement of both toughness and oxygen barrier properties in comparison to pristine chitosan. In particular the tensile strength increases by about 100% and 150% after thermal annealing of samples at 90°C for 50min whereas the oxygen permeability reduces of about 90% compared to pristine chitosan. The enhancement of both mechanical and barrier properties is ascribed to the formation of a resistant network due to the chemical crosslinking, including borate orthoester bonds and hydroxyl moieties complexes, formed among borate ions, chitosan, and GO nanoplatelets. The crosslinked graphene-based chitosan material with its enhanced mechanical and barrier properties may significantly broad the range of applications of chitosan based-materials which presently are very limited and addressed only to packaging.
The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams
Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing
2016-01-01
Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams. PMID:27841307
The Synergy of Double Cross-linking Agents on the Properties of Styrene Butadiene Rubber Foams
NASA Astrophysics Data System (ADS)
Shao, Liang; Ji, Zhan-You; Ma, Jian-Zhong; Xue, Chao-Hua; Ma, Zhong-Lei; Zhang, Jing
2016-11-01
Sulfur (S) cross-linking styrene butadiene rubber (SBR) foams show high shrinkage due to the cure reversion, leading to reduced yield and increased processing cost. In this paper, double cross-linking system by S and dicumyl peroxide (DCP) was used to decrease the shrinkage of SBR foams. Most importantly, the synergy of double cross-linking agents was reported for the first time to our knowledge. The cell size and its distribution of SBR foams were investigated by FESEM images, which show the effect of DCP content on the cell structure of the SBR foams. The relationships between shrinkage and crystalline of SBR foams were analyzed by the synergy of double cross-linking agents, which were demonstrated by FTIR, Raman spectra, XRD, DSC and TGA. When the DCP content was 0.6 phr, the SBR foams exhibit excellent physical and mechanical properties such as low density (0.223 g/cm3), reduced shrinkage (2.25%) and compression set (10.96%), as well as elevated elongation at break (1.78 × 103%) and tear strength (54.63 N/mm). The results show that these properties are related to the double cross-linking system of SBR foams. Moreover, the double cross-linking SBR foams present high electromagnetic interference (EMI) shielding properties compared with the S cross-linking SBR foams.
Shi, Da-Chuan; Wang, Juan; Hu, Rui-Bo; Zhou, Gong-Ke; O'Neill, Malcolm A; Kong, Ying-Zhen
2017-06-01
The structure of a pectin network requires both calcium (Ca 2+ ) and boron (B). Ca 2+ is involved in crosslinking pectic polysaccharides and arbitrarily induces the formation of an "egg-box" structure among pectin molecules, while B crosslinks rhamnogalacturonan II (RG-II) side chain A apiosyl residues in primary cell walls to generate a borate-dimeric-rhamnogalacturonan II (dRG-II-B) complex through a boron-bridge bond, leading to the formation of a pectin network. Based on recent studies of dRG-II-B structures, a hypothesis has been proposed suggesting that Ca 2+ is a common component of the dRG-II-B complex. However, no in vivo evidence has addressed whether B affects the stability of Ca 2+ crosslinks. Here, we investigated the L-fucose-deficient dwarf mutant mur1, which was previously shown to require exogenous B treatment for phenotypic reversion. Imbibed Arabidopsis thaliana seeds release hydrated polysaccharides to form a halo of seed mucilage covering the seed surface, which consists of a water-soluble outer layer and an adherent inner layer. Our study of mur1 seed mucilage has revealed that the pectin in the outer layer of mucilage was relocated to the inner layer. Nevertheless, the mur1 inner mucilage was more vulnerable to rough shaking or ethylene diamine tetraacetic acid (EDTA) extraction than that of the wild type. Immunolabeling analysis suggested that dRG-II-B was severely decreased in mur1 inner mucilage. Moreover, non-methylesterified homogalacturonan (HG) exhibited obvious reassembly in the mur1 inner layer compared with the wild type, which may imply a possible connection between dRG-II-B deficiency and pectin network transformation in the seed mucilage. As expected, the concentration of B in the mur1 inner mucilage was reduced, whereas the distribution and concentration of Ca 2+ in the inner mucilage increased significantly, which could be the reason why pectin relocates from the outer mucilage to the inner mucilage. Consequently, the disruption of B bridges appears to result in the extreme sensitivity of the mur1 mucilage pectin complex to EDTA extraction, despite the reinforcement of the pectin network by excessive Ca 2+ . Therefore, we propose a hypothesis that B, in the form of dRG-II-B, works together with Ca 2+ to maintain pectin network crosslinks and ultimately the mucilage ultrastructure in seed mucilage. This work may serve to complement our current understanding of mucilage configuration.
Jang, Jinhyeong; Hong, Jisu; Cha, Chaenyung
2017-05-01
Graphene oxide (GO) is increasingly investigated as a reinforcing nanofiller for various hydrogels for biomedical applications for its superior mechanical strength. However, the reinforcing mechanism of GO in different hydrogel conditions has not been extensively explored and elucidated to date. Herein, we systematically examine the effects of various types of precursor molecules (monomers vs. macromers) as well as mode of GO incorporation (physical vs. covalent) on the mechanical properties of resulting composite hydrogels. Two hydrogel types, (1) polyacrylamide hydrogels with varying concentrations of acrylamide monomers and (2) poly(ethylene glycol) (PEG) hydrogels with varying molecular weights of PEG macromers, are used as model systems. In addition, incorporation of GO is also controlled by using either unmodified GO or methacrylic GO (MGO) which allows for covalent incorporation. The results in this study demonstrate that the interaction between GO and the surrounding network and its effect on the mechanical properties (i.e. rigidity and toughness) of composite hydrogels are highly dependent on both the type and concentration of precursors and the mode of crosslinking. We expect this study will provide an important guideline for future research efforts on controlling the mechanical properties of GO-based composite hydrogels. Copyright © 2017 Elsevier Ltd. All rights reserved.
Self-Healing Phase Change Salogels with Tunable Gelation Temperature.
Karimineghlani, Parvin; Palanisamy, Anbazhagan; Sukhishvili, Svetlana A
2018-05-02
Chemically cross-linked polymer matrices have demonstrated strong potential for shape stabilization of molten phase change materials (PCM). However, they are not designed to be fillable and removable from a heat exchange module for an easy replacement with new PCM matrices and lack self-healing capability. Here, a new category of shapeable, self-healing gels, "salogels", is introduced. The salogels reversibly disassemble in a high-salinity environment of a fluid inorganic PCM [lithium nitrate trihydrate (LNH)], at a preprogrammed temperature. LNH was employed as a high latent heat PCM and simultaneously as a solvent, which supported the formation of a network of polyvinyl alcohol (PVA) chains via physical cross-linking through poly(amidoamine) dendrimers of various generations. The existence of hydrogen bonding and the importance of low-hydration state of PVA for the efficient gelation were experimentally confirmed. The thermal behavior of PCM salogels was highly reversible and repeatable during multiple heating/cooling cycles. Importantly, the gel-sol transition temperature could be precisely controlled within a range of temperature above LNH's melting point by the choice of dendrimer generation and their concentration. Shape stabilization and self-healing properties of the salogels, taken together with tunability of their temperature-induced fluidization make these materials attractive for thermal energy storage applications that require on-demand removal and replacement of used inorganic PCM salt hydrates.
Delcour, J A; Vansteelandt, J; Hythier, M; Abécassis, J
2000-09-01
Commercial durum wheat semolina was fractionated into protein, starch, water-extractable, and sludge fractions. The starch fraction was hydroxypropylated, annealed, or cross-linked to change its gelatinization and pasting properties. Spaghettis were made by reconstitution of the fractions, and their quality was assessed. Hydroxypropylated starches were detrimental for cooked pasta quality. Cross-linked starches made the reconstituted pasta firmer and even brittle when the degree of cross-linking was too high. These results indicate that starch properties play a role in pasta quality, although the gluten remains very important as an ultrastructure agent. It was concluded that, given a certain gluten ultrastructure, starch water uptake and gel properties and/or its interference with or breakdown of the continuous gluten network during cooking determine pasta quality.
Adaptable Hydrogel Networks with Reversible Linkages for Tissue Engineering
Wang, Huiyuan
2015-01-01
Adaptable hydrogels have recently emerged as a promising platform for three-dimensional (3D) cell encapsulation and culture. In conventional, covalently crosslinked hydrogels, degradation is typically required to allow complex cellular functions to occur, leading to bulk material degradation. In contrast, adaptable hydrogels are formed by reversible crosslinks. Through breaking and re-forming of the reversible linkages, adaptable hydrogels can be locally modified to permit complex cellular functions while maintaining their long-term integrity. In addition, these adaptable materials can have biomimetic viscoelastic properties that make them well suited for several biotechnology and medical applications. In this review, adaptable hydrogel design considerations and linkage selections are overviewed, with a focus on various cell compatible crosslinking mechanisms that can be exploited to form adaptable hydrogels for tissue engineering. PMID:25989348
Hydrodynamics of isotropic and liquid crystalline active polymer solutions.
Ahmadi, Aphrodite; Marchetti, M C; Liverpool, T B
2006-12-01
We describe the large-scale collective behavior of solutions of polar biofilaments and stationary and mobile crosslinkers. Both mobile and stationary crosslinkers induce filament alignment promoting either polar or nematic order. In addition, mobile crosslinkers, such as clusters of motor proteins, exchange forces and torques among the filaments and render the homogeneous states unstable via filament bundling. We start from a Smoluchowski equation for rigid filaments in solutions, where pairwise crosslink-mediated interactions among the filaments yield translational and rotational currents. The large-scale properties of the system are described in terms of continuum equations for filament and motor densities, polarization, and alignment tensor obtained by coarse-graining the Smoluchovski equation. The possible homogeneous and inhomogeneous states of the systems are obtained as stable solutions of the dynamical equations and are characterized in terms of experimentally accessible parameters. We make contact with work by other authors and show that our model allows for an estimate of the various parameters in the hydrodynamic equations in terms of physical properties of the crosslinkers.
Linear and Nonlinear Elasticity of Networks Made of Comb-like Polymers and Bottle-Brushes
NASA Astrophysics Data System (ADS)
Liang, H.; Dobrynin, A.; Everhart, M.; Daniel, W.; Vatankhah-Varnoosfaderani, M.; Sheiko, S.
We study mechanical properties of networks made of combs and bottle-brushes by computer simulations, theoretical calculations and experimental techniques. The networks are prepared by cross-linking backbones of combs or bottle-brushes with linear chains. This results in ``hybrid'' networks consisting of linear chains and strands of combs or bottle-brushes. In the framework of the phantom network model, the network modulus at small deformations G0 can be represented as a sum of contributions from linear chains, G0 , l, and strands of comb or bottle-brush, G0 , bb. If the length of extended backbone between crosslinks, Rmax, is much longer than the Kuhn length, bk, the modulus scales with the degree of polymerization of the side chains, nsc, and number of monomers between side chains, ng, as G0 , bb (nsc/ng + 1)-1. In the limit when bk becomes of the order of Rmax, the combs and bottle-brushes can be considered as semiflexible chains, resulting in a network modulus to be G0 , bb (nsc/ng + 1)-1(nsc2/2/ng) . In the nonlinear deformation regime, the strain-hardening behavior is described by the nonlinear network deformation model, which predicts that the true stress is a universal function of the structural modulus, G, first strain invariant, I1, and deformation ratio, β. The results of the computer simulations and predictions of the theoretical model are in a good agreement with experimental results. NSF DMR-1409710, DMR-1407645, DMR-1624569, DMR-1436201.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Caitlyn Christian
An evaporation barrier is required to enhance the lifetime of electrophoretic deposition (EPD) displays. As EPD functions on the basis of reversible deposition and resuspension of colloids suspended in a solvent, evaporation of the solvent ultimately leads to device failure. Incorporation of a thiol-polybutadiene elastomer into EPD displays enabled display lifetime surpassing six months in counting and catalyzed rigid display transition into a flexible package. Final flexible display transition to mass production compels an electronic-ink approach to encapsulate display suspension within an elastomer shell. Final thiol-polybutadiene photosensitive resin network microstructure was idealized to be dense, homogeneous, and expose an elasticmore » response to deformation. Research at hand details an approach to understanding microstructural change within display elastomers. Polybutadiene-based resin properties are modified via polymer chain structure, with and without added aromatic urethane methacrylate difunctionality, and in measuring network response to variation in thiol and initiator concentration. Dynamic mechanical analysis results signify that cross-linked segments within a difunctionalized polybutadiene network were on average eight times more elastically active than that of linked segments within a non-functionalized polybutadiene network. Difunctionalized polybutadiene samples also showed a 2.5 times greater maximum elastic modulus than non-functionalized samples. Hybrid polymer composed of both polybutadiene chains encompassed TE-2000 stiffness and B-1000 elasticity for use in encapsulating display suspension. Later experiments measured kinetic and rheological response due to alteration in dithiol cross-linker chain length via real time Fourier transform infrared spectroscopy and real-time dynamic rheology. Distinct differences were discovered between dithiol resin systems, as maximum thiol conversion achieved in short and long chain length dithiols was 86% and 11%, respectively. Oscillatory real-time rheological experiments confirmed a more uniform network to better dissipate applied shear in short chain length dithiol systems, as long chain length dithiols relayed a steep internal stress build-up due to less cross-links and chain entanglements. Thorough understanding of network formation aids the production of a stronger and impermeable elastomeric barrier for preservation of EPD displays.« less
Noronha, Anne M; Noll, David M; Wilds, Christopher J; Miller, Paul S
2002-01-22
The preparation and physical properties of short DNA duplexes that contain a N(4)C-ethyl-N(4)C interstrand cross-link are described. Duplexes that contain an interstrand cross-link between mismatched C-C residues and duplexes in which the C residues of a -CG- or -GC- step are linked to give "staggered" interstrand cross-links were prepared using a novel N(4)C-ethyl-N(4)C phosphoramidite reagent. Duplexes with the C-C mismatch cross-link have UV thermal transition temperatures that are 25 degrees C higher than the melting temperatures of control duplexes in which the cross-link is replaced with a G-C base pair. It appears that this cross-link stabilizes adjacent base pairs and does not perturb the structure of the helix, a conclusion that is supported by the CD spectrum of this duplex and by molecular models. An even higher level of stabilization, 49 degrees C, is seen with the duplex that contains a -CG- staggered cross-link. Molecular models suggest that this cross-link may induce propeller twisting in the cross-linked base pairs, and the CD spectrum of this duplex exhibits an unusual negative band at 298 nm, although the remainder of the spectrum is similar to that of B-form DNA. Mismatched C-C or -CG- staggered cross-linked duplexes that have complementary overhanging ends can undergo self-ligation catalyzed by T4 DNA ligase. Analysis of the ligated oligomers by nondenaturing polyacrylamide gel electrophoresis shows that the resulting oligomers migrate in a manner similar to that of a mixture of non-cross-linked control oligomers and suggests that these cross-links do not result in significant bending of the helix. However, the orientation of the staggered cross-link can have a significant effect on the structure and stability of the cross-linked duplex. Thus, the thermal stability of the duplex that contains a -GC- staggered cross-link is 10 degrees C lower than the melting temperature of the control, non-cross-linked duplex. Unlike the -CG- staggered cross-link, in which the cross-linked base pairs can still maintain hydrogen bond contacts, molecular models suggest that formation of the -GC- staggered cross-link disrupts hydrogen bonding and may also perturb adjacent base pairs leading to an overall reduction in helix stability. Duplexes with specifically positioned and oriented cross-links can be used as substrates to study DNA repair mechanisms.
Chan, Ariel W; Neufeld, Ronald J
2009-10-01
Semisynthetic network alginate polymer (SNAP), synthesized by acetalization of linear alginate with di-aldehyde, is a pH-responsive tetrafunctionally linked 3D gel network, and has potential application in oral delivery of protein therapeutics and active biologicals, and as tissue bioscaffold for regenerative medicine. A constitutive polyelectrolyte gel model based on non-Gaussian polymer elasticity, Flory-Huggins liquid lattice theory, and non-ideal Donnan membrane equilibria was derived, to describe SNAP gel swelling in dilute and ionic solutions containing uni-univalent, uni-bivalent, bi-univalent or bi-bi-valent electrolyte solutions. Flory-Huggins interaction parameters as a function of ionic strength and characteristic ratio of alginates of various molecular weights were determined experimentally to numerically predict SNAP hydrogel swelling. SNAP hydrogel swells pronouncedly to 1000 times in dilute solution, compared to its compact polymer volume, while behaving as a neutral polymer with limited swelling in high ionic strength or low pH solutions. The derived model accurately describes the pH-responsive swelling of SNAP hydrogel in acid and alkaline solutions of wide range of ionic strength. The pore sizes of the synthesized SNAP hydrogels of various crosslink densities were estimated from the derived model to be in the range of 30-450 nm which were comparable to that measured by thermoporometry, and diffusion of bovine serum albumin. The derived equilibrium swelling model can characterize hydrogel structure such as molecular weight between crosslinks and crosslinking density, or can be used as predictive model for swelling, pore size and mechanical properties if gel structural information is known, and can potentially be applied to other point-link network polyelectrolytes such as hyaluronic acid gel.
Huang, Xinhua; Kim, Seok; Heo, Min Seon; Kim, Ji Eun; Suh, Hongsuk; Kim, Il
2013-10-01
An easy template-free approach to the fabrication of pure carbon microspheres has been achieved via direct pyrolysis of as-prepared polyaromatic hydrocarbons including polynaphthalene and polypyrene. The polyaromatics were synthesized from aromatic hydrocarbons (AHCs) using anhydrous zinc chloride as the Friedel-Crafts catalyst and chloromethyl methyl ether as a cross-linker. The experimental results show that the methylene bridges between phenyl rings generate a hierarchical porous polyaromatic precursor to form three-dimensionally (3D) interconnected micro-, meso-, and macroporous networks during carbonization. These hierarchical porous carbon aggregates of spherical carbon spheres exhibit faster ion transport/diffusion behavior and increased surface area usage in electric double-layer capacitors. Furthermore, micropores are present in the 3D interconnected network inside the cross-linked AHC-based carbon microspheres, thus imparting an exceptionally large, electrochemically accessible surface area for charge accumulation.
Stepwise Elastic Behavior in a Model Elastomer
NASA Astrophysics Data System (ADS)
Bhawe, Dhananjay M.; Cohen, Claude; Escobedo, Fernando A.
2004-12-01
MonteCarlo simulations of an entanglement-free cross-linked polymer network of semiflexible chains reveal a peculiar stepwise elastic response. For increasing stress, step jumps in strain are observed that do not correlate with changes in the number of aligned chains. We show that this unusual behavior stems from the ability of the system to form multiple ordered chain domains that exclude the cross-linking species. This novel elastomer shows a toughening behavior similar to that observed in biological structural materials, such as muscle proteins and abalone shell adhesive.
Distributed multisensory integration in a recurrent network model through supervised learning
NASA Astrophysics Data System (ADS)
Wang, He; Wong, K. Y. Michael
Sensory integration between different modalities has been extensively studied. It is suggested that the brain integrates signals from different modalities in a Bayesian optimal way. However, how the Bayesian rule is implemented in a neural network remains under debate. In this work we propose a biologically plausible recurrent network model, which can perform Bayesian multisensory integration after trained by supervised learning. Our model is composed of two modules, each for one modality. We assume that each module is a recurrent network, whose activity represents the posterior distribution of each stimulus. The feedforward input on each module is the likelihood of each modality. Two modules are integrated through cross-links, which are feedforward connections from the other modality, and reciprocal connections, which are recurrent connections between different modules. By stochastic gradient descent, we successfully trained the feedforward and recurrent coupling matrices simultaneously, both of which resembles the Mexican-hat. We also find that there are more than one set of coupling matrices that can approximate the Bayesian theorem well. Specifically, reciprocal connections and cross-links will compensate each other if one of them is removed. Even though trained with two inputs, the network's performance with only one input is in good accordance with what is predicted by the Bayesian theorem.
Al-Sibani, Mohammed; Al-Harrasi, Ahmed; Neubert, Reinhard H H
2016-08-25
Regardless of various strategies reported for cross-linking hyaluronic acid (HA) with 1,4-butanediol diglycidyl ether (BDDE), seeking new strategies that enhance cross-linking efficiency with a low level of cross-linker is essential. In this work, we studied the influence of mixing approach on two cross-linked BDDE-HA hydrogels prepared by two different mixing approaches; the large-batch mixing approach in which the hydrogel quantities were all mixed as a single lump in one container (hydrogel 1), and the small-batches mixing approach in which the hydrogel quantities were divided into smaller batches, mixed separately at various HA/BDDE ratios then combined in one reaction mixture (hydrogel 2). The result showed that the cross-linking reaction was mixing process-dependent. Degradation tests proved that, in relation to hydrogel 1, hydrogel 2 was more stable, and exhibited a higher resistance towards hyaluronidase activity. The swelling ratio of hydrogel 1 was significantly higher than that of hydrogel 2 in distilled water; however, in phosphate buffer saline, both hydrogels showed no significant difference. SEM images demonstrated that hydrogel 2 composite showed a denser network structure and smaller pore-size than hydrogel 1. In comparison to native HA, the occurrence of chemical modification in the cross-linked hydrogels was confirmed by FTIR and NMR distinctive peaks. These peaks also provided evidence that hydrogel 2 exhibited a higher degree of modification than hydrogel 1. In conclusion, the small-batches mixing approach proved to be more effective than large-batch mixing in promoting HA-HA entanglement and increasing the probability of BDDE molecules for binding with HA chains. Copyright © 2016 Elsevier B.V. All rights reserved.
Gauthier, Rémy; Follet, Hélène; Langer, Max; Gineyts, Evelyne; Rongiéras, Frédéric; Peyrin, Françoise; Mitton, David
2018-07-01
Human cortical bone fracture processes depend on the internal porosity network down to the lacunar length scale. Recent results show that at the collagen scale, the maturation of collagen cross-links may have a negative influence on bone mechanical behavior. While the effect of pentosidine on human cortical bone toughness has been studied, the influence of mature and immature enzymatic cross-links has only been studied in relation to strength and work of fracture. Moreover, these relationships have not been studied on different paired anatomical locations. Thus, the aim of the current study was to assess the relationships between both enzymatic and non-enzymatic collagen cross-links and human cortical bone toughness, on four human paired anatomical locations. Single Edge Notched Bending toughness tests were performed for two loading conditions: a quasi-static standard condition, and a condition representative of a fall. These tests were done with 32 paired femoral diaphyses, femoral necks and radial diaphyses (18 women, age 81 ± 12 y.o.; 14 men, age 79 ± 8 y.o.). Collagen enzymatic and non-enzymatic crosslinks were measured on the same bones. Maturation of collagen was defined as the ratio between immature and mature cross-links (CX). The results show that there was a significant correlation between collagen cross-link maturation and bone toughness when gathering femoral and radial diaphyses, but not when considering each anatomical location individually. These results show that the influence of collagen enzymatic and non-enzymatic cross-links is minor when considering human cortical bone crack propagation mechanisms. Copyright © 2018 Elsevier Inc. All rights reserved.
