DOE Office of Scientific and Technical Information (OSTI.GOV)
Majer, E.L.; Brockman, F.J.
1998-06-01
'This research is an integrated physical (geophysical and hydrologic) and microbial study using innovative geophysical imaging and microbial characterization methods to identify key scales of physical heterogeneities that affect the biodynamics of natural subsurface environments. Data from controlled laboratory and in-situ experiments at the INEEL Test Area North (TAN) site are being used to determine the dominant physical characteristics (lithologic, structural, and hydrologic) that can be imaged in-situ and correlated with microbial properties. The overall goal of this research is to contribute to the understanding of the interrelationships between transport properties and spatially varying physical, chemical, and microbiological heterogeneity. Themore » outcome will be an improved understanding of the relationship between physical and microbial heterogeneity, thus facilitating the design of bioremediation strategies in similar environments. This report summarizes work as of May 1998, the second year of the project. This work is an extension of basic research on natural heterogeneity first initiated within the DOE/OHER Subsurface Science Program (SSP) and is intended to be one of the building blocks of an integrated and collaborative approach with an INEEL/PNNL effort aimed at understanding the effect of physical heterogeneity on transport properties and biodynamics in natural systems. The work is closely integrated with other EMSP projects at INEEL (Rick Colwell et al.) and PNNL (Fred Brockman and Jim Fredrickson).'« less
NASA Astrophysics Data System (ADS)
Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.
2017-12-01
Heterogeneous reactions of solid particles in a gaseous environment are of increasing interest; however, most of the heterogeneous chemistry studies of airborne solids were conducted on particle ensembles. A close examination on the heterogeneous chemistry between single particles and gaseous-environment species is the key to elucidate the fundamental mechanisms of hydroscopic growth, cloud nuclei condensation, secondary aerosol formation, etc., and reduce the uncertainty of models in radiative forcing, climate change, and atmospheric chemistry. We demonstrate an optical trapping-Raman spectroscopy (OT-RS) system to study the heterogeneous chemistry of the solid particles in air at single-particle level. Compared to other single-particle techniques, optical trapping offers a non-invasive, flexible, and stable method to isolate single solid particle from substrates. Benefited from two counter-propagating hollow beams, the optical trapping configuration is adaptive to trap a variety of particles with different materials from inorganic substitution (carbon nanotubes, silica, etc.) to organic, dye-doped polymers and bioaerosols (spores, pollen, etc.), with different optical properties from transparent to strongly absorbing, with different sizes from sub-micrometers to tens of microns, or with distinct morphologies from loosely packed nanotubes to microspheres and irregular pollen grains. The particles in the optical trap may stay unchanged, surface degraded, or optically fragmented according to different laser intensity, and their physical and chemical properties are characterized by the Raman spectra and imaging system simultaneously. The Raman spectra is able to distinguish the chemical compositions of different particles, while the synchronized imaging system can resolve their physical properties (sizes, shapes, morphologies, etc.). The temporal behavior of the trapped particles also can be monitored by the OT-RS system at an indefinite time with a resolution from 10 ms to 5 min, which can be further applied to monitor the dynamics of heterogeneous reactions. The OT-RS system provides a flexible method to characterize and monitor the physical properties and heterogeneous chemistry of optically trapped solid particles in gaseous environment at single-particle level.
NASA Astrophysics Data System (ADS)
Myre, Joseph M.
Heterogeneous computing systems have recently come to the forefront of the High-Performance Computing (HPC) community's interest. HPC computer systems that incorporate special purpose accelerators, such as Graphics Processing Units (GPUs), are said to be heterogeneous. Large scale heterogeneous computing systems have consistently ranked highly on the Top500 list since the beginning of the heterogeneous computing trend. By using heterogeneous computing systems that consist of both general purpose processors and special- purpose accelerators, the speed and problem size of many simulations could be dramatically increased. Ultimately this results in enhanced simulation capabilities that allows, in some cases for the first time, the execution of parameter space and uncertainty analyses, model optimizations, and other inverse modeling techniques that are critical for scientific discovery and engineering analysis. However, simplifying the usage and optimization of codes for heterogeneous computing systems remains a challenge. This is particularly true for scientists and engineers for whom understanding HPC architectures and undertaking performance analysis may not be primary research objectives. To enable scientists and engineers to remain focused on their primary research objectives, a modular environment for geophysical inversion and run-time autotuning on heterogeneous computing systems is presented. This environment is composed of three major components: 1) CUSH---a framework for reducing the complexity of programming heterogeneous computer systems, 2) geophysical inversion routines which can be used to characterize physical systems, and 3) run-time autotuning routines designed to determine configurations of heterogeneous computing systems in an attempt to maximize the performance of scientific and engineering codes. Using three case studies, a lattice-Boltzmann method, a non-negative least squares inversion, and a finite-difference fluid flow method, it is shown that this environment provides scientists and engineers with means to reduce the programmatic complexity of their applications, to perform geophysical inversions for characterizing physical systems, and to determine high-performing run-time configurations of heterogeneous computing systems using a run-time autotuner.
2013-07-01
heterogeneous RPA, either individually or simultaneously from a single control station. Also, emerging RPA system-of-systems architectures are...environment 1 1.4 0 0.0 >0.999 Technological environment 25 36.2 6 31.6 0.707 Cognitive factors 27 39.1 12 63.2 0.062 Psycho ...errors 0.460 4 36.86 Physical environment 0.775 Physical/mental limitations 0.722 5 45.27 Psycho -behavioral factors 0.760 Inadequate supervision
Ownership and ecosystem as sources of spatial heterogeneity in a forested landscape, Wisconsin, USA
Thomas R. Crow; George E. Host; David J. Mladenoff
1999-01-01
The interaction between physical environment and land ownership in creating spatial heterogeneity was studied in largely forested landscapes of northern Wisconsin, USA. A stratified random approach was used in which 2500-ha plots representing two ownerships (National Forest and private non-industrial) were located within two regional ecosystems (extremely well-drained...
Heterogeneous continuous-time random walks
NASA Astrophysics Data System (ADS)
Grebenkov, Denis S.; Tupikina, Liubov
2018-01-01
We introduce a heterogeneous continuous-time random walk (HCTRW) model as a versatile analytical formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the propagator and investigate the effects of spatiotemporal heterogeneities onto the diffusive dynamics via the spectral properties of the generalized transition matrix. In particular, we show how the distribution of first-passage times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified mathematical language to address various diffusion-reaction problems, with numerous applications in material sciences, physics, chemistry, biology, and social sciences.
ERIC Educational Resources Information Center
Roberts, Jason E.; Zeng, Guang; Maron, Marta K.; Mach, Mindy; Dwebi, Iman; Liu, Yong
2016-01-01
This paper reports an undergraduate laboratory experiment to measure heterogeneous liquid/gas reaction kinetics (ozone-oleic acid and ozone-phenothrin) using a flow reactor coupled to an attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometer. The experiment is specially designed for an upper-level undergraduate Physical…
Topological and behavioral disorder in collective motion
NASA Astrophysics Data System (ADS)
Quint, David
2014-03-01
A major underlying assumption in many studies on the collective motion of self-propelled agents has been that the environment is continuous, isotropic and ordered and agents are all identical. In the natural world there are many examples of disordered environments or heterogeneous swarms where collective motion can exist. Examples include bats that navigate natural caverns via echolocation, schools of fish that maneuver through dark and light areas, microbial colonies that move about in heterogeneous soil, quorum sensing bacteria, crowds of people that are evacuating a building and traffic flow in major cities. In general disorder can arise from two basic sources that inhibit/augment both movement and information flow, those that represent physical obstacles (i.e topological), (extrinsic), and those that arise from behavioral heterogeneties within the swarm itself (intrinsic). In either case, extrinsic or intrinsic, disorder can be quenched or dynamic in space or time or both. To understand the effect of the various forms of disorder that can be present in the environment of the agents, we study both discrete and continuous 2 d agent based models that utilize only local interactions and study the transition to the collectively moving state as a function of the amount of disorder or behavioral heterogeneities present in the environment. I will present our recent results and discuss the effect that disorder has on collective motion and the general physical mechanisms that swarms, either real or artificial, could utilize in order to overcome disorder in their environment.
Bacterial accumulation in viscosity gradients
NASA Astrophysics Data System (ADS)
Waisbord, Nicolas; Guasto, Jeffrey
2016-11-01
Cell motility is greatly modified by fluid rheology. In particular, the physical environments in which cells function, are often characterized by gradients of viscous biopolymers, such as mucus and extracellular matrix, which impact processes ranging from reproduction to digestion to biofilm formation. To understand how spatial heterogeneity of fluid rheology affects the motility and transport of swimming cells, we use hydrogel microfluidic devices to generate viscosity gradients in a simple, polymeric, Newtonian fluid. Using video microscopy, we characterize the random walk motility patterns of model bacteria (Bacillus subtilis), showing that both wild-type ('run-and-tumble') cells and smooth-swimming mutants accumulate in the viscous region of the fluid. Through statistical analysis of individual cell trajectories and body kinematics in both homogeneous and heterogeneous viscous environments, we discriminate passive, physical effects from active sensing processes to explain the observed cell accumulation at the ensemble level.
From Autonomous Robots to Artificial Ecosystems
NASA Astrophysics Data System (ADS)
Mastrogiovanni, Fulvio; Sgorbissa, Antonio; Zaccaria, Renato
During the past few years, starting from the two mainstream fields of Ambient Intelligence [2] and Robotics [17], several authors recognized the benefits of the socalled Ubiquitous Robotics paradigm. According to this perspective, mobile robots are no longer autonomous, physically situated and embodied entities adapting themselves to a world taliored for humans: on the contrary, they are able to interact with devices distributed throughout the environment and get across heterogeneous information by means of communication technologies. Information exchange, coupled with simple actuation capabilities, is meant to replace physical interaction between robots and their environment. Two benefits are evident: (i) smart environments overcome inherent limitations of mobile platforms, whereas (ii) mobile robots offer a mobility dimension unknown to smart environments.
Strategies Influencing Spatial Heterogeneity of Microbial Life in a Soil Lysimeter
NASA Astrophysics Data System (ADS)
Sengupta, A.; Neilson, J. W.; Meira, A.; Wang, Y.; Meza, M.; Chorover, J.; Maier, R. M.; Troch, P. A. A.
2016-12-01
Soil microorganisms are critical drivers of biogeochemical processes. These microbes, in conjunction with their physical and chemical environment, contribute to ecosystem functioning and services of the landscape, have a profound impact on soil formation, and are of particular importance in oligotrophic environments; ecosystems that are characterized by low biotic diversity due to extremely low nutrient levels. Here, we present a study of microbial heterogeneity in a soil lysimeter under incipient conditions. The key questions asked were: 1) what is the spatial heterogeneity of microbes over a new and evolving landscape with inherent oligotrophic conditions, and 2) can patterns in diversity translate to patterns in microbe-mediated weathering processes and soil formation? We hypothesized that stratification of environmental conditions, brought about by varying water potential, flow paths, and redox conditions, will drive the heterogeneity of microbial life in a sub-meter scale. A suite of traditional and current microbiological tools were employed to study community characteristics. These included isolation on R2A media, quantitative polymerase chain reactions targeted at 16S rRNA bacterial and archaeal genes, and 18S fungal genes, and iTAG phylogenetic gene amplification. Illumina Mi-Seq platform generated sequences were analyzed using various bioinformatics pipelines to identify community patterns, classify microbial metabolic functions, and identify variables affecting the community dynamics. Numerous phyla (Verrucomicrobia, Actinobacteria, Planctomycetes, Proteobacteria, and Euryarchaeota) were identified. The surface layer had distinctly different distribution of communities compared to the other layers. Metabolically heterogeneous groups were found with respect to depth, with metabolic functions further confirmed by predictive functional profiling of the microbial communities. Therefore, despite being highly oligotrophic, the system was rich in species and functional diversity. Alongside physical and chemical data, the patterns observed in spatial and functional heterogeneity of microbes under incipient conditions is unique, and allows us to predict strategies undertaken by these microbes to survive in, and influence their oligotrophic environments.
ERIC Educational Resources Information Center
Griffin, Margaret L.; Amodeo, Maryann
2010-01-01
Objective: Child physical abuse (CPA) has been associated with adverse adult psychosocial outcomes, although some reports describe minimal long-term effects. The search for the explanation for heterogeneous outcomes in women with CPA has led to an examination of a range of CPA-related factors, from the severity of CPA incidents to the childhood…
NASA Astrophysics Data System (ADS)
Hagen, Stephen J.; Son, Minjun
2017-02-01
Bacterial pathogens rely on chemical signaling and environmental cues to regulate disease-causing behavior in complex microenvironments. The human pathogen Streptococcus mutans employs a particularly complex signaling and sensing scheme to regulate genetic competence and other virulence behaviors in the oral biofilms it inhabits. Individual S. mutans cells make the decision to enter the competent state by integrating chemical and physical cues received from their microenvironment along with endogenously produced peptide signals. Studies at the single-cell level, using microfluidics to control the extracellular environment, provide physical insight into how the cells process these inputs to generate complex and often heterogeneous outputs. Fine changes in environmental stimuli can dramatically alter the behavior of the competence circuit. Small shifts in pH can switch the quorum sensing response on or off, while peptide-rich media appear to switch the output from a unimodal to a bimodal behavior. Therefore, depending on environmental cues, the quorum sensing circuitry can either synchronize virulence across the population, or initiate and amplify heterogeneity in that behavior. Much of this complex behavior can be understood within the framework of a quorum sensing system that can operate both as an intercellular signaling mechanism and intracellularly as a noisy bimodal switch.
High fidelity wireless network evaluation for heterogeneous cognitive radio networks
NASA Astrophysics Data System (ADS)
Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso
2012-06-01
We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal-level interactions with real radios. This holistic wireless evaluation approach supports a large-scale, het- erogeneous, and dynamic CR network architecture and allows developing cross-layer network protocols under high fidelity, repeatable, and scalable wireless test scenarios suitable for heterogeneous space, air, and ground networks.
Collignon, Bertrand; Séguret, Axel; Halloy, José
2016-01-01
Collective motion is one of the most ubiquitous behaviours displayed by social organisms and has led to the development of numerous models. Recent advances in the understanding of sensory system and information processing by animals impels one to revise classical assumptions made in decisional algorithms. In this context, we present a model describing the three-dimensional visual sensory system of fish that adjust their trajectory according to their perception field. Furthermore, we introduce a stochastic process based on a probability distribution function to move in targeted directions rather than on a summation of influential vectors as is classically assumed by most models. In parallel, we present experimental results of zebrafish (alone or in group of 10) swimming in both homogeneous and heterogeneous environments. We use these experimental data to set the parameter values of our model and show that this perception-based approach can simulate the collective motion of species showing cohesive behaviour in heterogeneous environments. Finally, we discuss the advances of this multilayer model and its possible outcomes in biological, physical and robotic sciences. PMID:26909173
Lifelong Transfer Learning for Heterogeneous Teams of Agents in Sequential Decision Processes
2016-06-01
making (SDM) tasks in dynamic environments with simulated and physical robots . 15. SUBJECT TERMS Sequential decision making, lifelong learning, transfer...sequential decision-making (SDM) tasks in dynamic environments with both simple benchmark tasks and more complex aerial and ground robot tasks. Our work...and ground robots in the presence of disturbances: We applied our methods to the problem of learning controllers for robots with novel disturbances in
Micromechanics of root development in soil.
Dupuy, L X; Mimault, M; Patko, D; Ladmiral, V; Ameduri, B; MacDonald, M P; Ptashnyk, M
2018-04-16
Our understanding of how roots develop in soil may be at the eve of significant transformations. The formidable expansion of imaging technologies enables live observations of the rhizosphere micro-pore architecture at unprecedented resolution. Granular matter physics provides ways to understand the microscopic fluctuations of forces in soils, and the increasing knowledge of plant mechanobiology may shed new lights on how roots perceive soil heterogeneity. This opinion paper exposes how recent scientific achievements may contribute to refresh our views on root growth in heterogeneous environments. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Ming-Te; Chow, Angela; Degol, Jessica Lauren; Eccles, Jacquelynne Sue
2017-08-01
Students' motivational beliefs about learning physical science are critical for achieving positive educational outcomes. In this study, we incorporated expectancy-value theory to capture the heterogeneity of adolescents' motivational trajectories in physics and chemistry from seventh to twelfth grade and linked these trajectories to science-related outcomes. We used a cross-sequential design based on three different cohorts of adolescents (N = 699; 51.5 % female; 95 % European American; M ages for youngest, middle, and oldest cohorts at the first wave = 13.2, 14.1, and 15.3 years) coming from ten public secondary schools. Although many studies claim that physical science motivation declines on average over time, we identified seven differential motivational trajectories of ability self-concept and task values, and found associations of these trajectories with science achievement, advanced science course taking, and science career aspirations. Adolescents' ability self-concept and task values in physics and chemistry were also positively related and interlinked over time. Examining how students' motivational beliefs about physical science develop in secondary school offers insight into the capacity of different groups of students to successfully adapt to their changing educational environments.
Facilitation and interference of seedling establishment by a native legume before and after wildfire
Erin Goergen; Jeanne C. Chambers
2011-01-01
In semi-arid ecosystems, heterogeneous resources can lead to variable seedling recruitment. Existing vegetation can influence seedling establishment by modifying the resource and physical environment. We asked how a native legume, Lupinus argenteus, modifies microenvironments in unburned and burned sagebrush steppe, and if L. argenteus presence facilitates seedling...
NASA Technical Reports Server (NTRS)
Voecks, G. E.
1983-01-01
Insufficient theoretical definition of heterogeneous catalysts is the major difficulty confronting industrial suppliers who seek catalyst systems which are more active, selective, and stable than those currently available. In contrast, progress was made in tailoring homogeneous catalysts to specific reactions because more is known about the reaction intermediates promoted and/or stabilized by these catalysts during the course of reaction. However, modeling heterogeneous catalysts on a microscopic scale requires compiling and verifying complex information on reaction intermediates and pathways. This can be achieved by adapting homogeneous catalyzed reaction intermediate species, applying theoretical quantum chemistry and computer technology, and developing a better understanding of heterogeneous catalyst system environments. Research in microscopic reaction modeling is now at a stage where computer modeling, supported by physical experimental verification, could provide information about the dynamics of the reactions that will lead to designing supported catalysts with improved selectivity and stability.
Quantifying site-specific physical heterogeneity within an estuarine seascape
Kennedy, Cristina G.; Mather, Martha E.; Smith, Joseph M.
2017-01-01
Quantifying physical heterogeneity is essential for meaningful ecological research and effective resource management. Spatial patterns of multiple, co-occurring physical features are rarely quantified across a seascape because of methodological challenges. Here, we identified approaches that measured total site-specific heterogeneity, an often overlooked aspect of estuarine ecosystems. Specifically, we examined 23 metrics that quantified four types of common physical features: (1) river and creek confluences, (2) bathymetric variation including underwater drop-offs, (3) land features such as islands/sandbars, and (4) major underwater channel networks. Our research at 40 sites throughout Plum Island Estuary (PIE) provided solutions to two problems. The first problem was that individual metrics that measured heterogeneity of a single physical feature showed different regional patterns. We solved this first problem by combining multiple metrics for a single feature using a within-physical feature cluster analysis. With this approach, we identified sites with four different types of confluences and three different types of underwater drop-offs. The second problem was that when multiple physical features co-occurred, new patterns of total site-specific heterogeneity were created across the seascape. This pattern of total heterogeneity has potential ecological relevance to structure-oriented predators. To address this second problem, we identified sites with similar types of total physical heterogeneity using an across-physical feature cluster analysis. Then, we calculated an additive heterogeneity index, which integrated all physical features at a site. Finally, we tested if site-specific additive heterogeneity index values differed for across-physical feature clusters. In PIE, the sites with the highest additive heterogeneity index values were clustered together and corresponded to sites where a fish predator, adult striped bass (Morone saxatilis), aggregated in a related acoustic tracking study. In summary, we have shown general approaches to quantifying site-specific heterogeneity.
Social activity, cognitive decline and dementia risk: a 20-year prospective cohort study.
Marioni, Riccardo E; Proust-Lima, Cecile; Amieva, Helene; Brayne, Carol; Matthews, Fiona E; Dartigues, Jean-Francois; Jacqmin-Gadda, Helene
2015-10-24
Identifying modifiable lifestyle correlates of cognitive decline and risk of dementia is complex, particularly as few population-based longitudinal studies jointly model these interlinked processes. Recent methodological developments allow us to examine statistically defined sub-populations with separate cognitive trajectories and dementia risks. Engagement in social, physical, or intellectual pursuits, social network size, self-perception of feeling well understood, and degree of satisfaction with social relationships were assessed in 2854 participants from the Paquid cohort (mean baseline age 77 years) and related to incident dementia and cognitive change over 20-years of follow-up. Multivariate repeated cognitive information was exploited by defining the global cognitive functioning as the latent common factor underlying the tests. In addition, three latent homogeneous sub-populations of cognitive change and dementia were identified and contrasted according to social environment variables. In the whole population, we found associations between increased engagement in social, physical, or intellectual pursuits and increased cognitive ability (but not decline) and decreased risk of incident dementia, and between feeling understood and slower cognitive decline. There was evidence for three sub-populations of cognitive aging: fast, medium, and no cognitive decline. The social-environment measures at baseline did not help explain the heterogeneity of cognitive decline and incident dementia diagnosis between these sub-populations. We observed a complex series of relationships between social-environment variables and cognitive decline and dementia. In the whole population, factors such as increased engagement in social, physical, or intellectual pursuits were related to a decreased risk of dementia. However, in a sub-population analysis, the social-environment variables were not linked to the heterogeneous patterns of cognitive decline and dementia risk that defined the sub-groups.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patchen, D.G.; Hohn, M.E.; Aminian, K.
1993-04-01
The purpose of this research is to develop techniques to measure and predict heterogeneities in oil reservoirs that are the products of complex deposystems. The unit chosen for study is the Lower Mississippian Big Injun sandstone, a prolific oil producer (nearly 60 fields) in West Virginia. This research effort has been designed and is being implemented as an integrated effort involving stratigraphy, structural geology, petrology, seismic study, petroleum engineering, modeling and geostatistics. Sandstone bodies are being mapped within their regional depositional systems, and then sandstone bodies are being classified in a scheme of relative heterogeneity to determine heterogeneity across depositionalmore » systems. Facies changes are being mapped within given reservoirs, and the environments of deposition responsible for each facies are being interpreted to predict the inherent relative heterogeneity of each facies. Structural variations will be correlated both with production, where the availability of production data will permit, and with variations in geologic and engineering parameters that affect production. A reliable seismic model of the Big Injun reservoirs in Granny Creek field is being developed to help interpret physical heterogeneity in that field. Pore types are being described and related to permeability, fluid flow and diagenesis, and petrographic data are being integrated with facies and depositional environments to develop a technique to use diagenesis as a predictive tool in future reservoir development. Another objective in the Big Injun study is to determine the effect of heterogeneity on fluid flow and efficient hydrocarbon recovery in order to improve reservoir management. Graphical methods will be applied to Big Injun production data and new geostatistical methods will be developed to detect regional trends in heterogeneity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patchen, D.G.; Hohn, M.E.; Aminian, K.
1993-04-01
The purpose of this research is to develop techniques to measure and predict heterogeneities in oil reservoirs that are the products of complex deposystems. The unit chosen for study is the Lower Mississippian Big Injun sandstone, a prolific oil producer (nearly 60 fields) in West Virginia. This research effort has been designed and is being implemented as an integrated effort involving stratigraphy, structural geology, petrology, seismic study, petroleum engineering, modeling and geostatistics. Sandstone bodies are being mapped within their regional depositional systems, and then sandstone bodies are being classified in a scheme of relative heterogeneity to determine heterogeneity across depositionalmore » systems. Facies changes are being mapped within given reservoirs, and the environments of deposition responsible for each facies are being interpreted to predict the inherent relative heterogeneity of each facies. Structural variations will be correlated both with production, where the availability of production data will permit, and with variations in geologic and engineering parameters that affect production. A reliable seismic model of the Big Injun reservoirs in Granny Creek field is being developed to help interpret physical heterogeneity in that field. Pore types are being described and related to permeability, fluid flow and diagenesis, and petrographic data are being integrated with facies and depositional environments to develop a technique to use diagenesis as a predictive tool in future reservoir development. Another objective in the Big Injun study is to determine the effect of heterogeneity on fluid flow and efficient hydrocarbon recovery in order to improve reservoir management. Graphical methods will be applied to Big Injun production data and new geostatistical methods will be developed to detect regional trends in heterogeneity.« less
A heterogeneous computing environment for simulating astrophysical fluid flows
NASA Technical Reports Server (NTRS)
Cazes, J.
1994-01-01
In the Concurrent Computing Laboratory in the Department of Physics and Astronomy at Louisiana State University we have constructed a heterogeneous computing environment that permits us to routinely simulate complicated three-dimensional fluid flows and to readily visualize the results of each simulation via three-dimensional animation sequences. An 8192-node MasPar MP-1 computer with 0.5 GBytes of RAM provides 250 MFlops of execution speed for our fluid flow simulations. Utilizing the parallel virtual machine (PVM) language, at periodic intervals data is automatically transferred from the MP-1 to a cluster of workstations where individual three-dimensional images are rendered for inclusion in a single animation sequence. Work is underway to replace executions on the MP-1 with simulations performed on the 512-node CM-5 at NCSA and to simultaneously gain access to more potent volume rendering workstations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Daniel
8-Session Symposium on STRUCTURE AND DYNAMICS IN COMPLEX CHEMICAL SYSTEMS: GAINING NEW INSIGHTS THROUGH RECENT ADVANCES IN TIME-RESOLVED SPECTROSCOPIES. The intricacy of most chemical, biochemical, and material processes and their applications are underscored by the complex nature of the environments in which they occur. Substantial challenges for building a global understanding of a heterogeneous system include (1) identifying unique signatures associated with specific structural motifs within the heterogeneous distribution, and (2) resolving the significance of each of multiple time scales involved in both small- and large-scale nuclear reorganization. This symposium focuses on the progress in our understanding of dynamics inmore » complex systems driven by recent innovations in time-resolved spectroscopies and theoretical developments. Such advancement is critical for driving discovery at the molecular level facilitating new applications. Broad areas of interest include: Structural relaxation and the impact of structure on dynamics in liquids, interfaces, biochemical systems, materials, and other heterogeneous environments.« less
Discrimination between discrete and continuum scattering from the sub-seafloor.
Holland, Charles W; Steininger, Gavin; Dosso, Stan E
2015-08-01
There is growing evidence that seabed scattering is often dominated by heterogeneities within the sediment volume as opposed to seafloor roughness. From a theoretical viewpoint, sediment volume heterogeneities can be described either by a fluctuation continuum or by discrete particles. In at-sea experiments, heterogeneity characteristics generally are not known a priori. Thus, an uninformed model selection is generally made, i.e., the researcher must arbitrarily select either a discrete or continuum model. It is shown here that it is possible to (acoustically) discriminate between continuum and discrete heterogeneities in some instances. For example, when the spectral exponent γ3>4, the volume scattering cannot be described by discrete particles. Conversely, when γ3≤2, the heterogeneities likely arise from discrete particles. Furthermore, in the range 2<γ3≤4 it is sometimes possible to discriminate via physical bounds on the parameter values. The ability to so discriminate is important, because there are few tools for measuring small scale, O(10(-2) to 10(1)) m, sediment heterogeneities over large areas. Therefore, discriminating discrete vs continuum heterogeneities via acoustic remote sensing may lead to improved observations and concomitant increased understanding of the marine benthic environment.
Individual differences in human annoyance response to noise
NASA Technical Reports Server (NTRS)
Pearson, R. G.; Hart, F. D.; Obrien, J. F.
1975-01-01
Individual variations in annoyance and in susceptibility to noise were studied to establish a finer definition of the ingredients of the human annoyance response. The study involved interactions among a heterogeneous sample of human subjects, various noise stimuli, and different physical environments of exposure. Significant differences in annoyance ratings among the six noise stimuli, all equated for peak sound pressure level, were found.
S. Wang; Z. Zhang; G. Sun; P. Strauss; J. Guo; Y. Tang; A. Yao
2012-01-01
Model calibration is essential for hydrologic modeling of large watersheds in a heterogeneous mountain environment. Little guidance is available for model calibration protocols for distributed models that aim at capturing the spatial variability of hydrologic processes. This study used the physically-based distributed hydrologic model, MIKE SHE, to contrast a lumped...
ERIC Educational Resources Information Center
Zecevic, Aleksandra A.; Salmoni, Alan W.; Lewko, John H.; Vandervoort, Anthoney A.; Speechley, Mark
2009-01-01
Purpose: As a highly heterogeneous group, seniors live in complex environments influenced by multiple physical and social structures that affect their safety. Until now, the major approach to falls research has been person centered. However, in industrial settings, the individuals involved in an accident are seen as the inheritors of system…
Johanson, Bradley E.; Fox, Armando; Winograd, Terry A.; Hanrahan, Patrick M.
2010-04-20
An efficient and adaptive middleware infrastructure called the Event Heap system dynamically coordinates application interactions and communications in a ubiquitous computing environment, e.g., an interactive workspace, having heterogeneous software applications running on various machines and devices across different platforms. Applications exchange events via the Event Heap. Each event is characterized by a set of unordered, named fields. Events are routed by matching certain attributes in the fields. The source and target versions of each field are automatically set when an event is posted or used as a template. The Event Heap system implements a unique combination of features, both intrinsic to tuplespaces and specific to the Event Heap, including content based addressing, support for routing patterns, standard routing fields, limited data persistence, query persistence/registration, transparent communication, self-description, flexible typing, logical/physical centralization, portable client API, at most once per source first-in-first-out ordering, and modular restartability.
Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport
NASA Astrophysics Data System (ADS)
Rod, Kenton; Um, Wooyong; Chun, Jaehun; Wu, Ning; Yin, Xialong; Wang, Guohui; Neeves, Keith
2018-06-01
A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d-1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500-600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500-600 μm and 300-400 μm). A chemical heterogeneity was created using 25% of the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500-600 μm). Input solution with 0.5 mM CsI and 50 mg L-1 colloids (1-μm diameter SiO2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.
Outcome measurement in Australian rehabilitation environments.
Douglas, Heather; Swanson, Cheryl; Gee, Travis; Bellamy, Nicholas
2005-09-01
To determine the frequency and pattern of methods of outcome assessment used in Australian physical rehabilitation environments. Postal survey. A questionnaire on service type, staffing, numbers of adults treated and outcome measures used for 7 conditions related to injury and road trauma as well as stroke and neuromuscular disorders was sent to 973 services providing adult physical rehabilitation treatment. Questionnaires were completed by 440 service providers for a response rate of 45%, similar to that reported in a recent European survey reported in this journal. A small number of measures were reported as in use by most respondents, while a large number of measures were used by a few respondents. Measures of physical changes were used more frequently than those of generic well-being or quality of life. Ease of use and reporting to other professionals were cited as the most important reasons in selection of outcome measures. This Australian-wide survey detected considerable heterogeneity in outcome measurement procedures used in rehabilitation environments. While the goal of measurement may vary between providers and differ between conditions, the results highlight opportunities for harmonization, bench-marking and measurement of health-related quality of life.
Heterogeneous Embedded Real-Time Systems Environment
2003-12-01
AFRL-IF-RS-TR-2003-290 Final Technical Report December 2003 HETEROGENEOUS EMBEDDED REAL - TIME SYSTEMS ENVIRONMENT Integrated...HETEROGENEOUS EMBEDDED REAL - TIME SYSTEMS ENVIRONMENT 6. AUTHOR(S) Cosmo Castellano and James Graham 5. FUNDING NUMBERS C - F30602-97-C-0259
Spatial distribution of enzyme driven reactions at micro-scales
NASA Astrophysics Data System (ADS)
Kandeler, Ellen; Boeddinghaus, Runa; Nassal, Dinah; Preusser, Sebastian; Marhan, Sven; Poll, Christian
2017-04-01
Studies of microbial biogeography can often provide key insights into the physiologies, environmental tolerances, and ecological strategies of soil microorganisms that dominate in natural environments. In comparison with aquatic systems, soils are particularly heterogeneous. Soil heterogeneity results from the interaction of a hierarchical series of interrelated variables that fluctuate at many different spatial and temporal scales. Whereas spatial dependence of chemical and physical soil properties is well known at scales ranging from decimetres to several hundred metres, the spatial structure of soil enzymes is less clear. Previous work has primarily focused on spatial heterogeneity at a single analytical scale using the distribution of individual cells, specific types of organisms or collective parameters such as bacterial abundance or total microbial biomass. There are fewer studies that have considered variations in community function and soil enzyme activities. This presentation will give an overview about recent studies focusing on spatial pattern of different soil enzymes in the terrestrial environment. Whereas zymography allows the visualization of enzyme pattern in the close vicinity of roots, micro-sampling strategies followed by MUF analyses clarify micro-scale pattern of enzymes associated to specific microhabitats (micro-aggregates, organo-mineral complexes, subsoil compartments).
Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport
Rod, Kenton; Um, Wooyong; Chun, Jaehun; ...
2018-03-31
A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d -1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500–600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500–600 μm and 300–400 μm). A chemical heterogeneity was created using 25% ofmore » the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500–600 μm). Input solution with 0.5 mM CsI and 50 mg L -1 colloids (1-μm diameter SiO 2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.« less
Effect of chemical and physical heterogeneities on colloid-facilitated cesium transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rod, Kenton; Um, Wooyong; Chun, Jaehun
A set of column experiments was conducted to investigate the chemical and physical heterogeneity effect on colloid facilitated transport under slow pore velocity conditions. Pore velocities were kept below 100 cm d -1 for all experiments. Glass beads were packed into columns establishing four different conditions: 1) homogeneous, 2) mixed physical heterogeneity, 3) sequentially layered physical heterogeneity, and 4) chemical heterogeneity. The homogeneous column was packed with glass beads (diameter 500–600 μm), and physical heterogeneities were created by sequential layering or mixing two sizes of glass bead (500–600 μm and 300–400 μm). A chemical heterogeneity was created using 25% ofmore » the glass beads coated with hydrophobic molecules (1H-1H-2H-2H-perfluorooctyltrichlorosilane) mixed with 75% pristine glass beads (all 500–600 μm). Input solution with 0.5 mM CsI and 50 mg L -1 colloids (1-μm diameter SiO 2) was pulsed into columns under saturated conditions. The physical heterogeneity in the packed glass beads retarded the transport of colloids compared to homogeneous (R = 25.0), but showed only slight differences between sequentially layered (R = 60.7) and mixed heterogeneity(R = 62.4). The column with the chemical, hydrophobic/hydrophilic, heterogeneity removed most of the colloids from the input solution. All column conditions stripped Cs from colloids onto the column matrix of packed glass beads.« less
NASA Astrophysics Data System (ADS)
Ryder, O. S.; Campbell, N.; Schill, S.; Pöhlker, C.; Andreae, M. O.; Bertram, T. H.
2013-12-01
The heterogeneous reaction of N2O5 on aerosol particles impacts both the lifetime of nitrogen oxides, and the production rate of chlorine radicals following the activation of particulate chloride to nitryl chloride in both coastal and continental regions. The extent to which N2O5 reactivity impacts oxidant loadings depends on the heterogeneous reaction rate, which is directly influenced by aerosol chemical composition, morphology, and physical phase state. In the marine environment, the chemical composition of aerosol particles produced via wave induced bubble bursting mechanisms varies greatly and is influenced by the composition of the sea surface microlayer . Here, we present direct measurements of N2O5 reaction kinetics determined using model sea-spray particles generated in a novel Marine Aerosol Reference Tank (MART), capable of generating accurate mimics of ambient sea spray particles, in a lab environment. Here, a synthetic sea salt ocean was sequentially doped with organic molecules chosen to mimic organic species present in natural sea water over the course of a phytoplankton bloom in the open ocean. These included sterol, galactose, lippolysaccharide, BSA protein, and 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA). These observations permit discussion of the role of marine organics in regulating heterogeneous reaction kinetics, as well a re-evaluation of potential organic lab proxies for marine organics.
NASA Astrophysics Data System (ADS)
Liu, Shuai; Chen, Ge; Yao, Shifeng; Tian, Fenglin; Liu, Wei
2017-07-01
This paper presents a novel integrated marine visualization framework which focuses on processing, analyzing the multi-dimension spatiotemporal marine data in one workflow. Effective marine data visualization is needed in terms of extracting useful patterns, recognizing changes, and understanding physical processes in oceanography researches. However, the multi-source, multi-format, multi-dimension characteristics of marine data pose a challenge for interactive and feasible (timely) marine data analysis and visualization in one workflow. And, global multi-resolution virtual terrain environment is also needed to give oceanographers and the public a real geographic background reference and to help them to identify the geographical variation of ocean phenomena. This paper introduces a data integration and processing method to efficiently visualize and analyze the heterogeneous marine data. Based on the data we processed, several GPU-based visualization methods are explored to interactively demonstrate marine data. GPU-tessellated global terrain rendering using ETOPO1 data is realized and the video memory usage is controlled to ensure high efficiency. A modified ray-casting algorithm for the uneven multi-section Argo volume data is also presented and the transfer function is designed to analyze the 3D structure of ocean phenomena. Based on the framework we designed, an integrated visualization system is realized. The effectiveness and efficiency of the framework is demonstrated. This system is expected to make a significant contribution to the demonstration and understanding of marine physical process in a virtual global environment.
An Energy-Efficient Approach to Enhance Virtual Sensors Provisioning in Sensor Clouds Environments
Filho, Raimir Holanda; Rabêlo, Ricardo de Andrade L.; de Carvalho, Carlos Giovanni N.; Mendes, Douglas Lopes de S.; Costa, Valney da Gama
2018-01-01
Virtual sensors provisioning is a central issue for sensors cloud middleware since it is responsible for selecting physical nodes, usually from Wireless Sensor Networks (WSN) of different owners, to handle user’s queries or applications. Recent works perform provisioning by clustering sensor nodes based on the correlation measurements and then selecting as few nodes as possible to preserve WSN energy. However, such works consider only homogeneous nodes (same set of sensors). Therefore, those works are not entirely appropriate for sensor clouds, which in most cases comprises heterogeneous sensor nodes. In this paper, we propose ACxSIMv2, an approach to enhance the provisioning task by considering heterogeneous environments. Two main algorithms form ACxSIMv2. The first one, ACASIMv1, creates multi-dimensional clusters of sensor nodes, taking into account the measurements correlations instead of the physical distance between nodes like most works on literature. Then, the second algorithm, ACOSIMv2, based on an Ant Colony Optimization system, selects an optimal set of sensors nodes from to respond user’s queries while attending all parameters and preserving the overall energy consumption. Results from initial experiments show that the approach reduces significantly the sensor cloud energy consumption compared to traditional works, providing a solution to be considered in sensor cloud scenarios. PMID:29495406
An Energy-Efficient Approach to Enhance Virtual Sensors Provisioning in Sensor Clouds Environments.
Lemos, Marcus Vinícius de S; Filho, Raimir Holanda; Rabêlo, Ricardo de Andrade L; de Carvalho, Carlos Giovanni N; Mendes, Douglas Lopes de S; Costa, Valney da Gama
2018-02-26
Virtual sensors provisioning is a central issue for sensors cloud middleware since it is responsible for selecting physical nodes, usually from Wireless Sensor Networks (WSN) of different owners, to handle user's queries or applications. Recent works perform provisioning by clustering sensor nodes based on the correlation measurements and then selecting as few nodes as possible to preserve WSN energy. However, such works consider only homogeneous nodes (same set of sensors). Therefore, those works are not entirely appropriate for sensor clouds, which in most cases comprises heterogeneous sensor nodes. In this paper, we propose ACxSIMv2, an approach to enhance the provisioning task by considering heterogeneous environments. Two main algorithms form ACxSIMv2. The first one, ACASIMv1, creates multi-dimensional clusters of sensor nodes, taking into account the measurements correlations instead of the physical distance between nodes like most works on literature. Then, the second algorithm, ACOSIMv2, based on an Ant Colony Optimization system, selects an optimal set of sensors nodes from to respond user's queries while attending all parameters and preserving the overall energy consumption. Results from initial experiments show that the approach reduces significantly the sensor cloud energy consumption compared to traditional works, providing a solution to be considered in sensor cloud scenarios.
Toward a Proof of Concept Cloud Framework for Physics Applications on Blue Gene Supercomputers
NASA Astrophysics Data System (ADS)
Dreher, Patrick; Scullin, William; Vouk, Mladen
2015-09-01
Traditional high performance supercomputers are capable of delivering large sustained state-of-the-art computational resources to physics applications over extended periods of time using batch processing mode operating environments. However, today there is an increasing demand for more complex workflows that involve large fluctuations in the levels of HPC physics computational requirements during the simulations. Some of the workflow components may also require a richer set of operating system features and schedulers than normally found in a batch oriented HPC environment. This paper reports on progress toward a proof of concept design that implements a cloud framework onto BG/P and BG/Q platforms at the Argonne Leadership Computing Facility. The BG/P implementation utilizes the Kittyhawk utility and the BG/Q platform uses an experimental heterogeneous FusedOS operating system environment. Both platforms use the Virtual Computing Laboratory as the cloud computing system embedded within the supercomputer. This proof of concept design allows a cloud to be configured so that it can capitalize on the specialized infrastructure capabilities of a supercomputer and the flexible cloud configurations without resorting to virtualization. Initial testing of the proof of concept system is done using the lattice QCD MILC code. These types of user reconfigurable environments have the potential to deliver experimental schedulers and operating systems within a working HPC environment for physics computations that may be different from the native OS and schedulers on production HPC supercomputers.
Geographical Variations in the Environmental Determinants of Physical Inactivity among U.S. Adults.
An, Ruopeng; Li, Xinye; Jiang, Ning
2017-10-31
Physical inactivity is a major modifiable risk factor for morbidity, disability and premature mortality worldwide. This study assessed the geographical variations in the impact of environmental quality on physical inactivity among U.S. adults. Data on county-level prevalence of leisure-time physical inactivity came from the Behavioral Risk Factor Surveillance System. County environment was measured by the Environmental Quality Index (EQI), a comprehensive index of environmental conditions that affect human health. The overall EQI consists of five subdomains-air, water, land, social, and built environment. Geographically weighted regressions (GWRs) were performed to estimate and map county-specific impact of overall EQI and its five subdomains on physical inactivity prevalence. The prevalence of leisure-time physical inactivity among U.S. counties was 25% in 2005. On average, one standard deviation decrease in the overall EQI was associated with an increase in county-level prevalence of leisure-time physical inactivity by nearly 1%. However, substantial geographical variations in the estimated environmental determinants of physical inactivity were present. The estimated changes of county-level prevalence of leisure-time physical inactivity resulted from one standard deviation decrease of the overall EQI ranged from an increase of over 3% to a decrease of nearly 2% across U.S. counties. Analogous, the estimated changes of county-level prevalence of leisure-time physical inactivity resulted from one standard deviation decrease of the EQI air, water, land, social, and built environment subdomains ranged from an increase of 2.6%, 1.5%, 2.9%, 3.3%, and 1.7% to a decrease of 2.9%, 1.4%, 2.4%, 2.4%, and 0.8% across U.S. counties, respectively. Given the substantial heterogeneities in the environmental determinants of physical inactivity, locally customized physical activity interventions are warranted to address the most concerning area-specific environmental issue.
[Architecture and design of mental health institutions].
Richter, Dirk; Hoffmann, Holger
2014-04-01
The physical environment of mental health institutions is regarded as a therapeutic agent within the treatment. There is only little scientific evidence on the consequences of architecture and design on psychiatric patients available. A systematic review was conducted on studies from adult mental health institutions. 25 studies were included into the review. Pre-post-studies and control group conditions were predominant study designs. Randomized controlled trials were not available. Interventions reached from art installations up to entire ward renovations. Outcome indicators were rather heterogeneous, including psychopathology, behavioural observations and aggression incidents. Overwhelmingly, the studies revealed positive results of interventions into the physical environment. We found positive outcomes independent from the intervention in detail. This result should be interpreted in the light of the generally low study quality and further methodological problems. © Georg Thieme Verlag KG Stuttgart · New York.
NASA Astrophysics Data System (ADS)
Hixson, J.; Ward, A. S.; Schmadel, N.; McConville, M.; Remucal, C.
2016-12-01
The transport and fate of contaminants of emerging concern through the environment is complicated by the heterogeneity of natural systems and the unique reaction pathways of individual compounds. Our current evaluation of risk is often simplified to controls assumed to be homogeneous in space and time. However, we know spatial heterogeneity and time-variable reaction rates complicate predictions of environmental transport and fate, and therefore risk. These complications are the result of the interactions between the physical and chemical systems and the time-variable equilibrium that exists between the two. Compounds that interact with both systems, such as photolytic compounds, require that both components are fully understood in order to predict transport and fate. Release of photolytic compounds occurs through both unintentional releases and intentional loadings. Evaluating risks associated with unintentional releases and implementing best management practices for intentional releases requires an in-depth understanding of the sensitivity of photolytic compounds to external controls. Lampricides, such as 3-trifluoromethyl-4-nitrophenol (TFM), are broadly applied in the Great Lakes system to control the population of invasive sea lamprey. Over-dosing can yield fish kills and other detrimental impacts. Still, planning accounts for time of passage and dilution, but not the interaction of the physical and chemical systems (i.e., storage in the hyporheic zone and time-variable decay rates). In this study, we model a series of TFM applications to test the efficacy of dosing as a function of system characteristics. Overall, our results demonstrate the complexity associated with photo-sensitive compounds through stream-hyporheic systems, and highlight the need to better understand how physical and chemical systems interact to control transport and fate in the environment.
Shibuta, Yasushi; Sakane, Shinji; Miyoshi, Eisuke; Okita, Shin; Takaki, Tomohiro; Ohno, Munekazu
2017-04-05
Can completely homogeneous nucleation occur? Large scale molecular dynamics simulations performed on a graphics-processing-unit rich supercomputer can shed light on this long-standing issue. Here, a billion-atom molecular dynamics simulation of homogeneous nucleation from an undercooled iron melt reveals that some satellite-like small grains surrounding previously formed large grains exist in the middle of the nucleation process, which are not distributed uniformly. At the same time, grains with a twin boundary are formed by heterogeneous nucleation from the surface of the previously formed grains. The local heterogeneity in the distribution of grains is caused by the local accumulation of the icosahedral structure in the undercooled melt near the previously formed grains. This insight is mainly attributable to the multi-graphics processing unit parallel computation combined with the rapid progress in high-performance computational environments.Nucleation is a fundamental physical process, however it is a long-standing issue whether completely homogeneous nucleation can occur. Here the authors reveal, via a billion-atom molecular dynamics simulation, that local heterogeneity exists during homogeneous nucleation in an undercooled iron melt.
Evolutionary preferences for physical formidability in leaders.
Murray, Gregg R
2014-01-01
This research uses evolutionary theory to evaluate followers' preferences for physically formidable leaders and to identify conditions that stimulate those preferences. It employs a population-based survey experiment (N ≥ 760), which offers the advantages to internal validity of experiments and external validity of a highly heterogeneous sample drawn from a nationally representative subject pool. The theoretical argument proffered here is followers tend to prefer leaders with greater physical formidability because of evolutionary adaptations derived from humans' violent ancestral environment. In this environment, individuals who allied with and ultimately followed physically powerful partners were more likely to acquire and retain important resources necessary for survival and reproduction because the presence of the physically powerful partner cued opponents to avoid a challenge for the resources or risk a costly confrontation. This argument suggests and the results indicate that threatening (war) and nonthreatening (peace, cooperation, and control) stimuli differentially motivate preferences for physically formidable leaders. In particular, the findings suggest threatening conditions lead to preferences for leaders with more powerful physical attributes, both anthropometric (i.e., weight, height, and body mass index) and perceptual (i.e., attributes of being "physically imposing or intimidating" and "physically strong"). Overall, this research offers a theoretical framework from which to understand this otherwise seemingly irrational phenomenon. Further, it advances the emerging but long-neglected investigation of biological effects on political behavior and has implications for a fundamental process in democratic society, leader selection.
Research of G3-PLC net self-organization processes in the NS-3 modeling framework
NASA Astrophysics Data System (ADS)
Pospelova, Irina; Chebotayev, Pavel; Klimenko, Aleksey; Myakochin, Yuri; Polyakov, Igor; Shelupanov, Alexander; Zykov, Dmitriy
2017-11-01
When modern infocommunication networks are designed, the combination of several data transfer channels is widely used. It is necessary for the purposes of improvement in quality and robustness of communication. Communication systems based on more than one data transfer channel are named heterogeneous communication systems. For the design of a heterogeneous network, the most optimal solution is the use of mesh technology. Mesh technology ensures message delivery to the destination under conditions of unpredictable interference environment situation in each of two channels. Therewith, one of the high-priority problems is the choice of a routing protocol when the mesh networks are designed. An important design stage for any computer network is modeling. Modeling allows us to design a few different variants of design solutions and also to compute all necessary functional specifications for each of these solutions. As a result, it allows us to reduce costs for the physical realization of a network. In this article the research of dynamic routing in the NS3 simulation modeling framework is presented. The article contains an evaluation of simulation modeling applicability in solving the problem of heterogeneous networks design. Results of modeling may be afterwards used for physical realization of this kind of networks.
Carrying capacity in a heterogeneous environment with habitat connectivity.
Zhang, Bo; Kula, Alex; Mack, Keenan M L; Zhai, Lu; Ryce, Arrix L; Ni, Wei-Ming; DeAngelis, Donald L; Van Dyken, J David
2017-09-01
A large body of theory predicts that populations diffusing in heterogeneous environments reach higher total size than if non-diffusing, and, paradoxically, higher size than in a corresponding homogeneous environment. However, this theory and its assumptions have not been rigorously tested. Here, we extended previous theory to include exploitable resources, proving qualitatively novel results, which we tested experimentally using spatially diffusing laboratory populations of yeast. Consistent with previous theory, we predicted and experimentally observed that spatial diffusion increased total equilibrium population abundance in heterogeneous environments, with the effect size depending on the relationship between r and K. Refuting previous theory, however, we discovered that homogeneously distributed resources support higher total carrying capacity than heterogeneously distributed resources, even with species diffusion. Our results provide rigorous experimental tests of new and old theory, demonstrating how the traditional notion of carrying capacity is ambiguous for populations diffusing in spatially heterogeneous environments. © 2017 John Wiley & Sons Ltd/CNRS.
Carrying capacity in a heterogeneous environment with habitat connectivity
Zhang, Bo; Kula, Alex; Mack, Keenan M.L.; Zhai, Lu; Ryce, Arrix L.; Ni, Wei-Ming; DeAngelis, Donald L.; Van Dyken, J. David
2017-01-01
A large body of theory predicts that populations diffusing in heterogeneous environments reach higher total size than if non-diffusing, and, paradoxically, higher size than in a corresponding homogeneous environment. However, this theory and its assumptions have not been rigorously tested. Here, we extended previous theory to include exploitable resources, proving qualitatively novel results, which we tested experimentally using spatially diffusing laboratory populations of yeast. Consistent with previous theory, we predicted and experimentally observed that spatial diffusion increased total equilibrium population abundance in heterogeneous environments, with the effect size depending on the relationship between r and K. Refuting previous theory, however, we discovered that homogeneously distributed resources support higher total carrying capacity than heterogeneously distributed resources, even with species diffusion. Our results provide rigorous experimental tests of new and old theory, demonstrating how the traditional notion of carrying capacity is ambiguous for populations diffusing in spatially heterogeneous environments.
Mobility of Protozoa through Narrow Channels
Wang, Wei; Shor, Leslie M.; LeBoeuf, Eugene J.; Wikswo, John P.; Kosson, David S.
2005-01-01
Microbes in the environment are profoundly affected by chemical and physical heterogeneities occurring on a spatial scale of millimeters to micrometers. Physical refuges are critical for maintaining stable bacterial populations in the presence of high predation pressure by protozoa. The effects of microscale heterogeneity, however, are difficult to replicate and observe using conventional experimental techniques. The objective of this research was to investigate the effect of spatial constraints on the mobility of six species of marine protozoa. Microfluidic devices were created with small channels similar in size to pore spaces in soil or sediment systems. Individuals from each species of protozoa tested were able to rapidly discover and move within these channels. The time required for locating the channel entrance from the source well increased with protozoan size and decreased with channel height. Protozoa of every species were able to pass constrictions with dimensions equal to or smaller than the individual's unconstrained cross-sectional area. Channel geometry was also an important factor affecting protozoan mobility. Linear rates of motion for various species of protozoa varied by channel size. In relatively wide channels, typical rates of motion were 300 to 500 μm s−1 (or about 1 m per hour). As the channel dimensions decreased, however, motilities slowed more than an order of magnitude to 20 μm s−1. Protozoa were consistently observed to exhibit several strategies for successfully traversing channel reductions. The empirical results and qualitative observations resulting from this research help define the physical limitations on protozoan grazing, a critical process affecting microbes in the environment. PMID:16085857
Spatial heterogeneity study of vegetation coverage at Heihe River Basin
NASA Astrophysics Data System (ADS)
Wu, Lijuan; Zhong, Bo; Guo, Liyu; Zhao, Xiangwei
2014-11-01
Spatial heterogeneity of the animal-landscape system has three major components: heterogeneity of resource distributions in the physical environment, heterogeneity of plant tissue chemistry, heterogeneity of movement modes by the animal. Furthermore, all three different types of heterogeneity interact each other and can either reinforce or offset one another, thereby affecting system stability and dynamics. In previous studies, the study areas are investigated by field sampling, which costs a large amount of manpower. In addition, uncertain in sampling affects the quality of field data, which leads to unsatisfactory results during the entire study. In this study, remote sensing data is used to guide the sampling for research on heterogeneity of vegetation coverage to avoid errors caused by randomness of field sampling. Semi-variance and fractal dimension analysis are used to analyze the spatial heterogeneity of vegetation coverage at Heihe River Basin. The spherical model with nugget is used to fit the semivariogram of vegetation coverage. Based on the experiment above, it is found, (1)there is a strong correlation between vegetation coverage and distance of vegetation populations within the range of 0-28051.3188m at Heihe River Basin, but the correlation loses suddenly when the distance greater than 28051.3188m. (2)The degree of spatial heterogeneity of vegetation coverage at Heihe River Basin is medium. (3)Spatial distribution variability of vegetation occurs mainly on small scales. (4)The degree of spatial autocorrelation is 72.29% between 25% and 75%, which means that spatial correlation of vegetation coverage at Heihe River Basin is medium high.
Agent-Based Models in Social Physics
NASA Astrophysics Data System (ADS)
Quang, Le Anh; Jung, Nam; Cho, Eun Sung; Choi, Jae Han; Lee, Jae Woo
2018-06-01
We review the agent-based models (ABM) on social physics including econophysics. The ABM consists of agent, system space, and external environment. The agent is autonomous and decides his/her behavior by interacting with the neighbors or the external environment with the rules of behavior. Agents are irrational because they have only limited information when they make decisions. They adapt using learning from past memories. Agents have various attributes and are heterogeneous. ABM is a non-equilibrium complex system that exhibits various emergence phenomena. The social complexity ABM describes human behavioral characteristics. In ABMs of econophysics, we introduce the Sugarscape model and the artificial market models. We review minority games and majority games in ABMs of game theory. Social flow ABM introduces crowding, evacuation, traffic congestion, and pedestrian dynamics. We also review ABM for opinion dynamics and voter model. We discuss features and advantages and disadvantages of Netlogo, Repast, Swarm, and Mason, which are representative platforms for implementing ABM.
Phenotypically heterogeneous populations in spatially heterogeneous environments
NASA Astrophysics Data System (ADS)
Patra, Pintu; Klumpp, Stefan
2014-03-01
The spatial expansion of a population in a nonuniform environment may benefit from phenotypic heterogeneity with interconverting subpopulations using different survival strategies. We analyze the crossing of an antibiotic-containing environment by a bacterial population consisting of rapidly growing normal cells and slow-growing, but antibiotic-tolerant persister cells. The dynamics of crossing is characterized by mean first arrival times and is found to be surprisingly complex. It displays three distinct regimes with different scaling behavior that can be understood based on an analytical approximation. Our results suggest that a phenotypically heterogeneous population has a fitness advantage in nonuniform environments and can spread more rapidly than a homogeneous population.
The Web Measurement Environment (WebME): A Tool for Combining and Modeling Distributed Data
NASA Technical Reports Server (NTRS)
Tesoriero, Roseanne; Zelkowitz, Marvin
1997-01-01
Many organizations have incorporated data collection into their software processes for the purpose of process improvement. However, in order to improve, interpreting the data is just as important as the collection of data. With the increased presence of the Internet and the ubiquity of the World Wide Web, the potential for software processes being distributed among several physically separated locations has also grown. Because project data may be stored in multiple locations and in differing formats, obtaining and interpreting data from this type of environment becomes even more complicated. The Web Measurement Environment (WebME), a Web-based data visualization tool, is being developed to facilitate the understanding of collected data in a distributed environment. The WebME system will permit the analysis of development data in distributed, heterogeneous environments. This paper provides an overview of the system and its capabilities.
NASA Astrophysics Data System (ADS)
Argudo-Fernández, M.; Verley, S.; Bergond, G.; Sulentic, J.; Sabater, J.; Fernández Lorenzo, M.; Espada, D.; Leon, S.; Sánchez-Expósito, S.; Santander-Vela, J. D.; Verdes-Montenegro, L.
2014-04-01
Context. We present a study of the 3D environment for a sample of 386 galaxies in the Catalogue of Isolated Galaxies (CIG, Karachentseva 1973) using the Ninth Data Release of the Sloan Digital Sky Survey (SDSS-DR9). Aims: We aim to identify and quantify the effects of the satellite distribution around a sample of galaxies in the CIG, as well as the effects of the large-scale structure (LSS). Methods: To recover the physically bound galaxies we first focused on the satellites that are within the escape speed of each CIG galaxy. We also propose a more conservative method using the stacked Gaussian distribution of the velocity difference of the neighbours. The tidal strengths affecting the primary galaxy were estimated to quantify the effects of the local and LSS environments. We also defined the projected number density parameter at the fifth nearest neighbour to characterise the LSS around the CIG galaxies. Results: Out of the 386 CIG galaxies considered in this study, at least 340 (88% of the sample) have no physically linked satellite. Following the more conservative Gaussian distribution of physical satellites around the CIG galaxies leads to upper limits. Out of the 386 CIG galaxies, 327 (85% of the sample) have no physical companion within a projected distance of 0.3 Mpc. The CIG galaxies are distributed following the LSS of the local Universe, although presenting a large heterogeneity in their degree of connection with it. When present around a CIG galaxy, the effect of physically bound galaxies largely dominates (typically by more than 90%) the tidal strengths generated by the LSS. Conclusions: The CIG samples a variety of environments, from galaxies with physical satellites to galaxies without neighbours within 3 Mpc. A clear segregation appears between early-type CIG galaxies with companions and isolated late-type CIG galaxies. Isolated galaxies are in general bluer, with probably younger stellar populations and very high star formation compared with older, redder CIG galaxies with companions. Reciprocally, the satellites are redder and with an older stellar populations around massive early-type CIG galaxies, while they have a younger stellar content around massive late-type CIG galaxies. This suggests that the CIG is composed of a heterogeneous population of galaxies, sampling from old to more recent, dynamical systems of galaxies. CIG galaxies with companions might have a mild tendency (0.3-0.4 dex) to be more massive, and may indicate a higher frequency of having suffered a merger in the past. The full Table 1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A94
Toughening by crack bridging in heterogeneous ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtin, W.A.
1995-05-01
The toughening of a ceramic by crack bridging is considered, including the heterogeneity caused simply by spatial randomness in the bridge locations. The growth of a single planar crack is investigated numerically by representing the microstructure as an array of discrete springs with heterogeneity in the mechanical properties of each spring. The stresses on each microstructural element are determined, for arbitrary configurations of spring properties and heterogeneity, using a lattice Green function technique. For toughening by (heterogeneous) crack bridging for both elastic and Dugdale bridging mechanisms, the following key physical results are found: (1) growing cracks avoid regions which aremore » efficiently bridged, and do not propagate as self-similar penny cracks; (2) crack growth thus proceeds at lower applied stresses in a heterogeneous material than in an ordered material; (3) very little toughening is evident for moderate amounts of crack growth in many cases; and (4) a different R-curve is found for every particular spatial distribution of bridging elements. These results show that material reliability is determined by both the flaw distribution and the ``toughness`` distribution, or local environment, around each flaw. These results also demonstrate that the ``microstructural`` parameters derived from fitting an R-curve to a continuum model may not have an immediate relationship to the actual microstructure; the parameters are ``effective`` parameters that absorb the effects of the heterogeneity. The conceptual issues illuminated by these conclusions must be fully understood and appreciated to further develop microstructure-property relationships in ceramic materials.« less
Higher rates of sex evolve in spatially heterogeneous environments.
Becks, Lutz; Agrawal, Aneil F
2010-11-04
The evolution and maintenance of sexual reproduction has puzzled biologists for decades. Although this field is rich in hypotheses, experimental evidence is scarce. Some important experiments have demonstrated differences in evolutionary rates between sexual and asexual populations; other experiments have documented evolutionary changes in phenomena related to genetic mixing, such as recombination and selfing. However, direct experiments of the evolution of sex within populations are extremely rare (but see ref. 12). Here we use the rotifer, Brachionus calyciflorus, which is capable of both sexual and asexual reproduction, to test recent theory predicting that there is more opportunity for sex to evolve in spatially heterogeneous environments. Replicated experimental populations of rotifers were maintained in homogeneous environments, composed of either high- or low-quality food habitats, or in heterogeneous environments that consisted of a mix of the two habitats. For populations maintained in either type of homogeneous environment, the rate of sex evolves rapidly towards zero. In contrast, higher rates of sex evolve in populations experiencing spatially heterogeneous environments. The data indicate that the higher level of sex observed under heterogeneity is not due to sex being less costly or selection against sex being less efficient; rather sex is sufficiently advantageous in heterogeneous environments to overwhelm its inherent costs. Counter to some alternative theories for the evolution of sex, there is no evidence that genetic drift plays any part in the evolution of sex in these populations.
Baumann, Gerd; Place, Robert F; Földes-Papp, Zeno
2010-08-01
In living cell or its nucleus, the motions of molecules are complicated due to the large crowding and expected heterogeneity of the intracellular environment. Randomness in cellular systems can be either spatial (anomalous) or temporal (heterogeneous). In order to separate both processes, we introduce anomalous random walks on fractals that represented crowded environments. We report the use of numerical simulation and experimental data of single-molecule detection by fluorescence fluctuation microscopy for detecting resolution limits of different mobile fractions in crowded environment of living cells. We simulate the time scale behavior of diffusion times tau(D)(tau) for one component, e.g. the fast mobile fraction, and a second component, e.g. the slow mobile fraction. The less the anomalous exponent alpha the higher the geometric crowding of the underlying structure of motion that is quantified by the ratio of the Hausdorff dimension and the walk exponent d(f)/d(w) and specific for the type of crowding generator used. The simulated diffusion time decreases for smaller values of alpha # 1 but increases for a larger time scale tau at a given value of alpha # 1. The effect of translational anomalous motion is substantially greater if alpha differs much from 1. An alpha value close to 1 contributes little to the time dependence of subdiffusive motions. Thus, quantitative determination of molecular weights from measured diffusion times and apparent diffusion coefficients, respectively, in temporal auto- and crosscorrelation analyses and from time-dependent fluorescence imaging data are difficult to interpret and biased in crowded environments of living cells and their cellular compartments; anomalous dynamics on different time scales tau must be coupled with the quantitative analysis of how experimental parameters change with predictions from simulated subdiffusive dynamics of molecular motions and mechanistic models. We first demonstrate that the crowding exponent alpha also determines the resolution of differences in diffusion times between two components in addition to photophysical parameters well-known for normal motion in dilute solution. The resolution limit between two different kinds of single molecule species is also analyzed under translational anomalous motion with broken ergodicity. We apply our theoretical predictions of diffusion times and lower limits for the time resolution of two components to fluorescence images in human prostate cancer cells transfected with GFP-Ago2 and GFP-Ago1. In order to mimic heterogeneous behavior in crowded environments of living cells, we need to introduce so-called continuous time random walks (CTRW). CTRWs were originally performed on regular lattice. This purely stochastic molecule behavior leads to subdiffusive motion with broken ergodicity in our simulations. For the first time, we are able to quantitatively differentiate between anomalous motion without broken ergodicity and anomalous motion with broken ergodicity in time-dependent fluorescence microscopy data sets of living cells. Since the experimental conditions to measure a selfsame molecule over an extended period of time, at which biology is taken place, in living cells or even in dilute solution are very restrictive, we need to perform the time average over a subpopulation of different single molecules of the same kind. For time averages over subpopulations of single molecules, the temporal auto- and crosscorrelation functions are first found. Knowing the crowding parameter alpha for the cell type and cellular compartment type, respectively, the heterogeneous parameter gamma can be obtained from the measurements in the presence of the interacting reaction partner, e.g. ligand, with the same alpha value. The product alpha x gamma = gamma is not a simple fitting parameter in the temporal auto- and two-color crosscorrelation functions because it is related to the proper physical models of anomalous (spatial) and heterogeneous (temporal) randomness in cellular systems.We have already derived an analytical solution gamma for in the special case of gamma = 3/2. In the case of two-color crosscorrelation or/and two-color fluorescence imaging (co-localization experiments), the second component is also a two-color species gr, for example a different molecular complex with an additional ligand. Here, we first show that plausible biological mechanisms from FCS/ FCCS and fluorescence imaging in living cells are highly questionable without proper quantitative physical models of subdiffusive motion and temporal randomness. At best, such quantitative FCS/ FCCS and fluorescence imaging data are difficult to interpret under crowding and heterogeneous conditions. It is challenging to translate proper physical models of anomalous (spatial) and heterogeneous (temporal) randomness in living cells and their cellular compartments like the nucleus into biological models of the cell biological process under study testable by single-molecule approaches. Otherwise, quantitative FCS/FCCS and fluorescence imaging measurements in living cells are not well described and cannot be interpreted in a meaningful way.
[Psychological issues in manned spaceflight].
Zhang, Q J; Bai, Y Q
1999-04-01
As the duration of manned spaceflight becomes longer and as crews become more heterogeneous, psychological and interpersonal factors will be more important in affecting the safety of crew and flight mission. In space environment there are four types of stressors: physical, physiological, psychological and interpersonal. Psychological issues include "Asthenia", alteration in time sense, transcendent experiences, sleep problem, career motivation, psychosomatic symptoms and psychiatric issues. Interpersonal issues include interpersonal tension, interpersonal relationships decreased cohesiveness and deprivation, displacement [correction of dispiacement] of anger to outside personnel over time.
Heterogeneous information sharing of sensor information in contested environments
NASA Astrophysics Data System (ADS)
Wampler, Jason A.; Hsieh, Chien; Toth, Andrew; Sheatsley, Ryan
2017-05-01
The inherent nature of unattended sensors makes these devices most vulnerable to detection, exploitation, and denial in contested environments. Physical access is often cited as the easiest way to compromise any device or network. A new mechanism for mitigating these types of attacks developed under the Assistant Secretary of Defense for Research and Engineering, ASD(R and E) project, "Smoke Screen in Cyberspace", was demonstrated in a live, over-the-air experiment. Smoke Screen encrypts, slices up, and disburses redundant fragments of files throughout the network. Recovery is only possible after recovering all fragments and attacking/denying one or more nodes does not limit the availability of other fragment copies in the network. This experiment proved the feasibility of redundant file fragmentation, and is the foundation for developing sophisticated methods to blacklist compromised nodes, move data fragments from risks of compromise, and forward stored data fragments closer to the anticipated retrieval point. This paper outlines initial results in scalability of node members, fragment size, file size, and performance in a heterogeneous network consisting of the Wireless Network after Next (WNaN) radio and Common Sensor Radio (CSR).
Mission Planning for Heterogeneous UxVs Operating in a Post-Disaster Urban Environment
2017-09-01
FOR HETEROGENEOUS UxVs OPERATING IN A POST -DISASTER URBAN ENVIRONMENT by Choon Seng Leon Mark Tan September 2017 Thesis Advisor: Oleg...September 2017 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE MISSION PLANNING FOR HETEROGENEOUS UxVs OPERATING IN A POST ...UxVs OPERATING IN A POST -DISASTER URBAN ENVIRONMENT Choon Seng Leon Mark Tan Civilian Engineer, ST Aerospace Ltd., Singapore B. Eng (Hons
Nakamura, Ryoji; Kachi, N; Suzuki, J-I
2010-05-01
We investigated the growth of and soil exploration by Lolium perenne under a heterogeneous environment before its roots reached a nutrient-rich patch. Temporal changes in the distribution of inorganic nitrogen, i.e., NO(3)(-)-N and NH(4)(+)-N, in the heterogeneous environment during the experimental period were also examined. The results showed that roots randomly explored soil, irrespective of the patchy distribution of inorganic nitrogen and differences in the chemical composition of inorganic nitrogen distribution between heterogeneous and homogeneous environments. We have also elucidated the potential effects of patch duration and inorganic nitrogen distribution on soil exploration by roots and thus on plant growth.
Coleman, Melinda A
2013-01-01
With marine protected areas being established worldwide there is a pressing need to understand how the physical setting in which these areas are placed influences patterns of dispersal and connectivity of important marine organisms. This is particularly critical for dynamic and complex nearshore marine environments where patterns of genetic structure of organisms are often chaotic and uncoupled from broad scale physical processes. This study determines the influence of habitat heterogeneity (presence of estuaries) on patterns of genetic structure and connectivity of the common kelp, Ecklonia radiata. There was no genetic differentiation of kelp between estuaries and the open coast and the presence of estuaries did not increase genetic differentiation among open coast populations. Similarly, there were no differences in level of inbreeding or genetic diversity between estuarine and open coast populations. The presence of large estuaries along rocky coastlines does not appear to influence genetic structure of this kelp and factors other than physical heterogeneity of habitat are likely more important determinants of regional connectivity. Marine reserves are currently lacking in this bioregion and may be designated in the future. Knowledge of the factors that influence important habitat forming organisms such as kelp contribute to informed and effective marine protected area design and conservation initiatives to maintain resilience of important marine habitats.
Thermal Model of the Promoted Combustion Test
NASA Technical Reports Server (NTRS)
Jones, Peter D.