Covalently crosslinked diels-alder polymer networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, Christopher; Adzima, Brian J.; Anderson, Benjamin John
2011-09-01
This project examines the utility of cycloaddition reactions for the synthesis of polymer networks. Cycloaddition reactions are desirable because they produce no unwanted side reactions or small molecules, allowing for the formation of high molecular weight species and glassy crosslinked networks. Both the Diels-Alder reaction and the copper-catalyzed azide-alkyne cycloaddition (CuAAC) were studied. Accomplishments include externally triggered healing of a thermoreversible covalent network via self-limited hysteresis heating, the creation of Diels-Alder based photoresists, and the successful photochemical catalysis of CuAAC as an alternative to the use of ascorbic acid for the generation of Cu(I) in click reactions. An analysis ofmore » the results reveals that these new methods offer the promise of efficiently creating robust, high molecular weight species and delicate three dimensional structures that incorporate chemical functionality in the patterned material. This work was performed under a Strategic Partnerships LDRD during FY10 and FY11 as part of a Sandia National Laboratories/University of Colorado-Boulder Excellence in Science and Engineering Fellowship awarded to Brian J. Adzima, a graduate student at UC-Boulder. Benjamin J. Anderson (Org. 1833) was the Sandia National Laboratories point-of-contact for this fellowship.« less
Computer Simulations of Bottlebrush Melts and Soft Networks
NASA Astrophysics Data System (ADS)
Cao, Zhen; Carrillo, Jan-Michael; Sheiko, Sergei; Dobrynin, Andrey
We have studied dense bottlebrush systems in a melt and network state using a combination of the molecular dynamics simulations and analytical calculations. Our simulations show that the bottlebrush macromolecules in a melt behave as ideal chains with the effective Kuhn length bK. The bottlebrush induced bending rigidity is due to redistribution of the side chains upon backbone bending. Kuhn length of the bottlebrushes increases with increasing the side-chain degree of polymerization nsc as bK ~nsc0 . 46 . This model of bottlebrush macromolecules is extended to describe mechanical properties of bottlebrush networks in linear and nonlinear deformation regimes. In the linear deformation regime, the network shear modulus scales with the degree of polymerization of the side chains as G0 ~
Hydrogels constructed via self-assembly of beta-hairpin molecules
NASA Astrophysics Data System (ADS)
Ozbas, Bulent
There is a recent and growing interest in hydrogel materials that are formed via peptide self-assembly for tissue engineering applications. Peptide based materials are excellent candidates for diverse applications in biomedical field due to their responsive behavior and complex self-assembled structures. However, there is very limited information on the self-assembly and resultant network and mechanical properties of these types of hydrogels. The main goal of this dissertation is to investigate the self-assembly mechanism and viscoelastic properties of hydrogels that can be altered by changing solution conditions as well as the primary structure of the peptide. These hydrogels are formed via intramolecular folding and consequent self-assembly of 20 amino acid long beta-hairpin peptide molecules (Max1). The peptide molecules are locally amphiphilic with two linear strands of alternating hydrophobic valine and hydrophilic lysine amino acids connected with a Dproline-LProline turn sequence. Circular dichroism and FTIR spectroscopy show that at physiological conditions peptides are unfolded in the absence of salt. By raising the ionic strength of the solution electrostatic interactions between charged lysines are screened and the peptide arms are forced into a beta-sheet secondary structure stabilized by the turn sequence. These folded molecules intermolecularly assemble via hydrophobic collapse and hydrogen bonding into a three dimensional network. Folding and self-assembly of these molecules can also be triggered by increasing temperature and/or pH of the peptide solution. In addition, the random-coil to beta-sheet transition of the beta-hairpin peptides is pH and, with proper changes in the peptide sequence, thermally reversible. Rheological measurements demonstrate that the resultant supramolecular structure forms an elastic material, whose structure, and thus modulus, can be tuned by magnitude of the stimulus. Hydrogels recover their initial viscoelastic properties after cessation of high magnitude of strain due to the physically crosslinked network structure and strong inter-fibrillar interactions. These interactions can be turned off by either condensing anions or covalently attaching PEG chains on lysine-decorated fibrillar surfaces. TEM, SANS, and rheological data reveal that the elasticity arises from a network consisting of semiflexible fibrillar assemblies that are monodisperse in width. The experimental results are compared with scaling relationships developed for permanently crosslinked semiflexible biopolymer networks. (Abstract shortened by UMI.)
Physical Aspects of Photodynamic Corneal Collagen Crosslinking
NASA Astrophysics Data System (ADS)
Kornfield, Julia
2012-02-01
Healthy vision depends on the stability of the shape of the cornea, which provides most of the lens power of the optical system of the eye. Diseases in which the cornea progressively undergoes irregular deformation over time (e.g., keratoconus) can be treated clinically by inducing additional protein-protein crosslinks using a photosensitizing drug and a tailored dose of light. Unfortunately, the treatment moving through clinical trials is toxic to cells in and on the cornea. A path to a safer treatment is offered by the nanostructure of the corneal stroma---reminiscent of a HEX phase in block copolymers with 30nm diameter collagen cylinders spaced 60nm center-to-center in a hydrogel matrix of proteoglycans and water. We show that using a photosensitizing drug that sequesters itself in the collagen fibrils can minimize the toxicity of therapeutic protein-protein cross-linking. Photorheology and transport measurements are used to quantify the parameters of a simple physical model that is useful for optimizing clinical protocols.
Ionically Cross-Linked Polymer Networks for the Multiple-Month Release of Small Molecules
2016-01-01
Long-term (multiple-week or -month) release of small, water-soluble molecules from hydrogels remains a significant pharmaceutical challenge, which is typically overcome at the expense of more-complicated drug carrier designs. Such approaches are payload-specific and include covalent conjugation of drugs to base materials or incorporation of micro- and nanoparticles. As a simpler alternative, here we report a mild and simple method for achieving multiple-month release of small molecules from gel-like polymer networks. Densely cross-linked matrices were prepared through ionotropic gelation of poly(allylamine hydrochloride) (PAH) with either pyrophosphate (PPi) or tripolyphosphate (TPP), all of which are commonly available commercial molecules. The loading of model small molecules (Fast Green FCF and Rhodamine B dyes) within these polymer networks increases with the payload/network binding strength and with the PAH and payload concentrations used during encapsulation. Once loaded into the PAH/PPi and PAH/TPP ionic networks, only a few percent of the payload is released over multiple months. This extended release is achieved regardless of the payload/network binding strength and likely reflects the small hydrodynamic mesh size within the gel-like matrices. Furthermore, the PAH/TPP networks show promising in vitro cytocompatibility with model cells (human dermal fibroblasts), though slight cytotoxic effects were exhibited by the PAH/PPi networks. Taken together, the above findings suggest that PAH/PPi and (especially) PAH/TPP networks might be attractive materials for the multiple-month delivery of drugs and other active molecules (e.g., fragrances or disinfectants). PMID:26811936
Lee, Kee-Won; Wang, Shanfeng; Yaszemski, Michael J.; Lu, Lichun
2008-01-01
A series of crosslinkable nanocomposites has been developed using hydroxyapatite (HA) nanoparticles and poly(propylene fumarate) (PPF). PPF/HA nanocomposites with four different weight fractions of HA nanoparticles have been characterized in terms of thermal and mechanical properties. To assess surface chemistry of crosslinked PPF/HA nanocomposites, their hydrophilicity and capability of adsorbing proteins have been determined using static contact angle measurement and MicroBCA protein assay kit after incubation with 10% fetal bovine serum (FBS), respectively. In vitro cell studies have been performed using MC3T3-E1 mouse pre-osteoblast cells to investigate the ability of PPF/HA nanocomposites to support cell attachment, spreading, and proliferation after 1, 4, and 7 days. By adding HA nanoparticles to PPF, the mechanical properties of crosslinked PPF/HA nanocomposites have not been increased due to the initially high modulus of crosslinked PPF. However, hydrophilicity and serum protein adsorption on the surface of nanocomposites have been significantly increased, resulting in enhanced cell attachment, spreading, and proliferation after 4 days of cell seeding. These results indicate that crosslinkable PPF/HA nanocomposites are useful for hard tissue replacement because of excellent mechanical strength and osteoconductivity. PMID:18403013
NASA Astrophysics Data System (ADS)
Nowak, Christian; Escobedo, Fernando A.
2017-08-01
Molecular simulations are used to study the effect of synthesis conditions on the tensile response of liquid-crystalline elastomers formed by block copolymer chains. Remarkably, it is found that despite the significant presence of trapped entanglements, these networks can exhibit the sawtooth tensile response previously predicted for ideal unentangled networks. It is also found that the monomer concentration during crosslinking can be tuned to limit the extent of entanglements and inhomogeneities while also maximizing network extensibility. It is predicted that networks synthesized at a "critical" concentration will have the greatest toughness.
Bian, Liming; Hou, Chieh; Tous, Elena; Rai, Reena; Mauck, Robert L; Burdick, Jason A
2013-01-01
Hyaluronic acid (HA) hydrogels formed via photocrosslinking provide stable 3D hydrogel environments that support the chondrogenesis of mesenchymal stem cells (MSCs). Crosslinking density has a significant impact on the physical properties of hydrogels, including their mechanical stiffness and macromolecular diffusivity. Variations in the HA hydrogel crosslinking density can be obtained by either changes in the HA macromer concentration (1, 3, or 5% w/v at 15 min exposure) or the extent of reaction through light exposure time (5% w/v at 5, 10, or 15 min). In this work, increased crosslinking by either method resulted in an overall decrease in cartilage matrix content and more restricted matrix distribution. Increased crosslinking also promoted hypertrophic differentiation of the chondrogenically induced MSCs, resulting in more matrix calcification in vitro. For example, type X collagen expression in the high crosslinking density 5% 15 min group was ~156 and 285% higher when compared to the low crosslinking density 1% 15 min and 5% 5 min groups on day 42, respectively. Supplementation with inhibitors of the small GTPase pathway involved in cytoskeletal tension or myosin II had no effect on hypertrophic differentiation and matrix calcification, indicating that the differential response is unlikely to be related to force-sensing mechanotransduction mechanisms. When implanted subcutaneously in nude mice, higher crosslinking density again resulted in reduced cartilage matrix content, restricted matrix distribution, and increased matrix calcification. This study demonstrates that hydrogel properties mediated through alterations in crosslinking density must be considered in the context of the hypertrophic differentiation of chondrogenically induced MSCs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Physical Biology of Axonal Damage.
de Rooij, Rijk; Kuhl, Ellen
2018-01-01
Excessive physical impacts to the head have direct implications on the structural integrity at the axonal level. Increasing evidence suggests that tau, an intrinsically disordered protein that stabilizes axonal microtubules, plays a critical role in the physical biology of axonal injury. However, the precise mechanisms of axonal damage remain incompletely understood. Here we propose a biophysical model of the axon to correlate the dynamic behavior of individual tau proteins under external physical forces to the evolution of axonal damage. To propagate damage across the scales, we adopt a consistent three-step strategy: First, we characterize the axonal response to external stretches and stretch rates for varying tau crosslink bond strengths using a discrete axonal damage model. Then, for each combination of stretch rates and bond strengths, we average the axonal force-stretch response of n = 10 discrete simulations, from which we derive and calibrate a homogenized constitutive model. Finally, we embed this homogenized model into a continuum axonal damage model of [1-d]-type in which d is a scalar damage parameter that is driven by the axonal stretch and stretch rate. We demonstrate that axonal damage emerges naturally from the interplay of physical forces and biological crosslinking. Our study reveals an emergent feature of the crosslink dynamics: With increasing loading rate, the axonal failure stretch increases, but axonal damage evolves earlier in time. For a wide range of physical stretch rates, from 0.1 to 10 /s, and biological bond strengths, from 1 to 100 pN, our model predicts a relatively narrow window of critical damage stretch thresholds, from 1.01 to 1.30, which agrees well with experimental observations. Our biophysical damage model can help explain the development and progression of axonal damage across the scales and will provide useful guidelines to identify critical damage level thresholds in response to excessive physical forces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Redline, Erica Marie; Bolintineanu, Dan S.; Lane, J. Matthew
The aim of this study was to alter polymerization chemistry to improve network homogeneity in free-radical crosslinked systems. It was hypothesized that a reduction in heterogeneity of the network would lead to improved mechanical performance. Experiments and simulations were carried out to investigate the connection between polymerization chemistry, network structure and mechanical properties. Experiments were conducted on two different monomer systems - the first is a single monomer system, urethane dimethacrylate (UDMA), and the second is a two-monomer system consisting of bisphenol A glycidyl dimethacrylate (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) in a ratio of 70/30 BisGMA/TEGDMA by weight. Themore » methacrylate systems were crosslinked using traditional radical polymeriza- tion (TRP) with azobisisobutyronitrile (AIBN) or benzoyl peroxide (BPO) as an initiator; TRP systems were used as the control. The monomers were also cross-linked using activator regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) as a type of controlled radical polymerization (CRP). FTIR and DSC were used to monitor reac- tion kinetics of the systems. The networks were analyzed using NMR, DSC, X-ray diffraction (XRD), atomic force microscopy (AFM), and small angle X-ray scattering (SAXS). These techniques were employed in an attempt to quantify differences between the traditional and controlled radical polymerizations. While a quantitative methodology for characterizing net- work morphology was not established, SAXS and AFM have shown some promising initial results. Additionally, differences in mechanical behavior were observed between traditional and controlled radical polymerized thermosets in the BisGMA/TEGDMA system but not in the UDMA materials; this finding may be the result of network ductility variations between the two materials. Coarse-grained molecular dynamics simulations employing a novel model of the CRP reaction were carried out for the UDMA system, with parameters calibrated based on fully atomistic simulations of the UDMA monomer in the liquid state. Detailed metrics based on network graph theoretical approaches were implemented to quantify the bond network topology resulting from simulations. For a broad range of polymerization parameters, no discernible differences were seen between TRP and CRP UDMA simulations at equal conversions, although clear differences exist as a function of conversion. Both findings are consistent with experiments. Despite a number of shortcomings, these models have demonstrated the potential of molecular simulations for studying network topology in these systems.« less
EDSN Development Lessons Learned
NASA Technical Reports Server (NTRS)
Chartres, James; Sanchez, Hugo S.; Hanson, John
2014-01-01
The Edison Demonstration of Smallsat Networks (EDSN) is a technology demonstration mission that provides a proof of concept for a constellation or swarm of satellites performing coordinated activities. Networked swarms of small spacecraft will open new horizons in astronomy, Earth observations and solar physics. Their range of applications include the formation of synthetic aperture radars for Earth sensing systems, large aperture observatories for next generation telescopes and the collection of spatially distributed measurements of time varying systems, probing the Earths magnetosphere, Earth-Sun interactions and the Earths geopotential. EDSN is a swarm of eight 1.5U Cubesats with crosslink, downlink and science collection capabilities developed by the NASA Ames Research Center under the Small Spacecraft Technology Program (SSTP) within the NASA Space Technology Mission Directorate (STMD). This paper describes the concept of operations of the mission and planned scientific measurements. The development of the 8 satellites for EDSN necessitated the fabrication of prototypes, Flatsats and a total of 16 satellites to support the concurrent engineering and rapid development. This paper has a specific focus on the development, integration and testing of a large number of units including the lessons learned throughout the project development.
Molecular model for the diffusion of associating telechelic polymer networks
NASA Astrophysics Data System (ADS)
Ramirez, Jorge; Dursch, Thomas; Olsen, Bradley
Understanding the mechanisms of motion and stress relaxation of associating polymers at the molecular level is critical for advanced technological applications such as enhanced oil-recovery, self-healing materials or drug delivery. In associating polymers, the strength and rates of association/dissociation of the reversible physical crosslinks govern the dynamics of the network and therefore all the macroscopic properties, like self-diffusion and rheology. Recently, by means of forced Rayleigh scattering experiments, we have proved that associating polymers of different architectures show super-diffusive behavior when the free motion of single molecular species is slowed down by association/dissociation kinetics. Here we discuss a new molecular picture for unentangled associating telechelic polymers that considers concentration, molecular weight, number of arms of the molecules and equilibrium and rate constants of association/dissociation. The model predicts super-diffusive behavior under the right combination of values of the parameters. We discuss some of the predictions of the model using scaling arguments, show detailed results from Brownian dynamics simulations of the FRS experiments, and attempt to compare the predictions of the model to experimental data.
Physical properties of polyurethane plastic sheets produced from polyols from canola oil.
Kong, Xiaohua; Narine, Suresh S
2007-07-01
Polyurethane (PUR) plastic sheets were prepared by reacting polyols synthesized from canola oil with aromatic diphenylmethane diisocyanate. The properties of the material were measured by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) as well as tensile properties measurements. The effect of stoichiometric balance (i.e., OH/NCO molar ratio) on the final properties was evaluated. The concentration of elastically active network chains (EANCs), nue, of the polymer networks was calculated using rubber elasticity theory. The glass transition temperatures (Tg) for the plastic sheets with OH/NCO molar ratios of 1.0/1.0, 1.0/1.1, and 1.0/1.2 were found to be 23, 41, and 43 degrees C, respectively. The kinetic studies of the degradation process of the PUR plastics showed three well-defined steps of degradation. The PUR plastic sheets with OH/NCO molar ratio 1.0/1.1 had the highest nue, lowest number-average molecule weight between cross-links, MC, and excellent mechanical properties, indicating that this is the optimum ratio in the PUR formulations.
Sun, Wei; Incitti, Tania; Migliaresi, Claudio; Quattrone, Alessandro; Casarosa, Simona; Motta, Antonella
2016-10-01
Different hydrogel materials have been prepared to investigate the effects of culture substrate on the behaviour of pluripotent cells. In particular, genipin-crosslinked gelatin-silk fibroin hydrogels of different compositions have been prepared, physically characterized and used as substrates for the culture of pluripotent cells. Pluripotent cells cultured on hydrogels remained viable and proliferated. Gelatin and silk fibroin promoted the proliferation of cells in the short and long term, respectively. Moreover, cells cultured on genipin-crosslinked gelatin-silk fibroin blended hydrogels were induced to an epithelial ectodermal differentiation fate, instead of the neural ectodermal fate obtained by culturing on tissue culture plates. This work confirms that specific culture substrates can be used to modulate the behaviour of pluripotent cells and that our genipin-crosslinked gelatin-silk fibroin blended hydrogels can induce pluripotent cells differentiation to an epithelial ectodermal fate. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.
Polyvinyl alcohol cross-linked with two aldehydes
NASA Technical Reports Server (NTRS)
Sheibley, D. W.; Rieker, L. L.; Hsu, L. C.; Manzo, M. A. (Inventor)
1982-01-01
A film forming polyvinyl alcohol resin is admixed, in aqueous solution, with a dialdehyde crosslinking agent which is capable of crosslinking the polyvinyl alcohol resin and a water soluble acid aldehyde containing a reactive aldehyde group capable of reacting with hydroxyl groups in the polyvinyl alcohol resin and an ionizable acid hydrogen atom. The dialdehyde is present in an amount sufficient to react with from 1 to 20% by weight of the theoretical amount required to react with all of the hydroxyl groups of the polyvinyl alcohol. The amount of acid aldehyde is from 1 to 50% by weight, same basis, and is sufficient to reduce the pH of the aqueous admixture to 5 or less. The admixture is then formed into a desired physical shape, such as by casting a sheet or film, and the shaped material is then heated to simultaneously dry and crosslink the article.
NASA Astrophysics Data System (ADS)
Maiti, A.; Weisgraber, T.; Dinh, L. N.; Gee, R. H.; Wilson, T.; Chinn, S.; Maxwell, R. S.
2011-03-01
Filled and cross-linked elastomeric rubbers are versatile network materials with a multitude of applications ranging from artificial organs and biomedical devices to cushions, coatings, adhesives, interconnects, and seismic-isolation, thermal, and electrical barriers. External factors such as mechanical stress, temperature fluctuations, or radiation are known to create chemical changes in such materials that can directly affect the molecular weight distribution (MWD) of the polymer between cross-links and alter the structural and mechanical properties. From a materials science point of view it is highly desirable to understand, affect, and manipulate such property changes in a controlled manner. Unfortunately, that has not yet been possible due to the lack of experimental characterization of such networks under controlled environments. In this work we expose a known rubber material to controlled dosages of γ radiation and utilize a newly developed multiquantum nuclear-magnetic-resonance technique to characterize the MWD as a function of radiation. We show that such data along with mechanical stress-strain measurements are amenable to accurate analysis by simple network models and yield important insights into radiation-induced molecular-level processes.
NASA Technical Reports Server (NTRS)
Mcgrath, J. E.; Lyle, G. D.; Jurek, M. J.; Mohanty, D.; Hedrick, J. C.
1986-01-01
Amine functional poly(arylene ether) sulfones were previously reported. Herein, the chemistry was extended to amorphous poly(arylene ether) ketones because of their higher fracture toughness values, relative to the polysulfones. It was demonstrated that the amino functional oligomers undergo a self-crosslinking reaction at temperatures above about 220 C. This produces an insoluble, but ductile network that has excellent resistance. A ketamine structure hypothesis was proposed and verified using solid state magic angle NMR. In most cases, the water generated upon ketamine formation is too low to produce porosity and solid networks are obtained. The stability of the ketamine networks towards hydrolysis is excellent. The chemistry was further demonstrated to be able to crosslink preformed nonfunctional poly(arylene ether) ketones if a difunctional amine was utilized. This concept has the possibility of greatly improving the creep resistance of thermoplastics. Also, a new technique was developed for converting the amine functional oligomers cleanly into maleimide structures. This method involves reacting maleic anhydride with monomeric aminophenols in the presence of solvent mixtures.
Water transport, free volume, and polymer dynamics in crosslinked polymer networks
NASA Astrophysics Data System (ADS)
Frieberg, Bradley; Soles, Christopher
Many technologies rely on amorphous polymer membranes that selectively transport small molecules or ions, which has led to a significant scientific interest in elucidating the mechanisms of transport. A recurring theme among several different materials systems is that free volume and polymer chain dynamics facilitate transport. In order to understand the interplay between free volume, transport and polymer dynamics we quantify these properties for a model epoxy network. The epoxy chemistry allows for systematically varying both the structural rigidity of the network as well as the cross-link density. We performed positron annihilation lifetime spectroscopy measurements to characterize the unoccupied volume and correlated the unoccupied volume to the equilibrium moisture uptake and effective diffusion coefficient. We have recently extended this work to include polymer dynamics measured by quasi-elastic neutron scattering on the NIST High Flux Backscatter Spectrometer. These measurements reveal a strong correlation between the MSD and the transport kinetics, which was even stronger than the correlation previously observed between free volume and water diffusion. These observations challenge previous theories that suggest free volume governs transport.
Bruneel, Charlotte; Buggenhout, Joke; Lagrain, Bert; Brijs, Kristof; Delcour, Jan A
2016-04-01
Durum wheat (Triticum durum Desf.) semolina gluten proteins consist of monomeric gliadin and polymeric glutenin and determine the quality of pasta products made therefrom. During pasta drying, glutenin starts polymerizing already below 60 °C (65% relative humidity (RH)), whereas gliadin only is incorporated in the protein network at temperatures exceeding 68 °C (68% RH) through thiol (SH)/disulfide (SS) exchange reactions. Removal of free SH groups in glutenin by adding 2.3 μmol KBrO3 or KIO3 per g dry matter semolina protein (g protein) or 13.8 μmol N-ethylmaleimide/g protein reduces gliadin-glutenin cross-linking during pasta drying and/or cooking and yields cooked pasta of high quality. Introducing free SH groups by adding 13.8 μmol glutathione/g protein increases gliadin-glutenin cross-linking during pasta processing, resulting in cooked pasta of lower quality. We hypothesize that too much gliadin incorporation in the glutenin network during pasta processing tightens the protein network and results in lower cooking quality. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Altuna, F. I.; Antonacci, J.; Arenas, G. F.; Pettarin, V.; Hoppe, C. E.; Williams, R. J. J.
2016-04-01
Green laser irradiation successfully activated self-healing processes in epoxy-acid networks modified with low amounts of gold nanoparticles (NPs). A bio-based polymer matrix, obtained by crosslinking epoxidized soybean oil (ESO) with an aqueous citric acid (CA) solution, was self-healed through molecular rearrangements produced by transesterification reactions of β-hydroxyester groups generated in the polymerization reaction. The temperature increase required for the triggering of these thermally activated reactions was attained by green light irradiation of the damaged area. Compression force needed to assure a good contact between crack faces was achieved by volume dilatation generated by the same temperature rise. Gold NPs dispersed in the polymer efficiently generated heat in the presence of electromagnetic radiation under plasmon resonance, acting as nanometric heating sources and allowing remote activation of the self-healing in the crosslinked polymer.
NASA Astrophysics Data System (ADS)
Boaretto, Nicola; Joost, Christine; Seyfried, Mona; Vezzù, Keti; Di Noto, Vito
2016-09-01
This report describes the synthesis and the properties of a series of polymer electrolytes, composed of a hybrid inorganic-organic matrix doped with LiTFSI. The matrix is based on ring-like oligo-siloxane clusters, bearing pendant, partially cross-linked, polyether chains. The dependency of the thermo-mechanic and of the transport properties on several structural parameters, such as polyether chains' length, cross-linkers' concentration, and salt concentration is studied. Altogether, the materials show good thermo-mechanical and electrochemical stabilities, with conductivities reaching, at best, 8·10-5 S cm-1 at 30 °C. In conclusion, the cell performances of one representative sample are shown. The scope of this report is to analyze the correlations between structure and properties in networked and hybrid polymer electrolytes. This could help the design of optimized polymer electrolytes for application in lithium metal batteries.