1996-01-01
Flammability of metals in high pressure, pure oxygen environments, such as rocket engine turbopumps, is commonly evaluated using the Promoted Combustion Test (PCT). The PCT emphasizes the ability of an ignited material to sustain combustion, as opposed to evaluating the sample's propensity to ignite in the first place. A common arrangement is a rod of the sample material hanging in a chamber in which a high pressure, pure oxygen environment is maintained. An igniter of some energetically combusting material is fixed to the bottom of the rod and fired. This initiates combustion, and the sample burns and melts at its bottom tip. A ball of molten material forms, and this ball detaches when it grows too large to be supported by surface tension with the rod. In materials which do not sustain combustion, the combustion then extinguishes. In materials which do sustain combustion, combustion re-initiates from molten residue left on the bottom of the rod, and the melt ball burns and grows until it detaches again. The purpose of this work is development of a PCT thermal simulation model, detailing phase change, melt detachment, and the several heat transfer modes. Combustion is modeled by a summary rate equation, whose parameters are identified by comparison to PCT results. The sensitivity of PCT results to various physical and geometrical parameters is evaluated. The identified combustion parameters may be used in design of new PCT arrangements, as might be used for flammability assessment in flow-dominated environments. The Haynes 214 nickel-based superalloy, whose PCT results are applied here, burns heterogeneously (fuel and oxidizer are of different phases; combustion takes place on the fuel surface). Heterogeneous combustion is not well understood. (In homogeneous combustion, the metal vaporizes, and combustion takes place in an analytically treatable cloud above the surface). Thermal modeling in heterogeneous combustion settings provides a means for linking test results more directly to detailed combustion mechanics, leading to improved data analysis, and improved understanding of heterogeneous combustion phenomena.
Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang
2016-01-01
Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J. The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed. PMID:27702991
Environmental Adaptation Contributes to Gene Polymorphism across the Arabidopsis thaliana Genome
Lee, Cheng-Ruei
2012-01-01
The level of within-species polymorphism differs greatly among genes in a genome. Many genomic studies have investigated the relationship between gene polymorphism and factors such as recombination rate or expression pattern. However, the polymorphism of a gene is affected not only by its physical properties or functional constraints but also by natural selection on organisms in their environments. Specifically, if functionally divergent alleles enable adaptation to different environments, locus-specific polymorphism may be maintained by spatially heterogeneous natural selection. To test this hypothesis and estimate the extent to which environmental selection shapes the pattern of genome-wide polymorphism, we define the "environmental relevance" of a gene as the proportion of genetic variation explained by environmental factors, after controlling for population structure. We found substantial effects of environmental relevance on patterns of polymorphism among genes. In addition, the correlation between environmental relevance and gene polymorphism is positive, consistent with the expectation that balancing selection among heterogeneous environments maintains genetic variation at ecologically important genes. Comparison of the gene ontology annotations shows that genes with high environmental relevance are enriched in unknown function categories. These results suggest an important role for environmental factors in shaping genome-wide patterns of polymorphism and indicate another direction of genomic study. PMID:22798389
Heterogeneous Systems for Information-Variable Environments (HIVE)
2017-05-01
ARL-TR-8027 ● May 2017 US Army Research Laboratory Heterogeneous Systems for Information - Variable Environments (HIVE) by Amar...not return it to the originator. ARL-TR-8027 ● May 2017 US Army Research Laboratory Heterogeneous Systems for Information ...Computational and Information Sciences Directorate, ARL Approved for public release; distribution is unlimited. ii REPORT
Heterogeneity in Health Care Computing Environments
Sengupta, Soumitra
1989-01-01
This paper discusses issues of heterogeneity in computer systems, networks, databases, and presentation techniques, and the problems it creates in developing integrated medical information systems. The need for institutional, comprehensive goals are emphasized. Using the Columbia-Presbyterian Medical Center's computing environment as the case study, various steps to solve the heterogeneity problem are presented.
Heterogeneous variances in multi-environment yield trials for corn hybrids
USDA-ARS?s Scientific Manuscript database
Recent developments in statistics and computing have enabled much greater levels of complexity in statistical models of multi-environment yield trial data. One particular feature of interest to breeders is simultaneously modeling heterogeneity of variances among environments and cultivars. Our obj...
Arcade: A Web-Java Based Framework for Distributed Computing
NASA Technical Reports Server (NTRS)
Chen, Zhikai; Maly, Kurt; Mehrotra, Piyush; Zubair, Mohammad; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
Distributed heterogeneous environments are being increasingly used to execute a variety of large size simulations and computational problems. We are developing Arcade, a web-based environment to design, execute, monitor, and control distributed applications. These targeted applications consist of independent heterogeneous modules which can be executed on a distributed heterogeneous environment. In this paper we describe the overall design of the system and discuss the prototype implementation of the core functionalities required to support such a framework.
Araújo, Kássio C.; Guzzi, Anderson; Ávila, Robson W.
2018-01-01
Abstract Anurans have close associations with environmental conditions and therefore represent an interesting vertebrate group for examining how resource availability and environmental variables influence species diversity. Associations between habitat heterogeneity and anuran species diversity were tested in the Restinga landscapes of the Parnaíba River delta in northeastern Brazil. Twenty-one anuran species were sampled in the rainy season during monthly excursions (December 2015 to June 2016) into areas of Restinga on two islands in the Parnaíba River delta. The fourth highest anuran diversity was found in this type of environment in Brazil and is the third in northeastern Brazil. Microenvironments, characterized by a combination of vernal pools with different vegetational and physical structures, better explained anuran species composition in the Parnaíba River delta. PMID:29780267
Araújo, Kássio C; Guzzi, Anderson; Ávila, Robson W
2018-01-01
Anurans have close associations with environmental conditions and therefore represent an interesting vertebrate group for examining how resource availability and environmental variables influence species diversity. Associations between habitat heterogeneity and anuran species diversity were tested in the Restinga landscapes of the Parnaíba River delta in northeastern Brazil. Twenty-one anuran species were sampled in the rainy season during monthly excursions (December 2015 to June 2016) into areas of Restinga on two islands in the Parnaíba River delta. The fourth highest anuran diversity was found in this type of environment in Brazil and is the third in northeastern Brazil. Microenvironments, characterized by a combination of vernal pools with different vegetational and physical structures, better explained anuran species composition in the Parnaíba River delta.
NASA Technical Reports Server (NTRS)
Crawford, D. A.; Barnouin-Jha, O. S.; Cintala, M. J.
2003-01-01
The propagation of shock waves through target materials is strongly influenced by the presence of small-scale structure, fractures, physical and chemical heterogeneities. Pre-existing fractures often create craters that appear square in outline (e.g. Meteor Crater). Reverberations behind the shock from the presence of physical heterogeneity have been proposed as a mechanism for transient weakening of target materials. Pre-existing fractures can also affect melt generation. In this study, we are attempting to bridge the gap in numerical modeling between the micro-scale and the continuum, the so-called meso-scale. To accomplish this, we are developing a methodology to be used in the shock physics hydrocode (CTH) using Monte-Carlo-type methods to investigate the shock properties of heterogeneous materials. By comparing the results of numerical experiments at the micro-scale with experimental results and by using statistical techniques to evaluate the performance of simple constitutive models, we hope to embed the effect of physical heterogeneity into the field variables (pressure, stress, density, velocity) allowing us to directly imprint the effects of micro-scale heterogeneity at the continuum level without incurring high computational cost.
Choi, Young-Seon; Lawler, Erin; Boenecke, Clayton A; Ponatoski, Edward R; Zimring, Craig M
2011-12-01
This paper reports a review that assessed the effectiveness and characteristics of fall prevention interventions implemented in hospitals. A multi-systemic fall prevention model that establishes a practical framework was developed from the evidence. Falls occur through complex interactions between patient-related and environmental risk factors, suggesting a need for multifaceted fall prevention approaches that address both factors. We searched Medline, CINAHL, PsycInfo and the Web of Science databases for references published between January 1990 and June 2009 and scrutinized secondary references from acquired papers. Due to the heterogeneity of interventions and populations, we conducted a quantitative systematic review without a meta-analysis and used a narrative summary to report findings. From the review, three distinct characteristics of fall prevention interventions emerged: (1) the physical environment, (2) the care process and culture and (3) technology. While clinically significant evidence shows the efficacy of environment-related interventions in reducing falls and fall-related injuries, the literature identified few hospitals that had introduced environment-related interventions in their multifaceted fall intervention strategies. Using the multi-systemic fall prevention model, hospitals should promote a practical strategy that benefits from the collective effects of the physical environment, the care process and culture and technology to prevent falls and fall-related injuries. By doing so, they can more effectively address the various risk factors for falling and therefore, prevent falls. Studies that test the proposed model need to be conducted to establish the efficacy of the model in practice. © 2011 The Authors. Journal of Advanced Nursing © 2011 Blackwell Publishing Ltd.
Parallel structure among environmental gradients and three trophic levels in a subarctic estuary
Speckman, Suzann G.; Piatt, John F.; Minte-Vera, C. V.; Parrish, Julia K.
2005-01-01
We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong (r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 (r = 0.87) and 1998 (r = 0.82). The correlation was poor (r = 0.32) in 1999, when fish community structure changed markedly in lower Cook Inlet. Capelin (Mallotus villosus), walleye pollock (Theragra chalcogramma), and arrowtooth flounder (Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Nina year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of "bottom-up control," i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.
Parallel structure among environmental gradients and three trophic levels in a subarctic estuary
NASA Astrophysics Data System (ADS)
Speckman, Suzann G.; Piatt, John F.; Minte-Vera, Carolina V.; Parrish, Julia K.
2005-07-01
We assessed spatial and temporal variability in the physical environment of a subarctic estuary, and examined concurrent patterns of chlorophyll α abundance (fluorescence), and zooplankton and forage fish community structure. Surveys were conducted in lower Cook Inlet, Alaska, during late July and early August from 1997 through 1999. Principle components analysis (PCA) revealed that spatial heterogeneity in the physical oceanographic environment of lower Cook Inlet could be modeled as three marine-estuarine gradients characterized by temperature, salinity, bottom depth, and turbidity. The gradients persisted from 1997 through 1999, and PCA explained 68% to 92% of the variance in physical oceanography for each gradient-year combination. Correlations between chlorophyll α abundance and distribution and the PCA axes were weak. Chlorophyll was reduced by turbidity, and low levels occurred in areas with high levels of suspended sediments. Detrended correspondence analysis (DCA) was used to order the sample sites based on species composition and to order the zooplankton and forage fish taxa based on similarities among sample sites for each gradient-year. Correlations between the structure of the physical environment (PCA axis 1) and zooplankton community structure (DCA axis 1) were strong ( r = 0.43-0.86) in all years for the three marine-estuarine gradients, suggesting that zooplankton community composition was structured by the physical environment. The physical environment (PCA) and forage fish community structure (DCA) were weakly correlated in all years along Gradient 2, defined by halocline intensity and surface temperature and salinity, even though these physical variables were more important for defining zooplankton habitats. However, the physical environment (PCA) and forage fish community structure (DCA) were strongly correlated along the primary marine-estuarine gradient (#1) in 1997 ( r = 0.87) and 1998 ( r = 0.82). The correlation was poor ( r = 0.32) in 1999, when fish community structure changed markedly in lower Cook Inlet. Capelin ( Mallotus villosus), walleye pollock ( Theragra chalcogramma), and arrowtooth flounder ( Atheresthes stomias) were caught farther north than in previous years. Waters were significantly colder and more saline in 1999, a La Niña year, than in other years of the study. Interannual fluctuations in environmental conditions in lower Cook Inlet did not have substantial effects on zooplankton community structure, although abundance of individual taxa varied significantly. The abundance and distribution of chlorophyll α, zooplankton and forage fish were affected much more by spatial variability in physical oceanography than by interannual variability. Our examination of physical-biological linkages in lower Cook Inlet supports the concept of “bottom-up control,” i.e., that variability in the physical environment structures higher trophic-level communities by influencing their distribution and abundance across space.
Colloidal-based additive manufacturing of bio-inspired composites
NASA Astrophysics Data System (ADS)
Studart, Andre R.
Composite materials in nature exhibit heterogeneous architectures that are tuned to fulfill the functional demands of the surrounding environment. Examples range from the cellulose-based organic structure of plants to highly mineralized collagen-based skeletal parts like bone and teeth. Because they are often utilized to combine opposing properties such as strength and low-density or stiffness and wear resistance, the heterogeneous architecture of natural materials can potentially address several of the technical limitations of artificial homogeneous composites. However, current man-made manufacturing technologies do not allow for the level of composition and fiber orientation control found in natural heterogeneous systems. In this talk, I will present two additive manufacturing technologies recently developed in our group to build composites with exquisite architectures only rivaled by structures made by living organisms in nature. Since the proposed techniques utilize colloidal suspensions as feedstock, understanding the physics underlying the stability, assembly and rheology of the printing inks is key to predict and control the architecture of manufactured parts. Our results will show that additive manufacturing routes offer a new exciting pathway for the fabrication of biologically-inspired composite materials with unprecedented architectures and functionalities.
Exascale computing and what it means for shock physics
NASA Astrophysics Data System (ADS)
Germann, Timothy
2015-06-01
The U.S. Department of Energy is preparing to launch an Exascale Computing Initiative, to address the myriad challenges required to deploy and effectively utilize an exascale-class supercomputer (i.e., one capable of performing 1018 operations per second) in the 2023 timeframe. Since physical (power dissipation) requirements limit clock rates to at most a few GHz, this will necessitate the coordination of on the order of a billion concurrent operations, requiring sophisticated system and application software, and underlying mathematical algorithms, that may differ radically from traditional approaches. Even at the smaller workstation or cluster level of computation, the massive concurrency and heterogeneity within each processor will impact computational scientists. Through the multi-institutional, multi-disciplinary Exascale Co-design Center for Materials in Extreme Environments (ExMatEx), we have initiated an early and deep collaboration between domain (computational materials) scientists, applied mathematicians, computer scientists, and hardware architects, in order to establish the relationships between algorithms, software stacks, and architectures needed to enable exascale-ready materials science application codes within the next decade. In my talk, I will discuss these challenges, and what it will mean for exascale-era electronic structure, molecular dynamics, and engineering-scale simulations of shock-compressed condensed matter. In particular, we anticipate that the emerging hierarchical, heterogeneous architectures can be exploited to achieve higher physical fidelity simulations using adaptive physics refinement. This work is supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research.
Speciation reversal and biodiversity dynamics with hybridization in changing environments.
Seehausen, Ole; Takimoto, Gaku; Roy, Denis; Jokela, Jukka
2008-01-01
A considerable fraction of the world's biodiversity is of recent evolutionary origin and has evolved as a by-product of, and is maintained by, divergent adaptation in heterogeneous environments. Conservationists have paid attention to genetic homogenization caused by human-induced translocations (e.g. biological invasions and stocking), and to the importance of environmental heterogeneity for the ecological coexistence of species. However, far less attention has been paid to the consequences of loss of environmental heterogeneity to the genetic coexistence of sympatric species. Our review of empirical observations and our theoretical considerations on the causes and consequences of interspecific hybridization suggest that a loss of environmental heterogeneity causes a loss of biodiversity through increased genetic admixture, effectively reversing speciation. Loss of heterogeneity relaxes divergent selection and removes ecological barriers to gene flow between divergently adapted species, promoting interspecific introgressive hybridization. Since heterogeneity of natural environments is rapidly deteriorating in most biomes, the evolutionary ecology of speciation reversal ought to be fully integrated into conservation biology.
Smith, Melody; Hosking, Jamie; Woodward, Alistair; Witten, Karen; MacMillan, Alexandra; Field, Adrian; Baas, Peter; Mackie, Hamish
2017-11-16
Evidence is mounting to suggest a causal relationship between the built environment and people's physical activity behaviours, particularly active transport. The evidence base has been hindered to date by restricted consideration of cost and economic factors associated with built environment interventions, investigation of socioeconomic or ethnic differences in intervention effects, and an inability to isolate the effect of the built environment from other intervention types. The aims of this systematic review were to identify which environmental interventions increase physical activity in residents at the local level, and to build on the evidence base by considering intervention cost, and the differential effects of interventions by ethnicity and socioeconomic status. A systematic database search was conducted in June 2015. Articles were eligible if they reported a quantitative empirical study (natural experiment or a prospective, retrospective, experimental, or longitudinal research) investigating the relationship between objectively measured built environment feature(s) and physical activity and/or travel behaviours in children or adults. Quality assessment was conducted and data on intervention cost and whether the effect of the built environment differed by ethnicity or socioeconomic status were extracted. Twenty-eight studies were included in the review. Findings showed a positive effect of walkability components, provision of quality parks and playgrounds, and installation of or improvements in active transport infrastructure on active transport, physical activity, and visits or use of settings. There was some indication that infrastructure improvements may predominantly benefit socioeconomically advantaged groups. Studies were commonly limited by selection bias and insufficient controlling for confounders. Heterogeneity in study design and reporting limited comparability across studies or any clear conclusions to be made regarding intervention cost. Improving neighbourhood walkability, quality of parks and playgrounds, and providing adequate active transport infrastructure is likely to generate positive impacts on activity in children and adults. The possibility that the benefits of infrastructure improvements may be inequitably distributed requires further investigation. Opportunities to improve the quality of evidence exist, including strategies to improve response rates and representativeness, use of valid and reliable measurement tools, cost-benefit analyses, and adequate controlling for confounders.
Laiolo, Paola
2013-01-01
The strength of the behavioural processes associated with competitor coexistence may vary when different physical environments, and their biotic communities, come into contact, although empirical evidence of how interference varies across gradients of environmental complexity is still scarce in vertebrates. Here, I analyse how behavioural interactions and habitat selection regulate the local distribution of steppeland larks (Alaudidae) in a gradient from simple to heterogeneous agricultural landscapes in Spain, using crested lark Galerida cristata and Thekla lark G. theklae as study models. Galerida larks significantly partitioned by habitat but frequently co-occurred in heterogeneous environments. Irrespective of habitat divergence, however, the local densities of the two larks were negatively correlated, and the mechanisms beyond this pattern were investigated by means of playback experiments. When simulating the intrusion of the congener by broadcasting the species territorial calls, both larks responded with an aggressive response as intense with respect to warning and approach behaviour as when responding to the intrusion of a conspecific. However, birds promptly responded to playbacks only when congener territories were nearby, a phenomenon that points to learning as the mechanisms through which individuals finely tune their aggressive responses to the local competition levels. Heterospecifics occurred in closer proximity in diverse agro-ecosystems, possibly because of more abundant or diverse resources, and here engage in antagonistic interactions. The drop of species diversity associated with agricultural homogenisation is therefore likely to also bring about the disappearance of the behavioural repertoires associated with species interactions.
Physical limits to biomechanical sensing in disordered fibre networks
NASA Astrophysics Data System (ADS)
Beroz, Farzan; Jawerth, Louise M.; Münster, Stefan; Weitz, David A.; Broedersz, Chase P.; Wingreen, Ned S.
2017-07-01
Cells actively probe and respond to the stiffness of their surroundings. Since mechanosensory cells in connective tissue are surrounded by a disordered network of biopolymers, their in vivo mechanical environment can be extremely heterogeneous. Here we investigate how this heterogeneity impacts mechanosensing by modelling the cell as an idealized local stiffness sensor inside a disordered fibre network. For all types of networks we study, including experimentally-imaged collagen and fibrin architectures, we find that measurements applied at different points yield a strikingly broad range of local stiffnesses, spanning roughly two decades. We verify via simulations and scaling arguments that this broad range of local stiffnesses is a generic property of disordered fibre networks. Finally, we show that to obtain optimal, reliable estimates of global tissue stiffness, a cell must adjust its size, shape, and position to integrate multiple stiffness measurements over extended regions of space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ning
Independent of the methods of nuclear waste disposal, the degradation of packaging materials could lead to mobilization and transport of radionuclides into the geosphere. This process can be significantly accelerated due to the association of radionuclides with the backfill materials or mobile colloids in groundwater. The transport of these colloids is complicated by the inherent coupling of physical and chemical heterogeneities (e.g., pore space geometry, grain size, charge heterogeneity, and surface hydrophobicity) in natural porous media that can exist on the length scale of a few grains. In addition, natural colloids themselves are often heterogeneous in their surface properties (e.g.,more » clay platelets possess opposite charges on the surface and along the rim). Both physical and chemical heterogeneities influence the transport and retention of radionuclides under various groundwater conditions. However, the precise mechanisms how these coupled heterogeneities influence colloidal transport are largely elusive. This knowledge gap is a major source of uncertainty in developing accurate models to represent the transport process and to predict distribution of radionuclides in the geosphere.« less
Lowell, Jennifer L; Gordon, Nathan; Engstrom, Dale; Stanford, Jack A; Holben, William E; Gannon, James E
2009-10-01
The Nyack floodplain is located on the Middle Fork of the Flathead River, an unregulated, pristine, fifth-order stream in Montana, USA, bordering Glacier National Park. The hyporheic zone is a nutritionally heterogeneous floodplain component harboring a diverse array of microbial assemblages essential in fluvial biogeochemical cycling, riverine ecosystem productivity, and trophic interactions. Despite these functions, microbial community structure in pristine hyporheic systems is not well characterized. The current study was designed to assess whether physical habitat heterogeneity within the hyporheic zone of the Nyack floodplain was sufficient to drive bacterial beta diversity between three different hyporheic flow path locations. Habitat heterogeneity was assessed by measuring soluble reactive phosphorous, nitrate, dissolved organic carbon, dissolved oxygen, and soluble total nitrogen levels seasonally at surface water infiltration, advection, and exfiltration zones. Significant spatial differences were detected in dissolved oxygen and nitrate levels, and seasonal differences were detected in dissolved oxygen, nitrate, and dissolved organic carbon levels. Denaturing gradient gel electrophoresis (DGGE) and cell counts indicated that bacterial diversity increased with abundance, and DGGE fingerprints covaried with nitrate levels where water infiltrated the hyporheic zone. The ribosomal gene phylogeny revealed that hyporheic habitat heterogeneity was sufficient to drive beta diversity between bacterial assemblages. Phylogenetic (P) tests detected sequence disparity between the flow path locations. Small distinct lineages of Firmicutes, Actinomycetes, Planctomycetes, and Acidobacteria defined the infiltration zone and alpha- and beta-proteobacterial lineages delineated the exfiltration and advection zone communities. These data suggest that spatial habitat heterogeneity drives hyporheic microbial community development and that attempts to understand functional differences between bacteria inhabiting nutritionally heterogeneous hyporheic environments might begin by focusing on the biology of these taxa.
Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang
2016-11-01
Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.
VIRUS TRANSPORT IN PHYSICALLY AND GEOCHEMICALLY HETEROGENEOUS SUBSURFACE POROUS MEDIA. (R826179)
A two-dimensional model for virus transport in physically and geochemically heterogeneous subsurface porous media is presented. The model involves solution of the advection–dispersion equation, which additionally considers virus inactivation in the solution, as well as ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C.; Yu, G.; Wang, K.
The physical designs of the new concept reactors which have complex structure, various materials and neutronic energy spectrum, have greatly improved the requirements to the calculation methods and the corresponding computing hardware. Along with the widely used parallel algorithm, heterogeneous platforms architecture has been introduced into numerical computations in reactor physics. Because of the natural parallel characteristics, the CPU-FPGA architecture is often used to accelerate numerical computation. This paper studies the application and features of this kind of heterogeneous platforms used in numerical calculation of reactor physics through practical examples. After the designed neutron diffusion module based on CPU-FPGA architecturemore » achieves a 11.2 speed up factor, it is proved to be feasible to apply this kind of heterogeneous platform into reactor physics. (authors)« less
Effects of vegetation manipulation on breeding waterfowl in prairie wetlands--a literature review
Kantrud, H.A.
1986-01-01
Literature on the effects of fire and grazing on the wetlands used by breeding prairie waterfowl is reviewed. Both dabbling and diving ducks and their broods prefer wetlands with openings in the marsh canopy. Decreased use is commonly associated with decreased habitat heterogeneity caused by tall, robust hydrophytes such as Typha spp. and other species adapted to form monotypes in the absence of disturbance. Nearly all previous studies indicate that reductions in height and density of tall, emergent hydrophytes by fire and grazing (unless very intensive) generally benefit breeding waterfowl. Such benefits are an increase in pair density, probably related to increased interspersion of cover and open water which decreases visibility among conspecific pairs, and improvements in their invertebrate food resources that result from increased habitat heterogeneity. Research needs are great because of the drastic changes that have accrued to prairie wetlands through fire suppression, cultivation, and other factors. The physical and biological environments preferred by species of breeding waterfowl during their seasonal and daily activities should be ascertained from future studies in wetland complexes that exist in the highest state of natural preservation. Long-term burning and grazing experiments should follow on specific vegetatively-degraded wetlands judged to be potentially important breeding areas. Seasonality, frequency, and intensity of treatments should be varied and combined and, in addition to measuring the response of the biotic community, the changes in the physical and chemical environment of the wetlands should be monitored to increase our knowledge of causative factors and possible predictive values.
Luan, Jian'an; Mihailov, Evelin; Metspalu, Andres; Forouhi, Nita G.; Magnusson, Patrik K. E.; Pedersen, Nancy L.; Hallmans, Göran; Chu, Audrey Y.; Justice, Anne E.; Graff, Mariaelisa; Rose, Lynda M.; Langenberg, Claudia; Cupples, L. Adrienne; Ridker, Paul M.; Ong, Ken K.; Loos, Ruth J. F.; Chasman, Daniel I.; Ingelsson, Erik; Kilpeläinen, Tuomas O.; Scott, Robert A.; Mägi, Reedik
2017-01-01
Phenotypic variance heterogeneity across genotypes at a single nucleotide polymorphism (SNP) may reflect underlying gene-environment (G×E) or gene-gene interactions. We modeled variance heterogeneity for blood lipids and BMI in up to 44,211 participants and investigated relationships between variance effects (Pv), G×E interaction effects (with smoking and physical activity), and marginal genetic effects (Pm). Correlations between Pv and Pm were stronger for SNPs with established marginal effects (Spearman’s ρ = 0.401 for triglycerides, and ρ = 0.236 for BMI) compared to all SNPs. When Pv and Pm were compared for all pruned SNPs, only BMI was statistically significant (Spearman’s ρ = 0.010). Overall, SNPs with established marginal effects were overrepresented in the nominally significant part of the Pv distribution (Pbinomial <0.05). SNPs from the top 1% of the Pm distribution for BMI had more significant Pv values (PMann–Whitney = 1.46×10−5), and the odds ratio of SNPs with nominally significant (<0.05) Pm and Pv was 1.33 (95% CI: 1.12, 1.57) for BMI. Moreover, BMI SNPs with nominally significant G×E interaction P-values (Pint<0.05) were enriched with nominally significant Pv values (Pbinomial = 8.63×10−9 and 8.52×10−7 for SNP × smoking and SNP × physical activity, respectively). We conclude that some loci with strong marginal effects may be good candidates for G×E, and variance-based prioritization can be used to identify them. PMID:28614350
NASA Astrophysics Data System (ADS)
Thoms, M. C.; Delong, M. D.; Flotemersch, J. E.; Collins, S. E.
2017-08-01
The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) - large tracts of river with a similar geomorphic character -in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show that the same basal resources were present throughout the Kanawha River but that their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of higher consumers (fish) were also recorded between FPZs. Overall, the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity. The result of this study does not support the current paradigm that ecosystem size is the primary determinant of food web character in river ecosystems.
Colloid interaction energies for physically and chemically heterogeneous porous media
USDA-ARS?s Scientific Manuscript database
The mean and variance of the colloid interaction energy (phi*) as a function of separation distance (h) were calculated on physically and/or chemically heterogeneous solid surfaces at the representative elementary area (REA) scale. Nanoscale roughness was demonstrated to have a significant influence...
Spatial heterogeneity lowers rather than increases host-parasite specialization.
Hesse, E; Best, A; Boots, M; Hall, A R; Buckling, A
2015-09-01
Abiotic environmental heterogeneity can promote the evolution of diverse resource specialists, which in turn may increase the degree of host-parasite specialization. We coevolved Pseudomonas fluorescens and lytic phage ϕ2 in spatially structured populations, each consisting of two interconnected subpopulations evolving in the same or different nutrient media (homogeneous and heterogeneous environments, respectively). Counter to the normal expectation, host-parasite specialization was significantly lower in heterogeneous compared with homogeneous environments. This result could not be explained by dispersal homogenizing populations, as this would have resulted in the heterogeneous treatments having levels of specialization equal to or greater than that of the homogeneous environments. We argue that selection for costly generalists is greatest when the coevolving species are exposed to diverse environmental conditions and that this can provide an explanation for our results. A simple coevolutionary model of this process suggests that this can be a general mechanism by which environmental heterogeneity can reduce rather than increase host-parasite specialization. © 2015 The Authors. J. EVOL. BIOL. Journal of Evolutionary Biology Published by John Wiley & Sons Ltd on Behalf of European Society for Evolutionary Biology.
Graph Partitioning for Parallel Applications in Heterogeneous Grid Environments
NASA Technical Reports Server (NTRS)
Bisws, Rupak; Kumar, Shailendra; Das, Sajal K.; Biegel, Bryan (Technical Monitor)
2002-01-01
The problem of partitioning irregular graphs and meshes for parallel computations on homogeneous systems has been extensively studied. However, these partitioning schemes fail when the target system architecture exhibits heterogeneity in resource characteristics. With the emergence of technologies such as the Grid, it is imperative to study the partitioning problem taking into consideration the differing capabilities of such distributed heterogeneous systems. In our model, the heterogeneous system consists of processors with varying processing power and an underlying non-uniform communication network. We present in this paper a novel multilevel partitioning scheme for irregular graphs and meshes, that takes into account issues pertinent to Grid computing environments. Our partitioning algorithm, called MiniMax, generates and maps partitions onto a heterogeneous system with the objective of minimizing the maximum execution time of the parallel distributed application. For experimental performance study, we have considered both a realistic mesh problem from NASA as well as synthetic workloads. Simulation results demonstrate that MiniMax generates high quality partitions for various classes of applications targeted for parallel execution in a distributed heterogeneous environment.
Hellmann, Christine; Große-Stoltenberg, André; Thiele, Jan; Oldeland, Jens; Werner, Christiane
2017-06-23
Spatial heterogeneity of ecosystems crucially influences plant performance, while in return plant feedbacks on their environment may increase heterogeneous patterns. This is of particular relevance for exotic plant invaders that transform native ecosystems, yet, approaches integrating geospatial information of environmental heterogeneity and plant-plant interaction are lacking. Here, we combined remotely sensed information of site topography and vegetation cover with a functional tracer of the N cycle, δ 15 N. Based on the case study of the invasion of an N 2 -fixing acacia in a nutrient-poor dune ecosystem, we present the first model that can successfully predict (R 2 = 0.6) small-scale spatial variation of foliar δ 15 N in a non-fixing native species from observed geospatial data. Thereby, the generalized additive mixed model revealed modulating effects of heterogeneous environments on invader impacts. Hence, linking remote sensing techniques with tracers of biological processes will advance our understanding of the dynamics and functioning of spatially structured heterogeneous systems from small to large spatial scales.
NASA Astrophysics Data System (ADS)
Harting, Ronald; Bosch, Aleid; Gunnink, Jan
2014-05-01
Society has an increasing demand from the subsurface, which in the Dutch shallow subsurface (upper 30 to 40 meters) mainly focuses on natural aggregate resources, groundwater, infrastructure and dike safety. This stimulates the demand for knowledge about the composition and heterogeneity of the subsurface and its physical and chemical properties, including the uncertainties involved. Physical and chemical properties of sediments in the subsurface have been under investigation for decades; however, the usefulness of this data for applied research and the understanding of these properties is limited. This is due to several factors: studies consist mainly of separately collected datasets, targeted at a limited amount of parameters, focused on a small number of geological units, distributed unevenly with depth and usually collected from clustered drillings with limited spatial extent or are analysed with different techniques and methods, often on disturbed samples. These factors result in a heterogeneous and biased dataset not suitable to function as a reference dataset or to statistically determine regional characteristics of geological units. To overcome these shortcomings, the Geological Survey of the Netherlands is establishing a nation-wide reference dataset for physical and chemical properties. In 2006, a drilling campaign was started using cone penetration tests, cored drillings and geophysical well logs, choosing the sites for a good geographical distribution. The lithological properties of the undisturbed cores are visually described and interpreted for lithostratigraphy and inferred sedimentary environment based on lithofacies. The location of the samples in the cores are chosen based on this description and interpretation, resulting in an evenly distributed dataset of in situ samples with respect to geological units as well as an adequate number of samples suitable for statistical analysis. Analyses are uniformly performed for grain size distribution, permeability (both high and low permeable lithologies) and geochemical methods (X-Ray Fluorescence, Thermo-Gravimetric Analysis, Total Carbon, Total Sulphur and Total Organic Carbon). These analyses result in a large number of lithological, hydrological and geochemical parameters, i.e. clay content, sand median, vertical and horizontal permeability and CaCO3-content. We present the results from the analysis of lithological properties for the Northern Netherlands. Besides geology, these properties can be applied directly in studies concerning (amongst others) groundwater, natural aggregates and dike safety. We demonstrate the use of sedimentary environments based on lithofacies as a useful tool for comparison between lithostratigraphic units and lithofacies. These lithofacies match distinct parts of the marine, fluvial, glacial, eolian or organogenic environment, i.e. tidal channel sand, floodbasin clay and subglacial till. This results in lithological properties illustrating the heterogeneity within a geological unit and between equal depositional environments in different lithostratigraphic units. The acquired data have so far been used in several applied studies, i.e. improving parameterisation of 3D models leading to increased accuracy in groundwater models and dike safety studies concerning dike failure due to undermining. Recently, grain size distributions measured with different methods were recalibrated into a homogeneous dataset using this reference set, which greatly enlarged the dataset to be incorporated in the parameterisation of a 3D voxel model.
Singer, Gabriel; Besemer, Katharina; Schmitt-Kopplin, Philippe; Hödl, Iris; Battin, Tom J.
2010-01-01
Background Evidence increasingly shows that stream ecosystems greatly contribute to global carbon fluxes. This involves a tight coupling between biofilms, the dominant form of microbial life in streams, and dissolved organic carbon (DOC), a very significant pool of organic carbon on Earth. Yet, the interactions between microbial biodiversity and the molecular diversity of resource use are poorly understood. Methodology/Principal Findings Using six 40-m-long streamside flumes, we created a gradient of streambed landscapes with increasing spatial flow heterogeneity to assess how physical heterogeneity, inherent to streams, affects biofilm diversity and DOC use. We determined bacterial biodiversity in all six landscapes using 16S-rRNA fingerprinting and measured carbon uptake from glucose and DOC experimentally injected to all six flumes. The diversity of DOC molecules removed from the water was determined from ultrahigh-resolution Fourier Transform Ion Cyclotron Resonance mass spectrometry (FTICR-MS). Bacterial beta diversity, glucose and DOC uptake, and the molecular diversity of DOC use all increased with increasing flow heterogeneity. Causal modeling and path analyses of the experimental data revealed that the uptake of glucose was largely driven by physical processes related to flow heterogeneity, whereas biodiversity effects, such as complementarity, most likely contributed to the enhanced uptake of putatively recalcitrant DOC compounds in the streambeds with higher flow heterogeneity. Conclusions/Significance Our results suggest biophysical mechanisms, including hydrodynamics and microbial complementarity effects, through which physical heterogeneity induces changes of resource use and carbon fluxes in streams. These findings highlight the importance of fine-scale streambed heterogeneity for microbial biodiversity and ecosystem functioning in streams, where homogenization and loss of habitats increasingly reduce biodiversity. PMID:20376323
Accounting hierarchical heterogeneity of rock during its working off by explosive methods
NASA Astrophysics Data System (ADS)
Hachay, Olga; Khachay, Oleg
2017-04-01
First the phenomenon of zonal disintegration of rocks around excavations have been described and published as a discovery. Questions of structures formation are related to the fundamental problems of the natural sciences and the study of the structural appearance is one of the most important purposes of scientific knowledge. In real systems, considered in physics, it had been found spatial and temporal structures. The temporal structures are inseparable from the dynamics of the system, here it are particularly important principles of pointedness and causality. Formation of structures by irreversible processes is associated with a qualitative leap when it reaches the critical parameters. Self organization is a supercritical phenomenon when the system parameters exceed their critical values. When the system deviates greatly from its equilibrium, it's state variables satisfy the nonlinear equations. Non linearity is an important and common feature of the processes taking place far from equilibrium. By that the supercritical output of entropy is only possible if there is an unusual, special internal structure of the system. This means that self-organization is not a universal property of matter; it exists in certain internal and external conditions and is not associated with a particular class of substances. So, there are two classes of irreversible processes: 1.Destroying of the structure near the equilibrium position that is a universal property of systems under arbitrary conditions. 2. Occuring structures far from the equilibrium position under the conditions that the system is open and has a non-linear internal dynamics and its external parameters have supercritical parameters. Prigogine called them dissipative structures. The study of the morphology and dynamics of the migration of these zones is of particular importance when developing deep deposits, complicated by, dynamically events as rock bursts. Important tools for this study are the geophysical surveys. Because the information about the structure and state of the environment can be obtained from the geophysical data by interpreting them in frames of the model, which is an approximation to the real environment, therefore you must select it from the class of physically and geologically reasonable. For a description of the geological environment in the form of a rock massif with its natural and technogenic heterogeneity we should use more adequate description as is a discrete model of the environment in the form of a piece wise non-homogeneous block media with embedded heterogeneities of lower rank than the block size . This nesting can be traced back several times, ie, changing the scale of the study, we see that the heterogeneity of lower rank now appear as blocks for the irregularities of the next rank. The simple average of the measured geophysical parameters can lead to a distorted view of the structure of the environment and its evolution. The Institute of Geophysics, UB RAS has developed a hardware-methodological and interpretative system for studying the structure and state of complex geological environment, which has the potential instability and the ability to rebuild the hierarchy structure with significant external influence. The basis of this complex is the developed 3-D technique planshet electromagnetic induction studies in frequency geometrical variant, resting on one side on the interpretation software system for 3-D alternating electromagnetic fields, and on the other hand on developed by Ph.D. A.I.Chelovechkov device for carrying out the inductive research. On the basis of this technology the active monitoring of the structure and state of the rock massif inside the mines of different material composition can be provided, it can be carried out to detect short-term precursors of strong dynamic phenomena according to the electromagnetic induction monitoring. There are developed algorithms for modeling of electromagnetic fields in hierarchic heterogeneous media.
Kennedy, Christina G.; Mather, Martha E.; Smith, Joseph M.; Finn, John T.; Deegan, Linda A.
2016-01-01
Understanding environmental drivers of spatial patterns is an enduring ecological problem that is critical for effective biological conservation. Discontinuities (ecologically meaningful habitat breaks), both naturally occurring (e.g., river confluence, forest edge, drop-off) and anthropogenic (e.g., dams, roads), can influence the distribution of highly mobile organisms that have land- or seascape scale ranges. A geomorphic discontinuity framework, expanded to include ecological patterns, provides a way to incorporate important but irregularly distributed physical features into organism–environment relationships. Here, we test if migratory striped bass (Morone saxatilis) are consistently concentrated by spatial discontinuities and why. We quantified the distribution of 50 acoustically tagged striped bass at 40 sites within Plum Island Estuary, Massachusetts during four-monthly surveys relative to four physical discontinuities (sandbar, confluence, channel network, drop-off), one continuous physical feature (depth variation), and a geographic location variable (region). Despite moving throughout the estuary, striped bass were consistently clustered in the middle geographic region at sites with high sandbar area, close to channel networks, adjacent to complex confluences, with intermediate levels of bottom unevenness, and medium sized drop-offs. In addition, the highest striped bass concentrations occurred at sites with the greatest additive physical heterogeneity (i.e., where multiple discontinuities co-occurred). The need to incorporate irregularly distributed features in organism–environment relationships will increase as high-quality telemetry and GIS data accumulate for mobile organisms. The spatially explicit approach we used to address this challenge can aid both researchers who seek to understand the impact of predators on ecosystems and resource managers who require new approaches for biological conservation.
Rhodes, Ryan E; Saelens, Brian E; Sauvage-Mar, Claire
2018-05-16
Few people in most developed nations engage in regular physical activity (PA), despite its well-established health benefits. Socioecological models highlight the potential interaction of multiple factors from policy and the built environment to individual social cognition in explaining PA. The purpose of this review was to appraise this interaction tenet of the socioecological model between the built environment and social cognition to predict PA. Eligible studies had to have been published in peer-reviewed journals in the English language, and included any tests of interaction between social cognition and the built environment with PA. Literature searches, concluded in October 2017, used five common databases. Findings were grouped by type of PA outcomes (leisure, transportation, total PA and total moderate-vigorous PA [MVPA]), then grouped by the type of interactions between social cognitive and built environment constructs. The initial search yielded 308 hits, which was reduced to 22 independent studies of primarily high- to medium-quality after screening for eligibility criteria. The interaction tenet of the socioecological model was not supported for overall MVPA and total PA. By contrast, while there was heterogeneity of findings for leisure-time PA, environmental accessibility/convenience interacted with intention, and environmental aesthetics interacted with affective judgments, to predict leisure-time PA. Interactions between the built environment and social cognition in PA for transport are limited, with current results failing to support an effect. The results provide some support for interactive aspects of the built environment and social cognition in leisure-time PA, and thus highlight potential areas for integrated intervention of individual and environmental change.
Rethinking the evolution of specialization: A model for the evolution of phenotypic heterogeneity.
Rubin, Ilan N; Doebeli, Michael
2017-12-21
Phenotypic heterogeneity refers to genetically identical individuals that express different phenotypes, even when in the same environment. Traditionally, "bet-hedging" in fluctuating environments is offered as the explanation for the evolution of phenotypic heterogeneity. However, there are an increasing number of examples of microbial populations that display phenotypic heterogeneity in stable environments. Here we present an evolutionary model of phenotypic heterogeneity of microbial metabolism and a resultant theory for the evolution of phenotypic versus genetic specialization. We use two-dimensional adaptive dynamics to track the evolution of the population phenotype distribution of the expression of two metabolic processes with a concave trade-off. Rather than assume a Gaussian phenotype distribution, we use a Beta distribution that is capable of describing genotypes that manifest as individuals with two distinct phenotypes. Doing so, we find that environmental variation is not a necessary condition for the evolution of phenotypic heterogeneity, which can evolve as a form of specialization in a stable environment. There are two competing pressures driving the evolution of specialization: directional selection toward the evolution of phenotypic heterogeneity and disruptive selection toward genetically determined specialists. Because of the lack of a singular point in the two-dimensional adaptive dynamics and the fact that directional selection is a first order process, while disruptive selection is of second order, the evolution of phenotypic heterogeneity dominates and often precludes speciation. We find that branching, and therefore genetic specialization, occurs mainly under two conditions: the presence of a cost to maintaining a high phenotypic variance or when the effect of mutations is large. A cost to high phenotypic variance dampens the strength of selection toward phenotypic heterogeneity and, when sufficiently large, introduces a singular point into the evolutionary dynamics, effectively guaranteeing eventual branching. Large mutations allow the second order disruptive selection to dominate the first order selection toward phenotypic heterogeneity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Population dynamics on heterogeneous bacterial substrates
NASA Astrophysics Data System (ADS)
Mobius, Wolfram; Murray, Andrew W.; Nelson, David R.
2012-02-01
How species invade new territories and how these range expansions influence the population's genotypes are important questions in the field of population genetics. The majority of work addressing these questions focuses on homogeneous environments. Much less is known about the population dynamics and population genetics when the environmental conditions are heterogeneous in space. To better understand range expansions in two-dimensional heterogeneous environments, we employ a system of bacteria and bacteriophage, the viruses of bacteria. Thereby, the bacteria constitute the environment in which a population of bacteriophages expands. The spread of phage constitutes itself in lysis of bacteria and thus formation of clear regions on bacterial lawns, called plaques. We study the population dynamics and genetics of the expanding page for various patterns of environments.
Weis, Jerome J.; Madrigal, Daniel S.; Cardinale, Bradley J.
2008-01-01
Background One of the most common questions addressed by ecologists over the past decade has been-how does species richness impact the production of community biomass? Recent summaries of experiments have shown that species richness tends to enhance the production of biomass across a wide range of trophic groups and ecosystems; however, the biomass of diverse polycultures only rarely exceeds that of the single most productive species in a community (a phenomenon called ‘transgressive overyielding’). Some have hypothesized that the lack of transgressive overyielding is because experiments have generally been performed in overly-simplified, homogeneous environments where species have little opportunity to express the niche differences that lead to ‘complementary’ use of resources that can enhance biomass production. We tested this hypothesis in a laboratory experiment where we manipulated the richness of freshwater algae in homogeneous and heterogeneous nutrient environments. Methodology/Principal Findings Experimental units were comprised of patches containing either homogeneous nutrient ratios (16∶1 nitrogen to phosphorus (N∶P) in all patches) or heterogeneous nutrient ratios (ranging from 4∶1 to 64∶1 N∶P across patches). After allowing 6–10 generations of algal growth, we found that algal species richness had similar impacts on biomass production in both homo- and heterogeneous environments. Although four of the five algal species showed a strong response to nutrient heterogeneity, a single species dominated algal communities in both types of environments. As a result, a ‘selection effect’–where diversity maximizes the chance that a competitively superior species will be included in, and dominate the biomass of a community–was the primary mechanism by which richness influenced biomass in both homo- and heterogeneous environments. Conclusions/Significance Our study suggests that spatial heterogeneity, by itself, is not sufficient to generate strong effects of biodiversity on productivity. Rather, heterogeneity must be coupled with variation in the relative fitness of species across patches in order for spatial niche differentiation to generate complementary resource use. PMID:18665221
Probing Earth's State of Stress
NASA Astrophysics Data System (ADS)
Delorey, A. A.; Maceira, M.; Johnson, P. A.; Coblentz, D. D.
2016-12-01
The state of stress in the Earth's crust is a fundamental physical property that controls both engineered and natural systems. Engineered environments including those for hydrocarbon, geothermal energy, and mineral extraction, as well those for storage of wastewater, carbon dioxide, and nuclear fuel are as important as ever to our economy and environment. Yet, it is at spatial scales relevant to these activities where stress is least understood. Additionally, in engineered environments the rate of change in the stress field can be much higher than that of natural systems. In order to use subsurface resources more safely and effectively, we need to understand stress at the relevant temporal and spatial scales. We will present our latest results characterizing the state of stress in the Earth at scales relevant to engineered environments. Two important components of the state of stress are the orientation and magnitude of the stress tensor, and a measure of how close faults are to failure. The stress tensor at any point in a reservoir or repository has contributions from both far-field tectonic stress and local density heterogeneity. We jointly invert seismic (body and surface waves) and gravity data for a self-consistent model of elastic moduli and density and use the model to calculate the contribution of local heterogeneity to the total stress field. We then combine local and plate-scale contributions, using local indicators for calibration and ground-truth. In addition, we will present results from an analysis of the quantity and pattern of microseismicity as an indicator of critically stressed faults. Faults are triggered by transient stresses only when critically stressed (near failure). We show that tidal stresses can trigger earthquakes in both tectonic and reservoir environments and can reveal both stress and poroelastic conditions.
Reporting heterogeneity in self-assessed health among elderly Europeans.
Pfarr, Christian; Schmid, Andreas; Schneider, Udo
2012-10-05
Self-assessed health (SAH) is a frequently used measure of individuals' health status. It is also prone to reporting heterogeneity. To control for reporting heterogeneity objective measures of true health need to be included in an analysis. The topic becomes even more complex for cross-country comparisons, as many key variables tend to vary strongly across countries, influenced by cultural and institutional differences. This study aims at exploring the key drivers for reporting heterogeneity in SAH in an international context. To this end, country specific effects are accounted for and the objective health measure is concretized, distinguishing effects of mental and physical health conditions. We use panel data from the SHARE-project which provides a rich dataset on the elderly European population. To obtain distinct indicators for physical and mental health conditions two indices are constructed. Finally, to identify potential reporting heterogeneity in SAH a generalized ordered probit model is estimated. We find evidence that in addition to health behaviour, health care utilization, mental and physical health condition as well as country characteristics affect reporting behaviour. We conclude that observed and unobserved heterogeneity play an important role when analysing SAH and have to be taken into account.
Bilbao, Sonia; Martínez, Belén; Frasheri, Mirgita; Cürüklü, Baran
2017-01-01
Major challenges are presented when managing a large number of heterogeneous vehicles that have to communicate underwater in order to complete a global mission in a cooperative manner. In this kind of application domain, sending data through the environment presents issues that surpass the ones found in other overwater, distributed, cyber-physical systems (i.e., low bandwidth, unreliable transport medium, data representation and hardware high heterogeneity). This manuscript presents a Publish/Subscribe-based semantic middleware solution for unreliable scenarios and vehicle interoperability across cooperative and heterogeneous autonomous vehicles. The middleware relies on different iterations of the Data Distribution Service (DDS) software standard and their combined work between autonomous maritime vehicles and a control entity. It also uses several components with different functionalities deemed as mandatory for a semantic middleware architecture oriented to maritime operations (device and service registration, context awareness, access to the application layer) where other technologies are also interweaved with middleware (wireless communications, acoustic networks). Implementation details and test results, both in a laboratory and a deployment scenario, have been provided as a way to assess the quality of the system and its satisfactory performance. PMID:28783049
Rodríguez-Molina, Jesús; Bilbao, Sonia; Martínez, Belén; Frasheri, Mirgita; Cürüklü, Baran
2017-08-05
Major challenges are presented when managing a large number of heterogeneous vehicles that have to communicate underwater in order to complete a global mission in a cooperative manner. In this kind of application domain, sending data through the environment presents issues that surpass the ones found in other overwater, distributed, cyber-physical systems (i.e., low bandwidth, unreliable transport medium, data representation and hardware high heterogeneity). This manuscript presents a Publish/Subscribe-based semantic middleware solution for unreliable scenarios and vehicle interoperability across cooperative and heterogeneous autonomous vehicles. The middleware relies on different iterations of the Data Distribution Service (DDS) software standard and their combined work between autonomous maritime vehicles and a control entity. It also uses several components with different functionalities deemed as mandatory for a semantic middleware architecture oriented to maritime operations (device and service registration, context awareness, access to the application layer) where other technologies are also interweaved with middleware (wireless communications, acoustic networks). Implementation details and test results, both in a laboratory and a deployment scenario, have been provided as a way to assess the quality of the system and its satisfactory performance.
Going local: technologies for exploring bacterial microenvironments
Wessel, Aimee K.; Hmelo, Laura; Parsek, Matthew R.; Whiteley, Marvin
2014-01-01
Microorganisms lead social lives and use coordinated chemical and physical interactions to establish complex communities. Mechanistic insights into these interactions have revealed that there are remarkably intricate systems for coordinating microbial behaviour, but little is known about how these interactions proceed in the spatially organized communities that are found in nature. This Review describes the technologies available for spatially organizing small microbial communities and the analytical methods for characterizing the chemical environment surrounding these communities. Together, these complementary technologies have provided novel insights into the impact of spatial organization on both microbial behaviour and the development of phenotypic heterogeneity within microbial communities. PMID:23588251
3D printing for the design and fabrication of polymer-based gradient scaffolds.
Bracaglia, Laura G; Smith, Brandon T; Watson, Emma; Arumugasaamy, Navein; Mikos, Antonios G; Fisher, John P
2017-07-01
To accurately mimic the native tissue environment, tissue engineered scaffolds often need to have a highly controlled and varied display of three-dimensional (3D) architecture and geometrical cues. Additive manufacturing in tissue engineering has made possible the development of complex scaffolds that mimic the native tissue architectures. As such, architectural details that were previously unattainable or irreproducible can now be incorporated in an ordered and organized approach, further advancing the structural and chemical cues delivered to cells interacting with the scaffold. This control over the environment has given engineers the ability to unlock cellular machinery that is highly dependent upon the intricate heterogeneous environment of native tissue. Recent research into the incorporation of physical and chemical gradients within scaffolds indicates that integrating these features improves the function of a tissue engineered construct. This review covers recent advances on techniques to incorporate gradients into polymer scaffolds through additive manufacturing and evaluate the success of these techniques. As covered here, to best replicate different tissue types, one must be cognizant of the vastly different types of manufacturing techniques available to create these gradient scaffolds. We review the various types of additive manufacturing techniques that can be leveraged to fabricate scaffolds with heterogeneous properties and discuss methods to successfully characterize them. Additive manufacturing techniques have given tissue engineers the ability to precisely recapitulate the native architecture present within tissue. In addition, these techniques can be leveraged to create scaffolds with both physical and chemical gradients. This work offers insight into several techniques that can be used to generate graded scaffolds, depending on the desired gradient. Furthermore, it outlines methods to determine if the designed gradient was achieved. This review will help to condense the abundance of information that has been published on the creation and characterization of gradient scaffolds and to provide a single review discussing both methods for manufacturing gradient scaffolds and evaluating the establishment of a gradient. Copyright © 2017. Published by Elsevier Ltd.
A Backward-Lagrangian-Stochastic Footprint Model for the Urban Environment
NASA Astrophysics Data System (ADS)
Wang, Chenghao; Wang, Zhi-Hua; Yang, Jiachuan; Li, Qi
2018-02-01
Built terrains, with their complexity in morphology, high heterogeneity, and anthropogenic impact, impose substantial challenges in Earth-system modelling. In particular, estimation of the source areas and footprints of atmospheric measurements in cities requires realistic representation of the landscape characteristics and flow physics in urban areas, but has hitherto been heavily reliant on large-eddy simulations. In this study, we developed physical parametrization schemes for estimating urban footprints based on the backward-Lagrangian-stochastic algorithm, with the built environment represented by street canyons. The vertical profile of mean streamwise velocity is parametrized for the urban canopy and boundary layer. Flux footprints estimated by the proposed model show reasonable agreement with analytical predictions over flat surfaces without roughness elements, and with experimental observations over sparse plant canopies. Furthermore, comparisons of canyon flow and turbulence profiles and the subsequent footprints were made between the proposed model and large-eddy simulation data. The results suggest that the parametrized canyon wind and turbulence statistics, based on the simple similarity theory used, need to be further improved to yield more realistic urban footprint modelling.
Physical behaviour of anthropogenic light propagation into the nocturnal environment
Aubé, Martin
2015-01-01
Propagation of artificial light at night (ALAN) in the environment is now known to have non negligible consequences on fauna, flora and human health. These consequences depend on light levels and their spectral power distributions, which in turn rely on the efficiency of various physical processes involved in the radiative transfer of this light into the atmosphere and its interactions with the built and natural environment. ALAN can affect the living organisms by direct lighting and indirect lighting (scattered by the sky and clouds and/or reflected by local surfaces). This paper mainly focuses on the behaviour of the indirect light scattered under clear sky conditions. Various interaction processes between anthropogenic light sources and the natural environment are discussed. This work mostly relies on a sensitivity analysis conducted with the light pollution radiative transfer model, Illumina (Aubé et al. 2005 Light pollution modelling and detection in a heterogeneous environment: toward a night-time aerosol optical depth retrieval method. In Proc. SPIE 2005, vol. 5890, San Diego, California, USA). More specifically, the impact of (i) the molecular and aerosol scattering and absorption, (ii) the second order of scattering, (iii) the topography and obstacle blocking, (iv) the ground reflectance and (v) the spectrum of light devices and their angular emission functions are examined. This analysis considers different behaviour as a function of the distance from the city centre, along with different zenith viewing angles in the principal plane. PMID:25780231
Physical behaviour of anthropogenic light propagation into the nocturnal environment.
Aubé, Martin
2015-05-05
Propagation of artificial light at night (ALAN) in the environment is now known to have non negligible consequences on fauna, flora and human health. These consequences depend on light levels and their spectral power distributions, which in turn rely on the efficiency of various physical processes involved in the radiative transfer of this light into the atmosphere and its interactions with the built and natural environment. ALAN can affect the living organisms by direct lighting and indirect lighting (scattered by the sky and clouds and/or reflected by local surfaces). This paper mainly focuses on the behaviour of the indirect light scattered under clear sky conditions. Various interaction processes between anthropogenic light sources and the natural environment are discussed. This work mostly relies on a sensitivity analysis conducted with the light pollution radiative transfer model, Illumina (Aubé et al. 2005 Light pollution modelling and detection in a heterogeneous environment: toward a night-time aerosol optical depth retrieval method. In Proc. SPIE 2005, vol. 5890, San Diego, California, USA). More specifically, the impact of (i) the molecular and aerosol scattering and absorption, (ii) the second order of scattering, (iii) the topography and obstacle blocking, (iv) the ground reflectance and (v) the spectrum of light devices and their angular emission functions are examined. This analysis considers different behaviour as a function of the distance from the city centre, along with different zenith viewing angles in the principal plane. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Physical Heterogeneity and Aquatic Community Function in ...
The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) – large tracts of river with a similar geomorphic character - in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show the same basal resources were present throughout the Kanawha River but their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of secondary consumers – fish - were also recorded between FPZs. Overall, both the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity, supporting tenet 8 of the river ecosystem synthesis. In previous research efforts, we delineated the functional process zones (FPZs) of the Kanawha River. In this study, we examined the relationship between the hydrogeomorphically-derived zones with food webs.
NASA Astrophysics Data System (ADS)
Thorman, Staffan
1986-03-01
The relationship between the composition of the fish assemblages and the abiotic environment in seven shallow areas within the same geographical range in the southern Bothnian Sea were studied in May, July, September and November 1982. Eighteen species were found in the areas and the major species were Pungitius pungitius (L.), Pomatoschistus minutus (Pallas), Gasterosteus aculeatus (L.), Phoxinus phoxinus (L.), Pomatoschistus microps (Krøyer) and Gobius niger L. The main purpose of the study was to examine the possible effects of exposure, organic contents in sediments and habitat heterogeneity on species richness and abundance of the assemblages. There was a negative correlation between the organic contents of the sediment and exposure. There were no significant correlations between exposure, organic contents, size of the areas and species numbers but habitat heterogeneity was positively correlated with species number. There were no correlations between fish abundance and heterogeneity of the areas. Negative correlations occurred between the exposure of the areas and fish abundance. The amounts of the pooled benthic fauna were negatively correlated to the exposure. The species/area hypothesis finds no support in the results, because there was no correlation between habitat heterogeneity of an area and its size. The effective fetch combined with the heterogeneity measurement of the areas seemed to be useful indicators of the species composition and fish abundance. Habitat heterogeneity and exposure were the most important structuring factors of these shallow water fish assemblages during the ice-free period and within the local geographical range. The assemblages consist of a mixture of species with marine or limnic origin and they have probably not evolved in the Bothnian Sea or together. They are most likely regulated by their physiological plasticity and not by interactions with other species.
Rinkevicius, Zilvinas; Li, Xin; Sandberg, Jaime A R; Mikkelsen, Kurt V; Ågren, Hans
2014-03-11
We introduce a density functional theory/molecular mechanical approach for computation of linear response properties of molecules in heterogeneous environments, such as metal surfaces or nanoparticles embedded in solvents. The heterogeneous embedding environment, consisting from metallic and nonmetallic parts, is described by combined force fields, where conventional force fields are used for the nonmetallic part and capacitance-polarization-based force fields are used for the metallic part. The presented approach enables studies of properties and spectra of systems embedded in or placed at arbitrary shaped metallic surfaces, clusters, or nanoparticles. The capability and performance of the proposed approach is illustrated by sample calculations of optical absorption spectra of thymidine absorbed on gold surfaces in an aqueous environment, where we study how different organizations of the gold surface and how the combined, nonadditive effect of the two environments is reflected in the optical absorption spectrum.
Clonal evolution models of tumor heterogeneity.
Shlush, Liran I; Hershkovitz, Dov
2015-01-01
Somatic/clonal evolution is the process of sequential acquisition of vertically transmittable genetic/epigenetic elements in multicellular organisms. Cancer is the result of somatic evolution. Understanding the processes that shape the evolution of individual tumors might help us to treat cancer more efficiently. The initiating genetic/epigenetic events occur in functional cells and provide the cell of origin a selective advantage under a changing environment. The initiating genetic events tend to be enriched in specific tissues (and are sometimes specific for those tissues), as different tissues undergo different changes in the environment that will activate selective forces on different cells of origin. For the initial clonal expansion to occur premalignant clones need to have a relative fitness advantage over their competitors. It is estimated that the premalignant phase can take several years. Once the premalignant clonal expansion is established, the premalignant cells will contribute to the changing environment and will start competing among themselves. In late stages of cancer evolution the environmental changes might be similar across different tissues, including a lack of physical space, a shortage of energy, and activation of the immune system, and more and more of the hallmarks of cancer will evolve. In this review we will explore the possible clinical relevance of the heterogeneity that evolves during this long somatic evolution. Above all, it should be stressed that the earlier the clonal expansion is recognized, the less diverse and less fit for survival the cells in the population are.
Biophysical dynamics in disorderly environments.
Nelson, David R
2012-01-01
Three areas where time-independent disorder plays a key role in biological dynamics far from equilibrium are reviewed. We first discuss the anomalous localization dynamics that arises when a single species spreads in space and time via diffusion and fluid advection in the presence of frozen heterogeneities in the growth rate. Next we treat the unzipping of double-stranded DNA as a function of force and temperature, a challenge that must be surmounted every time a cell divides. Heterogeneity in the DNA sequence dominates the physics of single-molecule force-extension curves for a broad range of forces upon approaching a sharp unzipping transition. The dynamics of the unzipping fork exhibits anomalous drift and diffusion in a similar range above this transition, with energy barriers that scale as the square root of the genome size. Finally, we describe how activated peptidoglycan strand extension sites, called dislocations in materials science, can mediate the growth of bacterial cell walls. Enzymatically driven circumferential motions of a few dozen of these defects are sufficient to describe the exponential elongation rates observed in experiments on Escherichia coli in a nutrient-rich environment. However, long-range elastic forces transmitted by the peptidoglycan meshwork cause the moving dislocations to interact not only with each other, but also with a disorderly array of frozen, inactivated strand ends.
Clark, Benton C; Kolb, Vera M
2018-05-11
In the “comet pond” model, a rare combination of circumstances enables the entry and landing of pristine organic material onto a planetary surface with the creation of a pond by a soft impact and melting of entrained ices. Formation of the constituents of the comet in the cold interstellar medium and our circumstellar disk results in multiple constituents at disequilibrium which undergo rapid chemical reactions in the warmer, liquid environment. The planetary surface also provides minerals and atmospheric gases which chemically interact with the pond’s organic- and trace-element-rich constituents. Pond physical morphology and the heterogeneities imposed by gravitational forces (bottom sludge; surface scum) and weather result in a highly heterogeneous variety of macro- and microenvironments. Wet/dry, freeze/thaw, and natural chromatography processes further promote certain reaction sequences. Evaporation concentrates organics less volatile than water. Freezing concentrates all soluble organics into a residual liquid phase, including CH₃OH, HCN, etc. The pond’s evolutionary processes culminate in the creation of a Macrobiont with the metabolically equivalent capabilities of energy transduction and replication of RNA (or its progenitor informational macromolecule), from which smaller organisms can emerge. Planet-wide dispersal of microorganisms is achieved through wind transport, groundwater, and/or spillover from the pond into surface hydrologic networks.
NASA Astrophysics Data System (ADS)
Bouchaud, Elisabeth; Soukiassian, Patrick
2009-11-01
Although fracture is a very common experience in every day life, it still harbours many unanswered questions. New avenues of investigation arise concerning the basic mechanisms leading to deformation and failure in heterogeneous materials, particularly in non-metals. The processes involved are even more complex when plasticity, thermal fluctuations or chemical interactions between the material and its environment introduce a specific time scale. Sub-critical failure, which may be reached at unexpectedly low loads, is particularly important for silicate glasses. Another source of complications originates from dynamic fracture, when loading rates become so high that the acoustic waves produced by the crack interact with the material heterogeneities, in turn producing new waves that modify the propagation. Recent progress in experimental techniques, allowing one to test and probe materials at sufficiently small length or time scales or in three dimensions, has led to a quantitative understanding of the physical processes involved. In parallel, simulations have also progressed, by extending the time and length scales they are able to reach, and thus attaining experimentally accessible conditions. However, one central question remains the inclusion of these basic mechanisms into a statistical description. This is not an easy task, mostly because of the strong stress gradients present at the tip of a crack, and because the averaging of fracture properties over a heterogeneous material, containing more or less brittle phases, requires rare event statistics. Substantial progress has been made in models and simulations based on accurate experiments. From these models, scaling laws have been derived, linking the behaviour at a micro- or even nano-scale to the macroscopic and even to geophysical scales. The reviews in this Cluster Issue of Journal of Physics D: Applied Physics cover several of these important topics, including the physical processes in fracture mechanisms, the sub-critical failure issue, the dynamical fracture propagation, and the scaling laws from the micro- to the geophysical scales. Achievements and progress are reported, and the many open questions are discussed, which should provide a sound basis for present and future prospects.
Microfluidic Experiments Studying Pore Scale Interactions of Microbes and Geochemistry
NASA Astrophysics Data System (ADS)
Chen, M.; Kocar, B. D.
2016-12-01
Understanding how physical phenomena, chemical reactions, and microbial behavior interact at the pore-scale is crucial to understanding larger scale trends in groundwater chemistry. Recent studies illustrate the utility of microfluidic devices for illuminating pore-scale physical-biogeochemical processes and their control(s) on the cycling of iron, uranium, and other important elements 1-3. These experimental systems are ideal for examining geochemical reactions mediated by microbes, which include processes governed by complex biological phenomenon (e.g. biofilm formation, etc.)4. We present results of microfluidic experiments using a model metal reducing bacteria and varying pore geometries, exploring the limitations of the microorganisms' ability to access tight pore spaces, and examining coupled biogeochemical-physical controls on the cycling of redox sensitive metals. Experimental results will provide an enhanced understanding of coupled physical-biogeochemical processes transpiring at the pore-scale, and will constrain and compliment continuum models used to predict and describe the subsurface cycling of redox-sensitive elements5. 1. Vrionis, H. A. et al. Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl. Environ. Microbiol. 71, 6308-6318 (2005). 2. Pearce, C. I. et al. Pore-scale characterization of biogeochemical controls on iron and uranium speciation under flow conditions. Environ. Sci. Technol. 46, 7992-8000 (2012). 3. Zhang, C., Liu, C. & Shi, Z. Micromodel investigation of transport effect on the kinetics of reductive dissolution of hematite. Environ. Sci. Technol. 47, 4131-4139 (2013). 4. Ginn, T. R. et al. Processes in microbial transport in the natural subsurface. Adv. Water Resour. 25, 1017-1042 (2002). 5. Scheibe, T. D. et al. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb. Biotechnol. 2, 274-286 (2009).
Feuillet, Thierry; Charreire, Hélène; Menai, Mehdi; Salze, Paul; Simon, Chantal; Dugas, Julien; Hercberg, Serge; Andreeva, Valentina A; Enaux, Christophe; Weber, Christiane; Oppert, Jean-Michel
2015-03-25
According to the social ecological model of health-related behaviors, it is now well accepted that environmental factors influence habitual physical activity. Most previous studies on physical activity determinants have assumed spatial homogeneity across the study area, i.e. that the association between the environment and physical activity is the same whatever the location. The main novelty of our study was to explore geographical variation in the relationships between active commuting (walking and cycling to/from work) and residential environmental characteristics. 4,164 adults from the ongoing Nutrinet-Santé web-cohort, residing in and around Paris, France, were studied using a geographically weighted Poisson regression (GWPR) model. Objective environmental variables, including both the built and the socio-economic characteristics around the place of residence of individuals, were assessed by GIS-based measures. Perceived environmental factors (index including safety, aesthetics, and pollution) were reported by questionnaires. Our results show that the influence of the overall neighborhood environment appeared to be more pronounced in the suburban southern part of the study area (Val-de-Marne) compared to Paris inner city, whereas more complex patterns were found elsewhere. Active commuting was positively associated with the built environment only in the southern and northeastern parts of the study area, whereas positive associations with the socio-economic environment were found only in some specific locations in the southern and northern parts of the study area. Similar local variations were observed for the perceived environmental variables. These results suggest that: (i) when applied to active commuting, the social ecological conceptual framework should be locally nuanced, and (ii) local rather than global targeting of public health policies might be more efficient in promoting active commuting.
The physics of biofilms—an introduction
NASA Astrophysics Data System (ADS)
Mazza, Marco G.
2016-05-01
Biofilms are complex, self-organized consortia of microorganisms that produce a functional, protective matrix of biomolecules. Physically, the structure of a biofilm can be described as an entangled polymer network which grows and changes under the effect of gradients of nutrients, cell differentiation, quorum sensing, bacterial motion, and interaction with the environment. Its development is complex, and constantly adapting to environmental stimuli. Here, we review the fundamental physical processes that govern the inception, growth and development of a biofilm. Two important mechanisms guide the initial phase in a biofilm life-cycle: (i) the cell motility near or at a solid interface, and (ii) the cellular adhesion. Both processes are crucial for initiating the colony and for ensuring its stability. A mature biofilm behaves as a viscoelastic fluid with a complex, history-dependent dynamics. We discuss progress and challenges in the determination of its physical properties. Experimental and theoretical methods are now available that aim at integrating the biofilm’s hierarchy of interactions, and the heterogeneity of composition and spatial structures. We also discuss important directions in which future work should be directed.
Accounting for Heterogeneous-Phase Chemistry in Air Quality Models - Research Needs and Applications
Understanding the extent to which heterogeneous chemical reactions affect the burden and distribution of atmospheric pollutants is important because heterogeneous surfaces are ubiquitous throughout our environment. They include materials such as aerosol particles, clouds and fog,...
Bacterial Trapping in Porous Media Flows
NASA Astrophysics Data System (ADS)
Dehkharghani, Amin; Waisbord, Nicolas; Dunkel, Jörn; Guasto, Jeffrey
2016-11-01
Swimming bacteria inhabit heterogeneous, microstructured environments that are often characterized by complex, ambient flows. Understanding the physical mechanisms underlying cell transport in these systems is key to controlling important processes such as bioremediation in porous soils and infections in human tissues. We study the transport of swimming bacteria (Bacillus subtilis) in quasi-two-dimensional porous microfluidic channels with a range of periodic microstructures and flow strengths. Measured cell trajectories and the local cell number density reveal the formation of filamentous cell concentration patterns within the porous structures. The local cell densification is maximized at shear rates in the range 1-10 s-1, but widely varies with pore geometry and flow topology. Experimental observations are complemented by Langevin simulations to demonstrate that the filamentous patterns result from a coupling of bacterial motility to the complex flow fields via Jeffery orbits, which effectively 'trap' the bacteria on streamlines. The resulting microscopic heterogeneity observed here suppresses bacterial transport and likely has implications for both mixing and cell nutrient uptake in porous media flows. NSF CBET-1511340.
Zeki Al-Hazzouri, Adina; Aiello, Allison E.
2011-01-01
Objectives. Early life circumstances influence health across the life span. Migration and ethnicity may modify the lifetime trajectory of socioeconomic status (SES) and lead to heterogeneity in cognitive aging in later life. Methods. We examined the effects of both lifetime socioeconomic trajectory and cumulative disadvantage from childhood through adulthood on late life cognitive performance in a 9-year cohort of 1,789 Mexican Americans aged 60–100 years in 1998–1999. Results. Compared with those with low SES sustained over the life course, we found that those with more advantaged lifetime SES trajectories experienced fewer declines on a test of global cognitive function and a short-term verbal memory test. These associations are larger in first- and second-generation immigrant families. Discussion. Heterogeneity of cognitive aging among diverse race/ethnic groups may be influenced by intergenerational changes in SES, cultural norms, and behaviors and changes in health related to changes in the social and physical environment. PMID:21743044
Haan, Mary N; Zeki Al-Hazzouri, Adina; Aiello, Allison E
2011-07-01
Early life circumstances influence health across the life span. Migration and ethnicity may modify the lifetime trajectory of socioeconomic status (SES) and lead to heterogeneity in cognitive aging in later life. We examined the effects of both lifetime socioeconomic trajectory and cumulative disadvantage from childhood through adulthood on late life cognitive performance in a 9-year cohort of 1,789 Mexican Americans aged 60-100 years in 1998-1999. Compared with those with low SES sustained over the life course, we found that those with more advantaged lifetime SES trajectories experienced fewer declines on a test of global cognitive function and a short-term verbal memory test. These associations are larger in first- and second-generation immigrant families. Heterogeneity of cognitive aging among diverse race/ethnic groups may be influenced by intergenerational changes in SES, cultural norms, and behaviors and changes in health related to changes in the social and physical environment.
Dynamically allocated virtual clustering management system
NASA Astrophysics Data System (ADS)
Marcus, Kelvin; Cannata, Jess
2013-05-01
The U.S Army Research Laboratory (ARL) has built a "Wireless Emulation Lab" to support research in wireless mobile networks. In our current experimentation environment, our researchers need the capability to run clusters of heterogeneous nodes to model emulated wireless tactical networks where each node could contain a different operating system, application set, and physical hardware. To complicate matters, most experiments require the researcher to have root privileges. Our previous solution of using a single shared cluster of statically deployed virtual machines did not sufficiently separate each user's experiment due to undesirable network crosstalk, thus only one experiment could be run at a time. In addition, the cluster did not make efficient use of our servers and physical networks. To address these concerns, we created the Dynamically Allocated Virtual Clustering management system (DAVC). This system leverages existing open-source software to create private clusters of nodes that are either virtual or physical machines. These clusters can be utilized for software development, experimentation, and integration with existing hardware and software. The system uses the Grid Engine job scheduler to efficiently allocate virtual machines to idle systems and networks. The system deploys stateless nodes via network booting. The system uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex, private networks eliminating the need to map each virtual machine to a specific switch port. The system monitors the health of the clusters and the underlying physical servers and it maintains cluster usage statistics for historical trends. Users can start private clusters of heterogeneous nodes with root privileges for the duration of the experiment. Users also control when to shutdown their clusters.
On the long-term fitness of cells in periodically switching environments.
Pang, Ning-Ning; Tzeng, Wen-Jer
2008-01-01
Because all the cell populations are capable of making switches between different genetic expression states in response to the environmental change, Thattai and van Oudenaarden (Genetics 167, 523-530, 2004) have raised a very interesting question: In a constantly fluctuating environment, which type of cell population (heterogeneous or homogeneous) is fitter in the long term? This problem is very important to development and evolution biology. We thus take an extensive analysis about how the cell population evolves in a periodically switching environment either with symmetrical time-span or asymmetrical time-span. A complete picture of the phase diagrams for both cases is obtained. Furthermore, we find that the systems with time-dependent cellular transitions all collapse to the same set of dynamical equations with the modified parameters. Furthermore, we also explain in detail how the fitness problem bears much resemblance to the phenomenon, stochastic resonance, in physical sciences. Our results could be helpful for the biologists to design artificial evolution experiments and unveil the mystery of development and evolution.
Gong, Yi; Palmer, Stephen; Gallacher, John; Marsden, Terry; Fone, David
2016-11-01
The urban environment has become the main place that people live and work. As a result it can have profound impacts on our health. While much of the literature has focused on physical health, less attention has been paid to the possible psychological impacts of the urban environment. In order to understand the potential relevance and importance of the urban environment to population mental health, we carried out a systematic review to examine the associations between objective measurements of the urban environment and psychological distress, independently of the individual's subjective perceptions of the urban environment. 11 peer-reviewed papers published in English between January 2000 and February 2012 were identified. All studies were cross-sectional. Despite heterogeneity in study design, the overall findings suggested that the urban environment has measurable associations with psychological distress, including housing with deck access, neighbourhood quality, the amount of green space, land-use mix, industry activity and traffic volume. The evidence supports the need for development of interventions to improve mental health through changing the urban environment. We also conclude that new methods for measuring the urban environment objectively are needed which are meaningful to planners. In particular, future work should look at the spatial-temporal dynamic of the urban environment measured in Geographical Information System (GIS) in relation to psychological distress. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Mandal, Shovon; Shurin, Jonathan B.; Efroymson, Rebecca A.; ...
2018-05-23
The relationship between biodiversity and productivity has emerged as a central theme in ecology. Mechanistic explanations for this relationship suggest that the role organisms play in the ecosystem (i.e., niches or functional traits) is a better predictor of ecosystem stability and productivity than taxonomic richness. Here, we tested the capacity of functional diversity in nitrogen uptake in experimental microalgal communities to predict the complementarity effect (CE) and selection effect (SE) of biodiversity on productivity. We grew five algal species as monocultures and as polycultures in pairwise combinations in homogeneous (ammonium, nitrate, or urea alone) and heterogeneous nitrogen (mixed nitrogen) environmentsmore » to determine whether complementarity between species may be enhanced in heterogeneous environments. We show that the positive diversity effects on productivity in heterogeneous environments resulted from complementarity effects with no positive contribution by species–specific SEs. Positive biodiversity effects in homogeneous environments, when present (nitrate and urea treatments but not ammonium), were driven both by CE and SE. Our results suggest that functional diversity increases species complementarity and productivity mainly in heterogeneous resource environments. Furthermore, these results provide evidence that the positive effect of functional diversity on community productivity depends on the diversity of resources present in the environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, Shovon; Shurin, Jonathan B.; Efroymson, Rebecca A.
The relationship between biodiversity and productivity has emerged as a central theme in ecology. Mechanistic explanations for this relationship suggest that the role organisms play in the ecosystem (i.e., niches or functional traits) is a better predictor of ecosystem stability and productivity than taxonomic richness. Here, we tested the capacity of functional diversity in nitrogen uptake in experimental microalgal communities to predict the complementarity effect (CE) and selection effect (SE) of biodiversity on productivity. We grew five algal species as monocultures and as polycultures in pairwise combinations in homogeneous (ammonium, nitrate, or urea alone) and heterogeneous nitrogen (mixed nitrogen) environmentsmore » to determine whether complementarity between species may be enhanced in heterogeneous environments. We show that the positive diversity effects on productivity in heterogeneous environments resulted from complementarity effects with no positive contribution by species–specific SEs. Positive biodiversity effects in homogeneous environments, when present (nitrate and urea treatments but not ammonium), were driven both by CE and SE. Our results suggest that functional diversity increases species complementarity and productivity mainly in heterogeneous resource environments. Furthermore, these results provide evidence that the positive effect of functional diversity on community productivity depends on the diversity of resources present in the environment.« less
NASA Astrophysics Data System (ADS)
Itina, Tatiana E.
2017-02-01
Key issues of the controlled synthesis of nanoparticles and nanostructures, as well as laser-particle interactions are considered in the context of the latest applications appearing in many fields such as photonics, medicine, 3D printing, etc. The results of a multi-physics numerical study of laser interaction with nanoparticles will be presented in the presence of several environments. In particular, attention will be paid to the numerical study of laser interactions with heterogeneous materials (eg. colloidal liquids and/or nanoparticles in a dielectric medium) and the aggregation/sintering/fragmentation processes induced by ultra-short laser pulses.
Thrush, Simon F; Hewitt, Judi E; Cummings, Vonda J; Norkko, Alf; Chiantore, Mariachiara
2010-07-30
High Antarctic coastal marine environments are comparatively pristine with strong environmental gradients, which make them important places to investigate biodiversity relationships. Defining how different environmental features contribute to shifts in beta-diversity is especially important as these shifts reflect both spatio-temporal variations in species richness and the degree of ecological separation between local and regional species pools. We used complementary techniques (species accumulation models, multivariate variance partitioning and generalized linear models) to assess how the roles of productivity, bio-physical habitat heterogeneity and connectivity change with spatial scales from metres to 100's of km. Our results demonstrated that the relative importance of specific processes influencing species accumulation and beta-diversity changed with increasing spatial scale, and that patterns were never driven by only one factor. Bio-physical habitat heterogeneity had a strong influence on beta-diversity at scales <290 km, while the effects of productivity were low and significant only at scales >40 km. Our analysis supports the emphasis on the analysis of diversity relationships across multiple spatial scales and highlights the unequal connectivity of individual sites to the regional species pool. This has important implications for resilience to habitat loss and community homogenisation, especially for Antarctic benthic communities where rates of recovery from disturbance are slow, there is a high ratio of poor-dispersing and brooding species, and high biogenic habitat heterogeneity and spatio-temporal variability in primary production make the system vulnerable to disturbance. Consequently, large areas need to be included within marine protected areas for effective management and conservation of these special ecosystems in the face of increasing anthropogenic disturbance.
Heterogeneous Distributed Computing for Computational Aerosciences
NASA Technical Reports Server (NTRS)
Sunderam, Vaidy S.
1998-01-01
The research supported under this award focuses on heterogeneous distributed computing for high-performance applications, with particular emphasis on computational aerosciences. The overall goal of this project was to and investigate issues in, and develop solutions to, efficient execution of computational aeroscience codes in heterogeneous concurrent computing environments. In particular, we worked in the context of the PVM[1] system and, subsequent to detailed conversion efforts and performance benchmarking, devising novel techniques to increase the efficacy of heterogeneous networked environments for computational aerosciences. Our work has been based upon the NAS Parallel Benchmark suite, but has also recently expanded in scope to include the NAS I/O benchmarks as specified in the NHT-1 document. In this report we summarize our research accomplishments under the auspices of the grant.
CQPSO scheduling algorithm for heterogeneous multi-core DAG task model
NASA Astrophysics Data System (ADS)
Zhai, Wenzheng; Hu, Yue-Li; Ran, Feng
2017-07-01
Efficient task scheduling is critical to achieve high performance in a heterogeneous multi-core computing environment. The paper focuses on the heterogeneous multi-core directed acyclic graph (DAG) task model and proposes a novel task scheduling method based on an improved chaotic quantum-behaved particle swarm optimization (CQPSO) algorithm. A task priority scheduling list was built. A processor with minimum cumulative earliest finish time (EFT) was acted as the object of the first task assignment. The task precedence relationships were satisfied and the total execution time of all tasks was minimized. The experimental results show that the proposed algorithm has the advantage of optimization abilities, simple and feasible, fast convergence, and can be applied to the task scheduling optimization for other heterogeneous and distributed environment.
Henry, Teague; Gesell, Sabina B.; Ip, Edward H.
2016-01-01
Background Social networks influence children and adolescents’ physical activity. The focus of this paper is to examine the differences in the effects of physical activity on friendship selection, with eye to the implications on physical activity interventions for young children. Network interventions to increase physical activity are warranted but have not been conducted. Prior to implementing a network intervention in the field, it is important to understand potential heterogeneities in the effects that activity level have on network structure. In this study, the associations between activity level and cross sectional network structure, and activity level and change in network structure are assessed. Methods We studied a real-world friendship network among 81 children (average age 7.96 years) who lived in low SES neighborhoods, attended public schools, and attended one of two structured aftercare programs, of which one has existed and the other was new. We used the exponential random graph model (ERGMs) and its longitudinal extension to evaluate the association between activity level and various demographic factors in having, forming, and dissolving friendship. Due to heterogeneity between the friendship networks within the aftercare programs, separate analyses were conducted for each network. Results There was heterogeneity in the effect of physical activity on both cross sectional network structure and the formation and dissolution processes, both across time and between networks. Conclusions Network analysis could be used to assess the unique structure and dynamics of a social network before an intervention is implemented, so as to optimize the effects of the network intervention for increasing childhood physical activity. Additionally, if peer selection processes are changing within a network, a static network intervention strategy for childhood physical activity could become inefficient as the network evolves. PMID:27867518
Wang, Yong-Jian; Müller-Schärer, Heinz; van Kleunen, Mark; Cai, Ai-Ming; Zhang, Ping; Yan, Rong; Dong, Bi-Cheng; Yu, Fei-Hai
2017-12-01
What confers invasive alien plants a competitive advantage over native plants remains open to debate. Many of the world's worst invasive alien plants are clonal and able to share resources within clones (clonal integration), particularly in heterogeneous environments. Here, we tested the hypothesis that clonal integration benefits invasive clonal plants more than natives and thus confers invasives a competitive advantage. We selected five congeneric and naturally co-occurring pairs of invasive alien and native clonal plants in China, and grew pairs of connected and disconnected ramets under heterogeneous light, soil nutrient and water conditions that are commonly encountered by alien plants during their invasion into new areas. Clonal integration increased biomass of all plants in all three heterogeneous resource environments. However, invasive plants benefited more from clonal integration than natives. Consequently, invasive plants produced more biomass than natives. Our results indicate that clonal integration may confer invasive alien clonal plants a competitive advantage over natives. Therefore, differences in the ability of clonal integration could potentially explain, at least partly, the invasion success of alien clonal plants in areas where resources are heterogeneously distributed. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Pandey, Vaibhav; Saini, Poonam
2018-06-01
MapReduce (MR) computing paradigm and its open source implementation Hadoop have become a de facto standard to process big data in a distributed environment. Initially, the Hadoop system was homogeneous in three significant aspects, namely, user, workload, and cluster (hardware). However, with growing variety of MR jobs and inclusion of different configurations of nodes in the existing cluster, heterogeneity has become an essential part of Hadoop systems. The heterogeneity factors adversely affect the performance of a Hadoop scheduler and limit the overall throughput of the system. To overcome this problem, various heterogeneous Hadoop schedulers have been proposed in the literature. Existing survey works in this area mostly cover homogeneous schedulers and classify them on the basis of quality of service parameters they optimize. Hence, there is a need to study the heterogeneous Hadoop schedulers on the basis of various heterogeneity factors considered by them. In this survey article, we first discuss different heterogeneity factors that typically exist in a Hadoop system and then explore various challenges that arise while designing the schedulers in the presence of such heterogeneity. Afterward, we present the comparative study of heterogeneous scheduling algorithms available in the literature and classify them by the previously said heterogeneity factors. Lastly, we investigate different methods and environment used for evaluation of discussed Hadoop schedulers.
Microstencils to generate defined, multi-species patterns of bacteria
Timm, Collin M.; Hansen, Ryan R.; Doktycz, Mitchel J.; ...
2015-11-12
Microbial communities are complex heterogeneous systems that are influenced by physical and chemical interactions with their environment, host, and community members. Techniques that facilitate the quantitative evaluation of how microscale organization influences the morphogenesis of multispecies communities could provide valuable insights into the dynamic behavior and organization of natural communities, the design of synthetic environments for multispecies culture, and the engineering of artificial consortia. In this work, we demonstrate a method for patterning microbes into simple arrangements that allow the quantitative measurement of growth dynamics as a function of their proximity to one another. The method combines parylene-based liftoff techniquesmore » with microfluidic delivery to simultaneously pattern multiple bacterial species with high viability using low-cost, customizable methods. Furthermore, quantitative measurements of bacterial growth for two competing isolates demonstrate that spatial coordination can play a critical role in multispecies growth and structure.« less
NASA Astrophysics Data System (ADS)
Torres, Hilario; Iaccarino, Gianluca
2017-11-01
Soleil-X is a multi-physics solver being developed at Stanford University as a part of the Predictive Science Academic Alliance Program II. Our goal is to conduct high fidelity simulations of particle laden turbulent flows in a radiation environment for solar energy receiver applications as well as to demonstrate our readiness to effectively utilize next generation Exascale machines. The novel aspect of Soleil-X is that it is built upon the Legion runtime system to enable easy portability to different parallel distributed heterogeneous architectures while also being written entirely in high-level/high-productivity languages (Ebb and Regent). An overview of the Soleil-X software architecture will be given. Results from coupled fluid flow, Lagrangian point particle tracking, and thermal radiation simulations will be presented. Performance diagnostic tools and metrics corresponding the the same cases will also be discussed. US Department of Energy, National Nuclear Security Administration.
Mobility in hospital work: towards a pervasive computing hospital environment.
Morán, Elisa B; Tentori, Monica; González, Víctor M; Favela, Jesus; Martínez-Garcia, Ana I
2007-01-01
Handheld computers are increasingly being used by hospital workers. With the integration of wireless networks into hospital information systems, handheld computers can provide the basis for a pervasive computing hospital environment; to develop this designers need empirical information to understand how hospital workers interact with information while moving around. To characterise the medical phenomena we report the results of a workplace study conducted in a hospital. We found that individuals spend about half of their time at their base location, where most of their interactions occur. On average, our informants spent 23% of their time performing information management tasks, followed by coordination (17.08%), clinical case assessment (15.35%) and direct patient care (12.6%). We discuss how our results offer insights for the design of pervasive computing technology, and directions for further research and development in this field such as transferring information between heterogeneous devices and integration of the physical and digital domains.
Selective advantage of tolerant cultural traits in the Axelrod-Schelling model.
Gracia-Lázaro, C; Floría, L M; Moreno, Y
2011-05-01
The Axelrod-Schelling model incorporates into the original Axelrod's model of cultural dissemination the possibility that cultural agents placed in culturally dissimilar environments move to other places, the strength of this mobility being controlled by an intolerance parameter. By allowing heterogeneity in the intolerance of cultural agents, and considering it as a cultural feature, i.e., susceptible of cultural transmission (thus breaking the original symmetry of Axelrod-Schelling dynamics), we address here the question of whether tolerant or intolerant traits are more likely to become dominant in the long-term cultural dynamics. Our results show that tolerant traits possess a clear selective advantage in the framework of the Axelrod-Schelling model. We show that the reason for this selective advantage is the development, as time evolves, of a positive correlation between the number of neighbors that an agent has in its environment and its tolerant character. © 2011 American Physical Society
Microstencils to generate defined, multi-species patterns of bacteria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timm, Collin M.; Hansen, Ryan R.; Doktycz, Mitchel J.
Microbial communities are complex heterogeneous systems that are influenced by physical and chemical interactions with their environment, host, and community members. Techniques that facilitate the quantitative evaluation of how microscale organization influences the morphogenesis of multispecies communities could provide valuable insights into the dynamic behavior and organization of natural communities, the design of synthetic environments for multispecies culture, and the engineering of artificial consortia. In this work, we demonstrate a method for patterning microbes into simple arrangements that allow the quantitative measurement of growth dynamics as a function of their proximity to one another. The method combines parylene-based liftoff techniquesmore » with microfluidic delivery to simultaneously pattern multiple bacterial species with high viability using low-cost, customizable methods. Furthermore, quantitative measurements of bacterial growth for two competing isolates demonstrate that spatial coordination can play a critical role in multispecies growth and structure.« less
An innovative multimodal virtual platform for communication with devices in a natural way
NASA Astrophysics Data System (ADS)
Kinkar, Chhayarani R.; Golash, Richa; Upadhyay, Akhilesh R.
2012-03-01
As technology grows people are diverted and are more interested in communicating with machine or computer naturally. This will make machine more compact and portable by avoiding remote, keyboard etc. also it will help them to live in an environment free from electromagnetic waves. This thought has made 'recognition of natural modality in human computer interaction' a most appealing and promising research field. Simultaneously it has been observed that using single mode of interaction limit the complete utilization of commands as well as data flow. In this paper a multimodal platform, where out of many natural modalities like eye gaze, speech, voice, face etc. human gestures are combined with human voice is proposed which will minimize the mean square error. This will loosen the strict environment needed for accurate and robust interaction while using single mode. Gesture complement Speech, gestures are ideal for direct object manipulation and natural language is used for descriptive tasks. Human computer interaction basically requires two broad sections recognition and interpretation. Recognition and interpretation of natural modality in complex binary instruction is a tough task as it integrate real world to virtual environment. The main idea of the paper is to develop a efficient model for data fusion coming from heterogeneous sensors, camera and microphone. Through this paper we have analyzed that the efficiency is increased if heterogeneous data (image & voice) is combined at feature level using artificial intelligence. The long term goal of this paper is to design a robust system for physically not able or having less technical knowledge.
Feng, Bang; Liu, Jian Wei; Xu, Jianping; Zhao, Kuan; Ge, Zai Wei; Yang, Zhu L
2017-04-01
The Alpine porcini, Boletus reticuloceps, is an ectomycorrhizal mushroom distributed in subalpine areas of Southwest China, central China, and Taiwan Island. This distribution pattern makes it an ideal organism to infer how ectomycorrhizal fungi have reacted to historical tectonic and climatic changes, and to illustrate the mechanism for the disjunction of organisms between Southwest China and Taiwan. In this study, we explored the phylogeographic pattern of B. reticuloceps by microsatellite genotyping, DNA sequencing, ecological factor analysis, and species distribution modeling. Three genetic groups from the East Himalayas (EH), northern Hengduan Mountains (NHM), and southern Hengduan Mountains (SHM), were identified. The earlier divergent SHM group is found under Abies in moister environments, whereas the EH and NHM groups, which are physically separated by the Mekong-Salween Divide, are found mainly under Picea in drier environments. Samples from Taiwan showed a close relationship with the SHM group. High mountains did not form dispersal barriers among populations in each of the EH, NHM, and SHM groups, probably due to the relatively weak host specificity of B. reticuloceps. Our study indicated that ecological heterogeneity could have contributed to the divergence between the SHM and the NHM-EH groups, while physical barriers could have led to the divergence of the NHM and the EH groups. Dispersal into Taiwan via Central China during the Quaternary glaciations is likely to have shaped its disjunct distribution.
Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging.
Evans, P G; Chahine, G; Grifone, R; Jacques, V L R; Spalenka, J W; Schülli, T U
2013-11-01
X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.
Compact ultrahigh vacuum sample environments for x-ray nanobeam diffraction and imaging
NASA Astrophysics Data System (ADS)
Evans, P. G.; Chahine, G.; Grifone, R.; Jacques, V. L. R.; Spalenka, J. W.; Schülli, T. U.
2013-11-01
X-ray nanobeams present the opportunity to obtain structural insight in materials with small volumes or nanoscale heterogeneity. The effective spatial resolution of the information derived from nanobeam techniques depends on the stability and precision with which the relative position of the x-ray optics and sample can be controlled. Nanobeam techniques include diffraction, imaging, and coherent scattering, with applications throughout materials science and condensed matter physics. Sample positioning is a significant mechanical challenge for x-ray instrumentation providing vacuum or controlled gas environments at elevated temperatures. Such environments often have masses that are too large for nanopositioners capable of the required positional accuracy of the order of a small fraction of the x-ray spot size. Similarly, the need to place x-ray optics as close as 1 cm to the sample places a constraint on the overall size of the sample environment. We illustrate a solution to the mechanical challenge in which compact ion-pumped ultrahigh vacuum chambers with masses of 1-2 kg are integrated with nanopositioners. The overall size of the environment is sufficiently small to allow their use with zone-plate focusing optics. We describe the design of sample environments for elevated-temperature nanobeam diffraction experiments demonstrate in situ diffraction, reflectivity, and scanning nanobeam imaging of the ripening of Au crystallites on Si substrates.
Gao, Ying; Wkram, Chris Hadri; Duan, Jiajie; Chou, Jarong
2015-01-01
In order to prolong the network lifetime, energy-efficient protocols adapted to the features of wireless sensor networks should be used. This paper explores in depth the nature of heterogeneous wireless sensor networks, and finally proposes an algorithm to address the problem of finding an effective pathway for heterogeneous clustering energy. The proposed algorithm implements cluster head selection according to the degree of energy attenuation during the network’s running and the degree of candidate nodes’ effective coverage on the whole network, so as to obtain an even energy consumption over the whole network for the situation with high degree of coverage. Simulation results show that the proposed clustering protocol has better adaptability to heterogeneous environments than existing clustering algorithms in prolonging the network lifetime. PMID:26690440
The relation between prior knowledge and students' collaborative discovery learning processes
NASA Astrophysics Data System (ADS)
Gijlers, Hannie; de Jong, Ton
2005-03-01
In this study we investigate how prior knowledge influences knowledge development during collaborative discovery learning. Fifteen dyads of students (pre-university education, 15-16 years old) worked on a discovery learning task in the physics field of kinematics. The (face-to-face) communication between students was recorded and the interaction with the environment was logged. Based on students' individual judgments of the truth-value and testability of a series of domain-specific propositions, a detailed description of the knowledge configuration for each dyad was created before they entered the learning environment. Qualitative analyses of two dialogues illustrated that prior knowledge influences the discovery learning processes, and knowledge development in a pair of students. Assessments of student and dyad definitional (domain-specific) knowledge, generic (mathematical and graph) knowledge, and generic (discovery) skills were related to the students' dialogue in different discovery learning processes. Results show that a high level of definitional prior knowledge is positively related to the proportion of communication regarding the interpretation of results. Heterogeneity with respect to generic prior knowledge was positively related to the number of utterances made in the discovery process categories hypotheses generation and experimentation. Results of the qualitative analyses indicated that collaboration between extremely heterogeneous dyads is difficult when the high achiever is not willing to scaffold information and work in the low achiever's zone of proximal development.
Microbiological and Geochemical Characterization of Fluvially Deposited Sulfidic Mine Tailings
Wielinga, Bruce; Lucy, Juliette K.; Moore, Johnnie N.; Seastone, October F.; Gannon, James E.
1999-01-01
The fluvial deposition of mine tailings generated from historic mining operations near Butte, Montana, has resulted in substantial surface and shallow groundwater contamination along Silver Bow Creek. Biogeochemical processes in the sediment and underlying hyporheic zone were studied in an attempt to characterize interactions consequential to heavy-metal contamination of shallow groundwater. Sediment cores were extracted and fractionated based on sediment stratification. Subsamples of each fraction were assayed for culturable heterotrophic microbiota, specific microbial guilds involved in metal redox transformations, and both aqueous- and solid-phase geochemistry. Populations of cultivable Fe(III)-reducing bacteria were most prominent in the anoxic, circumneutral pH regions associated with a ferricrete layer or in an oxic zone high in organic carbon and soluble iron. Sulfur- and iron-oxidizing bacteria were distributed in discrete zones throughout the tailings and were often recovered from sections at and below the anoxic groundwater interface. Sulfate-reducing bacteria were also widely distributed in the cores and often occurred in zones overlapping iron and sulfur oxidizers. Sulfate-reducing bacteria were consistently recovered from oxic zones that contained high concentrations of metals in the oxidizable fraction. Altogether, these results suggest a highly varied and complex microbial ecology within a very heterogeneous geochemical environment. Such physical and biological heterogeneity has often been overlooked when remediation strategies for metal contaminated environments are formulated. PMID:10103249
NASA Astrophysics Data System (ADS)
Jang, E.; He, W.; Savoy, H.; Dietrich, P.; Kolditz, O.; Rubin, Y.; Schüth, C.; Kalbacher, T.
2017-01-01
Nitrate reduction reactions in groundwater systems are strongly influenced by various aquifer heterogeneity factors that affect the transport of chemical species, spatial distribution of redox reactive substances and, as a result, the overall nitrate reduction efficiency. In this study, we investigated the influence of physical and chemical aquifer heterogeneity, with a focus on nitrate transport and redox transformation processes. A numerical modeling study for simulating coupled hydrological-geochemical aquifer heterogeneity was conducted in order to improve our understanding of the influence of the aquifer heterogeneity on the nitrate reduction reactions and to identify the most influential aquifer heterogeneity factors throughout the simulation. Results show that the most influential aquifer heterogeneity factors could change over time. With abundant presence of electron donors in the high permeable zones (initial stage), physical aquifer heterogeneity significantly influences the nitrate reduction since it enables the preferential transport of nitrate to these zones and enhances mixing of reactive partners. Chemical aquifer heterogeneity plays a comparatively minor role. Increasing the spatial variability of the hydraulic conductivity also increases the nitrate removal efficiency of the system. However, ignoring chemical aquifer heterogeneity can lead to an underestimation of nitrate removals in long-term behavior. With the increase of the spatial variability of the electron donor, i.e. chemical heterogeneity, the number of the ;hot spots; i.e. zones with comparably higher reactivity, should also increase. Hence, nitrate removal efficiencies will also be spatially variable but overall removal efficiency will be sustained if longer time scales are considered and nitrate fronts reach these high reactivity zones.
ERIC Educational Resources Information Center
Kobayashi, Tetsuro
2010-01-01
This article examines the democratic potential of online communities by investigating the influence of network heterogeneity on social tolerance in an online gaming environment. Online game communities are potential sources of bridging social capital because they tend to be relatively heterogeneous. Causal analyses are conducted using structural…
Leu, Jenq-Shiou; Lin, Wei-Hsiang; Hsieh, Wen-Bin; Lo, Chien-Chih
2014-01-01
As the digitization is integrated into daily life, media including video and audio are heavily transferred over the Internet nowadays. Voice-over-Internet Protocol (VoIP), the most popular and mature technology, becomes the focus attracting many researches and investments. However, most of the existing studies focused on a one-to-one communication model in a homogeneous network, instead of one-to-many broadcasting model among diverse embedded devices in a heterogeneous network. In this paper, we present the implementation of a VoIP broadcasting service on the open source-Linphone-in a heterogeneous network environment, including WiFi, 3G, and LAN networks. The proposed system featuring VoIP broadcasting over heterogeneous networks can be integrated with heterogeneous agile devices, such as embedded devices or mobile phones. VoIP broadcasting over heterogeneous networks can be integrated into modern smartphones or other embedded devices; thus when users run in a traditional AM/FM signal unreachable area, they still can receive the broadcast voice through the IP network. Also, comprehensive evaluations are conducted to verify the effectiveness of the proposed implementation.
Lin, Wei-Hsiang; Hsieh, Wen-Bin; Lo, Chien-Chih
2014-01-01
As the digitization is integrated into daily life, media including video and audio are heavily transferred over the Internet nowadays. Voice-over-Internet Protocol (VoIP), the most popular and mature technology, becomes the focus attracting many researches and investments. However, most of the existing studies focused on a one-to-one communication model in a homogeneous network, instead of one-to-many broadcasting model among diverse embedded devices in a heterogeneous network. In this paper, we present the implementation of a VoIP broadcasting service on the open source—Linphone—in a heterogeneous network environment, including WiFi, 3G, and LAN networks. The proposed system featuring VoIP broadcasting over heterogeneous networks can be integrated with heterogeneous agile devices, such as embedded devices or mobile phones. VoIP broadcasting over heterogeneous networks can be integrated into modern smartphones or other embedded devices; thus when users run in a traditional AM/FM signal unreachable area, they still can receive the broadcast voice through the IP network. Also, comprehensive evaluations are conducted to verify the effectiveness of the proposed implementation. PMID:25300280
Why are some groups physically active and others not? A contrast group analysis in leisure settings.
Thiel, Ansgar; Thedinga, Hendrik K; Barkhoff, Harald; Giel, Katrin; Schweizer, Olesia; Thiel, Syra; Zipfel, Stephan
2018-03-20
This field study aims to investigate the determinants of physical activity of particularly active and inactive groups in their leisure environments. In order to consider the context in which physical activity occurs and to investigate whether cultural settings may influence physical activity, we conducted the study at pools in different cultural environments - Hawai'i and Germany. This study presents the quantitative data of a systematic (covert) participant observation. We recorded the physical activity of face-to-face interacting groups and analysed categories such as group size, estimated age of the group members, and verbal communication patterns. Total observation period was eight and a half months. In total, we observed 907 groups with the groups' size varying between 2 and 8 members. For the general statistics, we accessed the significance of differences regarding the degree of physical activity dependent on the target variables. To better understand activity promoting and hindering mechanisms, special attention is given to the identification of contrasting factors that characterise groups which are very active or very inactive. For this, we conducted a classification tree analysis. General statistical analysis shows that, overall, the most differentiating factor regarding physical activity was the body shape of the group members. While obese groups had the lowest average activity level, groups mainly consisting of people with an athletic body shape were the most physically active. Yet, classification tree analysis reveals that obesity itself does not necessarily determine physical inactivity levels. The identification of six contrasting clusters highlights that besides the body shape several factors interact regarding a group's physical level. Such interacting factors were for example the degree of communication within the group, the gender- and age-related composition of the group, but also the equipment that had been brought to the beach/pool. Obese people were particularly inactive when they were members of frequently communicating, age-heterogeneous groups. Our study shows that several social factors determine the physical activity of very active and very inactive groups. In order to promote physical activity, future health initiatives should target these factors of a person's network.
Experimental modelling at the grain scale of bedload on steep slopes
NASA Astrophysics Data System (ADS)
Fonstad, M. A.; Blanton, P.
2011-12-01
The explosion of methods for acquiring riverscape topography and bathymetry is producing a revolution in our abilities to measure the forms and processes of river environments. For example, the acquisition of continuous downstream maps of river topography and substrate particle sizes has allowed researchers to test the sediment links concept and to locate the positions and extents of such links in gravel bed streams using a 'hyperscale' framework. Related approaches have allowed researchers to map the distribution of salmon spawning habitat patches and the least-cost connectivity between these habitat patches. In our switch from the traditional use of separated cross-sections to a continuous 2D or 3D digital environment, several conceptual ideas need to be evaluated. One of these is the idea that 'habitat', as used by mobile organisms, is a characteristic directly tied to physical characteristics of a 'place', often represented as habitat preference on a per-pixel basis. One of the difficulties with this idea is that mobile organisms interact with their local environments at a variety of scales, and their sensory organs allow them to sense an environment that may extend beyond one pixel. Similarly, mobile organisms can interact with other mobile organisms in such a way as to make their preferred locations different from those that would occur if one organism is being observed individually. As we do not have the ability to remotely sense all of the mobile organisms and their positions in a riverscape, we need new methods of analyzing river data that can better estimate both physical and biological attributes for rivers. To develop new approaches for analyzing mapped riverscape processes, we use hyperscale and connectivity analyses for salmon spawning habitat in the River Tromie in Scotland. For Scott Creek, a gravel-bedded river in the Oregon Cascades, we use agent-based models of Chinook salmon and of macroinvertebrates to connect high-resolution physical environments to likely organism locations in Scott Creek, Oregon. The scale that macroinvertebrates and salmon sense their environment is in the centimeter to decimeter range, and we use structure from motion and 2D velocity modeling approaches to produce digital physical environments in which our model agents can interacts. By hypothesizing rules of agent movement and interactions, the histories of digital organism interactions can produce maps of habitat preference that include both the physical habitat characteristics and the likely patterns due to organism interactions. One of the challenges in the future will be to scale these approaches up to larger areas and a more diverse set of ecosystem interactions. Validation of agent-based models also poses a challenge in river environments with diverse physical characteristics and histories. By combining agent-based and high-resolution approaches, many stream ecology and fluvial theories might be much more easily tested, such as whether or not habitat heterogeneity drives biodiversity in river systems.
Dreams of a Digital Riverscape Ecosystem (Invited)
NASA Astrophysics Data System (ADS)
Fonstad, M. A.; Blanton, P.
2013-12-01
The explosion of methods for acquiring riverscape topography and bathymetry is producing a revolution in our abilities to measure the forms and processes of river environments. For example, the acquisition of continuous downstream maps of river topography and substrate particle sizes has allowed researchers to test the sediment links concept and to locate the positions and extents of such links in gravel bed streams using a 'hyperscale' framework. Related approaches have allowed researchers to map the distribution of salmon spawning habitat patches and the least-cost connectivity between these habitat patches. In our switch from the traditional use of separated cross-sections to a continuous 2D or 3D digital environment, several conceptual ideas need to be evaluated. One of these is the idea that 'habitat', as used by mobile organisms, is a characteristic directly tied to physical characteristics of a 'place', often represented as habitat preference on a per-pixel basis. One of the difficulties with this idea is that mobile organisms interact with their local environments at a variety of scales, and their sensory organs allow them to sense an environment that may extend beyond one pixel. Similarly, mobile organisms can interact with other mobile organisms in such a way as to make their preferred locations different from those that would occur if one organism is being observed individually. As we do not have the ability to remotely sense all of the mobile organisms and their positions in a riverscape, we need new methods of analyzing river data that can better estimate both physical and biological attributes for rivers. To develop new approaches for analyzing mapped riverscape processes, we use hyperscale and connectivity analyses for salmon spawning habitat in the River Tromie in Scotland. For Scott Creek, a gravel-bedded river in the Oregon Cascades, we use agent-based models of Chinook salmon and of macroinvertebrates to connect high-resolution physical environments to likely organism locations in Scott Creek, Oregon. The scale that macroinvertebrates and salmon sense their environment is in the centimeter to decimeter range, and we use structure from motion and 2D velocity modeling approaches to produce digital physical environments in which our model agents can interacts. By hypothesizing rules of agent movement and interactions, the histories of digital organism interactions can produce maps of habitat preference that include both the physical habitat characteristics and the likely patterns due to organism interactions. One of the challenges in the future will be to scale these approaches up to larger areas and a more diverse set of ecosystem interactions. Validation of agent-based models also poses a challenge in river environments with diverse physical characteristics and histories. By combining agent-based and high-resolution approaches, many stream ecology and fluvial theories might be much more easily tested, such as whether or not habitat heterogeneity drives biodiversity in river systems.
Revisiting the Stability of Spatially Heterogeneous Predator-Prey Systems Under Eutrophication.
Farkas, J Z; Morozov, A Yu; Arashkevich, E G; Nikishina, A
2015-10-01
We employ partial integro-differential equations to model trophic interaction in a spatially extended heterogeneous environment. Compared to classical reaction-diffusion models, this framework allows us to more realistically describe the situation where movement of individuals occurs on a faster time scale than on the demographic (population) time scale, and we cannot determine population growth based on local density. However, most of the results reported so far for such systems have only been verified numerically and for a particular choice of model functions, which obviously casts doubts about these findings. In this paper, we analyse a class of integro-differential predator-prey models with a highly mobile predator in a heterogeneous environment, and we reveal the main factors stabilizing such systems. In particular, we explore an ecologically relevant case of interactions in a highly eutrophic environment, where the prey carrying capacity can be formally set to 'infinity'. We investigate two main scenarios: (1) the spatial gradient of the growth rate is due to abiotic factors only, and (2) the local growth rate depends on the global density distribution across the environment (e.g. due to non-local self-shading). For an arbitrary spatial gradient of the prey growth rate, we analytically investigate the possibility of the predator-prey equilibrium in such systems and we explore the conditions of stability of this equilibrium. In particular, we demonstrate that for a Holling type I (linear) functional response, the predator can stabilize the system at low prey density even for an 'unlimited' carrying capacity. We conclude that the interplay between spatial heterogeneity in the prey growth and fast displacement of the predator across the habitat works as an efficient stabilizing mechanism. These results highlight the generality of the stabilization mechanisms we find in spatially structured predator-prey ecological systems in a heterogeneous environment.
Jorgensen, Tove H
2012-03-01
The biotic and abiotic environment of interacting hosts and parasites may vary considerably over small spatial and temporal scales. It is essential to understand how different environments affect host disease resistance because this determines frequency of disease and, importantly, heterogeneous environments can retard direct selection and potentially maintain genetic variation for resistance in natural populations. The effect of different temperatures and soil nutrient conditions on the outcome of infection by a pathogen was quantified in Arabidopsis thaliana. Expression levels of a gene conferring resistance to powdery mildews, RPW8, were compared with levels of disease to test a possible mechanism behind variation in resistance. Most host genotypes changed from susceptible to resistant across environments with the ranking of genotypes differing between treatments. Transcription levels of RPW8 increased after infection and varied between environments, but there was no tight association between transcription and resistance levels. There is a strong potential for a heterogeneous environment to change the resistance capacity of A. thaliana genotypes and hence the direction and magnitude of selection in the presence of the pathogen. Possible causative links between resistance gene expression and disease resistance are discussed in light of the present results on RPW8.
Homogenization of a Directed Dispersal Model for Animal Movement in a Heterogeneous Environment.
Yurk, Brian P
2016-10-01
The dispersal patterns of animals moving through heterogeneous environments have important ecological and epidemiological consequences. In this work, we apply the method of homogenization to analyze an advection-diffusion (AD) model of directed movement in a one-dimensional environment in which the scale of the heterogeneity is small relative to the spatial scale of interest. We show that the large (slow) scale behavior is described by a constant-coefficient diffusion equation under certain assumptions about the fast-scale advection velocity, and we determine a formula for the slow-scale diffusion coefficient in terms of the fast-scale parameters. We extend the homogenization result to predict invasion speeds for an advection-diffusion-reaction (ADR) model with directed dispersal. For periodic environments, the homogenization approximation of the solution of the AD model compares favorably with numerical simulations. Invasion speed approximations for the ADR model also compare favorably with numerical simulations when the spatial period is sufficiently small.
NASA Astrophysics Data System (ADS)
Singla, Tanu; Chandrasekhar, E.; Singh, B. P.; Parmananda, P.
2014-12-01
Complete and anticipation synchronization of nonlinear oscillators from different origins is attempted experimentally. This involves coupling these heterogeneous oscillators to a common dynamical environment. Initially, this phenomenon was studied using two parameter mismatched Chua circuits. Subsequently, three different timeseries: a) x variable of the Lorenz oscillator b) the X-component of Earth's magnetic field and c) per-day temperature variation of the Region Santa Cruz in Mumbai, India are environmentally coupled, under the master-slave scenario, with a Chua circuit. Our results indicate that environmental coupling is a potent tool to provoke complete and anticipation synchronization of heterogeneous oscillators from distinct origins.
Provably Secure Heterogeneous Access Control Scheme for Wireless Body Area Network.
Omala, Anyembe Andrew; Mbandu, Angolo Shem; Mutiria, Kamenyi Domenic; Jin, Chunhua; Li, Fagen
2018-04-28
Wireless body area network (WBAN) provides a medium through which physiological information could be harvested and transmitted to application provider (AP) in real time. Integrating WBAN in a heterogeneous Internet of Things (IoT) ecosystem would enable an AP to monitor patients from anywhere and at anytime. However, the IoT roadmap of interconnected 'Things' is still faced with many challenges. One of the challenges in healthcare is security and privacy of streamed medical data from heterogeneously networked devices. In this paper, we first propose a heterogeneous signcryption scheme where a sender is in a certificateless cryptographic (CLC) environment while a receiver is in identity-based cryptographic (IBC) environment. We then use this scheme to design a heterogeneous access control protocol. Formal security proof for indistinguishability against adaptive chosen ciphertext attack and unforgeability against adaptive chosen message attack in random oracle model is presented. In comparison with some of the existing access control schemes, our scheme has lower computation and communication cost.
Moro, Marcelo Freire; Silva, Igor Aurélio; de Araújo, Francisca Soares; Nic Lughadha, Eimear; Meagher, Thomas R.; Martins, Fernando Roberto
2015-01-01
Seasonally dry tropical plant formations (SDTF) are likely to exhibit phylogenetic clustering owing to niche conservatism driven by a strong environmental filter (water stress), but heterogeneous edaphic environments and life histories may result in heterogeneity in degree of phylogenetic clustering. We investigated phylogenetic patterns across ecological gradients related to water availability (edaphic environment and climate) in the Caatinga, a SDTF in Brazil. Caatinga is characterized by semiarid climate and three distinct edaphic environments – sedimentary, crystalline, and inselberg –representing a decreasing gradient in soil water availability. We used two measures of phylogenetic diversity: Net Relatedness Index based on the entire phylogeny among species present in a site, reflecting long-term diversification; and Nearest Taxon Index based on the tips of the phylogeny, reflecting more recent diversification. We also evaluated woody species in contrast to herbaceous species. The main climatic variable influencing phylogenetic pattern was precipitation in the driest quarter, particularly for herbaceous species, suggesting that environmental filtering related to minimal periods of precipitation is an important driver of Caatinga biodiversity, as one might expect for a SDTF. Woody species tended to show phylogenetic clustering whereas herbaceous species tended towards phylogenetic overdispersion. We also found phylogenetic clustering in two edaphic environments (sedimentary and crystalline) in contrast to phylogenetic overdispersion in the third (inselberg). We conclude that while niche conservatism is evident in phylogenetic clustering in the Caatinga, this is not a universal pattern likely due to heterogeneity in the degree of realized environmental filtering across edaphic environments. Thus, SDTF, in spite of a strong shared environmental filter, are potentially heterogeneous in phylogenetic structuring. Our results support the need for scientifically informed conservation strategies in the Caatinga and other SDTF regions that have not previously been prioritized for conservation in order to take into account this heterogeneity. PMID:25798584
Why geodiversity matters in valuing nature's stage.
Hjort, Jan; Gordon, John E; Gray, Murray; Hunter, Malcolm L
2015-06-01
Geodiversity--the variability of Earth's surface materials, forms, and physical processes-is an integral part of nature and crucial for sustaining ecosystems and their services. It provides the substrates, landform mosaics, and dynamic physical processes for habitat development and maintenance. By determining the heterogeneity of the physical environment in conjunction with climate interactions, geodiversity has a crucial influence on biodiversity across a wide range of scales. From a literature review, we identified the diverse values of geodiversity; examined examples of the dependencies of biodiversity on geodiversity at a site-specific scale (for geosites <1 km(2) in area); and evaluated various human-induced threats to geosites and geodiversity. We found that geosites are important to biodiversity because they often support rare or unique biota adapted to distinctive environmental conditions or create a diversity of microenvironments that enhance species richness. Conservation of geodiversity in the face of a range of threats is critical both for effective management of nature's stage and for its own particular values. This requires approaches to nature conservation that integrate climate, biodiversity, and geodiversity at all spatial scales. © 2015 Society for Conservation Biology.
Evaluating thermoregulation in reptiles: an appropriate null model.
Christian, Keith A; Tracy, Christopher R; Tracy, C Richard
2006-09-01
Established indexes of thermoregulation in ectotherms compare body temperatures of real animals with a null distribution of operative temperatures from a physical or mathematical model with the same size, shape, and color as the actual animal but without mass. These indexes, however, do not account for thermal inertia or the effects of inertia when animals move through thermally heterogeneous environments. Some recent models have incorporated body mass, to account for thermal inertia and the physiological control of warming and cooling rates seen in most reptiles, and other models have incorporated movement through the environment, but none includes all pertinent variables explaining body temperature. We present a new technique for calculating the distribution of body temperatures available to ectotherms that have thermal inertia, random movements, and different rates of warming and cooling. The approach uses a biophysical model of heat exchange in ectotherms and a model of random interaction with thermal environments over the course of a day to create a null distribution of body temperatures that can be used with conventional thermoregulation indexes. This new technique provides an unbiased method for evaluating thermoregulation in large ectotherms that store heat while moving through complex environments, but it can also generate null models for ectotherms of all sizes.
Soon, Ing Shian; Molodecky, Natalie A; Rabi, Doreen M; Ghali, William A; Barkema, Herman W; Kaplan, Gilaad G
2012-05-24
The objective of this study was to conduct a systematic review with meta-analysis of studies assessing the association between living in an urban environment and the development of the Crohn's disease (CD) or ulcerative colitis (UC). A systematic literature search of MEDLINE (1950-Oct. 2009) and EMBASE (1980-Oct. 2009) was conducted to identify studies investigating the relationship between urban environment and IBD. Cohort and case-control studies were analyzed using incidence rate ratio (IRR) or odds ratio (OR) with 95 % confidence intervals (CIs), respectively. Stratified and sensitivity analyses were performed to explore heterogeneity between studies and assess effects of study quality. The search strategy retrieved 6940 unique citations and 40 studies were selected for inclusion. Of these, 25 investigated the relationship between urban environment and UC and 30 investigated this relationship with CD. Included in our analysis were 7 case-control UC studies, 9 case-control CD studies, 18 cohort UC studies and 21 cohort CD studies. Based on a random effects model, the pooled IRRs for urban compared to rural environment for UC and CD studies were 1.17 (1.03, 1.32) and 1.42 (1.26, 1.60), respectively. These associations persisted across multiple stratified and sensitivity analyses exploring clinical and study quality factors. Heterogeneity was observed in the cohort studies for both UC and CD, whereas statistically significant heterogeneity was not observed for the case-control studies. A positive association between urban environment and both CD and UC was found. Heterogeneity may be explained by differences in study design and quality factors.
The Fireball integrated code package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobranich, D.; Powers, D.A.; Harper, F.T.
1997-07-01
Many deep-space satellites contain a plutonium heat source. An explosion, during launch, of a rocket carrying such a satellite offers the potential for the release of some of the plutonium. The fireball following such an explosion exposes any released plutonium to a high-temperature chemically-reactive environment. Vaporization, condensation, and agglomeration processes can alter the distribution of plutonium-bearing particles. The Fireball code package simulates the integrated response of the physical and chemical processes occurring in a fireball and the effect these processes have on the plutonium-bearing particle distribution. This integrated treatment of multiple phenomena represents a significant improvement in the state ofmore » the art for fireball simulations. Preliminary simulations of launch-second scenarios indicate: (1) most plutonium vaporization occurs within the first second of the fireball; (2) large non-aerosol-sized particles contribute very little to plutonium vapor production; (3) vaporization and both homogeneous and heterogeneous condensation occur simultaneously; (4) homogeneous condensation transports plutonium down to the smallest-particle sizes; (5) heterogeneous condensation precludes homogeneous condensation if sufficient condensation sites are available; and (6) agglomeration produces larger-sized particles but slows rapidly as the fireball grows.« less
A Survey on Virtualization of Wireless Sensor Networks
Islam, Md. Motaharul; Hassan, Mohammad Mehedi; Lee, Ga-Won; Huh, Eui-Nam
2012-01-01
Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization. PMID:22438759
A survey on virtualization of Wireless Sensor Networks.
Islam, Md Motaharul; Hassan, Mohammad Mehedi; Lee, Ga-Won; Huh, Eui-Nam
2012-01-01
Wireless Sensor Networks (WSNs) are gaining tremendous importance thanks to their broad range of commercial applications such as in smart home automation, health-care and industrial automation. In these applications multi-vendor and heterogeneous sensor nodes are deployed. Due to strict administrative control over the specific WSN domains, communication barriers, conflicting goals and the economic interests of different WSN sensor node vendors, it is difficult to introduce a large scale federated WSN. By allowing heterogeneous sensor nodes in WSNs to coexist on a shared physical sensor substrate, virtualization in sensor network may provide flexibility, cost effective solutions, promote diversity, ensure security and increase manageability. This paper surveys the novel approach of using the large scale federated WSN resources in a sensor virtualization environment. Our focus in this paper is to introduce a few design goals, the challenges and opportunities of research in the field of sensor network virtualization as well as to illustrate a current status of research in this field. This paper also presents a wide array of state-of-the art projects related to sensor network virtualization.
Black Swans and the Effectiveness of Remediating Groundwater Contamination
NASA Astrophysics Data System (ADS)
Siegel, D. I.; Otz, M. H.; Otz, I.
2013-12-01
Black swans, outliers, dominate science far more than do predictable outcomes. Predictable success constitutes the Black Swan in groundwater remediation. Even the National Research Council concluded that remediating groundwater to drinking water standards has failed in typically complex hydrogeologic settings where heterogeneities and preferential flow paths deflect flow paths obliquely to hydraulic gradients. Natural systems, be they biological or physical, build upon a combination of large-scale regularity coupled to chaos at smaller scales. We show through a review of over 25 case studies that groundwater remediation efforts are best served by coupling parsimonious site characterization to natural and induced geochemical tracer tests to at least know where contamination advects with groundwater in the subsurface. In the majority of our case studies, actual flow paths diverge tens of degrees from anticipated flow paths because of unrecognized heterogeneities in the horizontal direction of transport, let alone the vertical direction. Consequently, regulatory agencies would better serve both the public and the environment by recognizing that long-term groundwater cleanup probably is futile in most hydrogeologic settings except to relaxed standards similar to brownfielding. A Black Swan
Cyberhubs: Virtual Research Environments for Astronomy
NASA Astrophysics Data System (ADS)
Herwig, Falk; Andrassy, Robert; Annau, Nic; Clarkson, Ondrea; Côté, Benoit; D’Sa, Aaron; Jones, Sam; Moa, Belaid; O’Connell, Jericho; Porter, David; Ritter, Christian; Woodward, Paul
2018-05-01
Collaborations in astronomy and astrophysics are faced with numerous cyber-infrastructure challenges, such as large data sets, the need to combine heterogeneous data sets, and the challenge to effectively collaborate on those large, heterogeneous data sets with significant processing requirements and complex science software tools. The cyberhubs system is an easy-to-deploy package for small- to medium-sized collaborations based on the Jupyter and Docker technology, which allows web-browser-enabled, remote, interactive analytic access to shared data. It offers an initial step to address these challenges. The features and deployment steps of the system are described, as well as the requirements collection through an account of the different approaches to data structuring, handling, and available analytic tools for the NuGrid and PPMstar collaborations. NuGrid is an international collaboration that creates stellar evolution and explosion physics and nucleosynthesis simulation data. The PPMstar collaboration performs large-scale 3D stellar hydrodynamics simulations of interior convection in the late phases of stellar evolution. Examples of science that is currently performed on cyberhubs, in the areas of 3D stellar hydrodynamic simulations, stellar evolution and nucleosynthesis, and Galactic chemical evolution, are presented.
ERIC Educational Resources Information Center
Peterson, N. Andrew; Farmer, Antoinette Y.; Donnelly, Louis; Forenza, Brad
2014-01-01
The implicit curriculum, which refers to a student's learning environment, has been described as an essential feature of an integrated professional social work curriculum. Very little is known, however, about the heterogeneity of students' experiences with the implicit curriculum, how this heterogeneity may be distributed across groups of…
Aumiller, William M; Davis, Bradley W; Hashemian, Negar; Maranas, Costas; Armaou, Antonios; Keating, Christine D
2014-03-06
The intracellular environment in which biological reactions occur is crowded with macromolecules and subdivided into microenvironments that differ in both physical properties and chemical composition. The work described here combines experimental and computational model systems to help understand the consequences of this heterogeneous reaction media on the outcome of coupled enzyme reactions. Our experimental model system for solution heterogeneity is a biphasic polyethylene glycol (PEG)/sodium citrate aqueous mixture that provides coexisting PEG-rich and citrate-rich phases. Reaction kinetics for the coupled enzyme reaction between glucose oxidase (GOX) and horseradish peroxidase (HRP) were measured in the PEG/citrate aqueous two-phase system (ATPS). Enzyme kinetics differed between the two phases, particularly for the HRP. Both enzymes, as well as the substrates glucose and H2O2, partitioned to the citrate-rich phase; however, the Amplex Red substrate necessary to complete the sequential reaction partitioned strongly to the PEG-rich phase. Reactions in ATPS were quantitatively described by a mathematical model that incorporated measured partitioning and kinetic parameters. The model was then extended to new reaction conditions, i.e., higher enzyme concentration. Both experimental and computational results suggest mass transfer across the interface is vital to maintain the observed rate of product formation, which may be a means of metabolic regulation in vivo. Although outcomes for a specific system will depend on the particulars of the enzyme reactions and the microenvironments, this work demonstrates how coupled enzymatic reactions in complex, heterogeneous media can be understood in terms of a mathematical model.
DNA confinement in nanochannels: physics and biological applications
NASA Astrophysics Data System (ADS)
Reisner, Walter; Pedersen, Jonas N.; Austin, Robert H.
2012-10-01
DNA is the central storage molecule of genetic information in the cell, and reading that information is a central problem in biology. While sequencing technology has made enormous advances over the past decade, there is growing interest in platforms that can readout genetic information directly from long single DNA molecules, with the ultimate goal of single-cell, single-genome analysis. Such a capability would obviate the need for ensemble averaging over heterogeneous cellular populations and eliminate uncertainties introduced by cloning and molecular amplification steps (thus enabling direct assessment of the genome in its native state). In this review, we will discuss how the information contained in genomic-length single DNA molecules can be accessed via physical confinement in nanochannels. Due to self-avoidance interactions, DNA molecules will stretch out when confined in nanochannels, creating a linear unscrolling of the genome along the channel for analysis. We will first review the fundamental physics of DNA nanochannel confinement—including the effect of varying ionic strength—and then discuss recent applications of these systems to genomic mapping. Apart from the intense biological interest in extracting linear sequence information from elongated DNA molecules, from a physics view these systems are fascinating as they enable probing of single-molecule conformation in environments with dimensions that intersect key physical length-scales in the 1 nm to 100 µm range.
DNA confinement in nanochannels: physics and biological applications.
Reisner, Walter; Pedersen, Jonas N; Austin, Robert H
2012-10-01
DNA is the central storage molecule of genetic information in the cell, and reading that information is a central problem in biology. While sequencing technology has made enormous advances over the past decade, there is growing interest in platforms that can readout genetic information directly from long single DNA molecules, with the ultimate goal of single-cell, single-genome analysis. Such a capability would obviate the need for ensemble averaging over heterogeneous cellular populations and eliminate uncertainties introduced by cloning and molecular amplification steps (thus enabling direct assessment of the genome in its native state). In this review, we will discuss how the information contained in genomic-length single DNA molecules can be accessed via physical confinement in nanochannels. Due to self-avoidance interactions, DNA molecules will stretch out when confined in nanochannels, creating a linear unscrolling of the genome along the channel for analysis. We will first review the fundamental physics of DNA nanochannel confinement--including the effect of varying ionic strength--and then discuss recent applications of these systems to genomic mapping. Apart from the intense biological interest in extracting linear sequence information from elongated DNA molecules, from a physics view these systems are fascinating as they enable probing of single-molecule conformation in environments with dimensions that intersect key physical length-scales in the 1 nm to 100 µm range.
Robustness of optimal random searches in fragmented environments
NASA Astrophysics Data System (ADS)
Wosniack, M. E.; Santos, M. C.; Raposo, E. P.; Viswanathan, G. M.; da Luz, M. G. E.
2015-05-01
The random search problem is a challenging and interdisciplinary topic of research in statistical physics. Realistic searches usually take place in nonuniform heterogeneous distributions of targets, e.g., patchy environments and fragmented habitats in ecological systems. Here we present a comprehensive numerical study of search efficiency in arbitrarily fragmented landscapes with unlimited visits to targets that can only be found within patches. We assume a random walker selecting uniformly distributed turning angles and step lengths from an inverse power-law tailed distribution with exponent μ . Our main finding is that for a large class of fragmented environments the optimal strategy corresponds approximately to the same value μopt≈2 . Moreover, this exponent is indistinguishable from the well-known exact optimal value μopt=2 for the low-density limit of homogeneously distributed revisitable targets. Surprisingly, the best search strategies do not depend (or depend only weakly) on the specific details of the fragmentation. Finally, we discuss the mechanisms behind this observed robustness and comment on the relevance of our results to both the random search theory in general, as well as specifically to the foraging problem in the biological context.
Kang, Jungho; Kim, Mansik; Park, Jong Hyuk
2016-01-01
With the ICT technology making great progress in the smart home environment, the ubiquitous environment is rapidly emerging all over the world, but problems are also increasing proportionally to the rapid growth of the smart home market such as multiplatform heterogeneity and new security threats. In addition, the smart home sensors have so low computing resources that they cannot process complicated computation tasks, which is required to create a proper security environment. A service provider also faces overhead in processing data from a rapidly increasing number of sensors. This paper aimed to propose a scheme to build infrastructure in which communication entities can securely authenticate and design security channel with physically unclonable PUFs and the TTP that smart home communication entities can rely on. In addition, we analyze and evaluate the proposed scheme for security and performance and prove that it can build secure channels with low resources. Finally, we expect that the proposed scheme can be helpful for secure communication with low resources in future smart home multiplatforms. PMID:27399699
Kang, Jungho; Kim, Mansik; Park, Jong Hyuk
2016-07-05
With the ICT technology making great progress in the smart home environment, the ubiquitous environment is rapidly emerging all over the world, but problems are also increasing proportionally to the rapid growth of the smart home market such as multiplatform heterogeneity and new security threats. In addition, the smart home sensors have so low computing resources that they cannot process complicated computation tasks, which is required to create a proper security environment. A service provider also faces overhead in processing data from a rapidly increasing number of sensors. This paper aimed to propose a scheme to build infrastructure in which communication entities can securely authenticate and design security channel with physically unclonable PUFs and the TTP that smart home communication entities can rely on. In addition, we analyze and evaluate the proposed scheme for security and performance and prove that it can build secure channels with low resources. Finally, we expect that the proposed scheme can be helpful for secure communication with low resources in future smart home multiplatforms.
NASA Astrophysics Data System (ADS)
Balakrishnan, Kaushik
The flow field behind chemical explosions in multiphase environments is investigated using a robust, state-of-the-art simulation strategy that accounts for the thermodynamics, gas dynamics and fluid mechanics of relevance to the problem. Focus is laid on the investigation of blast wave propagation, growth of hydrodynamic instabilities behind explosive blasts, the mixing aspects behind explosions, the effects of afterburn and its quantification, and the role played by solid particles in these phenomena. In particular, the confluence and interplay of these different physical phenomena are explored from a fundamental perspective, and applied to the problem of chemical explosions. A solid phase solver suited for the study of high-speed, two-phase flows has been developed and validated. This solver accounts for the inter-phase mass, momentum and energy transfer through empirical laws, and ensures two-way coupling between the two phases, viz. solid particles and gas. For dense flow fields, i.e., when the solid volume fraction becomes non-negligible (˜60%), the finite volume method with a Godunov type shock-capturing scheme requires modifications to account for volume fraction gradients during the computation of cell interface gas fluxes. To this end, the simulation methodology is extended with the formulation of an Eulerian gas, Lagrangian solid approach, thereby ensuring that the so developed two-phase simulation strategy can be applied for both flow conditions, dilute and dense alike. Moreover, under dense loading conditions the solid particles inevitably collide, which is accounted for in the current research effort with the use of an empirical collision/contact model from literature. Furthermore, the post-detonation flow field consists of gases under extreme temperature and pressure conditions, necessitating the use of real gas equations of state in the multiphase model. This overall simulation strategy is then extended to the investigation of chemical explosions in multiphase environments, with emphasis on the study of hydrodynamic instability growth, mixing, afterburn effects ensuing from the process, particle ignition and combustion (if reactive), dispersion, and their interaction with the vortices in the mixing layer. The post-detonation behavior of heterogeneous explosives is addressed by using three parts to the investigation. In the first part, only one-dimensional effects are considered, with the goal to assess the presently developed dense two-phase formulation. The total deliverable impulsive loading from heterogeneous explosive charges containing inert steel particles is estimated for a suite of operating parameters and compared, and it is demonstrated that heterogeneous explosive charges deliver a higher near-field impulse than homogeneous explosive charges containing the same mass of the high explosive. In the second part, three-dimensional effects such as hydrodynamic instabilities are accounted for, with the focus on characterizing the mixing layer ensuing from the detonation of heterogeneous explosive charges containing inert steel particles. It is shown that particles introduce significant amounts of hydrodynamic instabilities in the mixing layer, resulting in additional physical phenomena that play a prominent role in the flow features. In particular, the fluctuation intensities, fireball size and growth rates are augmented for heterogeneous explosions vis-a-vis homogeneous explosions, thereby demonstrating that solid particles enhance the perturbation intensities in the flow. In the third part of the investigation of heterogeneous explosions, dense, aluminized explosions are considered, and the particles are observed to burn in two phases, with an initial quenching due to the rarefaction wave, and a final quenching outside the fireball. Due to faster response time scales, smaller particles are observed to heat and accelerate more during early times, and also cool and decelerate more at late times, compared to counterpart larger particle sizes. Furthermore, the average particle velocities at late times are observed to be independent of the initial solid volume fraction in the explosive charge, as the particles eventually reach an equilibrium with the local gas. These studies have provided some crucial insights to the flow physics of dense, aluminized explosives. (Abstract shortened by UMI.)
Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Langenbruch, C.; Shapiro, S. A.
2014-12-01
For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding seismicity in unconventional reservoirs is the role of anisotropy of rocks. We evaluate an elastic VTI rock model corresponding to a shale gas reservoir in the Horn River Basin to understand the relation between stress, event occurrence and elastic heterogeneity in anisotropic rocks.
Work environment of Danish shift and day workers.
Bøggild, H; Burr, H; Tüchsen, F; Jeppesen, H J
2001-04-01
Both shift work and other work environment factors have been shown to be related to heart disease. This study examined whether shift work is associated with other work environment factors related to heart disease in a random sample of the population. If so, shift work could be acting as a proxy for work environment differences. Data on 5940 employees in the Danish Work Environment Cohort Study from 1990 were reanalyzed. The information included work schedules [permanent day work, irregular workhours (including morning work), 2-shift or fixed evening and 3-shift or fixed night], length of workweek, physical factors (noise, heat, dust, passive smoking, walking, standing and monotonous repetitive tasks), and psychosocial factors (including demands and control dimensions, social support, conflicts and job insecurity). At least 1 group of shift workers had a higher prevalence of nearly every unfavorable work environment factor investigated. Exceptions were dust exposure and quantitative demands. Especially conflicts at work and low decision latitude were higher among all the groups of shift workers, and all-day walking or standing work and part-time jobs were more often found among female shift workers. The 3 different shiftwork groups were exposed to different parts of the work environment, and also men and women in shift work differed in relation to the work environment. Age and social class influenced the relationship, but not in any particular pattern. In a heterogenous population shift work was found to be associated with other work environment factors suspected to cause heart disease.
Tolsma, J; van der Meer, T W G
2017-01-01
The constrict claim that ethnic heterogeneity drives down social trust has been empirically tested across the globe. Meta-analyses suggest that neighbourhood ethnic heterogeneity generally undermines ties within the neighbourhood (such as trust in neighbours), but concurrently has an inconsistent or even positive effect on interethnic ties (such as outgroup trust). While the composition of the living environment thus often seems to matter, when and where remain unclear. We contribute to the literature by: (1) scrutinizing the extent to which ethnic heterogeneity drives down trust in coethnic neighbours, non-coethnic neighbours, unknown neighbours and unknown non-neighbours similarly; (2) comparing effects of heterogeneity aggregated to geographical areas that vary in scale and type of boundary; and (3) assessing whether the impact of heterogeneity of the local area depends on the wider geographic context. We test our hypotheses on the Religion in Dutch Society 2011-2012 dataset, supplemented with uniquely detailed GIS-data of Statistics Netherlands. Our dependent variables are four different so-called wallet-items, which we model through spatial and multilevel regression techniques. We demonstrate that both trust in non-coethnic and coethnic neighbours are lower in heterogeneous environments. Trust in people outside the neighbourhood is not affected by local heterogeneity. Measures of heterogeneity aggregated to relatively large scales, such as, administrative municipalities and egohoods with a 4000 m radius, demonstrate the strongest negative relationships with our trust indicators.
Uranium (VI) transport in saturated heterogeneous media: Influence of kaolinite and humic acid.
Chen, Chong; Zhao, Kang; Shang, Jianying; Liu, Chongxuan; Wang, Jin; Yan, Zhifeng; Liu, Kesi; Wu, Wenliang
2018-05-07
Natural aquifers typically exhibit a variety of structural heterogeneities. However, the effect of mineral colloids and natural organic matter on the transport behavior of uranium (U) in saturated heterogeneous media are not totally understood. In this study, heterogeneous column experiments were conducted, and the constructed columns contained a fast-flow domain (FFD) and a slow-flow domain (SFD). The effect of kaolinite, humic acid (HA), and kaolinite/HA mixture on U(VI) retention and release in saturated heterogeneous media was examined. Media heterogeneity significantly influenced U fate and transport behavior in saturated subsurface environment. The presence of kaolinite, HA, and kaolinite/HA enhanced the mobility of U in heterogeneous media, and the mobility of U was the highest in the presence of kaolinite/HA and the lowest in the presence of kaolinite. In the presence of kaolinite, there was no difference in the amount of U released from the FFD and SFD. However, in the presence of HA and kaolinite/HA, a higher amount of U was released from the FFD. The findings in this study showed that medium structure and mineral colloids, as well as natural organic matter in the aqueous phase had significant effects on U transport and fate in subsurface environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Habitat heterogeneity hypothesis and edge effects in model metacommunities.
Hamm, Michaela; Drossel, Barbara
2017-08-07
Spatial heterogeneity is an inherent property of any living environment and is expected to favour biodiversity due to a broader niche space. Furthermore, edges between different habitats can provide additional possibilities for species coexistence. Using computer simulations, this study examines metacommunities consisting of several trophic levels in heterogeneous environments in order to explore the above hypotheses on a community level. We model heterogeneous landscapes by using two different sized resource pools and evaluate the combined effect of dispersal and heterogeneity on local and regional species diversity. This diversity is obtained by running population dynamics and evaluating the robustness (i.e., the fraction of surviving species). The main results for regional robustness are in agreement with the habitat heterogeneity hypothesis, as the largest robustness is found in heterogeneous systems with intermediate dispersal rates. This robustness is larger than in homogeneous systems with the same total amount of resources. We study the edge effect by arranging the two types of resources in two homogeneous blocks. Different edge responses in diversity are observed, depending on dispersal strength. Local robustness is highest for edge habitats that contain the smaller amount of resource in combination with intermediate dispersal. The results show that dispersal is relevant to correctly identify edge responses on community level. Copyright © 2017 Elsevier Ltd. All rights reserved.
Longing, S D; Voshell, J R; Dolloff, C A; Roghair, C N
2010-02-01
Investigating relationships of benthic invertebrates and sedimentation is challenging because fine sediments act as both natural habitat and potential pollutant at excessive levels. Determining benthic invertebrate sensitivity to sedimentation in forested headwater streams comprised of extreme spatial heterogeneity is even more challenging, especially when associated with a background of historical and intense watershed disturbances that contributed unknown amounts of fine sediments to stream channels. This scenario exists in the Chattahoochee National Forest where such historical timber harvests and contemporary land-uses associated with recreation have potentially affected the biological integrity of headwater streams. In this study, we investigated relationships of sedimentation and the macroinvertebrate assemblages among 14 headwater streams in the forest by assigning 30, 100-m reaches to low, medium, or high sedimentation categories. Only one of 17 assemblage metrics (percent clingers) varied significantly across these categories. This finding has important implications for biological assessments by showing streams impaired physically by sedimentation may not be impaired biologically, at least using traditional approaches. A subsequent multivariate cluster analysis and indicator species analysis were used to further investigate biological patterns independent of sedimentation categories. Evaluating the distribution of sedimentation categories among biological reach clusters showed both within-stream variability in reach-scale sedimentation and sedimentation categories generally variable within clusters, reflecting the overall physical heterogeneity of these headwater environments. Furthermore, relationships of individual sedimentation variables and metrics across the biological cluster groups were weak, suggesting these measures of sedimentation are poor predictors of macroinvertebrate assemblage structure when using a systematic longitudinal sampling design. Further investigations of invertebrate sensitivity to sedimentation may benefit from assessments of sedimentation impacts at different spatial scales, determining compromised physical habitat integrity of specific taxa and developing alternative streambed measures for quantifying sedimentation.