NASA Astrophysics Data System (ADS)
Liu, Shumin; Zheng, Yudong; Qiao, Kun; Su, Lei; Sanghera, Amendeep; Song, Wenhui; Yue, Lina; Sun, Yi
2015-12-01
This investigation describes an effective strategy to fabricate an electrochemically active hybrid hydrogel made from platinum nanoparticles that are highly dense, uniformly dispersed, and tightly embedded throughout the conducting hydrogel network for the electrochemical oxidation of glucose. A suspension of multiwalled carbon nanotubes and polyvinyl alcohol aqueous was coated on glassy carbon electrode by electrophoretic deposition and then physically crosslinked to form a three-dimensional porous conductive hydrogel network by a process of freezing and thawing. The network offered 3D interconnected mass-transport channels (around 200 nm) and confined nanotemplates for in situ growth of uniform platinum nanoparticles via the moderate reduction agent, ascorbic acid. The resulting hybrid hydrogel electrode membrane demonstrates an effective method for loading platinum nanoparticles on multiwalled carbon nanotubes by the electrostatic adsorption between multiwalled carbon nanotubes and platinum ions within porous hydrogel network. The average diameter of platinum nanoparticles is 37 ± 14 nm, which is less than the particle size by only using the moderate reduction agent. The hybrid hydrogel electrode membrane-coated glassy carbon electrode showed excellent electrocatalytic activity and good long-term stability toward glucose electrochemical oxidation. The glucose oxidation current exhibited a linear relationship with the concentration of glucose in the presence of chloride ions, promising for potential applications of implantable biofuel cells, biosensors, and electronic devices.
Kinetics of a Collagen-Like Polypeptide Fragmentation after Mid-IR Free-Electron Laser Ablation
Zavalin, Andrey; Hachey, David L.; Sundaramoorthy, Munirathinam; Banerjee, Surajit; Morgan, Steven; Feldman, Leonard; Tolk, Norman; Piston, David W.
2008-01-01
Tissue ablation with mid-infrared irradiation tuned to collagen vibrational modes results in minimal collateral damage. The hypothesis for this effect includes selective scission of protein molecules and excitation of surrounding water molecules, with the scission process currently favored. In this article, we describe the postablation infrared spectral decay kinetics in a model collagen-like peptide (Pro-Pro-Gly)10. We find that the decay is exponential with different decay times for other, simpler dipeptides. Furthermore, we find that collagen-like polypeptides, such as (Pro-Pro-Gly)10, show multiple decay times, indicating multiple scission locations and cross-linking to form longer chain molecules. In combination with data from high-resolution mass spectrometry, we interpret these products to result from the generation of reactive intermediates, such as free radicals, cyanate ions, and isocyanic acid, which can form cross-links and protein adducts. Our results lead to a more complete explanation of the reduced collateral damage resulting from infrared laser irradiation through a mechanism involving cross-linking in which collagen-like molecules form a network of cross-linked fibers. PMID:18441025
Preparation and characterization of self-crosslinked organic/inorganic proton exchange membranes
NASA Astrophysics Data System (ADS)
Zhong, Shuangling; Cui, Xuejun; Dou, Sen; Liu, Wencong
A series of silicon-containing sulfonated polystyrene/acrylate (Si-sPS/A) nanoparticles are successfully synthesized via simple emulsion polymerization method. The Si-sPS/A latexes show good film-forming capability and the self-crosslinked organic/inorganic proton exchange membranes are prepared by pouring the Si-sPS/A nanoparticle latexes into glass plates and drying at 60 °C for 10 h and 120 °C for 2 h. The potential of the membranes in direct methanol fuel cells (DMFCs) is characterized preliminarily by studying their thermal stability, ion-exchange capacity, water uptake, methanol diffusion coefficient, proton conductivity and selectivity (proton conductivity/methanol diffusion coefficient). The results indicate that these membranes possess excellent thermal stability and methanol barrier due to the existence of self-crosslinked silica network. In addition, the proton conductivity of the membranes is in the range of 10 -3-10 -2 S cm -1 and all the membranes show much higher selectivity in comparison with Nafion ® 117. These results suggest that the self-crosslinked organic/inorganic proton exchange membranes are particularly promising in DMFC applications.
NASA Astrophysics Data System (ADS)
Boonkham, Sasikan; Sangseethong, Kunruedee; Chatakanon, Pathama; Niamnuy, Chalida; Nakasaki, Kiyohiko; Sriroth, Klanarong
2014-06-01
Recently, environmentally friendly hydrogels prepared from renewable bio-based resources have drawn significant attention from both industrial and academic sectors. In this study, chemically crosslinked hydrogels have been developed from cassava starch which is a bio-based polymer using a non-toxic citric acid as a crosslinking agent. Cassava starch was first modified by carboxymethylation to improve its water absorbency property. The carboxymethyl cassava starch (CMCS) obtained was then crosslinked with citric acid at different concentrations and reaction times. The gel fraction of hydrogels increased progressively with increasing citric acid concentration. Free swelling capacity of hydrogels in de-ionized water, saline solution and buffers at various pHs as well as absorption under load were investigated. The results revealed that swelling behavior and mechanical characteristic of hydrogels depended on the citric acid concentration used in reaction. Increasing citric acid concentration resulted in hydrogels with stronger network but lower swelling and absorption capacity. The cassava starch hydrogels developed were sensitive to ionic strength and pH of surrounding medium, showing much reduced swelling capacity in saline salt solution and acidic buffers.
Ghanian, Mohammad Hossein; Mirzadeh, Hamid; Baharvand, Hossein
2018-05-14
A dual cross-linking strategy was developed to answer the urgent need for fatigue-resistant, cytocompatible, and in situ forming tough hydrogels. Clickable, yet calcium-binding derivatives of alginate were synthesized by partial substitution of its carboxyl functionalities with furan, which could come into Diels-Alder click reaction with maleimide end groups of a four arm poly(ethylene glycol) cross-linker. Tuning the cooperative viscoelastic action of transient ionic and permanent click cross-links within the single network of alginate provided a soft tough hydrogel with a set of interesting features: (i) immediate self-recovery under cyclic loading, (ii) highly efficient and autonomous self-healing upon fracture, (iii) in situ forming ability for molding and minimally invasive injection, (iv) capability for viable cell encapsulation, and (v) reactivity for on-demand biomolecule conjugation. The facile strategy is applicable to a wide range of natural and synthetic polymers by introducing the calcium binding and click reacting functional groups and can broaden the use of tough hydrogels in load-bearing, cell-laden applications such as soft tissue engineering and bioactuators.
Long-Term Biostability of Self-Assembling Protein Polymers in the Absence of Covalent Crosslinking
Sallach, Rory E.; Cui, Wanxing; Balderrama, Fanor; Martinez, Adam W.; Wen, Jing; Haller, Carolyn A.; Taylor, Jeannette V.; Wright, Elizabeth R.; Long, Robert C.; Chaikof, Elliot L.
2009-01-01
Unless chemically crosslinked, matrix proteins, such as collagen or silk, display a limited lifetime in vivo with significant degradation observed over a period of weeks. Likewise, amphiphilic peptides, lipopeptides, or glycolipids that self-assemble through hydrophobic interactions to form thin films, fiber networks, or vesicles do not demonstrate in vivo biostability beyond a few days. We report herein that a self-assembling, recombinant elastin-mimetic triblock copolymer elicited minimal inflammatory response and displayed robust in vivo stability for periods exceeding 1 year, in the absence of either chemical or ionic crosslinking. Specifically, neither a significant inflammatory response nor calcification was observed upon implantation of test materials into the peritoneal cavity or subcutaneous space of a mouse model. Moreover, serial quantitative magnetic resonance imaging, evaluation of pre- and post-explant ultrastructure by cryo-high resolution scanning electron microscopy, and an examination of implant mechanical responses revealed substantial preservation of form, material architecture, and biomechanical properties, providing convincing evidence of a non-chemically or ionically crosslinked protein polymer system that exhibits long-term stability in vivo. PMID:19854505
Wang, Lei; Wang, Dong; Dong, Zhihui; Zhang, Fengxing; Jin, Jian
2013-04-10
From the whole anode electrode of view, we report in this work a system-level strategy of fabrication of reduced graphene oxide (RGO)/SnO2 composite-based anode for lithium ion battery (LIB) to enhance the capacity and cyclic performance of SnO2-based electrode materials. RGO/SnO2 composite was first coated by a nanothick polydopamine (PD) layer and the PD-coated RGO/SnO2 composite was then cross-linked with poly(acrylic acid) (PAA) that was used as a binder to accomplish a whole anode electrode. The cross-link reaction between PAA and PD produced a robust network in the anode system to stabilize the whole anode during cycling. As a result, the designed anode exhibits an outstanding energy capacity up to 718 mAh/g at current density of 100 mA/g after 200 cycles and a good rate performance of 811, 700, 641, and 512 mAh/g at current density of 100, 250, 500, and 1000 mA/g, respectively. Fourier transform IR spectra confirm the formation of cross-link reaction and the stability of the robust network after long-term cycling. Our results indicate the importance of designing interfaces in anode system on achieving improved performance of electrode of LIBs.
Zhou, Yuhang; Li, Junjie; Zhang, Ying; Dong, Dianyu; Zhang, Ershuai; Ji, Feng; Qin, Zhihui; Yang, Jun; Yao, Fanglian
2017-02-02
Prediction of the diffusion coefficient of solute, especially bioactive molecules, in hydrogel is significant in the biomedical field. Considering the randomness of solute movement in a hydrogel network, a physical diffusion RMP-1 model based on obstruction theory was established in this study. The physical properties of the solute and the polymer chain and their interactions were introduced into this model. Furthermore, models RMP-2 and RMP-3 were established to understand and predict the diffusion behaviors of proteins in hydrogel. In addition, zwitterionic poly(sulfobetaine methacrylate) (PSBMA) hydrogels with wide range and fine adjustable mesh sizes were prepared and used as efficient experimental platforms for model validation. The Flory characteristic ratios, Flory-Huggins parameter, mesh size, and polymer chain radii of PSBMA hydrogels were determined. The diffusion coefficients of the proteins (bovine serum albumin, immunoglobulin G, and lysozyme) in PSBMA hydrogels were studied by the fluorescence recovery after photobleaching technique. The measured diffusion coefficients were compared with the predictions of obstruction models, and it was found that our model presented an excellent predictive ability. Furthermore, the assessment of our model revealed that protein diffusion in PSBMA hydrogel would be affected by the physical properties of the protein and the PSBMA network. It was also confirmed that the diffusion behaviors of protein in zwitterionic hydrogels can be adjusted by changing the cross-linking density of the hydrogel and the ionic strength of the swelling medium. Our model is expected to possess accurate predictive ability for the diffusion coefficient of solute in hydrogel, which will be widely used in the biomedical field.
Garnica-Palafox, I M; Sánchez-Arévalo, F M
2016-10-20
The objective of this work was to correlate the physical and chemical properties of chitosan/poly(vinyl alcohol)/genipin (CS/PVA/GEN) and chitosan/poly(vinyl alcohol)/glutaraldehyde (CS/PVA/GA) hydrogels with their structural and mechanical responses. In addition, their molecular structures were determined and confirmed using FTIR spectroscopy. The results indicated that the hybrid hydrogels crosslinked with genipin showed similar crystallinity, thermal properties, elongation ratio and structural parameters as those crosslinked with glutaraldehyde. However, it was found that the elastic moduli of the two hybrid hydrogels were slightly different: 2.82±0.33MPa and 2.08±0.11MPa for GA and GEN, respectively. Although the hybrid hydrogels crosslinked with GEN presented a lower elastic modulus, the main advantage is that GEN is five to ten thousand times less cytotoxic than GA. This means that the structural and mechanical properties of hybrid hydrogels crosslinked with GEN can easily be tuned and could have potential applications in the tissue engineering, regenerative medicine, food, agriculture and environmental industries. Copyright © 2016 Elsevier Ltd. All rights reserved.
Phoon, Pui Yeu; Paul, Lake N; Burgner, John W; San Martin-Gonzalez, M Fernanda; Narsimhan, Ganesan
2014-04-02
This study investigated how enzymatic cross-linking of interfacial sodium caseinate and emulsification, via high-pressure homogenization, influenced the intrinsic oxidative stability of 4% (w/v) menhaden oil-in-water emulsions stabilized by 1% (w/v) caseinate at pH 7. Oil oxidation was monitored by the ferric thiocyanate perioxide value assay. Higher homogenization pressure resulted in improved intrinsic emulsion oxidative stability, which is attributed to increased interfacial cross-linking as indicated by higher weighted average sedimentation coefficients of interfacial protein species (from 11.2 S for 0 kpsi/0.1 MPa to 18 S for 20 kpsi/137.9 MPa). Moderate dosage of transglutaminase at 0.5-1.0 U/mL emulsion enhanced intrinsic emulsion oxidative stability further, despite a contradictory reduction in the antioxidant property of cross-linked caseinate as tested by the 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay. This implied the prominent role of cross-linked interfacial caseinate as a physical barrier for oxygen transfer, hence its efficacy in retarding oil oxidation.
Development of photopolymerizable clay nanocomposites utilizing reactive dispersants
NASA Astrophysics Data System (ADS)
Owusu-Adom, Kwame
Nanocomposites hold tremendous promise for expanding the utility of polymeric materials. However, accessing particulate sizes in the nanoscale domain continues to be a scientific challenge, especially in highly cross-linked photopolymerizable systems. In this study, photopolymerizable nanocomposites utilizing clay nanoparticles and reactive dispersants have been developed. The influence of particle size, dispersant-clay interactions, and surfactant concentration on photopolymerization behavior and nanoparticle dispersion has been elucidated. Clay particles serve as templates upon which surfactants aggregate during photopolymerization. This results in higher photopolymerization rates with addition of increasing concentrations of polymerizable surfactants. Furthermore, polymerizable surfactants induce faster photopolymerization rates compared to non-polymerizable analogues in systems that have ionically-bound dispersants on the particle surface. Utilizing reactive organoclays induces significant changes to the photopolymerization behavior depending on the choice of reactive functionality employed. Faster acrylate photopolymerization rates occur in photopolymer systems containing thiol-modified clays, while much slower rates occur for nonpolymerizable organoclay systems. In addition, chemical compatibility between monomer and clay dispersant (based on chemical similarity or polarity) allows enhancement of exfoliation in photopolymerizable formulations. With polymerizable dispersants, exfoliation is readily achieved in various multifunctional acrylate systems. The degree of exfoliation depends on the position of the reactive group relative to the surfactant's cationic site and the type of functionality. Thiolated organoclays exfoliate during polymerization, while methacrylated clays show substantially less dependence on polymerization behavior. Interestingly, changes in the physical properties of the resulting nanocomposite are independent of the degree of exfoliation in polymerizable organoclay systems. The polymer cross-link density dictates the magnitude of change in both modulus and glass transition temperature of the nanocomposite. Substantial increases in modulus and Tg occur in elastomeric and low cross-link density polymers, while decreases occur in the modulus and Tg of highly cross-linked polymer networks. Finally, these parameters have formed a basis for developing nanocomposites with higher moduli and lower volumetric shrinkage. The photopolymerization rates of these systems are controllable and increase substantially with addition of polymerizable organoclays. Such properties occur in traditional multifunctional acrylate photopolymer systems as well as new binary thiol-(meth)acrylate and ternary thiol-ene-(meth)acrylate photopolymers.
Self-assembly of an electronically conductive network through microporous scaffolds.
Sebastian, H Bri; Bryant, Steven L
2017-06-15
Electron transfer spanning significant distances through a microporous structure was established via the self-assembly of an electronically conductive iridium oxide nanowire matrix enveloping the pore walls. Microporous formations were simulated using two scaffold materials of varying physical and chemical properties; paraffin wax beads, and agar gel. Following infiltration into the micropores, iridium nanoparticles self-assembled at the pore wall/ethanol interface. Subsequently, cyclic voltammetry was employed to electrochemically crosslink the metal, erecting an interconnected, and electronically conductive metal oxide nanowire matrix. Electrochemical and spectral characterization techniques confirmed the formation of oxide nanowire matrices encompassing lengths of at least 1.6mm, 400× distances previously achieved using iridium nanoparticles. Nanowire matrices were engaged as biofuel cell anodes, where electrons were donated to the nanowires by a glucose oxidizing enzyme. Copyright © 2017 Elsevier Inc. All rights reserved.
Shamekhi, Mohammad Amin; Rabiee, Ahmad; Mirzadeh, Hamid; Mahdavi, Hamid; Mohebbi-Kalhori, Davod; Baghaban Eslaminejad, Mohamadreza
2017-11-01
The use of various chemical cross-linking agents for the improvement of scaffolds physical and mechanical properties is a common practical method, which is limited by cytotoxicity effects. Due to exerting contract type forces, chondrocytes are known to implement shrinkage on the tissue engineered constructs, which can be avoided by the scaffold cross-linking. In the this research, chitosan scaffolds are cross-linked with hydrothermal treatment with autoclave sterilization time of 0, 10, 20 and 30min, to avoid the application of the traditional chemical toxic materials. The optimization studies with gel content and crosslink density measurements indicate that for 20min sterilization time, the gel content approaches to ~80%. The scaffolds are fully characterized by the conventional techniques such as SEM, porosity and permeability, XRD, compression, thermal analysis and dynamic mechanical thermal analysis (DMTA). FT-IR studies shows that autoclave inter-chain cross-linking reduces the amine group absorption at 1560cm -1 and increase the absorption of N-acetylated groups at 1629cm -1 . It is anticipated, that this observation evidenced by chitosan scaffold browning upon autoclave cross-linking is an indication of the familiar maillard reaction between amine moieties and carbonyl groups. The biodegradation rate analysis shows that chitosan scaffolds with lower concentrations, possess suitable degradation rate for cartilage tissue engineering applications. In addition, cytotoxicity analysis shows that fabricated scaffolds are biocompatible. The human articular chondrocytes seeding into 3D cross-linked scaffolds shows a higher viability and proliferation in comparison with the uncross-linked samples and 2D controls. Investigation of cell morphology on the scaffolds by SEM, shows a more spherical morphology of chondrocytes on the cross-linked scaffolds for 21days of in vitro culture. Copyright © 2017. Published by Elsevier B.V.
Carvalho, Isadora C; Mansur, Herman S
2017-09-01
Wound repair is one of the most complex biological processes in human life. To date, no ideal biomaterial solution has been identified, which that encompasses all functions and properties of real skin tissue. Thus, this study focused on the synthesis of new biocompatible hybrid hydrogel scaffolds based on methacrylate-functionalized high molecular mass chitosan with gelatin-A photocrosslinked with UV radiation to tailor matrix network properties. These hybrid hydrogels were produced via freeze-drying and were extensively characterized by swelling and degradation measurements, Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy (UV-Vis), scanning electron microscopy (SEM-EDS), and micro-computed tomography (micro-CT). The results demonstrated that hydrogels were produced with broadly designed swelling degrees typically ranging from 500% to 2000%, which were significantly dependent on the relative concentration of polymers and irradiation time for crosslinking. Analogously, degradation was reduced with increased photocrosslinking of the network. Moreover, insights into the mechanism of photochemical crosslinking were suggested based on FTIR and UV-Vis analyses of the characteristic functional groups involved in the reactions. SEM analysis associated with micro-CT imaging of the hybrid scaffolds showed uniformly interconnected 3D porous structures, with architectural features affected by the crosslinking of the network. These hydrogels were biocompatible, with live cell viability responses of human embryonic kidney (HEK293T) cells being above 95%. Hence, novel hybrid hydrogels were designed and produced with tunable properties through photocrosslinking and with a biocompatible response suitable for use in wound dressing and skin tissue repair applications. Copyright © 2017 Elsevier B.V. All rights reserved.
PROPERTY ANALYSIS OF TRIGLYCERIDE-BASED THERMOSETS. (R829576)
Triglycerides with acrylate functionality were prepared from various oils and
model triglycerides. The triglyceride-acrylates were homopolymerized and copolymerized
with styrene. The cross-link densities of the resulting polymer networks were
predicted utilizing the F...
Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast
Blackwell, Robert; Edelmaier, Christopher; Sweezy-Schindler, Oliver; Lamson, Adam; Gergely, Zachary R.; O’Toole, Eileen; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Glaser, Matthew A.; Betterton, Meredith D.
2017-01-01
Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and cross-linkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. We describe a physical model that exhibits de novo bipolar spindle formation. We began with physical properties of fission-yeast spindle pole body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive cross-linkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self-assembly. By varying the features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive cross-linkers alone. We also identify characteristic failed states of spindle assembly—the persistent monopole, X spindle, separated asters, and short spindle, which are avoided by the creation and maintenance of antiparallel microtubule overlaps. Our model can guide the identification of new, multifaceted strategies to induce mitotic catastrophes; these would constitute novel strategies for cancer chemotherapy. PMID:28116355
Wu, Jinrong; Qu, Wei; Huang, Guangsu; Wang, Siyuan; Huang, Cheng; Liu, Han
2017-06-12
Natural rubber (NR) with proteins and lipids has superior mechanical properties to its synthetic counterpart, polyisoprene rubber. However, it is a challenge to unravel the morphology of proteins and lipids. Here we used two-color stochastic optical reconstruction microscopy (STORM) to directly visualize the spatial organization of proteins and lipids in NR. We found that the proteins and lipids form an interdispersed stabilizing layer on the surface of NR latex particles. After drying, the proteins and lipids form aggregates of up to 300 nm in diameter. The aggregates physically interact with the terminal groups of polyisoprene chains, leading to the formation of a network, which contributes to the high elasticity and mechanical property of NR. If we remove proteins in NR, the large phospholipid aggregates disintegrate into small ones. However, it does not decompose the network but rather reduces the effective cross-linking density, thus the deproteinized NR is still elastic-like with decreased mechanical property. Removing both proteins and lipids wholly decomposes the network, thus, results in a liquid-like behavior of the rubber. The STORM measurements in this paper enable more insight into the structure-property relationship of NR, which also shows a great potential of STORM in studying the fine structure of polymeric materials and nanocomposites.
Brey, Darren M; Erickson, Isaac; Burdick, Jason A
2008-06-01
A library of photocrosslinkable poly(beta-amino ester)s (PBAEs) was recently synthesized to expand the number of degradable polymers that can be screened and developed for a variety of biological applications. In this work, the influence of variations in macromer chemistry and macromer molecular weight (MMW) on network reaction behavior, overall bulk properties, and cell interactions were investigated. The MMW was controlled through alterations in the initial diacrylate to amine ratio (> or =1) during synthesis and decreased with an increase in this ratio. Lower MMWs reacted more quickly and to higher double bond conversions than higher MMWs, potentially due to the higher concentration of reactive groups. Additionally, the lower MMWs led to networks with higher compressive and tensile moduli that degraded slower than networks formed from higher MMWs because of an increase in the crosslinking density and decrease in the number of degradable units per crosslink. The adhesion and spreading of osteoblast-like cells on polymer films was found to be dependent on both the macromer chemistry and the MMW. In general, the number of cells was similar on networks formed from a range of MMWs, but the spreading was dramatically influenced by MMW (higher spreading with lower MMWs). These results illustrate further diversity in photocrosslinkable PBAE properties and that the chemistry and macromer structure must be carefully selected for the desired application. Copyright 2007 Wiley Periodicals, Inc.