Spatial Distribution of Fate and Transport Parameters Using Cxtfit in a Karstified Limestone Model
NASA Astrophysics Data System (ADS)
Toro, J.; Padilla, I. Y.
2017-12-01
Karst environments have a high capacity to transport and store large amounts of water. This makes karst aquifers a productive resource for human consumption and ecological integrity, but also makes them vulnerable to potential contamination of hazardous chemical substances. High heterogeneity and anisotropy of karst aquifer properties make them very difficult to characterize for accurate prediction of contaminant mobility and persistence in groundwater. Current technologies to characterize and quantify flow and transport processes at field-scale is limited by low resolution of spatiotemporal data. To enhance this resolution and provide the essential knowledge of karst groundwater systems, studies at laboratory scale can be conducted. This work uses an intermediate karstified lab-scale physical model (IKLPM) to study fate and transport processes and assess viable tools to characterize heterogeneities in karst systems. Transport experiments are conducted in the IKLPM using step injections of calcium chloride, uranine, and rhodamine wt tracers. Temporal concentration distributions (TCDs) obtained from the experiments are analyzed using the method of moments and CXTFIT to quantify fate and transport parameters in the system at various flow rates. The spatial distribution of the estimated fate and transport parameters for the tracers revealed high variability related to preferential flow heterogeneities and scale dependence. Results are integrated to define spatially-variable transport regions within the system and assess their fate and transport characteristics.
Stroke Rehabilitation using Virtual Environments
Fu, Michael J.; Knutson, Jayme; Chae, John
2015-01-01
Synopsis This review covers the rationale, mechanisms, and availability of commercially available virtual environment-based interventions for stroke rehabilitation. It describes interventions for motor, speech, cognitive, and sensory dysfunction. Also discussed are the important features and mechanisms that allow virtual environments to facilitate motor relearning. A common challenge facing the field is inability to translate success in small trials to efficacy in larger populations. The heterogeneity of stroke pathophysiology has been blamed and experts advocate for the study of multimodal approaches. Therefore, this article also introduces a framework to help define new therapy combinations that may be necessary to address stroke heterogeneity. PMID:26522910
Aguilar, Jeffrey; Zhang, Tingnan; Qian, Feifei; Kingsbury, Mark; McInroe, Benjamin; Mazouchova, Nicole; Li, Chen; Maladen, Ryan; Gong, Chaohui; Travers, Matt; Hatton, Ross L; Choset, Howie; Umbanhowar, Paul B; Goldman, Daniel I
2016-11-01
Discovery of fundamental principles which govern and limit effective locomotion (self-propulsion) is of intellectual interest and practical importance. Human technology has created robotic moving systems that excel in movement on and within environments of societal interest: paved roads, open air and water. However, such devices cannot yet robustly and efficiently navigate (as animals do) the enormous diversity of natural environments which might be of future interest for autonomous robots; examples include vertical surfaces like trees and cliffs, heterogeneous ground like desert rubble and brush, turbulent flows found near seashores, and deformable/flowable substrates like sand, mud and soil. In this review we argue for the creation of a physics of moving systems-a 'locomotion robophysics'-which we define as the pursuit of principles of self-generated motion. Robophysics can provide an important intellectual complement to the discipline of robotics, largely the domain of researchers from engineering and computer science. The essential idea is that we must complement the study of complex robots in complex situations with systematic study of simplified robotic devices in controlled laboratory settings and in simplified theoretical models. We must thus use the methods of physics to examine both locomotor successes and failures using parameter space exploration, systematic control, and techniques from dynamical systems. Using examples from our and others' research, we will discuss how such robophysical studies have begun to aid engineers in the creation of devices that have begun to achieve life-like locomotor abilities on and within complex environments, have inspired interesting physics questions in low dimensional dynamical systems, geometric mechanics and soft matter physics, and have been useful to develop models for biological locomotion in complex terrain. The rapidly decreasing cost of constructing robot models with easy access to significant computational power bodes well for scientists and engineers to engage in a discipline which can readily integrate experiment, theory and computation.
NASA Astrophysics Data System (ADS)
Aguilar, Jeffrey; Zhang, Tingnan; Qian, Feifei; Kingsbury, Mark; McInroe, Benjamin; Mazouchova, Nicole; Li, Chen; Maladen, Ryan; Gong, Chaohui; Travers, Matt; Hatton, Ross L.; Choset, Howie; Umbanhowar, Paul B.; Goldman, Daniel I.
2016-11-01
Discovery of fundamental principles which govern and limit effective locomotion (self-propulsion) is of intellectual interest and practical importance. Human technology has created robotic moving systems that excel in movement on and within environments of societal interest: paved roads, open air and water. However, such devices cannot yet robustly and efficiently navigate (as animals do) the enormous diversity of natural environments which might be of future interest for autonomous robots; examples include vertical surfaces like trees and cliffs, heterogeneous ground like desert rubble and brush, turbulent flows found near seashores, and deformable/flowable substrates like sand, mud and soil. In this review we argue for the creation of a physics of moving systems—a ‘locomotion robophysics’—which we define as the pursuit of principles of self-generated motion. Robophysics can provide an important intellectual complement to the discipline of robotics, largely the domain of researchers from engineering and computer science. The essential idea is that we must complement the study of complex robots in complex situations with systematic study of simplified robotic devices in controlled laboratory settings and in simplified theoretical models. We must thus use the methods of physics to examine both locomotor successes and failures using parameter space exploration, systematic control, and techniques from dynamical systems. Using examples from our and others’ research, we will discuss how such robophysical studies have begun to aid engineers in the creation of devices that have begun to achieve life-like locomotor abilities on and within complex environments, have inspired interesting physics questions in low dimensional dynamical systems, geometric mechanics and soft matter physics, and have been useful to develop models for biological locomotion in complex terrain. The rapidly decreasing cost of constructing robot models with easy access to significant computational power bodes well for scientists and engineers to engage in a discipline which can readily integrate experiment, theory and computation.
NASA Astrophysics Data System (ADS)
Das Mahanta, Debasish; Rana, Debkumar; Patra, Animesh; Mukherjee, Biswaroop; Mitra, Rajib Kumar
2018-05-01
Water is often found in (micro)-heterogeneous environments and therefore it is necessary to understand their H-bonded network structure in such altered environments. We explore the structure and dynamics of water in its binary mixture with relatively less polar small biocompatible amphiphilic molecule 1,2-Dimethoxyethane (DME) by a combined spectroscopic and molecular dynamics (MD) simulation study. Picosecond (ps) resolved fluorescence spectroscopy using coumarin 500 as the fluorophore establishes a non-monotonic behaviour of the mixture. Simulation studies also explore the various possible H-bond formations between water and DME. The relative abundance of such different water species manifests the heterogeneity in the mixture.
Validation of the mean radiant temperature simulated by the RayMan software in urban environments.
Lee, Hyunjung; Mayer, Helmut
2016-11-01
The RayMan software is worldwide applied in investigations on different issues in human-biometeorology. However, only the simulated mean radiant temperature (T mrt ) has been validated so far in a few case studies. They are based on T mrt values, which were experimentally determined in urban environments by use of a globe thermometer or applying the six-directional method. This study analyses previous T mrt validations in a comparative manner. Their results are extended by a recent validation of T mrt in an urban micro-environment in Freiburg (southwest Germany), which can be regarded as relatively heterogeneous due to different shading intensities by tree crowns. In addition, a validation of the physiologically equivalent temperature (PET) simulated by RayMan is conducted for the first time. The validations are based on experimentally determined T mrt and PET values, which were calculated from measured meteorological variables in the daytime of a clear-sky summer day. In total, the validation results show that RayMan is capable of simulating T mrt satisfactorily under relatively homogeneous site conditions. However, the inaccuracy of simulated T mrt is increasing with lower sun elevation and growing heterogeneity of the simulation site. As T mrt represents the meteorological variable that mostly governs PET in the daytime of clear-sky summer days, the accuracy of simulated T mrt is mainly responsible for the accuracy of simulated PET. The T mrt validations result in some recommendations, which concern an update of physical principles applied in the RayMan software to simulate the short- and long-wave radiant flux densities, especially from vertical building walls and tree crowns.
Heterogeneous Deformable Modeling of Bio-Tissues and Haptic Force Rendering for Bio-Object Modeling
NASA Astrophysics Data System (ADS)
Lin, Shiyong; Lee, Yuan-Shin; Narayan, Roger J.
This paper presents a novel technique for modeling soft biological tissues as well as the development of an innovative interface for bio-manufacturing and medical applications. Heterogeneous deformable models may be used to represent the actual internal structures of deformable biological objects, which possess multiple components and nonuniform material properties. Both heterogeneous deformable object modeling and accurate haptic rendering can greatly enhance the realism and fidelity of virtual reality environments. In this paper, a tri-ray node snapping algorithm is proposed to generate a volumetric heterogeneous deformable model from a set of object interface surfaces between different materials. A constrained local static integration method is presented for simulating deformation and accurate force feedback based on the material properties of a heterogeneous structure. Biological soft tissue modeling is used as an example to demonstrate the proposed techniques. By integrating the heterogeneous deformable model into a virtual environment, users can both observe different materials inside a deformable object as well as interact with it by touching the deformable object using a haptic device. The presented techniques can be used for surgical simulation, bio-product design, bio-manufacturing, and medical applications.
Effect of homogenous-heterogeneous reactions on MHD Prandtl fluid flow over a stretching sheet
NASA Astrophysics Data System (ADS)
Khan, Imad; Malik, M. Y.; Hussain, Arif; Salahuddin, T.
An analysis is performed to explore the effects of homogenous-heterogeneous reactions on two-dimensional flow of Prandtl fluid over a stretching sheet. In present analysis, we used the developed model of homogeneous-heterogeneous reactions in boundary layer flow. The mathematical configuration of presented flow phenomenon yields the nonlinear partial differential equations. Using scaling transformations, the governing partial differential equations (momentum equation and homogenous-heterogeneous reactions equations) are transformed into non-linear ordinary differential equations (ODE's). Then, resulting non-linear ODE's are solved by computational scheme known as shooting method. The quantitative and qualitative manners of concerned physical quantities (velocity, concentration and drag force coefficient) are examined under prescribed physical constrained through figures and tables. It is observed that velocity profile enhances verses fluid parameters α and β while Hartmann number reduced it. The homogeneous and heterogeneous reactions parameters have reverse effects on concentration profile. Concentration profile shows retarding behavior for large values of Schmidt number. Skin fraction coefficient enhances with increment in Hartmann number H and fluid parameter α .
A platform for quantitative evaluation of intratumoral spatial heterogeneity in multiplexed immunofluorescence images, via characterization of the spatial interactions between different cellular phenotypes and non-cellular constituents in the tumor microenvironment.
NASA Astrophysics Data System (ADS)
Thakore, Arun K.; Sauer, Frank
1994-05-01
The organization of modern medical care environments into disease-related clusters, such as a cancer center, a diabetes clinic, etc., has the side-effect of introducing multiple heterogeneous databases, often containing similar information, within the same organization. This heterogeneity fosters incompatibility and prevents the effective sharing of data amongst applications at different sites. Although integration of heterogeneous databases is now feasible, in the medical arena this is often an ad hoc process, not founded on proven database technology or formal methods. In this paper we illustrate the use of a high-level object- oriented semantic association method to model information found in different databases into an integrated conceptual global model that integrates the databases. We provide examples from the medical domain to illustrate an integration approach resulting in a consistent global view, without attacking the autonomy of the underlying databases.
Stanley, Ryan; Snelgrove, Paul V R; Deyoung, Brad; Gregory, Robert S
2012-01-01
During the pelagic larval phase, fish dispersal may be influenced passively by surface currents or actively determined by swimming behaviour. In situ observations of larval swimming are few given the constraints of field sampling. Active behaviour is therefore often inferred from spatial patterns in the field, laboratory studies, or hydrodynamic theory, but rarely are these approaches considered in concert. Ichthyoplankton survey data collected during 2004 and 2006 from coastal Newfoundland show that changes in spatial heterogeneity for multiple species do not conform to predictions based on passive transport. We evaluated the interaction of individual larvae with their environment by calculating Reynolds number as a function of ontogeny. Typically, larvae hatch into a viscous environment in which swimming is inefficient, and later grow into more efficient intermediate and inertial swimming environments. Swimming is therefore closely related to length, not only because of swimming capacity but also in how larvae experience viscosity. Six of eight species sampled demonstrated consistent changes in spatial patchiness and concomitant increases in spatial heterogeneity as they transitioned into more favourable hydrodynamic swimming environments, suggesting an active behavioural element to dispersal. We propose the tandem assessment of spatial heterogeneity and hydrodynamic environment as a potential approach to understand and predict the onset of ecologically significant swimming behaviour of larval fishes in the field.
Jorgensen, Tove H.
2012-01-01
Background and Aims The biotic and abiotic environment of interacting hosts and parasites may vary considerably over small spatial and temporal scales. It is essential to understand how different environments affect host disease resistance because this determines frequency of disease and, importantly, heterogeneous environments can retard direct selection and potentially maintain genetic variation for resistance in natural populations. Methods The effect of different temperatures and soil nutrient conditions on the outcome of infection by a pathogen was quantified in Arabidopsis thaliana. Expression levels of a gene conferring resistance to powdery mildews, RPW8, were compared with levels of disease to test a possible mechanism behind variation in resistance. Key Results Most host genotypes changed from susceptible to resistant across environments with the ranking of genotypes differing between treatments. Transcription levels of RPW8 increased after infection and varied between environments, but there was no tight association between transcription and resistance levels. Conclusions There is a strong potential for a heterogeneous environment to change the resistance capacity of A. thaliana genotypes and hence the direction and magnitude of selection in the presence of the pathogen. Possible causative links between resistance gene expression and disease resistance are discussed in light of the present results on RPW8. PMID:22234559
The Impact of Accelerometers on Physical Activity and Weight Loss: A Systematic Review
Goode, Adam P.; Hall, Katherine S.; Batch, Bryan C.; Huffman, Kim M.; Hastings, S. Nicole; Allen, Kelli D.; Shaw, Ryan J.; Kanach, Frances A.; McDuffie, Jennifer R.; Kosinski, Andrzej S.; Williams, John W.; Gierisch, Jennifer M.
2016-01-01
Background Regular physical activity is important for improving and maintaining health, but sedentary behavior is difficult to change. Providing objective, real-time feedback on physical activity with wearable motion-sensing technologies (activity monitors) may be a promising, scalable strategy to increase physical activity or decrease weight. Purpose We synthesized the literature on the use of wearable activity monitors for improving physical activity and weight-related outcomes and evaluated moderating factors that may have an impact on effectiveness. Methods We searched five databases from January 2000 to January 2015 for peer-reviewed, English-language randomized controlled trials among adults. Random-effects models were used to produce standardized mean differences (SMDs) for physical activity outcomes and mean differences (MDs) for weight outcomes. Heterogeneity was measured with I2. Results Fourteen trials (2,972 total participants) met eligibility criteria; accelerometers were used in all trials. Twelve trials examined accelerometer interventions for increasing physical activity. A small significant effect was found for increasing physical activity (SMD 0.26; 95% CI 0.04 to 0.49; I2=64.7%). Intervention duration was the only moderator found to significantly explain high heterogeneity for physical activity. Eleven trials examined effects of accelerometer interventions on weight. Pooled estimates showed a small significant effect for weight loss (MD −1.65 kg; 95% CI −3.03 to −0.28; I2=81%), and no moderators were significant. Conclusions Accelerometers demonstrated small positive effects on physical activity and weight loss. The small sample sizes with moderate to high heterogeneity in the current studies limit the conclusions that may be drawn. Future studies should focus on how best to integrate accelerometers with other strategies to increase physical activity and weight loss. PMID:27565168
Yim, Wen-Wai; Chien, Shu; Kusumoto, Yasuyuki; Date, Susumu; Haga, Jason
2010-01-01
Large-scale in-silico screening is a necessary part of drug discovery and Grid computing is one answer to this demand. A disadvantage of using Grid computing is the heterogeneous computational environments characteristic of a Grid. In our study, we have found that for the molecular docking simulation program DOCK, different clusters within a Grid organization can yield inconsistent results. Because DOCK in-silico virtual screening (VS) is currently used to help select chemical compounds to test with in-vitro experiments, such differences have little effect on the validity of using virtual screening before subsequent steps in the drug discovery process. However, it is difficult to predict whether the accumulation of these discrepancies over sequentially repeated VS experiments will significantly alter the results if VS is used as the primary means for identifying potential drugs. Moreover, such discrepancies may be unacceptable for other applications requiring more stringent thresholds. This highlights the need for establishing a more complete solution to provide the best scientific accuracy when executing an application across Grids. One possible solution to platform heterogeneity in DOCK performance explored in our study involved the use of virtual machines as a layer of abstraction. This study investigated the feasibility and practicality of using virtual machine and recent cloud computing technologies in a biological research application. We examined the differences and variations of DOCK VS variables, across a Grid environment composed of different clusters, with and without virtualization. The uniform computer environment provided by virtual machines eliminated inconsistent DOCK VS results caused by heterogeneous clusters, however, the execution time for the DOCK VS increased. In our particular experiments, overhead costs were found to be an average of 41% and 2% in execution time for two different clusters, while the actual magnitudes of the execution time costs were minimal. Despite the increase in overhead, virtual clusters are an ideal solution for Grid heterogeneity. With greater development of virtual cluster technology in Grid environments, the problem of platform heterogeneity may be eliminated through virtualization, allowing greater usage of VS, and will benefit all Grid applications in general.
Toward a global multi-scale heliophysics observatory
NASA Astrophysics Data System (ADS)
Semeter, J. L.
2017-12-01
We live within the only known stellar-planetary system that supports life. What we learn about this system is not only relevant to human society and its expanding reach beyond Earth's surface, but also to our understanding of the origins and evolution of life in the universe. Heliophysics is focused on solar-terrestrial interactions mediated by the magnetic and plasma environment surrounding the planet. A defining feature of energy flow through this environment is interaction across physical scales. A solar disturbance aimed at Earth can excite geospace variability on scales ranging from thousands of kilometers (e.g., global convection, region 1 and 2 currents, electrojet intensifications) to 10's of meters (e.g., equatorial spread-F, dispersive Alfven waves, plasma instabilities). Most "geospace observatory" concepts are focused on a single modality (e.g., HF/UHF radar, magnetometer, optical) providing a limited parameter set over a particular spatiotemporal resolution. Data assimilation methods have been developed to couple heterogeneous and distributed observations, but resolution has typically been prescribed a-priori and according to physical assumptions. This paper develops a conceptual framework for the next generation multi-scale heliophysics observatory, capable of revealing and quantifying the complete spectrum of cross-scale interactions occurring globally within the geospace system. The envisioned concept leverages existing assets, enlists citizen scientists, and exploits low-cost access to the geospace environment. Examples are presented where distributed multi-scale observations have resulted in substantial new insight into the inner workings of our stellar-planetary system.
Huang, Chen; Muñoz-García, Ana Belén; Pavone, Michele
2016-12-28
Density-functional embedding theory provides a general way to perform multi-physics quantum mechanics simulations of large-scale materials by dividing the total system's electron density into a cluster's density and its environment's density. It is then possible to compute the accurate local electronic structures and energetics of the embedded cluster with high-level methods, meanwhile retaining a low-level description of the environment. The prerequisite step in the density-functional embedding theory is the cluster definition. In covalent systems, cutting across the covalent bonds that connect the cluster and its environment leads to dangling bonds (unpaired electrons). These represent a major obstacle for the application of density-functional embedding theory to study extended covalent systems. In this work, we developed a simple scheme to define the cluster in covalent systems. Instead of cutting covalent bonds, we directly split the boundary atoms for maintaining the valency of the cluster. With this new covalent embedding scheme, we compute the dehydrogenation energies of several different molecules, as well as the binding energy of a cobalt atom on graphene. Well localized cluster densities are observed, which can facilitate the use of localized basis sets in high-level calculations. The results are found to converge faster with the embedding method than the other multi-physics approach ONIOM. This work paves the way to perform the density-functional embedding simulations of heterogeneous systems in which different types of chemical bonds are present.
Heterogenous Combustion of Porous Graphite Particles in Normal and Microgravity
NASA Technical Reports Server (NTRS)
Chelliah, Harsha K.; Miller, Fletcher J.; Delisle, Andrew J.
2001-01-01
Combustion of solid fuel particles has many important applications, including power generation and space propulsion systems. The current models available for describing the combustion process of these particles, especially porous solid particles, include various simplifying approximations. One of the most limiting approximations is the lumping of the physical properties of the porous fuel with the heterogeneous chemical reaction rate constants. The primary objective of the present work is to develop a rigorous model that could decouple such physical and chemical effects from the global heterogeneous reaction rates. For the purpose of validating this model, experiments with porous graphite particles of varying sizes and porosity are being performed. The details of this experimental and theoretical model development effort are described.
Inflammatory modulation of exercise salience: using hormesis to return to a healthy lifestyle
2010-01-01
Most of the human population in the western world has access to unlimited calories and leads an increasingly sedentary lifestyle. The propensity to undertake voluntary exercise or indulge in spontaneous physical exercise, which might be termed "exercise salience", is drawing increased scientific attention. Despite its genetic aspects, this complex behaviour is clearly modulated by the environment and influenced by physiological states. Inflammation is often overlooked as one of these conditions even though it is known to induce a state of reduced mobility. Chronic subclinical inflammation is associated with the metabolic syndrome; a largely lifestyle-induced disease which can lead to decreased exercise salience. The result is a vicious cycle that increases oxidative stress and reduces metabolic flexibility and perpetuates the disease state. In contrast, hormetic stimuli can induce an anti-inflammatory phenotype, thereby enhancing exercise salience, leading to greater biological fitness and improved functional longevity. One general consequence of hormesis is upregulation of mitochondrial function and resistance to oxidative stress. Examples of hormetic factors include calorie restriction, extreme environmental temperatures, physical activity and polyphenols. The hormetic modulation of inflammation, and thus, exercise salience, may help to explain the highly heterogeneous expression of voluntary exercise behaviour and therefore body composition phenotypes of humans living in similar obesogenic environments. PMID:21143891
Geologic Controls on the Growth of Petroleum Reserves
Fishman, Neil S.; Turner, Christine E.; Peterson, Fred; Dyman, Thaddeus S.; Cook, Troy
2008-01-01
The geologic characteristics of selected siliciclastic (largely sandstone) and carbonate (limestone and dolomite) reservoirs in North America (largely the continental United States) were investigated to improve our understanding of the role of geology in the growth of petroleum reserves. Reservoirs studied were deposited in (1) eolian environments (Jurassic Norphlet Formation of the Gulf Coast and Pennsylvanian-Permian Minnelusa Formation of the Powder River Basin), (2) interconnected fluvial, deltaic, and shallow marine environments (Oligocene Frio Formation of the Gulf Coast and the Pennsylvanian Morrow Formation of the Anadarko and Denver Basins), (3) deeper marine environments (Mississippian Barnett Shale of the Fort Worth Basin and Devonian-Mississippian Bakken Formation of the Williston Basin), (4) marine carbonate environments (Ordovician Ellenburger Group of the Permian Basin and Jurassic Smackover Formation of the Gulf of Mexico Basin), (5) a submarine fan environment (Permian Spraberry Formation of the Midland Basin), and (6) a fluvial environment (Paleocene-Eocene Wasatch Formation of the Uinta-Piceance Basin). The connection between an oil reservoir's production history and geology was also evaluated by studying production histories of wells in disparate reservoir categories and wells in a single formation containing two reservoir categories. This effort was undertaken to determine, in general, if different reservoir production heterogeneities could be quantified on the basis of gross geologic differences. It appears that reserve growth in existing fields is most predictable for those in which reservoir heterogeneity is low and thus production differs little between wells, probably owing to relatively homogeneous fluid flow. In fields in which reservoirs are highly heterogeneous, prediction of future growth from infill drilling is notably more difficult. In any case, success at linking heterogeneity to reserve growth depends on factors in addition to geology, such as engineering and technological advances and political or cultural or economic influences.
Sugiura, D; Tateno, M
2013-08-01
We investigated the nitrogen and carbohydrate allocation patterns of trees under heterogeneous light environments using saplings of the devil maple tree (Acer diabolicum) with Y-shaped branches. Different branch groups were created: all branches of a sapling exposed to full light (L-branches), all branches exposed to full shade (S-branches), and half of the branches of a sapling exposed to light (HL-branches) and the other half exposed to shade (HS-branches). Throughout the growth period, nitrogen was preferentially allocated to HL-branches, whereas nitrogen allocation to HS-branches was suppressed compared to L- and S-branches. HL-branches with the highest leaf nitrogen content (N(area)) also had the highest rates of growth, and HS-branches with the lowest N(area) had the lowest observed growth rates. In addition, net nitrogen assimilation, estimated using a photosynthesis model, was strongly correlated with branch growth and whole-plant growth. In contrast, patterns of photosynthate allocation to branches and roots were not affected by the light conditions of the other branch. These observations suggest that tree canopies develop as a result of resource allocation patterns, where the growth of sun-lit branches is favoured over shaded branches, which leads to enhanced whole-plant growth in heterogeneous light environments. Our results indicate that whole-plant growth is enhanced by the resource allocation patterns created for saplings in heterogeneous light environments.
NASA Astrophysics Data System (ADS)
Podgorney, Robert; Coleman, Justin; Wilkins, Amdrew; Huang, Hai; Veeraraghavan, Swetha; Xia, Yidong; Permann, Cody
2017-04-01
Numerical modeling has played an important role in understanding the behavior of coupled subsurface thermal-hydro-mechanical (THM) processes associated with a number of energy and environmental applications since as early as the 1970s. While the ability to rigorously describe all key tightly coupled controlling physics still remains a challenge, there have been significant advances in recent decades. These advances are related primarily to the exponential growth of computational power, the development of more accurate equations of state, improvements in the ability to represent heterogeneity and reservoir geometry, and more robust nonlinear solution schemes. The work described in this paper documents the development and linkage of several fully-coupled and fully-implicit modeling tools. These tools simulate: (1) the dynamics of fluid flow, heat transport, and quasi-static rock mechanics; (2) seismic wave propagation from the sources of energy release through heterogeneous material; and (3) the soil-structural damage resulting from ground acceleration. These tools are developed in Idaho National Laboratory's parallel Multiphysics Object Oriented Simulation Environment, and are integrated together using a global implicit approach. The governing equations are presented, the numerical approach for simultaneously solving and coupling the three coupling physics tools is discussed, and the data input and output methodology is outlined. An example is presented to demonstrate the capabilities of the coupled multiphysics approach. The example involves simulating a system conceptually similar to the geothermal development in Basel Switzerland, and the resultant induced seismicity, ground motion and structural damage is predicted.
Utility functions and resource management in an oversubscribed heterogeneous computing environment
Khemka, Bhavesh; Friese, Ryan; Briceno, Luis Diego; ...
2014-09-26
We model an oversubscribed heterogeneous computing system where tasks arrive dynamically and a scheduler maps the tasks to machines for execution. The environment and workloads are based on those being investigated by the Extreme Scale Systems Center at Oak Ridge National Laboratory. Utility functions that are designed based on specifications from the system owner and users are used to create a metric for the performance of resource allocation heuristics. Each task has a time-varying utility (importance) that the enterprise will earn based on when the task successfully completes execution. We design multiple heuristics, which include a technique to drop lowmore » utility-earning tasks, to maximize the total utility that can be earned by completing tasks. The heuristics are evaluated using simulation experiments with two levels of oversubscription. The results show the benefit of having fast heuristics that account for the importance of a task and the heterogeneity of the environment when making allocation decisions in an oversubscribed environment. Furthermore, the ability to drop low utility-earning tasks allow the heuristics to tolerate the high oversubscription as well as earn significant utility.« less
HeNCE: A Heterogeneous Network Computing Environment
Beguelin, Adam; Dongarra, Jack J.; Geist, George Al; ...
1994-01-01
Network computing seeks to utilize the aggregate resources of many networked computers to solve a single problem. In so doing it is often possible to obtain supercomputer performance from an inexpensive local area network. The drawback is that network computing is complicated and error prone when done by hand, especially if the computers have different operating systems and data formats and are thus heterogeneous. The heterogeneous network computing environment (HeNCE) is an integrated graphical environment for creating and running parallel programs over a heterogeneous collection of computers. It is built on a lower level package called parallel virtual machine (PVM).more » The HeNCE philosophy of parallel programming is to have the programmer graphically specify the parallelism of a computation and to automate, as much as possible, the tasks of writing, compiling, executing, debugging, and tracing the network computation. Key to HeNCE is a graphical language based on directed graphs that describe the parallelism and data dependencies of an application. Nodes in the graphs represent conventional Fortran or C subroutines and the arcs represent data and control flow. This article describes the present state of HeNCE, its capabilities, limitations, and areas of future research.« less
Study of selected phenotype switching strategies in time varying environment
NASA Astrophysics Data System (ADS)
Horvath, Denis; Brutovsky, Branislav
2016-03-01
Population heterogeneity plays an important role across many research, as well as the real-world, problems. The population heterogeneity relates to the ability of a population to cope with an environment change (or uncertainty) preventing its extinction. However, this ability is not always desirable as can be exemplified by an intratumor heterogeneity which positively correlates with the development of resistance to therapy. Causation of population heterogeneity is therefore in biology and medicine an intensively studied topic. In this paper the evolution of a specific strategy of population diversification, the phenotype switching, is studied at a conceptual level. The presented simulation model studies evolution of a large population of asexual organisms in a time-varying environment represented by a stochastic Markov process. Each organism disposes with a stochastic or nonlinear deterministic switching strategy realized by discrete-time models with evolvable parameters. We demonstrate that under rapidly varying exogenous conditions organisms operate in the vicinity of the bet-hedging strategy, while the deterministic patterns become relevant as the environmental variations are less frequent. Statistical characterization of the steady state regimes of the populations is done using the Hellinger and Kullback-Leibler functional distances and the Hamming distance.
Nürnberger, Fabian; Steffan-Dewenter, Ingolf; Härtel, Stephan
2017-01-01
The instructive component of waggle dance communication has been shown to increase resource uptake of Apis mellifera colonies in highly heterogeneous resource environments, but an assessment of its relevance in temperate landscapes with different levels of resource heterogeneity is currently lacking. We hypothesized that the advertisement of resource locations via dance communication would be most relevant in highly heterogeneous landscapes with large spatial variation of floral resources. To test our hypothesis, we placed 24 Apis mellifera colonies with either disrupted or unimpaired instructive component of dance communication in eight Central European agricultural landscapes that differed in heterogeneity and resource availability. We monitored colony weight change and pollen harvest as measure of foraging success. Dance disruption did not significantly alter colony weight change, but decreased pollen harvest compared to the communicating colonies by 40%. There was no general effect of resource availability on nectar or pollen foraging success, but the effect of landscape heterogeneity on nectar uptake was stronger when resource availability was high. In contrast to our hypothesis, the effects of disrupted bee communication on nectar and pollen foraging success were not stronger in landscapes with heterogeneous compared to homogenous resource environments. Our results indicate that in temperate regions intra-colonial communication of resource locations benefits pollen foraging more than nectar foraging, irrespective of landscape heterogeneity. We conclude that the so far largely unexplored role of dance communication in pollen foraging requires further consideration as pollen is a crucial resource for colony development and health.
Audureau, Etienne; Rican, Stéphane; Coste, Joël
2013-07-01
Although small area effects on health-related quality of life (HRQoL) have been extensively studied, less is known at the regional level, particularly in France where no multilevel evidence is available. Using data from a large representative cross-sectional survey conducted in 2003 (N=16 732), this study explores individual and regional determinants of the SF-36 Physical Functioning and Mental Health subscales. We considered a causal pathway leading from deindustrialization to HRQoL and assessed the roles of net migratory flows, deprivation, and the social and physical environments. Worse HRQoL results were found in regions most affected by deindustrialization, with evidence for mediating effects of migration, voter abstention rate and individual health-related behaviors. Cross-level interactions and intraregional heterogeneity were also found, confirming the complexity of individual-area relationships and the need for carefully conceptualized multilevel analyses to guide health policies effectively. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sheet, Debdoot; Karamalis, Athanasios; Eslami, Abouzar; Noël, Peter; Chatterjee, Jyotirmoy; Ray, Ajoy K; Laine, Andrew F; Carlier, Stephane G; Navab, Nassir; Katouzian, Amin
2014-01-01
Intravascular Ultrasound (IVUS) is a predominant imaging modality in interventional cardiology. It provides real-time cross-sectional images of arteries and assists clinicians to infer about atherosclerotic plaques composition. These plaques are heterogeneous in nature and constitute fibrous tissue, lipid deposits and calcifications. Each of these tissues backscatter ultrasonic pulses and are associated with a characteristic intensity in B-mode IVUS image. However, clinicians are challenged when colocated heterogeneous tissue backscatter mixed signals appearing as non-unique intensity patterns in B-mode IVUS image. Tissue characterization algorithms have been developed to assist clinicians to identify such heterogeneous tissues and assess plaque vulnerability. In this paper, we propose a novel technique coined as Stochastic Driven Histology (SDH) that is able to provide information about co-located heterogeneous tissues. It employs learning of tissue specific ultrasonic backscattering statistical physics and signal confidence primal from labeled data for predicting heterogeneous tissue composition in plaques. We employ a random forest for the purpose of learning such a primal using sparsely labeled and noisy samples. In clinical deployment, the posterior prediction of different lesions constituting the plaque is estimated. Folded cross-validation experiments have been performed with 53 plaques indicating high concurrence with traditional tissue histology. On the wider horizon, this framework enables learning of tissue-energy interaction statistical physics and can be leveraged for promising clinical applications requiring tissue characterization beyond the application demonstrated in this paper. Copyright © 2013 Elsevier B.V. All rights reserved.
The dynamics of physical and mental health in the older population.
Ohrnberger, Julius; Fichera, Eleonora; Sutton, Matt
2017-06-01
Mental and physical aspects are both integral to health but little is known about the dynamic relationship between them. We consider the dynamic relationship between mental and physical health using a sample of 11,203 individuals in six waves (2002-2013) of the English Longitudinal Study of Ageing (ELSA). We estimate conditional linear and non-linear random-effects regression models to identify the effects of past physical health, measured by Activities of Daily Living (ADL), and past mental health, measured by the Centre for Epidemiological Studies Depression (CES-D) scale, on both present physical and mental health. We find that both mental and physical health are moderately state-dependent. Better past mental health increases present physical health significantly. Better past physical health has a larger effect on present mental health. Past mental health has stronger effects on present physical health than physical activity or education. It explains 2.0% of the unobserved heterogeneity in physical health. Past physical health has stronger effects on present mental health than health investments, income or education. It explains 0.4% of the unobserved heterogeneity in mental health. These cross-effects suggest that health policies aimed at specific aspects of health should consider potential spill-over effects.
Enabling Computational Nanotechnology through JavaGenes in a Cycle Scavenging Environment
NASA Technical Reports Server (NTRS)
Globus, Al; Menon, Madhu; Srivastava, Deepak; Biegel, Bryan A. (Technical Monitor)
2002-01-01
A genetic algorithm procedure is developed and implemented for fitting parameters for many-body inter-atomic force field functions for simulating nanotechnology atomistic applications using portable Java on cycle-scavenged heterogeneous workstations. Given a physics based analytic functional form for the force field, correlated parameters in a multi-dimensional environment are typically chosen to fit properties given either by experiments and/or by higher accuracy quantum mechanical simulations. The implementation automates this tedious procedure using an evolutionary computing algorithm operating on hundreds of cycle-scavenged computers. As a proof of concept, we demonstrate the procedure for evaluating the Stillinger-Weber (S-W) potential by (a) reproducing the published parameters for Si using S-W energies in the fitness function, and (b) evolving a "new" set of parameters using semi-empirical tightbinding energies in the fitness function. The "new" parameters are significantly better suited for Si cluster energies and forces as compared to even the published S-W potential.
A study of the evaporation of heterogeneous water droplets under active heating
NASA Astrophysics Data System (ADS)
Piskunov, Maxim; Legros, Jean Claude; Strizhak, Pavel
2016-11-01
Using high-speed video registration tools with a sample rate of 102-104 frames per second (fps), we studied the patterns in the evaporation of water droplets containing 1 and 2 mm individual metallic inclusions in a high-temperature gas environment. The materials of choice for the inclusions were steels (AISI 1080 carbon steel and AISI type 316L stainless steel) and pure nickel. We established the lifetimes τh of the liquid droplets under study with a controlled increase in the gas environment temperature up to 900 K. We also considered the physical aspects behind the τh distribution in the experiments conducted and specified the conditions for more effective cooling of metallic inclusions. Following the experimental research findings, a method was devised for effective reactor vessel cooling to avoid a meltdown at a nuclear power plant. The optimization of heat and mass transfer modes was performed within the framework of the strategic plan for the development of National Research Tomsk Polytechnic University as one of the world-leading universities.
Remote sensing of Qatar nearshore habitats with perspectives for coastal management.
Warren, Christopher; Dupont, Jennifer; Abdel-Moati, Mohamed; Hobeichi, Sanaa; Palandro, David; Purkis, Sam
2016-04-30
A framework is proposed for utilizing remote sensing and ground-truthing field data to map benthic habitats in the State of Qatar, with potential application across the Arabian Gulf. Ideally the methodology can be applied to optimize the efficiency and effectiveness of mapping the nearshore environment to identify sensitive habitats, monitor for change, and assist in management decisions. The framework is applied to a case study for northeastern Qatar with a key focus on identifying high sensitivity coral habitat. The study helps confirm the presence of known coral and provides detail on a region in the area of interest where corals have not been previously mapped. Challenges for the remote sensing methodology associated with natural heterogeneity of the physical and biological environment are addressed. Recommendations on the application of this approach to coastal environmental risk assessment and management planning are discussed as well as future opportunities for improvement of the framework. Copyright © 2015 Elsevier Ltd. All rights reserved.
Physical punishment and childhood aggression: the role of gender and gene-environment interplay.
Boutwell, Brian B; Franklin, Cortney A; Barnes, J C; Beaver, Kevin M
2011-01-01
A large body of research has linked spanking with a range of adverse outcomes in children, including aggression, psychopathology, and criminal involvement. Despite evidence concerning the association of spanking with antisocial behavior, not all children who are spanked develop antisocial traits. Given the heterogeneous effects of spanking on behavior, it is possible that a third variable may condition the influence of corporal punishment on child development. We test this possibility using data drawn from a nationally representative dataset of twin siblings. Our findings suggest that genetic risk factors condition the effects of spanking on antisocial behavior. Moreover, our results provide evidence that the interaction between genetic risk factors and corporal punishment may be particularly salient for males. © 2011 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Lewis, M. A.; McKenzie, H.; Merrill, E.
2010-12-01
In this talk I will outline first passage time analysis for animals undertaking complex movement patterns, and will demonstrate how first passage time can be used to derive functional responses in predator prey systems. The result is a new approach to understanding type III functional responses based on a random walk model. I will extend the analysis to heterogeneous environments to assess the effects of linear features on functional responses in wolves and elk using GPS tracking data.
NASA Astrophysics Data System (ADS)
Kobayashi, H.; Ryu, Y.; Ustin, S.; Baldocchi, D. D.
2009-12-01
B15: Remote Characterization of Vegetation Structure: Including Research to Inform the Planned NASA DESDynI and ESA BIOMASS Missions Title: Spatial radiation environment in a heterogeneous oak woodland using a three-dimensional radiative transfer model and multiple constraints from observations Hideki Kobayashi, Youngryel Ryu, Susan Ustin, and Dennis Baldocchi Abstract Accurate evaluations of radiation environments of visible, near infrared, and thermal infrared wavebands in forest canopies are important to estimate energy, water, and carbon fluxes. Californian oak woodlands are sparse and highly clumped so that radiation environments are extremely heterogeneous spatially. The heterogeneity of radiation environments also varies with wavebands which depend on scattering and emission properties. So far, most of modeling studies have been performed in one dimensional radiative transfer models with (or without) clumping effect in the forest canopies. While some studies have been performed by using three dimensional radiative transfer models, several issues are still unresolved. For example, some 3D models calculate the radiation field with individual tree basis, and radiation interactions among trees are not considered. This interaction could be important in the highly scattering waveband such as near infrared. The objective of this study is to quantify the radiation field in the oak woodland. We developed a three dimensional radiative transfer model, which includes the thermal waveband. Soil/canopy energy balances and canopy physiology models, CANOAK, are incorporated in the radiative transfer model to simulate the diurnal patterns of thermal radiation fields and canopy physiology. Airborne LiDAR and canopy gap data measured by the several methods (digital photographs and plant canopy analyzer) were used to constrain the forest structures such as tree positions, crown sizes and leaf area density. Modeling results were tested by a traversing radiometer system that measured incoming photosynthetically active radiation and net radiation at forest floor and spatial variations in canopy reflectances taken by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). In this study, we show how the model with available measurements can reproduce the spatially heterogeneous radiation environments in the oak woodland.
Quasi-dynamic earthquake fault systems with rheological heterogeneity
NASA Astrophysics Data System (ADS)
Brietzke, G. B.; Hainzl, S.; Zoeller, G.; Holschneider, M.
2009-12-01
Seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates, such models cannot allow for physical statements of the described seismicity. In contrary such empirical stochastic models, physics based earthquake fault systems models allow for a physical reasoning and interpretation of the produced seismicity and system dynamics. Recently different fault system earthquake simulators based on frictional stick-slip behavior have been used to study effects of stress heterogeneity, rheological heterogeneity, or geometrical complexity on earthquake occurrence, spatial and temporal clustering of earthquakes, and system dynamics. Here we present a comparison of characteristics of synthetic earthquake catalogs produced by two different formulations of quasi-dynamic fault system earthquake simulators. Both models are based on discretized frictional faults embedded in an elastic half-space. While one (1) is governed by rate- and state-dependent friction with allowing three evolutionary stages of independent fault patches, the other (2) is governed by instantaneous frictional weakening with scheduled (and therefore causal) stress transfer. We analyze spatial and temporal clustering of events and characteristics of system dynamics by means of physical parameters of the two approaches.
An Overview of MSHN: The Management System for Heterogeneous Networks
1999-04-01
An Overview of MSHN: The Management System for Heterogeneous Networks Debra A. Hensgen†, Taylor Kidd†, David St. John§, Matthew C . Schnaidt†, Howard...ABSTRACT UU 18. NUMBER OF PAGES 15 19a. NAME OF RESPONSIBLE PERSON a. REPORT unclassified b. ABSTRACT unclassified c . THIS PAGE...Alhusaini, V. K. Prasanna, and C . S. Raghavendra, “A unified resource scheduling framework for heterogeneous computing environments,” Proc. 8th IEEE
Heritability of physical activity traits in Brazilian families: the Baependi Heart Study
2011-01-01
Background It is commonly recognized that physical activity has familial aggregation; however, the genetic influences on physical activity phenotypes are not well characterized. This study aimed to (1) estimate the heritability of physical activity traits in Brazilian families; and (2) investigate whether genetic and environmental variance components contribute differently to the expression of these phenotypes in males and females. Methods The sample that constitutes the Baependi Heart Study is comprised of 1,693 individuals in 95 Brazilian families. The phenotypes were self-reported in a questionnaire based on the WHO-MONICA instrument. Variance component approaches, implemented in the SOLAR (Sequential Oligogenic Linkage Analysis Routines) computer package, were applied to estimate the heritability and to evaluate the heterogeneity of variance components by gender on the studied phenotypes. Results The heritability estimates were intermediate (35%) for weekly physical activity among non-sedentary subjects (weekly PA_NS), and low (9-14%) for sedentarism, weekly physical activity (weekly PA), and level of daily physical activity (daily PA). Significant evidence for heterogeneity in variance components by gender was observed for the sedentarism and weekly PA phenotypes. No significant gender differences in genetic or environmental variance components were observed for the weekly PA_NS trait. The daily PA phenotype was predominantly influenced by environmental factors, with larger effects in males than in females. Conclusions Heritability estimates for physical activity phenotypes in this sample of the Brazilian population were significant in both males and females, and varied from low to intermediate magnitude. Significant evidence for heterogeneity in variance components by gender was observed. These data add to the knowledge of the physical activity traits in the Brazilian study population, and are concordant with the notion of significant biological determination in active behavior. PMID:22126647
Heritability of physical activity traits in Brazilian families: the Baependi Heart Study.
Horimoto, Andréa R V R; Giolo, Suely R; Oliveira, Camila M; Alvim, Rafael O; Soler, Júlia P; de Andrade, Mariza; Krieger, José E; Pereira, Alexandre C
2011-11-29
It is commonly recognized that physical activity has familial aggregation; however, the genetic influences on physical activity phenotypes are not well characterized. This study aimed to (1) estimate the heritability of physical activity traits in Brazilian families; and (2) investigate whether genetic and environmental variance components contribute differently to the expression of these phenotypes in males and females. The sample that constitutes the Baependi Heart Study is comprised of 1,693 individuals in 95 Brazilian families. The phenotypes were self-reported in a questionnaire based on the WHO-MONICA instrument. Variance component approaches, implemented in the SOLAR (Sequential Oligogenic Linkage Analysis Routines) computer package, were applied to estimate the heritability and to evaluate the heterogeneity of variance components by gender on the studied phenotypes. The heritability estimates were intermediate (35%) for weekly physical activity among non-sedentary subjects (weekly PA_NS), and low (9-14%) for sedentarism, weekly physical activity (weekly PA), and level of daily physical activity (daily PA). Significant evidence for heterogeneity in variance components by gender was observed for the sedentarism and weekly PA phenotypes. No significant gender differences in genetic or environmental variance components were observed for the weekly PA_NS trait. The daily PA phenotype was predominantly influenced by environmental factors, with larger effects in males than in females. Heritability estimates for physical activity phenotypes in this sample of the Brazilian population were significant in both males and females, and varied from low to intermediate magnitude. Significant evidence for heterogeneity in variance components by gender was observed. These data add to the knowledge of the physical activity traits in the Brazilian study population, and are concordant with the notion of significant biological determination in active behavior.
Stanley, Ryan; Snelgrove, Paul V. R.; deYoung, Brad; Gregory, Robert S.
2012-01-01
During the pelagic larval phase, fish dispersal may be influenced passively by surface currents or actively determined by swimming behaviour. In situ observations of larval swimming are few given the constraints of field sampling. Active behaviour is therefore often inferred from spatial patterns in the field, laboratory studies, or hydrodynamic theory, but rarely are these approaches considered in concert. Ichthyoplankton survey data collected during 2004 and 2006 from coastal Newfoundland show that changes in spatial heterogeneity for multiple species do not conform to predictions based on passive transport. We evaluated the interaction of individual larvae with their environment by calculating Reynolds number as a function of ontogeny. Typically, larvae hatch into a viscous environment in which swimming is inefficient, and later grow into more efficient intermediate and inertial swimming environments. Swimming is therefore closely related to length, not only because of swimming capacity but also in how larvae experience viscosity. Six of eight species sampled demonstrated consistent changes in spatial patchiness and concomitant increases in spatial heterogeneity as they transitioned into more favourable hydrodynamic swimming environments, suggesting an active behavioural element to dispersal. We propose the tandem assessment of spatial heterogeneity and hydrodynamic environment as a potential approach to understand and predict the onset of ecologically significant swimming behaviour of larval fishes in the field. PMID:23029455
Interactive effects of genotype x environment on the live weight of GIFT Nile tilapias.
Oliveira, Sheila N DE; Ribeiro, Ricardo P; Oliveira, Carlos A L DE; Alexandre, Luiz; Oliveira, Aline M S; Lopera-Barrero, Nelson M; Santander, Victor F A; Santana, Renan A C
2017-01-01
In this paper, the existence of a genotype x environment interaction for the average daily weight in GIFT Nile tilapia (Oreochromis niloticus) in different regions in the state of Paraná (Brazil) was analyzed. The heritability results were high in the uni-characteristic analysis: 0.71, 0.72 and 0.67 for the cities of Palotina (PL), Floriano (FL) and Diamond North (DN), respectively. Genetic correlations estimated in bivariate analyzes were weak with values between 0.12 for PL-FL, 0.06 for PL and 0.23 for DN-FL-DN. The Spearman correlation values were low, which indicated a change in ranking in the selection of animals in different environments in the study. There was heterogeneity in the phenotypic variance among the three regions and heterogeneity in the residual variance between PL and DN. The direct genetic gain was greater for the region with a DN value gain of 198.24 g/generation, followed by FL (98.73 g/generation) and finally PL (98.73 g/generation). The indirect genetic gains were lower than 0.37 and greater than 0.02 g/generation. The evidence of the genotype x environment interaction was verified, which indicated the phenotypic heterogeneity of the variances among the three regions, weak genetic correlation and modified rankings in the different environments.
NASA Astrophysics Data System (ADS)
Li, Bing-Wei; Cao, Xiao-Zhi; Fu, Chenbo
2017-12-01
Many biological and chemical systems could be modeled by a population of oscillators coupled indirectly via a dynamical environment. Essentially, the environment by which the individual element communicates with each other is heterogeneous. Nevertheless, most of previous works considered the homogeneous case only. Here we investigated the dynamical behaviors in a population of spatially distributed chaotic oscillators immersed in a heterogeneous environment. Various dynamical synchronization states (such as oscillation death, phase synchronization, and complete synchronized oscillation) as well as their transitions were explored. In particular, we uncovered a non-traditional quorum sensing transition: increasing the population density leaded to a transition from oscillation death to synchronized oscillation at first, but further increasing the density resulted in degeneration from complete synchronization to phase synchronization or even from phase synchronization to desynchronization. The underlying mechanism of this finding was attributed to the dual roles played by the population density. What's more, by treating the environment as another component of the oscillator, the full system was then effectively equivalent to a locally coupled system. This fact allowed us to utilize the master stability functions approach to predict the occurrence of complete synchronization oscillation, which agreed with that from the direct numerical integration of the system. The potential candidates for the experimental realization of our model were also discussed.
Characteristics of Urban Sidewalks/Streets and Objectively Measured Physical Activity
Heinrich, Katie M.; Poston, Walker S.C.; Hyder, Melissa; Pyle, Sara
2007-01-01
Several studies have found significant relationships between environmental characteristics (e.g., number of destinations, aesthetics) and physical activity. While a few of these studies verified that the physical activities assessed were performed in the environments examined, none have done this in an urban, neighborhood setting. This information will help efforts to inform policy decisions regarding the design of more “physically active” communities. Fourteen environmental characteristics of 60, 305-m-long segments, located in an urban, residential setting, were directly measured using standardized procedures. The number of individuals walking, jogging, and biking in the segments was assessed using an observation technique. The segments were heterogeneous with regards to several of the environmental characteristics. A total of 473 individuals were seen walking, bicycling, or jogging in the segments during 3,600 min of observation (60 min/segment). Of the 473 seen, 315 were walking, 116 bicycling, and 42 jogging. A greater number of individuals were seen walking in segments with more traffic, sidewalk defects, graffiti, and litter and less desirable property aesthetics. Only one environmental characteristic was associated with bicycling and none were significantly related with jogging. This study provides further evidence that environmental characteristics and walking are related. It also adds new information regarding the importance of scale (e.g., micro, macro) and how some environmental characteristics of urban, residential sidewalks and streets relate to physical activity. PMID:18161026
Interventions for promoting physical activity
Foster, Charles; Hillsdon, Melvyn; Thorogood, Margaret; Kaur, Asha; Wedatilake, Thamindu
2014-01-01
Background Little is known about the effectiveness of strategies to enable people to achieve and maintain recommended levels of physical activity. Objectives To assess the effectiveness of interventions designed to promote physical activity in adults aged 16 years and older, not living in an institution. Search methods We searched The Cochrane Library (issue 1 2005), MEDLINE, EMBASE, CINAHL, PsycLIT, BIDS ISI, SPORTDISCUS, SIGLE, SCISEARCH (from earliest dates available to December 2004). Reference lists of relevant articles were checked. No language restrictions were applied. Selection criteria Randomised controlled trials that compared different interventions to encourage sedentary adults not living in an institution to become physically active. Studies required a minimum of six months follow up from the start of the intervention to the collection of final data and either used an intention-to-treat analysis or, failing that, had no more than 20% loss to follow up. Data collection and analysis At least two reviewers independently assessed each study quality and extracted data. Study authors were contacted for additional information where necessary. Standardised mean differences and 95% confidence intervals were calculated for continuous measures of self-reported physical activity and cardio-respiratory fitness. For studies with dichotomous outcomes, odds ratios and 95% confidence intervals were calculated. Main results The effect of interventions on self-reported physical activity (19 studies; 7598 participants) was positive and moderate (pooled SMD random effects model 0.28 95% CI 0.15 to 0.41) as was the effect of interventions (11 studies; 2195 participants) on cardio-respiratory fitness (pooled SMD random effects model 0.52 95% CI 0.14 to 0.90). There was significant heterogeneity in the reported effects as well as heterogeneity in characteristics of the interventions. The heterogeneity in reported effects was reduced in higher quality studies, when physical activity was self-directed with some professional guidance and when there was on-going professional support. Authors’ conclusions Our review suggests that physical activity interventions have a moderate effect on self-reported physical activity, on achieving a predetermined level of physical activity and cardio-respiratory fitness. Due to the clinical and statistical heterogeneity of the studies, only limited conclusions can be drawn about the effectiveness of individual components of the interventions. Future studies should provide greater detail of the components of interventions. PMID:15674903
Seabed geodiversity in a glaciated shelf area, the Baltic Sea
NASA Astrophysics Data System (ADS)
Kaskela, Anu Marii; Kotilainen, Aarno Tapio
2017-10-01
Geodiversity describes the heterogeneity of the physical terrain. We have performed basin-wide geodiversity analysis on a glaciated epicontinental seabed to assess geodiversity measures and patterns, locate areas with high geodiversity, and draw conclusions on contributing processes. Geodiversity quantification is a rather new topic and is mainly practiced in land areas. We applied geodiversity methods developed for terrestrial studies to a seabed environment. Three geodiversity parameters, including the richness, patchiness, and geodiversity index, of the Baltic Sea were assessed in a GIS environment based on broad-scale datasets on seabed substrates, structures, and bedrock. A set of environmental and geological variables, which were considered to reflect geological processes under seabed conditions, were compared with the geodiversity to identify some of its drivers. We observed differences in the geodiversity levels of the Baltic subbasins, which are mainly due to basement type/bedrock, roughness, shore density, and glacier-derived processes. The geodiversity of the Baltic Sea generally increases from South to North and from open-sea to high-shore density areas (archipelagos). Crystalline bedrock areas provide more diverse seabed environments than sedimentary rock areas. The analysis helps to inform scientists, marine spatial planners, and managers about abiotic conservation values, the dynamics of the seabed environment, and potential areas with elevated biodiversity.
Enabling Flexible and Continuous Capability Invocation in Mobile Prosumer Environments
Alcarria, Ramon; Robles, Tomas; Morales, Augusto; López-de-Ipiña, Diego; Aguilera, Unai
2012-01-01
Mobile prosumer environments require the communication with heterogeneous devices during the execution of mobile services. These environments integrate sensors, actuators and smart devices, whose availability continuously changes. The aim of this paper is to design a reference architecture for implementing a model for continuous service execution and access to capabilities, i.e., the functionalities provided by these devices. The defined architecture follows a set of software engineering patterns and includes some communication paradigms to cope with the heterogeneity of sensors, actuators, controllers and other devices in the environment. In addition, we stress the importance of the flexibility in capability invocation by allowing the communication middleware to select the access technology and change the communication paradigm when dealing with smart devices, and by describing and evaluating two algorithms for resource access management. PMID:23012526
Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai
2016-01-01
Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale. PMID:27375630
Wang, Yong-Jian; Shi, Xue-Ping; Meng, Xue-Feng; Wu, Xiao-Jing; Luo, Fang-Li; Yu, Fei-Hai
2016-01-01
Spatial heterogeneity in two co-variable resources such as light and water availability is common and can affect the growth of clonal plants. Several studies have tested effects of spatial heterogeneity in the supply of a single resource on competitive interactions of plants, but none has examined those of heterogeneous distribution of two co-variable resources. In a greenhouse experiment, we grew one (without intraspecific competition) or nine isolated ramets (with competition) of a rhizomatous herb Iris japonica under a homogeneous environment and four heterogeneous environments differing in patch arrangement (reciprocal and parallel patchiness of light and soil water) and patch scale (large and small patches of light and water). Intraspecific competition significantly decreased the growth of I. japonica, but at the whole container level there were no significant interaction effects of competition by spatial heterogeneity or significant effect of heterogeneity on competitive intensity. Irrespective of competition, the growth of I. japonica in the high and the low water patches did not differ significantly in the homogeneous treatments, but it was significantly larger in the high than in the low water patches in the heterogeneous treatments with large patches. For the heterogeneous treatments with small patches, the growth of I. japonica was significantly larger in the high than in the low water patches in the presence of competition, but such an effect was not significant in the absence of competition. Furthermore, patch arrangement and patch scale significantly affected competitive intensity at the patch level. Therefore, spatial heterogeneity in light and water supply can alter intraspecific competition at the patch level and such effects depend on patch arrangement and patch scale.
Bauer, Matthias; Knebel, Johannes; Lechner, Matthias; Pickl, Peter; Frey, Erwin
2017-01-01
Autoinducers are small signaling molecules that mediate intercellular communication in microbial populations and trigger coordinated gene expression via ‘quorum sensing’. Elucidating the mechanisms that control autoinducer production is, thus, pertinent to understanding collective microbial behavior, such as virulence and bioluminescence. Recent experiments have shown a heterogeneous promoter activity of autoinducer synthase genes, suggesting that some of the isogenic cells in a population might produce autoinducers, whereas others might not. However, the mechanism underlying this phenotypic heterogeneity in quorum-sensing microbial populations has remained elusive. In our theoretical model, cells synthesize and secrete autoinducers into the environment, up-regulate their production in this self-shaped environment, and non-producers replicate faster than producers. We show that the coupling between ecological and population dynamics through quorum sensing can induce phenotypic heterogeneity in microbial populations, suggesting an alternative mechanism to stochastic gene expression in bistable gene regulatory circuits. DOI: http://dx.doi.org/10.7554/eLife.25773.001 PMID:28741470
Steffan-Dewenter, Ingolf; Härtel, Stephan
2017-01-01
The instructive component of waggle dance communication has been shown to increase resource uptake of Apis mellifera colonies in highly heterogeneous resource environments, but an assessment of its relevance in temperate landscapes with different levels of resource heterogeneity is currently lacking. We hypothesized that the advertisement of resource locations via dance communication would be most relevant in highly heterogeneous landscapes with large spatial variation of floral resources. To test our hypothesis, we placed 24 Apis mellifera colonies with either disrupted or unimpaired instructive component of dance communication in eight Central European agricultural landscapes that differed in heterogeneity and resource availability. We monitored colony weight change and pollen harvest as measure of foraging success. Dance disruption did not significantly alter colony weight change, but decreased pollen harvest compared to the communicating colonies by 40%. There was no general effect of resource availability on nectar or pollen foraging success, but the effect of landscape heterogeneity on nectar uptake was stronger when resource availability was high. In contrast to our hypothesis, the effects of disrupted bee communication on nectar and pollen foraging success were not stronger in landscapes with heterogeneous compared to homogenous resource environments. Our results indicate that in temperate regions intra-colonial communication of resource locations benefits pollen foraging more than nectar foraging, irrespective of landscape heterogeneity. We conclude that the so far largely unexplored role of dance communication in pollen foraging requires further consideration as pollen is a crucial resource for colony development and health. PMID:28603677
Culumber, Zachary W; Schumer, Molly; Monks, Scott; Tobler, Michael
2015-02-01
Theory predicts that environmental heterogeneity offers a potential solution to the maintenance of genetic variation within populations, but empirical evidence remains sparse. The live-bearing fish Xiphophorus variatus exhibits polymorphism at a single locus, with different alleles resulting in up to five distinct melanistic "tailspot" patterns within populations. We investigated the effects of heterogeneity in two ubiquitous environmental variables (temperature and food availability) on two fitness-related traits (upper thermal limits and body condition) in two different tailspot types (wild-type and upper cut crescent). We found gene-by-environment (G × E) interactions between tailspot type and food level affecting upper thermal limits (UTL), as well as between tailspot type and thermal environment affecting body condition. Exploring mechanistic bases underlying these G × E patterns, we found no differences between tailspot types in hsp70 gene expression despite significant overall increases in expression under both thermal and food stress. Similarly, there was no difference in routine metabolic rates between the tailspot types. The reversal of relative performance of the two tailspot types under different environmental conditions revealed a mechanism by which environmental heterogeneity can balance polymorphism within populations through selection on different fitness-related traits. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Disease Spread and Its Effect on Population Dynamics in Heterogeneous Environment
NASA Astrophysics Data System (ADS)
Upadhyay, Ranjit Kumar; Roy, Parimita
In this paper, an eco-epidemiological model in which both species diffuse along a spatial gradient has been shown to exhibit temporal chaos at a fixed point in space. The proposed model is a modification of the model recently presented by Upadhyay and Roy [2014]. The spatial interactions among the species have been represented in the form of reaction-diffusion equations. The model incorporates the intrinsic growth rate of fish population which varies linearly with the depth of water. Numerical results show that diffusion can drive otherwise stable system into aperiodic behavior with sensitivity to initial conditions. We show that spatially induced chaos plays an important role in spatial pattern formation in heterogeneous environment. Spatiotemporal distributions of species have been simulated using the diffusivity assumptions realistic for natural eco-epidemic systems. We found that in heterogeneous environment, the temporal dynamics of both the species are drastically different and show chaotic behavior. It was also found that the instability observed in the model is due to spatial heterogeneity and diffusion-driven. Cumulative death rate of predator has an appreciable effect on model dynamics as the spatial distribution of all constituent populations exhibit significant changes when this model parameter is changed and it acts as a regularizing factor.
An approach for heterogeneous and loosely coupled geospatial data distributed computing
NASA Astrophysics Data System (ADS)
Chen, Bin; Huang, Fengru; Fang, Yu; Huang, Zhou; Lin, Hui
2010-07-01
Most GIS (Geographic Information System) applications tend to have heterogeneous and autonomous geospatial information resources, and the availability of these local resources is unpredictable and dynamic under a distributed computing environment. In order to make use of these local resources together to solve larger geospatial information processing problems that are related to an overall situation, in this paper, with the support of peer-to-peer computing technologies, we propose a geospatial data distributed computing mechanism that involves loosely coupled geospatial resource directories and a term named as Equivalent Distributed Program of global geospatial queries to solve geospatial distributed computing problems under heterogeneous GIS environments. First, a geospatial query process schema for distributed computing as well as a method for equivalent transformation from a global geospatial query to distributed local queries at SQL (Structured Query Language) level to solve the coordinating problem among heterogeneous resources are presented. Second, peer-to-peer technologies are used to maintain a loosely coupled network environment that consists of autonomous geospatial information resources, thus to achieve decentralized and consistent synchronization among global geospatial resource directories, and to carry out distributed transaction management of local queries. Finally, based on the developed prototype system, example applications of simple and complex geospatial data distributed queries are presented to illustrate the procedure of global geospatial information processing.
Utility of Thermal Infrared Satellite Data For Urban Landscapes
NASA Astrophysics Data System (ADS)
Xian, G.; Crane, M.; Granneman, B.
2006-12-01
Urban landscapes are comprised of a variety of surfaces that are characterized by contrasting radiative, thermal, aerodynamic, and moisture properties. These different surfaces possess diverse physical and thermal attributes that directly influence surface energy balance and our ability to determine surface characteristics in urban areas. Reflectance properties obtained from satellite imagery have proven useful for mapping urban land use and land cover change, as well as ecosystem health. Landsat reflectance bands are commonly used in regression tree models to generate linear equations that correspond to distinct land surface materials. However, urban land cover is generally a heterogeneous mix of bare soil, vegetation, rock, and anthropogenic impervious surfaces. Surface temperature obtained from satellite thermal infrared bands provides valuable information about surface biophysical properties and radiant thermal characteristics of land cover elements, especially for urban environments. This study demonstrates the improved characterization of land cover conditions for Seattle, Washington, and Las Vegas, Nevada, that were achieved by using both the reflectance and thermal bands of Landsat Enhanced Thematic Mapper Plus (ETM+) data. Including the thermal band in the image analysis increased the accuracy of discriminating cover types in heterogeneous landscapes with extreme contrasts, especially for mixed pixels at the urban interface.
Corrosion assessment of refractory materials for high temperature waste vitrification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, J.C.; Congdon, J.W.; Kielpinski, A.L.
1995-11-01
A variety of vitrification technologies are being evaluated to immobilize radioactive and hazardous wastes following years of nuclear materials production throughout the Department of Energy (DOE) complex. The compositions and physical forms of these wastes are diverse ranging from inorganic sludges to organic liquids to heterogeneous debris. Melt and off-gas products can be very corrosive at the high temperatures required to melt many of these waste streams. Ensuring material durability is required to develop viable treatment processes. Corrosion testing of materials in some of the anticipated severe environments is an important aspect of the materials identification and selection process. Corrosionmore » coupon tests on typical materials used in Joule heated melters were completed using glass compositions with high salt contents. The presence of chloride in the melts caused the most severe attack. In the metal alloys, oxidation was the predominant corrosion mechanism, while in the tested refractory material enhanced dissolution of the refractory into the glass was observed. Corrosion testing of numerous different refractory materials was performed in a plasma vitrification system using a surrogate heterogeneous debris waste. Extensive corrosion was observed in all tested materials.« less
A heterogeneous system based on GPU and multi-core CPU for real-time fluid and rigid body simulation
NASA Astrophysics Data System (ADS)
da Silva Junior, José Ricardo; Gonzalez Clua, Esteban W.; Montenegro, Anselmo; Lage, Marcos; Dreux, Marcelo de Andrade; Joselli, Mark; Pagliosa, Paulo A.; Kuryla, Christine Lucille
2012-03-01
Computational fluid dynamics in simulation has become an important field not only for physics and engineering areas but also for simulation, computer graphics, virtual reality and even video game development. Many efficient models have been developed over the years, but when many contact interactions must be processed, most models present difficulties or cannot achieve real-time results when executed. The advent of parallel computing has enabled the development of many strategies for accelerating the simulations. Our work proposes a new system which uses some successful algorithms already proposed, as well as a data structure organisation based on a heterogeneous architecture using CPUs and GPUs, in order to process the simulation of the interaction of fluids and rigid bodies. This successfully results in a two-way interaction between them and their surrounding objects. As far as we know, this is the first work that presents a computational collaborative environment which makes use of two different paradigms of hardware architecture for this specific kind of problem. Since our method achieves real-time results, it is suitable for virtual reality, simulation and video game fluid simulation problems.
Mason, P Michael; Stuckey, David C
2016-11-01
Anaerobic digestion of plant biomass to hydrocarbons could play a major part in meeting the needs of a modern low carbon society, but the cost reductions needed to make it an economically viable technology have been slower to arrive than in other renewable technologies. This is notwithstanding the observation that ruminants carry out the rate limiting hydrolysis step up to 30 times faster than an AD plant, and that bio-mimicry of ruminants could be an important source of innovation. This paper examines a number of factors which may, by focusing emphasis on the physical and chemical environment within cellulolytic biofilms, help accelerate development in the arena. It examines the process of cellulolysis from the perspective of a bacterium attached within a biofilm to a piece of insoluble cellulosic substrate to illustrate the extent of chemical heterogeneity that exists in the film, and between the film and the supernatant, and how this might control the rate of cellulolysis. It suggests several strategies used by ruminants to manage this heterogeneity that may be significant contributors to their effectiveness, and could provide a useful guide to more effective anaerobic digestion. Copyright © 2016. Published by Elsevier Ltd.
Old models explain new observations of butterfly movement at patch edges.
Crone, Elizabeth E; Schultz, Cheryl B
2008-07-01
Understanding movement in heterogeneous environments is central to predicting how landscape changes affect animal populations. Several recent studies point out an intriguing and distinctive looping behavior by butterflies at habitat patch edges and hypothesize that this behavior requires a new framework for analyzing animal movement. We show that this looping behavior could be caused by a longstanding movement model, biased correlated random walk, with bias toward habitat patches. The ability of this longstanding model to explain recent observations reinforces the point that butterflies respond to habitat heterogeneity and do not move randomly through heterogeneous environments. We discuss the implications of different movement models for predicting butterfly responses to landscape change, and our rationale for retaining longstanding movement models, rather than developing new modeling frameworks for looping behavior at patch edges.
Accessible Home Environments for People with Functional Limitations: A Systematic Review.
Cho, Hea Young; MacLachlan, Malcolm; Clarke, Michael; Mannan, Hasheem
2016-08-17
The aim of this review is to evaluate the health and social effects of accessible home environments for people with functional limitations, in order to provide evidence to promote well-informed decision making for policy guideline development and choices about public health interventions. MEDLINE and nine other electronic databases were searched between December 2014 and January 2015, for articles published since 2004. All study types were included in this review. Two reviewers independently screened 12,544 record titles or titles and abstracts based on our pre-defined eligibility criteria. We identified 94 articles as potentially eligible; and assessed their full text. Included studies were critically appraised using the Mixed Method Appraisal Tool, version 2011. Fourteen studies were included in the review. We did not identify any meta-analysis or systematic review directly relevant to the question for this systematic review. A narrative approach was used to synthesise the findings of the included studies due to methodological and statistical heterogeneity. Results suggest that certain interventions to enhance the accessibility of homes can have positive health and social effects. Home environments that lack accessibility modifications appropriate to the needs of their users are likely to result in people with physical impairments becoming disabled at home.
Zimmermann, Matthias; Escrig, Stéphane; Hübschmann, Thomas; Kirf, Mathias K.; Brand, Andreas; Inglis, R. Fredrik; Musat, Niculina; Müller, Susann; Meibom, Anders; Ackermann, Martin; Schreiber, Frank
2015-01-01
Populations of genetically identical microorganisms residing in the same environment can display marked variability in their phenotypic traits; this phenomenon is termed phenotypic heterogeneity. The relevance of such heterogeneity in natural habitats is unknown, because phenotypic characterization of a sufficient number of single cells of the same species in complex microbial communities is technically difficult. We report a procedure that allows to measure phenotypic heterogeneity in bacterial populations from natural environments, and use it to analyze N2 and CO2 fixation of single cells of the green sulfur bacterium Chlorobium phaeobacteroides from the meromictic lake Lago di Cadagno. We incubated lake water with 15N2 and 13CO2 under in situ conditions with and without NH4+. Subsequently, we used flow cell sorting with auto-fluorescence gating based on a pure culture isolate to concentrate C. phaeobacteroides from its natural abundance of 0.2% to now 26.5% of total bacteria. C. phaeobacteroides cells were identified using catalyzed-reporter deposition fluorescence in situ hybridization (CARD-FISH) targeting the 16S rRNA in the sorted population with a species-specific probe. In a last step, we used nanometer-scale secondary ion mass spectrometry to measure the incorporation 15N and 13C stable isotopes in more than 252 cells. We found that C. phaeobacteroides fixes N2 in the absence of NH4+, but not in the presence of NH4+ as has previously been suggested. N2 and CO2 fixation were heterogeneous among cells and positively correlated indicating that N2 and CO2 fixation activity interact and positively facilitate each other in individual cells. However, because CARD-FISH identification cannot detect genetic variability among cells of the same species, we cannot exclude genetic variability as a source for phenotypic heterogeneity in this natural population. Our study demonstrates the technical feasibility of measuring phenotypic heterogeneity in a rare bacterial species in its natural habitat, thus opening the door to study the occurrence and relevance of phenotypic heterogeneity in nature. PMID:25932020
Spatially correlated heterogeneous aspirations to enhance network reciprocity
NASA Astrophysics Data System (ADS)
Tanimoto, Jun; Nakata, Makoto; Hagishima, Aya; Ikegaya, Naoki
2012-02-01
Perc & Wang demonstrated that aspiring to be the fittest under conditions of pairwise strategy updating enhances network reciprocity in structured populations playing 2×2 Prisoner's Dilemma games (Z. Wang, M. Perc, Aspiring to the fittest and promoted of cooperation in the Prisoner's Dilemma game, Physical Review E 82 (2010) 021115; M. Perc, Z. Wang, Heterogeneous aspiration promotes cooperation in the Prisoner's Dilemma game, PLOS one 5 (12) (2010) e15117). Through numerical simulations, this paper shows that network reciprocity is even greater if heterogeneous aspirations are imposed. We also suggest why heterogeneous aspiration fosters network reciprocity. It distributes strategy updating speed among agents in a manner that fortifies the initially allocated cooperators' clusters against invasion. This finding prompted us to further enhance the usual heterogeneous aspiration cases for heterogeneous network topologies. We find that a negative correlation between degree and aspiration level does extend cooperation among heterogeneously structured agents.
Breathing of the Biosphere: How Physics sets the Limits, and Biology Does the Work (Invited)
NASA Astrophysics Data System (ADS)
Baldocchi, D. D.
2009-12-01
Trace gas concentrations in the atmosphere are a consequence of fluxes between vegetation and the atmosphere. Predicting the rates of these fluxes is extremely complicated because the biosphere is a complex adaptive system that consists of a multitude of physical and biological processes that vary across 14 orders of magnitude in time and space. One challenge in predicting trace gas fluxes is to know when to lump and when to split this information into coarser or finer levels of detail. Plants, for example, abhor a vacuum and tend to fill niches if there is ample water, sunlight and soil. So ultimately, the upper limit of water, carbon and energy fluxes is set by amount of energy intercepted at the Earth’s surface, which scales with the solar constant. In addition, physics limits the supply and demand of resources that sustain plants, so many ecological scaling rules emerge; this reduces the need to consider every species, plant and leaf individually when assessing net and gross exchanges of trace gases between vegetation and the atmosphere. This trend towards the role of simplicity begins to fail when one starts to evaluate fluxes associated with microbes, like methane and nitrous oxide; microbes live in heterogeneous environments and exploit numerous routes to extract energy from their environment. Case studies, pertaining to the title, will be discussed using eddy covariance flux measurements from our field sites (peatland pasture, savanna woodland, grassland, deciduous and boreal forests), the FLUXNET network and leaf, canopy and planetary boundary-layer scale biophysical models.
Coiera, Enrico
2014-01-01
Background and objective Annotations to physical workspaces such as signs and notes are ubiquitous. When densely annotated, work areas become communication spaces. This study aims to characterize the types and purpose of such annotations. Methods A qualitative observational study was undertaken in two wards and the radiology department of a 440-bed metropolitan teaching hospital. Images were purposefully sampled; 39 were analyzed after excluding inferior images. Results Annotation functions included signaling identity, location, capability, status, availability, and operation. They encoded data, rules or procedural descriptions. Most aggregated into groups that either created a workflow by referencing each other, supported a common workflow without reference to each other, or were heterogeneous, referring to many workflows. Higher-level assemblies of such groupings were also observed. Discussion Annotations make visible the gap between work done and the capability of a space to support work. Annotations are repairs of an environment, improving fitness for purpose, fixing inadequacy in design, or meeting emergent needs. Annotations thus record the missing information needed to undertake tasks, typically added post-implemented. Measuring annotation levels post-implementation could help assess the fit of technology to task. Physical and digital spaces could meet broader user needs by formally supporting user customization, ‘programming through annotation’. Augmented reality systems could also directly support annotation, addressing existing information gaps, and enhancing work with context sensitive annotation. Conclusions Communication spaces offer a model of how work unfolds. Annotations make visible local adaptation that makes technology fit for purpose post-implementation and suggest an important role for annotatable information systems and digital augmentation of the physical environment. PMID:24005797
Implications of Tumor Heterogeneity for Precision Medicine
NASA Astrophysics Data System (ADS)
Jeraj, Robert
Medical physics is intimately connected with medicine, and is progressing along a similar path. General trend of medicine, particularly oncology, towards personalized treatment gave rise to precision medicine, which addresses the highly complex nature of disease. However, there are severe obstacles to overcome. For example, cancers evolve in time to become harder targets to treat. Understanding treatment resistance, and its development, often connected with the highly heterogeneous nature of the disease, is another key obstacle. Use of multi-modality imaging techniques such as molecular imaging is one of the solutions that medical physics can offer. Examples from clinical trials utilizing advanced molecular imaging, highlighting intra-tumor and inter-tumor heterogeneity will be presented. New understanding of cancer treatment response dynamics will be outlined. Potential for improved patient treatment designs steaming from these novel insights will be discussed.
UBioLab: a web-LABoratory for Ubiquitous in-silico experiments.
Bartocci, E; Di Berardini, M R; Merelli, E; Vito, L
2012-03-01
The huge and dynamic amount of bioinformatic resources (e.g., data and tools) available nowadays in Internet represents a big challenge for biologists -for what concerns their management and visualization- and for bioinformaticians -for what concerns the possibility of rapidly creating and executing in-silico experiments involving resources and activities spread over the WWW hyperspace. Any framework aiming at integrating such resources as in a physical laboratory has imperatively to tackle -and possibly to handle in a transparent and uniform way- aspects concerning physical distribution, semantic heterogeneity, co-existence of different computational paradigms and, as a consequence, of different invocation interfaces (i.e., OGSA for Grid nodes, SOAP for Web Services, Java RMI for Java objects, etc.). The framework UBioLab has been just designed and developed as a prototype following the above objective. Several architectural features -as those ones of being fully Web-based and of combining domain ontologies, Semantic Web and workflow techniques- give evidence of an effort in such a direction. The integration of a semantic knowledge management system for distributed (bioinformatic) resources, a semantic-driven graphic environment for defining and monitoring ubiquitous workflows and an intelligent agent-based technology for their distributed execution allows UBioLab to be a semantic guide for bioinformaticians and biologists providing (i) a flexible environment for visualizing, organizing and inferring any (semantics and computational) "type" of domain knowledge (e.g., resources and activities, expressed in a declarative form), (ii) a powerful engine for defining and storing semantic-driven ubiquitous in-silico experiments on the domain hyperspace, as well as (iii) a transparent, automatic and distributed environment for correct experiment executions.
The Oceanographic Multipurpose Software Environment (OMUSE v1.0)
NASA Astrophysics Data System (ADS)
Pelupessy, Inti; van Werkhoven, Ben; van Elteren, Arjen; Viebahn, Jan; Candy, Adam; Portegies Zwart, Simon; Dijkstra, Henk
2017-08-01
In this paper we present the Oceanographic Multipurpose Software Environment (OMUSE). OMUSE aims to provide a homogeneous environment for existing or newly developed numerical ocean simulation codes, simplifying their use and deployment. In this way, numerical experiments that combine ocean models representing different physics or spanning different ranges of physical scales can be easily designed. Rapid development of simulation models is made possible through the creation of simple high-level scripts. The low-level core of the abstraction in OMUSE is designed to deploy these simulations efficiently on heterogeneous high-performance computing resources. Cross-verification of simulation models with different codes and numerical methods is facilitated by the unified interface that OMUSE provides. Reproducibility in numerical experiments is fostered by allowing complex numerical experiments to be expressed in portable scripts that conform to a common OMUSE interface. Here, we present the design of OMUSE as well as the modules and model components currently included, which range from a simple conceptual quasi-geostrophic solver to the global circulation model POP (Parallel Ocean Program). The uniform access to the codes' simulation state and the extensive automation of data transfer and conversion operations aids the implementation of model couplings. We discuss the types of couplings that can be implemented using OMUSE. We also present example applications that demonstrate the straightforward model initialization and the concurrent use of data analysis tools on a running model. We give examples of multiscale and multiphysics simulations by embedding a regional ocean model into a global ocean model and by coupling a surface wave propagation model with a coastal circulation model.
Homogeneous v. Heterogeneous: Is Tracking a Barrier to Equity?
ERIC Educational Resources Information Center
Polansky, Harvey B.
1995-01-01
Tracking has contributed considerably to the basic inequality of funding among American schools. To move to a heterogenous environment, districts must understand the concept of resource and program equity, commit to a planning process that allocates time and resources, provide ongoing inservice, downplay standardized test results, and phase-in…
Heterogeneity of Student Perceptions of the Classroom Climate: A Latent Profile Approach
ERIC Educational Resources Information Center
Schenke, Katerina; Ruzek, Erik; Lam, Arena C.; Karabenick, Stuart A.; Eccles, Jacquelynne S.
2017-01-01
Student perceptions are a pivotal point of measurement for understanding why classroom learning environments are effective. Yet there is some evidence that student perceptions cannot be reliably aggregated at the classroom level and, instead, could represent idiosyncratic experiences of students. The present study examines whether heterogeneity in…
Variations in the Fe mineralogy of bright Martian soil
NASA Technical Reports Server (NTRS)
Murchie, Scott; Mustard, John; Erard, Stephane; Geissler, Paul; Singer, Robert
1993-01-01
Bright regions on Mars are interpreted as 'soil' derived by chemical alteration of crustal rocks, whose main pigmentary component is ferric oxide or oxyhydroxide. The mineralogy and mineralogic variability of ferric iron are important evidence for the evolution of Martian soil: mineralogy of ferric phases is sensitive to chemical conditions in their genetic environments, and the spatial distributions of different ferric phases would record a history of both chemical environments and physical mixing. Reflectance spectroscopic studies provide several types of evidence that discriminate possible pigmentary phases, including the position of a crystal field absorption near 0.9 microns and position and strengths of absorptions in the UV-visible wavelength region. Recent telescopic spectra and laboratory measurements of Mars soil analogs suggest that spectral features of bright soil can be explained based on a single pigmentary phase, hematite (alpha-Fe2O3), occurring in both 'nanophase' and more crystalline forms. Here we report on a systematic investigation of Martian bright regions using ISM imaging spectrometer data, in which we examined spatial variations in the position and shape of the approximately 0.9 microns absorption. We found both local and regional heterogeneities that indicate differences in Fe mineralogy. These results demonstrate that bright soils do not represent a single lithology that has been homogenized by eolian mixing, and suggest that weathering of soils in different geologic settings has followed different physical and chemical pathways.
EpiK: A Knowledge Base for Epidemiological Modeling and Analytics of Infectious Diseases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hasan, S. M. Shamimul; Fox, Edward A.; Bisset, Keith
Computational epidemiology seeks to develop computational methods to study the distribution and determinants of health-related states or events (including disease), and the application of this study to the control of diseases and other health problems. Recent advances in computing and data sciences have led to the development of innovative modeling environments to support this important goal. The datasets used to drive the dynamic models as well as the data produced by these models presents unique challenges owing to their size, heterogeneity and diversity. These datasets form the basis of effective and easy to use decision support and analytical environments. Asmore » a result, it is important to develop scalable data management systems to store, manage and integrate these datasets. In this paper, we develop EpiK—a knowledge base that facilitates the development of decision support and analytical environments to support epidemic science. An important goal is to develop a framework that links the input as well as output datasets to facilitate effective spatio-temporal and social reasoning that is critical in planning and intervention analysis before and during an epidemic. The data management framework links modeling workflow data and its metadata using a controlled vocabulary. The metadata captures information about storage, the mapping between the linked model and the physical layout, and relationships to support services. EpiK is designed to support agent-based modeling and analytics frameworks—aggregate models can be seen as special cases and are thus supported. We use semantic web technologies to create a representation of the datasets that encapsulates both the location and the schema heterogeneity. The choice of RDF as a representation language is motivated by the diversity and growth of the datasets that need to be integrated. A query bank is developed—the queries capture a broad range of questions that can be posed and answered during a typical case study pertaining to disease outbreaks. The queries are constructed using SPARQL Protocol and RDF Query Language (SPARQL) over the EpiK. EpiK can hide schema and location heterogeneity while efficiently supporting queries that span the computational epidemiology modeling pipeline: from model construction to simulation output. As a result, we show that the performance of benchmark queries varies significantly with respect to the choice of hardware underlying the database and resource description framework (RDF) engine.« less
EpiK: A Knowledge Base for Epidemiological Modeling and Analytics of Infectious Diseases
Hasan, S. M. Shamimul; Fox, Edward A.; Bisset, Keith; ...
2017-11-06
Computational epidemiology seeks to develop computational methods to study the distribution and determinants of health-related states or events (including disease), and the application of this study to the control of diseases and other health problems. Recent advances in computing and data sciences have led to the development of innovative modeling environments to support this important goal. The datasets used to drive the dynamic models as well as the data produced by these models presents unique challenges owing to their size, heterogeneity and diversity. These datasets form the basis of effective and easy to use decision support and analytical environments. Asmore » a result, it is important to develop scalable data management systems to store, manage and integrate these datasets. In this paper, we develop EpiK—a knowledge base that facilitates the development of decision support and analytical environments to support epidemic science. An important goal is to develop a framework that links the input as well as output datasets to facilitate effective spatio-temporal and social reasoning that is critical in planning and intervention analysis before and during an epidemic. The data management framework links modeling workflow data and its metadata using a controlled vocabulary. The metadata captures information about storage, the mapping between the linked model and the physical layout, and relationships to support services. EpiK is designed to support agent-based modeling and analytics frameworks—aggregate models can be seen as special cases and are thus supported. We use semantic web technologies to create a representation of the datasets that encapsulates both the location and the schema heterogeneity. The choice of RDF as a representation language is motivated by the diversity and growth of the datasets that need to be integrated. A query bank is developed—the queries capture a broad range of questions that can be posed and answered during a typical case study pertaining to disease outbreaks. The queries are constructed using SPARQL Protocol and RDF Query Language (SPARQL) over the EpiK. EpiK can hide schema and location heterogeneity while efficiently supporting queries that span the computational epidemiology modeling pipeline: from model construction to simulation output. As a result, we show that the performance of benchmark queries varies significantly with respect to the choice of hardware underlying the database and resource description framework (RDF) engine.« less
Prokaryotic communities differ along a geothermal soil photic gradient.
Meadow, James F; Zabinski, Catherine A
2013-01-01
Geothermal influenced soils exert unique physical and chemical limitations on resident microbial communities but have received little attention in microbial ecology research. These environments offer a model system in which to investigate microbial community heterogeneity and a range of soil ecological concepts. We conducted a 16S bar-coded pyrosequencing survey of the prokaryotic communities in a diatomaceous geothermal soil system and compared communities across soil types and along a conspicuous photic depth gradient. We found significant differences between the communities of the two different soils and also predictable differences between samples taken at different depths. Additionally, we targeted three ecologically relevant bacterial phyla, Cyanobacteria, Planctomycetes, and Verrucomicrobia, for clade-wise comparisons with these variables and found strong differences in their abundances, consistent with the autecology of these groups.
Soltanian, Mohamad Reza; Ritzi, Robert W; Dai, Zhenxue; Huang, Chao Cheng
2015-03-01
Physical and chemical heterogeneities have a large impact on reactive transport in porous media. Examples of heterogeneous attributes affecting reactive mass transport are the hydraulic conductivity (K), and the equilibrium sorption distribution coefficient (Kd). This paper uses the Deng et al. (2013) conceptual model for multimodal reactive mineral facies and a Lagrangian-based stochastic theory in order to analyze the reactive solute dispersion in three-dimensional anisotropic heterogeneous porous media with hierarchical organization of reactive minerals. An example based on real field data is used to illustrate the time evolution trends of reactive solute dispersion. The results show that the correlation between the hydraulic conductivity and the equilibrium sorption distribution coefficient does have a significant effect on reactive solute dispersion. The anisotropy ratio does not have a significant effect on reactive solute dispersion. Furthermore, through a sensitivity analysis we investigate the impact of changing the mean, variance, and integral scale of K and Kd on reactive solute dispersion. Copyright © 2014 Elsevier Ltd. All rights reserved.
Physical Heterogeneity and Aquatic Community Function in River Networks
The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological...
NASA Astrophysics Data System (ADS)
Adrover, Alessandra; Giona, Massimiliano; Pagnanelli, Francesca; Toro, Luigi
2007-04-01
We analyze the influence of surface heterogeneity, inducing a random ζ-potential at the walls in electroosmotic incompressible flows. Specifically, we focus on how surface heterogeneity modifies the physico-chemical processes (transport, chemical reaction, mixing) occurring in microchannel and microreactors. While the macroscopic short-time features associated with solute transport (e.g. chromatographic patterns) do not depend significantly on ζ-potential heterogeneity, spatial randomness in the surface ζ-potential modifies the spectral properties of the advection-diffusion operator, determining different long-term properties of transport/reaction phenomena compared to the homogeneous case. Examples of physical relevance (chromatography, infinitely fast reactions) are addressed.
Coppen, S R; Newsam, R; Bull, A T; Baines, A J
1995-04-20
The Chinese hamster ovary (CHO) cell line has great commercial importance in the production of recombinant human proteins, especially those for therapeutic use. Much attention has been paid to CHO cell population physiology in order to define factors affecting product fidelity and yield. Such studies have revealed that recombinant proteins, including human interferon-gamma (IFN-gamma), can be heterogeneous both in glycosylation and in proteolytic processing. The type of heterogeneity observed depends on the growth physiology of the cell population, although the relationship between them is complex. In this article we report results of a cytological study of the CHO320 line which expresses recombinant human IFN-gamma. When grown in suspension culture, this cell line exhibited three types of heterogeneity: (1) heterogeneity of the production of IFN-gamma within the cell population, (2) heterogeneity of the number of nuclei and mitotic spindles in dividing cells, and (3) heterogeneity of cellular environment. The last of these arises from cell aggregates which form in suspension culture: Some cells are exposed to the culture medium; others are fully enclosed within the mass with little or no direct access to the medium. Thus, live cells producing IFN-gamma are heterogeneous in their environment, with variable access to O(2) and nutrients. Within the aggregates, it appears that live cells proliferate on a dead cell mass. The layer of live cells can be several cells deep. Specific cell-cell attachments are observed between the living cells in these aggregates. Two proteins, known to be required for the formation of certain types of intercellular junctions, spectrin and vinculin, have been localized to the regions of cell-cell contact. The aggregation of the cells appears to be an active process requiring protein synthesis. (c) 1995 John Wiley & Sons, Inc.
Pizzitutti, Francesco; Pan, William; Barbieri, Alisson; Miranda, J Jaime; Feingold, Beth; Guedes, Gilvan R; Alarcon-Valenzuela, Javiera; Mena, Carlos F
2015-12-22
The Amazon environment has been exposed in the last decades to radical changes that have been accompanied by a remarkable rise of both Plasmodium falciparum and Plasmodium vivax malaria. The malaria transmission process is highly influenced by factors such as spatial and temporal heterogeneities of the environment and individual-based characteristics of mosquitoes and humans populations. All these determinant factors can be simulated effectively trough agent-based models. This paper presents a validated agent-based model of local-scale malaria transmission. The model reproduces the environment of a typical riverine village in the northern Peruvian Amazon, where the malaria transmission is highly seasonal and apparently associated with flooding of large areas caused by the neighbouring river. Agents representing humans, mosquitoes and the two species of Plasmodium (P. falciparum and P. vivax) are simulated in a spatially explicit representation of the environment around the village. The model environment includes: climate, people houses positions and elevation. A representation of changes in the mosquito breeding areas extension caused by the river flooding is also included in the simulation environment. A calibration process was carried out to reproduce the variations of the malaria monthly incidence over a period of 3 years. The calibrated model is also able to reproduce the spatial heterogeneities of local scale malaria transmission. A "what if" eradication strategy scenario is proposed: if the mosquito breeding sites are eliminated through mosquito larva habitat management in a buffer area extended at least 200 m around the village, the malaria transmission is eradicated from the village. The use of agent-based models can reproduce effectively the spatiotemporal variations of the malaria transmission in a low endemicity environment dominated by river floodings like in the Amazon.
Trajectories of physical activity and risk factors among Taiwanese older adults.
Pan, Ling-Yen; Hsu, Hui-Chuan; Chang, Wen-Chiung; Luh, Dih-Ling
2015-02-01
The significance of physical activity has been noticed. However, the dynamic change and the heterogeneity of physical activity patterns among older people are little explored. This study aimed to identify the trajectory patterns of engaging in physical activity over time and its related factors. Nationally representative four-wave panel data from Taiwanese older adults, gathered between 1996 and 2007, were used (n = 4,018). The participants ranged in age from 50 to 96 years old. "Being physically active" was defined as performing physical activity in sports or exercises at least three times per week and lasting for at least 30 min each time. Group-based trajectory analysis was performed for analyzing the data. Four trajectory patterns were identified: inactive (47.83%), decreasing (12.21%), increasing (23.36%), and active (16.60%). Older respondents and those with more education were more likely to be active. Those respondents having more depressive symptoms, having more physical functional limitations, and having jobs were less likely to be physically active in the decreasing, increasing, and active patterns. There is heterogeneity among the trajectory patterns of physical activity across time in the older adults. Different strategies of physical activity promotion for the older people should be developed by the group characteristics.
NASA Technical Reports Server (NTRS)
Phillips, Jennifer K.
1995-01-01
Two of the current and most popular implementations of the Message-Passing Standard, Message Passing Interface (MPI), were contrasted: MPICH by Argonne National Laboratory, and LAM by the Ohio Supercomputer Center at Ohio State University. A parallel skyline matrix solver was adapted to be run in a heterogeneous environment using MPI. The Message-Passing Interface Forum was held in May 1994 which lead to a specification of library functions that implement the message-passing model of parallel communication. LAM, which creates it's own environment, is more robust in a highly heterogeneous network. MPICH uses the environment native to the machine architecture. While neither of these free-ware implementations provides the performance of native message-passing or vendor's implementations, MPICH begins to approach that performance on the SP-2. The machines used in this study were: IBM RS6000, 3 Sun4, SGI, and the IBM SP-2. Each machine is unique and a few machines required specific modifications during the installation. When installed correctly, both implementations worked well with only minor problems.
Methodologies and systems for heterogeneous concurrent computing
NASA Technical Reports Server (NTRS)
Sunderam, V. S.
1994-01-01
Heterogeneous concurrent computing is gaining increasing acceptance as an alternative or complementary paradigm to multiprocessor-based parallel processing as well as to conventional supercomputing. While algorithmic and programming aspects of heterogeneous concurrent computing are similar to their parallel processing counterparts, system issues, partitioning and scheduling, and performance aspects are significantly different. In this paper, we discuss critical design and implementation issues in heterogeneous concurrent computing, and describe techniques for enhancing its effectiveness. In particular, we highlight the system level infrastructures that are required, aspects of parallel algorithm development that most affect performance, system capabilities and limitations, and tools and methodologies for effective computing in heterogeneous networked environments. We also present recent developments and experiences in the context of the PVM system and comment on ongoing and future work.
Meta-Analysis of Workplace Physical Activity Interventions
Conn, Vicki S.; Hafdahl, Adam R.; Cooper, Pamela S.; Brown, Lori M.; Lusk, Sally L.
2009-01-01
Context Most adults do not achieve adequate physical activity. Despite the potential benefits of worksite health promotion, no previous comprehensive meta-analysis has summarized health and physical activity behavior outcomes from these programs. This comprehensive meta-analysis integrated the extant wide range of worksite physical activity intervention research. Evidence acquisition Extensive searching located published and unpublished intervention studies reported from 1969 through 2007. Results were coded from primary studies. Random-effects meta-analytic procedures, including moderator analyses, were completed in 2008. Evidence synthesis Effects on most variables were substantially heterogeneous because diverse studies were included. Standardized mean difference (d) effect sizes were synthesized across approximately 38,231 subjects. Significantly positive effects were observed for physical activity behavior (0.21), fitness (0.57), lipids (0.13), anthropometric measures (0.08), work attendance (0.19), and job stress (0.33). The significant effect size for diabetes risk (0.98) is more tentative given small sample sizes. Significant heterogeneity documents intervention effects varied across studies. The mean effect size for fitness corresponds to a difference between treatment minus control subjects' means on V02max of 3.5 mL/kg/min; for lipids, −0.2 on total cholesterol:HDL; and for diabetes risk, −12.6 mg/dL on fasting glucose. Conclusions These findings document that some workplace physical activity interventions can improve both health and important worksite outcomes. Effects were variable for most outcomes, reflecting the diversity of primary studies. Future primary research should compare interventions to confirm causal relationships and further explore heterogeneity. PMID:19765506
Exploration and Validation of Clusters of Physically Abused Children
ERIC Educational Resources Information Center
Ward, Caryn Sabourin; Haskett, Mary E.
2008-01-01
Objective: Cluster analysis was used to enhance understanding of heterogeneity in social adjustment of physically abused children. Method: Ninety-eight physically abused children (ages 5-10) were clustered on the basis of social adjustment, as measured by observed behavior with peers on the school playground and by teacher reports of social…
Hu, Zhonghan; Margulis, Claudio J
2006-01-24
In this work, we investigate the slow dynamics of 1-butyl-3-methylimidazolium hexafluorophosphate, a very popular room-temperature ionic solvent. Our study predicts the existence of heterogeneity in the liquid and shows that this heterogeneity is the underlying microscopic cause for the recently reported "red-edge effect" (REE) observed in the study of fluorescence of the organic probe 2-amino-7-nitrofluorene. This theoretical work explains in microscopic terms the relation between REE and dynamic heterogeneity in a room-temperature ionic liquid (IL). The REE is typical of micellar or colloidal systems, which are characterized by microscopic environments that are structurally very different. In contrast, in the case of this room-temperature IL, the REE occurs because of the long period during which molecules are trapped in quasistatic local solvent cages. This trapping time, which is longer than the lifetime of the excited-state probe, together with the inability of the surroundings to adiabatically relax, induces a set of site-specific spectroscopic responses. Subensembles of fluorescent molecules associated with particular local environments absorb and emit at different frequencies. We describe in detail the absorption wavelength-dependent emission spectra of 2-amino-7-nitrofluorene and show that this dependence on lambda(ex) is characteristic of the IL and, as is to be expected, is absent in the case of a normal solvent such as methanol.
NASA Astrophysics Data System (ADS)
Azimzade, Youness; Mashaghi, Alireza
2017-12-01
Efficient search acts as a strong selective force in biological systems ranging from cellular populations to predator-prey systems. The search processes commonly involve finding a stationary or mobile target within a heterogeneously structured environment where obstacles limit migration. An open generic question is whether random or directionally biased motions or a combination of both provide an optimal search efficiency and how that depends on the motility and density of targets and obstacles. To address this question, we develop a simple model that involves a random walker searching for its targets in a heterogeneous medium of bond percolation square lattice and used mean first passage time (〈T 〉 ) as an indication of average search time. Our analysis reveals a dual effect of directional bias on the minimum value of 〈T 〉 . For a homogeneous medium, directionality always decreases 〈T 〉 and a pure directional migration (a ballistic motion) serves as the optimized strategy, while for a heterogeneous environment, we find that the optimized strategy involves a combination of directed and random migrations. The relative contribution of these modes is determined by the density of obstacles and motility of targets. Existence of randomness and motility of targets add to the efficiency of search. Our study reveals generic and simple rules that govern search efficiency. Our findings might find application in a number of areas including immunology, cell biology, ecology, and robotics.
ERIC Educational Resources Information Center
Hendricks, Paige
2016-01-01
The foundation of the United States' educational system is that all students will be educated equally by offering access to knowledge, opportunities, and services resulting in the creation of positive societal contributors. However, this task is complex and challenging. Heterogeneous student populations due to increased culturally diversity, do…
Principles of E-network modelling of heterogeneous systems
NASA Astrophysics Data System (ADS)
Tarakanov, D.; Tsapko, I.; Tsapko, S.; Buldygin, R.
2016-04-01
The present article is concerned with the analytical and simulation modelling of heterogeneous technical systems using E-network mathematical apparatus (the expansion of Petri nets). The distinguishing feature of the given system is the presence of the module6 which identifies the parameters of the controlled object as well as the external environment.
Using an architectural approach to integrate heterogeneous, distributed software components
NASA Technical Reports Server (NTRS)
Callahan, John R.; Purtilo, James M.
1995-01-01
Many computer programs cannot be easily integrated because their components are distributed and heterogeneous, i.e., they are implemented in diverse programming languages, use different data representation formats, or their runtime environments are incompatible. In many cases, programs are integrated by modifying their components or interposing mechanisms that handle communication and conversion tasks. For example, remote procedure call (RPC) helps integrate heterogeneous, distributed programs. When configuring such programs, however, mechanisms like RPC must be used explicitly by software developers in order to integrate collections of diverse components. Each collection may require a unique integration solution. This paper describes improvements to the concepts of software packaging and some of our experiences in constructing complex software systems from a wide variety of components in different execution environments. Software packaging is a process that automatically determines how to integrate a diverse collection of computer programs based on the types of components involved and the capabilities of available translators and adapters in an environment. Software packaging provides a context that relates such mechanisms to software integration processes and reduces the cost of configuring applications whose components are distributed or implemented in different programming languages. Our software packaging tool subsumes traditional integration tools like UNIX make by providing a rule-based approach to software integration that is independent of execution environments.
A distributed scheduling algorithm for heterogeneous real-time systems
NASA Technical Reports Server (NTRS)
Zeineldine, Osman; El-Toweissy, Mohamed; Mukkamala, Ravi
1991-01-01
Much of the previous work on load balancing and scheduling in distributed environments was concerned with homogeneous systems and homogeneous loads. Several of the results indicated that random policies are as effective as other more complex load allocation policies. The effects of heterogeneity on scheduling algorithms for hard real time systems is examined. A distributed scheduler specifically to handle heterogeneities in both nodes and node traffic is proposed. The performance of the algorithm is measured in terms of the percentage of jobs discarded. While a random task allocation is very sensitive to heterogeneities, the algorithm is shown to be robust to such non-uniformities in system components and load.
NASA Astrophysics Data System (ADS)
Yamamoto, H.; Nakajima, K.; Zhang, K.; Nanai, S.
2015-12-01
Powerful numerical codes that are capable of modeling complex coupled processes of physics and chemistry have been developed for predicting the fate of CO2 in reservoirs as well as its potential impacts on groundwater and subsurface environments. However, they are often computationally demanding for solving highly non-linear models in sufficient spatial and temporal resolutions. Geological heterogeneity and uncertainties further increase the challenges in modeling works. Two-phase flow simulations in heterogeneous media usually require much longer computational time than that in homogeneous media. Uncertainties in reservoir properties may necessitate stochastic simulations with multiple realizations. Recently, massively parallel supercomputers with more than thousands of processors become available in scientific and engineering communities. Such supercomputers may attract attentions from geoscientist and reservoir engineers for solving the large and non-linear models in higher resolutions within a reasonable time. However, for making it a useful tool, it is essential to tackle several practical obstacles to utilize large number of processors effectively for general-purpose reservoir simulators. We have implemented massively-parallel versions of two TOUGH2 family codes (a multi-phase flow simulator TOUGH2 and a chemically reactive transport simulator TOUGHREACT) on two different types (vector- and scalar-type) of supercomputers with a thousand to tens of thousands of processors. After completing implementation and extensive tune-up on the supercomputers, the computational performance was measured for three simulations with multi-million grid models, including a simulation of the dissolution-diffusion-convection process that requires high spatial and temporal resolutions to simulate the growth of small convective fingers of CO2-dissolved water to larger ones in a reservoir scale. The performance measurement confirmed that the both simulators exhibit excellent scalabilities showing almost linear speedup against number of processors up to over ten thousand cores. Generally this allows us to perform coupled multi-physics (THC) simulations on high resolution geologic models with multi-million grid in a practical time (e.g., less than a second per time step).
Cressler, Clayton E; Bengtson, Stefan; Nelson, William A
2017-07-01
Individual differences in genetics, age, or environment can cause tremendous differences in individual life-history traits. This individual heterogeneity generates demographic heterogeneity at the population level, which is predicted to have a strong impact on both ecological and evolutionary dynamics. However, we know surprisingly little about the sources of individual heterogeneity for particular taxa or how different sources scale up to impact ecological and evolutionary dynamics. Here we experimentally study the individual heterogeneity that emerges from both genetic and nongenetic sources in a species of freshwater zooplankton across a large gradient of food quality. Despite the tight control of environment, we still find that the variation from nongenetic sources is greater than that from genetic sources over a wide range of food quality and that this variation has strong positive covariance between growth and reproduction. We evaluate the general consequences of genetic and nongenetic covariance for ecological and evolutionary dynamics theoretically and find that increasing nongenetic variation slows evolution independent of the correlation in heritable life-history traits but that the impact on ecological dynamics depends on both nongenetic and genetic covariance. Our results demonstrate that variation in the relative magnitude of nongenetic versus genetic sources of variation impacts the predicted ecological and evolutionary dynamics.
Tsai, Chia-Liang; Pai, Ming-Chyi; Ukropec, Jozef; Ukropcová, Barbara
2016-04-23
Although elderly people with amnestic mild cognitive impairment (aMCI) have been found to show impaired behavioral performance in task switching, no research has yet explored the electrophysiological mechanisms and the potential correlation between physical fitness and neurocognitive (i.e., behavioral and electrophysiological) performance in aMCI. The present study was thus aimed to examine whether there are differences in electrophysiological (i.e., event-related potential) performance between aMCI participants and controls when performing a task-switching paradigm, and to investigate the role of physical fitness in the relationship between neurocognitive performance and aMCI. Sixty participants were classified into aMCI (n = 30) and control (n = 30) groups, and performed a task-switching paradigm with concomitant electrophysiological recording, as well as underwent senior functional physical fitness tests. The aMCI group showed comparable scores on most parts of the physical fitness tests, but reduced lower body flexibility and VO2max as compared to the control group. When performing the task-switching paradigm, the aMCI group showed slower reaction times in the heterogeneous condition and larger global switching costs, although no significant difference was observed in accuracy rates between the two groups. In addition, the aMCI group showed significantly prolonged P3 latencies in the homogeneous and heterogeneous conditions, and a smaller P3 amplitude only in the heterogeneous condition. The level of cardiorespiratory fitness was significantly correlated with P3 amplitude in the aMCI group, particularly in the heterogeneous condition of the task-switching paradigm. These results show that the aMCI group exhibited abnormalities in their neurocognitive performance when performing the task-switching paradigm and such a deficit was likely associated with reduced cardiorespiratory fitness, which was shown to be the important predictor of neurocognitive performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Melkamu; Ye, Sheng; Li, Hongyi
2014-07-19
Subsurface stormflow is an important component of the rainfall-runoff response, especially in steep forested regions. However; its contribution is poorly represented in current generation of land surface hydrological models (LSMs) and catchment-scale rainfall-runoff models. The lack of physical basis of common parameterizations precludes a priori estimation (i.e. without calibration), which is a major drawback for prediction in ungauged basins, or for use in global models. This paper is aimed at deriving physically based parameterizations of the storage-discharge relationship relating to subsurface flow. These parameterizations are derived through a two-step up-scaling procedure: firstly, through simulations with a physically based (Darcian) subsurfacemore » flow model for idealized three dimensional rectangular hillslopes, accounting for within-hillslope random heterogeneity of soil hydraulic properties, and secondly, through subsequent up-scaling to the catchment scale by accounting for between-hillslope and within-catchment heterogeneity of topographic features (e.g., slope). These theoretical simulation results produced parameterizations of the storage-discharge relationship in terms of soil hydraulic properties, topographic slope and their heterogeneities, which were consistent with results of previous studies. Yet, regionalization of the resulting storage-discharge relations across 50 actual catchments in eastern United States, and a comparison of the regionalized results with equivalent empirical results obtained on the basis of analysis of observed streamflow recession curves, revealed a systematic inconsistency. It was found that the difference between the theoretical and empirically derived results could be explained, to first order, by climate in the form of climatic aridity index. This suggests a possible codependence of climate, soils, vegetation and topographic properties, and suggests that subsurface flow parameterization needed for ungauged locations must account for both the physics of flow in heterogeneous landscapes, and the co-dependence of soil and topographic properties with climate, including possibly the mediating role of vegetation.« less
De Monte, Silvia; Cotté, Cedric; d'Ovidio, Francesco; Lévy, Marina; Le Corre, Matthieu; Weimerskirch, Henri
2012-12-07
Marine top predators such as seabirds are useful indicators of the integrated response of the marine ecosystem to environmental variability at different scales. Large-scale physical gradients constrain seabird habitat. Birds however respond behaviourally to physical heterogeneity at much smaller scales. Here, we use, for the first time, three-dimensional GPS tracking of a seabird, the great frigatebird (Fregata minor), in the Mozambique Channel. These data, which provide at the same time high-resolution vertical and horizontal positions, allow us to relate the behaviour of frigatebirds to the physical environment at the (sub-)mesoscale (10-100 km, days-weeks). Behavioural patterns are classified based on the birds' vertical displacement (e.g. fast/slow ascents and descents), and are overlaid on maps of physical properties of the ocean-atmosphere interface, obtained by a nonlinear analysis of multi-satellite data. We find that frigatebirds modify their behaviours concurrently to transport and thermal fronts. Our results suggest that the birds' co-occurrence with these structures is a consequence of their search not only for food (preferentially searched over thermal fronts) but also for upward vertical wind. This is also supported by their relationship with mesoscale patterns of wind divergence. Our multi-disciplinary method can be applied to forthcoming high-resolution animal tracking data, and aims to provide a mechanistic understanding of animals' habitat choice and of marine ecosystem responses to environmental change.
Constraining the Compositional Heterogeneity in CO-Dominated Comet C/2016 R2 (PanSTARRS)
NASA Astrophysics Data System (ADS)
McKay, Adam; Kelley, Michael; DiSanti, Michael; Womack, Maria; Wierzchos, Kacper; Biver, Nicolas; de Val-Borro, Miguel; Cordiner, Martin; Dello Russo, Neil; Feaga, Lori; Bauer, James; Cochran, Anita; Harrington Pinto, Olga
2018-05-01
Comets exhibit a primitive volatile composition, making them invaluable tools for understanding the formation of the Solar System. Constraining the compositional heterogeneity of cometary nuclei is vital for interpreting cometary composition in terms of the physical conditions operating in the protosolar disk at the time of planet formation. Some comets exhibit variability in observed coma composition over the course of their orbit. This could be indicative of a heterogeneous nucleus consisting of cometesimals formed in different parts of the protosolar nebula under differing conditions. Alternatively, the observed heterogeneity could be post-formation evolution. We propose to use Spitzer IRAC observations of CO2 in the atypically CO-rich comet C/2016 R2 (PanSTARRS) to better understand the compositional heterogeneity of cometary nuclei.
Moving beyond heterogeneity and process complexity: a new vision for watershed hydrology
J. J. McDonnell; M. Sivapalan; K. Vache; S. Dunn; G. Grant; R. Haggerty; C. Hinz; R. Hooper; J. Kirchner; M.L. Roderick; J. Selker; M. Weiler
2007-01-01
Field studies in watershed hydrology continue to characterize and catalogue the enormous heterogeneity and complexity of rainfall runoff processes in more and more watersheds, in different hydroclimatic regimes, and at different scales. Nevertheless, the ability to generalize these findings to ungauged regions remains out of reach. In spite of their apparent physical...
Trust Model to Enhance Security and Interoperability of Cloud Environment
NASA Astrophysics Data System (ADS)
Li, Wenjuan; Ping, Lingdi
Trust is one of the most important means to improve security and enable interoperability of current heterogeneous independent cloud platforms. This paper first analyzed several trust models used in large and distributed environment and then introduced a novel cloud trust model to solve security issues in cross-clouds environment in which cloud customer can choose different providers' services and resources in heterogeneous domains can cooperate. The model is domain-based. It divides one cloud provider's resource nodes into the same domain and sets trust agent. It distinguishes two different roles cloud customer and cloud server and designs different strategies for them. In our model, trust recommendation is treated as one type of cloud services just like computation or storage. The model achieves both identity authentication and behavior authentication. The results of emulation experiments show that the proposed model can efficiently and safely construct trust relationship in cross-clouds environment.
42 CFR 485.62 - Condition of participation: Physical environment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 5 2012-10-01 2012-10-01 false Condition of participation: Physical environment... of participation: Physical environment. The facility must provide a physical environment that... patients. The physical premises of the facility and those areas of its surrounding physical structure that...
42 CFR 485.62 - Condition of participation: Physical environment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 5 2013-10-01 2013-10-01 false Condition of participation: Physical environment... of participation: Physical environment. The facility must provide a physical environment that... patients. The physical premises of the facility and those areas of its surrounding physical structure that...
42 CFR 485.62 - Condition of participation: Physical environment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 5 2014-10-01 2014-10-01 false Condition of participation: Physical environment... of participation: Physical environment. The facility must provide a physical environment that... patients. The physical premises of the facility and those areas of its surrounding physical structure that...
Living Toroids - Cells on Toroidal Surfaces
NASA Astrophysics Data System (ADS)
Chang, Ya-Wen; Angelini, Thomas; Marquez, Samantha; Kim, Harold; Fernandez-Nieves, Alberto
2014-03-01
Cellular environment influences a multitude of cellular functions by providing chemical and physical signals that modulate cell behavior, dynamics, development, and eventually survival. Substrate mechanics has been recognized as one of the important physical cues that governs cell behavior at single cell level as well as in collective cell motion. Past research has suggested several contact-guided behaviors to be the result of surface curvature. However, studies on the effect of curvature are relatively scarce likely due to the difficulty in generating substrates with well-defined curvature. Here we describe the generation of toroidal droplets, which unlike spherical droplets, have regions of both positive and negative Gaussian curvature. Additionally, the range of curvatures can be controlled by varying the size and aspect ratio of the torus. Cells are either encapsulated inside toroidal droplets or located on toroidal hydrogel surfaces. Preliminary studies use B. Subtilis to study the organization of bacteria biofilms. When confined in droplets surrounded by yield-stress fluid, bacteria self-organize into heterogeneous biofilm at fluid- substrate interface. It is found that the surface curvature in the sub-millimeter scale has little effect on biofilm architecture.
Uptake of Organic Vapors by Sulfate Aerosols: Physical and Chemical Processes
NASA Technical Reports Server (NTRS)
Michelsen, R. R.; Ashbourn, S. F. M.; Iraci, L.T.; Staton, S. J. R.
2003-01-01
While it is known that upper tropospheric sulfate particles contain a significant amount of organic matter, both the source of the organic fraction and its form in solution are unknown. These studies explore how the chemical characteristics of the molecules and surfaces in question affect heterogeneous interactions. The solubilities of acetaldehyde [CH3CHO] and ethanol [CH3CH20H] in cold, aqueous sulfuric acid solutions have been measured by Knudsen cell studies. Henry's law solubility coefficients range from 10(exp 2) to 10(exp 5) M/atm for acetaldehyde, and from 10(exp 4) to 10(exp 9) M/atm for ethanol under upper tropospheric conditions (210-240 K, 40-80 wt. % H2S04). The multiple solvation pathways (protonation, enolization, etc.) available to these compounds in acidic aqueous environments will be discussed. Preliminary results from the interaction of acetaldehyde with solutions of formaldehyde in sulfuric acid will be presented as well. The physical and chemical processes that affect organic uptake by aqueous aerosols will be explored, with the aim of evaluating organic species not yet studied in low temperature aqueous sulfuric acid.
CNOT sequences for heterogeneous spin qubit architectures in a noisy environment
NASA Astrophysics Data System (ADS)
Ferraro, Elena; Fanciulli, Marco; de Michielis, Marco
Explicit CNOT gate sequences for two-qubits mixed architectures are presented in view of applications for large-scale quantum computation. Different kinds of coded spin qubits are combined allowing indeed the favorable physical properties of each to be employed. The building blocks for such composite systems are qubit architectures based on the electronic spin in electrostatically defined semiconductor quantum dots. They are the single quantum dot spin qubit, the double quantum dot singlet-triplet qubit and the double quantum dot hybrid qubit. The effective Hamiltonian models expressed by only exchange interactions between pair of electrons are exploited in different geometrical configurations. A numerical genetic algorithm that takes into account the realistic physical parameters involved is adopted. Gate operations are addressed by modulating the tunneling barriers and the energy offsets between different couple of quantum dots. Gate infidelities are calculated considering limitations due to unideal control of gate sequence pulses, hyperfine interaction and unwanted charge coupling. Second affiliation: Dipartimento di Scienza dei Materiali, University of Milano Bicocca, Via R. Cozzi, 55, 20126 Milano, Italy.
ERIC Educational Resources Information Center
Goldwasser, M. R.; Leal, O.
1979-01-01
Outlines an approach for instruction in a physical chemistry laboratory which combines traditional and project-like experiments. An outline of laboratory experiments and examples of project-like experiments are included. (BT)
Multiple Diffusion Mechanisms Due to Nanostructuring in Crowded Environments
Sanabria, Hugo; Kubota, Yoshihisa; Waxham, M. Neal
2007-01-01
One of the key questions regarding intracellular diffusion is how the environment affects molecular mobility. Mostly, intracellular diffusion has been described as hindered, and the physical reasons for this behavior are: immobile barriers, molecular crowding, and binding interactions with immobile or mobile molecules. Using results from multi-photon fluorescence correlation spectroscopy, we describe how immobile barriers and crowding agents affect translational mobility. To study the hindrance produced by immobile barriers, we used sol-gels (silica nanostructures) that consist of a continuous solid phase and aqueous phase in which fluorescently tagged molecules diffuse. In the case of molecular crowding, translational mobility was assessed in increasing concentrations of 500 kDa dextran solutions. Diffusion of fluorescent tracers in both sol-gels and dextran solutions shows clear evidence of anomalous subdiffusion. In addition, data from the autocorrelation function were analyzed using the maximum entropy method as adapted to fluorescence correlation spectroscopy data and compared with the standard model that incorporates anomalous diffusion. The maximum entropy method revealed evidence of different diffusion mechanisms that had not been revealed using the anomalous diffusion model. These mechanisms likely correspond to nanostructuring in crowded environments and to the relative dimensions of the crowding agent with respect to the tracer molecule. Analysis with the maximum entropy method also revealed information about the degree of heterogeneity in the environment as reported by the behavior of diffusive molecules. PMID:17040979
NASA Astrophysics Data System (ADS)
Sivapalan, Murugesu
2017-04-01
Hydrologic science has undergone almost transformative changes over the past 50 years. Huge strides have been made in the transition from early empirical approaches to rigorous approaches based on the fluid mechanics of water movement on and below the land surface. However, further progress has been hampered by problems posed by the presence of heterogeneity, especially subsurface heterogeneity, at all scales. The inability to measure or map subsurface heterogeneity everywhere prevented further development of balance equations and associated closure relations at the scales of interest, and has led to the virtual impasse we are presently in, in terms of development of physically based models needed for hydrologic predictions. An alternative to the mapping of subsurface heterogeneity everywhere is a new earth system science view, which sees the heterogeneity as the end result of co-evolutionary hydrological, geomorphological, ecological and pedological processes, each operating at a different rate, which have helped to shape the landscapes that we see in nature, including the heterogeneity below that we do not see. The expectation is that instead of specifying exact details of the heterogeneity in our models, we can replace it, without loss of information, with the ecosystem function they perform. Guided by this new earth system science perspective, development of hydrologic science is now guided by altogether new questions and new approaches to address them, compared to the purely physical, fluid mechanics based approaches that we inherited from the past. In the emergent Anthropocene, the co-evolutionary view is expanded further to involve interactions and feedbacks with human-social processes as well. In this lecture, I will present key milestones in the transformation of hydrologic science from Engineering Hydrology to Earth System Science, and what this means for hydrologic observations, theory development and predictions.
Dedicated heterogeneous node scheduling including backfill scheduling
Wood, Robert R [Livermore, CA; Eckert, Philip D [Livermore, CA; Hommes, Gregg [Pleasanton, CA
2006-07-25
A method and system for job backfill scheduling dedicated heterogeneous nodes in a multi-node computing environment. Heterogeneous nodes are grouped into homogeneous node sub-pools. For each sub-pool, a free node schedule (FNS) is created so that the number of to chart the free nodes over time. For each prioritized job, using the FNS of sub-pools having nodes useable by a particular job, to determine the earliest time range (ETR) capable of running the job. Once determined for a particular job, scheduling the job to run in that ETR. If the ETR determined for a lower priority job (LPJ) has a start time earlier than a higher priority job (HPJ), then the LPJ is scheduled in that ETR if it would not disturb the anticipated start times of any HPJ previously scheduled for a future time. Thus, efficient utilization and throughput of such computing environments may be increased by utilizing resources otherwise remaining idle.
Li, Li; Steefel, Carl I; Kowalsky, Michael B; Englert, Andreas; Hubbard, Susan S
2010-03-01
Electron donor amendment for bioremediation often results in precipitation of secondary minerals and the growth of biomass, both of which can potentially change flow paths and the efficacy of bioremediation. Quantitative estimation of precipitate and biomass distribution has remained challenging, partly due to the intrinsic heterogeneities of natural porous media and the scarcity of field data. In this work, we examine the effects of physical and geochemical heterogeneities on the spatial distributions of mineral precipitates and biomass accumulated during a biostimulation field experiment near Rifle, Colorado. Field bromide breakthrough data were used to infer a heterogeneous distribution of hydraulic conductivity through inverse transport modeling, while the solid phase Fe(III) content was determined by assuming a negative correlation with hydraulic conductivity. Validated by field aqueous geochemical data, reactive transport modeling was used to explicitly keep track of the growth of the biomass and to estimate the spatial distribution of precipitates and biomass. The results show that the maximum mineral precipitation and biomass accumulation occurs in the vicinity of the injection wells, occupying up to 5.4vol.% of the pore space, and is dominated by reaction products of sulfate reduction. Accumulation near the injection wells is not strongly affected by heterogeneities present in the system due to the ubiquitous presence of sulfate in the groundwater. However, accumulation in the down-gradient regions is dominated by the iron-reducing reaction products, whose spatial patterns are strongly controlled by both physical and geochemical heterogeneities. Heterogeneities can lead to localized large accumulation of mineral precipitates and biomass, increasing the possibility of pore clogging. Although ignoring the heterogeneities of the system can lead to adequate prediction of the average behavior of sulfate-reducing related products, it can also lead to an overestimation of the overall accumulation of iron-reducing bacteria, as well as the rate and extent of iron reduction. Surprisingly, the model predicts that the total amount of uranium being reduced in the heterogeneous 2D system was similar to that in the 1D homogeneous system, suggesting that the overall uranium bioremediation efficacy may not be significantly affected by the heterogeneities of Fe(III) content in the down-gradient regions. Rather, the characteristics close to the vicinity of the injection wells might be crucial in determining the overall efficacy of uranium bioremediation. These findings have important implications not only for uranium bioremediation at the Rifle site and for bioremediation of other redox sensitive contaminants at sites with similar characteristics, but also for the development of optimal amendment delivery strategies in other settings. Copyright 2009 Elsevier B.V. All rights reserved.
The Effects of Physical Environment on Children's Behavior in the Classroom.
ERIC Educational Resources Information Center
Gingold, William
No significant difference of student-concrete physical environment interaction occurred with a change in physical environment. A test was made on five null hypotheses related to the change of physical environment and (1) student-concrete physical environment interaction; (2) environmental preference by students; (3) student attending behavior; (4)…
Spatial localization in heterogeneous systems
NASA Astrophysics Data System (ADS)
Kao, Hsien-Ching; Beaume, Cédric; Knobloch, Edgar
2014-01-01
We study spatial localization in the generalized Swift-Hohenberg equation with either quadratic-cubic or cubic-quintic nonlinearity subject to spatially heterogeneous forcing. Different types of forcing (sinusoidal or Gaussian) with different spatial scales are considered and the corresponding localized snaking structures are computed. The results indicate that spatial heterogeneity exerts a significant influence on the location of spatially localized structures in both parameter space and physical space, and on their stability properties. The results are expected to assist in the interpretation of experiments on localized structures where departures from spatial homogeneity are generally unavoidable.
Zajac, R.N.; Lewis, R.S.; Poppe, L.J.; Twichell, D.C.; Vozarik, J.; DiGiacomo-Cohen, M. L.
2003-01-01
Relationships between population abundance and seafloor landscape, or benthoscape, structure were examined for 16 infaunal taxa in eastern Long Island Sound. Based on analyses of a side-scan sonar mosaic, the 19.4-km2 study area was comprised of six distinct large-scale (> km2) benthoscape elements, with varying levels of mesoscale (km2-m2) and small-scale (2) physical and biological habitat heterogeneity. Transition zones among elements varied from ~50 to 200 m in width, comprised ~32% of the benthoscape, and added to overall benthoscape heterogeneity. Population abundances of nine taxa varied significantly among the large-scale elements. Most species were found at high abundances only in one benthoscape element, but three had several foci of elevated abundances. Analyses of population responses to habitat heterogeneity at different spatial scales indicated that abundances of eight taxa varied significantly among spatial scales, but the significant scales were mixed among these species. Relatively large residual variations suggest significant amounts of mesoscale spatial variation were unaccounted for, varying from ~1 km2 to several m2. Responses to transition zones were mixed as well. Abundances of nine taxa varied significantly among transition zones and interiors of benthoscape elements, most with elevated abundances in transition zones. Our results show that infaunal populations exhibit complex and spatially varying patterns of abundance in relation to benthoscape structure and suggest that mesoscale variation may be particularly critical in this regard. Also, transition zones among benthoscape features add considerably to this variation and may be ecological important areas in seafloor environments.
NASA Astrophysics Data System (ADS)
Marcus, Kelvin
2014-06-01
The U.S Army Research Laboratory (ARL) has built a "Network Science Research Lab" to support research that aims to improve their ability to analyze, predict, design, and govern complex systems that interweave the social/cognitive, information, and communication network genres. Researchers at ARL and the Network Science Collaborative Technology Alliance (NS-CTA), a collaborative research alliance funded by ARL, conducted experimentation to determine if automated network monitoring tools and task-aware agents deployed within an emulated tactical wireless network could potentially increase the retrieval of relevant data from heterogeneous distributed information nodes. ARL and NS-CTA required the capability to perform this experimentation over clusters of heterogeneous nodes with emulated wireless tactical networks where each node could contain different operating systems, application sets, and physical hardware attributes. Researchers utilized the Dynamically Allocated Virtual Clustering Management System (DAVC) to address each of the infrastructure support requirements necessary in conducting their experimentation. The DAVC is an experimentation infrastructure that provides the means to dynamically create, deploy, and manage virtual clusters of heterogeneous nodes within a cloud computing environment based upon resource utilization such as CPU load, available RAM and hard disk space. The DAVC uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex private networks. Clusters created by the DAVC system can be utilized for software development, experimentation, and integration with existing hardware and software. The goal of this paper is to explore how ARL and the NS-CTA leveraged the DAVC to create, deploy and manage multiple experimentation clusters to support their experimentation goals.
A Case for Data and Service Fusions
NASA Astrophysics Data System (ADS)
Huang, T.; Boening, C.; Quach, N. T.; Gill, K.; Zlotnicki, V.; Moore, B.; Tsontos, V. M.
2015-12-01
In this distributed, data-intensive era, developing any solution that requires multi-disciplinary data and service requires careful review of interfaces with data and service providers. Information is stored in many different locations and data services are distributed across the Internet. In design and development of mash-up heterogeneous data systems, the challenge is not entirely technological; it is our ability to document the external interface specifications and to create a coherent environment for our users. While is impressive to present a complex web of data, the true measure of our success is in the quality of the data we are serving, the throughput of our creation, and user experience. The presentation presents two current funded NASA projects that require integration of heterogeneous data and service that reside in different locations. The NASA Sea Level Change Portal is designed a "one-stop" source for current sea level change information. Behind this portal is an architecture that integrates data and services from various sources, which includes PI-generated products, satellite products from the DAACs, and metadata from ESDIS Common Metadata Repository (CMR) and other sources, and services reside in the data centers, universities, and ESDIS. The recently funded Distributed Oceanographic Matchup Service (DOMS) project is a project under the NASA Advance Information Technology (AIST) program. DOMS will integrate with satellite products managed by NASA Physical Oceanography Distributed Active Archive Center (PO.DAAC) and three different in-situ projects that are located in difference parts of the U.S. These projects are good examples of delivering content-rich solutions through mash-up of heterogeneous data and systems.
Habitat heterogeneity favors asexual reproduction in natural populations of grassthrips
Lavanchy, Guillaume; Strehler, Marie; Llanos Roman, Maria Noemi; Lessard‐Therrien, Malie; Humbert, Jean‐Yves; Dumas, Zoé; Jalvingh, Kirsten; Ghali, Karim; Fontcuberta García‐Cuenca, Amaranta; Zijlstra, Bart; Arlettaz, Raphaël; Schwander, Tanja
2016-01-01
Explaining the overwhelming success of sex among eukaryotes is difficult given the obvious costs of sex relative to asexuality. Different studies have shown that sex can provide benefits in spatially heterogeneous environments under specific conditions, but whether spatial heterogeneity commonly contributes to the maintenance of sex in natural populations remains unknown. We experimentally manipulated habitat heterogeneity for sexual and asexual thrips lineages in natural populations and under seminatural mesocosm conditions by varying the number of hostplants available to these herbivorous insects. Asexual lineages rapidly replaced the sexual ones, independently of the level of habitat heterogeneity in mesocosms. In natural populations, the success of sexual thrips decreased with increasing habitat heterogeneity, with sexual thrips apparently only persisting in certain types of hostplant communities. Our results illustrate how genetic diversity‐based mechanisms can favor asexuality instead of sex when sexual lineages co‐occur with genetically variable asexual lineages. PMID:27346066
Brown, C; Burslem, D F R P; Illian, J B; Bao, L; Brockelman, W; Cao, M; Chang, L W; Dattaraja, H S; Davies, S; Gunatilleke, C V S; Gunatilleke, I A U N; Huang, J; Kassim, A R; Lafrankie, J V; Lian, J; Lin, L; Ma, K; Mi, X; Nathalang, A; Noor, S; Ong, P; Sukumar, R; Su, S H; Sun, I F; Suresh, H S; Tan, S; Thompson, J; Uriarte, M; Valencia, R; Yap, S L; Ye, W; Law, R
2013-08-07
Neutral and niche theories give contrasting explanations for the maintenance of tropical tree species diversity. Both have some empirical support, but methods to disentangle their effects have not yet been developed. We applied a statistical measure of spatial structure to data from 14 large tropical forest plots to test a prediction of niche theory that is incompatible with neutral theory: that species in heterogeneous environments should separate out in space according to their niche preferences. We chose plots across a range of topographic heterogeneity, and tested whether pairwise spatial associations among species were more variable in more heterogeneous sites. We found strong support for this prediction, based on a strong positive relationship between variance in the spatial structure of species pairs and topographic heterogeneity across sites. We interpret this pattern as evidence of pervasive niche differentiation, which increases in importance with increasing environmental heterogeneity.
Alam, Todd M.; Jenkins, Janelle E.; Bolintineanu, Dan S.; Stevens, Mark J.; Frischknecht, Amalie L.; Buitrago, C. Francisco; Winey, Karen I.; Opper, Kathleen L.; Wagener, Kenneth B.
2012-01-01
The carboxylic acid proton and the lithium coordination environments for precise and random Li-neutralized polyethylene acrylic acid P(E-AA) ionomers were explored using high speed solid-state 1H and 7Li MAS NMR. While the 7Li NMR revealed only a single Li coordination environment, the chemical shift temperature variation was dependent on the precise or random nature of the P(E-AA) ionomer. The 1H MAS NMR revealed two different carboxylic acid proton environments in these materials. By utilizing 1H-7Li rotational echo double resonance (REDOR) MAS NMR experiments, it was demonstrated that the proton environments correspond to different average 1H-7Li distances, with the majority of the protonated carboxylic acids having a close through space contact with the Li. Molecular dynamics simulations suggest that the shortest 1H-7Li distance corresponds to un-neutralized carboxylic acids directly involved in the coordination environment of Li clusters. These solid-state NMR results show that heterogeneous structural motifs need to be included when developing descriptions of these ionomer materials.
ERIC Educational Resources Information Center
Villa, Richard A.; And Others
This collection of papers offers advice on restructuring education to create heterogeneous schools, with the goal of creating happy, comfortable, and successful learning environments for all the children and adults who learn and teach in them. Section I, titled "A Rationale for Restructuring and the Change Process," contains the following papers:…
NASA Astrophysics Data System (ADS)
Graham, Emily B.; Tfaily, Malak M.; Crump, Alex R.; Goldman, Amy E.; Bramer, Lisa M.; Arntzen, Evan; Romero, Elvira; Resch, C. Tom; Kennedy, David W.; Stegen, James C.
2017-12-01
In light of increasing terrestrial carbon (C) transport across aquatic boundaries, the mechanisms governing organic carbon (OC) oxidation along terrestrial-aquatic interfaces are crucial to future climate predictions. Here we investigate the biochemistry, metabolic pathways, and thermodynamics corresponding to OC oxidation in the Columbia River corridor using ultrahigh-resolution C characterization. We leverage natural vegetative differences to encompass variation in terrestrial C inputs. Our results suggest that decreases in terrestrial C deposition associated with diminished riparian vegetation induce oxidation of physically bound OC. We also find that contrasting metabolic pathways oxidize OC in the presence and absence of vegetation and—in direct conflict with the "priming" concept—that inputs of water-soluble and thermodynamically favorable terrestrial OC protect bound-OC from oxidation. In both environments, the most thermodynamically favorable compounds appear to be preferentially oxidized regardless of which OC pool microbiomes metabolize. In turn, we suggest that the extent of riparian vegetation causes sediment microbiomes to locally adapt to oxidize a particular pool of OC but that common thermodynamic principles govern the oxidation of each pool (i.e., water-soluble or physically bound). Finally, we propose a mechanistic conceptualization of OC oxidation along terrestrial-aquatic interfaces that can be used to model heterogeneous patterns of OC loss under changing land cover distributions.
Soil Physical Constraints on Intrinsic Biodegradation of Petroleum Vapors in a Layered Subsurface
Kristensen, Andreas H.; Henriksen, Kaj; Mortensen, Lars; Scow, Kate M.; Moldrup, Per
2011-01-01
Naturally occurring biodegradation of petroleum hydrocarbons in the vadose zone depends on the physical soil environment influencing field-scale gas exchange and pore-scale microbial metabolism. In this study, we evaluated the effect of soil physical heterogeneity on biodegradation of petroleum vapors in a 16-m-deep, layered vadose zone. Soil slurry experiments (soil/water ratio 10:30 w/w, 25°C) on benzene biodegradation under aerobic and well-mixed conditions indicated that the biodegradation potential in different textured soil samples was related to soil type rather than depth, in the order: sandy loam > fine sand > limestone. Similarly, O2 consumption rates during in situ respiration tests performed at the site were higher in the sandy loam than in the fine sand, although the difference was less significant than in the slurries. Laboratory and field data generally agreed well and suggested a significant potential for aerobic biodegradation, even with nutrient-poor and deep subsurface conditions. In slurries of the sandy loam, the biodegradation potential declined with increasing in situ water saturation (i.e., decreasing air-filled porosity in the field). This showed a relation between antecedent undisturbed field conditions and the slurry biodegradation potential, and suggested airfilled porosity to be a key factor for the intrinsic biodegradation potential in the field. PMID:21617737
Bourgeon, Stéphanie; Xerri, Christian; Coq, Jacques-Olivier
2004-08-12
In previous studies, we have shown that housing in enriched environment for about 3 months after weaning improved the topographic organization and decreased the size of the receptive fields (RFs) located on the glabrous skin surfaces in the forepaw maps of the primary somatosensory cortex (SI) in rats [Exp. Brain Res. 121 (1998) 191]. In contrast, housing in impoverished environment induced a degradation of the SI forepaw representation, characterized by topographic disruptions, a reduction of the cutaneous forepaw area and an enlargement of the glabrous RFs [Exp. Brain Res. 129 (1999) 518]. Based on these two studies, we postulated that these representational alterations could underlie changes in haptic perception. Therefore, the present study was aimed at determining the influence of housing conditions on the rat's abilities in tactile texture discrimination. After a 2-month exposure to enriched or impoverished environments, rats were trained to perform a discrimination task during locomotion on floorboards of different roughness. At the end of every daily behavioral session, rats were replaced in their respective housing environment. Rats had to discriminate homogeneous (low roughness) from heterogeneous floorboards (combination of two different roughness levels). To determine the maximum performance in texture discrimination, the roughness contrast of the heterogeneous texture was gradually reduced, so that homogeneous and heterogeneous floorboards became harder to differentiate. We found that the enriched rats learned the first steps of the behavioral task faster than the impoverished rats, whereas both groups exhibited similar performances in texture discrimination. An individual "predilection" for either homogeneous or heterogeneous floorboards, presumably reflecting a behavioral strategy, seemed to account for the absence of differences in haptic discrimination between groups. The sensory experience depending on the rewarded texture discrimination task seems to have a greater influence on individual texture discrimination abilities than the sensorimotor experience related to housing conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoon, Hongkyu
The purpose of the project was to perform multiscale characterization of low permeability rocks to determine the effect of physical and chemical heterogeneity on the poromechanical and flow responses of shales and carbonate rocks with a broad range of physical and chemical heterogeneity . An integrated multiscale imaging of shale and carbonate rocks from nanometer to centimeter scales include s dual focused ion beam - scanning electron microscopy (FIB - SEM) , micro computed tomography (micro - CT) , optical and confocal microscopy, and 2D and 3D energy dispersive spectroscopy (EDS). In addition, mineralogical mapping and backscattered imaging with nanoindentationmore » testing advanced the quantitative evaluat ion of the relationship between material heterogeneity and mechanical behavior. T he spatial distribution of compositional heterogeneity, anisotropic bedding patterns, and mechanical anisotropy were employed as inputs for brittle fracture simulations using a phase field model . Comparison of experimental and numerical simulations reveal ed that proper incorporation of additional material information, such as bedding layer thickness and other geometrical attributes of the microstructures, can yield improvements on the numerical prediction of the mesoscale fracture patterns and hence the macroscopic effective toughness. Overall, a comprehensive framework to evaluate the relationship between mechanical response and micro-lithofacial features can allow us to make more accurate prediction of reservoir performance by developing a multi - scale understanding of poromechanical response to coupled chemical and mechanical interactions for subsurface energy related activities.« less
UBioLab: a web-laboratory for ubiquitous in-silico experiments.
Bartocci, Ezio; Cacciagrano, Diletta; Di Berardini, Maria Rita; Merelli, Emanuela; Vito, Leonardo
2012-07-09
The huge and dynamic amount of bioinformatic resources (e.g., data and tools) available nowadays in Internet represents a big challenge for biologists –for what concerns their management and visualization– and for bioinformaticians –for what concerns the possibility of rapidly creating and executing in-silico experiments involving resources and activities spread over the WWW hyperspace. Any framework aiming at integrating such resources as in a physical laboratory has imperatively to tackle –and possibly to handle in a transparent and uniform way– aspects concerning physical distribution, semantic heterogeneity, co-existence of different computational paradigms and, as a consequence, of different invocation interfaces (i.e., OGSA for Grid nodes, SOAP for Web Services, Java RMI for Java objects, etc.). The framework UBioLab has been just designed and developed as a prototype following the above objective. Several architectural features –as those ones of being fully Web-based and of combining domain ontologies, Semantic Web and workflow techniques– give evidence of an effort in such a direction. The integration of a semantic knowledge management system for distributed (bioinformatic) resources, a semantic-driven graphic environment for defining and monitoring ubiquitous workflows and an intelligent agent-based technology for their distributed execution allows UBioLab to be a semantic guide for bioinformaticians and biologists providing (i) a flexible environment for visualizing, organizing and inferring any (semantics and computational) "type" of domain knowledge (e.g., resources and activities, expressed in a declarative form), (ii) a powerful engine for defining and storing semantic-driven ubiquitous in-silico experiments on the domain hyperspace, as well as (iii) a transparent, automatic and distributed environment for correct experiment executions.
NASA Astrophysics Data System (ADS)
Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.
2010-04-01
The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers of oxalic acid or its salts may be formed by physical and chemical processing on pre-existing particulates such as mineral dust and soot. Given the broad diversity of the observed heterogeneous ice nucleability of the oxalate species, it is not straightforward to predict whether an oxalate coating layer will improve or reduce the ice nucleation ability of the seed aerosol particles.
NASA Astrophysics Data System (ADS)
Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Leisner, T.
2010-08-01
The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario that coating layers of oxalic acid or its salts may be formed by physical and chemical processing on pre-existing particulates such as mineral dust and soot. Given the broad diversity of the observed heterogeneous ice nucleability of the oxalate species, it is not straightforward to predict whether an oxalate coating layer will improve or reduce the ice nucleation ability of the seed aerosol particles.