Hierarchical self-assembly of actin in micro-confinements using microfluidics
Deshpande, Siddharth; Pfohl, Thomas
2012-01-01
We present a straightforward microfluidics system to achieve step-by-step reaction sequences in a diffusion-controlled manner in quasi two-dimensional micro-confinements. We demonstrate the hierarchical self-organization of actin (actin monomers—entangled networks of filaments—networks of bundles) in a reversible fashion by tuning the Mg2+ ion concentration in the system. We show that actin can form networks of bundles in the presence of Mg2+ without any cross-linking proteins. The properties of these networks are influenced by the confinement geometry. In square microchambers we predominantly find rectangular networks, whereas triangular meshes are predominantly found in circular chambers. PMID:24032070
Gelatin Methacrylate Microspheres for Growth Factor Controlled Release
Nguyen, Anh H.; McKinney, Jay; Miller, Tobias; Bongiorno, Tom; McDevitt, Todd C.
2014-01-01
Gelatin has been commonly used as a delivery vehicle for various biomolecules for tissue engineering and regenerative medicine applications due to its simple fabrication methods, inherent electrostatic binding properties, and proteolytic degradability. Compared to traditional chemical cross-linking methods, such as the use of glutaraldehyde (GA), methacrylate modification of gelatin offers an alternative method to better control the extent of hydrogel cross-linking. Here we examined the physical properties and growth factor delivery of gelatin methacrylate (GMA) microparticles formulated with a wide range of different cross-linking densities (15–90%). Less methacrylated MPs had decreased elastic moduli and larger mesh sizes compared to GA MPs, with increasing methacrylation correlating to greater moduli and smaller mesh sizes. As expected, an inverse correlation between microparticle cross-linking density and degradation was observed, with the lowest cross-linked GMA MPs degrading at the fastest rate, comparable to GA MPs. Interestingly, GMA MPs at lower cross-linking densities could be loaded with up to a 10-fold higher relative amount of growth factor over conventional GA cross-linked MPs, despite an order of magnitude greater gelatin content of GA MPs. Moreover, a reduced GMA cross-linking density resulted in more complete release of bone morphogenic protein 4 (BMP4) and basic fibroblast growth factor (bFGF) and accelerated release rate with collagenase treatment. These studies demonstrate that GMA MPs provide a more flexible platform for growth factor delivery by enhancing the relative binding capacity and permitting proteolytic degradation tunability, thereby offering a more potent controlled release system for growth factor delivery. PMID:25463489
Fabricating and Characterizing Physical Properties of Electrospun Polypeptide-based Nanofibers
NASA Astrophysics Data System (ADS)
Khadka, Dhan Bahadur
This dissertation has aimed to fabricate polypeptide based biomaterial and characterize physical properties. Electrospinning is used as a tool for the sample fabrication. Project focused on determining the feasibility of electrospinning of certain synthetic polypeptides and certain elastin-like peptides from aqueous feedstocks and to characterize physical properties of polymer aqueous solution, cast film and spun fibers and fiber mats. The research involves peptide design, polymer electrospinning, fibers crosslinking, determining the extent of crosslinking, fibers protease degradation study, fibers stability and self-organization analysis, structure and composition determination by various spectroscopy and microscopy techniques and characterization of mechanical properties of individual suspended fibers. Fiber mats of a synthetic cationic polypeptide poly(L-ornithine) (PLO) and an anionic co-polypeptide of L-glutamic acid and L-tyrosine (PLEY) of defined composition have been produced by electrospinning. Fibers were obtained from polymer aqueous solution at concentrations of 20-45% (w/v) in PLO and at concentrations of 20-60% (w/v) in PLEY. Applied voltage and spinneret-collector distance were also found to influence polymer spinnability and fibers morphology. Oriented fibers were obtained by parallel electrodes geometry. Fiber diameter and morphology was analyzed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). PLO fibers exposed on glutaraldehyde (GTA) vapor rendered fiber mats water-insoluble. A common chemical reagent, carbodiimide was used to crosslink PLEY fibers. Fiber solubility in aqueous solution varied as a function of crosslinking time and crosslinker concentration. Crosslink density has been quantified by a visible-wavelength dye-based method. Degradation of crosslinked fibers by different proteases has been demonstrated. Investigation of crosslinked PLEY fibers has provided insight into the mechanisms of stability at different pH values. Variations in fiber morphology, elemental composition and stability have been studied by microscopy and energy-dispersive X-ray spectroscopy (EDX), following the treatment of samples at different pH values in the 2-12 range. Fiber stability has been interpreted with reference to the pH dependence of the UV absorbance and fluorescence of PLEY chains in solution. The data show that fiber stability is crucially dependent on the extent of side chain ionization, even after crosslinking. Self-organization kinetics of electrospun PLO and PLEY fibers during solvent annealing has been studied. After being crosslinked in situ , fibers were annealed in water at 22 °C. Analysis by Fourier transform infrared spectroscopy (FTIR) has revealed that annealing involved fiber restructuring with an overall time constant of 29 min for PLO and 63 min for PLEY, and that changes in the distribution of polymer conformations occurred during the first 13 min of annealing. There was a substantial decrease in the amount of Na+ bound to PLEY fibers during annealing. Kinetic modeling has indicated that two parallel pathways better account for the annealing trajectory than a single pathway with multiple transition states. Taken together, the results will advance the rational design of polypeptides for peptide-based materials, especially materials prepared by electrospinning. It is believed that this research will increase basic knowledge of polymer electrospinning and advance the development of electrospun materials, especially in medicine and biotechnology. The study has yielded two advances on previous work in the area: avoidance of an animal source of peptides and avoidance of inorganic solvent. The present results thus advance the growing field of peptide-based materials. Non-woven electrospun fiber mats made of polypeptides are increasingly considered attractive for basic research and technology development in biotechnology, medicine and other areas. (Abstract shortened by UMI.)
Gao, Jing; White, Evan M; Liu, Qiaohong; Locklin, Jason
2017-03-01
Poly quaternary "-oniums" derived from polyethylenimine (PEI), poly(vinyl-N-alkylpyridinium), or chitosan belong to a class of cationic polymers that are efficient antimicrobial agents. When dissolved in solution, the positively charged polycations are able to displace the divalent cations of the cellular phospholipid bilayer and disrupt the ionic cross-links and structural integrity of the membrane. However, when immobilized to a surface where confinement limits diffusion, poly -oniums still show excellent antimicrobial activity, which implies a different biocidal mode of action. Recently, a proposed mechanism, named phospholipid sponge effect, suggested that surface-bound polycationic networks are capable of recruiting negatively charged phospholipids out of the bacterial cell membrane and sequestering them within the polymer matrix.1 However, there has been insufficient evidence to support this hypothesis. In this study, a surface-bound N,N-dodecyl methyl-co-N,N-methylbenzophenone methyl quaternary PEI (DMBQPEI) was prepared to verify the phospholipid sponge effect. By tuning the irradiation time, the cross-linking densities of surface-bound DMBQPEI films were mediated. The modulus of films was measured by PeakForce Quantitative Nanomechanical Mapping (QNM) to indicate the cross-linking density variation with increasing irradiation time. A negative correlation between the film cross-linking density and the absorption of a negatively charged phospholipid (DPhPG) was observed, but no such correlations were observed with a neutral phospholipid (DPhPC), which strongly supported the action of anionic phospholipid suction proposed in the lipid sponge effect. Moreover, the killing efficiency toward S. aureus and E. coli was inversely affected by the cross-linking density of the films, providing evidence for the phospholipid sponge effect. The relationship between killing efficiency and film cross-linking density is discussed.
CuAAC-Based Click Chemistry in Self-Healing Polymers.
Döhler, Diana; Michael, Philipp; Binder, Wolfgang H
2017-10-17
Click chemistry has emerged as a significant tool for materials science, organic chemistry, and bioscience. Based on the initial concept of Barry Sharpless in 2001, the copper(I)-catalyzed azide/alkyne cycloaddition (CuAAC) reaction has triggered a plethora of chemical concepts for linking molecules and building blocks under ambient conditions, forming the basis for applications in autonomous cross-linking materials. Self-healing systems on the other hand are often based on mild cross-linking chemistries that are able to react either autonomously or upon an external trigger. In the ideal case, self-healing takes place efficiently at low temperatures, independent of the substrate(s) used, by forming strong and stable networks, binding to the newly generated (cracked) interfaces to restore the original material properties. The use of the CuAAC in self-healing systems, most of all the careful design of copper-based catalysts linked to additives as well as the chemical diversity of substrates, has led to an enormous potential of applications of this singular reaction. The implementation of click-based strategies in self-healing systems therefore is highly attractive, as here chemical (and physical) concepts of molecular reactivity, molecular design, and even metal catalysis are connected to aspects of materials science. In this Account, we will show how CuAAC reactions of multivalent components can be used as a tool for self-healing materials, achieving cross-linking at low temperatures (exploiting concepts of autocatalysis or internal chelation within the bulk CuAAC and systematic optimization of the efficiency of the used Cu(I) catalysts). Encapsulation strategies to separate the click components by micro- and nanoencapsulation are required in this context. Consequently, the examples reported here describe chemical concepts to realize more efficient and faster click reactions in self-healing polymeric materials. Thus, enhanced chain diffusion in (hyper)branched polymers, autocatalysis, or internal chelation concepts enable efficient click cross-linking already at 5 °C with a simultaneously reduced amount of Cu(I) catalyst and increased reaction rates, culminating in the first reported self-healing system based on click cycloaddition reactions. Via tailor-made nanocarbon/Cu(I) catalysts we can further improve the click cross-linking reaction in view of efficiency and kinetics, leading to the generation of self-healing graphene-based epoxy nanocomposites. Additionally, we have designed special CuAAC click methods for chemical reporting and visualization systems based on the detection of ruptured capsules via a fluorogenic click reaction, which can be combined with CuAAC cross-linking reactions to obtain simultaneous stress detection and self-healing within polymeric materials. In a similar concept, we have prepared polymeric Cu(I)-biscarbene complexes to detect (mechanical) stress within self-healing polymeric materials via a triggered fluorogenic reaction, thus using a destructive force for a constructive chemical response.
Properties of Bread Dough with Added Fiber Polysaccharides and Phenolic Antioxidants: A Review
Sivam, Anusooya S; Sun-Waterhouse, Dongxiao; Quek, SiewYoung; Perera, Conrad O
2010-01-01
During breadmaking, different ingredients are used to ensure the development of a continuous protein network that is essential for bread quality. Interests in incorporating bioactive ingredients such as dietary fiber (DF) and phenolic antioxidants into popular foods such as bread have grown rapidly, due to the increased consumer health awareness. The added bioactive ingredients may or may not promote the protein cross-links. Appropriate cross-links among wheat proteins, fiber polysaccharides, and phenolic antioxidants could be the most critical factor for bread dough enhanced with DF and phenolic antioxidants. Such cross-links may influence the structure and properties of a bread system during baking. This article presents a brief overview of our current knowledge of the fate of the key components (wheat proteins, fibers, and phenolic antioxidants) and how they might interact during bread dough development and baking. PMID:21535512
Itri, Francesco; Monti, Daria Maria; Chino, Marco; Vinciguerra, Roberto; Altucci, Carlo; Lombardi, Angela; Piccoli, Renata; Birolo, Leila; Arciello, Angela
2017-10-07
The identification of protein-protein interaction networks in living cells is becoming increasingly fundamental to elucidate main biological processes and to understand disease molecular bases on a system-wide level. We recently described a method (LUCK, Laser UV Cross-linKing) to cross-link interacting protein surfaces in living cells by UV laser irradiation. By using this innovative methodology, that does not require any protein modification or cell engineering, here we demonstrate that, upon UV laser irradiation of HeLa cells, a direct interaction between GAPDH and alpha-enolase was "frozen" by a cross-linking event. We validated the occurrence of this direct interaction by co-immunoprecipitation and Immuno-FRET analyses. This represents a proof of principle of the LUCK capability to reveal direct protein interactions in their physiological environment. Copyright © 2017 Elsevier Inc. All rights reserved.
Vascular retraction driven by matrix softening
NASA Astrophysics Data System (ADS)
Valentine, Megan
We recently discovered we can directly apply physical forces and monitor the downstream responses in a living organism in real time through manipulation of the blood vessels of a marine organism called, Botryllus schlosseri. The extracellular matrix (ECM) plays a key role in regulating vascular growth and homeostasis in Botryllus,a basal chordate which has a large, transparent extracorporeal vascular network that can encompass areas >100 cm2. We have determined that lysyl oxidase 1 (LOX1), which is responsible for cross-linking collagen, is expressed in all vascular cells and is critically important for vascular maintenance. Inhibition of LOX1 activity in vivo by the addition of a specific inhibitor, ß-aminopropionitrile (BAPN), caused a rapid, global regression of the entire vascular bed, with some vessels regressing >10 mm within 16 hrs. In this talk, I will discuss the molecular and cellular origins of this systemic remodeling event, which hinges upon the ability of the vascular cells to sense and respond to mechanical signals, while introducing this exciting new model system for studies of biological physics and mechanobiology. Collaborators: Anthony DeTomaso, Delany Rodriguez, Aimal Khankhel (UCSB).
Functional characterization of two distinct xyoglucanases from rumenal microbes
USDA-ARS?s Scientific Manuscript database
Xyloglucans are known to function by binding to cellulose microfibrils, crosslinking adjacent fibers forming cellulose-XG networks important for modulation of rigidity and extensibility of the primary cell wall of plants. Enzymatic hydrolysis and modification of xyloglucans has received considerabl...
Singh, Baljit; Dhiman, Abhishek
2017-01-01
No doubt, the prevention of infection is an indispensable aspect of the wound management, but, simultaneous wound pain relief is also required. Therefore, herein this article, incorporation of antibiotic agent 'gentamicin' and pain relieving agent 'lidocaine' into hydrogel wound dressings, prepared by using acacia gum, carbopol and poly(2-hydroxyethylmethacrylate) polymers, has been carried out. The hydrogels were evaluated as a drug carrier for model drugs gentamicin and lidocaine. Synthesis of hydrogel wound dressing was carried out by free radical polymerization technique. The drug loading was carried out by swelling equilibrium method and gel strength of hydrogels was measured by a texture analyzer. Porous microstructure of the hydrogel was observed in cryo-SEM images. The hydrogel showed mesh size 37.29 nm, cross-link density 2.19× 10-5 mol/cm3, molecular weight between two cross-links 60.25× 10-3 g/mol and gel strength 0.625±0.112 N in simulated wound fluid. It is concluded that the pH of swelling medium has influenced the network structure of hydrogel i.e., molecular weight of the polymer chain between two neighboring cross links, crosslink density and the corresponding mesh size. A good correlation was established between gel strength and network parameters. Cryo-SEM images showed porous morphology of hydrogels. These hydrogels were found to be biodegradable and antimicrobial in nature. Drug release occurred through Fickian diffusion mechanism and release profile was best fitted in first order model. Overall it is concluded that modification in GA has led to formation of a porous hydrogels for wound dressing applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Polyimide Aerogels with Three-Dimensional Cross-Linked Structure
NASA Technical Reports Server (NTRS)
Panek, John
2010-01-01
Polyimide aerogels with three-dimensional cross-linked structure are made using linear oligomeric segments of polyimide, and linked with one of the following into a 3D structure: trifunctional aliphatic or aromatic amines, latent reactive end caps such as nadic anhydride or phenylethynylphenyl amine, and silica or silsesquioxane cage structures decorated with amine. Drying the gels supercritically maintains the solid structure of the gel, creating a polyimide aerogel with improved mechanical properties over linear polyimide aerogels. Lightweight, low-density structures are desired for acoustic and thermal insulation for aerospace structures, habitats, astronaut equipment, and aeronautic applications. Aerogels are a unique material for providing such properties because of their extremely low density and small pore sizes. However, plain silica aerogels are brittle. Reinforcing the aerogel structure with a polymer (X-Aerogel) provides vast improvements in strength while maintaining low density and pore structure. However, degradation of polymers used in cross-linking tends to limit use temperatures to below 150 C. Organic aerogels made from linear polyimide have been demonstrated, but gels shrink substantially during supercritical fluid extraction and may have lower use temperature due to lower glass transition temperatures. The purpose of this innovation is to raise the glass transition temperature of all organic polyimide aerogel by use of tri-, tetra-, or poly-functional units in the structure to create a 3D covalently bonded network. Such cross-linked polyimides typically have higher glass transition temperatures in excess of 300 400 C. In addition, the reinforcement provided by a 3D network should improve mechanical stability, and prevent shrinkage on supercritical fluid extraction. The use of tri-functional aromatic or aliphatic amine groups in the polyimide backbone will provide such a 3D structure.
Characterization of konjac glucomannan-gelatin IPN physical hydrogel scaffold
NASA Astrophysics Data System (ADS)
Chen, Xiliang; Chen, Qinghua; Yan, Tingting; Liu, Jinkun
2017-06-01
A novel IPN hydrogel scaffold is prepared by freeze-drying method, in which konjac galactomannan (KGM) and gelatin are physically crosslinked respectively. This scaffold is thermostable, and the structure of this scaffold is analysed by scanning electron microscope, Fourier transform infrared spectrum, and X-ray diffraction method. The FT-IR results show that hydrogen bonds are formed between KGM and gelatin molecules, which hinder the formation of their respective crosslinking. This is consistent with the XRD results that the crystallinity gets lower in the IPN gels compared with pure gelatin and KGM gels. The morphologies of freeze-dried hydrogels are observed by SEM and the mechanical properties of the scaffolds are tested to analyse the relationship between the structures and properties. Although this novel IPN hydrogel is physical gel, it shows rubber-like performance as chemical gels. And it is nontoxic, so it can be used as the scaffold for cartilage tissue engineering that embedded in human bodies.
Transient response of nonlinear polymer networks: A kinetic theory
NASA Astrophysics Data System (ADS)
Vernerey, Franck J.
2018-06-01
Dynamic networks are found in a majority of natural materials, but also in engineering materials, such as entangled polymers and physically cross-linked gels. Owing to their transient bond dynamics, these networks display a rich class of behaviors, from elasticity, rheology, self-healing, or growth. Although classical theories in rheology and mechanics have enabled us to characterize these materials, there is still a gap in our understanding on how individuals (i.e., the mechanics of each building blocks and its connection with others) affect the emerging response of the network. In this work, we introduce an alternative way to think about these networks from a statistical point of view. More specifically, a network is seen as a collection of individual polymer chains connected by weak bonds that can associate and dissociate over time. From the knowledge of these individual chains (elasticity, transient attachment, and detachment events), we construct a statistical description of the population and derive an evolution equation of their distribution based on applied deformation and their local interactions. We specifically concentrate on nonlinear elastic response that follows from the strain stiffening response of individual chains of finite size. Upon appropriate averaging operations and using a mean field approximation, we show that the distribution can be replaced by a so-called chain distribution tensor that is used to determine important macroscopic measures such as stress, energy storage and dissipation in the network. Prediction of the kinetic theory are then explored against known experimental measurement of polymer responses under uniaxial loading. It is found that even under the simplest assumptions of force-independent chain kinetics, the model is able to reproduce complex time-dependent behaviors of rubber and self-healing supramolecular polymers.
Impact of Pb content on the physical parameters of Se-Te-Pb system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anjali,; Sharma, Raman; Thakur, Nagesh
2015-05-15
In the present study, we have investigated the impact of Pb content on the physical parameters in Se-Te-Pb system via average coordination number, constraints, the fraction of floppy modes, cross-linking density, lone pairs electrons, heat of atomization, mean bond energy, cohesive energy and electronegativity. The bulk samples have been prepared by using melt quenching technique. X-ray diffraction pattern of various samples indicates the amorphous nature of investigated glassy alloys. It is observed that average coordination number, average number of constraints and cross-linking density increase with Pb content. However, lone-pair electrons, floppy modes, average heat of atomization, cohesive energy and meanmore » bond energy are found to decrease with Pb atomic percentage.« less
Multicomponent patterned ultrathin carbon nanomembranes by laser ablation
NASA Astrophysics Data System (ADS)
Frese, Natalie; Scherr, Julian; Beyer, André; Terfort, Andreas; Gölzhäuser, Armin; Hampp, Norbert; Rhinow, Daniel
2018-01-01
Carbon nanomembranes (CNMs) are a class of two-dimensional materials, which are obtained by electron beam-induced crosslinking of aromatic self-assembled monolayers (SAMs) on solid substrates. CNMs made from a single type of precursor molecule are uniform with homogeneous chemical and physical properties. We have developed a method for the fabrication of internally patterned CNMs resembling a key feature of biological membranes. Direct laser patterning is used to obtain multicomponent patterned SAMs on gold, which are subsequently crosslinked by electron irradiation. We demonstrate that the structure of internally patterned CNMs is preserved upon transfer to different substrates. The method enables rapid fabrication of patterned 2D materials with local variations in chemical and physical properties on the micrometer to centimeter scale.
Scaling of F-actin network rheology to probe single filament elasticity and dynamics.
Gardel, M L; Shin, J H; MacKintosh, F C; Mahadevan, L; Matsudaira, P A; Weitz, D A
2004-10-29
The linear and nonlinear viscoelastic response of networks of cross-linked and bundled cytoskeletal filaments demonstrates remarkable scaling with both frequency and applied prestress, which helps elucidate the origins of the viscoelasticity. The frequency dependence of the shear modulus reflects the underlying single-filament relaxation dynamics for 0.1-10 rad/sec. Moreover, the nonlinear strain stiffening of such networks exhibits a universal form as a function of prestress; this is quantitatively explained by the full force-extension relation of single semiflexible filaments.
Yañez, Fernando; Chianella, Iva; Piletsky, Sergey A; Concheiro, Angel; Alvarez-Lorenzo, Carmen
2010-02-05
This work has focused on the rational development of polymers capable of acting as traps of bile salts. Computational modeling was combined with molecular imprinting technology to obtain networks with high affinity for cholate salts in aqueous medium. The screening of a virtual library of 18 monomers, which are commonly used for imprinted networks, identified N-(3-aminopropyl)-methacrylate hydrochloride (APMA.HCl), N,N-diethylamino ethyl methacrylate (DEAEM) and ethyleneglycol methacrylate phosphate (EGMP) as suitable functional monomers with medium-to-high affinity for cholic acid. The polymers were prepared with a fix cholic acid:functional monomer mole ratio of 1:4, but with various cross-linking densities. Compared to polymers prepared without functional monomer, both imprinted and non-imprinted microparticles showed a high capability to remove sodium cholate from aqueous medium. High affinity APMA-based particles even resembled the performance of commercially available cholesterol-lowering granules. The imprinting effect was evident in most of the networks prepared, showing that computational modeling and molecular imprinting can act synergistically to improve the performance of certain polymers. Nevertheless, both the imprinted and non-imprinted networks prepared with the best monomer (APMA.HCl) identified by the modeling demonstrated such high affinity for the template that the imprinting effect was less important. The fitting of adsorption isotherms to the Freundlich model indicated that, in general, imprinting increases the population of high affinity binding sites, except when the affinity of the functional monomer for the target molecule is already very high. The cross-linking density was confirmed as a key parameter that determines the accessibility of the binding points to sodium cholate. Materials prepared with 9% mol APMA and 91% mol cross-linker showed enough affinity to achieve binding levels of up to 0.4 mmol g(-1) (i.e., 170 mg g(-1)) under flow (1 mL min(-1)) of 0.2 mM sodium cholate solution. Copyright 2009 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Tseng, Yiider; Kole, Thomas P.; Lee, Jerry S H.; Fedorov, Elena; Almo, Steven C.; Schafer, Benjamin W.; Wirtz, Denis
2005-01-01
Actin-crosslinking proteins organize actin filaments into dynamic and complex subcellular scaffolds that orchestrate important mechanical functions, including cell motility and adhesion. Recent mutation studies have shown that individual crosslinking proteins often play seemingly non-essential roles, leading to the hypothesis that they have considerable redundancy in function. We report live-cell, in vitro, and theoretical studies testing the mechanical role of the two ubiquitous actin-crosslinking proteins, alpha-actinin and fascin, which co-localize to stress fibers and the basis of filopodia. Using live-cell particle tracking microrheology, we show that the addition of alpha-actinin and fascin elicits a cell mechanical response that is significantly greater than that originated by alpha-actinin or fascin alone. These live-cell measurements are supported by quantitative rheological measurements with reconstituted actin filament networks containing pure proteins that show that alpha-actinin and fascin can work in concert to generate enhanced cell stiffness. Computational simulations using finite element modeling qualitatively reproduce and explain the functional synergy of alpha-actinin and fascin. These findings highlight the cooperative activity of fascin and alpha-actinin and provide a strong rationale that an evolutionary advantage might be conferred by the cooperative action of multiple actin-crosslinking proteins with overlapping but non-identical biochemical properties. Thus the combination of structural proteins with similar function can provide the cell with unique properties that are required for biologically optimal responses.