Accessible Home Environments for People with Functional Limitations: A Systematic Review
Cho, Hea Young; MacLachlan, Malcolm; Clarke, Michael; Mannan, Hasheem
2016-01-01
The aim of this review is to evaluate the health and social effects of accessible home environments for people with functional limitations, in order to provide evidence to promote well-informed decision making for policy guideline development and choices about public health interventions. MEDLINE and nine other electronic databases were searched between December 2014 and January 2015, for articles published since 2004. All study types were included in this review. Two reviewers independently screened 12,544 record titles or titles and abstracts based on our pre-defined eligibility criteria. We identified 94 articles as potentially eligible; and assessed their full text. Included studies were critically appraised using the Mixed Method Appraisal Tool, version 2011. Fourteen studies were included in the review. We did not identify any meta-analysis or systematic review directly relevant to the question for this systematic review. A narrative approach was used to synthesise the findings of the included studies due to methodological and statistical heterogeneity. Results suggest that certain interventions to enhance the accessibility of homes can have positive health and social effects. Home environments that lack accessibility modifications appropriate to the needs of their users are likely to result in people with physical impairments becoming disabled at home. PMID:27548194
Chen, L; Li, Q; Song, Y; Ma, J; Wang, H J
2016-06-18
To explore the association of physical activities, sedentary behaviors with overweight/obesity in Chinese children aged 9-11 years, analyze the gender difference and heterogeneity of the association across different provinces, and provide evidence for prevention and control of overweight and obesity. Using the data of 40 692 children aged 9-11 years from Chinese National Survey on Students' Constitution and Health in 2010, the height and weight were measured and the time spent in physical activities, screen behaviors and homework were collected. We analyzed the associations among physical activities, sedentary behaviors and overweight/obesity in boys and girls separately, and assessed the heterogeneity of associations across different provinces with Meta-analysis. The prevalence of overweight/obesity of the boys (27.1%) was higher than that of the girls (12.9%), compared with the rural students (15.6%), the situation of overweight/obesity of the urban students (23.8%) was more serious, the prevalences of overweight/obesity were separately 22.6%, 19.2% and 17.5% among developed, middle-developed and undeveloped social economic status subgroups. The boys with physical activities no more than 1 hour per day were more likely to be overweight/obese, with the OR of 1.09 (95%CI: 1.02, 1.17). The girls with screen time more than 1 hour per day or homework time more than 2 hours per day were more likely to be overweight/obese, with the ORs of 1.13 (95%CI: 1.02, 1.26) and 1.18 (95%CI: 1.03, 1.35) respectively. The high level of sedentary behaviors (more than 135 min per day) was associated with overweight/obese in the girls, and the OR was 1.19 (95%CI: 1.08, 1.33). There was no significant heterogeneity of effect values between physical activities and overweight/obesity in the boys and between sedentary behaviors and overweight/obesity in the girls across the different provinces (P> 0.05). The associations among physical activities, sedentary behaviors and overweight/obesity existed in Chinese children aged 9-11 years, which were different in boys and girls. There was no statistically significant heterogeneity across different provinces. The strategies to prevent and control overweight/obesity in primary school students should focus on gender-specific needs.
ALLIANCE: An architecture for fault tolerant, cooperative control of heterogeneous mobile robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, L.E.
1995-02-01
This research addresses the problem of achieving fault tolerant cooperation within small- to medium-sized teams of heterogeneous mobile robots. The author describes a novel behavior-based, fully distributed architecture, called ALLIANCE, that utilizes adaptive action selection to achieve fault tolerant cooperative control in robot missions involving loosely coupled, largely independent tasks. The robots in this architecture possess a variety of high-level functions that they can perform during a mission, and must at all times select an appropriate action based on the requirements of the mission, the activities of other robots, the current environmental conditions, and their own internal states. Since suchmore » cooperative teams often work in dynamic and unpredictable environments, the software architecture allows the team members to respond robustly and reliably to unexpected environmental changes and modifications in the robot team that may occur due to mechanical failure, the learning of new skills, or the addition or removal of robots from the team by human intervention. After presenting ALLIANCE, the author describes in detail experimental results of an implementation of this architecture on a team of physical mobile robots performing a cooperative box pushing demonstration. These experiments illustrate the ability of ALLIANCE to achieve adaptive, fault-tolerant cooperative control amidst dynamic changes in the capabilities of the robot team.« less
Water Interfaces, Solvation, and Spectroscopy
NASA Astrophysics Data System (ADS)
Geissler, Phillip L.
2013-04-01
Liquid water consistently expands our appreciation of the rich statistical mechanics that can emerge from simple molecular constituents. Here I review several interrelated areas of recent work on aqueous systems that aim to explore and explain this richness by revealing molecular arrangements, their thermodynamic origins, and the timescales on which they change. Vibrational spectroscopy of OH stretching features prominently in these discussions, with an emphasis on efforts to establish connections between spectroscopic signals and statistics of intermolecular structure. For bulk solutions, the results of these efforts largely verify and enrich existing physical pictures of hydrogen-bond network connectivity, dynamics, and response. For water at interfaces, such pictures are still emerging. As an important example I discuss the solvation of small ions at the air-water interface, whose surface propensities challenge a basic understanding of how aqueous fluctuations accommodate solutes in heterogeneous environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crozier, Paul; Howard, Micah; Rider, William J.
The SPARC (Sandia Parallel Aerodynamics and Reentry Code) will provide nuclear weapon qualification evidence for the random vibration and thermal environments created by re-entry of a warhead into the earth’s atmosphere. SPARC incorporates the innovative approaches of ATDM projects on several fronts including: effective harnessing of heterogeneous compute nodes using Kokkos, exascale-ready parallel scalability through asynchronous multi-tasking, uncertainty quantification through Sacado integration, implementation of state-of-the-art reentry physics and multiscale models, use of advanced verification and validation methods, and enabling of improved workflows for users. SPARC is being developed primarily for the Department of Energy nuclear weapon program, with additional developmentmore » and use of the code is being supported by the Department of Defense for conventional weapons programs.« less
Promoting personal safety of building service workers: issues and challenges.
Chen, Shelley I; Skillen, D Lynn
2006-06-01
This exploratory, descriptive study conducted at a large western Canadian university solicited perceptions of personal safety among building service workers who perform night shift work alone. Ten semi-structured interviews were conducted at approximately 10:00 p.m. or 7:00 a.m with a convenience sample of night building service workers in private or semi-private locations on the university campus. Transcribed interview data were subjected to inductive content analysis using descriptive, interpretive, and pattern coding (Miles & Huberman, 1994). Results suggest that building service night shift workers are exposed to personal safety hazards in their physical and psychosocial work environments. In addition, culturally and linguistically appropriate delivery of safety training and education about policies and procedures is required for culturally diverse building service workers. Promotion of personal safety in this heterogeneous worker population requires due diligence, assessment, and advocacy.
The Extraterrestrial Materials Simulation Laboratory
NASA Technical Reports Server (NTRS)
Green, J. R.
2001-01-01
In contrast to fly-by and orbital missions, in situ missions face an incredible array of challenges in near-target navigation, landing site selection, descent, landing, science operations, sample collection and handling, drilling, anchoring, subsurface descent, communications, and contamination. The wide range of materials characteristics and environments threaten mission safety and success. For example, many physical properties are poorly characterized, including strength, composition, heterogeneity, phase change, texture, thermal properties, terrain features, atmospheric interaction, and stratigraphy. Examples of the range of materials properties include, for example: (1) Comets, with a possible compressive strength ranging from a light fluff to harder than concrete: 10(exp 2) to 10 (exp 8) Pa; (2) Europa, including a possible phase change at the surface, unknown strength and terrain roughness; and (3) Titan, with a completely unknown surface and possible liquid ocean. Additional information is contained in the original extended abstract.
Ecology and Physics of Bacterial Chemotaxis in the Ocean
Seymour, Justin R.
2012-01-01
Summary: Intuitively, it may seem that from the perspective of an individual bacterium the ocean is a vast, dilute, and largely homogeneous environment. Microbial oceanographers have typically considered the ocean from this point of view. In reality, marine bacteria inhabit a chemical seascape that is highly heterogeneous down to the microscale, owing to ubiquitous nutrient patches, plumes, and gradients. Exudation and excretion of dissolved matter by larger organisms, lysis events, particles, animal surfaces, and fluxes from the sediment-water interface all contribute to create strong and pervasive heterogeneity, where chemotaxis may provide a significant fitness advantage to bacteria. The dynamic nature of the ocean imposes strong selective pressures on bacterial foraging strategies, and many marine bacteria indeed display adaptations that characterize their chemotactic motility as “high performance” compared to that of enteric model organisms. Fast swimming speeds, strongly directional responses, and effective turning and steering strategies ensure that marine bacteria can successfully use chemotaxis to very rapidly respond to chemical gradients in the ocean. These fast responses are advantageous in a broad range of ecological processes, including attaching to particles, exploiting particle plumes, retaining position close to phytoplankton cells, colonizing host animals, and hovering at a preferred height above the sediment-water interface. At larger scales, these responses can impact ocean biogeochemistry by increasing the rates of chemical transformation, influencing the flux of sinking material, and potentially altering the balance of biomass incorporation versus respiration. This review highlights the physical and ecological processes underpinning bacterial motility and chemotaxis in the ocean, describes the current state of knowledge of chemotaxis in marine bacteria, and summarizes our understanding of how these microscale dynamics scale up to affect ecosystem-scale processes in the sea. PMID:23204367
Health in police officers: Role of risk factor clusters and police divisions.
Habersaat, Stephanie A; Geiger, Ashley M; Abdellaoui, Sid; Wolf, Jutta M
2015-10-01
Law enforcement is a stressful occupation associated with significant health problems. To date, most studies have focused on one specific factor or one domain of risk factors (e.g., organizational, personal). However, it is more likely that specific combinations of risk factors are differentially health relevant and further, depend on the area of police work. A self-selected group of officers from the criminal, community, and emergency division (N = 84) of a Swiss state police department answered questionnaires assessing personal and organizational risk factors as well as mental and physical health indicators. In general, few differences were observed across divisions in terms of risk factors or health indicators. Cluster analysis of all risk factors established a high-risk and a low-risk cluster with significant links to all mental health outcomes. Risk cluster-by-division interactions revealed that, in the high-risk cluster, Emergency officers reported fewer physical symptoms, while community officers reported more posttraumatic stress symptoms. Criminal officers in the high-risk cluster tended to perceived more stress. Finally, perceived stress did not mediate the relationship between risk clusters and posttraumatic stress symptoms. In summary, our results support the notion that police officers are a heterogeneous population in terms of processes linking risk factors and health indicators. This heterogeneity thereby appeared to be more dependent on personal factors and individuals' perception of their own work conditions than division-specific work environments. Our findings further suggest that stress-reduction interventions that do not target job-relevant sources of stress may only show limited effectiveness in reducing health risks associated with police work. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ecology and physics of bacterial chemotaxis in the ocean.
Stocker, Roman; Seymour, Justin R
2012-12-01
Intuitively, it may seem that from the perspective of an individual bacterium the ocean is a vast, dilute, and largely homogeneous environment. Microbial oceanographers have typically considered the ocean from this point of view. In reality, marine bacteria inhabit a chemical seascape that is highly heterogeneous down to the microscale, owing to ubiquitous nutrient patches, plumes, and gradients. Exudation and excretion of dissolved matter by larger organisms, lysis events, particles, animal surfaces, and fluxes from the sediment-water interface all contribute to create strong and pervasive heterogeneity, where chemotaxis may provide a significant fitness advantage to bacteria. The dynamic nature of the ocean imposes strong selective pressures on bacterial foraging strategies, and many marine bacteria indeed display adaptations that characterize their chemotactic motility as "high performance" compared to that of enteric model organisms. Fast swimming speeds, strongly directional responses, and effective turning and steering strategies ensure that marine bacteria can successfully use chemotaxis to very rapidly respond to chemical gradients in the ocean. These fast responses are advantageous in a broad range of ecological processes, including attaching to particles, exploiting particle plumes, retaining position close to phytoplankton cells, colonizing host animals, and hovering at a preferred height above the sediment-water interface. At larger scales, these responses can impact ocean biogeochemistry by increasing the rates of chemical transformation, influencing the flux of sinking material, and potentially altering the balance of biomass incorporation versus respiration. This review highlights the physical and ecological processes underpinning bacterial motility and chemotaxis in the ocean, describes the current state of knowledge of chemotaxis in marine bacteria, and summarizes our understanding of how these microscale dynamics scale up to affect ecosystem-scale processes in the sea.
Health in police officers: Role of risk factor clusters and police divisions
Habersaat, Stephanie A.; Geiger, Ashley M.; Abdellaoui, Sid; Wolf, Jutta M.
2015-01-01
Objective Law enforcement is a stressful occupation associated with significant health problems. To date, most studies have focused on one specific factor or one domain of risk factors (e.g., organizational, personal). However, it is more likely that specific combinations of risk factors are differentially health relevant and further, depend on the area of police work. Methods A self-selected group of officers from the criminal, community, and emergency division (N = 84) of a Swiss state police department answered questionnaires assessing personal and organizational risk factors as well as mental and physical health indicators. Results In general, few differences were observed across divisions in terms of risk factors or health indicators. Cluster analysis of all risk factors established a high-risk and a low-risk cluster with significant links to all mental health outcomes. Risk cluster-by-division interactions revealed that, in the high-risk cluster, Emergency officers reported fewer physical symptoms, while community officers reported more posttraumatic stress symptoms. Criminal officers in the high-risk cluster tended to perceived more stress. Finally, perceived stress did not mediate the relationship between risk clusters and posttraumatic stress symptoms. Conclusion In summary, our results support the notion that police officers are a heterogeneous population in terms of processes linking risk factors and health indicators. This heterogeneity thereby appeared to be more dependent on personal factors and individuals' perception of their own work conditions than division-specific work environments. Our findings further suggest that stress-reduction interventions that do not target job-relevant sources of stress may only show limited effectiveness in reducing health risks associated with police work. PMID:26364008
NASA Astrophysics Data System (ADS)
Ristau, Henry
Many tasks in smart environments can be implemented using message based communication paradigms that decouple applications in time, space, synchronization and semantics. Current solutions for decoupled message based communication either do not support message processing and thus semantic decoupling or rely on clearly defined network structures. In this paper we present ASP, a novel concept for such communication that can directly operate on neighbor relations between brokers and does not rely on a homogeneous addressing scheme or anymore than simple link layer communication. We show by simulation that ASP performs well in a heterogeneous scenario with mobile nodes and decreases network or processor load significantly compared to message flooding.
NASA Astrophysics Data System (ADS)
Poat, M. D.; Lauret, J.; Betts, W.
2015-12-01
The STAR online computing environment is an intensive ever-growing system used for real-time data collection and analysis. Composed of heterogeneous and sometimes groups of custom-tuned machines, the computing infrastructure was previously managed by manual configurations and inconsistently monitored by a combination of tools. This situation led to configuration inconsistency and an overload of repetitive tasks along with lackluster communication between personnel and machines. Globally securing this heterogeneous cyberinfrastructure was tedious at best and an agile, policy-driven system ensuring consistency, was pursued. Three configuration management tools, Chef, Puppet, and CFEngine have been compared in reliability, versatility and performance along with a comparison of infrastructure monitoring tools Nagios and Icinga. STAR has selected the CFEngine configuration management tool and the Icinga infrastructure monitoring system leading to a versatile and sustainable solution. By leveraging these two tools STAR can now swiftly upgrade and modify the environment to its needs with ease as well as promptly react to cyber-security requests. By creating a sustainable long term monitoring solution, the detection of failures was reduced from days to minutes, allowing rapid actions before the issues become dire problems, potentially causing loss of precious experimental data or uptime.
Developing and using artificial soils to analyze soil microbial processes
NASA Astrophysics Data System (ADS)
Gao, X.; Cheng, H. Y.; Boynton, L.; Masiello, C. A.; Silberg, J. J.
2017-12-01
Microbial diversity and function in soils are governed by soil characteristics such as mineral composition, particles size and aggregations, soil organic matter (SOM), and availability of nutrients and H2O. The spatial and temporal heterogeneity of soils creates a range of niches (hotspots) differing in the availability of O2, H2O, and nutrients, which shapes microbial activities at scales ranging from nanometer to landscape. Synthetic biologists often examine microbial response trigged by their environment conditions in nutrient-rich aqueous media using single strain microbes. While these studies provided useful insight in the role of soil microbes in important soil biogeochemical processes (e.g., C cycling, N cycling, etc.), the results obtained from the over-simplified model systems are often not applicable natural soil systems. On the contrary, soil microbiologists examine microbial processes in natural soils using longer incubation time. However, due to its physical, chemical and biological complexity of natural soils, it is often difficult to examine soil characteristics independently and understand how each characteristic influences soil microbial activities and their corresponding soil functioning. Therefore, it is necessary to bridge the gap and develop a model matrix to exclude unpredictable influences from the environment while still reliably mimicking real environmental conditions. The objective of this study is to design a range of ecologically-relevant artificial soils with varying texture (particle size distribution), structure, mineralogy, SOM content, and nutrient heterogeneity. We thoroughly characterize the artificial soils for pH, active surface area and surface morphology, cation exchange capacity (CEC), and water retention curve. We demonstrate the effectiveness of the artificial soils as useful matrix for microbial processes, such as microbial growth and horizontal gene transfer (HGT), using the gas-reporting biosensors recently developed in our lab.
NASA Astrophysics Data System (ADS)
Wietsma, T. W.; Oostrom, M.; Foster, N. S.
2003-12-01
Intermediate-scale experiments (ISEs) for flow and transport are a valuable tool for simulating subsurface features and conditions encountered in the field at government and private sites. ISEs offer the ability to study, under controlled laboratory conditions, complicated processes characteristic of mixed wastes and heterogeneous subsurface environments, in multiple dimensions and at different scales. ISEs may, therefore, result in major cost savings if employed prior to field studies. A distinct advantage of ISEs is that researchers can design physical and/or chemical heterogeneities in the porous media matrix that better approximate natural field conditions and therefore address research questions that contain the additional complexity of processes often encountered in the natural environment. A new Subsurface Flow and Transport Laboratory (SFTL) has been developed for ISE users in the Environmental Spectroscopy & Biogeochemistry Facility in the Environmental Molecular Sciences Laboratory (EMSL) at Pacific Northwest National Laboratory (PNNL). The SFTL offers a variety of columns and flow cells, a new state-of-the-art dual-energy gamma system, a fully automated saturation-pressure apparatus, and analytical equipment for sample processing. The new facility, including qualified staff, is available for scientists interested in collaboration on conducting high-quality flow and transport experiments, including contaminant remediation. Close linkages exist between the SFTL and numerical modelers to aid in experimental design and interpretation. This presentation will discuss the facility and outline the procedures required to submit a proposal to use this unique facility for research purposes. The W. R. Wiley Environmental Molecular Sciences Laboratory, a national scientific user facility, is sponsored by the U.S. Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.
NASA Astrophysics Data System (ADS)
Houzé, Clémence; Pessel, Marc; Durand, Veronique
2016-04-01
Due to the high complexity level of hyporheic flow paths, hydrological and biogeochemical processes which occur in this mixing place are not fully understood yet. Some previous studies made in flumes show that hyporheic flow is strongly connected to the streambed morphology and sediment heterogeneity . There is still a lack of practical field experiment considering a natural environment and representation of natural streambed heterogeneities will be always limited in laboratories. The purpose of this project is to propose an innovative method using 3D Electrical Resistivity Tomography (ERT) monitoring of an artificial tracer injection directly within the streambed sediments in order to visualize the water pathways within the hyporheic zone. Field experiment on a small stream was conducted using a plastic tube as an injection piezometer and home-made electrodes strips arranged in a rectangular form made of 180 electrodes (15 strips of 12 electrodes each). The injection of tracer (NaCl) lasted approximatively 90 minutes, and 24h monitoring with increasing step times was performed. The physical properties of the water are controlled by CTD probes installed upstream and downstream within the river. Inverse time-lapse tomographs show development and persistence of a conductive water plume around the injection point. Due to the low hydraulic conductivity of streambed sediments (clay and overlying loess), the tracer movement is barely visible, as it dilutes gradually in the pore water. Impact of boundary conditions on inversion results can lead to significant differences on images, especially in the shallow part of the profiles. Preferential paths of transport are not highlighted here, but this experiment allows to follow spatially and temporarily the evolution of the tracer in a complex natural environment .
The ESIS query environment pilot project
NASA Technical Reports Server (NTRS)
Fuchs, Jens J.; Ciarlo, Alessandro; Benso, Stefano
1993-01-01
The European Space Information System (ESIS) was originally conceived to provide the European space science community with simple and efficient access to space data archives, facilities with which to examine and analyze the retrieved data, and general information services. To achieve that ESIS will provide the scientists with a discipline specific environment for querying in a uniform and transparent manner data stored in geographically dispersed archives. Furthermore it will provide discipline specific tools for displaying and analyzing the retrieved data. The central concept of ESIS is to achieve a more efficient and wider usage of space scientific data, while maintaining the physical archives at the institutions which created them, and has the best background for ensuring and maintaining the scientific validity and interest of the data. In addition to coping with the physical distribution of data, ESIS is to manage also the heterogenity of the individual archives' data models, formats and data base management systems. Thus the ESIS system shall appear to the user as a single database, while it does in fact consist of a collection of dispersed and locally managed databases and data archives. The work reported in this paper is one of the results of the ESIS Pilot Project which is to be completed in 1993. More specifically it presents the pilot ESIS Query Environment (ESIS QE) system which forms the data retrieval and data dissemination axis of the ESIS system. The others are formed by the ESIS Correlation Environment (ESIS CE) and the ESIS Information Services. The ESIS QE Pilot Project is carried out for the European Space Agency's Research and Information center, ESRIN, by a Consortium consisting of Computer Resources International, Denmark, CISET S.p.a, Italy, the University of Strasbourg, France and the Rutherford Appleton Laboratories in the U.K. Furthermore numerous scientists both within ESA and space science community in Europe have been involved in defining the core concepts of the ESIS system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohn, M.E.; Patchen, D.G.; Heald, M.
Non-uniform composition and permeability of a reservoir, commonly referred to as reservoir heterogeneity, is recognized as a major factor in the efficient recovery of oil during primary production and enhanced recovery operations. Heterogeneities are present at various scales and are caused by various factors, including folding and faulting, fractures, diagenesis and depositional environments. Thus, a reservoir consists of a complex flow system, or series of flow systems, dependent on lithology, sandstone genesis, and structural and thermal history. Ultimately, however, fundamental flow units are controlled by the distribution and type of depositional environments. Reservoir heterogeneity is difficult to measure and predict,more » especially in more complex reservoirs such as fluvial-deltaic sandstones. The Appalachian Oil and Natural Gas Research Consortium (AONGRC), a partnership of Appalachian basin state geological surveys in Kentucky, Ohio, Pennsylvania, and West Virginia, and West Virginia University, studied the Lower Mississippian Big Injun sandstone in West Virginia. The Big Injun research was multidisciplinary and designed to measure and map heterogeneity in existing fields and undrilled areas. The main goal was to develop an understanding of the reservoir sufficient to predict, in a given reservoir, optimum drilling locations versus high-risk locations for infill, outpost, or deeper-pool tests.« less
Automation of multi-agent control for complex dynamic systems in heterogeneous computational network
NASA Astrophysics Data System (ADS)
Oparin, Gennady; Feoktistov, Alexander; Bogdanova, Vera; Sidorov, Ivan
2017-01-01
The rapid progress of high-performance computing entails new challenges related to solving large scientific problems for various subject domains in a heterogeneous distributed computing environment (e.g., a network, Grid system, or Cloud infrastructure). The specialists in the field of parallel and distributed computing give the special attention to a scalability of applications for problem solving. An effective management of the scalable application in the heterogeneous distributed computing environment is still a non-trivial issue. Control systems that operate in networks, especially relate to this issue. We propose a new approach to the multi-agent management for the scalable applications in the heterogeneous computational network. The fundamentals of our approach are the integrated use of conceptual programming, simulation modeling, network monitoring, multi-agent management, and service-oriented programming. We developed a special framework for an automation of the problem solving. Advantages of the proposed approach are demonstrated on the parametric synthesis example of the static linear regulator for complex dynamic systems. Benefits of the scalable application for solving this problem include automation of the multi-agent control for the systems in a parallel mode with various degrees of its detailed elaboration.
Brischoux, François; Bonnet, Xavier; Shine, Richard
2009-12-23
Lacking the capacity for thermogenesis, most ectotherms inhabiting thermally heterogeneous environments rely instead upon exploiting that ambient heterogeneity. In many cases they maintain body temperatures within a narrow range despite massive spatial and temporal variation in ambient conditions. Reliance on diverse thermal opportunities is reflected in specific terms for organisms that bask in sunlight to regulate their temperature (heliotherms), or that press their bodies against warm substrates to facilitate heat flow (thigmotherms), or that rely on large body mass to maintain thermal constancy (gigantothermy). We propose an additional category of thermoregulators: kleptotherms, which regulate their own temperature by 'stealing' heat from other organisms. This concept involves two major conditions: the thermal heterogeneity created by the presence of a warm organism in a cool environment and the selective use of that heterogeneity by another animal to maintain body temperatures at higher (and more stable) levels than would be possible elsewhere in the local area. Kleptothermy occurs in endotherms also, but is usually reciprocal (rather than unilateral as in ectotherms). Thermal monitoring on a small tropical island documents a possible example of kleptothermy, based on high stable temperatures of a sea snake (Laticauda laticaudata) inside a burrow occupied by seabirds.
NASA Technical Reports Server (NTRS)
Starr, David O. (Technical Monitor); Smith, Eric A.
2002-01-01
Comprehensive understanding of the microphysical nature of Mediterranean storms can be accomplished by a combination of in situ meteorological data analysis and radar-passive microwave data analysis, effectively integrated with numerical modeling studies at various scales, from synoptic scale down through the mesoscale, the cloud macrophysical scale, and ultimately the cloud microphysical scale. The microphysical properties of and their controls on severe storms are intrinsically related to meteorological processes under which storms have evolved, processes which eventually select and control the dominant microphysical properties themselves. This involves intense convective development, stratiform decay, orographic lifting, and sloped frontal lifting processes, as well as the associated vertical motions and thermodynamical instabilities governing physical processes that affect details of the size distributions and fall rates of the various types of hydrometeors found within the storm environment. Insofar as hazardous Mediterranean storms, highlighted in this study by three mountain storms producing damaging floods in northern Italy between 1992 and 2000, developing a comprehensive microphysical interpretation requires an understanding of the multiple phases of storm evolution and the heterogeneous nature of precipitation fields within a storm domain. This involves convective development, stratiform transition and decay, orographic lifting, and sloped frontal lifting processes. This also involves vertical motions and thermodynamical instabilities governing physical processes that determine details of the liquid/ice water contents, size disi:ributions, and fall rates of the various modes of hydrometeors found within hazardous storm environments.
NASA Technical Reports Server (NTRS)
Johnston, William E.; Gannon, Dennis; Nitzberg, Bill; Feiereisen, William (Technical Monitor)
2000-01-01
The term "Grid" refers to distributed, high performance computing and data handling infrastructure that incorporates geographically and organizationally dispersed, heterogeneous resources that are persistent and supported. The vision for NASN's Information Power Grid - a computing and data Grid - is that it will provide significant new capabilities to scientists and engineers by facilitating routine construction of information based problem solving environments / frameworks that will knit together widely distributed computing, data, instrument, and human resources into just-in-time systems that can address complex and large-scale computing and data analysis problems. IPG development and deployment is addressing requirements obtained by analyzing a number of different application areas, in particular from the NASA Aero-Space Technology Enterprise. This analysis has focussed primarily on two types of users: The scientist / design engineer whose primary interest is problem solving (e.g., determining wing aerodynamic characteristics in many different operating environments), and whose primary interface to IPG will be through various sorts of problem solving frameworks. The second type of user if the tool designer: The computational scientists who convert physics and mathematics into code that can simulate the physical world. These are the two primary users of IPG, and they have rather different requirements. This paper describes the current state of IPG (the operational testbed), the set of capabilities being put into place for the operational prototype IPG, as well as some of the longer term R&D tasks.
LHCb Conditions database operation assistance systems
NASA Astrophysics Data System (ADS)
Clemencic, M.; Shapoval, I.; Cattaneo, M.; Degaudenzi, H.; Santinelli, R.
2012-12-01
The Conditions Database (CondDB) of the LHCb experiment provides versioned, time dependent geometry and conditions data for all LHCb data processing applications (simulation, high level trigger (HLT), reconstruction, analysis) in a heterogeneous computing environment ranging from user laptops to the HLT farm and the Grid. These different use cases impose front-end support for multiple database technologies (Oracle and SQLite are used). Sophisticated distribution tools are required to ensure timely and robust delivery of updates to all environments. The content of the database has to be managed to ensure that updates are internally consistent and externally compatible with multiple versions of the physics application software. In this paper we describe three systems that we have developed to address these issues. The first system is a CondDB state tracking extension to the Oracle 3D Streams replication technology, to trap cases when the CondDB replication was corrupted. Second, an automated distribution system for the SQLite-based CondDB, providing also smart backup and checkout mechanisms for the CondDB managers and LHCb users respectively. And, finally, a system to verify and monitor the internal (CondDB self-consistency) and external (LHCb physics software vs. CondDB) compatibility. The former two systems are used in production in the LHCb experiment and have achieved the desired goal of higher flexibility and robustness for the management and operation of the CondDB. The latter one has been fully designed and is passing currently to the implementation stage.
Flat laminated microbial mat communities
NASA Astrophysics Data System (ADS)
Franks, Jonathan; Stolz, John F.
2009-10-01
Flat laminated microbial mats are complex microbial ecosystems that inhabit a wide range of environments (e.g., caves, iron springs, thermal springs and pools, salt marshes, hypersaline ponds and lagoons, methane and petroleum seeps, sea mounts, deep sea vents, arctic dry valleys). Their community structure is defined by physical (e.g., light quantity and quality, temperature, density and pressure) and chemical (e.g., oxygen, oxidation/reduction potential, salinity, pH, available electron acceptors and donors, chemical species) parameters as well as species interactions. The main primary producers may be photoautotrophs (e.g., cyanobacteria, purple phototrophs, green phototrophs) or chemolithoautophs (e.g., colorless sulfur oxidizing bacteria). Anaerobic phototrophy may predominate in organic rich environments that support high rates of respiration. These communities are dynamic systems exhibiting both spatial and temporal heterogeneity. They are characterized by steep gradients with microenvironments on the submillimeter scale. Diel oscillations in the physical-chemical profile (e.g., oxygen, hydrogen sulfide, pH) and species distribution are typical for phototroph-dominated communities. Flat laminated microbial mats are often sites of robust biogeochemical cycling. In addition to well-established modes of metabolism for phototrophy (oxygenic and non-oxygenic), respiration (both aerobic and anaerobic), and fermentation, novel energetic pathways have been discovered (e.g., nitrate reduction couple to the oxidation of ammonia, sulfur, or arsenite). The application of culture-independent techniques (e.g., 16S rRNA clonal libraries, metagenomics), continue to expand our understanding of species composition and metabolic functions of these complex ecosystems.
Armstrong, Jonathan B.; Schindler, Daniel E.; Ruff, Casey P.; Brooks, Gabriel T.; Bentley, Kale E.; Torgersen, Christian E.
2013-01-01
Vertical heterogeneity in the physical characteristics of lakes and oceans is ecologically salient and exploited by a wide range of taxa through diel vertical migration to enhance their growth and survival. Whether analogous behaviors exploit horizontal habitat heterogeneity in streams is largely unknown. We investigated fish movement behavior at daily timescales to explore how individuals integrated across spatial variation in food abundance and water temperature. Juvenile coho salmon made feeding forays into cold habitats with abundant food, and then moved long distances (350–1300 m) to warmer habitats that accelerated their metabolism and increased their assimilative capacity. This behavioral thermoregulation enabled fish to mitigate trade-offs between trophic and thermal resources by exploiting thermal heterogeneity. Fish that exploited thermal heterogeneity grew at substantially faster rates than did individuals that assumed other behaviors. Our results provide empirical support for the importance of thermal diversity in lotic systems, and emphasize the importance of considering interactions between animal behavior and habitat heterogeneity when managing and restoring ecosystems.
NASA Technical Reports Server (NTRS)
Okal, E. A.
1978-01-01
The theory of the normal modes of the earth is investigated and used to build synthetic seismograms in order to solve source and structural problems. A study is made of the physical properties of spheroidal modes leading to a rational classification. Two problems addressed are the observability of deep isotropic seismic sources and the investigation of the physical properties of the earth in the neighborhood of the Core-Mantle boundary, using SH waves diffracted at the core's surface. Data sets of seismic body and surface waves are used in a search for possible deep lateral heterogeneities in the mantle. In both cases, it is found that seismic data do not require structural differences between oceans and continents to extend deeper than 250 km. In general, differences between oceans and continents are found to be on the same order of magnitude as the intrinsic lateral heterogeneity in the oceanic plate brought about by the aging of the oceanic lithosphere.
Rodman R. Linn; Carolyn H. Sieg; Chad M. Hoffman; Judith L. Winterkamp; Joel D. McMillin
2013-01-01
We used a physics-based model, HIGRAD/FIRETEC, to explore changes in within-stand wind behavior and fire propagation associated with three time periods in pinyon-juniper woodlands following a drought-induced bark beetle outbreak and subsequent tree mortality. Pinyon-juniper woodland fuel complexes are highly heterogeneous. Trees often are clumped, with sparse patches...
Combustion Of Porous Graphite Particles In Oxygen Enriched Air
NASA Technical Reports Server (NTRS)
Delisle, Andrew J.; Miller, Fletcher J.; Chelliah, Harsha K.
2003-01-01
Combustion of solid fuel particles has many important applications, including power generation and space propulsion systems. The current models available for describing the combustion process of these particles, especially porous solid particles, include various simplifying approximations. One of the most limiting approximations is the lumping of the physical properties of the porous fuel with the heterogeneous chemical reaction rate constants [1]. The primary objective of the present work is to develop a rigorous modeling approach that could decouple such physical and chemical effects from the global heterogeneous reaction rates. For the purpose of validating this model, experiments with porous graphite particles of varying sizes and porosity are being performed under normal and micro gravity.
Efficient Process Migration for Parallel Processing on Non-Dedicated Networks of Workstations
NASA Technical Reports Server (NTRS)
Chanchio, Kasidit; Sun, Xian-He
1996-01-01
This paper presents the design and preliminary implementation of MpPVM, a software system that supports process migration for PVM application programs in a non-dedicated heterogeneous computing environment. New concepts of migration point as well as migration point analysis and necessary data analysis are introduced. In MpPVM, process migrations occur only at previously inserted migration points. Migration point analysis determines appropriate locations to insert migration points; whereas, necessary data analysis provides a minimum set of variables to be transferred at each migration pint. A new methodology to perform reliable point-to-point data communications in a migration environment is also discussed. Finally, a preliminary implementation of MpPVM and its experimental results are presented, showing the correctness and promising performance of our process migration mechanism in a scalable non-dedicated heterogeneous computing environment. While MpPVM is developed on top of PVM, the process migration methodology introduced in this study is general and can be applied to any distributed software environment.
Developing a shale heterogeneity index to predict fracture response in the Mancos Shale
NASA Astrophysics Data System (ADS)
DeReuil, Aubry; Birgenheier, Lauren; McLennan, John
2017-04-01
The interplay between sedimentary heterogeneity and fracture propagation in mudstone is crucial to assess the potential of low permeability rocks as unconventional reservoirs. Previous experimental research has demonstrated a relationship between heterogeneity and fracture of brittle rocks, as discontinuities in a rock mass influence micromechanical processes such as microcracking and strain localization, which evolve into macroscopic fractures. Though numerous studies have observed heterogeneity influencing fracture development, fundamental understanding of the entire fracture process and the physical controls on this process is still lacking. This is partly due to difficulties in quantifying heterogeneity in fine-grained rocks. Our study tests the hypothesis that there is a correlation between sedimentary heterogeneity and the manner in which mudstone is fractured. An extensive range of heterogeneity related to complex sedimentology is represented by various samples from cored intervals of the Mancos Shale. Samples were categorized via facies analysis consisting of: visual core description, XRF and XRD analysis, SEM and thin section microscopy, and reservoir quality analysis that tested porosity, permeability, water saturation, and TOC. Systematic indirect tensile testing on a broad variety of facies has been performed, and uniaxial and triaxial compression testing is underway. A novel tool based on analytically derived and statistically proven relationships between sedimentary geologic and geomechanical heterogeneity is the ultimate result, referred to as the shale heterogeneity index. Preliminary conclusions from development of the shale heterogeneity index reveal that samples with compositionally distinct bedding withstand loading at higher stress values, while texturally and compositionally homogeneous, bedded samples fail at lower stress values. The highest tensile strength results from cemented Ca-enriched samples, medial to high strength samples have approximately equivalent proportions of Al-Ca-Si compositions, while Al-rich samples have consistently low strength. Moisture preserved samples fail on average at approximately 5 MPa lower than dry samples of similar facies. Additionally, moisture preserved samples fail in a step-like pattern when tested perpendicular to bedding. Tensile fractures are halted at heterogeneities and propagate parallel to bedding planes before developing a through-going failure plane, as opposed to the discrete, continuous fractures that crosscut dry samples. This result suggests that sedimentary heterogeneity plays a greater role in fracture propagation in moisture preserved samples, which are more indicative of in-situ reservoir conditions. Stress-strain curves will be further analyzed, including estimation of an energy released term based on post-failure response, and an estimation of volume of cracking measure on the physical fracture surface.
An Effective Cache Algorithm for Heterogeneous Storage Systems
Li, Yong; Feng, Dan
2013-01-01
Modern storage environment is commonly composed of heterogeneous storage devices. However, traditional cache algorithms exhibit performance degradation in heterogeneous storage systems because they were not designed to work with the diverse performance characteristics. In this paper, we present a new cache algorithm called HCM for heterogeneous storage systems. The HCM algorithm partitions the cache among the disks and adopts an effective scheme to balance the work across the disks. Furthermore, it applies benefit-cost analysis to choose the best allocation of cache block to improve the performance. Conducting simulations with a variety of traces and a wide range of cache size, our experiments show that HCM significantly outperforms the existing state-of-the-art storage-aware cache algorithms. PMID:24453890
Hobbs, M; Griffiths, C; Green, M A; Jordan, H; Saunders, J; McKenna, J
2018-05-01
This study investigates associations between the combined physical activity environment and obesity and explores any sub-group effects by individual-level socioeconomic status. In a large cross-sectional cohort ( n = 22,889) from the Yorkshire Health Study, body mass index was calculated using self-reported height and weight and obesity was defined as a body mass index ≥ 30. The physical activity environment was split into 'unfavourable physical activity', 'moderately favourable physical activity' and 'favourable physical activity' environments. This was based on the count of parks and physical activity facilities within a 2 km radial buffer centred on home addresses. A favourable physical activity environment was defined as having ≥1 physical activity facility and ≥1 park, unfavourable as having no physical activity facility and park and any other combinations defined as moderately favourable. Logistic regression (odds ratios) identified associations with obesity. Relative to 'unfavourable physical activity environments', individuals within favourable physical activity environments were less likely to be obese (odds ratio = 0.90; 95% confidence interval = 0.82-0.97), and there was no effect for moderately favourable environment. Furthermore, once stratified by education level, this relationship was only present for those of higher education. Our findings provide novel UK evidence and is one of the first papers internationally that highlights the importance of considering the interplay of individual-level socioeconomic factors when investigating associations between the physical activity environment and obesity.
Minor Physical Anomalies in Children with Autism Spectrum Disorders
ERIC Educational Resources Information Center
Angkustsiri, Kathleen; Krakowiak, Paula; Moghaddam, Billur; Wardinsky, Terrance; Gardner, Jerald; Kalamkarian, Nareg; Hertz-Picciotto, Irva; Hansen, Robin L.
2011-01-01
Objective: There is clinical heterogeneity among the autism spectrum disorders (ASD). The presence of dysmorphology (minor physical anomalies; MPAs) is one possible tool for defining a clinically relevant subset in ASD. This study employs an adaptation of Miles and Hillman's (2000) classifications by using photographs to identify a subgroup with…
Physical Activity at Daycare: Issues, Challenges and Perspectives
ERIC Educational Resources Information Center
van Zandvoort, Melissa; Tucker, Patricia; Irwin, Jennifer D.; Burke, Shauna M.
2010-01-01
This study sought to examine London, Ontario-based childcare providers' perspectives of the barriers and facilitators to physical activity participation among preschoolers (i.e. children aged 2.5-5 years) attending daycare. A heterogeneous sample of childcare providers (n = 54; response rate 47%) working at public daycare facilities in London,…
Ability Group Configuration for the High School Physics Classroom
NASA Astrophysics Data System (ADS)
Zitnik, Scott
This research project looks to investigate the effectiveness of different ability grouping arrangements for the high school physics classroom. Students were first organized based on their academic aptitude in physics into three general groups of high, medium, and low achieving students. They were then divided into both groups of four and dyads that were constructed in one of four arrangements, namely: random, homogeneous, heterogeneous, or student choice. Data was collected based on their academic performance as well as survey responses regarding the group and dyad performance. Students worked in a rotation of these groups and dyads for a unit to measure student preference and introduce collaborative work formally to the classes. At this point it was evident that students preferred the student choice arrangement based on survey responses, yet the student choice survey responses also resulted in the lowest level of reliability when compared to all other grouping methods. For the next unit students were kept in either the random, homogeneous, or heterogeneous grouping arrangement for the entirety of the unit. At the conclusion of the second unit student achievement as well as survey responses were analyzed. As a result of this research there appears to be a slight student preference as well as academic benefit to homogeneous group and dyad arrangements for each of the three ability groups of students in the high school physics classroom when compared to random and heterogeneous grouping methods of academic group arrangement.
Cleland, Verity J; Ball, Kylie; Crawford, David
2013-03-27
Over the past decade, studies and public health interventions that target the physical environment as an avenue for promoting physical activity have increased in number. While it appears that a supportive physical environment has a role to play in promoting physical activity, social-ecological models emphasise the importance of considering other multiple levels of influence on behaviour, including individual (e.g. self-efficacy, intentions, enjoyment) and social (e.g. social support, access to childcare) factors (psychosocial factors). However, not everyone has these physical activity-promoting psychosocial characteristics; it remains unclear what contribution the environment makes to physical activity among these groups. This study aimed to examine the association between the perceived physical environment and self-reported leisure-time physical activity (LTPA) among women living in socioeconomically disadvantaged areas demonstrating different psychosocial characteristics. In 2007-8, 3765 women (18-45 years) randomly selected from low socioeconomic areas in Victoria, Australia, self-reported LTPA, and individual, social and physical environmental factors hypothesised within a social-ecological framework to influence LTPA. Psychosocial and environment scores were created. Associations between environment scores and categories of LTPA (overall and stratified by thirds of perceived environment scores) were examined using generalised ordered logistic regression. Women with medium and high perceived environment scores had 20-38% and 44-70% greater odds respectively of achieving higher levels of LTPA than women with low environment scores. When stratified by thirds of psychosocial factor scores, these associations were largely attenuated and mostly became non-significant. However, women with the lowest psychosocial scores but medium or high environment scores had 76% and 58% higher odds respectively of achieving ≥120 minutes/week (vs. <120 minutes/week) LTPA. Acknowledging the cross-sectional study design, the findings suggest that a physical environment perceived to be supportive of physical activity might help women with less favourable psychosocial characteristics achieve moderate amounts of LTPA (i.e. ≥120 minutes/week). This study provides further support for research and public health interventions to target perceptions of the physical environment as a key component of strategies to promote physical activity.
38 CFR 52.200 - Physical environment.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2013-07-01 2013-07-01 false Physical environment. 52...) PER DIEM FOR ADULT DAY HEALTH CARE OF VETERANS IN STATE HOMES Standards § 52.200 Physical environment. The physical environment must be designed, constructed, equipped, and maintained to protect the health...
38 CFR 52.200 - Physical environment.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2011-07-01 2011-07-01 false Physical environment. 52...) PER DIEM FOR ADULT DAY HEALTH CARE OF VETERANS IN STATE HOMES Standards § 52.200 Physical environment. The physical environment must be designed, constructed, equipped, and maintained to protect the health...
38 CFR 52.200 - Physical environment.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2012-07-01 2012-07-01 false Physical environment. 52...) PER DIEM FOR ADULT DAY HEALTH CARE OF VETERANS IN STATE HOMES Standards § 52.200 Physical environment. The physical environment must be designed, constructed, equipped, and maintained to protect the health...
38 CFR 52.200 - Physical environment.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2014-07-01 2014-07-01 false Physical environment. 52...) PER DIEM FOR ADULT DAY HEALTH CARE OF VETERANS IN STATE HOMES Standards § 52.200 Physical environment. The physical environment must be designed, constructed, equipped, and maintained to protect the health...
38 CFR 52.200 - Physical environment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 38 Pensions, Bonuses, and Veterans' Relief 2 2010-07-01 2010-07-01 false Physical environment. 52...) PER DIEM FOR ADULT DAY HEALTH CARE OF VETERANS IN STATE HOMES Standards § 52.200 Physical environment. The physical environment must be designed, constructed, equipped, and maintained to protect the health...
NASA Astrophysics Data System (ADS)
Ribeiro, A. I.; Mello, G. F.; Longo, R. M.; Fengler, F. H.; Peche Filho, A., Sr.
2017-12-01
One of the greatest natural riches of Brazil is the Amazon rainforest. The Amazon region is known for its abundance of mineral resources, and may include topaz, oil, and especially cassiterite. In this scope, the mining sector in Brazil has great strategic importance because it accounts for approximately 30% of the country's exports with a mineral production of 40 billion dollars (Brazilian Mining Institute, 2015). In this scenario, as a consequence of mining, the Amazonian ecosystem has been undergoing a constant process of degradation. An important artifice in the exploitation of mineral resources is the rehabilitation and/or recovery of degraded areas. This recovery requires the establishment of degradation indicators and also the quality of the soil associated with its biota, since the Amazonian environment is dynamic, heterogeneous and complex in its physical, chemical and biological characteristics. In this way, this work presupposes that it is possible to characterize the different stages of recovery of tillage floor areas in deactivated cassiterite mines, within the Amazonian forest, in order to evaluate the interactions between the level of biological activity (Serrapilheira Height, Coefficient Metabolic, Basal Breath) and physical soil characteristics (aggregate DMG, Porosity, Total Soil Density, Moisture Content), through canonical correlation analysis. The results present correlations between the groups of indicators. Thus, from the use of the groups defined by canonical correlations, it was possible to identify the response of the set of physical and biological variables to the areas at different stages of recovery.
Schaeffer, Carolyn R.; Hoang, Tra-My N.; Sudbeck, Craig M.; Alawi, Malik; Tolo, Isaiah E.; Robinson, D. Ashley; Horswill, Alexander R.; Rohde, Holger
2016-01-01
ABSTRACT Staphylococcus epidermidis is a leading cause of hospital-associated infections, including those of intravascular catheters, cerebrospinal fluid shunts, and orthopedic implants. Multiple biofilm matrix molecules with heterogeneous characteristics have been identified, including proteinaceous, polysaccharide, and nucleic acid factors. Two of the best-studied components in S. epidermidis include accumulation-associated protein (Aap) and polysaccharide intercellular adhesin (PIA), produced by the enzymatic products of the icaADBC operon. Biofilm composition varies by strain as well as environmental conditions, and strains producing PIA-mediated biofilms are more robust. Clinically, biofilm-mediated infections occur in a variety of anatomical sites with diverse physiological properties. To test the hypothesis that matrix composition exhibits niche specificity, biofilm-related genetic and physical properties were compared between S. epidermidis strains isolated from high-shear and low-shear environments. Among a collection of 105 clinical strains, significantly more isolates from high-shear environments carried the icaADBC operon than did those from low-shear settings (43.9% versus 22.9%, P < 0.05), while there was no significant difference in the presence of aap (77.2% versus 75.0%, P > 0.05). Additionally, a significantly greater number of high-shear isolates were capable of forming biofilm in vitro in a microtiter assay (82.5% versus 45.8%, P < 0.0001). However, even among high-shear clinical isolates, less than half contained the icaADBC locus; therefore, we selected for ica-negative variants with increased attachment to abiotic surfaces to examine PIA-independent biofilm mechanisms. Sequencing of selected variants identified substitutions capable of enhancing biofilm formation in multiple genes, further highlighting the heterogeneity of S. epidermidis biofilm molecules and mechanisms. IMPORTANCE Staphylococcus epidermidis is a leading cause of infections related to biomaterials, mostly due to their ability to form biofilm. Biofilm accumulation mechanisms vary, including those that are dependent on specific proteins, environmental DNA (eDNA), or polysaccharide intercellular adhesin (PIA). We found that those isolates obtained from high-shear environments, such as the lumen of a catheter, are more likely to produce PIA-mediated biofilms than those isolates obtained from a low-shear biomaterial-related infection. This suggests that PIA functions as a mechanism that is protective against shear flow. Finally, we performed selection experiments documenting the heterogeneity of biofilm accumulation molecules that function in the absence of PIA, further documenting the biofilm-forming potential of S. epidermidis. PMID:27747298
Heterogeneity Within Domestic Violence Exposure: Young Adults' Retrospective Experiences.
Haselschwerdt, Megan L; Hlavaty, Kathleen; Carlson, Camille; Schneider, Mallory; Maddox, Lauren; Skipper, Megan
2016-06-01
Using Holden's taxonomy of domestic violence (DV) exposure as a guiding framework, the current study examined young adults' diverse DV exposure experiences. Twenty-five young adults (ages 19-25) exposed to father-perpetrated DV during their childhood and adolescence were interviewed using a qualitative descriptive design. Data analyses focused on coercive control exposure through reports of non-physical abuse tactics, types of exposure (e.g., direct, indirect), physical violence exposure (e.g., severity, frequency), and child abuse and harsh parenting practices. DV-exposed young adults were directly and indirectly exposed to physical violence and an array of non-physical abuse tactics toward their mothers. Young adults categorized as having been exposed to coercive controlling violence reported exposure to ongoing, non-physical abuse tactics and more frequent and severe physical violence. These young adults were also more likely to intervene and become victimized during physical violence and reported repeated episodes of child abuse and harsh parenting. Although coercive control appeared to be associated with physical violence and child abuse, generalizations should be made with caution as a few participants exposed to situational conflict were exposed to frequent and severe DV. The findings suggest that DV exposure should be measured in methodologically sophisticated ways to capture the heterogeneity in experiences, with the goal of promoting empirically driven intervention and prevention initiatives that are tailored to individual and family needs. © The Author(s) 2016.
Belon, Ana Paula; Nieuwendyk, Laura M; Vallianatos, Helen; Nykiforuk, Candace I J
2014-09-01
A growing body of evidence shows that community environment plays an important role in individuals' physical activity engagement. However, while attributes of the physical environment are widely investigated, sociocultural, political, and economic aspects of the environment are often neglected. This article helps to fill these knowledge gaps by providing a more comprehensive understanding of multiple dimensions of the community environment relative to physical activity. The purpose of this study was to qualitatively explore how people's experiences and perceptions of their community environments affect their abilities to engage in physical activity. A PhotoVoice method was used to identify barriers to and opportunities for physical activity among residents in four communities in the province of Alberta, Canada, in 2009. After taking pictures, the thirty-five participants shared their perceptions of those opportunities and barriers in their community environments during individual interviews. Using the Analysis Grid for Environments Linked to Obesity (ANGELO) framework, themes emerging from these photo-elicited interviews were organized in four environment types: physical, sociocultural, economic, and political. The data show that themes linked to the physical (56.6%) and sociocultural (31.4%) environments were discussed more frequently than the themes of the economic (5.9%) and political (6.1%) environments. Participants identified nuanced barriers and opportunities for physical activity, which are illustrated by their quotes and photographs. The findings suggest that a myriad of factors from physical, sociocultural, economic, and political environments influence people's abilities to be physically active in their communities. Therefore, adoption of a broad, ecological perspective is needed to address the barriers and build upon the opportunities described by participants to make communities more healthy and active. Copyright © 2014 Elsevier Ltd. All rights reserved.
Culture Shock and Higher Education Performance: Implications for Teaching
ERIC Educational Resources Information Center
Kelly, Philip; Moogan, Yvonne
2012-01-01
The globalisation of higher education brings together learners and teachers from differing systems, creating a heterogeneous and diverse environment. Yet many higher education institutions typically rely on foreign students themselves to adapt to their new higher education environments. An investigation was undertaken as to whether traditional…
Raihan, Mohammad Sharif; Liu, Jie; Huang, Juan; Guo, Huan; Pan, Qingchun; Yan, Jianbing
2016-08-01
Sixteen major QTLs regulating maize kernel traits were mapped in multiple environments and one of them, qKW - 9.2 , was restricted to 630 Kb, harboring 28 putative gene models. To elucidate the genetic basis of kernel traits, a quantitative trait locus (QTL) analysis was conducted in a maize recombinant inbred line population derived from a cross between two diverse parents Zheng58 and SK, evaluated across eight environments. Construction of a high-density linkage map was based on 13,703 single-nucleotide polymorphism markers, covering 1860.9 cM of the whole genome. In total, 18, 26, 23, and 19 QTLs for kernel length, width, thickness, and 100-kernel weight, respectively, were detected on the basis of a single-environment analysis, and each QTL explained 3.2-23.7 % of the phenotypic variance. Sixteen major QTLs, which could explain greater than 10 % of the phenotypic variation, were mapped in multiple environments, implying that kernel traits might be controlled by many minor and multiple major QTLs. The major QTL qKW-9.2 with physical confidence interval of 1.68 Mbp, affecting kernel width, was then selected for fine mapping using heterogeneous inbred families. At final, the location of the underlying gene was narrowed down to 630 Kb, harboring 28 putative candidate-gene models. This information will enhance molecular breeding for kernel traits and simultaneously assist the gene cloning underlying this QTL, helping to reveal the genetic basis of kernel development in maize.
On beyond the standard model for high explosives: challenges & obstacles to surmount
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menikoff, Ralph Ds
2009-01-01
Plastic-bonded explosives (PBX) are heterogeneous materials. Nevertheless, current explosive models treat them as homogeneous materials. To compensate, an empirically determined effective burn rate is used in place of a chemical reaction rate. A significant limitation of these models is that different burn parameters are needed for applications in different regimes; for example, shock initiation of a PBX at different initial temperatures or different initial densities. This is due to temperature fluctuations generated when a heterogeneous material is shock compressed. Localized regions of high temperatures are called hot spots. They dominate the reaction for shock initiation. The understanding of hot spotmore » generation and their subsequent evolution has been limited by the inability to measure transients on small spatial ({approx} 1 {micro}m) and small temporal ({approx} 1 ns) scales in the harsh environment of a detonation. With the advances in computing power, it is natural to try and gain an understanding of hot-spot initiation with numerical experiments based on meso-scale simulations that resolve material heterogeneities and utilize realistic chemical reaction rates. However, to capture the underlying physics correctly, such high resolution simulations will require more than fast computers with a large amount of memory. Here we discuss some of the issues that need to be addressed. These include dissipative mechanisms that generate hot spots, accurate thermal propceties for the equations of state of the reactants and products, and controlling numerical entropy error from shock impedance mismatches at material interfaces. The later can generate artificial hot spots and lead to premature reaction. Eliminating numerical hot spots is critical for shock initiation simulations due to the positive feedback between the energy release from reaction and the hydrodynamic flow.« less
Wang, Zhengwen; van Kleunen, Mark; During, Heinjo J; Werger, Marinus J A
2013-01-01
Plastic root-foraging responses have been widely recognized as an important strategy for plants to explore heterogeneously distributed resources. However, the benefits and costs of root foraging have received little attention. In a greenhouse experiment, we grew pairs of connected ramets of 22 genotypes of the stoloniferous plant Potentilla reptans in paired pots, between which the contrast in nutrient availability was set as null, medium and high, but with the total nutrient amount kept the same. We calculated root-foraging intensity of each individual ramet pair as the difference in root mass between paired ramets divided by the total root mass. For each genotype, we then calculated root-foraging ability as the slope of the regression of root-foraging intensity against patch contrast. For all genotypes, root-foraging intensity increased with patch contrast and the total biomass and number of offspring ramets were lowest at high patch contrast. Among genotypes, root-foraging intensity was positively related to production of offspring ramets and biomass in the high patch-contrast treatment, which indicates an evolutionary benefit of root foraging in heterogeneous environments. However, we found no significant evidence that the ability of plastic foraging imposes costs under homogeneous conditions (i.e. when foraging is not needed). Our results show that plants of P. reptans adjust their root-foraging intensity according to patch contrast. Moreover, the results show that the root foraging has an evolutionary advantage in heterogeneous environments, while costs of having the ability of plastic root foraging were absent or very small.
NASA Astrophysics Data System (ADS)
Santamaría, Luis
2002-06-01
Non-marine aquatic vascular plants generally show broad distributional ranges. Climatic factors seem to have limited effects on their distributions, besides the determination of major disjunctions (tropical-temperate-subarctic). Dispersal should have been frequent enough to assure the quick colonisation of extensive areas following glacial retreat, but dispersal limitation is still apparent in areas separated by geographic barriers. Aquatic vascular plants also show limited taxonomic differentiation and low within-species genetic variation. Variation within populations is particularly low, but variation among populations seems to be relatively high, mainly due to the persistence of long-lived clones. Ecotypic differentiation is often related to factors that constrain clonal reproduction (salinity and ephemeral inundation). Inland aquatic habitats are heterogeneous environments, but this heterogeneity largely occurs at relatively small scales (within waterbodies and among neighbouring ones). They also represent a stressful environment for plants, characterised by low carbon availability, shaded conditions, sediment anoxia, mechanical damage by currents and waves, significant restrictions to sexual reproduction, and sometimes also osmotic stress and limited nutrient supply. I propose that the generality of broad distributions and low differentiation among the inland aquatic flora is best explained by a combination of: (1) selection for stress-tolerant taxa with broad tolerance ranges. (2) The selective advantages provided by clonal growth and multiplication, which increases plant tolerance to stress, genet survivorship and population viability. (3) Long-distance dispersal of sexual propagules and high local dispersal of asexual clones. (4) The generality of broad plastic responses, promoted by the combination of clonal growth, high local dispersal, small-scale spatial heterogeneity and temporal variability.
Applying Nightingale charts to evaluate the heterogeneity of biomedical waste in a Hospital
Paiz, Janini Cristina; Bigolin, Marcio; Schneider, Vania Elisabete; Stedile, Nilva Lúcia Rech
2014-01-01
OBJECTIVES: to evaluate the heterogeneity of biomedical waste (BW) using Nightingale charts. METHOD: cross-sectional study consisting of data collection on wastes (direct observation of receptacles, physical characterisation, and gravimetric composition), development of a Management Information System, and creation of statistical charts. RESULTS: the wastes with the greatest degree of heterogeneity are, in order, recyclable, infectious, and organic wastes; chemical waste had the most efficient segregation; Nightingale charts are useful for quick visualisation and systematisation of information on heterogeneity. CONCLUSION: the development of a management information system and the use of Nightingale charts allows for the identification and correction of errors in waste segregation, which increase health risks and contamination by infectious and chemical wastes and reduce the sale and profit from recyclables. PMID:25591088
Populations and outcome measures used in ongoing research in sarcopenia.
Peña Ordóñez, Gloria Gabriela; Bustamante Montes, Lilia Patricia; Ramírez Duran, Ninfa; Sánchez Castellano, Carmen; Cruz-Jentoft, Alfonso J
2017-08-01
Sarcopenia research may be hampered by the heterogeneity of populations and outcome measures used in clinical studies. The aim of this study was to describe the inclusion/exclusion criteria and outcome measures used in ongoing research in sarcopenia. All active intervention studies registered in the World Health Organization with the keyword sarcopenia were included. Study design, type of intervention, inclusion/exclusion criteria and outcome measures were registered and classified. In April 2014, 151 studies on sarcopenia were registered in the WHO database. One hundred twenty-three were intervention studies. Most trials (94.3 %) were single centre and randomized (93.5 %), 51.2 % were double blind. Nutritional interventions (36.6 %), physical exercise (12.2 %) or both (19.5 %) were the most common interventions tested. Only 54.4 % included subjects of both genders, and 46.3 % had an upper age limit. Definition of the target populations was heterogeneous, with 57.7 % including healthy subjects and none using recent definitions of sarcopenia. Lifestyle and the degree of physical activity of subjects were not described or considered in most cases (79.7 %). Subjects with cardiovascular, neuropsychiatric or metabolic disorders and those with physical disability were usually excluded. Muscle mass and muscle strength were the primary outcome variables in 28.5 and 29.5 % of studies and physical performance in 19.5 %, but only 4.1 % used the three variables used the three of them. An additional 26.8 % used biological outcome variables. Little information and agreement existed in the way muscle and physical performance parameters were measured. We found a large heterogeneity in trial design, definition of populations and outcome measures in present research.
Lau, Erica Y; Barr-Anderson, Daheia J; Dowda, Marsha; Forthofer, Melinda; Saunders, Ruth P; Pate, Russell R
2015-01-01
This study examined associations of various elements of the home environment with after-school physical activity and sedentary time in 671 sixth-grade children (Mage = 11.49 ± 0.5 years). Children’s after-school total physical activity (TPA), moderate-to-vigorous physical activity (MVPA) and sedentary time were measured by accelerometry. Parents completed surveys assessing elements of the home social and physical environment. Mixed-model regression analyses were used to examine the associations between each element of the home environment and children’s after-school physical activity and sedentary time. Availability of home physical activity resources was associated positively with after-school TPA and negatively with after-school sedentary time in boys. Parental support was associated positively with after-school TPA and MVPA and negatively with after-school sedentary time in girls. The home physical environment was associated with boys’ after-school physical activity and sedentary time, whereas the home social environment was associated with girls’ after-school physical activity and sedentary time. PMID:25386734
NASA Astrophysics Data System (ADS)
Sivapalan, Murugesu
2018-03-01
Hydrology has undergone almost transformative changes over the past 50 years. Huge strides have been made in the transition from early empirical approaches to rigorous approaches based on the fluid mechanics of water movement on and below the land surface. However, progress has been hampered by problems posed by the presence of heterogeneity, including subsurface heterogeneity present at all scales. The inability to measure or map the heterogeneity everywhere prevented the development of balance equations and associated closure relations at the scales of interest, and has led to the virtual impasse we are presently in, in terms of development of physically based models needed for hydrologic predictions. An alternative to the mapping of heterogeneity everywhere is a new Earth system science view, which sees the heterogeneity as the end result of co-evolutionary hydrological, geomorphological, ecological, and pedological processes, each operating at a different rate, which help to shape the landscapes that we find in nature, including the heterogeneity that we do not readily see. The expectation is that instead of specifying exact details of the heterogeneity in our models, we can replace it (without loss of information) with the ecosystem function that they perform. Guided by this new Earth system science perspective, development of hydrologic science is now addressing new questions using novel holistic co-evolutionary approaches as opposed to the physical, fluid mechanics based reductionist approaches that we inherited from the recent past. In the emergent Anthropocene, the co-evolutionary view has expanded further to involve interactions and feedbacks with human-social processes as well. In this paper, I present my own perspective of key milestones in the transformation of hydrologic science from engineering hydrology to Earth system science, drawn from the work of several students and colleagues of mine, and discuss their implication for hydrologic observations, theory development, and predictions.
An Ontology-based Context-aware System for Smart Homes: E-care@home.
Alirezaie, Marjan; Renoux, Jennifer; Köckemann, Uwe; Kristoffersson, Annica; Karlsson, Lars; Blomqvist, Eva; Tsiftes, Nicolas; Voigt, Thiemo; Loutfi, Amy
2017-07-06
Smart home environments have a significant potential to provide for long-term monitoring of users with special needs in order to promote the possibility to age at home. Such environments are typically equipped with a number of heterogeneous sensors that monitor both health and environmental parameters. This paper presents a framework called E-care@home, consisting of an IoT infrastructure, which provides information with an unambiguous, shared meaning across IoT devices, end-users, relatives, health and care professionals and organizations. We focus on integrating measurements gathered from heterogeneous sources by using ontologies in order to enable semantic interpretation of events and context awareness. Activities are deduced using an incremental answer set solver for stream reasoning. The paper demonstrates the proposed framework using an instantiation of a smart environment that is able to perform context recognition based on the activities and the events occurring in the home.
Using PVM to host CLIPS in distributed environments
NASA Technical Reports Server (NTRS)
Myers, Leonard; Pohl, Kym
1994-01-01
It is relatively easy to enhance CLIPS (C Language Integrated Production System) to support multiple expert systems running in a distributed environment with heterogeneous machines. The task is minimized by using the PVM (Parallel Virtual Machine) code from Oak Ridge Labs to provide the distributed utility. PVM is a library of C and FORTRAN subprograms that supports distributive computing on many different UNIX platforms. A PVM deamon is easily installed on each CPU that enters the virtual machine environment. Any user with rsh or rexec access to a machine can use the one PVM deamon to obtain a generous set of distributed facilities. The ready availability of both CLIPS and PVM makes the combination of software particularly attractive for budget conscious experimentation of heterogeneous distributive computing with multiple CLIPS executables. This paper presents a design that is sufficient to provide essential message passing functions in CLIPS and enable the full range of PVM facilities.
An Ontology-based Context-aware System for Smart Homes: E-care@home
Alirezaie, Marjan; Köckemann, Uwe; Kristoffersson, Annica; Karlsson, Lars; Blomqvist, Eva; Voigt, Thiemo; Loutfi, Amy
2017-01-01
Smart home environments have a significant potential to provide for long-term monitoring of users with special needs in order to promote the possibility to age at home. Such environments are typically equipped with a number of heterogeneous sensors that monitor both health and environmental parameters. This paper presents a framework called E-care@home, consisting of an IoT infrastructure, which provides information with an unambiguous, shared meaning across IoT devices, end-users, relatives, health and care professionals and organizations. We focus on integrating measurements gathered from heterogeneous sources by using ontologies in order to enable semantic interpretation of events and context awareness. Activities are deduced using an incremental answer set solver for stream reasoning. The paper demonstrates the proposed framework using an instantiation of a smart environment that is able to perform context recognition based on the activities and the events occurring in the home. PMID:28684686
Chemical kinetics as a contract sport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolb, C.E.
1990-01-01
Earlier in this century chemical kinetics was a basic physical chemistry research topic widely pursued in leading academic chemistry departments. Chemical kinetics now appears to be a discipline practiced chiefly for its applications to societal problems. The chemical kinetics activities directed by D.M. Golden at SRI International are strikingly successful in generating data for key applied problems while at the same time advancing our understanding of chemical kinetics as a scientific discipline. In this talk, the author will contrast the chemical kinetics activities in two contract R D laboratories, one on the right side of the U.S. (ARI) and themore » other on the left (SRI). Their approach to common applied problems ranging from stratospheric heterogeneous kinetics to plasma etching systems for semiconductor processing will be compared and contrasted. Empirically discovered Golden Rules for the pursuit of quality chemical kinetics research in a contract R D environment will be presented and discussed.« less
In the Shade of Affluence: The Inequitable Distribution of the Urban Heat Island
NASA Technical Reports Server (NTRS)
Harlan, Sharon L.; Brazel, Anthony J.; Jenerette, G. Darrel; Jones, Nancy S.; Larsen, Larissa; Prashad, Lela
2008-01-01
The urban heat island is an unintended consequence of humans building upon rural and native landscapes. We hypothesized that variations in vegetation and land use patterns across an urbanizing regional landscape would produce a temperature distribution that was spatially heterogeneous and correlated with the social characteristics of urban neighborhoods. Using biophysical and social data scaled to conform to US census geography, we found that affluent whites were more likely to live in vegetated and less climatically stressed neighborhoods likely to live in than low-income Latinos in Phoenix, Arizona. Affluent neighborhoods had cooler summer temperatures that reduced exposure to outdoor heat-related health risks, especially during a heat wave period. In addition to being warmer, poorer neighborhoods lacked critical resources in their physical and social environments to help them cope with extreme heat. Increased average temperatures due to climate change are expected to exacerbate the impacts of urban heat islands.
Primary socialization theory. The influence of the community on drug use and deviance. III.
Oetting, E R; Donnermeyer, J F; Deffenbacher, J L
1998-06-01
Primary socialization theory states that drug use and deviance are social behaviors learned predominantly through three sources, the family, the school, and peer clusters. This paper shows that the theory provides a parsimonious explanation of how characteristics of both the local community and the larger extended community influence drug use and deviance. These characteristics affect deviance because they either strengthen or weaken bonding with the three primary socialization sources, or affect the norms that are transmitted through the primary socialization process. The paper considers the following social structure characteristics of the local neighborhood or community: physical characteristics, rurality, ethnicity, heterogeneity, occupational type, mobility, poverty, neighborhood deviance, and age distribution. It also examines how other secondary socialization sources, the extended family, associational groups, religion, the peer environment, and the media influence the primary socialization process and, in turn, drug use and deviance.
Region effects influence local tree species diversity.
Ricklefs, Robert E; He, Fangliang
2016-01-19
Global patterns of biodiversity reflect both regional and local processes, but the relative importance of local ecological limits to species coexistence, as influenced by the physical environment, in contrast to regional processes including species production, dispersal, and extinction, is poorly understood. Failure to distinguish regional influences from local effects has been due, in part, to sampling limitations at small scales, environmental heterogeneity within local or regional samples, and incomplete geographic sampling of species. Here, we use a global dataset comprising 47 forest plots to demonstrate significant region effects on diversity, beyond the influence of local climate, which together explain more than 92% of the global variation in local forest tree species richness. Significant region effects imply that large-scale processes shaping the regional diversity of forest trees exert influence down to the local scale, where they interact with local processes to determine the number of coexisting species.
Mineralogy of the Martian Surface: Crustal Composition to Surface Processes
NASA Technical Reports Server (NTRS)
Mustard, John F.
1999-01-01
Over the course of this award we have: 1) Completed and published the results of a study of the effects of hyperfine particles on reflectance spectra of olivine and quartz, which included the development of scattering codes. Research has also progressed in the analysis of the effects of fine particle sizes on clay spectra. 2) Completed the analysis of the mineralogy of dark regions, showed the insitu compositions are highly correlated to the SNC meteorites, and determined that the martian mantle was depleted in aluminum prior to 2-3 GA ago; Studies of the mineralogic heterogeneity of surficial materials on Mars have also been conducted. and 3) Performed initial work on the study of the physical and chemical processes likely to form and modify duricrust. This includes assessments of erosion rates, solubility and transport of iron in soil environments, and models of pedogenic crust formation.
Laskina, Olga; Morris, Holly S; Grandquist, Joshua R; Qin, Zhen; Stone, Elizabeth A; Tivanski, Alexei V; Grassian, Vicki H
2015-05-14
Understanding the interactions of water with atmospheric aerosols is crucial for determining the size, physical state, reactivity, and climate impacts of this important component of the Earth's atmosphere. Here we show that water uptake and hygroscopic growth of multicomponent, atmospherically relevant particles can be size dependent when comparing 100 nm versus ca. 6 μm sized particles. It was determined that particles composed of ammonium sulfate with succinic acid and of a mixture of chlorides typical of the marine environment show size-dependent hygroscopic behavior. Microscopic analysis of the distribution of components within the aerosol particles show that the size dependence is due to differences in the mixing state, that is, whether particles are homogeneously mixed or phase separated, for different sized particles. This morphology-dependent hygroscopicity has consequences for heterogeneous atmospheric chemistry as well as aerosol interactions with electromagnetic radiation and clouds.
Visell, Yon
2015-04-01
This paper proposes a fast, physically accurate method for synthesizing multimodal, acoustic and haptic, signatures of distributed fracture in quasi-brittle heterogeneous materials, such as wood, granular media, or other fiber composites. Fracture processes in these materials are challenging to simulate with existing methods, due to the prevalence of large numbers of disordered, quasi-random spatial degrees of freedom, representing the complex physical state of a sample over the geometric volume of interest. Here, I develop an algorithm for simulating such processes, building on a class of statistical lattice models of fracture that have been widely investigated in the physics literature. This algorithm is enabled through a recently published mathematical construction based on the inverse transform method of random number sampling. It yields a purely time domain stochastic jump process representing stress fluctuations in the medium. The latter can be readily extended by a mean field approximation that captures the averaged constitutive (stress-strain) behavior of the material. Numerical simulations and interactive examples demonstrate the ability of these algorithms to generate physically plausible acoustic and haptic signatures of fracture in complex, natural materials interactively at audio sampling rates.
Rooms with Gender: Physical Environment and Play Culture in Kindergarten
ERIC Educational Resources Information Center
Børve, Hege Eggen; Børve, Elin
2017-01-01
This article focuses on the impact of the physical environment and construction of play culture in kindergartens. Based on a case study, we explore employees' perception of indoor physical environment and children's play. The findings revealed that gender is interwoven in the physical environments and materials. Children's play practices are…
Campos Andrade, Cláudia; Lima, Maria Luísa; Pereira, Cícero Roberto; Fornara, Ferdinando; Bonaiuto, Marino
2013-05-01
This study analyses the processes through which the physical environment of health care settings impacts on patients' well-being. Specifically, we investigate the mediating role of perceptions of the physical and social environments, and if this process is moderated by patients' status, that is, if the objective physical environment impacts inpatients' and outpatients' satisfaction by different social-psychological processes. Patients (N=206) evaluated the physical and social environments of the care unit where they were receiving treatment, and its objective physical conditions were independently evaluated by two architects. Results showed that the objective environmental quality affects satisfaction through perceptions of environmental quality, and that patients' status moderates this relationship. For inpatients, it is the perception of quality of the social environment that mediates the relationship between objective environmental quality and satisfaction, whereas for outpatients it is the perception of quality of the physical environment. This moderated mediation is discussed in terms of differences on patients' experiences of health care environments. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaldson, A.; Shumaker, R.; Laughrey, C.
1992-08-01
The Lower Mississippian Big Injun sandstone, a major oil producer in the western half of West Virginia, consists of several sandstones that overstep each west. Examination of cores and thin sections has led to preliminary interpretations of depositional environments for the Big Injun. These include distributary-mouth bars with associated distal, bar crest and back bar environments in a marine-deltaic system; and channel, point bar and chute environments in a fluvial system. Overall, the Big Injun is a medium-grained sublitharenite in which initially high porosity has been modified by compaction and diagenesis. Chlorite grain coatings helped to preserve original porosity, whereasmore » illite promoted pressure solution during compaction, resulting in a loss of porosity. Diagenetic effects within specific environments are being evaluated to determine if environmental interpretations can be used to predict porosity preservation. Core plugs taken from cores in Granny Creek field were analyzed for porosity and horizontal and vertical permeability. Directional permeability was negligible, but permeability does correlate with depth. Changes in permeability with depth can be related to subdivisions of the Big Injun determined from density logs. Permeability also correlated with porosity, but porosity values derived from both cores and logs show no significant correlation trend at present. A layered reservoir model is being developed to evaluate the effect of these vertical heterogeneities. Initial attempts to characterize the heterogeneity of the Big Injun reservoir in Granny Creek field used a number of direct and indirect methods.« less
Measuring and predicting reservoir heterogeneity in complex deposystems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaldson, A.; Shumaker, R.; Laughrey, C.
1992-08-01
The Lower Mississippian Big Injun sandstone, a major oil producer in the western half of West Virginia, consists of several sandstones that overstep each west. Examination of cores and thin sections has led to preliminary interpretations of depositional environments for the Big Injun. These include distributary-mouth bars with associated distal, bar crest and back bar environments in a marine-deltaic system; and channel, point bar and chute environments in a fluvial system. Overall, the Big Injun is a medium-grained sublitharenite in which initially high porosity has been modified by compaction and diagenesis. Chlorite grain coatings helped to preserve original porosity, whereasmore » illite promoted pressure solution during compaction, resulting in a loss of porosity. Diagenetic effects within specific environments are being evaluated to determine if environmental interpretations can be used to predict porosity preservation. Core plugs taken from cores in Granny Creek field were analyzed for porosity and horizontal and vertical permeability. Directional permeability was negligible, but permeability does correlate with depth. Changes in permeability with depth can be related to subdivisions of the Big Injun determined from density logs. Permeability also correlated with porosity, but porosity values derived from both cores and logs show no significant correlation trend at present. A layered reservoir model is being developed to evaluate the effect of these vertical heterogeneities. Initial attempts to characterize the heterogeneity of the Big Injun reservoir in Granny Creek field used a number of direct and indirect methods.« less
Aluja, M; Birke, A; Díaz-Fleischer, F; Rull, J
2018-05-21
Phenotypic plasticity is thought to evolve in response to environmental unpredictability and can shield genotypes from selection. However, selection can also act on plastic traits. Egg-laying behaviour, including clutch size regulation, is a plastic behavioural trait among tephritid fruit flies. We compared plasticity in clutch size regulation among females of Anastrepha ludens populations stemming from environments that differed in the degree of predictability in egg-laying opportunities. Clutch size regulation in response to hosts of different sizes was compared among flies from (a) a wild, highly isolated population, (b) a wild population that switches seasonally from a small wild host fruit that varies greatly in abundance to an abundant large-sized commercial host, and (c) a laboratory population. Flies from all three populations adjusted clutch number and size according to host size. However, flies from the heterogeneous wild environment were more plastic in adjusting clutch size than flies from agricultural settings that also laid fewer eggs; yet both populations were more plastic in adjusting clutch size in line with host size when compared with laboratory females. When wild and orchard females encountered the largest host, clutch size was extremely variable and egg regulation did not follow the same trend. Heterogeneity in host availability in space and time appears to be as important as seasonal variation in host size in maintaining plastic clutch size regulation behaviour. In stable environments, there was a clear reduction in the plasticity of these traits.
Baltrusaitis, Jonas; Chen, Haihan; Rubasinghege, Gayan
2012-01-01
Heterogeneous chemistry of nitrogen dioxide with lead-containing particles is investigated to better understand lead metal mobilization in the environment. In particular, PbO particles, a model lead-containing compound due to its wide spread presence as a component of lead paint and as naturally occurring minerals, massicot and litharge, are exposed to nitrogen dioxide at different relative humidity. X-ray photoelectron spectroscopy (XPS) shows that upon exposure to nitrogen dioxide the surface of PbO particles react to form adsorbed nitrates and lead nitrate thin films with the extent of formation of nitrate relative humidity dependent. Surface adsorbed nitrate increases the amount of dissolved lead. These reacted particles are found to have an increase in the amount of lead that dissolves in aqueous suspensions at circumneutral pH compared to unreacted particles. These results point to the potential importance and impact that heterogeneous chemistry with trace atmospheric gases can have on increasing solubility and therefore the mobilization of heavy metals, such as lead, in the environment. This study also show that surface intermediates, such as adsorbed nitrates, that form can yield higher concentrations of lead in water systems. In the environment, these water systems can include drinking water, ground water, estuaries and lakes. PMID:23057678
Genotype x environment interaction, environmental heterogeneity, and the lek paradox
USDA-ARS?s Scientific Manuscript database
Substantial additive genetic variance (VA) often exists for male signaling traits in spite of the directional selection that female choice imposes. One solution to this problem, generally termed the ‘lek paradox’, is that genotype x environment interaction (GEI) occurs and generates a ‘crossover’ of...
Mouse Driven Window Graphics for Network Teaching.
ERIC Educational Resources Information Center
Makinson, G. J.; And Others
Computer enhanced teaching of computational mathematics on a network system driving graphics terminals is being redeveloped for a mouse-driven, high resolution, windowed environment of a UNIX work station. Preservation of the features of networked access by heterogeneous terminals is provided by the use of the X Window environment. A dmonstrator…
Learning Analytics Platform, towards an Open Scalable Streaming Solution for Education
ERIC Educational Resources Information Center
Lewkow, Nicholas; Zimmerman, Neil; Riedesel, Mark; Essa, Alfred
2015-01-01
Next generation digital learning environments require delivering "just-in-time feedback" to learners and those who support them. Unlike traditional business intelligence environments, streaming data requires resilient infrastructure that can move data at scale from heterogeneous data sources, process the data quickly for use across…
Homogenizing bacterial cell factories: Analysis and engineering of phenotypic heterogeneity.
Binder, Dennis; Drepper, Thomas; Jaeger, Karl-Erich; Delvigne, Frank; Wiechert, Wolfgang; Kohlheyer, Dietrich; Grünberger, Alexander
2017-07-01
In natural habitats, microbes form multispecies communities that commonly face rapidly changing and highly competitive environments. Thus, phenotypic heterogeneity has evolved as an innate and important survival strategy to gain an overall fitness advantage over cohabiting competitors. However, in defined artificial environments such as monocultures in small- to large-scale bioreactors, cell-to-cell variations are presumed to cause reduced production yields as well as process instability. Hence, engineering microbial production toward phenotypic homogeneity is a highly promising approach for synthetic biology and bioprocess optimization. In this review, we discuss recent studies that have unraveled the cell-to-cell heterogeneity observed during bacterial gene expression and metabolite production as well as the molecular mechanisms involved. In addition, current single-cell technologies are briefly reviewed with respect to their applicability in exploring cell-to-cell variations. We highlight emerging strategies and tools to reduce phenotypic heterogeneity in biotechnological expression setups. Here, strain or inducer modifications are combined with cell physiology manipulations to achieve the ultimate goal of equalizing bacterial populations. In this way, the majority of cells can be forced into high productivity, thus reducing less productive subpopulations that tend to consume valuable resources during production. Modifications in uptake systems, inducer molecules or nutrients represent valuable tools for diminishing heterogeneity. Finally, we address the challenge of transferring homogeneously responding cells into large-scale bioprocesses. Environmental heterogeneity originating from extrinsic factors such as stirring speed and pH, oxygen, temperature or nutrient distribution can significantly influence cellular physiology. We conclude that engineering microbial populations toward phenotypic homogeneity is an increasingly important task to take biotechnological productions to the next level of control. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
Kaptein, Maurits; van Emden, Robin; Iannuzzi, Davide
2017-01-01
Due to the ubiquitous presence of treatment heterogeneity, measurement error, and contextual confounders, numerous social phenomena are hard to study. Precise control of treatment variables and possible confounders is often key to the success of studies in the social sciences, yet often proves out of the realm of control of the experimenter. To amend this situation we propose a novel approach coined "lock-in feedback" which is based on a method that is routinely used in high-precision physics experiments to extract small signals out of a noisy environment. Here, we adapt the method to noisy social signals in multiple dimensions and evaluate it by studying an inherently noisy topic: the perception of (subjective) beauty. We show that the lock-in feedback approach allows one to select optimal treatment levels despite the presence of considerable noise. Furthermore, through the introduction of an external contextual shock we demonstrate that we can find relationships between noisy variables that were hitherto unknown. We therefore argue that lock-in methods may provide a valuable addition to the social scientist's experimental toolbox and we explicitly discuss a number of future applications.
2017-01-01
Due to the ubiquitous presence of treatment heterogeneity, measurement error, and contextual confounders, numerous social phenomena are hard to study. Precise control of treatment variables and possible confounders is often key to the success of studies in the social sciences, yet often proves out of the realm of control of the experimenter. To amend this situation we propose a novel approach coined “lock-in feedback” which is based on a method that is routinely used in high-precision physics experiments to extract small signals out of a noisy environment. Here, we adapt the method to noisy social signals in multiple dimensions and evaluate it by studying an inherently noisy topic: the perception of (subjective) beauty. We show that the lock-in feedback approach allows one to select optimal treatment levels despite the presence of considerable noise. Furthermore, through the introduction of an external contextual shock we demonstrate that we can find relationships between noisy variables that were hitherto unknown. We therefore argue that lock-in methods may provide a valuable addition to the social scientist’s experimental toolbox and we explicitly discuss a number of future applications. PMID:28306728
Genetic polymorphisms in varied environments.
Powell, J R
1971-12-03
Thirteen experimenital populationis of Drosophila willistoni were maintained in cages, in some of which the environments were relatively constant and in others varied. After 45 weeks, the populations were assayed by gel electrophoresis for polymorphisms at 22 protein loci. The average heterozygosity per individual and the average unmber of alleles per locus were higher in populations maintained in heterogeneous environments than in populations in more constant enviroments.
NASA Astrophysics Data System (ADS)
Vandromme, Rosalie; Thiéry, Yannick; Sedan, Olivier; Bernardie, Séverine
2016-04-01
Landslide hazard assessment is the estimation of a target area where landslides of a particular type, volume, runout and intensity may occur within a given period. The first step to analyze landslide hazard consists in assessing the spatial and temporal failure probability (when the information is available, i.e. susceptibility assessment). Two types of approach are generally recommended to achieve this goal: (i) qualitative approach (i.e. inventory based methods and knowledge data driven methods) and (ii) quantitative approach (i.e. data-driven methods or deterministic physically based methods). Among quantitative approaches, deterministic physically based methods (PBM) are generally used at local and/or site-specific scales (1:5,000-1:25,000 and >1:5,000, respectively). The main advantage of these methods is the calculation of probability of failure (safety factor) following some specific environmental conditions. For some models it is possible to integrate the land-uses and climatic change. At the opposite, major drawbacks are the large amounts of reliable and detailed data (especially materials type, their thickness and the geotechnical parameters heterogeneity over a large area) and the fact that only shallow landslides are taking into account. This is why they are often used at site-specific scales (> 1:5,000). Thus, to take into account (i) materials' heterogeneity , (ii) spatial variation of physical parameters, (iii) different landslide types, the French Geological Survey (i.e. BRGM) has developed a physically based model (PBM) implemented in a GIS environment. This PBM couples a global hydrological model (GARDENIA®) including a transient unsaturated/saturated hydrological component with a physically based model computing the stability of slopes (ALICE®, Assessment of Landslides Induced by Climatic Events) based on the Morgenstern-Price method for any slip surface. The variability of mechanical parameters is handled by Monte Carlo approach. The probability to obtain a safety factor below 1 represents the probability of occurrence of a landslide for a given triggering event. The dispersion of the distribution gives the uncertainty of the result. Finally, a map is created, displaying a probability of occurrence for each computing cell of the studied area. In order to take into account the land-uses change, a complementary module integrating the vegetation effects on soil properties has been recently developed. Last years, the model has been applied at different scales for different geomorphological environments: (i) at regional scale (1:50,000-1:25,000) in French West Indies and French Polynesian islands (ii) at local scale (i.e.1:10,000) for two complex mountainous areas; (iii) at the site-specific scale (1:2,000) for one landslide. For each study the 3D geotechnical model has been adapted. The different studies have allowed : (i) to discuss the different factors included in the model especially the initial 3D geotechnical models; (ii) to precise the location of probable failure following different hydrological scenarii; (iii) to test the effects of climatic change and land-use on slopes for two cases. In that way, future changes in temperature, precipitation and vegetation cover can be analyzed, permitting to address the impacts of global change on landslides. Finally, results show that it is possible to obtain reliable information about future slope failures at different scale of work for different scenarii with an integrated approach. The final information about landslide susceptibility (i.e. probability of failure) can be integrated in landslide hazard assessment and could be an essential information source for future land planning. As it has been performed in the ANR Project SAMCO (Society Adaptation for coping with Mountain risks in a global change COntext), this analysis constitutes a first step in the chain for risk assessment for different climate and economical development scenarios, to evaluate the resilience of mountainous areas.
Green's Function and Stress Fields in Stochastic Heterogeneous Continua
NASA Astrophysics Data System (ADS)
Negi, Vineet
Many engineering materials used today are heterogenous in composition e.g. Composites - Polymer Matrix Composites, Metal Matrix Composites. Even, conventional engineering materials - metals, plastics, alloys etc. - may develop heterogeneities, like inclusions and residual stresses, during the manufacturing process. Moreover, these materials may also have intrinsic heterogeneities at a nanoscale in the form of grain boundaries in metals, crystallinity in amorphous polymers etc. While, the homogenized constitutive models for these materials may be satisfactory at a macroscale, recent studies of phenomena like fatigue failure, void nucleation, size-dependent brittle-ductile transition in polymeric nanofibers reveal a major play of micro/nanoscale physics in these phenomena. At this scale, heterogeneities in a material may no longer be ignored. Thus, this demands a study into the effects of various material heterogeneities. In this work, spatial heterogeneities in two material properties - elastic modulus and yield stress - have been investigated separately. The heterogeneity in the elastic modulus is studied in the context of Green's function. The Stochastic Finite Element method is adopted to get the mean statistics of the Green's function defined on a stochastic heterogeneous 2D infinite space. A study of the elastic-plastic transition in a domain having stochastic heterogenous yield stress was done using Mont-Carlo methods. The statistics for various stress and strain fields during the transition were obtained. Further, the effects of size of the domain and the strain-hardening rate on the stress fields during the heterogeneous elastic-plastic transition were investigated. Finally, a case is made for the role of the heterogenous elastic-plastic transition in damage nucleation and growth.
Bjørgen, Kathrine
2016-01-01
This article examines the characteristic of affordances of different outdoor environments, related to the influences of children's physical activity levels. Qualitative observation studies in a Norwegian kindergarten were conducted of 3- to 5-year-olds into the natural environment and in the kindergarten's outdoor area. An ecological approach was important from both an analytical and theoretical point of view, using concepts from Gibson's (The ecological approach to visual perception. Houghton Mifflin Company, Bosten, 1979) theory of affordances. The concepts of affordances in an environment can explain children's movement behaviour. The findings reveal that situations with high physical activity levels among the children are more often created in natural environments than in the kindergarten's outdoor environment. Natural environments offer potential qualities that are a catalyst for physical activity. The study shows that certain characteristic of the physical outdoor environment are important for children's opportunities and inspiration for physical active play. The findings also show that social possibilities and opportunities, human interactions, in the environment have the greatest influence on the duration and intensity of physically active play. The need for knowledge on physical and social opportunities in outdoor environments, educational practice and the content of outdoor time in kindergartens should be given greater attention.
AXAF user interfaces for heterogeneous analysis environments
NASA Technical Reports Server (NTRS)
Mandel, Eric; Roll, John; Ackerman, Mark S.
1992-01-01
The AXAF Science Center (ASC) will develop software to support all facets of data center activities and user research for the AXAF X-ray Observatory, scheduled for launch in 1999. The goal is to provide astronomers with the ability to utilize heterogeneous data analysis packages, that is, to allow astronomers to pick the best packages for doing their scientific analysis. For example, ASC software will be based on IRAF, but non-IRAF programs will be incorporated into the data system where appropriate. Additionally, it is desired to allow AXAF users to mix ASC software with their own local software. The need to support heterogeneous analysis environments is not special to the AXAF project, and therefore finding mechanisms for coordinating heterogeneous programs is an important problem for astronomical software today. The approach to solving this problem has been to develop two interfaces that allow the scientific user to run heterogeneous programs together. The first is an IRAF-compatible parameter interface that provides non-IRAF programs with IRAF's parameter handling capabilities. Included in the interface is an application programming interface to manipulate parameters from within programs, and also a set of host programs to manipulate parameters at the command line or from within scripts. The parameter interface has been implemented to support parameter storage formats other than IRAF parameter files, allowing one, for example, to access parameters that are stored in data bases. An X Windows graphical user interface called 'agcl' has been developed, layered on top of the IRAF-compatible parameter interface, that provides a standard graphical mechanism for interacting with IRAF and non-IRAF programs. Users can edit parameters and run programs for both non-IRAF programs and IRAF tasks. The agcl interface allows one to communicate with any command line environment in a transparent manner and without any changes to the original environment. For example, the authors routinely layer the GUI on top of IRAF, ksh, SMongo, and IDL. The agcl, based on the facilities of a system called Answer Garden, also has sophisticated support for examining documentation and help files, asking questions of experts, and developing a knowledge base of frequently required information. Thus, the GUI becomes a total environment for running programs, accessing information, examining documents, and finding human assistance. Because the agcl can communicate with any command-line environment, most projects can make use of it easily. New applications are continually being found for these interfaces. It is the authors' intention to evolve the GUI and its underlying parameter interface in response to these needs - from users as well as developers - throughout the astronomy community. This presentation describes the capabilities and technology of the above user interface mechanisms and tools. It also discusses the design philosophies guiding the work, as well as hopes for the future.
NASA Astrophysics Data System (ADS)
Ronayne, Michael J.; Gorelick, Steven M.; Zheng, Chunmiao
2010-10-01
We developed a new model of aquifer heterogeneity to analyze data from a single-well injection-withdrawal tracer test conducted at the Macrodispersion Experiment (MADE) site on the Columbus Air Force Base in Mississippi (USA). The physical heterogeneity model is a hybrid that combines 3-D lithofacies to represent submeter scale, highly connected channels within a background matrix based on a correlated multivariate Gaussian hydraulic conductivity field. The modeled aquifer architecture is informed by a variety of field data, including geologic core sampling. Geostatistical properties of this hybrid heterogeneity model are consistent with the statistics of the hydraulic conductivity data set based on extensive borehole flowmeter testing at the MADE site. The representation of detailed, small-scale geologic heterogeneity allows for explicit simulation of local preferential flow and slow advection, processes that explain the complex tracer response from the injection-withdrawal test. Based on the new heterogeneity model, advective-dispersive transport reproduces key characteristics of the observed tracer recovery curve, including a delayed concentration peak and a low-concentration tail. Importantly, our results suggest that intrafacies heterogeneity is responsible for local-scale mass transfer.
Simulator for heterogeneous dataflow architectures
NASA Technical Reports Server (NTRS)
Malekpour, Mahyar R.
1993-01-01
A new simulator is developed to simulate the execution of an algorithm graph in accordance with the Algorithm to Architecture Mapping Model (ATAMM) rules. ATAMM is a Petri Net model which describes the periodic execution of large-grained, data-independent dataflow graphs and which provides predictable steady state time-optimized performance. This simulator extends the ATAMM simulation capability from a heterogenous set of resources, or functional units, to a more general heterogenous architecture. Simulation test cases show that the simulator accurately executes the ATAMM rules for both a heterogenous architecture and a homogenous architecture, which is the special case for only one processor type. The simulator forms one tool in an ATAMM Integrated Environment which contains other tools for graph entry, graph modification for performance optimization, and playback of simulations for analysis.
Sustainable development: challenges and opportunities for the natural sciences (Invited)
NASA Astrophysics Data System (ADS)
Mutter, J. C.; Fishman, R.; Anttila-Hughes, J. K.; Hsiang, S. M.
2009-12-01
The challenges of sustainable development -- equitably improving global human welfare while ensuring that the environment is preserved for future generations - demand research at the nexus of the social and natural sciences. Massive and inevitable changes in climate, ecosystem functions, and human interaction with the environment will perturb societies throughout the world in different ways over the coming century. The changes faced by poor societies and their ability to cope differs markedly from those that face the richest. Yet in all regions the dynamic interaction of social and natural drivers will govern the prospects for human welfare and its improvement. Developing an understanding of these phenomena will require field research together with analytical and modeling capabilities that couple physical and social phenomena, allowing feedback between the two to manifest and permit forecasting over long time scales. Heterogeneous income and population growth further complicate this need through their consequences for food security, migration, resource allocation, and conflict. In this contribution, we identify some key concepts of sustainable development, open research questions and outline how scientific research might engage this emerging discipline. Using recent examples of interaction, we discuss the opportunities and challenges facing the further development of this dialogue.
Guayasamin, Olivia L; Couzin, Iain D; Miller, Noam Y
2017-08-01
An individual's behavioural phenotype is a combination of its unique behavioural propensities and its responsiveness to environmental variation, also known as behavioural plasticity. In social species, we must not only explore how individuals respond to variations in the physical environment but also how they react to changes in their social environment. A growing body of work has demonstrated that the behavioural heterogeneity of a group can alter its responsiveness, decision making, and fitness. Whether an individual is more or less extreme than a partner - what we term its 'relative personality' - may also alter individual behavioural responses. We determined exploratory tendencies of individual zebrafish (Danio rerio) and then constructed pairs with varying differences in 'relative personality' to determine the effect of differences between partners on behavioural plasticity. We find that relative personality, but not the magnitude of the difference between partners, is the most important determinant of behavioural plasticity across social treatments. Despite this overall effect, pairs of fish exhibited no predictable leader-follower interactions, suggesting that details of the experimental paradigm may be important in shaping social dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of climate change on ecological disturbance in the Northern Rockies Region [Chapter 8
Loehman, Rachel A.; Bentz, Barbara J.; DeNitto, Gregg A.; Keane, Robert E.; Manning, Mary E.; Duncan, Jacob P.; Egan, Joel M.; Jackson, Marcus B.; Kegley, Sandra; Lockman, I. Blakey; Pearson, Dean E.; Powell, James A.; Shelly, Steve; Steed, Brytten E.; Zambino, Paul J.
2018-01-01
This chapter describes the ecology of important disturbance regimes in the Forest Service, U.S. Department of Agriculture (USFS) Northern Region and the Greater Yellowstone Area, hereafter called the Northern Rockies region, and potential shifts in these regimes as a consequence of observed and projected climate change. The term disturbance regime describes the general temporal and spatial characteristics of a disturbance agent - insect, disease, fire, weather, even human activity - and the effects of that agent on the landscape (table 8.1). More specifically, a disturbance regime is the cumulative effect of multiple disturbance events over space and time (Keane 2013). Disturbances disrupt an ecosystem, community, or population structure and change elements of the biological environment, physical environment, or both (White and Pickett 1985). The resulting shifting mosaic of diverse ecological patterns and structures in turn affects future patterns of disturbance, in a reciprocal, linked relationship that shapes the fundamental character of landscapes and ecosystems. Disturbance creates and maintains biological diversity in the form of shifting, heterogeneous mosaics of diverse communities and habitats across a landscape (McKinney and Drake 1998), and biodiversity is generally highest when disturbance is neither too rare nor too frequent on the landscape (Grime 1973).
Strong species-environment feedback shapes plant community assembly along environmental gradients.
Jiang, Jiang; Deangelis, Donald L
2013-10-01
An aim of community ecology is to understand the patterns of competing species assembly along environmental gradients. All species interact with their environments. However, theories of community assembly have seldom taken into account the effects of species that are able to engineer the environment. In this modeling study, we integrate the species' engineering trait together with processes of immigration and local dispersal into a theory of community assembly. We quantify the species' engineering trait as the degree to which it can move the local environment away from its baseline state towards the optimum state of the species (species-environment feedback). We find that, in the presence of immigration from a regional pool, strong feedback can increase local species richness; however, in the absence of continual immigration, species richness is a declining function of the strength of species-environment feedback. This shift from a negative effect of engineering strength on species richness to a positive effect, as immigration rate increases, is clearer when there is spatial heterogeneity in the form of a gradient in environmental conditions than when the environment is homogeneous or it is randomly heterogeneous. Increasing the scale over which local dispersal occurs can facilitate species richness when there is no species-environment feedback or when the feedback is weak. However, increases in the spatial scale of dispersal can reduce species richness when the species-environment feedback is strong. These results expand the theoretical basis for understanding the effects of the strength of species-environment feedback on community assembly.
Strong species-environment feedback shapes plant community assembly along environmental gradients
Jiang, Jiang; DeAngelis, Donald L.
2013-01-01
An aim of community ecology is to understand the patterns of competing species assembly along environmental gradients. All species interact with their environments. However, theories of community assembly have seldom taken into account the effects of species that are able to engineer the environment. In this modeling study, we integrate the species' engineering trait together with processes of immigration and local dispersal into a theory of community assembly. We quantify the species' engineering trait as the degree to which it can move the local environment away from its baseline state towards the optimum state of the species (species-environment feedback). We find that, in the presence of immigration from a regional pool, strong feedback can increase local species richness; however, in the absence of continual immigration, species richness is a declining function of the strength of species-environment feedback. This shift from a negative effect of engineering strength on species richness to a positive effect, as immigration rate increases, is clearer when there is spatial heterogeneity in the form of a gradient in environmental conditions than when the environment is homogeneous or it is randomly heterogeneous. Increasing the scale over which local dispersal occurs can facilitate species richness when there is no species-environment feedback or when the feedback is weak. However, increases in the spatial scale of dispersal can reduce species richness when the species-environment feedback is strong. These results expand the theoretical basis for understanding the effects of the strength of species-environment feedback on community assembly.
Brischoux, François; Bonnet, Xavier; Shine, Richard
2009-01-01
Lacking the capacity for thermogenesis, most ectotherms inhabiting thermally heterogeneous environments rely instead upon exploiting that ambient heterogeneity. In many cases they maintain body temperatures within a narrow range despite massive spatial and temporal variation in ambient conditions. Reliance on diverse thermal opportunities is reflected in specific terms for organisms that bask in sunlight to regulate their temperature (heliotherms), or that press their bodies against warm substrates to facilitate heat flow (thigmotherms), or that rely on large body mass to maintain thermal constancy (gigantothermy). We propose an additional category of thermoregulators: kleptotherms, which regulate their own temperature by ‘stealing’ heat from other organisms. This concept involves two major conditions: the thermal heterogeneity created by the presence of a warm organism in a cool environment and the selective use of that heterogeneity by another animal to maintain body temperatures at higher (and more stable) levels than would be possible elsewhere in the local area. Kleptothermy occurs in endotherms also, but is usually reciprocal (rather than unilateral as in ectotherms). Thermal monitoring on a small tropical island documents a possible example of kleptothermy, based on high stable temperatures of a sea snake (Laticauda laticaudata) inside a burrow occupied by seabirds. PMID:19656862
Watanabe, Kazuhiro; Otsuka, Yasumasa; Shimazu, Akihito; Kawakami, Norito
2016-02-01
This longitudinal study aimed to investigate the moderating effect of health-improving workplace environment on relationships between physical activity, self-efficacy, and psychological distress. Data were collected from 16 worksites and 129 employees at two time-points. Health-improving workplace environment was measured using the Japanese version of the Environmental Assessment Tool. Physical activity, self-efficacy, and psychological distress were also measured. Multi-level structural equation modeling was used to investigate the moderating effect of health-improving workplace environment on relationships between psychological distress, self-efficacy, and physical activity. Psychological distress was negatively associated with physical activity via low self-efficacy. Physical activity was negatively related to psychological distress. Physical activity/fitness facilities in the work environment exaggerated the positive relationship between self-efficacy and physical activity. Physical activity/fitness facilities in the workplace may promote employees' physical activity.
Servicescape: physical environment of hospital pharmacies and hospital pharmacists' work outcomes.
Lin, Blossom Yen-Ju; Leu, Wen-Jye; Breen, Gerald-Mark; Lin, Wen-Hung
2008-01-01
In health care, architects, interior designers, engineers, and health care administrators need to pay attention to the construction and design of health care facilities. Research is needed to better understand how health professionals and employees perceive their work environment to improve the physical environment in which they work. The purpose of this study was to test the effect of the physical environment of hospital pharmacies on hospital pharmacists' work outcomes. This cross-sectional mailed survey study of individual hospital pharmacists used a structured questionnaire developed to cover perceptions of the ambient conditions and the space/function(s) of pharmacists' work environments. It included aspects such as dispensing areas, pharmaceuticals areas, storage areas, and administrative offices. Work outcomes were job satisfaction, intentions to leave or reduce job working hours, and job-related stress. Hospital pharmacists in Taiwan (n = 182) returned the mailed surveys. Structural equation modeling was performed to validate the construct of the physical environment of a hospital pharmacy and the causal model for testing the effect of the physical environment on pharmacists' work outcomes. For hospital pharmacy workplaces, more favorable perceptions of the workplace's physical environment were positively associated with overall job satisfaction, but such perceptions were also negatively related to intentions to quit employment or to reduce working hours. However, the effect of the physical environment on job stress within the workplace was not supported. The designs of physical environments deserve attention to create more appropriate and healthier environments for hospital pharmacies. Further research should be devoted to trace more psychological responses to the physical environment from a longitudinal perspective.
Sensory environment on health-related outcomes of hospital patients.
Drahota, Amy; Ward, Derek; Mackenzie, Heather; Stores, Rebecca; Higgins, Bernie; Gal, Diane; Dean, Taraneh P
2012-03-14
Hospital environments have recently received renewed interest, with considerable investments into building and renovating healthcare estates. Understanding the effectiveness of environmental interventions is important for resource utilisation and providing quality care. To assess the effect of hospital environments on adult patient health-related outcomes. We searched: the Cochrane Central Register of Controlled Trials (last searched January 2006); MEDLINE (1902 to December 2006); EMBASE (January 1980 to February 2006); 14 other databases covering health, psychology, and the built environment; reference lists; and organisation websites. This review is currently being updated (MEDLINE last search October 2010), see Studies awaiting classification. Randomised and non-randomised controlled trials, controlled before-and-after studies, and interrupted times series of environmental interventions in adult hospital patients reporting health-related outcomes. Two review authors independently undertook data extraction and 'Risk of bias' assessment. We contacted authors to obtain missing information. For continuous variables, we calculated a mean difference (MD) or standardized mean difference (SMD), and 95% confidence intervals (CI) for each study. For dichotomous variables, we calculated a risk ratio (RR) with 95% confidence intervals (95% CI). When appropriate, we used a random-effects model of meta-analysis. Heterogeneity was explored qualitatively and quantitatively based on risk of bias, case mix, hospital visit characteristics, and country of study. Overall, 102 studies have been included in this review. Interventions explored were: 'positive distracters', to include aromas (two studies), audiovisual distractions (five studies), decoration (one study), and music (85 studies); interventions to reduce environmental stressors through physical changes, to include air quality (three studies), bedroom type (one study), flooring (two studies), furniture and furnishings (one study), lighting (one study), and temperature (one study); and multifaceted interventions (two studies). We did not find any studies meeting the inclusion criteria to evaluate: art, access to nature for example, through hospital gardens, atriums, flowers, and plants, ceilings, interventions to reduce hospital noise, patient controls, technologies, way-finding aids, or the provision of windows. Overall, it appears that music may improve patient-reported outcomes such as anxiety; however, the benefit for physiological outcomes, and medication consumption has less support. There are few studies to support or refute the implementation of physical changes, and except for air quality, the included studies demonstrated that physical changes to the hospital environment at least did no harm. Music may improve patient-reported outcomes in certain circumstances, so support for this relatively inexpensive intervention may be justified. For some environmental interventions, well designed research studies have yet to take place.
Maitland, Clover; Stratton, Gareth; Foster, Sarah; Braham, Rebecca; Rosenberg, Michael
2013-08-17
The home environment is an important influence on the sedentary behaviour and physical activity of children, who have limited independent mobility and spend much of their time at home. This article reviews the current evidence regarding the influence of the home physical environment on the sedentary behaviour and physical activity of children aged 8-14 years. A literature search of peer reviewed articles published between 2005 and 2011 resulted in 38 observational studies (21 with activity outcomes, 23 with sedentary outcomes) and 11 experimental studies included in the review. The most commonly investigated behavioural outcomes were television watching and moderate to vigorous physical activity. Media equipment in the home and to a lesser extent the bedroom were positively associated with children's sedentary behaviour. Physical activity equipment and the house and yard were not associated with physical activity, although environmental measures were exclusively self-reported. On the other hand, physical activity equipment was inversely associated with sedentary behaviours in half of studies. Observational studies that investigated the influence of the physical and social environment within the home space, found that the social environment, particularly the role of parents, was important. Experimental studies that changed the home physical environment by introducing a television limiting device successfully decreased television viewing, whereas the influence of introducing an active video game on activity outcomes was inconsistent. Results highlight that the home environment is an important influence on children's sedentary behaviour and physical activity, about which much is still unknown. While changing or controlling the home physical environment shows promise for reducing screen based sedentary behaviour, further interventions are needed to understand the broader impact of these changes. Future studies should prioritise investigating the influence of the home physical environment, and its interaction with the social environment, on objectively measured sedentary time and home context specific behaviours, ideally including technologies that allow objective measures of the home space.
2013-01-01
The home environment is an important influence on the sedentary behaviour and physical activity of children, who have limited independent mobility and spend much of their time at home. This article reviews the current evidence regarding the influence of the home physical environment on the sedentary behaviour and physical activity of children aged 8–14 years. A literature search of peer reviewed articles published between 2005 and 2011 resulted in 38 observational studies (21 with activity outcomes, 23 with sedentary outcomes) and 11 experimental studies included in the review. The most commonly investigated behavioural outcomes were television watching and moderate to vigorous physical activity. Media equipment in the home and to a lesser extent the bedroom were positively associated with children’s sedentary behaviour. Physical activity equipment and the house and yard were not associated with physical activity, although environmental measures were exclusively self-reported. On the other hand, physical activity equipment was inversely associated with sedentary behaviours in half of studies. Observational studies that investigated the influence of the physical and social environment within the home space, found that the social environment, particularly the role of parents, was important. Experimental studies that changed the home physical environment by introducing a television limiting device successfully decreased television viewing, whereas the influence of introducing an active video game on activity outcomes was inconsistent. Results highlight that the home environment is an important influence on children’s sedentary behaviour and physical activity, about which much is still unknown. While changing or controlling the home physical environment shows promise for reducing screen based sedentary behaviour, further interventions are needed to understand the broader impact of these changes. Future studies should prioritise investigating the influence of the home physical environment, and its interaction with the social environment, on objectively measured sedentary time and home context specific behaviours, ideally including technologies that allow objective measures of the home space. PMID:23958282
Reher, David; Klink, Barbara; Deutsch, Andreas; Voss-Böhme, Anja
2017-08-11
Cancer cell invasion, dissemination, and metastasis have been linked to an epithelial-mesenchymal transition (EMT) of individual tumour cells. During EMT, adhesion molecules like E-cadherin are downregulated and the decrease of cell-cell adhesion allows tumour cells to dissociate from the primary tumour mass. This complex process depends on intracellular cues that are subject to genetic and epigenetic variability, as well as extrinsic cues from the local environment resulting in a spatial heterogeneity in the adhesive phenotype of individual tumour cells. Here, we use a novel mathematical model to study how adhesion heterogeneity, influenced by intrinsic and extrinsic factors, affects the dissemination of tumour cells from an epithelial cell population. The model is a multiscale cellular automaton that couples intracellular adhesion receptor regulation with cell-cell adhesion. Simulations of our mathematical model indicate profound effects of adhesion heterogeneity on tumour cell dissemination. In particular, we show that a large variation of intracellular adhesion receptor concentrations in a cell population reinforces cell dissemination, regardless of extrinsic cues mediated through the local cell density. However, additional control of adhesion receptor concentration through the local cell density, which can be assumed in healthy cells, weakens the effect. Furthermore, we provide evidence that adhesion heterogeneity can explain the remarkable differences in adhesion receptor concentrations of epithelial and mesenchymal phenotypes observed during EMT and might drive early dissemination of tumour cells. Our results suggest that adhesion heterogeneity may be a universal trigger to reinforce cell dissemination in epithelial cell populations. This effect can be at least partially compensated by a control of adhesion receptor regulation through neighbouring cells. Accordingly, our findings explain how both an increase in intra-tumour adhesion heterogeneity and the loss of control through the local environment can promote tumour cell dissemination. This article was reviewed by Hanspeter Herzel, Thomas Dandekar and Marek Kimmel.
Direct Breakthrough Curve Prediction From Statistics of Heterogeneous Conductivity Fields
NASA Astrophysics Data System (ADS)
Hansen, Scott K.; Haslauer, Claus P.; Cirpka, Olaf A.; Vesselinov, Velimir V.
2018-01-01
This paper presents a methodology to predict the shape of solute breakthrough curves in heterogeneous aquifers at early times and/or under high degrees of heterogeneity, both cases in which the classical macrodispersion theory may not be applicable. The methodology relies on the observation that breakthrough curves in heterogeneous media are generally well described by lognormal distributions, and mean breakthrough times can be predicted analytically. The log-variance of solute arrival is thus sufficient to completely specify the breakthrough curves, and this is calibrated as a function of aquifer heterogeneity and dimensionless distance from a source plane by means of Monte Carlo analysis and statistical regression. Using the ensemble of simulated groundwater flow and solute transport realizations employed to calibrate the predictive regression, reliability estimates for the prediction are also developed. Additional theoretical contributions include heuristics for the time until an effective macrodispersion coefficient becomes applicable, and also an expression for its magnitude that applies in highly heterogeneous systems. It is seen that the results here represent a way to derive continuous time random walk transition distributions from physical considerations rather than from empirical field calibration.
Criticality and Induction Time of Hot Spots in Detonating Heterogeneous Explosives
NASA Astrophysics Data System (ADS)
Hill, Larry
2017-06-01
Detonation reaction in physically heterogeneous explosives is-to an extent that depends on multiple material attributes-likewise heterogeneous. Like all heterogeneous reaction, detonation heterogeneous reaction begins at nucleation sites, which, in this case, comprise localized regions of higher-than-average temperature-so-called hot spots. Burning grows at, and then spreads from these nucleation sites, via reactive-thermal (R-T) waves, to consume the interstitial material. Not all hot spots are consequential, but only those that are 1) supercritical, and 2) sufficiently so as to form R-T waves before being consumed by those already emanating from neighboring sites. I explore aspects of these two effects by deriving simple formulae for hot spot criticality and the induction time of supercritical hot spots. These results serve to illustrate the non-intuitive, yet mathematically simplifying, effects of extreme dependence of reaction rate upon temperature. They can play a role in the development of better reactive burn models, for which we seek to homogenize the essentials of heterogeneous detonation reaction without introducing spurious complexity. Work supported by the US Dept. of Energy.
Semi-supervised Machine Learning for Analysis of Hydrogeochemical Data and Models
NASA Astrophysics Data System (ADS)
Vesselinov, Velimir; O'Malley, Daniel; Alexandrov, Boian; Moore, Bryan
2017-04-01
Data- and model-based analyses such as uncertainty quantification, sensitivity analysis, and decision support using complex physics models with numerous model parameters and typically require a huge number of model evaluations (on order of 10^6). Furthermore, model simulations of complex physics may require substantial computational time. For example, accounting for simultaneously occurring physical processes such as fluid flow and biogeochemical reactions in heterogeneous porous medium may require several hours of wall-clock computational time. To address these issues, we have developed a novel methodology for semi-supervised machine learning based on Non-negative Matrix Factorization (NMF) coupled with customized k-means clustering. The algorithm allows for automated, robust Blind Source Separation (BSS) of groundwater types (contamination sources) based on model-free analyses of observed hydrogeochemical data. We have also developed reduced order modeling tools, which coupling support vector regression (SVR), genetic algorithms (GA) and artificial and convolutional neural network (ANN/CNN). SVR is applied to predict the model behavior within prior uncertainty ranges associated with the model parameters. ANN and CNN procedures are applied to upscale heterogeneity of the porous medium. In the upscaling process, fine-scale high-resolution models of heterogeneity are applied to inform coarse-resolution models which have improved computational efficiency while capturing the impact of fine-scale effects at the course scale of interest. These techniques are tested independently on a series of synthetic problems. We also present a decision analysis related to contaminant remediation where the developed reduced order models are applied to reproduce groundwater flow and contaminant transport in a synthetic heterogeneous aquifer. The tools are coded in Julia and are a part of the MADS high-performance computational framework (https://github.com/madsjulia/Mads.jl).
Growth of Single Crystals and Fabrication of GaN and AlN Wafers
2006-03-01
Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, Synthesis and Decomposition of Ammonia ", 4, Elsevier Scientific Publishing Company...Solid Surfaces and Heterogeneous Catalysis, Synthesis and Decomposition of Ammonia ", 4, Elsevier Scientific Publishing Company, Amsterdam (1982). 119...GaN(s), (2) Ga(g) + _ N2(g) = GaN(s) 93 APPENDIX C: AMMONIA DECOMPOSITION Despite the apparent simplicity of the GaN synthesis from elemental Ga and
Button, Brenton; Trites, Stephen; Janssen, Ian
2013-12-17
The physical and social environments at schools are related to students' moderate-to-vigorous physical activity (MVPA) levels. The purpose of this study was to explore the interactive effects of the school physical environment and school social capital on the MVPA of students while at school. Data from 18,875 grade 6-10 students from 331 schools who participated in the 2009/10 Canadian Health Behaviour in School-Aged Children survey were analyzed using multi-level regression. Students answered questions on the amount of time they spend in MVPA at school and on their school's social capital. Administrator reports were used to create a physical activity related physical environment score. The school physical environment score was positively associated with student MVPA at school (β = 0.040, p < .005). The association between the school social capital and MVPA was also positive (β = 0.074, p < .001). The difference in physical environments equated to about 20 minutes/week of MVPA for students attending schools with the lowest number of physical environment features and about 40 minutes/week for students attending schools with the lowest school social capital scores by comparison to students attending schools with the highest scores. The findings suggest that school social capital may be a more important factor in increasing students MVPA than the school physical environment. The results of this study may help inform interventions aimed at increasing student physical activity levels.
On the predictivity of pore-scale simulations: Estimating uncertainties with multilevel Monte Carlo
NASA Astrophysics Data System (ADS)
Icardi, Matteo; Boccardo, Gianluca; Tempone, Raúl
2016-09-01
A fast method with tunable accuracy is proposed to estimate errors and uncertainties in pore-scale and Digital Rock Physics (DRP) problems. The overall predictivity of these studies can be, in fact, hindered by many factors including sample heterogeneity, computational and imaging limitations, model inadequacy and not perfectly known physical parameters. The typical objective of pore-scale studies is the estimation of macroscopic effective parameters such as permeability, effective diffusivity and hydrodynamic dispersion. However, these are often non-deterministic quantities (i.e., results obtained for specific pore-scale sample and setup are not totally reproducible by another ;equivalent; sample and setup). The stochastic nature can arise due to the multi-scale heterogeneity, the computational and experimental limitations in considering large samples, and the complexity of the physical models. These approximations, in fact, introduce an error that, being dependent on a large number of complex factors, can be modeled as random. We propose a general simulation tool, based on multilevel Monte Carlo, that can reduce drastically the computational cost needed for computing accurate statistics of effective parameters and other quantities of interest, under any of these random errors. This is, to our knowledge, the first attempt to include Uncertainty Quantification (UQ) in pore-scale physics and simulation. The method can also provide estimates of the discretization error and it is tested on three-dimensional transport problems in heterogeneous materials, where the sampling procedure is done by generation algorithms able to reproduce realistic consolidated and unconsolidated random sphere and ellipsoid packings and arrangements. A totally automatic workflow is developed in an open-source code [1], that include rigid body physics and random packing algorithms, unstructured mesh discretization, finite volume solvers, extrapolation and post-processing techniques. The proposed method can be efficiently used in many porous media applications for problems such as stochastic homogenization/upscaling, propagation of uncertainty from microscopic fluid and rock properties to macro-scale parameters, robust estimation of Representative Elementary Volume size for arbitrary physics.
Nicosia, Nancy; Datar, Ashlesha
2018-05-01
Experimental and quasi-experimental evidence on the relationship between adolescents' physical activity and their physical activity environments is scarce. This study provides natural experimental evidence using within-person longitudinal variation in physical activity environments resulting from the compulsory re-assignment of military families to new installations, termed permanent changes of station. Adolescents in Army families (N=749) reported usual weekly minutes of moderate and vigorous physical activity in 2013-2015. Objective measures of the physical activity environment, including the number of fitness and recreation facilities within 2 miles, were constructed for adolescents' neighborhoods using GIS methods. In 2017, individual-level fixed-effects models with and without a comparison group estimated the relationship between usual weekly minutes of physical activity and physical activity environments among permanent changes of station movers using within-person variation. Increases in opportunities for physical activity were significantly and positively associated with increases in total (p<0.05) and vigorous physical activity (p<0.05) among adolescents who experienced permanent changes of station moves. The relationships were statistically significant for permanent changes of station movers living off-installation (p<0.05) and hence subject to greater variation in physical activity environments and those with more time to adjust to their new environments (p<0.05). Significant findings persisted when broader measures of physical activity environments were utilized. The decline in physical activity and alarming obesity levels during adolescence suggest that this age may represent an important opportunity to address the obesity epidemic. This study provides evidence that increasing opportunities for physical activity may be an important pathway to improving their levels of physical activity and, consequently, obesity. Copyright © 2018 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Johnson, Nicholas E.; Bonczak, Bartosz; Kontokosta, Constantine E.
2018-07-01
The increased availability and improved quality of new sensing technologies have catalyzed a growing body of research to evaluate and leverage these tools in order to quantify and describe urban environments. Air quality, in particular, has received greater attention because of the well-established links to serious respiratory illnesses and the unprecedented levels of air pollution in developed and developing countries and cities around the world. Though numerous laboratory and field evaluation studies have begun to explore the use and potential of low-cost air quality monitoring devices, the performance and stability of these tools has not been adequately evaluated in complex urban environments, and further research is needed. In this study, we present the design of a low-cost air quality monitoring platform based on the Shinyei PPD42 aerosol monitor and examine the suitability of the sensor for deployment in a dense heterogeneous urban environment. We assess the sensor's performance during a field calibration campaign from February 7th to March 25th 2017 with a reference instrument in New York City, and present a novel calibration approach using a machine learning method that incorporates publicly available meteorological data in order to improve overall sensor performance. We find that while the PPD42 performs well in relation to the reference instrument using linear regression (R2 = 0.36-0.51), a gradient boosting regression tree model can significantly improve device calibration (R2 = 0.68-0.76). We discuss the sensor's performance and reliability when deployed in a dense, heterogeneous urban environment during a period of significant variation in weather conditions, and important considerations when using machine learning techniques to improve the performance of low-cost air quality monitors.
Ochiai, Asumi; Imoto, Junpei; Suetake, Mizuki; Komiya, Tatsuki; Furuki, Genki; Ikehara, Ryohei; Yamasaki, Shinya; Law, Gareth T W; Ohnuki, Toshihiko; Grambow, Bernd; Ewing, Rodney C; Utsunomiya, Satoshi
2018-03-06
Trace U was released from the Fukushima Daiichi Nuclear Power Plant (FDNPP) during the meltdowns, but the speciation of the released components of the nuclear fuel remains unknown. We report, for the first time, the atomic-scale characteristics of nanofragments of the nuclear fuels that were released from the FDNPP into the environment. Nanofragments of an intrinsic U-phase were discovered to be closely associated with radioactive cesium-rich microparticles (CsMPs) in paddy soils collected ∼4 km from the FDNPP. The nanoscale fuel fragments were either encapsulated by or attached to CsMPs and occurred in two different forms: (i) UO 2+X nanocrystals of ∼70 nm size, which are embedded into magnetite associated with Tc and Mo on the surface and (ii) Isometric (U,Zr)O 2+X nanocrystals of ∼200 nm size, with the U/(U+Zr) molar ratio ranging from 0.14 to 0.91, with intrinsic pores (∼6 nm), indicating the entrapment of vapors or fission-product gases during crystallization. These results document the heterogeneous physical and chemical properties of debris at the nanoscale, which is a mixture of melted fuel and reactor materials, reflecting the complex thermal processes within the FDNPP reactor during meltdown. Still CsMPs are an important medium for the transport of debris fragments into the environment in a respirable form.
Implementing Internet of Things in a military command and control environment
NASA Astrophysics Data System (ADS)
Raglin, Adrienne; Metu, Somiya; Russell, Stephen; Budulas, Peter
2017-05-01
While the term Internet of Things (IoT) has been coined relatively recently, it has deep roots in multiple other areas of research including cyber-physical systems, pervasive and ubiquitous computing, embedded systems, mobile ad-hoc networks, wireless sensor networks, cellular networks, wearable computing, cloud computing, big data analytics, and intelligent agents. As the Internet of Things, these technologies have created a landscape of diverse heterogeneous capabilities and protocols that will require adaptive controls to effect linkages and changes that are useful to end users. In the context of military applications, it will be necessary to integrate disparate IoT devices into a common platform that necessarily must interoperate with proprietary military protocols, data structures, and systems. In this environment, IoT devices and data will not be homogeneous and provenance-controlled (i.e. single vendor/source/supplier owned). This paper presents a discussion of the challenges of integrating varied IoT devices and related software in a military environment. A review of contemporary commercial IoT protocols is given and as a practical example, a middleware implementation is proffered that provides transparent interoperability through a proactive message dissemination system. The implementation is described as a framework through which military applications can integrate and utilize commercial IoT in conjunction with existing military sensor networks and command and control (C2) systems.
Schulz, Amy; Mentz, Graciela; Johnson-Lawrence, Vicki; Israel, Barbara A; Max, Paul; Zenk, Shannon N; Wineman, Jean; Marans, Robert W
2013-10-01
Physical activity is associated with reduced risk of a number of health outcomes, yet fewer than half of adults in the United States report recommended levels of physical activity. Analyses of structural characteristics of the built environment as correlates of physical activity have yielded mixed results. We examine associations between multiple aspects of urban neighborhood environments and physical activity in order to understand their independent and joint effects, with a focus on the extent to which the condition of the built environment and indicators of the social environment modify associations between structural characteristics and physical activity. We use data from a stratified, multi-stage proportional probability sample of 919 non-Hispanic Black, non-Hispanic White, and Hispanic adults in an urban community, observational data from their residential neighborhoods, and census data to examine independent and joint associations of structural characteristics (e.g., street network connectivity), their condition (e.g., sidewalk condition), and social environments (e.g., territoriality) with physical activity. Our findings suggest that sidewalk condition is associated with physical activity, above and beyond structural characteristics of the built environment. Associations between some structural characteristics of the built environment and physical activity were conditional upon street condition, physical deterioration, and the proportion of parks and playgrounds in good condition. We found modest support for the hypothesis that associations between structural characteristics and physical activity are modified by aspects of the social environment. Results presented here point to the value of and need for understanding and addressing the complexity of factors that contribute to the relationships between the built and social environments and physical activity, and in turn, obesity and co-morbidities. Bringing together urban planners, public health practitioners and policy makers to understand and address aspects of urban environment associated with health outcomes is critical to promoting health and health equity.
NASA Astrophysics Data System (ADS)
Yu, Leiming; Nina-Paravecino, Fanny; Kaeli, David; Fang, Qianqian
2018-01-01
We present a highly scalable Monte Carlo (MC) three-dimensional photon transport simulation platform designed for heterogeneous computing systems. Through the development of a massively parallel MC algorithm using the Open Computing Language framework, this research extends our existing graphics processing unit (GPU)-accelerated MC technique to a highly scalable vendor-independent heterogeneous computing environment, achieving significantly improved performance and software portability. A number of parallel computing techniques are investigated to achieve portable performance over a wide range of computing hardware. Furthermore, multiple thread-level and device-level load-balancing strategies are developed to obtain efficient simulations using multiple central processing units and GPUs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Sankaran; Agarwal, Vivek; Neal, Kyle
Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant that is subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of fourmore » elements: monitoring, data analytics, uncertainty quantification and prognosis. This report focuses on degradation caused by ASR (alkali-silica reaction). Controlled specimens were prepared to develop accelerated ASR degradation. Different monitoring techniques – thermography, digital image correlation (DIC), mechanical deformation measurements, nonlinear impact resonance acoustic spectroscopy (NIRAS), and vibro-acoustic modulation (VAM) -- were used to detect the damage caused by ASR. Heterogeneous data from the multiple techniques was used for damage diagnosis and prognosis, and quantification of the associated uncertainty using a Bayesian network approach. Additionally, MapReduce technique has been demonstrated with synthetic data. This technique can be used in future to handle large amounts of observation data obtained from the online monitoring of realistic structures.« less
Morphological plasticity of bacteria—Open questions
Shen, Jie-Pan
2016-01-01
Morphological plasticity of bacteria is a cryptic phenomenon, by which bacteria acquire adaptive benefits for coping with changing environments. Some environmental cues were identified to induce morphological plasticity, but the underlying molecular mechanisms remain largely unknown. Physical and chemical factors causing morphological changes in bacteria have been investigated and mostly associated with potential pathways linked to the cell wall synthetic machinery. These include starvation, oxidative stresses, predation effectors, antimicrobial agents, temperature stresses, osmotic shock, and mechanical constraints. In an extreme scenario of morphological plasticity, bacteria can be induced to be shapeshifters when the cell walls are defective or deficient. They follow distinct developmental pathways and transform into assorted morphological variants, and most of them would eventually revert to typical cell morphology. It is suggested that phenotypic heterogeneity might play a functional role in the development of morphological diversity and/or plasticity within an isogenic population. Accordingly, phenotypic heterogeneity and inherited morphological plasticity are found to be survival strategies adopted by bacteria in response to environmental stresses. Here, microfluidic and nanofabrication technology is considered to provide versatile solutions to induce morphological plasticity, sort and isolate morphological variants, and perform single-cell analysis including transcriptional and epigenetic profiling. Questions such as how morphogenesis network is modulated or rewired (if epigenetic controls of cell morphogenesis apply) to induce bacterial morphological plasticity could be resolved with the aid of micro-nanofluidic platforms and optimization algorithms, such as feedback system control. PMID:27375812
Lim, Yuan Z; Wang, Yuanyuan; Wluka, Anita E; Davies-Tuck, Miranda L; Teichtahl, Andrew; Urquhart, Donna M; Cicuttini, Flavia M
2013-10-01
To systematically review the literature to determine whether biomechanical factors, meniscal pathology, and physical activity are risk factors for bone marrow lesions (BMLs) at the knee identified from magnetic resonance imaging in pre-osteoarthritis and osteoarthritis populations. Electronic searches of MEDLINE and EMBASE were performed from January 1, 1996 to October 31, 2012 using the keywords of bone marrow lesion(s), bone marrow (o)edema, osteoarthritis, and knee. Studies examining biomechanical factors, meniscal pathology, or physical activity in relation to the presence, incidence, or change in BMLs at the knee were included. Two independent reviewers extracted the data and assessed the methodological quality of selected studies. Due to the heterogeneity of the studies, we performed a best evidence synthesis. Fifteen studies were included in this review, of which 9 were considered high quality. The study populations were heterogeneous in terms of the symptoms and radiographic knee osteoarthritis. There was strong evidence for relationships of mechanical knee alignment and meniscal pathology with BMLs in osteoarthritis populations. There was a paucity of evidence for a relationship between physical activity and BMLs. Despite the heterogeneity of included studies, these data suggest that mechanical knee alignment and meniscal pathology are risk factors for BMLs in knee osteoarthritis. It suggests that BMLs in individuals with osteoarthritis are more susceptible to mechanical knee alignment. Given the role of BMLs in the pathogenesis of knee osteoarthritis, identifying strategies to modify these risk factors will be important in slowing the progression and reducing the burden of knee osteoarthritis. Copyright © 2013 Elsevier Inc. All rights reserved.
Engineering Microbial Metabolite Dynamics and Heterogeneity.
Schmitz, Alexander C; Hartline, Christopher J; Zhang, Fuzhong
2017-10-01
As yields for biological chemical production in microorganisms approach their theoretical maximum, metabolic engineering requires new tools, and approaches for improvements beyond what traditional strategies can achieve. Engineering metabolite dynamics and metabolite heterogeneity is necessary to achieve further improvements in product titers, productivities, and yields. Metabolite dynamics, the ensemble change in metabolite concentration over time, arise from the need for microbes to adapt their metabolism in response to the extracellular environment and are important for controlling growth and productivity in industrial fermentations. Metabolite heterogeneity, the cell-to-cell variation in a metabolite concentration in an isoclonal population, has a significant impact on ensemble productivity. Recent advances in single cell analysis enable a more complete understanding of the processes driving metabolite heterogeneity and reveal metabolic engineering targets. The authors present an overview of the mechanistic origins of metabolite dynamics and heterogeneity, why they are important, their potential effects in chemical production processes, and tools and strategies for engineering metabolite dynamics and heterogeneity. The authors emphasize that the ability to control metabolite dynamics and heterogeneity will bring new avenues of engineering to increase productivity of microbial strains. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
One microenvironment does not fit all: heterogeneity beyond cancer cells.
Kim, Ik Sun; Zhang, Xiang H-F
2016-12-01
Human cancers exhibit formidable molecular heterogeneity, to a large extent accounting for the incomplete and transitory efficacy of current anti-cancer therapies. However, neoplastic cells alone do not manifest the disease, but conscript a battery of non-tumor cells to enable and sustain hallmark capabilities of cancer. Escaping immunosurveillance is one of such capabilities. Tumors evolve immunosuppressive microenvironment to subvert anti-tumor immunity. In this review, we will focus on tumor-associated myeloid cells, which constitute an essential part of the immune microenvironment and reciprocally interact with cancer cells to establish malignancy toward metastasis. The diversity and plasticity of these cells constitute another layer of heterogeneity, beyond the heterogeneity of cancer cells themselves. We envision that immune microenvironment co-evolves with the genetic heterogeneity of tumor. Addressing the question of how genetically distinct tumors shape and are shaped by unique immune microenvironment will provide an attractive rationale to develop novel immunotherapeutic modalities. Here, we discuss the complex nature of tumor microenvironment, with an emphasis on the cellular and functional heterogeneity among tumor-associated myeloid cells as well as immune environment heterogeneity in the context of a full spectrum of human breast cancers.
Individual heterogeneity in reproductive rates and cost of reproduction in a long-lived vertebrate
Chambert, Thierry; Rotella, Jay J; Higgs, Megan D; Garrott, Robert A
2013-01-01
Individual variation in reproductive success is a key feature of evolution, but also has important implications for predicting population responses to variable environments. Although such individual variation in reproductive outcomes has been reported in numerous studies, most analyses to date have not considered whether these realized differences were due to latent individual heterogeneity in reproduction or merely random chance causing different outcomes among like individuals. Furthermore, latent heterogeneity in fitness components might be expressed differently in contrasted environmental conditions, an issue that has only rarely been investigated. Here, we assessed (i) the potential existence of latent individual heterogeneity and (ii) the nature of its expression (fixed vs. variable) in a population of female Weddell seals (Leptonychotes weddellii), using a hierarchical modeling approach on a 30-year mark–recapture data set consisting of 954 individual encounter histories. We found strong support for the existence of latent individual heterogeneity in the population, with “robust” individuals expected to produce twice as many pups as “frail” individuals. Moreover, the expression of individual heterogeneity appeared consistent, with only mild evidence that it might be amplified when environmental conditions are severe. Finally, the explicit modeling of individual heterogeneity allowed us to detect a substantial cost of reproduction that was not evidenced when the heterogeneity was ignored. PMID:23919151
NASA Astrophysics Data System (ADS)
Wetterling, F.; Liehr, M.; Schimpf, P.; Liu, H.; Haueisen, J.
2009-09-01
The non-invasive localization of focal heart activity via body surface potential measurements (BSPM) could greatly benefit the understanding and treatment of arrhythmic heart diseases. However, the in vivo validation of source localization algorithms is rather difficult with currently available measurement techniques. In this study, we used a physical torso phantom composed of different conductive compartments and seven dipoles, which were placed in the anatomical position of the human heart in order to assess the performance of the Recursively Applied and Projected Multiple Signal Classification (RAP-MUSIC) algorithm. Electric potentials were measured on the torso surface for single dipoles with and without further uncorrelated or correlated dipole activity. The localization error averaged 11 ± 5 mm over 22 dipoles, which shows the ability of RAP-MUSIC to distinguish an uncorrelated dipole from surrounding sources activity. For the first time, real computational modelling errors could be included within the validation procedure due to the physically modelled heterogeneities. In conclusion, the introduced heterogeneous torso phantom can be used to validate state-of-the-art algorithms under nearly realistic measurement conditions.
NASA Astrophysics Data System (ADS)
Otten, Wilfred; Juyal, Archana; Eickhorst, Thilo; Falconer, Ruth; Spiers, Andrew; Baveye, Philippe
2017-04-01
The way micro-organisms access C and interact with each other in heterogeneous environments is key to our understanding of soil processes. Growth and mobility of bacteria is crucial aspect of these processes in particular how this is affected by complicated pathways of water and air-filled pores. Simplified experimental systems, often referred to with the term microcosms, have played a central role in the development of modern ecological thinking ranging from competitive exclusion to examination of spatial resources and competitive mechanisms, with important model driven insights to the field. However, in the majority of cases these do not include detailed description of the soil physical conditions and hence there is still little insight in how soil structure affects these processes. Recent advances in the use of Xray CT now allow for a different approach to this as we can obtain quantitative insight in to the pathways of interaction and how these are controlled in microcosms. In the current presentation we therefor ask the following questions: - To what extent can we control the pore geometry in microcosm studies through manipulation of common variables such as density and aggregate size? Are replicated microcosms really replicated at the microscale? - What is the effect of pore geometry on the growth dynamics of bacteria following introduction into soil? - What is the effect of pore geometry on the rate and extent of spread of bacteria in soil? We focus on Pseudomonas sp. and Bacillus sp. Both species are abundantly present in the rhizosphere and bulk-soil, frequently studied for their growth promoting ability, yet there is still very little knowledge available on how the growth and spread is affected by soil physical conditions such as pore geometry and wetness. We show how pore geometry, connectivity and interface areas are affected by the way soil is packed into microcosms and how this affects growth and spread of both species. We emphasize that microscopic heterogeneity has significant impact on bacterial dynamics and that soil physical conditions need to be considered in greater detail in microcosm studies to ensure generalisation of results.
Security in Distributed Collaborative Environments: Limitations and Solutions
NASA Astrophysics Data System (ADS)
Saadi, Rachid; Pierson, Jean-Marc; Brunie, Lionel
The main goal of establishing collaboration between heterogeneous environment is to create such as Pervasive context which provide nomadic users with ubiquitous access to digital information and surrounding resources. However, the constraints of mobility and heterogeneity arise a number of crucial issues related to security, especially authentication access control and privacy. First of all, in this chapter we explore the trust paradigm, specially the transitive capability to enable a trust peer to peer collaboration. In this manner, when each organization sets its own security policy to recognize (authenticate) users members of a trusted community and provide them a local access (access control), the trust transitivity between peers will allows users to gain a broad, larger and controlled access inside the pervasive environment. Next, we study the problem of user's privacy. In fact in pervasive and ubiquitous environments, nomadic users gather and exchange certificates or credential which providing them rights to access by transitivity unknown and trusted environments. These signed documents embeds increasing number of attribute that require to be filtered according to such contextual situation. In this chapter, we propose a new morph signature enabling each certificate owner to preserve his privacy by discloses or blinds some sensitive attributes according to faced situation.
Web-Based Learning Support System
NASA Astrophysics Data System (ADS)
Fan, Lisa
Web-based learning support system offers many benefits over traditional learning environments and has become very popular. The Web is a powerful environment for distributing information and delivering knowledge to an increasingly wide and diverse audience. Typical Web-based learning environments, such as Web-CT, Blackboard, include course content delivery tools, quiz modules, grade reporting systems, assignment submission components, etc. They are powerful integrated learning management systems (LMS) that support a number of activities performed by teachers and students during the learning process [1]. However, students who study a course on the Internet tend to be more heterogeneously distributed than those found in a traditional classroom situation. In order to achieve optimal efficiency in a learning process, an individual learner needs his or her own personalized assistance. For a web-based open and dynamic learning environment, personalized support for learners becomes more important. This chapter demonstrates how to realize personalized learning support in dynamic and heterogeneous learning environments by utilizing Adaptive Web technologies. It focuses on course personalization in terms of contents and teaching materials that is according to each student's needs and capabilities. An example of using Rough Set to analyze student personal information to assist students with effective learning and predict student performance is presented.
A physical mechanism of cancer heterogeneity
NASA Astrophysics Data System (ADS)
Chen, Cong; Wang, Jin
2016-02-01
We studied a core cancer gene regulatory network motif to uncover possible source of cancer heterogeneity from epigenetic sources. When the time scale of the protein regulation to the gene is faster compared to the protein synthesis and degradation (adiabatic regime), normal state, cancer state and an intermediate premalignant state emerge. Due to the epigenetics such as DNA methylation and histone remodification, the time scale of the protein regulation to the gene can be slower or comparable to the protein synthesis and degradation (non-adiabatic regime). In this case, many more states emerge as possible phenotype alternations. This gives the origin of the heterogeneity. The cancer heterogeneity is reflected from the emergence of more phenotypic states, larger protein concentration fluctuations, wider kinetic distributions and multiplicity of kinetic paths from normal to cancer state, higher energy cost per gene switching, and weaker stability.
42 CFR 485.723 - Condition of participation: Physical environment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 5 2010-10-01 2010-10-01 false Condition of participation: Physical environment... participation: Physical environment. The building housing the organization is constructed, equipped, and..., sanitary, and comfortable environment. (a) Standard: Safety of patients. The organization satisfies the...
Using Unsupervised Learning to Unlock the Potential of Hydrologic Similarity
NASA Astrophysics Data System (ADS)
Chaney, N.; Newman, A. J.
2017-12-01
By clustering environmental data into representative hydrologic response units (HRUs), hydrologic similarity aims to harness the covariance between a system's physical environment and its hydrologic response to create reduced-order models. This is the primary approach through which sub-grid hydrologic processes are represented in large-scale models (e.g., Earth System Models). Although the possibilities of hydrologic similarity are extensive, its practical implementations have been limited to 1-d bins of oversimplistic metrics of hydrologic response (e.g., topographic index)—this is a missed opportunity. In this presentation we will show how unsupervised learning is unlocking the potential of hydrologic similarity; clustering methods enable generalized frameworks to effectively and efficiently harness the petabytes of global environmental data to robustly characterize sub-grid heterogeneity in large-scale models. To illustrate the potential that unsupervised learning has towards advancing hydrologic similarity, we introduce a hierarchical clustering algorithm (HCA) that clusters very high resolution (30-100 meters) elevation, soil, climate, and land cover data to assemble a domain's representative HRUs. These HRUs are then used to parameterize the sub-grid heterogeneity in land surface models; for this study we use the GFDL LM4 model—the land component of the GFDL Earth System Model. To explore HCA and its impacts on the hydrologic system we use a ¼ grid cell in southeastern California as a test site. HCA is used to construct an ensemble of 9 different HRU configurations—each configuration has a different number of HRUs; for each ensemble member LM4 is run between 2002 and 2014 with a 26 year spinup. The analysis of the ensemble of model simulations show that: 1) clustering the high-dimensional environmental data space leads to a robust representation of the role of the physical environment in the coupled water, energy, and carbon cycles at a relatively low number of HRUs; 2) the reduced-order model with around 300 HRUs effectively reproduces the fully distributed model simulation (30 meters) with less than 1/1000 of computational expense; 3) assigning each grid cell of the fully distributed grid to an HRU via HCA enables novel visualization methods for large-scale models—this has significant implications for how these models are applied and evaluated. We will conclude by outlining the potential that this work has within operational prediction systems including numerical weather prediction, Earth System models, and Early Warning systems.
NASA Astrophysics Data System (ADS)
He, L.; Ivanov, V. Y.; Bohrer, G.; Maurer, K.; Vogel, C. S.; Moghaddam, M.