Clark, Meredith R; Aliyar, Hyder A; Lee, Chang-won; Jay, Julie I; Gupta, Kavita M; Watson, Karen M; Stewart, Russell J; Buckheit, Robert W; Kiser, Patrick F
2011-07-15
This paper describes the design, construction and characterization of the first anti-HIV drug delivery system that is triggered to release its contents in the presence of human semen. Microgel particles were synthesized with a crosslinker containing a peptide substrate for the seminal serine protease prostate specific antigen (PSA) and were loaded with the HIV-1 entry inhibitor sodium poly(styrene-4-sulfonate) (pSS). The particles were composed of N-2-hydroxyproplymethacrylamide and bis-methacrylamide functionalized peptides based on the PSA substrates GISSFYSSK and GISSQYSSK. Exposure to human seminal plasma (HSP) degraded the microgel network and triggered the release of the entrapped antiviral polymer. Particles with the crosslinker composed of the substrate GISSFYSSK showed 17 times faster degradation in seminal plasma than that of the crosslinker composed of GISSQYSSK. The microgel particles containing 1 mol% GISSFYSSK peptide crosslinker showed complete degradation in 30 h in the presence of HSP at 37°C and pSS released from the microgels within 30 min reached a concentration of 10 μg/mL, equivalent to the published IC(90) for pSS. The released pSS inactivated HIV-1 in the presence of HSP. The solid phase synthesis of the crosslinkers, preparation of the particles by inverse microemulsion polymerization, HSP-triggered release of pSS and inactivation of HIV-1 studies are described. Copyright © 2011 Elsevier B.V. All rights reserved.
Development of Photocrosslinkable Urethane-Doped Polyester Elastomers for Soft Tissue Engineering
Zhang, Yi; Tran, Richard T.; Gyawali, Dipendra; Yang, Jian
2012-01-01
Finding an ideal biomaterial with the proper mechanical properties and biocompatibility has been of intense focus in the field of soft tissue engineering. This paper reports on the synthesis and characterization of a novel crosslinked urethane-doped polyester elastomer (CUPOMC), which was synthesized by reacting a previously developed photocrosslinkable poly (octamethylene maleate citrate) (POMC) prepolymers (pre-POMC) with 1,6-hexamethylene diisocyanate (HDI) followed by thermo- or photo-crosslinking polymerization. The mechanical properties of the CUPOMCs can be tuned by controlling the molar ratios of pre-POMC monomers, and the ratio between the prepolymer and HDI. CUPOMCs can be crosslinked into a 3D network through polycondensation or free radical polymerization reactions. The tensile strength and elongation at break of CUPOMC synthesized under the known conditions range from 0.73±0.12MPa to 10.91±0.64MPa and from 72.91±9.09% to 300.41±21.99% respectively. Preliminary biocompatibility tests demonstrated that CUPOMCs support cell adhesion and proliferation. Unlike the pre-polymers of other crosslinked elastomers, CUPOMC pre-polymers possess great processability demonstrated by scaffold fabrication via a thermally induced phase separation method. The dual crosslinking methods for CUPOMC pre-polymers should enhance the versatile processability of the CUPOMC used in various conditions. Development of CUPOMC should expand the choices of available biodegradable elastomers for various biomedical applications such as soft tissue engineering. PMID:23565318
Kaygusuz, Hakan; Torlak, Emrah; Akın-Evingür, Gülşen; Özen, İlhan; von Klitzing, Regine; Erim, F Bedia
2017-12-01
Wound dressings require good antiseptic properties, mechanical strength and, more trustably, natural material ingredients. Antimicrobial properties of cerium ions and chitosan are known and alginate based wound dressings are commercially available. In this study, the advantages of these materials were combined and alginate films were crosslinked with cerium(III) solution and chitosan added cerium(III) solution. Films were characterized by Fourier transform infrared spectroscopy (FTIR), light transmittance, scanning electron microscopy (SEM), swelling experiments, water vapor transmittance tests, and mechanical stretching tests. The antibacterial and physical properties of the films were compared with those of conventional calcium alginate films. Both cerium ion crosslinked and cerium ion-chitosan crosslinked alginate films gained antibacterial activity against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. Cerium alginate-chitosan films showed high resistance to being deformed elastically. Results show that cerium alginate-chitosan films can be flexible, ultraviolet-protecting, and antibacterial wound dressings. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Tanner, Stephen P.
1997-01-01
One of the goals of the original proposal was to study how cross-linking affects the properties of an ion exchange material(IEM) developed at Lewis Research Center. However, prior to the start of this work, other workers at LERC investigated the effect of cross-linking on the properties of this material. Other than variation in the ion exchange capacity, the chemical characteristics were shown to be independent of the cross-linking agent, and the degree of cross-linking. New physical forms of the film were developed (film, supported film, various sizes of beads, and powder). All showed similar properties with respect to ion exchange equilibria but the kinetics of ion exchange depended on the surface area per unit mass; the powder form of the IEM exchanging much more rapidly than the other forms. The research performed under this grant was directed towards the application of the IEM to the analysis of metal ions at environmental concentrations.
The counterbend dynamics of cross-linked filament bundles and flagella
Coy, Rachel
2017-01-01
Cross-linked filament bundles, such as in cilia and flagella, are ubiquitous in biology. They are considered in textbooks as simple filaments with larger stiffness. Recent observations of flagellar counterbend, however, show that induction of curvature in one section of a passive flagellum instigates a compensatory counter-curvature elsewhere, exposing the intricate role of the diminutive cross-linking proteins at large scales. We show that this effect, a material property of the cross-linking mechanics, modifies the bundle dynamics and induces a bimodal L2 − L3 length-dependent material response that departs from the Euler–Bernoulli theory. Hence, the use of simpler theories to analyse experiments can result in paradoxical interpretations. Remarkably, the counterbend dynamics instigates counter-waves in opposition to driven oscillations in distant parts of the bundle, with potential impact on the regulation of flagellar bending waves. These results have a range of physical and biological applications, including the empirical disentanglement of material quantities via counterbend dynamics. PMID:28566516
Zhang, Guangzhao; Lv, Lei; Deng, Yonghong; Wang, Chaoyang
2017-06-01
Self-healing hydrogels have been studied by many researchers via multiple cross-linking approaches including physical and chemical interactions. It is an interesting project in multifunctional hydrogel exploration that a water soluble polymer matrix is cross-linked by combining the ionic coordination and the multiple hydrogen bonds to fabricate self-healing hydrogels with injectable property. This study introduces a general procedure of preparing the hydrogels (termed gelatin-UPy-Fe) cross-linked by both ionic coordination of Fe 3+ and carboxyl group from the gelatin and the quadruple hydrogen bonding interaction from the ureido-pyrimidinone (UPy) dimers. The gelatin-UPy-Fe hydrogels possess an excellent self-healing property. The effects of the ionic coordination of Fe 3+ and quadruple hydrogen bonding of UPy on the formation and mechanical behavior of the prepared hydrogels are investigated. In vitro drug release of the gelatin-UPy-Fe hydrogels is also observed, giving an intriguing glimpse into possible biological applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Enzymatically crosslinked silk-hyaluronic acid hydrogels.
Raia, Nicole R; Partlow, Benjamin P; McGill, Meghan; Kimmerling, Erica Palma; Ghezzi, Chiara E; Kaplan, David L
2017-07-01
In this study, silk fibroin and hyaluronic acid (HA) were enzymatically crosslinked to form biocompatible composite hydrogels with tunable mechanical properties similar to that of native tissues. The formation of di-tyrosine crosslinks between silk fibroin proteins via horseradish peroxidase has resulted in a highly elastic hydrogel but exhibits time-dependent stiffening related to silk self-assembly and crystallization. Utilizing the same method of crosslinking, tyramine-substituted HA forms hydrophilic and bioactive hydrogels that tend to have limited mechanics and degrade rapidly. To address the limitations of these singular component scaffolds, HA was covalently crosslinked with silk, forming a composite hydrogel that exhibited both mechanical integrity and hydrophilicity. The composite hydrogels were assessed using unconfined compression and infrared spectroscopy to reveal of the physical properties over time in relation to polymer concentration. In addition, the hydrogels were characterized by enzymatic degradation and for cytotoxicity. Results showed that increasing HA concentration, decreased gelation time, increased degradation rate, and reduced changes that were observed over time in mechanics, water retention, and crystallization. These hydrogel composites provide a biologically relevant system with controllable temporal stiffening and elasticity, thus offering enhanced tunable scaffolds for short or long term applications in tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.
Properties of crosslinked ultra-high-molecular-weight polyethylene.
Lewis, G
2001-02-01
Substantially reducing the rate of generation of wear particles at the surfaces of ultra-high-molecular-weight polyethylene (UHMWPE) orthopedic implant bearing components, in vivo, is widely regarded as one of the most formidable challenges in modern arthroplasty. In the light of this, much research attention has been paid to the myriad of endogenous and exogenous factors that have been postulated to affect this wear rate, one such factor being the polymer itself. In recent years, there has been a resurgence of interest in crosslinking the polymer as a way of improving its properties that are considered relevant to its use for fabricating bearing components. Such properties include wear resistance, fatigue life, and fatigue crack propagation rate. Although a large volume of literature exists on the topic on the impact of crosslinking on the properties of UHMWPE, no critical appraisal of this literature has been published. This is one of the goals of the present article, which emphasizes three aspects. The first is the trade-off between improvement in wear resistance and depreciation in other mechanical and physical properties. The second aspect is the presentation of a method of estimating the optimal value of a crosslinking process variable (such as dose in radiation-induced crosslinking) that takes into account this trade-off. The third aspect is the description of a collection of under- and unexplored research areas in the field of crosslinked UHMWPE, such as the role of starting resin on the properties of the crosslinked polymer, and the in vitro evaluation of the wear rate of crosslinked tibial inserts and other bearing components that, in vivo, are subjected to nearly unidirectional motion.
NASA Facts: Edison Demonstration of Spacecraft Networks (EDSN) Mission
NASA Technical Reports Server (NTRS)
Ord, Stephen; Yost, Bruce D.; Petro, Andrew J.
2013-01-01
NASA's Edison Demonstration of Smallsat Networks (EDSN) mission will launch and deploy a swarm of 8 cubesats into a loose formation approximately 500 km above Earth. EDSN will develop technology to send multiple, advanced, yet affordable nanosatellites into space with cross-link communications to enable a wide array of scientific, commercial, and academic research. Other goals of the mission include lowering the cost and shortening the development time for future small spacecraft.
Shelton, Zachary R.; Braga, Roberto R.; Windmoller, Dario; Machado, José C.
2011-01-01
The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by 1H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/1H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60–40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials. PMID:21499538
Pfeifer, Carmem S; Shelton, Zachary R; Braga, Roberto R; Windmoller, Dario; Machado, José C; Stansbury, Jeffrey W
2011-02-01
The resin phase of dental composites is mainly composed of combinations of dimethacrylate comonomers, with final polymeric network structure defined by monomer type/reactivity and degree of conversion. This fundamental study evaluates how increasing concentrations of the flexible triethylene glycol dimethacrylate (TEGDMA) influences void formation in bisphenol A diglycidyl dimethacrylate (BisGMA) co-polymerizations and correlates this aspect of network structure with reaction kinetic parameters and macroscopic volumetric shrinkage. Photopolymerization kinetics was followed in real-time by a near-infrared (NIR) spectroscopic technique, viscosity was assessed with a viscometer, volumetric shrinkage was followed with a linometer, free volume formation was determined by positron annihilation lifetime spectroscopy (PALS) and the sol-gel composition was determined by extraction with dichloromethane followed by (1)H-NMR analysis. Results show that, as expected, volumetric shrinkage increases with TEGDMA concentration and monomer conversion. Extraction/(1)H-NMR studies show increasing participation of the more flexible TEGDMA towards the limiting stages of conversion/crosslinking development. As the conversion progresses, either based on longer irradiation times or greater TEGDMA concentrations, the network becomes more dense, which is evidenced by the decrease in free volume and weight loss after extraction in these situations. For the same composition (BisGMA/TEGDMA 60-40 mol%) light-cured for increasing periods of time (from 10 to 600 s), free volume decreased and volumetric shrinkage increased, in a linear relationship with conversion. However, the correlation between free volume and macroscopic volumetric shrinkage was shown to be rather complex for variable compositions exposed for the same time (600 s). The addition of TEGDMA decreases free-volume up to 40 mol% (due to increased conversion), but above that concentration, in spite of the increase in conversion/crosslinking, free volume pore size increases due to the high concentration of the more flexible monomer. In those cases, the increase in volumetric shrinkage was due to higher functional group concentration, in spite of the greater free volume. Therefore, through the application of the PALS model, this study elucidates the network formation in dimethacrylates commonly used in dental materials.
Shepodd, Timothy J.
2002-01-01
Highly crosslinked monolithic porous polymer materials for chromatographic applications. By using solvent compositions that provide not only for polymerization of acrylate monomers in such a fashion that a porous polymer network is formed prior to phase separation but also for exchanging the polymerization solvent for a running buffer using electroosmotic flow, the need for high pressure purging is eliminated. The polymer materials have been shown to be an effective capillary electrochromatographic separations medium at lower field strengths than conventional polymer media. Further, because of their highly crosslinked nature these polymer materials are structurally stable in a wide range of organic and aqueous solvents and over a pH range of 2-12.
Maity, Jayabrata; Ray, Samit Kumar
2014-04-15
Semi and full interpenetrating polymer network (IPN) type hydrogels were prepared by free radical in situ polymerization of methacrylic acid in presence of chitosan using N,N'-methylene-bis-acrylamide (MBA) and glutaraldehyde (for full IPN) as crosslinker. Several semi and full IPN type hydrogels were prepared by varying initiator and crosslinker concentration and also monomer to chitosan mass ratio. These hydrogels were characterized and used for removal of methyl violet and congo red dye from water. Isotherms and kinetics of dye adsorption were also evaluated. Copyright © 2014 Elsevier Ltd. All rights reserved.
[Fanconi anemia: cellular and molecular features].
Macé, G; Briot, D; Guervilly, J-H; Rosselli, F
2007-02-01
Fanconi anemia (FA) is a recessive human cancer prone syndrome featuring bone marrow failure, developmental abnormalities and hypersensitivity to DNA crosslinking agents exposure. 11 among 12 FA gene have been isolated. The biochemical functions of the FANC proteins remain poorly understood. Anyhow, to cope with DNA crosslinks a cell needs a functional FANC pathway. Moreover, the FANC proteins appear to be involved in cell protection against oxidative damage and in the control of TNF-alpha activity. In this review, we describe the current understanding of the FANC pathway and we present how it may be integrated in the complex networks of proteins involved in maintaining the cellular homeostasis.
Graphene oxide-based benzimidazole-crosslinked networks for high-performance supercapacitors.
Cui, Yi; Cheng, Qian-Yi; Wu, Haiping; Wei, Zhixiang; Han, Bao-Hang
2013-09-21
The synthesis of graphene oxide (GO)-based benzimidazole-crosslinked network (GOBIN) materials is presented. These materials are prepared by the covalent crosslinking of GO sheets using a condensation reaction between the carboxylic acid moieties on the GO surface and the o-aminophenyl end groups of 3,3'-diaminobenzidine (or 1,2,4,5-benzenetetraamine tetrahydrochloride). An efficient one-pot catalyst- and template-free synthesis was performed. The obtained porous GO-based materials possess a Brunauer-Emmett-Teller specific surface area ranging from 260 to 920 m(2) g(-1). Electrochemical testing indicates that the GOBIN materials display a specific capacitance up to 370 F g(-1) at a current density of 0.1 A g(-1) and about 90% of the original capacitance is retained after 5000 cycles at a current density of 3 A g(-1). Therefore, GOBIN materials can be employed as promising electrode materials for high-performance supercapacitors with outstanding cycling stability. Furthermore, owing to their significantly high specific surface area, these materials also show hydrogen uptake (up to 1.24 wt%, at 77 K and 1.0 bar) and carbon dioxide capture (up to 14.2 wt%, at 273 K and 1.0 bar) properties. As a result, these GO-based porous materials improve both the supercapacitor performance and gas sorption property, which demonstrate an excellent performance in the practical application of energy storage.
Ye, Qiang; Park, Jonggu; Parthasarathy, Ranganathan; Pamatmat, Francis; Misra, Anil; Laurence, Jennifer S.; Marangos, Orestes; Spencer, Paulette
2013-01-01
There have been reports of the sensitivity of our current dentin adhesives to excess moisture, for example, water-blisters in adhesives placed on over-wet surfaces, and phase separation with concomitant limited infiltration of the critical dimethacrylate component into the demineralized dentin matrix. To determine quantitatively the hydrophobic/hydrophilic components in the aqueous phase when exposed to over-wet environments, model adhesives were mixed with 16, 33, and 50 wt % water to yield well-separated phases. Based upon high-performance liquid chromatography coupled with photodiode array detection, it was found that the amounts of hydrophobic BisGMA and hydrophobic initiators are less than 0.1 wt % in the aqueous phase. The amount of these compounds decreased with an increase in the initial water content. The major components of the aqueous phase were hydroxyethyl methacrylate (HEMA) and water, and the HEMA content ranged from 18.3 to 14.7 wt %. Different BisGMA homologues and the relative content of these homologues in the aqueous phase have been identified; however, the amount of crosslinkable BisGMA was minimal and, thus, could not help in the formation of a crosslinked polymer network in the aqueous phase. Without the protection afforded by a strong crosslinked network, the poorly photoreactive compounds of this aqueous phase could be leached easily. These results suggest that adhesive formulations should be designed to include hydrophilic multimethacrylate monomers and water compatible initiators. PMID:22331596
Zhang, Yu; Luo, Hao; Carr, Peter W.
2011-01-01
A new family of Hyper-Crosslinked (HC) phases has been recently introduced for use under very aggressive acid conditions including those encountered in ultra-fast, high temperature Two-Dimensional Liquid Chromatography (2DLC). This type of stationary phase showed significantly enhanced acid and thermal stability compared to the most acid stable, commercial RPLC phases. In addition, the use of “orthogonal” chemistry to make surface-confined polymer networks ensures good reproducibility and high efficiency. One of the most interesting features of the HC phases is the ability to derivatize the surface aromatic groups with various functional groups. This led to the development of a family of hyper-crosslinked phases possessing a wide variety of chromatographic selectivities by attaching hydrophobic (e.g. –C8), ionizable (e.g. -COOH, -SO3H), aromatic (e.g. –toluene) or polar (e.g. -OH) species to the aromatic polymer network. HC reversed phases with various degrees of hydrophobicity and mixed-mode HC phases with added strong and weak cation exchange sites have been synthesized, characterized and applied. These silica-based acid-stable HC phases, with their attractive chromatographic properties, should be very useful in the separations of bases or biological analytes in acidic media, especially at elevated temperatures. This work reviews the prior research on HC phases and introduces a novel HC phase made by alternative chemistry. PMID:21906745
Rheology of Membrane-Attached Minimal Actin Cortices.
Nöding, Helen; Schön, Markus; Reinermann, Corinna; Dörrer, Nils; Kürschner, Aileen; Geil, Burkhard; Mey, Ingo; Heussinger, Claus; Janshoff, Andreas; Steinem, Claudia
2018-04-26
The actin cortex is a thin cross-linked network attached to the plasma membrane, which is responsible for the cell's shape during migration, division, and growth. In a reductionist approach, we created a minimal actin cortex (MAC) attached to a lipid membrane to correlate the filamentous actin architecture with its viscoelastic properties. The system is composed of a supported 1-palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine bilayer doped with the receptor lipid phosphatidylinositol(4,5)-bisphosphate (PtdIns(4,5)P 2 ) to which a constitutively active mutant of ezrin, which is a direct membrane-cytoskeleton linker, is bound. The formation of the MAC on the supported lipid bilayer is analyzed as a function of increasing PtdIns(4,5)P 2 /ezrin pinning points, revealing an increase in the intersections between actin filaments, that is, the node density of the MAC. Bead tracking microrheology on the membrane-attached actin network provides information about its viscoelastic properties. The results show that ezrin serves as a dynamic cross-linker for the actin cortex attached to the lipid bilayer and that the stiffness of the network is influenced by the pinning point density, relating the plateau storage modulus G 0 to the node density of the MAC.
Tunable thermo-responsive hydrogels: synthesis, structural analysis and drug release studies.
Cirillo, Giuseppe; Spataro, Tania; Curcio, Manuela; Spizzirri, U Gianfranco; Nicoletta, Fiore Pasquale; Picci, Nevio; Iemma, Francesca
2015-03-01
Thermo-responsive hydrogel films, synthesized by UV-initiated radical polymerization, are proposed as delivery devices for non-steroidal anti-inflammatory drugs (Diclofenac sodium and Naproxen). N-isopropylacrylamide and N,N'-ethylenebisacrylamide were chosen as thermo-sensitive monomer and crosslinker, respectively. Infrared spectroscopy was used to assess the incorporation of monomers into the network, and the network density of hydrogel films was found to strictly depend on both feed composition and film thickness. Calorimetric analyses showed negative thermo-responsive behaviour with shrinking/swelling transition values in the range 32.8-36.1°C. Equilibrium swelling studies around the LCST allowed the correlation between the structural changes and the temperature variations. The mesh size, indeed, rapidly changed from a collapsed to a swollen state, with beneficial effects in applications such as size-selective permeation or controlled drug delivery, while the crosslinking degree, the film thickness, and the loading method deeply influenced the drug release profiles at 25 and 40°C. The analysis of both 3D-network structure, release kinetics and diffusional constraints at different temperatures was evaluated by mathematical modelling. Copyright © 2014 Elsevier B.V. All rights reserved.
Tensegrity and motor-driven effective interactions in a model cytoskeleton
NASA Astrophysics Data System (ADS)
Wang, Shenshen; Wolynes, Peter G.
2012-04-01
Actomyosin networks are major structural components of the cell. They provide mechanical integrity and allow dynamic remodeling of eukaryotic cells, self-organizing into the diverse patterns essential for development. We provide a theoretical framework to investigate the intricate interplay between local force generation, network connectivity, and collective action of molecular motors. This framework is capable of accommodating both regular and heterogeneous pattern formation, arrested coarsening and macroscopic contraction in a unified manner. We model the actomyosin system as a motorized cat's cradle consisting of a crosslinked network of nonlinear elastic filaments subjected to spatially anti-correlated motor kicks acting on motorized (fibril) crosslinks. The phase diagram suggests there can be arrested phase separation which provides a natural explanation for the aggregation and coalescence of actomyosin condensates. Simulation studies confirm the theoretical picture that a nonequilibrium many-body system driven by correlated motor kicks can behave as if it were at an effective equilibrium, but with modified interactions that account for the correlation of the motor driven motions of the actively bonded nodes. Regular aster patterns are observed both in Brownian dynamics simulations at effective equilibrium and in the complete stochastic simulations. The results show that large-scale contraction requires correlated kicking.
Silk fibroin-Thelebolan matrix: A promising chemopreventive scaffold for soft tissue cancer.
Mukhopadhyay, Sourav K; Naskar, Deboki; Bhattacharjee, Promita; Mishra, Abheepsa; Kundu, Subhas C; Dey, Satyahari
2017-07-01
Research of improved functional bio-mimetic matrix for regenerative medicine is currently one of the rapidly growing fields in tissue engineering and medical sciences. This study reports a novel bio-polymeric matrix, which is fabricated using silk protein fibroin from Bombyx mori silkworm and fungal exopolysaccharide Thelebolan from Antarctic fungus Thelebolus sp. IITKGP-BT12 by solvent evaporation and freeze drying method. Natural cross linker genipin is used to imprison the Thelebolan within the fibroin network. Different cross-linked and non-cross-linked fibroin/Thelebolan matrices are fabricated and biophysically characterized. Cross-linked thin films show robustness, good mechanical strength and high temperature stability in comparison to non-cross-linked and pure matrices. The 3D sponge matrices demonstrate good cytocompatibility. Interestingly, sustained release of the Thelebolan from the cross-linked matrices induce apoptosis in colon cancer cell line (HT-29) in time dependent manner while it is nontoxic to the normal fibroblast cells (L929).The findings indicate that the cross-linked fibroin/Thelebolan matrices can be used as potential topical chemopreventive scaffold for preclusion of soft tissue carcinoma. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Han, Biao; Ma, Tianzhu; Lee, Daeyeon; Shenoy, Vivek; Han, Lin
This study aims to reveal unique nanoscale viscoelastic and viscoplastic properties of ionically linked polyelectrolyte networks. Layer-by-layer PAH/PAA complexes were tested by four continuous loading cycles in aqueous solutions. In each cycle, AFM-nanoindentation via a microspherical tip (R =5 μm) was applied up to 1 μN force, followed by a 30-60 sec hold at either a constant indentation depth to measure relaxation, or a constant force to measure creep. At a highly cross-linked, net neutral state (0.01M, pH 5.5), instantaneous modulus increased by 2.7-fold from first to last cycle, while the degree of relaxation (>95%) remain consistent. These results indicate repeated loading increases local cross-link density, while relaxation is consistently dominated by cross-link breaking and re-formation. In contrast, under creep, modulus increased by a similar 3.5-fold, and degree of creep is significantly attenuated from ~50% to 45% from first to last cycle. Results from creep suggest constant viscous flow of polymer chains in the absence of permanent anchorage. As a result, an irreversible deformation (~370nm) was observed after multiple creep cycles, suggesting the presence of viscoplasticity.
Photoinduced smart, self-healing polymer sealant for photovoltaics.
Banerjee, Sanjib; Tripathy, Ranjan; Cozzens, David; Nagy, Tibor; Keki, Sandor; Zsuga, Miklos; Faust, Rudolf
2015-01-28
Polyisobutylene (PIB)-based polymer networks potentially useful as smart coatings for photovoltaic devices have been developed. Low molecular weight coumarin functional triarm star PIB was synthesized via a single step SN2 reaction of bromoallyl functional triarm star PIB with 4-methylumbelliferone or umbelliferone in the presence of sodium hydride. Quantitative end functionality was confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. UVA (λmax = 365 nm) induced reversible photodimerization of the coumarin moieties resulted in cross-linked elastomeric films exhibiting self-healing behavior. The extent of photodimerization/photoscission was monitored by UV-vis spectroscopy. The low oxygen (1.9 × 10(-16) mol m m(-2) s(-1) Pa(-1)) and moisture (46 × 10(-16) mol m m(-2) s(-1) Pa(-1)) permeability of the cross-linked polymer films suggest excellent barrier properties of the cross-linked polymer films. The self-healing process was studied by atomic force microscopy (AFM). For this, mechanical cuts were introduced in the cross-linked PIB films through micromachining with an AFM tip and the rate of healing induced by UV, sunlight, or both was followed by taking AFM images of the film at different time intervals during the repair process.
Rohatgi, Charu Vashisth; Dutta, Naba K.; Choudhury, Namita Roy
2015-01-01
In this work, we report separator membranes from crosslinking of two polymers, such as poly vinyl alcohol (PVA) with an ionic polymer poly(methyl vinyl ether-alt-maleic anhydride) (PMVE-MA). Such interpolymer-networked systems were extensively used for biomedical and desalination applications but they were not examined for their potential use as membranes or separators for batteries. Therefore, the chemical interactions between these two polymers and the influence of such crosslinking on physicochemical properties of the membrane are systematically investigated through rheology and by critical gel point study. The hydrogen bonding and the chemical interaction between PMVE-MA and PVA resulted in highly cross-linked membranes. Effect of the molecular weight of PVA on the membrane properties was also examined. The developed membranes were extensively characterized by studying their physicochemical properties (water uptake, swelling ratio, and conductivity), thermal and electrochemical properties using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), thermo-gravimetric analysis (TGA) and electrochemical impedance spectroscopy (EIS). The DSC study shows the presence of a single Tg in the membranes indicating compatibility of the two polymers in flexible and transparent films. The membranes show good stability and ion conductivity suitable for separator applications. PMID:28347019
Zu, Guoqing; Shimizu, Taiyo; Kanamori, Kazuyoshi; Zhu, Yang; Maeno, Ayaka; Kaji, Hironori; Shen, Jun; Nakanishi, Kazuki
2018-01-23
Aerogels have many attractive properties but are usually costly and mechanically brittle, which always limit their practical applications. While many efforts have been made to reinforce the aerogels, most of the reinforcement efforts sacrifice the transparency or superinsulating properties. Here we report superflexible polyvinylpolymethylsiloxane, (CH 2 CH(Si(CH 3 )O 2/2 )) n , aerogels that are facilely prepared from a single precursor vinylmethyldimethoxysilane or vinylmethyldiethoxysilane without organic cross-linkers. The method is based on consecutive processes involving radical polymerization and hydrolytic polycondensation, followed by ultralow-cost, highly scalable, ambient-pressure drying directly from alcohol as a drying medium without any modification or additional solvent exchange. The resulting aerogels and xerogels show a homogeneous, tunable, highly porous, doubly cross-linked nanostructure with the elastic polymethylsiloxane network cross-linked with flexible hydrocarbon chains. An outstanding combination of ultralow cost, high scalability, uniform pore size, high surface area, high transparency, high hydrophobicity, excellent machinability, superflexibility in compression, superflexibility in bending, and superinsulating properties has been achieved in a single aerogel or xerogel. This study represents a significant progress of porous materials and makes the practical applications of transparent flexible aerogel-based superinsulators realistic.
Synthesis of hydrazone functionalized epoxy polymers for non-linear optical device applications
NASA Astrophysics Data System (ADS)
Singh, Rajendra K.
A series of twelve, thermally crosslinkable, epoxy polymers bearing covalently attached NLO-active hydrazone chromophores were synthesized. The primary focus was on the synthesis of two series of NLO-active hydroxy functionalized hydrazone chromophores. The first series, called the monohydroxy series (Hydrazones I--VI) comprised of six monohydroxy functionalized hydrazones and the second series consisted of six dihydroxy functionalized hydrazones (Hydrazones VII--XII). These hydrazone chromophores were then grafted, via the hydroxy functionality, on to a commercial epoxy polymer to obtain twelve NLO-active soluble prepolymers. The grafting reaction yields multiple secondary hydroxyl sites due to opening of the epoxide rings and these hydroxyl groups were used for further crosslinking by formulating the prepolymers with a blocked polyisocyanate commercial crosslinker. This formulation was spin coated on glass slides to form 2--2.5 m m thick uniform, defect free, transparent films. The films were corona poled, above their Tg, to align the chromophores in a noncentrosymmetric fashion and simultaneously complete the thermal cure that results in a highly crosslinked network. Finally the thermal characteristics of the second order nonlinearity of the twelve polymers are compared to illustrate the key structure-property relationships underlying the performance of the films.
Liu, Ting; Shi, Lu; Gu, Zhipeng; Dan, Weihua; Dan, Nianhua
2017-08-01
Despite its crucial role in directing cell fate in healthy and diseased tissues, improvements in physical-chemical properties and biocompatibility of type-I collagen are still needed. In this report, we described combined and facile method to modify collagen. The collagen film was first modified by procyanidins solution, in which, then subjected to further crosslinked by dialdehyde alginate, resulting in collagen-procyanidins-dialdehyde alginate film. The properties of the crosslinked collagen films were investigated and the results were discussed. Results from differential scanning calorimetry and thermo gravimetric analysis suggested that the thermal stabilities of the collagen-procyanidins-dialdehyde alginate film were significantly improved. The mechanical properties of collagen-procyanidins-dialdehyde alginate film in terms of elongation at break and tensile strength increased approximately 2-fold and 3-fold, respectively compare to pure collagen film. In addition, the resistance to collagenase degradation of collagen-procyanidins-dialdehyde alginate film was remarkably promoted. The results from methyltetrazolium assay and confocal laser scanning microscopy showed that no cytotoxicity of collagen film was introduced by the combined crosslinking method. Thus, the novel combined by procyanidins-dialdehyde alginate crosslinking method shown in this study provided a non-toxic and efficient crosslinking method that improved various properties of collagen film, which has great potential applications in biomedical materials. Copyright © 2017 Elsevier B.V. All rights reserved.
A mini review on hydrogels classification and recent developments in miscellaneous applications.
Varaprasad, Kokkarachedu; Raghavendra, Gownolla Malegowd; Jayaramudu, Tippabattini; Yallapu, Murali Mohan; Sadiku, Rotimi
2017-10-01
Hydrogels are composed of three-dimensional smart and/or hungry networks, which do not dissolve in water but swell considerably in an aqueous medium, demonstrating an extraordinary ability to absorb water into the reticulated structure. Such inherent feature is a subject of considerable scientific research interest which leads to a dominating path in extending their potential in hi-tech applications. Over the past decades, significant progress has been made in the field of hydrogels. Further, explorations are continuously being made in all directions at an accelerated pace for their extensive usage. In view of this, the present review discusses the subject on the miscellaneous hydrogels with regard to their raw materials, methods of fabrication and applications. In addition, this article summarizes the classification of hydrogels, based on their cross-linking and physical states. Lately, a brief outlook on the future prospects of hydrogels is also presented. Copyright © 2017 Elsevier B.V. All rights reserved.
Park, Nokyoung; Chae, Seung Chul; Kim, Il Tae; Hur, Jaehyun
2016-02-01
We present a new class of electrically conductive, mechanically moldable, and thermally self-healable hybrid hydrogels. The hybrid gels consist of polypyrrole and agarose as the conductive component and self-healable matrix, respectively. By using the appropriate oxidizing agent under conditions of mild temperature, the polymerization of pyrrole occurred along the three-dimensional network of the agarose hydrogel matrix. In contrast to most commercially available hydrogels, the physical crosslinking of agarose gel allows for reversible gelation in the case of our hybrid gel, which could be manipulated by temperature variation, which controls the electrical on/off behavior of the hybrid gel electrode. Exploiting this property, we fabricated a hybrid conductive hydrogel electrode which also self-heals thermally. The novel composite material we report here will be useful for many technological and biological applications, especially in reactive biomimetic functions and devices, artificial muscles, smart membranes, smart full organic batteries, and artificial chemical synapses.
ER-PM Contacts Define Actomyosin Kinetics for Proper Contractile Ring Assembly.
Zhang, Dan; Bidone, Tamara C; Vavylonis, Dimitrios
2016-03-07
The cortical endoplasmic reticulum (ER), an elaborate network of tubules and cisternae [1], establishes contact sites with the plasma membrane (PM) through tethering machinery involving a set of conserved integral ER proteins [2]. The physiological consequences of forming ER-PM contacts are not fully understood. Here, we reveal a kinetic restriction role of ER-PM contacts over ring compaction process for proper actomyosin ring assembly in Schizosaccharomyces pombe. We show that fission yeast cells deficient in ER-PM contacts exhibit aberrant equatorial clustering of actin cables during ring assembly and are particularly susceptible to compromised actin filament crosslinking activity. Using quantitative image analyses and computer simulation, we demonstrate that ER-PM contacts function to modulate the distribution of ring components and to constrain their compaction kinetics. We propose that ER-PM contacts have evolved as important physical modulators to ensure robust ring assembly. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tough photoluminescent hydrogels doped with lanthanide.
Wang, Mei Xiang; Yang, Can Hui; Liu, Zhen Qi; Zhou, Jinxiong; Xu, Feng; Suo, Zhigang; Yang, Jian Hai; Chen, Yong Mei
2015-03-01
Photoluminescent hydrogels have emerged as novel soft materials with potential applications in many fields. Although many photoluminescent hydrogels have been fabricated, their scope of usage has been severely limited by their poor mechanical performance. Here, a facile strategy is reported for preparing lanthanide (Ln)-alginate/polyacrylamide (PAAm) hydrogels with both high toughness and photoluminescence, which has been achieved by doping Ln(3+) ions (Ln = Eu, Tb, Eu/Tb) into alginate/PAAm hydrogel networks, where Ln(3+) ions serve as both photoluminescent emitters and physical cross-linkers. The resulting hydrogels exhibit versatile advantages including excellent mechanical properties (∼ MPa strength, ≈ 20 tensile strains, ≈ 10(4) kJ m(-3) energy dissipation), good photoluminescent performance, tunable emission color, excellent processability, and cytocompatibility. The developed tough photoluminescent hydrogels hold great promises for expanding the usage scope of hydrogels. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Swelling characteristics of acrylic acid polyelectrolyte hydrogel in a dc electric field
NASA Astrophysics Data System (ADS)
Jabbari, Esmaiel; Tavakoli, Javad; Sarvestani, Alireza S.
2007-10-01
A novel application of environmentally sensitive polyelectrolytes is in the fabrication of BioMEMS devices as sensors and actuators. Poly(acrylic acid) (PAA) gels are anionic polyelectrolyte networks that exhibit volume expansion in aqueous physiological environments. When an electric field is applied to PAA polyelectrolyte gels, the fixed anionic polyelectrolyte charges and the requirement of electro-neutrality in the network generate an osmotic pressure, above that in the absence of the electric field, to expand the network. The objective of this research was to investigate the effect of an externally applied dc electric field on the volume expansion of the PAA polyelectrolyte gel in a simulated physiological solution of phosphate buffer saline (PBS). For swelling studies in the electric field, two platinum-coated plates, as electrodes, were wrapped in a polyethylene sheet to protect the plates from corrosion and placed vertically in a vessel filled with PBS. The plates were placed on a rail such that the distance between the two plates could be adjusted. The PAA gel was synthesized by free radical crosslinking of acrylic acid monomer with ethylene glycol dimethacrylate (EGDMA) crosslinker. Our results demonstrate that volume expansion depends on the intensity of the electric field, the PAA network density, network homogeneity, and the position of the gel in the field relative to positive/negative electrodes. Our model predictions for PAA volume expansion, based on the dilute electrolyte concentration in the gel network, is in excellent agreement with the experimental findings in the high-electric-field regime (250-300 Newton/Coulomb).
NASA Technical Reports Server (NTRS)
Orr, R. S.
1984-01-01
Tracking and data acquisition system (TDAS) requirements, TDAS architectural goals, enhanced TDAS subsystems, constellation and networking options, TDAS spacecraft options, crosslink implementation, baseline TDAS space segment architecture, and treat model development/security analysis are addressed.
Fuhrmann, Anne; Göstl, Robert; Wendt, Robert; Kötteritzsch, Julia; Hager, Martin D.; Schubert, Ulrich S.; Brademann-Jock, Kerstin; Thünemann, Andreas F.; Nöchel, Ulrich; Behl, Marc; Hecht, Stefan
2016-01-01
Healable materials could play an important role in reducing the environmental footprint of our modern technological society through extending the life cycles of consumer products and constructions. However, as most healing processes are carried out by heat alone, the ability to heal damage generally kills the parent material's thermal and mechanical properties. Here we present a dynamic covalent polymer network whose thermal healing ability can be switched ‘on' and ‘off' on demand by light, thereby providing local control over repair while retaining the advantageous macroscopic properties of static polymer networks. We employ a photoswitchable furan-based crosslinker, which reacts with short and mobile maleimide-substituted poly(lauryl methacrylate) chains forming strong covalent bonds while simultaneously allowing the reversible, spatiotemporally resolved control over thermally induced de- and re-crosslinking. We reason that our system can be adapted to more complex materials and has the potential to impact applications in responsive coatings, photolithography and microfabrication. PMID:27941924
Malik, Nadia Shamshad; Ahmad, Mahmood; Minhas, Muhammad Usman
2017-01-01
To explore the potential role of polymers in the development of drug-delivery systems, this study investigated the use of β-cyclodextrin (β-CD), carboxymethyl cellulose (CMC), acrylic acid (AA) and N’ N’-methylenebis-acrylamide (MBA) in the synthesis of hydrogels for controlled drug delivery of acyclovir (ACV). Different proportions of β-CD, CMC, AA and MBA were blended with each other to fabricate hydrogels via free radical polymerization technique. Fourier transform infrared spectroscopy (FTIR) revealed successful grafting of components into the polymeric network. Thermal and morphological characterization confirmed the formation of thermodynamically stable hydrogels having porous structure. The pH-responsive behaviour of hydrogels has been documented by swelling dynamics and drug release behaviour in simulated gastrointestinal fluids. Drug release kinetics revealed controlled release behaviour of the antiviral drug acyclovir in developed polymeric network. Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels can be used as promising candidates for the design and development of controlled drug-delivery systems. PMID:28245257
Internal structure and swelling behaviour of in silico microgel particles
NASA Astrophysics Data System (ADS)
Rovigatti, Lorenzo; Gnan, Nicoletta; Zaccarelli, Emanuela
2018-01-01
Microgels are soft colloids that, by virtue of their polymeric nature, can react to external stimuli such as temperature or pH by changing their size. The resulting swelling/deswelling transition can be exploited in fundamental research as well as for many diverse practical applications, ranging from art restoration to medicine. Such an extraordinary versatility stems from the complex internal structure of the individual microgels, each of which is a crosslinked polymer network. Here we employ a recently-introduced computational method to generate realistic microgel configurations and look at their structural properties, both in real and Fourier space, for several temperatures across the volume phase transition as a function of the crosslinker concentration and of the confining radius employed during the ‘in-silico’ synthesis. We find that the chain-length distribution of the resulting networks can be analytically predicted by a simple theoretical argument. In addition, we find that our results are well-fitted to the fuzzy-sphere model, which correctly reproduces the density profile of the microgels under study.
NASA Astrophysics Data System (ADS)
Fuhrmann, Anne; Göstl, Robert; Wendt, Robert; Kötteritzsch, Julia; Hager, Martin D.; Schubert, Ulrich S.; Brademann-Jock, Kerstin; Thünemann, Andreas F.; Nöchel, Ulrich; Behl, Marc; Hecht, Stefan
2016-12-01
Healable materials could play an important role in reducing the environmental footprint of our modern technological society through extending the life cycles of consumer products and constructions. However, as most healing processes are carried out by heat alone, the ability to heal damage generally kills the parent material's thermal and mechanical properties. Here we present a dynamic covalent polymer network whose thermal healing ability can be switched `on' and `off' on demand by light, thereby providing local control over repair while retaining the advantageous macroscopic properties of static polymer networks. We employ a photoswitchable furan-based crosslinker, which reacts with short and mobile maleimide-substituted poly(lauryl methacrylate) chains forming strong covalent bonds while simultaneously allowing the reversible, spatiotemporally resolved control over thermally induced de- and re-crosslinking. We reason that our system can be adapted to more complex materials and has the potential to impact applications in responsive coatings, photolithography and microfabrication.
Zheng, Jiafu; Zhao, Fujian; Zhang, Wen; Mo, Yunfei; Zeng, Lei; Li, Xian; Chen, Xiaofeng
2018-08-01
In recent years, gelatin-based composites hydrogels have been intensively investigated because of their inherent bioactivity, biocompatibility and biodegradability. Herein, we fabricated photocrosslinkable biomimetic composites hydrogels from bioactive glass (BG) and gelatin methacryloyl (GelMA) by a sequential physical and chemical crosslinking (gelation + UV) approach. The results showed that the compressive modulus of composites hydrogels increased significantly through the sequential crosslinking approach. The addition of BG resulted in a significant increase in physiological stability and apatite-forming ability. In vitro data indicated that BG/GelMA composites hydrogels promoted cell attachment, proliferation and differentiation. Overall, the BG/GelMA composites hydrogels combined the advantages of good biocompatibility and bioactivity, and had potential applications in bone regeneration. Copyright © 2018. Published by Elsevier B.V.
Brush-Like Polymers: New Design Platforms for Soft, Dry Materials with Unique Property Relations
NASA Astrophysics Data System (ADS)
Daniel, William Francis McKemie, Jr.
Elastomers represent a unique class of engineering materials due to their light weight, low cost, and desirable combination of softness (105 -107 Pa) and large extensibilities (up to 1000%). Despite these advantages, there exist applications that require many times softer modulus, greater extensibility, and stronger strain hardening for the purpose of mimicking the mechanical properties of systems such as biological tissues. Until recently, only liquid-filled gels were suitable materials for such applications, including soft robotics and implants. A considerable amount of work has been done to create gels with superior properties, but despite unique strengths they also suffer from unique weaknesses. This class of material displays fundamental limitations in the form of heterogeneous structures, solvent loss and phase transitions at extreme temperatures, and loss of liquid fraction upon high deformations. In gels the solvent fraction also introduces a large solvent/polymer interaction parameter which must be carefully considered when designing the final mechanical properties. These energetic considerations further exaggerate the capacity for inconstant mechanical properties caused by fluctuations of the solvent fraction. In order to overcome these weaknesses, a new platform for single component materials with low modulus (<105 Pa) must be developed. Single component systems do not suffer from compositional changes over time and display more stable performance in a wider variety of temperatures and humidity conditions. A solvent-free system also has the potential to be homogeneous which replaces the large energetic interactions with comparatively small architectural interaction parameters. If a solvent-free alternative to liquid-filled gels is to be created, we must first consider the fundamental barrier to softer elastomers, i.e. entanglements - intrinsic topological restrains which define a lower limit of modulus ( 105 Pa). These entanglements are determined by chemistry specific parameters (repeat unit volume and Kuhn segment size) in the polymer liquid (melt) prior to crosslinking. Previous solvent free replacements for gels include elastomers end-linked in semidilute conditions. These materials are generated through crosslinking telechelic polymer chains in semidilute solutions at the onset of chain overlap. At such low polymer concentrations entanglements are greatly diluted and once the resulting gel is dried it creates a supersoft and super-elastic network. Although such methods have successfully generated materials with moduli below the 105 Pa limit and high extensibilities ( 1000%) they present their own limitations. Firstly, the semidilute crosslinking methods uses an impractically large volume of solvent which is unattractive in industry. Second, producing and crosslinking large monodisperse telechelic chains is a nontrivial process leading to large uncertainties in the final network architecture and properties. Specifically, telechelics have a distribution of end-to-end distances and in semidilute solutions with extremely low fraction of chain ends the crosslink reaction is diffusion limited, very slow, and imprecise. In order to achieve a superior solvent-free platform, we propose alteration of mechanical properties through the architectural disentanglement of brush-like polymer structures. In recent year there has been an increase in the synthetic conditions and crosslinking schemes available for producing brush-like structures. This makes brush-like materials an attractive alternative to more restrictive methods such as end-linking. Standard networks have one major control factor outside of chemistry, the network stand length. Brush-like architectures are created from long strands with regularly grafted side chains creating three characteristic length scales which may be independently manipulated. In collaboration with M. Rubinstein, we have utilized bottlebrush polymer architectures (a densely grafted brush-like polymer) to experimentally verify theoretical predictions of disentangled bottlebrush melts. By attaching well-defined side chains onto long polymer backbones, individual polymer strands are separated in space (similar to dilution with solvent) accompanied by a comparatively small increase in the rigidity of the strands. The end result is an architectural disentangled melt with an entanglement plateau modulus as much as three orders of magnitude lower than typical linear polymers and a broadly expanded potential for extensibility once crosslinked.
Rheological Properties of Graphene Oxide/Konjac Glucomannan Sol.
Zhu, Wenkun; Duan, Tao; Hu, Zuowen
2018-05-01
We have demonstrated there is a significant intermolecular interaction between GO and KGM that results from hydrogen bonding and physical cross-linking by studying the rheological properties of a graphene oxide/konjac glucomannan (GO/KGM) solution. When the addition of GO was 5%, the storage modulus (G') and loss modulus (G″) were only improved by 0.25%. However, G' and G″ were improved by approximately 90% and 73.4%, respectively, when the GO content was increased to 7.5%. The moduli also displayed a relationship between the power function and concentration. Furthermore, the formation mechanism of GO/KGM was investigated by Raman, FT-IR, XPS and SEM. The results suggested that hydrogen bonding and physical crosslinking are generated from the abundant carboxy and hydroxyl groups of graphene oxide and the hydroxyl groups of konjac glucomannan.
Mechanically enhanced nested-network hydrogels as a coating material for biomedical devices.
Wang, Zhengmu; Zhang, Hongbin; Chu, Axel J; Jackson, John; Lin, Karen; Lim, Chinten James; Lange, Dirk; Chiao, Mu
2018-04-01
Well-organized composite formations such as hierarchical nested-network (NN) structure in bone tissue and reticular connective tissue present remarkable mechanical strength and play a crucial role in achieving physical and biological functions for living organisms. Inspired by these delicate microstructures in nature, an analogous scaffold of double network hydrogel was fabricated by creating a poly(2-hydroxyethyl methacrylate) (pHEMA) network in the porous structure of alginate hydrogels. The resulting hydrogel possessed hierarchical NN structure and showed significantly improved mechanical strength but still maintained high elasticity comparable to soft tissues due to a mutual strengthening effect between the two networks. The tough hydrogel is also self-lubricated, exhibiting a surface friction coefficient comparable with polydimethylsiloxane (PDMS) substrates lubricated by a commercial aqueous lubricant (K-Y Jelly) and other low surface friction hydrogels. Additional properties of this hydrogel include high hydrophilicity, good biocompatibility, tunable cell adhesion and bacterial resistance after incorporation of silver nanoparticles. Firm bonding of the hydrogel on silicone substrates could be achieved through facile chemical modification, thus enabling the use of this hydrogel as a versatile coating material for biomedical applications. In this study, we developed a tough hydrogel by crosslinking HEMA monomers in alginate hydrogels and forming a well-organized structure of hierarchical nested network (NN). Different from most reported stretchable alginate-based hydrogels, the NN hydrogel shows higher compressive strength but retains comparable softness to alginate counterparts. This work further demonstrated the good integration of the tough hydrogel with silicone substrates through chemical modification and micropillar structures. Other properties including surface friction, biocompatibility and bacterial resistance were investigated and the hydrogel shows a great promise as a versatile coating material for biomedical applications. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Creep-induced anisotropy in covalent adaptable network polymers.
Hanzon, Drew W; He, Xu; Yang, Hua; Shi, Qian; Yu, Kai
2017-10-11
Anisotropic polymers with aligned macromolecule chains exhibit directional strengthening of mechanical and physical properties. However, manipulating the orientation of polymer chains in a fully cured thermoset is almost impossible due to its permanently crosslinked nature. In this paper, we demonstrate that rearrangeable networks with bond exchange reactions (BERs) can be utilized to tailor the anisotropic mechanical properties of thermosetting polymers. When a constant force is maintained at BER activated temperatures, the malleable thermoset creeps in the direction of stress, and macromolecule chains align themselves in the same direction. The aligned polymer chains result in an anisotropic network with a stiffer mechanical behavior in the direction of creep, while with a more compliant behavior in the transverse direction. The degree of network anisotropy is proportional to the amount of creep strain. A multi-length scale constitutive model is developed to study the creep-induced anisotropy of thermosetting polymers. The model connects the micro-scale BER kinetics, orientation of polymer chains, and directional mechanical properties of network polymers. Without any fitting parameters, it is able to predict the evolution of creep strain at different temperatures and anisotropic stress-strain behaviors of CANs after creep. Predictions on the chain orientation are verified by molecular dynamics (MD) simulation. Based on parametric studies, it is shown that the influences of creep time and temperature on the network anisotropy can be generalized into a single parameter, and the evolution of directional modulus follows an Arrhenius type time-temperature superposition principle (TTSP). The presented work provides a facile approach to transform isotropic thermosets into anisotropic ones using simple heating, and their directional properties can be readily tailored by the processing conditions.
NASA Technical Reports Server (NTRS)
Pater, Ruth H. (Inventor)
1992-01-01
This invention is a semi-interpenetrating polymer network which includes a high performance thermosetting polyimide having a nadic end group acting as a crosslinking site and a high performance linear thermoplastic polyimide. An improved high temperature matrix resin is provided which is capable of performing at 316 C in air for several hundreds of hours. This resin has significantly improved toughness and microcracking resistance, excellent processability and mechanical performance, and cost effectiveness.
Formation and rupture of Ca(2+) induced pectin biopolymer gels.
Basak, Rajib; Bandyopadhyay, Ranjini
2014-10-07
When calcium salts are added to an aqueous solution of polysaccharide pectin, ionic cross-links form between pectin chains, giving rise to a gel network in dilute solution. In this work, dynamic light scattering (DLS) is employed to study the microscopic dynamics of the fractal aggregates (flocs) that constitute the gels, while rheological measurements are carried out to study the process of gel rupture. As the calcium salt concentration is increased, DLS experiments reveal that the polydispersity of the flocs increase simultaneously with the characteristic relaxation times of the gel network. Above a critical salt concentration, the flocs become interlinked to form a reaction-limited fractal gel network. Rheological studies demonstrate that the limits of the linear rheological response and the critical stresses required to rupture these networks both decrease with the increase in salt concentration. These features indicate that the ion-mediated pectin gels studied here lie in a 'strong link' regime that is characterised by inter-floc links that are stronger than intra-floc links. A scaling analysis of the experimental data presented here demonstrates that the elasticities of the individual fractal flocs exhibit power-law dependences on the added salt concentration. We conclude that when both pectin and salt concentrations are increased, the number of fractal flocs of pectin increases simultaneously with the density of crosslinks, giving rise to very large values of the bulk elastic modulus.
Characterization of photochemical-cured acrylates with calorimetric methods
NASA Astrophysics Data System (ADS)
Strehmel, Bernd; Anwand, Dirk; Wetzel, Henrik
1994-05-01
Radical polymerization kinetics of different kinds of diacrylates was investigated in linear polymers (binders) by using an isoperibolic calorimeter. For all experiments benzoin compounds were added as photoinitiator. The ester between acrylic acid and bisphenol-A-diglycidylether (DDGDA) and hexamethylenediacrylate were used as monomers. Both compounds have a high limiting conversion and a large polymerization rate in the binders investigated. Additionally, three kinds of termination reaction were observed: first order, second order, and primary radical termination. The last reaction was mainly found in the case of using the hexamethylenediacrylate monomer. The materials were investigated by DSC to determine the phase behavior. Both monomers form one phase with the binder (polymethylmethacrylate, PMMA). In contrast, a phase separation was observed between the crosslinked hexamethylenediacrylate and PMMA. Formations of semi- interpenetrating networks were found in the case of crosslinked DDGDA and PMMA. The glass transition temperatures were determined at different polymerization degrees also. The obtained results indicate that most of the network formation occurred in the glassy state. Fluorescence probe technique was applied to study changes in the mobility during network formation. The fluorescence probe crystal violet (CV) was used because this compound shows a strong free volume-dependent fluorescence. It was found that in the glassy state, where most of networks were formed, a large variation of the molecular mobility was observed during irradiation of the photopolymers. This result was in agreement with the observations during DSC experiments.
Oil and fat absorbing polymers
NASA Technical Reports Server (NTRS)
Marsh, H. E., Jr. (Inventor)
1977-01-01
A method is described for forming a solid network polymer having a minimal amount of crosslinking for use in absorbing fats and oils. The polymer remains solid at a swelling ratio in oil or fat of at least ten and provides an oil absorption greater than 900 weight percent.
NASA Technical Reports Server (NTRS)
Edwards, Bernard; Horne, William; Israel, David; Kwadrat, Carl; Bauer, Frank H. (Technical Monitor)
2001-01-01
This paper will identify the important characteristics and requirements necessary for inter-satellite communications in distributed spacecraft systems and present analysis results focusing on architectural and protocol comparisons. Emerging spacecraft systems plan to deploy multiple satellites in various "distributed" configurations ranging from close proximity formation flying to widely separated constellations. Distributed spacecraft configurations provide advantages for science exploration and operations since many activities useful for missions may be better served by distributing them between spacecraft. For example, many scientific observations can be enhanced through spatially separated platforms, such as for deep space interferometry. operating multiple distributed spacecraft as a mission requires coordination that may be best provided through inter-satellite communications. For example, several future distributed spacecraft systems envision autonomous operations requiring relative navigational calculations and coordinated attitude and position corrections. To conduct these operations, data must be exchanged between spacecraft. Direct cross-links between satellites provides an efficient and practical method for transferring data and commands. Unlike existing "bent-pipe" relay networks supporting space missions, no standard or widely-used method exists for cross-link communications. Consequently, to support these future missions, the characteristics necessary for inter-satellite communications need to be examined. At first glance, all of the missions look extremely different. Some missions call for tens to hundreds of nano-satellites in constant communications in close proximity to each other. Other missions call for a handful of satellites communicating very slowly over thousands to hundreds of thousands of kilometers. The paper will first classify distributed spacecraft missions to help guide the evaluation and definition of cross-link architectures and approaches. Based on this general classification, the paper will examine general physical layer parameters, such as frequency bands and data rates, necessary to support the missions. The paper will also identify classes of communication architectures that may be employed, ranging from fully distributed to centralized topologies. Numerous factors, such as number of spacecraft, must be evaluated when attempting to pick a communications architecture. Also important is the stability of the formation from a communications standpoint. For example, do all of the spacecraft require equal bandwidth and are spacecraft allowed to enter and leave a formation? The type of science mission being attempted may also heavily influence the communications architecture. In addition, the paper will assess various parameters and characteristics typically associated with the data link layer. The paper will analyze the performance of various multiple access techniques given the operational scenario, requirements, and communication topologies envisioned for missions. This assessment will also include a survey of existing standards and their applicability for distributed spacecraft systems. An important consideration includes the interoperability of the lower layers (physical and data link) examined in this paper with the higher layer protocols(network) envisioned for future space internetworking. Finally, the paper will define a suggested path, including preliminary recommendations, for defining and developing a standard for intersatellite communications based on the classes of distributed spacecraft missions and analysis results.
Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast
NASA Astrophysics Data System (ADS)
Betterton, Meredith; Blackwell, Robert; Edelmaier, Christopher; Sweezy-Schindler, Oliver; Lamson, Adam; Gergely, Zachary; O'Toole, Eileen; Crapo, Ammon; Hough, Loren; McIntosh, J. Richard; Glaser, Matthew
Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and crosslinkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. Here we describe a physical model that exhibits de novo bipolar spindle formation. We began with previously published data on fission-yeast spindle-pole-body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive crosslinkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self assembly. By varying features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive crosslinkers alone. We also identify characteristic failed states of spindle assembly, which are avoided by creation and maintenance of antiparallel microtubule overlaps. DMR-0847685, DMR-1551095, DMR-1420736, K25GM110486, R01GM104976, R01GM033787.
Confocal Raman mapping of collagen cross-link and crystallinity of human dentin-enamel junction
NASA Astrophysics Data System (ADS)
Slimani, Amel; Nouioua, Fares; Desoutter, Alban; Levallois, Bernard; Cuisinier, Frédéric J. G.; Tassery, Hervé; Terrer, Elodie; Salehi, Hamideh
2017-08-01
The separation zone between enamel and dentin [dentin-enamel junction (DEJ)] with different properties in biomechanical composition has an important role in preventing crack propagation from enamel to dentin. The understanding of the chemical structure (inorganic and organic components), physical properties, and chemical composition of the human DEJ could benefit biomimetic materials in dentistry. Spatial distribution of calcium phosphate crystallinity and the collagen crosslinks near DEJ were studied using confocal Raman microscopy and calculated by different methods. To obtain collagen crosslinking, the ratio of two peaks 1660 cm-1 over 1690 cm-1 (amide I bands) is calculated. For crystallinity, the inverse full-width at half maximum of phosphate peak at 960 cm-1, and the ratio of two Raman peaks of phosphate at 960/950 cm-1 is provided. In conclusion, the study of chemical and physical properties of DEJ provides many benefits in the biomaterial field to improve the synthesis of dental materials in respect to the natural properties of human teeth. Confocal Raman microscopy as a powerful tool provides the molecular structure to identify the changes along DEJ and can be expanded for other mineralized tissues.
Tough Amphiphilic Gels for Antifouling Applications
NASA Astrophysics Data System (ADS)
Villada, Laura M.
Biofouling is the attachment of unwanted organisms on a surface, and it is influenced by a host of variables including the chemistry of the material as well as both the surface and bulk properties, and controlling and understanding the effect of these properties is critical for the development of effective materials to combat biofouling. All surfaces that are submerged in water are subject to the rapid colonization of a wide range of marine organisms. Marine biofouling decreases fuel efficiency, costing the Navy millions of dollars in penalty, as well as having drastic environmental effects. Previous prevention of biofouling in marine systems has been accomplished by the administration of biocides and toxic coatings. In recent years, increased concerns about the impacts of these hazardous compounds into marine ecosystems has spurred efforts to develop cost effective, non-toxic, and durable anti-fouling coatings. Hydrogels, hydrophilic crosslinked networks, are being used to modify silicone marine coatings and have demonstrated potential at combatting biofouling. Understanding the impact of amphiphilic materials, i.e. their structure and properties, on biofouling is of great importance in order to address the need in the industry. In this study, poly(2-hydroxyethyl methacrylate) (HEMA) crosslinked networks were tailored to investigate the influence of their surface and bulk properties on biofouling. Previous research utilizing HEMA-siloxane gels suggested a relationship between molecular weight between crosslinks, M c, and the attachment of soft fouling sporelings of the green algae U. linza and adsorption of the protein bovine serum albumin (BSA), and the initial thrust of this dissertation was aimed at resolving this relationship. Gel composition was modified by varying the siloxane crosslinking agent and the siloxane hydrophobic monomer concentrations. The gels exhibited an increase in elastic modulus from 0.17 to 8.55 MPa that coincided with an increasing concentration of crosslinking agent. The resultant variation in network mesh size had the strongest correlation with the BSA adsorption (R2 = 0.90) and algal spore attachment (R2 = 0.73). The second system evaluated was based upon a new siloxane non-isocyanate urethane divinyl monomer (NIUDMA) that was synthesized using environmentally friendly methods in order to produce more mechanically durable gels. A crosslinked amphiphilic network was synthesized utilizing NIUDMA in conjunction with the relatively hydrophobic hexafluorobutyl methacrylate (HFBMA) with hydrophilic HEMA. The initial HFBMA and HEMA feed composition was varied, and the effect on gel properties was equated to anti-biofouling efficacy. The different gel compositions altered the surface chemistry slightly and the structure of their surface; however, the greatest difference was seen in the bulk structure and mechanical properties. The elastic moduli measured for these gels was much higher than the gels previously tested; it ranged from 2 MPa to as high as 140 MPa by varying the ratio of hydrophilic (20 - 90 mol%) to hydrophobic (0 - 70 mol%) monomer concentration. For the NIUDMA gels, the biofouling assays performed to probe the effect of gel properties included U. linza sporeling attachment, N. incerta diatom and C. lytica bacteria biofilm growth and removal, and A. Amphitrite adult barnacle reattachment. The most effective results were seen with the fouling release results of diatoms, with up to 96% reduction, and marine bacteria with up to 98% reduction after an applied water pressure of 138 kPa. These two microfouling marine organisms are part of the first stages of the biofouling process, and reducing their attachment and adhesion is critical for preventing or reducing the later stages. There were complex trends seen with the properties of the gels and the bioassay results. Overall, the NIUDMA10 networks had comparable results to commercial coatings against spores, diatoms and marine bacteria.
A Synthetic Fibrin-Crosslinking Polymer for Modulating Clot Properties and Inducing Hemostasis
Chan, Leslie W.-G.; Wang, Xu; Wei, Hua; Pozzo, Lilo D.; White, Nathan J.; Pun, Suzie H.
2015-01-01
Clotting factor replacement is the standard management of acute bleeding in congenital and acquired bleeding disorders. We present a synthetic approach to hemostasis using an engineered hemostatic polymer (PolySTAT) that circulates innocuously in the blood, identifies sites of vascular injury, and promotes clot formation to stop bleeding. PolySTAT induces hemostasis by crosslinking the fibrin matrix within clots, mimicking the function of the transglutaminase Factor XIII. Furthermore, synthetic PolySTAT binds specifically to fibrin monomers and is uniformly integrated into fibrin fibers during fibrin polymerization, resulting in a fortified, hybrid polymer network with enhanced resistance to enzymatic degradation. In vivo hemostatic activity was confirmed in a rat model of trauma and fluid resuscitation in which intravenous administration of PolySTAT improved survival by reducing blood loss and resuscitation fluid requirements. PolySTAT-induced fibrin crosslinking is a novel approach to hemostasis utilizing synthetic polymers for non-invasive modulation of clot architecture with potentially wide-ranging therapeutic applications. PMID:25739763
Dextran hydrogels by crosslinking with amino acid diamines and their viscoelastic properties.
O'Connor, Naphtali A; Jitianu, Mihaela; Nunez, Greisly; Picard, Quentin; Wong, Madeline; Akpatsu, David; Negrin, Adam; Gharbaran, Rajendra; Lugo, Daniel; Shaker, Sundus; Jitianu, Andrei; Redenti, Stephen
2018-05-01
Amine functionalized polysaccharide hydrogels such as those based on chitosan are widely examined as biomaterials. Here we set out to develop a facile procedure for developing such hydrogels by crosslinking dextran with amino acid diamines. The dextran-amino acid gels were formed by the addition of the amino acid diamines to a dextran and epichlorohydrin solution once it became homogeneous. This was demonstrated with three amino acid diamines, lysine, lysine methyl ester, and cystine dimethyl ester. Hydrogel networks with albumin entrapped were also demonstrated. These hydrogels were characterized by FTIR, SEM, rotational rheometry, swelling studies and cell biocompatibility analysis. These hydrogels showed the unexpected pH-responsive behavior of greater swelling at more basic pH, similar to that of an anionic hydrogel. This is uncharacteristic for amine functionalized gels as they typically exhibit cationic hydrogel behavior. All hydrogels showed similar biocompatibility to that of dextran crosslinked without amino acids. Copyright © 2018 Elsevier B.V. All rights reserved.
Feasibility study of the natural derived chitosan dialdehyde for chemical modification of collagen.
Liu, Xinhua; Dan, Nianhua; Dan, Weihua; Gong, Juxia
2016-01-01
The aim of this study is to evaluate the chemical crosslinking effects of the natural derived chitosan dialdehyde (OCS) on collagen. Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and circular dichroism (CD) measurements suggest that introducing OCS might not destroy the natural triple helix conformation of collagen but enhance the thermal-stability of collagen. Meanwhile, a denser fibrous network of cross-linked collagen is observed by atomic force microscopy. Further, scanning electron microscopy (SEM) and aggregation kinetics analysis confirm that the fibrillation process of collagen advances successfully and OCS could lengthen the completion time of collagen fibrillogenesis but raise the reconstitution rate of collagen fibrils or microfibrils. Besides, the cytocompatibility analysis implies that when the dosage of OCS is less than 15%, introducing OCS into collagen might be favorable for the cell's adhesion, growth and proliferation. Taken as a whole, the present study demonstrates that OCS might be an ideal crosslinker for the chemical fixation of collagen. Copyright © 2015 Elsevier B.V. All rights reserved.
Textural and cargo release attributes of trisodium citrate cross-linked starch hydrogel.
Abhari, Negar; Madadlou, Ashkan; Dini, Ali; Hosseini Naveh, Ozra
2017-01-01
An alkaline starch suspension was charged with citric acid and incubated for different durations (0, 8.5 or 17h). The suspension was then supplemented with caffeine and gelatinized to fabricate hydrogels which were subsequently stored for varying periods (0, 24 or 48h). Charging of the well-dissolved alkaline starch suspension with citric acid decreased at first both the flow index and consistency coefficient (K); however, starch cross-linking over time by the generated trisodium citrate increased the K value. The latter also inhibited gel syneresis and increased its water-holding capacity. Trisodium citrate did not nonetheless influence the gel hardness except for the sample incubated for maximum duration and stored for the longest period. The amount of the caffeine released from hydrogel decreased by citrate cross-linking and was higher at neutral pH than pH 2.0. Fourier-transform infra-red spectroscopy suggested that caffeine was enclosed within the gel network via non-covalent interactions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ouyang, Yi; Shi, Huimin; Fu, Ruowen; Wu, Dingcai
2013-01-01
Fabrication of monodisperse porous polymeric nanospheres with diameters below 500 nm remains a great challenge, due to serious crosslinking between neighboring nanospheres during pore-making process. Here we show how a versatile hypercrosslinking strategy can be used to prepare monodisperse microporous polystyrene nanospheres (MMPNSs) with diameters as low as ca. 190 nm. In our approach, an unreactive crosslinked PS outer skin as protective layer can be in-situ formed at the very beginning of hypercrosslinking treatment to minimize the undesired inter-sphere crosslinking. The as-prepared MMPNSs with a well-developed microporous network demonstrate unusual multifunctional properties, including remarkable colloidal stability in aqueous solution, good adsorption-release property for drug, and large adsorption capacity toward organic vapors. Surprisingly, MMPNSs can be directly transformed into high-surface-area monodisperse carbon nanospheres with good colloidal stability via a facile hydrothermal-assisted carbonization procedure. These findings provide a new benchmark for fabricating well-defined porous nanospheres with great promise for various applications. PMID:23478487
Jayakumar, S; Sudha, P N
2013-03-15
Chitosan/nylon6/polyurethane foam (CS/Ny6/PUF) ternary blend was prepared and chemically cross-linked with glutaraldehyde. Structural, thermal and morphological studies were performed for the prepared ternary blends. Characterizations of the ternary blends were investigated by Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscope (SEM). The FTIR results showed that the strong intermolecular hydrogen bonds took place between CS, Ny6 and PUF. TGA and DSC studies reveal that the thermal stability of the blend is enhanced by glutaraldehyde as crosslinking agent. Results of XRD indicated that the relative crystalline of pure CS film was reduced when the polymeric network was reticulated by glutaraldehyde. Finally, the results of scanning electron microscopy (SEM) indicated that the morphology of the blend is rough and heterogeneous, further it confirms the interaction between the functional groups of the blend components. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moseley, J.; Miller, D.; Shah, Q.-U.-A. S. J.
2011-10-01
Use of thermoplastic materials as encapsulants in photovoltaic (PV) modules presents a potential concern in terms of high temperature creep, which should be evaluated before thermoplastics are qualified for use in the field. Historically, the issue of creep has been avoided by using thermosetting polymers as encapsulants, such as crosslinked ethylene-co-vinyl acetate (EVA). Because they lack crosslinked networks, however, thermoplastics may be subject to phase transitions and visco-elastic flow at the temperatures and mechanical stresses encountered by modules in the field, creating the potential for a number of reliability and safety issues. Thermoplastic materials investigated in this study include PV-grademore » uncured-EVA (without curing agents and therefore not crosslinked); polyvinyl butyral (PVB); thermoplastic polyurethane (TPU); and three polyolefins (PO), which have been proposed for use as PV encapsulation. Two approaches were used to evaluate the performance of these materials as encapsulants: module-level testing and a material-level testing.« less
Cheng, Chih-Chia; Chuang, Wei-Tsung; Lee, Duu-Jong; Xin, Zhong; Chiu, Chih-Wei
2017-03-01
A novel application of supramolecular interactions within semicrystalline polymers, capable of self-assembling into supramolecular polymer networks via self-complementary multiple hydrogen-bonded complexes, is demonstrated for efficient construction of highly controlled self-organizing hierarchical structures to offer a direct, efficient nucleation pathway resulting in superior crystallization performance. Herein, a novel functionalized poly(ε-caprolactone) containing self-complementary sextuple hydrogen-bonded uracil-diamidopyridine (U-DPy) moieties is successfully developed and demonstrated excellent thermal and viscoelastic properties as well as high dynamic structural stability in the bulk state due to physical cross-linking created by reversible sextuple hydrogen bonding between U-DPy units. Due to the ability to vary the extent of the reversible network by tuning the U-DPy content, this newly developed material can be readily adjusted to obtain the desired crystalline products with specific characteristics. Importantly, incorporating only 0.1% U-DPy resulted in a polymer with a high crystallization rate constant, short crystallization half-time, and much more rapid crystallization kinetics than pristine PCL, indicating a low content of U-DPy moieties provides highly efficient nucleation sites that manipulate the nucleation and growth processes of polymer crystals to promote crystallization and chain alignment in bulk. This new system is suggested as a potential new route to substantially improve the performance of polymer crystallization. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Abolmaali, Samira Sadat; Tamaddon, Ali Mohammad; Dinarvand, Rasoul
2013-12-01
Soft polymeric nanomaterials were synthesized by the template-assisted method involving self-association of methoxy polyethylene glycol- g-branched polyethyleneimine (mPEG- g-branched PEI) ionomer by transition metal ions such as Zn2+ followed by chemical cross-linking of the polyamine core by dithiopropionic acid. The formation of donor-acceptor complexes of Zn2+ and PEI ionomer was characterized by FT-IR spectroscopy and potentiometric titration. Turbidimetry was performed to study the solution property of the complexes which depended on pH, relative weight fraction of mPEG, and the molar ratio of Zn2+. The cross-linking reaction was studied by TNBS assay, 1H-NMR, and size exclusion chromatography. Upon removal of Zn2+ from cl-mPEG- g-branched PEI/Zn2+ at pH 3 by dialysis, the resulting cross-linked self-assembly represented a uniform, stable, and less positively charged hydrogel-like nanosphere with an intensity-averaged size ranging from 150 to 250 nm as determined by a Zetasizer. Atomic forced microscopy imaging was performed in intermittent contact mode in air that revealed discrete and oval-to-spherically shaped particles with average sizes ranging from 40 to 50 nm depending on the degree of cross-linking. This functional nanocarrier is expected to exhibit some key features such as active encapsulation of negatively charged hydrophilic agents in the swollen core of polyamine network and a hydrophilic mPEG shell which provides an increased solubility and passive targeting of active pharmaceutical agents to impaired tissues. The nano-hydrogels especially at 12 % degrees of cross-link demonstrated excellent biocompatibility determined by different experiments such as albumin aggregation, erythrocyte aggregation, hemolysis, and MTT cytotoxicity assay. Moreover, biodegradability of the cross-links as shown by the Ellman assay can offer a time-dependent degradation and redox-stimulated release of active agents.
Thomas, V; Jayabalan, M
2001-07-01
The effect of virtual crosslinking on the hydrolytic stability of completely aliphatic novel poly(urethane ureas), HFL9-PU1 (hard-segment content 57.5%) and HFL13-PU2 (hard-segment content 67.9%) based on 4,4'-methylene bis(cyclohexyl isocyanate) (H(12)MDI)-hydroxy-terminated polybutadiene-1,6-hexamethylene diamine, was studied. Fourier transform infrared-attenuated total reflectance and wide-angle X-ray diffraction studies revealed hydrogen-bonding interaction and microphase separation and formation of crystallites by short- and long-range ordering in hard-segment domains. Three-dimensional networks from hydrogen bonding in the present polymers lead to virtually crosslinking and insolubility. These polymers were noncytotoxic to L929 fibroblast cells. The hemolytic potential is below the accepted limit. The studies on in vitro biostability in Ringer's solution, phosphate buffered saline, and papain enzyme revealed no weight loss. The infrared spectral studies revealed changes in the surface, especially on HFL9-PU1 aged in Ringer's solution and phosphate buffered saline, and no changes when aged in papain. The marginal changes noticed in tensile properties were attributed to the changes in degree of hydrogen bonding and associated rearrangement of molecular structure in the bulk. The results revealed that the lesser the crosslinking in virgin polymer, the higher the crosslinking in aged polymer and vice versa. Increased crosslinking during aging provided increased tensile properties in the aged polymer over the virgin polymer and vice versa. For comparison, an aliphatic polyetherurethane urea (HFL16-PU3) was also synthesized using poly(oxy tetra methylene glycol) in addition to the above reactants. Though both HFL9-PU1 and HFL16-PU3 contained the same hard-segment content, the aged sample of the latter showed decreased tensile properties with increased crosslinking during aging in contrast to the former. This was attributed to less microphase separation in the virgin HFL16-PU3 polymer.
NASA Astrophysics Data System (ADS)
Suk, Jungdon; Lee, Yu Hwa; Kim, Do Youb; Kim, Dong Wook; Cho, Song Yun; Kim, Ji Man; Kang, Yongku
2016-12-01
We developed highly promising solid polymer electrolytes (SPEs) based on a novel cross-linker containing star-shaped phosphazene with poly(ethylene oxide) (PEO) branches with very high ionic conductivity (7.6 × 10-4 S cm-1), improved mechanical stability, and good electrochemical stability for all-solid-state lithium batteries. In particular, allyl groups were introduced at the ends of the cross-linker in order to overcome the easy self-polymerization of existing cross-linking acrylate end groups. A novel semi-interpenetrating network (semi-IPN) SPE was prepared by in-situ radical polymerization of a precursor solution containing lithium salt, poly(ethylene glycol) dimethyl ether as a plasticizer, and a mixture of pentaerythritol tetrakis(3-mercaptopropionate) and a synthesized hexakis(allyloxy)cyclotriphosphazene (thiol-ene PAL) as the cross-linker. Batteries employing LiFePO4 as the cathode, lithium foil as the anode, and the SPE thin film as the electrolyte were assembled and tested. At ambient temperature, the initial discharge capacity was 147 mAh/g at 0.1 °C and 132 mAh/g at 0.5 °C, and 97% of the capacity was retained at the 100th cycle. All-solid-state pouch-package lithium cells assembled with the SPEs exhibited stable electrochemical performance, even under a severely wrinkled state. These outstanding properties of SPEs based on thiol-ene PAL demonstrate feasibility for practical battery applications with improved reliability and safety.
In Vitro Wear Resistance of Nano-Hybrid Composite Denture Teeth.
Munshi, Nabeel; Rosenblum, Marc; Jiang, Shuying; Flinton, Robert
2017-04-01
To evaluate the wear resistance of nano-hybrid composite denture teeth as compared to two commonly used denture teeth: interpenetrating polymer network (IPN) and double crosslinking polymethylmethacrylate (PMMA) denture teeth. 18 styli and 18 disk specimens were prepared from the three denture tooth materials: nano-hybrid composite, IPN, and double crosslinking PMMA. The specimens were mounted in a two-body wear testing machine to simulate chewing in the complete denture. The amount of wear from the styli specimens were measured before and after using a digital micrometer, and the depth of the wear track from the disk specimens was measured using a noncontact 3D optical profilometer. The total wear from each denture tooth group was compared using one-way ANOVA with a 0.05 significance level. A Tukey post hoc test was used to determine differences between the three groups. The mean total wear in the nano-hybrid composite teeth group was 1.16 mm, SD = 0.5 mm, statistically significantly higher (p ≤ 0.0001) than the IPN (mean = 0.13 mm, SD = 0.05) and double crosslinking PMMA tooth groups (mean = 0.31 mm, SD = 0.19). There was no statistically significant difference between IPN denture teeth and double crosslinking PMMA denture teeth in the amount of wear. Nano-hybrid composite denture teeth exhibited statistically significantly more wear than the IPN and double crosslinking PMMA denture teeth. © 2015 by the American College of Prosthodontists.
Complex patchy colloids shaped from deformable seed particles through capillary interactions.
Meester, V; Kraft, D J
2018-02-14
We investigate the mechanisms underlying the reconfiguration of random aggregates of spheres through capillary interactions, the so-called "colloidal recycling" method, to fabricate a wide variety of patchy particles. We explore the influence of capillary forces on clusters of deformable seed particles by systematically varying the crosslink density of the spherical seeds. Spheres with a poorly crosslinked polymer network strongly deform due to capillary forces and merge into large spheres. With increasing crosslink density and therefore rigidity, the shape of the spheres is increasingly preserved during reconfiguration, yielding patchy particles of well-defined shape for up to five spheres. In particular, we find that the aspect ratio between the length and width of dumbbells, L/W, increases with the crosslink density (cd) as L/W = B - A·exp(-cd/C). For clusters consisting of more than five spheres, the particle deformability furthermore determines the patch arrangement of the resulting particles. The reconfiguration pathway of clusters of six densely or poorly crosslinked seeds leads to octahedral and polytetrahedral shaped patchy particles, respectively. For seven particles several geometries were obtained with a preference for pentagonal dipyramids by the rigid spheres, while the soft spheres do rarely arrive in these structures. Even larger clusters of over 15 particles form non-uniform often aspherical shapes. We discuss that the reconfiguration pathway is largely influenced by confinement and geometric constraints. The key factor which dominates during reconfiguration depends on the deformability of the spherical seed particles.
Phase separation in living micellar networks
NASA Astrophysics Data System (ADS)
Cristobal, G.; Rouch, J.; Curély, J.; Panizza, P.
We present a lattice model based on two n→0 spin vectors, capable of treating the thermodynamics of living networks in micellar solutions at any surfactant concentration. We establish an isomorphism between the coupling constants in the two spin vector Hamiltonian and the surfactant energies involved in the micellar situation. Solving this Hamiltonian in the mean-field approximation allows one to calculate osmotic pressure, aggregation number, free end and cross-link densities at any surfactant concentration. We derive a phase diagram, including changes in topology such as the transition between spheres and rods and between saturated and unsaturated networks. A phase separation can be found between a saturated network and a dilute solution composed of long flexible micelles or a saturated network and a solution of spherical micelles.
Investigations into the mechanical and physical behavior of thermoplastic elastomers
NASA Astrophysics Data System (ADS)
Wright, Kathryn Janelle
This thesis describes investigations into the physical and mechanical characteristics of two commercial thermoplastic elastomer (TPE) systems. Both systems studied exhibit elastomeric behavior similar to more traditional crosslinked elastomers; however, in these TPEs non-conventional polymer architectures and morphologies are used to produce their elastomeric behavior. The two TPEs of interest are ethylene-propylene random copolymers and dynamically vulcanized blends of ethylene-propylene-diene monomer (EPDM) and isotactic polypropylene (iPP). Very few studies have examined the mechanical behavior of these materials in terms of their composition and morphology. As such, the primary goal of this research is to both qualitatively and quantitatively understand the influence of composition and morphology on mechanical behavior. In additional very little information is available that compares their performance with that of crosslinked elastomers. As a result, the secondary goal is to qualitatively compare the mechanical responses of these TPEs with that of their more traditional counterparts. The ethylene-propylene copolymers studied have very high comonomer contents and exhibit slow crystallization kinetics. Their morphology consists of nanoscale crystallites embedded in an amorphous rubbery matrix. These crystallites act as physical crosslinks that allow for elasticity. Slow crystallization causes subsequent changes in mechanical behavior that take place over days and even weeks. Physical responses (e.g., density, crystallization kinetics, and crystal structure) of five copolymer compositions are investigated. Mechanical responses (e.g., stiffness, ductility, yielding, and reversibility) are also examined. Finally, the influence of morphology on deformation is studied using in situ analytical techniques. The EPDM/iPP blends are dynamically vulcanized which produces a complex morphology consisting of chemically crosslinked EPDM domains embedded within a semicrystalline iPP matrix. Six compositions are investigated as a function of three parameters: major volume fraction, iPP molecular weight, and EPDM cure state. The influence of these parameters on morphology and resulting mechanical behavior is examined. This work culminates in the development of a morphological model to describe the steady-state reversibility of these EPDM/iPP blends. The model is then evaluated in terms of composition and cure state.
NASA Astrophysics Data System (ADS)
Trefonas, Peter, III; Allen, Mary T.
1992-06-01
Shannon's information theory is adapted to analyze the photolithographic process, defining the mask pattern as the prior state. Definitions and constraints to the general theory are developed so that the information content at various stages of the lithographic process can be described. Its application is illustrated by exploring the information content within projected aerial images and resultant latent images. Next, a 3-dimensional molecular scale model of exposure, acid diffusion, and catalytic crosslinking in acid-hardened resists (AHR) is presented. In this model, initial positions of photogenerated acids are determined by probability functions generated from the aerial images and the local light intensity in the film. In order to simulate post-exposure baking processes, acids are diffused in a random walk manner, for which the catalytic chain length and the average distance between crosslinks can be set. Crosslink locations are defined in terms of the topologically minimized number required to link different chains. The size and location of polymer chains involved in a larger scale crosslinked network is established and related to polymer solubility. In this manner, the nature of the crosslinked latent image can be established. Good correlation with experimental data is found for the calculated percent insolubilization as a function of dose when the rms acid diffusion length is about 500 angstroms. Information analysis is applied in detail to the specific example of AHR chemistry. The information contained within the 3-D crosslinked latent image is explored as a function of exposure dose, catalytic chain length, average distance between crosslinks. Eopt (the exposure dose which optimizes the information contained within the latent image) was found to vary with catalytic chain length in a manner similar to that observed experimentally in a plot of E90 versus post-exposure bake time. Surprisingly, the information content of the crosslinked latent image remains high even when rms diffusion lengths are as long as 1500 angstroms. The information content of a standing wave is shown to decrease with increasing diffusion length, with essentially all standing wave information being lost at diffusion lengths greater than 450 angstroms. A unique mechanism for self-contrast enhancement and high resolution in AHR resist is proposed.
Thompson, Larry H.; Hinz, John M.
2009-01-01
The Fanconi anemia (FA) molecular network consists of 15 “FANC” proteins, of which 13 are associated with mutations in patients with this cancer-prone chromosome instability disorder. Whereas historically the common phenotype associated with FA mutations is marked sensitivity to DNA interstrand crosslinking agents, the literature supports a more global role for FANC proteins in coping with diverse stresses encountered by replicative polymerases. We have attempted to reconcile and integrate numerous observations into a model in which FANC proteins coordinate the following physiological events during DNA crosslink repair: (a) activating a FANCM-ATR-dependent S-phase checkpoint; (b) mediating enzymatic replication-fork breakage and crosslink unhooking; (c) filling the resulting gap by translesion synthesis (TLS) by error-prone polymerase(s); and (d) restoring the resulting one-ended double-strand break by homologous recombination repair (HRR). The FANC core subcomplex (FANCA, B, C, E, F, G, L, FAAP100) promotes TLS for both crosslink and non-crosslink damage such as spontaneous oxidative base damage, UV-C photoproducts, and alkylated bases. TLS likely helps prevent stalled replication forks from breaking, thereby maintaining chromosome continuity. Diverse DNA damages and replication inhibitors result in monoubiquitination of the FANCD2-FANCI complex by the FANCL ubiquitin ligase activity of the core subcomplex upon its recruitment to chromatin by the FANCM-FAAP24 heterodimeric translocase. We speculate that this translocase activity acts as the primary damage sensor and helps remodel blocked replication forks to facilitate checkpoint activation and repair. Monoubiquitination of FANCD2-FANCI is needed for promoting HRR, in which the FANCD1/BRCA2 and FANCN/PALB2 proteins act at an early step. We conclude that the core subcomplex is required for both TLS and HRR occurring separately for non-crosslink damages and for both events during crosslink repair. The FANCJ/BRIP1/BACH1 helicase functions in association with BRCA1 and may remove structural barriers to replication, such as guanine quadruplex structures, and/or assist in crosslink unhooking. PMID:19622404
The nature of platinum in silicones for biomedical and healthcare use.
Lambert, James M
2006-07-01
Silicone is an important biomaterial in many different biomedical and healthcare applications. Network formation in one type of silicone relies upon a chemical crosslinking reaction that typically employs a platinum catalyst. As a consequence, low concentrations of platinum may remain in certain medical devices designed for human use. The characteristics of platinum in silicone before, during, and after the crosslinking reaction have been well described in the literature. This review summarizes the relevant literature on the organometallic and analytical chemistry of platinum in silicone and thus provides a foundation for understanding the effects this platinum may have, if any, in the various biomedical and healthcare applications where it may be present.
Differentially photo-crosslinked polymers enable self-assembling microfluidics
Jamal, Mustapha; Zarafshar, Aasiyeh M.; Gracias, David H.
2012-01-01
An important feature of naturally self-assembled systems such as leaves and tissues is that they are curved and have embedded fluidic channels that enable the transport of nutrients to, or removal of waste from, specific three-dimensional (3D) regions. Here, we report the self-assembly of photopatterned polymers, and consequently microfluidic devices, into curved geometries. We discovered that differentially photo-crosslinked SU-8 films spontaneously and reversibly curved upon film de-solvation and re-solvation. Photolithographic patterning of the SU-8 films enabled the self-assembly of cylinders, cubes, and bidirectionally folded sheets. We integrated polydimethylsiloxane (PDMS) microfluidic channels with these SU-8 films to self-assemble curved microfluidic networks. PMID:22068594
NASA Technical Reports Server (NTRS)
Hergenrother, Paul M.
1999-01-01
A thermoset or network polymer is an organic material where the molecules are tied together through chemical bonds (crosslinks) and therefore they cannot move past one another. As a result, these materials exhibit a certain degree of dimensional stability. The chemical composition and the degree of crosslink density of the thermoset have a pronounced effect upon the properties. High temperature thermosets offer a favorable combination of properties that makes them attractive for many applications. Their most important features are the excellent processability particularly of the low molecular weight precusor forms, the chemical and solvent resistance and the dimensional stability. The market for high temperature thermosets will increase as new uses for them are uncovered and new thermosets with better combinations of properties are developed.
NASA Astrophysics Data System (ADS)
Benedetti, Cesare; Flouda, Paraskevi; Antonello, Alice; Rosenauer, Christine; Pérez-Pla, Francisco F.; Landfester, Katharina; Gross, Silvia; Muñoz-Espí, Rafael
2017-09-01
The photoactivated free radical miniemulsion copolymerization of methyl methacrylate (MMA) and the zirconium oxocluster Zr4O2(methacrylate)12 is used as an effective and fast preparation method for polymer/inorganic hybrid nanoparticles. The oxoclusters, covalently anchored to the polymer network, act as metal-organic cross-linkers, thus improving the thermomechanical properties of the resulting hybrid nanoparticles. Benzoin carbonyl organic compounds were used as photoinitiators. The obtained materials are compared in terms of cross-linking, effectiveness of cluster incorporation, and size distribution with the analogous nanoparticles produced by using conventional thermally induced free radical miniemulsion copolymerization. The kinetics of the polymerization process in the absence and in the presence of the oxocluster is also investigated.
Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid
Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram
2017-01-01
Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80–100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials. PMID:28208822
Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid.
Falamarzpour, Pouria; Behzad, Tayebeh; Zamani, Akram
2017-02-13
Adipic acid, an abundant and nontoxic compound, was used to dissolve and cross-link chitosan. After the preparation of chitosan films through casting technique, the in situ amidation reaction was performed at 80-100 °C as verified by Fourier transform infrared (FT-IR). The reaction was accompanied by the release of water which was employed to investigate the reaction kinetics. Accordingly, the reaction rate followed the first-order model and Arrhenius equation, and the activation energy was calculated to be 18 kJ/mol. Furthermore, the mechanical properties of the chitosan films were comprehensively studied. First, optimal curing conditions (84 °C, 93 min) were introduced through a central composite design. In order to evaluate the effects of adipic acid, the mechanical properties of physically cross-linked (uncured), chemically cross-linked (cured), and uncross-linked (prepared by acetic acid) films were compared. The use of adipic acid improved the tensile strength of uncured and chemically cross-linked films more than 60% and 113%, respectively. Finally, the effect of cellulose nanofibrils (CNFs) on the mechanical performance of cured films, in the presence of glycerol as a plasticizer, was investigated. The plasticized chitosan films reinforced by 5 wt % CNFs showed superior properties as a promising material for the development of chitosan-based biomaterials.
3D Model of Cytokinetic Contractile Ring Assembly: Node-Mediated and Backup Pathways
NASA Astrophysics Data System (ADS)
Bidone, Tamara; Vavylonis, Dimitrios
Cytokinetic ring assembly in model organism fission yeast is a dynamic process, involving condensation of a network of actin filaments and myosin motors bound to the cell membrane through cortical nodes. A 3D computational model of ring assembly illustrates how the combined activities of myosin motors, filament crosslinkers and actin turnover lead to robust ring formation [Bidone et al. Biophys. J, 2014]. We modeled the importance of the physical properties of node movement along the cell membrane and of myosin recruitment to nodes. Experiments by D. Zhang (Temasek Life Sciences) show that tethering of the cortical endoplasmic reticulum (ER) to the plasma membrane modulates the speed of node condensation and the degree of node clumping. We captured the trend observed in these experiments by changes in the node drag coefficient and initial node distribution in simulations PM. The model predicted that reducing crosslinking activities in ER tethering mutants with faster node speed enhances actomyosin clumping. We developed a model of how tilted and/or misplaced rings assemble in cells that lack the node structural component anillin-like Mid1 and thus fail to recruit myosin II to nodes independently of actin. If actin-dependent binding of diffusive myosin to the cortex is incorporated into the model, it generates progressively elongating cortical actomyosin strands with fluctuating actin bundles at the tails. These stands often close into a ring, similar to observations by the group of J.Q. Wu (The Ohio State University). NIH R01GM098430.
Gas-phase transfer of polymer cross-linking agents and by-products to solid oral pharmaceuticals.
Maus, Russell G; Li, Min; Clement, Christopher M; Kinzer, Jeffery A
2007-11-05
In the pharmaceutical industry, solid oral compressed tablets (OCT) are frequently transported in bulk containers prior to packaging. While in this state, the product is generally protected from interaction with liquid and solid contaminants by physical barriers (e.g., polyethylene bags, drums, etc.). Vapor phase contamination, although generally less frequently observed, is possible. A specific example of the detection and identification of volatile by-products (acetophenone and 2-phenyl-2-propanol) of a common polymer cross-linking agent (dicumyl peroxide) is presented. The product tablets were compressed, placed into double polyethylene bags, and subsequently placed into a polyethylene drum for shipment overseas. To cushion the product during transit, a cross-linked polyethylene foam disk (designed to fit into the bottom of the drum) was placed below the bag of tablets. Initially, these contaminants were detected by HPLC with UV detection at the receiving laboratory, and assumed to be degradates of the active components of the product. Further analysis showed that neither the collected UV absorbance data nor the observed levels of the contaminants were consistent with known degradates of the product. Liquid extraction followed by GC-MS analysis of the product as well as the cross-linked foam disk exhibited measurable quantities of the contaminants in question. Vapor phase transfer of these cross-linking agent by-products, originating in the cross-linked foam pads, was determined to be the root cause for the presence of these compounds in the product.
Polymers used to absorb fats and oils: A concept
NASA Technical Reports Server (NTRS)
Marsh, H. E., Jr.
1974-01-01
One approach to problem of excessive oils and fats is to develop method by which oil is absorbed into solid mixture for elimination as solid waste. Materials proposed for these purposes are cross-linked (network) polymers that have high affinity for aliphatic substances, i. e., petroleum, animal, and vegetable oils.
Hydrophobic-Interaction-Induced Stiffening of α -Synuclein Fibril Networks
NASA Astrophysics Data System (ADS)
Semerdzhiev, Slav A.; Lindhoud, Saskia; Stefanovic, Anja; Subramaniam, Vinod; van der Schoot, Paul; Claessens, Mireille M. A. E.
2018-05-01
In water, networks of semiflexible fibrils of the protein α -synuclein stiffen significantly with increasing temperature. We make plausible that this reversible stiffening is a result of hydrophobic contacts between the fibrils that become more prominent with increasing temperature. The good agreement of our experimentally observed temperature dependence of the storage modulus of the network with a scaling theory linking network elasticity with reversible cross-linking enables us to quantify the endothermic binding enthalpy and estimate the effective size of hydrophobic patches on the fibril surface. Our findings may not only shed light on the role of amyloid deposits in disease conditions, but can also inspire new approaches for the design of thermoresponsive materials.
Hydrophobic-Interaction-Induced Stiffening of α-Synuclein Fibril Networks.
Semerdzhiev, Slav A; Lindhoud, Saskia; Stefanovic, Anja; Subramaniam, Vinod; van der Schoot, Paul; Claessens, Mireille M A E
2018-05-18
In water, networks of semiflexible fibrils of the protein α-synuclein stiffen significantly with increasing temperature. We make plausible that this reversible stiffening is a result of hydrophobic contacts between the fibrils that become more prominent with increasing temperature. The good agreement of our experimentally observed temperature dependence of the storage modulus of the network with a scaling theory linking network elasticity with reversible cross-linking enables us to quantify the endothermic binding enthalpy and estimate the effective size of hydrophobic patches on the fibril surface. Our findings may not only shed light on the role of amyloid deposits in disease conditions, but can also inspire new approaches for the design of thermoresponsive materials.