2011-12-01
Vegetation is heterogeneous at different scales, influencing spatially variable energy and water exchanges between land-surface and atmosphere. Current land surface parameterizations of large-scale models consider spatial variability at a scale of a few kilometers and treat vegetation cover as aggregated patches with uniform properties. However, the coupling mechanisms between fine-scale soil moisture, vegetation, and energy fluxes such as evapotranspiration are strongly nonlinear; the aggregation of surface variations may produce biased energy fluxes. This study aims to improve the understanding of the scale impact in atmosphere-biosphere-hydrosphere interactions, which affects predictive capabilities of land surface models. The study uses a high-resolution, physically-based ecohydrological model tRIBS + VEGGIE as a data integration tool to upscale the heterogeneity of canopy distribution resolved at a few meters to the watershed scale. The study was carried out for a spatially heterogeneous, temperate mixed forest environment of Northern Michigan located near the University of Michigan Biological Station (UMBS). Energy and soil water dynamics were simulated at the tree-canopy resolution in the horizontal plane for a small domain (~2 sq. km) located within a footprint of the AmeriFlux tower. A variety of observational data were used to constrain and confirm the model, including a 3-m profile continuous soil moisture dataset and energy flux data (measured at the AmeriFlux tower footprint). A scenario with a spatially uniform canopy, corresponding to the commonly used 'big-leaf' scheme in land surface parameterizations was used to infer the effects of coarse-scale averaging. To gain insights on how heterogeneous canopy and soil moisture interact and contribute to the domain-averaged transpiration, several scenarios of tree-scale leaf area and soil moisture spatial variability were designed. Specifically, for the same mean states, the scenarios of variability of canopy biomass account for the spatial distribution of photosynthesis (and thus the stomatal resistance), the aerodynamic and leaf boundary layer resistances as well as the differential radiation forcing due to tall tree exposure and lateral shading of short trees. The numerical experiments show that by transpiring spatially varying amounts of water, heterogeneous canopies adjust the spatial soil water state to the scaled inverse of the canopy biomass regardless of the initial moisture state. Such a spatial distribution can be further wiped out because of the differential water stress. The aggregation of canopy-scale atmosphere-biosphere-hydrosphere interactions demonstrates non-linear relationship between soil moisture and evapotranspiration, influencing domain-averaged energy fluxes.
DIMP: an interoperable solution for software integration and product data exchange
NASA Astrophysics Data System (ADS)
Wang, Xi Vincent; Xu, Xun William
2012-08-01
Today, globalisation has become one of the main trends of manufacturing business that has led to a world-wide decentralisation of resources amongst not only individual departments within one company but also business partners. However, despite the development and improvement in the last few decades, difficulties in information exchange and sharing still exist in heterogeneous applications environments. This article is divided into two parts. In the first part, related research work and integrating solutions are reviewed and discussed. The second part introduces a collaborative environment called distributed interoperable manufacturing platform, which is based on a module-based, service-oriented architecture (SOA). In the platform, the STEP-NC data model is used to facilitate data-exchange among heterogeneous CAD/CAM/CNC systems.
Performance of a Heterogeneous Grid Partitioner for N-body Applications
NASA Technical Reports Server (NTRS)
Harvey, Daniel J.; Das, Sajal K.; Biswas, Rupak
2003-01-01
An important characteristic of distributed grids is that they allow geographically separated multicomputers to be tied together in a transparent virtual environment to solve large-scale computational problems. However, many of these applications require effective runtime load balancing for the resulting solutions to be viable. Recently, we developed a latency tolerant partitioner, called MinEX, specifically for use in distributed grid environments. This paper compares the performance of MinEX to that of METIS, a popular multilevel family of partitioners, using simulated heterogeneous grid configurations. A solver for the classical N-body problem is implemented to provide a framework for the comparisons. Experimental results show that MinEX provides superior quality partitions while being competitive to METIS in speed of execution.
A 3D Hydrodynamic Model for Heterogeneous Biofilms with Antimicrobial Persistence
2014-01-01
antimicrobial agents, providing a useful tool for analyzing the mechanism of biofilm persistence to antimicrobial agents in an aqueous environment. The numerical...mecha- nism of biofilm persistence to antimicrobial agents in an aqueous environment. The numerical result also confirms that the periodic dosing...We model the biofilm together with its surrounding aqueous environment as a mixture of complex fluids. The biofilm is consisted of the biomass
Fourie, Nicolaas H; Jolly, Clifford J; Phillips-Conroy, Jane E; Brown, Janine L; Bernstein, Robin M
2015-07-01
Male olive (Papio anubis) and hamadryas (P. hamadryas) baboons have distinctive sociobehavioral and physical characteristics. In the Awash National Park, Ethiopia, a hybrid population at the contact zone between these two species, exhibits heterogeneous sociobehavioral and physical characteristics. The ambiguity of the hybrid social environment and disruption of parental stress genotypes may be sources of physiological stress for hybrids. We examined levels of chronic stress among males of the three populations and tested the prediction that chronic cortisol levels would be higher among the hybrids. Animals were captured, sampled, and released during the wet season, and a hair sample was taken for assay. Cortisol was extracted from 182 hair samples with methanol and quantified by ELISA. We included age, age class, rainfall variation, and species affiliation in models examining variation in hair cortisol levels. Species and age significantly contributed to models explaining variation in hair cortisol. Infant hypercortisolism was observed in all three groups, and a decline in cortisol through juvenile and adolescent stages, with a subsequent rise in adulthood. This rise occurred earliest in hamadryas, corroborating other evidence of the precocious development of hamadryas baboons. As expected, hybrids had significantly elevated hair cortisol compared with olive baboons and hamadryas, irrespective of age, except for very young animals. Infant hypercortisolism was also less pronounced among hybrids. Species differences and age-related differences in cortisol levels suggest a dysregulated cortisol phenotype in hybrids, and possibly reflect some form of hybrid disadvantage. More work will be required to disentangle the effects of genetic factors and the social environment.
The Roles of Sea-Ice, Light and Sedimentation in Structuring Shallow Antarctic Benthic Communities
Clark, Graeme F.; Stark, Jonathan S.; Palmer, Anne S.; Riddle, Martin J.; Johnston, Emma L.
2017-01-01
On polar coasts, seasonal sea-ice duration strongly influences shallow marine environments by affecting environmental conditions, such as light, sedimentation, and physical disturbance. Sea-ice dynamics are changing in response to climate, but there is limited understanding of how this might affect shallow marine environments and benthos. Here we present a unique set of physical and biological data from a single region of Antarctic coast, and use it to gain insights into factors shaping polar benthic communities. At sites encompassing a gradient of sea-ice duration, we measured temporal and spatial variation in light and sedimentation and hard-substrate communities at different depths and substrate orientations. Biological trends were highly correlated with sea-ice duration, and appear to be driven by opposing gradients in light and sedimentation. As sea-ice duration decreased, there was increased light and reduced sedimentation, and concurrent shifts in community structure from invertebrate to algal dominance. Trends were strongest on shallower, horizontal surfaces, which are most exposed to light and sedimentation. Depth and substrate orientation appear to mediate exposure of benthos to these factors, thereby tempering effects of sea-ice and increasing biological heterogeneity. However, while light and sedimentation both varied spatially with sea-ice, their dynamics differed temporally. Light was sensitive to the site-specific date of sea-ice breakout, whereas sedimentation fluctuated at a regional scale coincident with the summer phytoplankton bloom. Sea-ice duration is clearly the overarching force structuring these shallow Antarctic benthic communities, but direct effects are imposed via light and sedimentation, and mediated by habitat characteristics. PMID:28076438
The Roles of Sea-Ice, Light and Sedimentation in Structuring Shallow Antarctic Benthic Communities.
Clark, Graeme F; Stark, Jonathan S; Palmer, Anne S; Riddle, Martin J; Johnston, Emma L
2017-01-01
On polar coasts, seasonal sea-ice duration strongly influences shallow marine environments by affecting environmental conditions, such as light, sedimentation, and physical disturbance. Sea-ice dynamics are changing in response to climate, but there is limited understanding of how this might affect shallow marine environments and benthos. Here we present a unique set of physical and biological data from a single region of Antarctic coast, and use it to gain insights into factors shaping polar benthic communities. At sites encompassing a gradient of sea-ice duration, we measured temporal and spatial variation in light and sedimentation and hard-substrate communities at different depths and substrate orientations. Biological trends were highly correlated with sea-ice duration, and appear to be driven by opposing gradients in light and sedimentation. As sea-ice duration decreased, there was increased light and reduced sedimentation, and concurrent shifts in community structure from invertebrate to algal dominance. Trends were strongest on shallower, horizontal surfaces, which are most exposed to light and sedimentation. Depth and substrate orientation appear to mediate exposure of benthos to these factors, thereby tempering effects of sea-ice and increasing biological heterogeneity. However, while light and sedimentation both varied spatially with sea-ice, their dynamics differed temporally. Light was sensitive to the site-specific date of sea-ice breakout, whereas sedimentation fluctuated at a regional scale coincident with the summer phytoplankton bloom. Sea-ice duration is clearly the overarching force structuring these shallow Antarctic benthic communities, but direct effects are imposed via light and sedimentation, and mediated by habitat characteristics.
42 CFR 485.723 - Condition of participation: Physical environment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 5 2012-10-01 2012-10-01 false Condition of participation: Physical environment... Providers of Outpatient Physical Therapy and Speech-Language Pathology Services § 485.723 Condition of participation: Physical environment. The building housing the organization is constructed, equipped, and...
42 CFR 485.723 - Condition of participation: Physical environment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 5 2011-10-01 2011-10-01 false Condition of participation: Physical environment... Providers of Outpatient Physical Therapy and Speech-Language Pathology Services § 485.723 Condition of participation: Physical environment. The building housing the organization is constructed, equipped, and...
42 CFR 485.723 - Condition of participation: Physical environment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 5 2014-10-01 2014-10-01 false Condition of participation: Physical environment... Providers of Outpatient Physical Therapy and Speech-Language Pathology Services § 485.723 Condition of participation: Physical environment. The building housing the organization is constructed, equipped, and...
42 CFR 485.723 - Condition of participation: Physical environment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 5 2013-10-01 2013-10-01 false Condition of participation: Physical environment... Providers of Outpatient Physical Therapy and Speech-Language Pathology Services § 485.723 Condition of participation: Physical environment. The building housing the organization is constructed, equipped, and...
Model of Distributed Learning Objects Repository for a Heterogenic Internet Environment
ERIC Educational Resources Information Center
Kaczmarek, Jerzy; Landowska, Agnieszka
2006-01-01
In this article, an extension of the existing structure of learning objects is described. The solution addresses the problem of the access and discovery of educational resources in the distributed Internet environment. An overview of e-learning standards, reference models, and problems with educational resources delivery is presented. The paper…
Ai, Dexiecuo; Gravel, Dominique; Chu, Chengjin; Wang, Gang
2013-01-01
The correspondence between species distribution and the environment depends on species’ ability to track favorable environmental conditions (via dispersal) and to maintain competitive hierarchy against the constant influx of migrants (mass effect) and demographic stochasticity (ecological drift). Here we report a simulation study of the influence of landscape structure on species distribution. We consider lottery competition for space in a spatially heterogeneous environment, where the landscape is represented as a network of localities connected by dispersal. We quantified the contribution of neutrality and species sorting to their spatial distribution. We found that neutrality increases and the strength of species-sorting decreases with the centrality of a community in the landscape when the average dispersal among communities is low, whereas the opposite was found at elevated dispersal. We also found that the strength of species-sorting increases with environmental heterogeneity. Our results illustrate that spatial structure of the environment and of dispersal must be taken into account for understanding species distribution. We stress the importance of spatial geographic structure on the relative importance of niche vs. neutral processes in controlling community dynamics. PMID:23874815
Ai, Dexiecuo; Gravel, Dominique; Chu, Chengjin; Wang, Gang
2013-01-01
The correspondence between species distribution and the environment depends on species' ability to track favorable environmental conditions (via dispersal) and to maintain competitive hierarchy against the constant influx of migrants (mass effect) and demographic stochasticity (ecological drift). Here we report a simulation study of the influence of landscape structure on species distribution. We consider lottery competition for space in a spatially heterogeneous environment, where the landscape is represented as a network of localities connected by dispersal. We quantified the contribution of neutrality and species sorting to their spatial distribution. We found that neutrality increases and the strength of species-sorting decreases with the centrality of a community in the landscape when the average dispersal among communities is low, whereas the opposite was found at elevated dispersal. We also found that the strength of species-sorting increases with environmental heterogeneity. Our results illustrate that spatial structure of the environment and of dispersal must be taken into account for understanding species distribution. We stress the importance of spatial geographic structure on the relative importance of niche vs. neutral processes in controlling community dynamics.
Dynamic and adaptive policy models for coalition operations
NASA Astrophysics Data System (ADS)
Verma, Dinesh; Calo, Seraphin; Chakraborty, Supriyo; Bertino, Elisa; Williams, Chris; Tucker, Jeremy; Rivera, Brian; de Mel, Geeth R.
2017-05-01
It is envisioned that the success of future military operations depends on the better integration, organizationally and operationally, among allies, coalition members, inter-agency partners, and so forth. However, this leads to a challenging and complex environment where the heterogeneity and dynamism in the operating environment intertwines with the evolving situational factors that affect the decision-making life cycle of the war fighter. Therefore, the users in such environments need secure, accessible, and resilient information infrastructures where policy-based mechanisms adopt the behaviours of the systems to meet end user goals. By specifying and enforcing a policy based model and framework for operations and security which accommodates heterogeneous coalitions, high levels of agility can be enabled to allow rapid assembly and restructuring of system and information resources. However, current prevalent policy models (e.g., rule based event-condition-action model and its variants) are not sufficient to deal with the highly dynamic and plausibly non-deterministic nature of these environments. Therefore, to address the above challenges, in this paper, we present a new approach for policies which enables managed systems to take more autonomic decisions regarding their operations.
Grain of environment explains variation in the strength of genotype × environment interaction.
Rodríguez, R L
2012-09-01
Theory predicts that genetic variation in phenotypic plasticity (genotype × environment interaction or G × E) should be eroded by selection acting across environments. However, it appears that G × E is often maintained under selection, although not universally. This variation in the presence and strength of G × E requires explanation. Here I ask whether the explanation may lie in the grain of the environment at which G × E is expressed. The grain (or grain size) of the environment refers to the scale of environmental heterogeneity relative to generation time - that is, relative to the window of operation of selection - with higher rates of heterogeneity occurring in finer-grained environments. The hypothesis that the grain of the environment explains variation in the expression of G × E encapsulates variation in the power of selection to shape reaction norms: selection should be able to erode G × E in fine-grained environments but lose its power as the grain becomes coarser. I survey studies of G × E in sexual traits and demonstrate that the strength of G × E varies with the grain of the environment across which it is expressed, with G × E being stronger in coarser-grained environments. This result elucidates when G × E is most likely to be sustained in the reaction norms of fitness-related traits and when its evolutionary consequences will be most pronounced. © 2012 The Author. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.
42 CFR 460.72 - Physical environment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 42 Public Health 4 2010-10-01 2010-10-01 false Physical environment. 460.72 Section 460.72 Public...) PACE Administrative Requirements § 460.72 Physical environment. (a) Space and equipment—(1) Safe design..., sanitary, functional, accessible, and comfortable environment for the delivery of services that protects...
NASA Technical Reports Server (NTRS)
Donnellan, Andrea; Parker, Jay W.; Lyzenga, Gregory A.; Granat, Robert A.; Norton, Charles D.; Rundle, John B.; Pierce, Marlon E.; Fox, Geoffrey C.; McLeod, Dennis; Ludwig, Lisa Grant
2012-01-01
QuakeSim 2.0 improves understanding of earthquake processes by providing modeling tools and integrating model applications and various heterogeneous data sources within a Web services environment. QuakeSim is a multisource, synergistic, data-intensive environment for modeling the behavior of earthquake faults individually, and as part of complex interacting systems. Remotely sensed geodetic data products may be explored, compared with faults and landscape features, mined by pattern analysis applications, and integrated with models and pattern analysis applications in a rich Web-based and visualization environment. Integration of heterogeneous data products with pattern informatics tools enables efficient development of models. Federated database components and visualization tools allow rapid exploration of large datasets, while pattern informatics enables identification of subtle, but important, features in large data sets. QuakeSim is valuable for earthquake investigations and modeling in its current state, and also serves as a prototype and nucleus for broader systems under development. The framework provides access to physics-based simulation tools that model the earthquake cycle and related crustal deformation. Spaceborne GPS and Inter ferometric Synthetic Aperture (InSAR) data provide information on near-term crustal deformation, while paleoseismic geologic data provide longerterm information on earthquake fault processes. These data sources are integrated into QuakeSim's QuakeTables database system, and are accessible by users or various model applications. UAVSAR repeat pass interferometry data products are added to the QuakeTables database, and are available through a browseable map interface or Representational State Transfer (REST) interfaces. Model applications can retrieve data from Quake Tables, or from third-party GPS velocity data services; alternatively, users can manually input parameters into the models. Pattern analysis of GPS and seismicity data has proved useful for mid-term forecasting of earthquakes, and for detecting subtle changes in crustal deformation. The GPS time series analysis has also proved useful as a data-quality tool, enabling the discovery of station anomalies and data processing and distribution errors. Improved visualization tools enable more efficient data exploration and understanding. Tools provide flexibility to science users for exploring data in new ways through download links, but also facilitate standard, intuitive, and routine uses for science users and end users such as emergency responders.
2013-01-01
Background The physical and social environments at schools are related to students’ moderate-to-vigorous physical activity (MVPA) levels. The purpose of this study was to explore the interactive effects of the school physical environment and school social capital on the MVPA of students while at school. Methods Data from 18,875 grade 6–10 students from 331 schools who participated in the 2009/10 Canadian Health Behaviour in School-Aged Children survey were analyzed using multi-level regression. Students answered questions on the amount of time they spend in MVPA at school and on their school’s social capital. Administrator reports were used to create a physical activity related physical environment score. Results The school physical environment score was positively associated with student MVPA at school (β = 0.040, p < .005). The association between the school social capital and MVPA was also positive (β = 0.074, p < .001). The difference in physical environments equated to about 20 minutes/week of MVPA for students attending schools with the lowest number of physical environment features and about 40 minutes/week for students attending schools with the lowest school social capital scores by comparison to students attending schools with the highest scores. Conclusions The findings suggest that school social capital may be a more important factor in increasing students MVPA than the school physical environment. The results of this study may help inform interventions aimed at increasing student physical activity levels. PMID:24341628
NASA Astrophysics Data System (ADS)
Niño, Alfonso; Muñoz-Caro, Camelia; Reyes, Sebastián
2015-11-01
The last decade witnessed a great development of the structural and dynamic study of complex systems described as a network of elements. Therefore, systems can be described as a set of, possibly, heterogeneous entities or agents (the network nodes) interacting in, possibly, different ways (defining the network edges). In this context, it is of practical interest to model and handle not only static and homogeneous networks but also dynamic, heterogeneous ones. Depending on the size and type of the problem, these networks may require different computational approaches involving sequential, parallel or distributed systems with or without the use of disk-based data structures. In this work, we develop an Application Programming Interface (APINetworks) for the modeling and treatment of general networks in arbitrary computational environments. To minimize dependency between components, we decouple the network structure from its function using different packages for grouping sets of related tasks. The structural package, the one in charge of building and handling the network structure, is the core element of the system. In this work, we focus in this API structural component. We apply an object-oriented approach that makes use of inheritance and polymorphism. In this way, we can model static and dynamic networks with heterogeneous elements in the nodes and heterogeneous interactions in the edges. In addition, this approach permits a unified treatment of different computational environments. Tests performed on a C++11 version of the structural package show that, on current standard computers, the system can handle, in main memory, directed and undirected linear networks formed by tens of millions of nodes and edges. Our results compare favorably to those of existing tools.
Couriot, Ophélie; Hewison, A J Mark; Saïd, Sonia; Cagnacci, Francesca; Chamaillé-Jammes, Simon; Linnell, John D C; Mysterud, Atle; Peters, Wibke; Urbano, Ferdinando; Heurich, Marco; Kjellander, Petter; Nicoloso, Sandro; Berger, Anne; Sustr, Pavel; Kroeschel, Max; Soennichsen, Leif; Sandfort, Robin; Gehr, Benedikt; Morellet, Nicolas
2018-05-01
Much research on large herbivore movement has focused on the annual scale to distinguish between resident and migratory tactics, commonly assuming that individuals are sedentary at the within-season scale. However, apparently sedentary animals may occupy a number of sub-seasonal functional home ranges (sfHR), particularly when the environment is spatially heterogeneous and/or temporally unpredictable. The roe deer (Capreolus capreolus) experiences sharply contrasting environmental conditions due to its widespread distribution, but appears markedly sedentary over much of its range. Using GPS monitoring from 15 populations across Europe, we evaluated the propensity of this large herbivore to be truly sedentary at the seasonal scale in relation to variation in environmental conditions. We studied movement using net square displacement to identify the possible use of sfHR. We expected that roe deer should be less sedentary within seasons in heterogeneous and unpredictable environments, while migratory individuals should be seasonally more sedentary than residents. Our analyses revealed that, across the 15 populations, all individuals adopted a multi-range tactic, occupying between two and nine sfHR during a given season. In addition, we showed that (i) the number of sfHR was only marginally influenced by variation in resource distribution, but decreased with increasing sfHR size; and (ii) the distance between sfHR increased with increasing heterogeneity and predictability in resource distribution, as well as with increasing sfHR size. We suggest that the multi-range tactic is likely widespread among large herbivores, allowing animals to track spatio-temporal variation in resource distribution and, thereby, to cope with changes in their local environment.
ERIC Educational Resources Information Center
Petrov, Mark G.
2016-01-01
Thermally activated analysis of experimental data allows considering about the structure features of each material. By modelling the structural heterogeneity of materials by means of rheological models, general and local plastic flows in metals and alloys can be described over. Based on physical fundamentals of failure and deformation of materials…
ERIC Educational Resources Information Center
Grimminger-Seidensticker, Elke; Möhwald, Aiko
2017-01-01
Background: Due to migration processes, cultural diversity and strangeness are becoming characteristics of modern society. The competence to handle this heterogeneity--the so-called intercultural competence--is a key competence for all children and youths. Sports and physical education (PE) are often considered as a particular field for enhancing…
ERIC Educational Resources Information Center
Barker, D.; Barker-Ruchti, N.; Gerber, M.; Gerlach, E.; Sattler, S.; Pühse, U.
2014-01-01
While understanding young people has never been easy, migration trends make it increasingly difficult. Many classrooms have become culturally heterogeneous and teachers are often faced with pupils with diverse linguistic and cultural heritages. Current scholarship suggests that as a discipline, physical education has not adapted to this diversity.…
Macrogenomic engineering via modulation of the scaling of chromatin packing density.
Almassalha, Luay M; Bauer, Greta M; Wu, Wenli; Cherkezyan, Lusik; Zhang, Di; Kendra, Alexis; Gladstein, Scott; Chandler, John E; VanDerway, David; Seagle, Brandon-Luke L; Ugolkov, Andrey; Billadeau, Daniel D; O'Halloran, Thomas V; Mazar, Andrew P; Roy, Hemant K; Szleifer, Igal; Shahabi, Shohreh; Backman, Vadim
2017-11-01
Many human diseases result from the dysregulation of the complex interactions between tens to thousands of genes. However, approaches for the transcriptional modulation of many genes simultaneously in a predictive manner are lacking. Here, through the combination of simulations, systems modelling and in vitro experiments, we provide a physical regulatory framework based on chromatin packing-density heterogeneity for modulating the genomic information space. Because transcriptional interactions are essentially chemical reactions, they depend largely on the local physical nanoenvironment. We show that the regulation of the chromatin nanoenvironment allows for the predictable modulation of global patterns in gene expression. In particular, we show that the rational modulation of chromatin density fluctuations can lead to a decrease in global transcriptional activity and intercellular transcriptional heterogeneity in cancer cells during chemotherapeutic responses to achieve near-complete cancer cell killing in vitro. Our findings represent a 'macrogenomic engineering' approach to modulating the physical structure of chromatin for whole-scale transcriptional modulation.
42 CFR 403.742 - Condition of participation: Physical environment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 2 2014-10-01 2014-10-01 false Condition of participation: Physical environment... Institutions-Benefits, Conditions of Participation, and Payment § 403.742 Condition of participation: Physical..., and the public. (a) Standard: Buildings. The physical plant and the overall environment must be...
42 CFR 403.742 - Condition of participation: Physical environment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 2 2012-10-01 2012-10-01 false Condition of participation: Physical environment... Institutions-Benefits, Conditions of Participation, and Payment § 403.742 Condition of participation: Physical..., and the public. (a) Standard: Buildings. The physical plant and the overall environment must be...
42 CFR 403.742 - Condition of participation: Physical environment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 2 2011-10-01 2011-10-01 false Condition of participation: Physical environment... Institutions-Benefits, Conditions of Participation, and Payment § 403.742 Condition of participation: Physical..., and the public. (a) Standard: Buildings. The physical plant and the overall environment must be...
42 CFR 403.742 - Condition of participation: Physical environment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 2 2013-10-01 2013-10-01 false Condition of participation: Physical environment... Institutions-Benefits, Conditions of Participation, and Payment § 403.742 Condition of participation: Physical..., and the public. (a) Standard: Buildings. The physical plant and the overall environment must be...
Adane, A A; Mishra, G D; Tooth, L R
2016-11-01
Maternal obesity, usually associated with the adverse birth outcomes, has been a serious public health concern. Studies examining its effect on the physical and cognitive development of children have only recently emerged and the findings are inconsistent. This review aimed to systematically examine the role of maternal obesity on children's physical and cognitive development using the available evidence. The CINAHL, EMBASE, PSYCINFO, PUBMED and SCOPUS databases were searched. Studies addressing children's (⩽12 years) physical and cognitive development as outcome and maternal pre-pregnancy body mass index as an exposure were included. Data were extracted and evaluated for quality by two independent reviewers. A total of 17 articles were eligible for this systematic review; 10 of them were birth cohorts from the USA. Nine of the 14 studies supported an adverse association between maternal pre-pregnancy obesity and childhood cognitive development. A few studies also demonstrated a negative association between the maternal obesity and gross motor function in children (5 of 10), but not with fine motor function (none out of five studies). Whether the observed negative association between the maternal obesity and children's cognitive and gross motor abilities is casual or due to residual confounding effects is unclear. The current evidence is based on a limited number of studies with heterogeneous measurement scales and obesity definition. From the available evidence, it seems that exposure to maternal pre-pregnancy obesity in the intrauterine environment has a detrimental effect on children's cognitive development. However, evidence of the association between the maternal obesity and physical development of children is too scarce to offer a conclusion. More research work is required to delineate the intrauterine effect of the maternal obesity from the residual confounding effects.
NASA Astrophysics Data System (ADS)
Chen, X.; Zachara, J. M.; Vermeul, V. R.; Freshley, M.; Hammond, G. E.
2015-12-01
The behavior of a persistent uranium plume in an extended groundwater- river water (GW-SW) interaction zone at the DOE Hanford site is dominantly controlled by river stage fluctuations in the adjacent Columbia River. The plume behavior is further complicated by substantial heterogeneity in physical and geochemical properties of the host aquifer sediments. Multi-scale field and laboratory experiments and reactive transport modeling were integrated to understand the complex plume behavior influenced by highly variable hydrologic and geochemical conditions in time and space. In this presentation we (1) describe multiple data sets from field-scale uranium adsorption and desorption experiments performed at our experimental well-field, (2) develop a reactive transport model that incorporates hydrologic and geochemical heterogeneities characterized from multi-scale and multi-type datasets and a surface complexation reaction network based on laboratory studies, and (3) compare the modeling and observation results to provide insights on how to refine the conceptual model and reduce prediction uncertainties. The experimental results revealed significant spatial variability in uranium adsorption/desorption behavior, while modeling demonstrated that ambient hydrologic and geochemical conditions and heterogeneities in sediment physical and chemical properties both contributed to complex plume behavior and its persistence. Our analysis provides important insights into the characterization, understanding, modeling, and remediation of groundwater contaminant plumes influenced by surface water and groundwater interactions.
Heterogeneity in chronic fatigue syndrome - empirically defined subgroups from the PACE trial.
Williams, T E; Chalder, T; Sharpe, M; White, P D
2017-06-01
Chronic fatigue syndrome is likely to be a heterogeneous condition. Previous studies have empirically defined subgroups using combinations of clinical and biological variables. We aimed to explore the heterogeneity of chronic fatigue syndrome. We used baseline data from the PACE trial, which included 640 participants with chronic fatigue syndrome. Variable reduction, using a combination of clinical knowledge and principal component analyses, produced a final dataset of 26 variables for 541 patients. Latent class analysis was then used to empirically define subgroups. The most statistically significant and clinically recognizable model comprised five subgroups. The largest, 'core' subgroup (33% of participants), had relatively low scores across all domains and good self-efficacy. A further three subgroups were defined by: the presence of mood disorders (21%); the presence of features of other functional somatic syndromes (such as fibromyalgia or irritable bowel syndrome) (21%); or by many symptoms - a group which combined features of both of the above (14%). The smallest 'avoidant-inactive' subgroup was characterized by physical inactivity, belief that symptoms were entirely physical in nature, and fear that they indicated harm (11%). Differences in the severity of fatigue and disability provided some discriminative validation of the subgroups. In addition to providing further evidence for the heterogeneity of chronic fatigue syndrome, the subgroups identified may aid future research into the important aetiological factors of specific subtypes of chronic fatigue syndrome and the development of more personalized treatment approaches.
Miller, Andrew W; Rodriguez, Derrick R; Honeyman, Bruce D
2013-05-01
Upscaling from bench scale systems to field scale systems incorporates physical and chemical heterogeneities from atomistic up to field scales. Heterogeneities of intermediate scale (~10(-1) m) are impossible to incorporate in a bench scale experiment. To transcend these scale discrepancies, this second in a pair of papers presents results from an intermediate scale, 3-D tank experiment completed using five different particle sizes of uranium contaminated sediment from a former uranium mill field site. The external dimensions of the tank were 2.44 m×0.61 m×0.61 m (L×H×W). The five particle sizes were packed in a heterogeneous manner using roughly 11 cm cubes. Small groundwater wells were installed for spatial characterization of chemical gradients and flow parameters. An approximately six month long bromide tracer test was used for flow field characterization. Within the flow domain, local uranium breakthrough curves exhibited a wide range of behaviors. However, the global effluent breakthrough curve was smooth, and not unlike breakthrough curves observed in column scale experiments. This paper concludes with an inter-tank comparison of all three experimental systems presented in this pair of papers. Although there is a wide range of chemical and physical variability between the three tanks, major chemical constituent behaviors are often quite similar or even identical. Copyright © 2013 Elsevier B.V. All rights reserved.
2011-01-01
Background Empirical evidence suggests that an association between the built environment and physical activity exists. This evidence is mostly derived from cross-sectional studies that do not account for other causal explanations such as neighborhood self-selection. Experimental and quasi-experimental designs can be used to isolate the effect of the built environment on physical activity, but in their absence, statistical techniques that adjust for neighborhood self-selection can be used with cross-sectional data. Previous reviews examining the built environment-physical activity relationship have not differentiated among findings based on study design. To deal with self-selection, we synthesized evidence regarding the relationship between objective measures of the built environment and physical activity by including in our review: 1) cross-sectional studies that adjust for neighborhood self-selection and 2) quasi-experiments. Method In September 2010, we searched for English-language studies on built environments and physical activity from all available years in health, leisure, transportation, social sciences, and geographical databases. Twenty cross-sectional and 13 quasi-experimental studies published between 1996 and 2010 were included in the review. Results Most associations between the built environment and physical activity were in the expected direction or null. Land use mix, connectivity and population density and overall neighborhood design were however, important determinants of physical activity. The built environment was more likely to be associated with transportation walking compared with other types of physical activity including recreational walking. Three studies found an attenuation in associations between built environment characteristics and physical activity after accounting for neighborhood self-selection. Conclusion More quasi-experiments that examine a broader range of environmental attributes in relation to context-specific physical activity and that measure changes in the built environment, neighborhood preferences and their effect on physical activity are needed. PMID:22077952
NASA Astrophysics Data System (ADS)
Yang, Hongyong; Han, Fujun; Zhao, Mei; Zhang, Shuning; Yue, Jun
2017-08-01
Because many networked systems can only be characterized with fractional-order dynamics in complex environments, fractional-order calculus has been studied deeply recently. When diverse individual features are shown in different agents of networked systems, heterogeneous fractional-order dynamics will be used to describe the complex systems. Based on the distinguishing properties of agents, heterogeneous fractional-order multi-agent systems (FOMAS) are presented. With the supposition of multiple leader agents in FOMAS, distributed containment control of FOMAS is studied in directed weighted topologies. By applying Laplace transformation and frequency domain theory of the fractional-order operator, an upper bound of delays is obtained to ensure containment consensus of delayed heterogenous FOMAS. Consensus results of delayed FOMAS in this paper can be extended to systems with integer-order models. Finally, numerical examples are used to verify our results.
Coupled Physics Environment (CouPE) library - Design, Implementation, and Release
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahadevan, Vijay S.
Over several years, high fidelity, validated mono-physics solvers with proven scalability on peta-scale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a unified mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. In this report, we present details on the design decisions and developments on CouPE, an acronym that stands for Coupled Physics Environment that orchestrates a coupled physics solver through the interfaces exposed by MOAB array-based unstructured mesh, both of which are part of SIGMA (Scalable Interfaces for Geometry and Mesh-Based Applications) toolkit.more » The SIGMA toolkit contains libraries that enable scalable geometry and unstructured mesh creation and handling in a memory and computationally efficient implementation. The CouPE version being prepared for a full open-source release along with updated documentation will contain several useful examples that will enable users to start developing their applications natively using the native MOAB mesh and couple their models to existing physics applications to analyze and solve real world problems of interest. An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is also being investigated as part of the NEAMS RPL, to tightly couple neutron transport, thermal-hydraulics and structural mechanics physics under the SHARP framework. This report summarizes the efforts that have been invested in CouPE to bring together several existing physics applications namely PROTEUS (neutron transport code), Nek5000 (computational fluid-dynamics code) and Diablo (structural mechanics code). The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The design of CouPE along with motivations that led to implementation choices are also discussed. The first release of the library will be different from the current version of the code that integrates the components in SHARP and explanation on the need for forking the source base will also be provided. Enhancements in the functionality and improved user guides will be available as part of the release. CouPE v0.1 is scheduled for an open-source release in December 2014 along with SIGMA v1.1 components that provide support for language-agnostic mesh loading, traversal and query interfaces along with scalable solution transfer of fields between different physics codes. The coupling methodology and software interfaces of the library are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the CouPE library.« less
Home sweet home? Home physical environment and inflammation in children
Schmeer, Kammi K.; Yoon, Aimee J.
2016-01-01
The home environment includes important social and physical contexts within which children develop. Poor physical home environments may be a potential source of stress for children through difficult daily experiences. Using a sub-sample from the Los Angeles Family and Neighborhood Survey (N = 425), we consider how the home physical environment affects stress-related immune system dysregulation in children ages 3–18 years. Results indicated that children in poorer quality homes had higher inflammation (measured by C-reactive protein). The associations were particularly strong for younger children. We also found that part of the home physical environment association with CRP worked through increased risk of obesity for children living in low-quality homes. Future research should assess how home physical environments could be improved to reduce stress and improve health outcomes in children. PMID:27712682
Internal and Surface Phenomena in Heterogenous Metal Combustion
NASA Technical Reports Server (NTRS)
Dreizin, Edward L.
1997-01-01
The phenomenon of gas dissolution in burning metals was observed in recent metal combustion studies, but it could not be adequately explained by the traditional metal combustion models. The research reported here addresses heterogeneous metal combustion with emphasis on the processes of oxygen penetration inside burning metal and its influence on the metal combustion rate, temperature history, and disruptive burning. The unique feature of this work is the combination of the microgravity environment with a novel micro-arc generator of monodispersed metal droplets, ensuring repeatable formation and ignition of uniform metal droplets with a controllable initial temperature and velocity. Burning droplet temperature is measured in real time with a three wavelength pyrometer. In addition, particles are rapidly quenched at different combustion times, cross-sectioned, and examined using SEM-based techniques to retrieve the internal composition history of burning metal particles. When the initial velocity of a spherical particle is nearly zero, the microgravity environment makes it possible to study the flame structure, the development of flame nonsymmetry, and correlation of the flame shape with the heterogeneous combustion processes.
Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae
2014-01-01
Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications. PMID:24521942
Combined virtual and real robotic test-bed for single operator control of multiple robots
NASA Astrophysics Data System (ADS)
Lee, Sam Y.-S.; Hunt, Shawn; Cao, Alex; Pandya, Abhilash
2010-04-01
Teams of heterogeneous robots with different dynamics or capabilities could perform a variety of tasks such as multipoint surveillance, cooperative transport and explorations in hazardous environments. In this study, we work with heterogeneous robots of semi-autonomous ground and aerial robots for contaminant localization. We developed a human interface system which linked every real robot to its virtual counterpart. A novel virtual interface has been integrated with Augmented Reality that can monitor the position and sensory information from video feed of ground and aerial robots in the 3D virtual environment, and improve user situational awareness. An operator can efficiently control the real multi-robots using the Drag-to-Move method on the virtual multi-robots. This enables an operator to control groups of heterogeneous robots in a collaborative way for allowing more contaminant sources to be pursued simultaneously. The advanced feature of the virtual interface system is guarded teleoperation. This can be used to prevent operators from accidently driving multiple robots into walls and other objects. Moreover, the feature of the image guidance and tracking is able to reduce operator workload.
Kumar, Pardeep; Ylianttila, Mika; Gurtov, Andrei; Lee, Sang-Gon; Lee, Hoon-Jae
2014-02-11
Robust security is highly coveted in real wireless sensor network (WSN) applications since wireless sensors' sense critical data from the application environment. This article presents an efficient and adaptive mutual authentication framework that suits real heterogeneous WSN-based applications (such as smart homes, industrial environments, smart grids, and healthcare monitoring). The proposed framework offers: (i) key initialization; (ii) secure network (cluster) formation (i.e., mutual authentication and dynamic key establishment); (iii) key revocation; and (iv) new node addition into the network. The correctness of the proposed scheme is formally verified. An extensive analysis shows the proposed scheme coupled with message confidentiality, mutual authentication and dynamic session key establishment, node privacy, and message freshness. Moreover, the preliminary study also reveals the proposed framework is secure against popular types of attacks, such as impersonation attacks, man-in-the-middle attacks, replay attacks, and information-leakage attacks. As a result, we believe the proposed framework achieves efficiency at reasonable computation and communication costs and it can be a safeguard to real heterogeneous WSN applications.
42 CFR 460.72 - Physical environment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 42 Public Health 4 2012-10-01 2012-10-01 false Physical environment. 460.72 Section 460.72 Public...) PACE Administrative Requirements § 460.72 Physical environment. (a) Space and equipment—(1) Safe design... maintained to provide for the physical safety of participants, personnel, and visitors. (ii) Ensure a safe...
42 CFR 460.72 - Physical environment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 42 Public Health 4 2013-10-01 2013-10-01 false Physical environment. 460.72 Section 460.72 Public...) PACE Administrative Requirements § 460.72 Physical environment. (a) Space and equipment—(1) Safe design... maintained to provide for the physical safety of participants, personnel, and visitors. (ii) Ensure a safe...
42 CFR 460.72 - Physical environment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 42 Public Health 4 2011-10-01 2011-10-01 false Physical environment. 460.72 Section 460.72 Public...) PACE Administrative Requirements § 460.72 Physical environment. (a) Space and equipment—(1) Safe design... maintained to provide for the physical safety of participants, personnel, and visitors. (ii) Ensure a safe...
42 CFR 460.72 - Physical environment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 42 Public Health 4 2014-10-01 2014-10-01 false Physical environment. 460.72 Section 460.72 Public...) PACE Administrative Requirements § 460.72 Physical environment. (a) Space and equipment—(1) Safe design... maintained to provide for the physical safety of participants, personnel, and visitors. (ii) Ensure a safe...
Work and Home Neighborhood Design and Physical Activity.
Carlson, Jordan A; Frank, Lawrence D; Ulmer, Jared; Conway, Terry L; Saelens, Brian E; Cain, Kelli L; Sallis, James F
2018-01-01
To investigate relations of perceived worksite neighborhood environments to total physical activity and active transportation, over and above home neighborhood built environments. Observational epidemiologic study. Baltimore, Maryland-Washington, DC, and Seattle-King County, Washington metropolitan areas. One thousand eighty-five adults (mean age = 45.0 [10.2]; 46% women) recruited from 32 neighborhoods stratified by high/low neighborhood income and walkability. The Neighborhood Environment Walkability Survey assessed perceptions of worksite and home neighborhood environments. Accelerometers assessed total moderate-to-vigorous physical activity (MVPA). The International Physical Activity Questionnaire assessed total active transportation and active transportation to and around work. Mixed-effects regression tested relations of home and worksite neighborhood environments to each physical activity outcome, adjusted for demographics. Home and worksite mixed land use and street connectivity had the most consistent positive associations with physical activity outcomes. Worksite traffic and pedestrian safety were also associated with multiple physical activity outcomes. The worksite neighborhood explained additional variance in physical activity outcomes than explained by the home neighborhood. Worksite and home neighborhood environments interacted in explaining active transportation to work, with the greatest impacts occurring when both neighborhoods were activity supportive. Both worksite and home neighborhood environments were independently related to total MVPA and active transportation. Community design policies should target improving the physical activity supportiveness of worksite neighborhood environments and integrating commercial and residential development.
24 CFR 902.44 - Adjustment for physical condition and neighborhood environment.
Code of Federal Regulations, 2014 CFR
2014-04-01
... and neighborhood environment. 902.44 Section 902.44 Housing and Urban Development REGULATIONS RELATING... Operations Indicator § 902.44 Adjustment for physical condition and neighborhood environment. (a) General. In... environment factors are: (1) Physical condition adjustment applies to projects at least 28 years old, based on...
24 CFR 902.44 - Adjustment for physical condition and neighborhood environment.
Code of Federal Regulations, 2011 CFR
2011-04-01
... and neighborhood environment. 902.44 Section 902.44 Housing and Urban Development REGULATIONS RELATING... Operations Indicator § 902.44 Adjustment for physical condition and neighborhood environment. (a) General. In... environment factors are: (1) Physical condition adjustment applies to projects at least 28 years old, based on...
24 CFR 902.44 - Adjustment for physical condition and neighborhood environment.
Code of Federal Regulations, 2012 CFR
2012-04-01
... and neighborhood environment. 902.44 Section 902.44 Housing and Urban Development REGULATIONS RELATING... Operations Indicator § 902.44 Adjustment for physical condition and neighborhood environment. (a) General. In... environment factors are: (1) Physical condition adjustment applies to projects at least 28 years old, based on...
The importance of the food and physical activity environments.
Oppert, Jean-Michel; Charreire, Hélène
2012-01-01
There is increasing interest in identifying characteristics of neighborhood environments (physical, social, economical) that might favor unhealthy dietary and physical activity patterns leading to excess weight at population level. Measurement of characteristics of the physical environment in relation to food and physical activity has greatly improved in recent years. Methods based on assessment of perceptions by residents of their neighborhood or on objective assessment of the actual built environment (such as provided by Geographic Information Systems tools) would benefit to be combined. A number of recent systematic reviews have updated our knowledge on relationships of food and physical activity environments with relevant behaviors and obesity. Available evidence appears to show more consistent evidence of association between built environment characteristics related to physical activity ('walkability' indices, land use mix, variety of transports. . .) with physical activity behavior than with weight status. In contrast, built environment characteristics related to food habits (accessibility to different types of food outlets, availability of healthy foods. . .) would be more consistently associated with weight status than with eating behavior. The need for data from different countries and cultures is emphasized, as much as the importance of transdisciplinary research efforts for translation of these findings into our living environment. Copyright © 2012 Nestec Ltd., Vevey/S. Karger AG, Basel.
Meade, Michelle A; Reed, Karla S; Krause, James S
2016-01-01
Background : Research has shown that employment following spinal cord injury (SCI) is related to health and functioning, with physical health and functioning after SCI frequently identified as a primary barrier to employment. Objective: To examine the relationship between employment and behaviors associated with the management of physical health and functioning as described by individuals with SCI who have been employed post injury. Methods: A qualitative approach using 6 focus groups at 2 sites included 44 participants with SCI who had worked at some time post injury. Heterogeneous and homogeneous groups were created based on specific characteristics, such as education, gender, or race. A semi-structured interview format asked questions about personal, environmental, and policy-related factors influencing employment after SCI. Groups were recorded, transcribed, and entered into NVivo before coding by 2 reviewers. Results: Within the area of behaviors and management of physical health and functioning, 4 overlapping themes were identified: (1) relearning your own body and what it can do; (2) general health and wellness behaviors; (3) communication, education, and advocacy; and (4) secondary conditions and aging. Specific themes articulate the many types of behaviors individuals must master and their impact on return to work as well as on finding, maintaining, and deciding to leave employment. Conclusions: Individuals with SCI who are successfully employed after injury must learn how to perform necessary behaviors to manage health and function in a work environment. The decision to leave employment often appears to be associated with secondary complications and other conditions that occur as persons with SCI age.
Toward an Ising Model of Cancer and Beyond
Torquato, Salvatore
2011-01-01
The holy grail of tumor modeling is to formulate theoretical and computational tools that can be utilized in the clinic to predict neoplastic progression and propose individualized optimal treatment strategies to control cancer growth. In order to develop such a predictive model, one must account for the numerous complex mechanisms involved in tumor growth. Here we review resarch work that we have done toward the development of an “Ising model” of cancer. The Ising model is an idealized statistical-mechanical model of ferromagnetism that is based on simple local-interaction rules, but nonetheless leads to basic insights and features of real magnets, such as phase transitions with a critical point. The review begins with a description of a minimalist four-dimensional (three dimensions in space and one in time) cellular automaton (CA) model of cancer in which healthy cells transition between states (proliferative, hypoxic, and necrotic) according to simple local rules and their present states, which can viewed as a stripped-down Ising model of cancer. This model is applied to model the growth of glioblastoma multiforme, the most malignant of brain cancers. This is followed by a discussion of the extension of the model to study the effect on the tumor dynamics and geometry of a mutated subpopulation. A discussion of how tumor growth is affected by chemotherapeutic treatment, including induced resistance, is then described. How angiogenesis as well as the heterogeneous and confined environment in which a tumor grows is incorporated in the CA model is discussed. The characterization of the level of organization of the invasive network around a solid tumor using spanning trees is subsequently described. Then, we describe open problems and future promising avenues for future research, including the need to develop better molecular-based models that incorporate the true heterogeneous environment over wide range of length and time scales (via imaging data), cell motility, oncogenes, tumor suppressor genes and cell-cell communication. A discussion about the need to bring to bear the powerful machinery of the theory of heterogeneous media to better understand the behavior of cancer in its microenvironment is presented. Finally, we propose the possibility of using optimization techniques, which have been used profitably to understand physical phenomena, in order to devise therapeutic (chemotherapy/radiation) strategies and to understand tumorigenesis itself. PMID:21301063
Effective techniques in healthy eating and physical activity interventions: a meta-regression.
Michie, Susan; Abraham, Charles; Whittington, Craig; McAteer, John; Gupta, Sunjai
2009-11-01
Meta-analyses of behavior change (BC) interventions typically find large heterogeneity in effectiveness and small effects. This study aimed to assess the effectiveness of active BC interventions designed to promote physical activity and healthy eating and investigate whether theoretically specified BC techniques improve outcome. Interventions, evaluated in experimental or quasi-experimental studies, using behavioral and/or cognitive techniques to increase physical activity and healthy eating in adults, were systematically reviewed. Intervention content was reliably classified into 26 BC techniques and the effects of individual techniques, and of a theoretically derived combination of self-regulation techniques, were assessed using meta-regression. Valid outcomes of physical activity and healthy eating. The 122 evaluations (N = 44,747) produced an overall pooled effect size of 0.31 (95% confidence interval = 0.26 to 0.36, I(2) = 69%). The technique, "self-monitoring," explained the greatest amount of among-study heterogeneity (13%). Interventions that combined self-monitoring with at least one other technique derived from control theory were significantly more effective than the other interventions (0.42 vs. 0.26). Classifying interventions according to component techniques and theoretically derived technique combinations and conducting meta-regression enabled identification of effective components of interventions designed to increase physical activity and healthy eating. PsycINFO Database Record (c) 2009 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Jang, Cheng-Shin; Liu, Chen-Wuing
2005-10-01
This study aimed to analyze the contamination potential associated with the reactive transport of nitrate-N and ammonium-N in the Choushui River alluvial fan, Taiwan and to evaluate a risk region in developing a groundwater protection policy in 2021. In this area, an aquifer redox sequence provided a good understanding of the spatial distributions of nitrate-N and ammonium-N and of aerobic and anaerobic environments. Equiprobable hydraulic conductivity ( K) fields reproduced by geostatistical methods characterized the spatial uncertainty of contaminant transport in the heterogeneous aquifer. Nitrogen contamination potential fronts for high and low threshold concentrations based on a 95% risk probability were used to assess different levels of risk. The simulated result reveals that the spatial uncertainty of highly heterogeneous K fields governs the contamination potential assessment of the nitrogen compounds along the regional flow directions. The contamination potential of nitrate-N is more uncertain than that for ammonium-N. The high nitrate-N concentrations (≧ 3 mg/L) are prevalent in the aerobic environment. The low concentration nitrate-N plumes (0.5-3 mg/L) gradually migrate to the mid-fan area and to a maximum distance of 15 km from the aerobic region. The nitrate-N plumes pose a potential human health risk in the aerobic and anaerobic environments. The ammonium-N plumes remain stably confined to the distal-fan and partial mid-fan areas.
Vermeeren, Günter; Joseph, Wout; Martens, Luc
2013-04-01
Assessing the whole-body absorption in a human in a realistic environment requires a statistical approach covering all possible exposure situations. This article describes the development of a statistical multi-path exposure method for heterogeneous realistic human body models. The method is applied for the 6-year-old Virtual Family boy (VFB) exposed to the GSM downlink at 950 MHz. It is shown that the whole-body SAR does not differ significantly over the different environments at an operating frequency of 950 MHz. Furthermore, the whole-body SAR in the VFB for multi-path exposure exceeds the whole-body SAR for worst-case single-incident plane wave exposure by 3.6%. Moreover, the ICNIRP reference levels are not conservative with the basic restrictions in 0.3% of the exposure samples for the VFB at the GSM downlink of 950 MHz. The homogeneous spheroid with the dielectric properties of the head suggested by the IEC underestimates the absorption compared to realistic human body models. Moreover, the variation in the whole-body SAR for realistic human body models is larger than for homogeneous spheroid models. This is mainly due to the heterogeneity of the tissues and the irregular shape of the realistic human body model compared to homogeneous spheroid human body models. Copyright © 2012 Wiley Periodicals, Inc.
Stans, Steffy E A; Dalemans, Ruth J P; de Witte, Luc P; Smeets, Hester W H; Beurskens, Anna J
2017-12-01
The role of the physical environment in communication between health-care professionals and persons with communication problems is a neglected area. This study provides an overview of factors in the physical environment that play a role in communication during conversations between people who are communication vulnerable and health-care professionals. A scoping review was conducted using the methodological framework of Arksey and O'Malley. The PubMed, PsycINFO, CINAHL and Cochrane Library databases were screened, and a descriptive and thematic analysis was completed. Sixteen publications were included. Six factors in the physical environment play a role in conversations between people who are communication vulnerable and health-care professionals: (1) lighting, (2) acoustic environment, (3) humidity and temperature, (4) setting and furniture placement, (5) written information, and (6) availability of augmentative and alternative communication (AAC) tools. These factors indicated barriers and strategies related to the quality of these conversations. Relatively small and simple strategies to adjust the physical environment (such as adequate lighting, quiet environment, providing pen and paper) can support people who are communication vulnerable to be more involved in conversations. It is recommended that health-care professionals have an overall awareness of the potential influence of environmental elements on conversations. Implications for rehabilitation The physical environment is an important feature in the success or disturbance of communication. Small adjustments to the physical environment in rehabilitation can contribute to a communication-friendly environment for conversations with people who are communication vulnerable. Professionals should consider adjustments with regard to the following factors in the physical environment during conversations with people who are communication vulnerable: lighting, acoustic environment, humidity and temperature, setting and furniture placement, written information, and availability of AAC (augmentative and alternative communication tools).
Su, Meng; Tan, Ya-Yun; Liu, Qing-Min; Ren, Yan-Jun; Kawachi, Ichiro; Li, Li-Ming; Lv, Jun
2014-09-01
Neighborhood built environment may influence residents' physical activity, which in turn, affects their health. This study aimed to determine the associations between perceived built environment and leisure-time physical activity in Hangzhou, China. 1440 participants aged 25-59 were randomly selected from 30 neighborhoods in three types of administrative planning units in Hangzhou. International Physical Activity Questionnaire long form and NEWS-A were used to obtain individual-level data. The China Urban Built Environment Scan Tool was used to objectively assess the neighborhood-level built environment. Multi-level regression was used to explore the relationship between perceived built environment variables and leisure-time physical activities. Data was collected in Hangzhou from June to December in 2012, and was analyzed in May 2013. Significant difference between neighborhood random variations in physical activity was identified (P=0.0134); neighborhood-level differences accounted for 3.0% of the variability in leisure-time physical activity. Male residents who perceived higher scores on access to physical activity destinations reported more involvement in leisure-time physical activity. Higher scores on perception of esthetic quality, and lower on residential density were associated with more time in leisure-time walking in women. The present study demonstrated that perceived urban built environment attributes significantly correlate with leisure-time physical activity in Hangzhou, China. Copyright © 2014. Published by Elsevier Inc.
Impact of Aquifer Heterogeneities on Autotrophic Denitrification.
NASA Astrophysics Data System (ADS)
McCarthy, A.; Roques, C.; Selker, J. S.; Istok, J. D.; Pett-Ridge, J. C.
2015-12-01
Nitrate contamination in groundwater is a big challenge that will need to be addressed by hydrogeologists throughout the world. With a drinking water standard of 10mg/L of NO3-, innovative techniques will need to be pursued to ensure a decrease in drinking water nitrate concentration. At the pumping site scale, the influence and relationship between heterogeneous flow, mixing, and reactivity is not well understood. The purpose of this project is to incorporate both physical and chemical modeling techniques to better understand the effect of aquifer heterogeneities on autotrophic denitrification. We will investigate the link between heterogeneous hydraulic properties, transport, and the rate of autotrophic denitrification. Data collected in previous studies in laboratory experiments and pumping site scale experiments will be used to validate the models. The ultimate objective of this project is to develop a model in which such coupled processes are better understood resulting in best management practices of groundwater.
SNM-DAT: Simulation of a heterogeneous network for nuclear border security
NASA Astrophysics Data System (ADS)
Nemzek, R.; Kenyon, G.; Koehler, A.; Lee, D. M.; Priedhorsky, W.; Raby, E. Y.
2007-08-01
We approach the problem of detecting Special Nuclear Material (SNM) smuggling across open borders by modeling a heterogeneous sensor network using an agent-based simulation. Our simulation SNM Data Analysis Tool (SNM-DAT) combines fixed seismic, metal, and radiation detectors with a mobile gamma spectrometer. Decision making within the simulation determines threat levels by combined signatures. The spectrometer is a limited-availability asset, and is only deployed for substantial threats. "Crossers" can be benign or carrying shielded SNM. Signatures and sensors are physics based, allowing us to model realistic sensor networks. The heterogeneous network provides great gains in detection efficiency compared to a radiation-only system. We can improve the simulation through better sensor and terrain models, additional signatures, and crossers that mimic actual trans-border traffic. We expect further gains in our ability to design sensor networks as we learn the emergent properties of heterogeneous detection, and potential adversary responses.
Photo-induced formation of nitrous acid (HONO) on protein surfaces
NASA Astrophysics Data System (ADS)
Meusel, Hannah; Elshorbany, Yasin; Bartels-Rausch, Thorsten; Selzle, Kathrin; Lelieveld, Jos; Ammann, Markus; Pöschl, Ulrich; Su, Hang; Cheng, Yafang
2014-05-01
The study of nitrous acid (HONO) is of great interest, as the photolysis of HONO leads to the OH radical, which is the most important oxidant in the troposphere. HONO is directly emitted by combustion of fossil fuel and from soil biogenic nitrite (Su et al., 2011), and can also be formed by gas phase reactions of NO and OH and heterogeneous reactions of NO2. Previous atmospheric measurements have shown unexpectedly high HONO concentrations during daytime. Measured mixing ratios were about one order of magnitude higher than model simulations (Kleffmann et al. 2005, Vogel et al. 2003). The additional daytime source of HONO might be attributed to the photolysis of adsorbed nitric acid or heterogeneous photochemistry of NO2 on organic substrates, such as humic acids or polyphenolic compounds (Stemmler et al., 2006), or indirectly through nitration of phenols and subsequent photolysis of nitrophenols (Sosedova et al., 2011, Bejan et al., 2006). An important reactive surface for the heterogeneous formation of HONO could involve proteins, which are ubiquitous in the environment. They are part of coarse biological aerosol particles like pollen grains, fine particles (fragments of pollen, microorganism, plant debris) and dissolved in rainwater, soil and road dust (Miguel et al. 1999). In this project a thin film of bovine serum albumin (BSA), a model protein with 67 kDa and 21 tyrosine residues per molecule, is irradiated and exposed to nitrogen dioxide in humidified nitrogen. The formation of HONO is measured with long path absorption photometry (LOPAP). The generated HONO is in the range of 100 to 1100 ppt depending on light intensity, NO2 concentration and film thickness. Light induced HONO formation on protein surfaces is stable over the 20-hours experiment of irradiation and exposure. On the other hand, light activated proteins reacting with NO2 form nitrated proteins, as detected by liquid chromatography (LC-DAD). Our experiments on tetranitromethane (TNM) nitrated ovalbumin (OVA) also show a clear light induced decomposition of nitrated proteins with HONO identified as one of the major products. This suggests a shortening of the lifetime of nitrated proteins during daytime. Our results indicate an important role of light to the fate of proteins, and through HONO, important OH precursors. Proteins and nitrated proteins on aerosol and ground surfaces may therefore influence the atmospheric chemistry and contribute to the oxidation capacity. References Bejan, I. et al., Physical Chemistry Chemical Physics 2006, 8 (17), 2028-2035. Kleffmann, J. et al., Geophysical Research Letters 2005, 32 (5). Miguel, A. G. et al., Environmental Science & Technology 1999, 33 (23), 4159-4168. Sosedova, Y., et al., Photochemical and Photobiological Sciences 2011, 10, 1680-1690. Stemmler, K. et al., Nature 2006, 440 (7081), 195-198. Su et al., Science 2010, 333, 1616-1618. Vogel, B. et al., Atmospheric Environment 2003, 37 (21), 2957-2966.
de Rooij, Mariëtte; van der Leeden, Marike; Heymans, Martijn W; Holla, Jasmijn F M; Häkkinen, Arja; Lems, Willem F; Roorda, Leo D; Veenhof, Cindy; Sanchez-Ramirez, Diana C; de Vet, Henrica C W; Dekker, Joost
2016-04-01
To systematically summarize the literature on the course of pain in patients with knee osteoarthritis (OA), prognostic factors that predict deterioration of pain, the course of physical functioning, and prognostic factors that predict deterioration of physical functioning in persons with knee OA. A search was conducted in PubMed, CINAHL, Embase, Psych-INFO, and SPORTDiscus up to January 2014. A meta-analysis and a qualitative data synthesis were performed. Of the 58 studies included, 39 were of high quality. High heterogeneity across studies (I(2) >90%) and within study populations (reflected by large SDs of change scores) was found. Therefore, the course of pain and physical functioning was interpreted to be indistinct. We found strong evidence for a number of prognostic factors predicting deterioration in pain (e.g., higher knee pain at baseline, bilateral knee symptoms, and depressive symptoms). We also found strong evidence for a number of prognostic factors predicting deterioration in physical functioning (e.g., worsening in radiographic OA, worsening of knee pain, lower knee extension muscle strength, lower walking speed, and higher comorbidity count). Because of high heterogeneity across studies and within study populations, no conclusions can be drawn with regard to the course of pain and physical functioning. These findings support current research efforts to define subgroups or phenotypes within knee OA populations. Strong evidence was found for knee characteristics, clinical factors, and psychosocial factors as prognostics of deterioration of pain and physical functioning. © 2016, American College of Rheumatology.
Johansson, Maria; Brunt, David
2012-04-01
The primary aim of the present study was to investigate if methods derived from environmental psychology can be used to study the qualities of the physical environment of supported housing facilities for persons with psychiatric disabilities. Three units of analysis were selected: the private area, the common indoor area, and the outdoor area. Expert assessments of 110 features of the physical environment in these units and semantic environmental description of the visual experience of them consistently showed that purpose-built supported housing facilities had more physical features important for high quality residential environments than the non-purpose-built supported housing facilities. The employed methods were thus seen to be able to describe and discriminate between qualities in the physical environment of supported housing facilities. Suggestions for the development of tools for the assessment of the physical environment in supported housing are made.
Djukic, Maja; Kovner, Christine T; Brewer, Carol S; Fatehi, Farida; Greene, William H
2014-08-01
We explored direct and indirect influences of physical work environment on job satisfaction in a nationally representative sample of 1,141 early-career registered nurses. In the fully specified model, physical work environment had a non-significant direct effect on job satisfaction. The path analysis used to test multiple indirect effects showed that physical work environment had a positive indirect effect (p < .05) on job satisfaction through ten variables: negative affectivity, variety, workgroup cohesion, nurse-physician relations, quantitative workload, organizational constraints, distributive justice, promotional opportunity, local and non-local job opportunities. The findings make important contributions to the understanding of the relationship between physical work environment and job satisfaction. The results can inform health care leaders' insight about how physical work environment influences nurses' job satisfaction. © 2014 Wiley Periodicals, Inc.
Reproducibility in Data-Scarce Environments
NASA Astrophysics Data System (ADS)
Darch, P. T.
2016-12-01
Among the usual requirements for reproducibility are large volumes of data and computationally intensive methods. Many fields within earth sciences, however, do not meet these requirements. Data are scarce and data-intensive methods are not well established. How can science be reproducible under these conditions? What changes, both infrastructural and cultural, are needed to advance reproducibility? This paper presents findings from a long-term social scientific case study of an emergent and data scarce field, the deep subseafloor biosphere. This field studies interactions between microbial communities living in the seafloor and the physical environments they inhabit. Factors such as these make reproducibility seem a distant goal for this community: - The relative newness of the field. Serious study began in the late 1990s; - The highly multidisciplinary nature of the field. Researchers come from a range of physical and life science backgrounds; - Data scarcity. Domain researchers produce much of these data in their own onshore laboratories by analyzing cores from international ocean drilling expeditions. Allocation of cores is negotiated between researchers from many fields. These factors interact in multiple ways to inhibit reproducibility: - Incentive structures emphasize producing new data and new knowledge rather than reanalysing extant data; - Only a few steps of laboratory analyses can be reproduced - such as analysis of DNA sequences, but not extraction of DNA from cores -, due to scarcity of cores; - Methodological heterogeneity is a consequence of multidisciplinarity, as researchers bring different techniques from diverse fields. - Few standards for data collection or analysis are available at this early stage of the field; - While datasets from multiple biological and physical phenomena can be integrated into a single workflow, curation tends to be divergent. Each type of dataset may be subject to different disparate policies and contributed to different databases. Our study demonstrates that data scarcity can be particularly acute in emerging scientific fields, and often results from resource scarcity more generally. Reproducibility tends to be a low priority among the many other scientific challenges they face.
ERIC Educational Resources Information Center
Christensen, Keith M.
2010-01-01
Social integration in community is especially important for individuals with disabilities well-being. Although individuals with disabilities reside within the community's physical environment, they are often marginalized in the social environment. This may be the result of individuals with disabilities residing in physical environments that…
Multiprocessor programming environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M.B.; Fornaro, R.
Programming tools and techniques have been well developed for traditional uniprocessor computer systems. The focus of this research project is on the development of a programming environment for a high speed real time heterogeneous multiprocessor system, with special emphasis on languages and compilers. The new tools and techniques will allow a smooth transition for programmers with experience only on single processor systems.
Student and Teacher Perceptions of a Single-Sex Middle School Learning Environment.
ERIC Educational Resources Information Center
Smith, Nancy
A study of a single-sex learning environment was conducted in a public school, Edward Hand Middle School in Lancaster, Pennsylvania; sixth, seventh, and eighth grade students were grouped homogeneously by sex for all major subjects for a period of one semester and grouped heterogeneously for one semester. The study examined the effects that the…
Local auxin production underlies a spatially restricted neighbor-detection response in Arabidopsis
Michaud, Olivier
2017-01-01
Competition for light triggers numerous developmental adaptations known as the “shade-avoidance syndrome” (SAS). Important molecular events underlying specific SAS responses have been identified. However, in natural environments light is often heterogeneous, and it is currently unknown how shading affecting part of a plant leads to local responses. To study this question, we analyzed upwards leaf movement (hyponasty), a rapid adaptation to neighbor proximity, in Arabidopsis. We show that manipulation of the light environment at the leaf tip triggers a hyponastic response that is restricted to the treated leaf. This response is mediated by auxin synthesized in the blade and transported to the petiole. Our results suggest that a strong auxin response in the vasculature of the treated leaf and auxin signaling in the epidermis mediate leaf elevation. Moreover, the analysis of an auxin-signaling mutant reveals signaling bifurcation in the control of petiole elongation versus hyponasty. Our work identifies a mechanism for a local shade response that may pertain to other plant adaptations to heterogeneous environments. PMID:28652343
Caetano, Fabiana A; Dirk, Brennan S; Tam, Joshua H K; Cavanagh, P Craig; Goiko, Maria; Ferguson, Stephen S G; Pasternak, Stephen H; Dikeakos, Jimmy D; de Bruyn, John R; Heit, Bryan
2015-12-01
Our current understanding of the molecular mechanisms which regulate cellular processes such as vesicular trafficking has been enabled by conventional biochemical and microscopy techniques. However, these methods often obscure the heterogeneity of the cellular environment, thus precluding a quantitative assessment of the molecular interactions regulating these processes. Herein, we present Molecular Interactions in Super Resolution (MIiSR) software which provides quantitative analysis tools for use with super-resolution images. MIiSR combines multiple tools for analyzing intermolecular interactions, molecular clustering and image segmentation. These tools enable quantification, in the native environment of the cell, of molecular interactions and the formation of higher-order molecular complexes. The capabilities and limitations of these analytical tools are demonstrated using both modeled data and examples derived from the vesicular trafficking system, thereby providing an established and validated experimental workflow capable of quantitatively assessing molecular interactions and molecular complex formation within the heterogeneous environment of the cell.
Observations and Modeling of Turbulent Air-Sea Coupling in Coastal and Strongly Forced Condition
NASA Astrophysics Data System (ADS)
Ortiz-Suslow, David G.
The turbulent fluxes of momentum, mass, and energy across the ocean-atmosphere boundary are fundamental to our understanding of a myriad of geophysical processes, such as wind-wave generation, oceanic circulation, and air-sea gas transfer. In order to better understand these fluxes, empirical relationships were developed to quantify the interfacial exchange rates in terms of easily observed parameters (e.g., wind speed). However, mounting evidence suggests that these empirical formulae are only valid over the relatively narrow parametric space, i.e. open ocean conditions in light to moderate winds. Several near-surface processes have been observed to cause significant variance in the air-sea fluxes not predicted by the conventional functions, such as a heterogeneous surfaces, swell waves, and wave breaking. Further study is needed to fully characterize how these types of processes can modulate the interfacial exchange; in order to achieve this, a broad investigation into air-sea coupling was undertaken. The primary focus of this work was to use a combination of field and laboratory observations and numerical modeling, in regimes where conventional theories would be expected to breakdown, namely: the nearshore and in very high winds. These seemingly disparate environments represent the marine atmospheric boundary layer at its physical limit. In the nearshore, the convergence of land, air, and sea in a depth-limited domain marks the transition from a marine to a terrestrial boundary layer. Under extreme winds, the physical nature of the boundary layer remains unknown as an intermediate substrate layer, sea spray, develops between the atmosphere and ocean surface. At these ends of the MABL physical spectrum, direct measurements of the near-surface processes were made and directly related to local sources of variance. Our results suggest that the conventional treatment of air-sea fluxes in terms of empirical relationships developed from a relatively narrow set of environmental conditions do not generalize to the coastal and extreme wind environments. This body of work represents a multi-faceted approach to understanding physical air-sea interactions in varied regimes and using a wide array of investigatory methods.
NASA Astrophysics Data System (ADS)
Hu, Mengsu; Wang, Yuan; Rutqvist, Jonny
2015-06-01
One major challenge in modeling groundwater flow within heterogeneous geological media is that of modeling arbitrarily oriented or intersected boundaries and inner material interfaces. The Numerical Manifold Method (NMM) has recently emerged as a promising method for such modeling, in its ability to handle boundaries, its flexibility in constructing physical cover functions (continuous or with gradient jump), its meshing efficiency with a fixed mathematical mesh (covers), its convenience for enhancing approximation precision, and its integration precision, achieved by simplex integration. In this paper, we report on developing and comparing two new approaches for boundary constraints using the NMM, namely a continuous approach with jump functions and a discontinuous approach with Lagrange multipliers. In the discontinuous Lagrange multiplier method (LMM), the material interfaces are regarded as discontinuities which divide mathematical covers into different physical covers. We define and derive stringent forms of Lagrange multipliers to link the divided physical covers, thus satisfying the continuity requirement of the refraction law. In the continuous Jump Function Method (JFM), the material interfaces are regarded as inner interfaces contained within physical covers. We briefly define jump terms to represent the discontinuity of the head gradient across an interface to satisfy the refraction law. We then make a theoretical comparison between the two approaches in terms of global degrees of freedom, treatment of multiple material interfaces, treatment of small area, treatment of moving interfaces, the feasibility of coupling with mechanical analysis and applicability to other numerical methods. The newly derived boundary-constraint approaches are coded into a NMM model for groundwater flow analysis, and tested for precision and efficiency on different simulation examples. We first test the LMM for a Dirichlet boundary and then test both LMM and JFM for an idealized heterogeneous model, comparing the numerical results with analytical solutions. Then we test both approaches for a heterogeneous model and compare the results of hydraulic head and specific discharge. We show that both approaches are suitable for modeling material boundaries, considering high accuracy for the boundary constraints, the capability to deal with arbitrarily oriented or complexly intersected boundaries, and their efficiency using a fixed mathematical mesh.
Stubbs, Brendon; Williams, Julie; Shannon, Jennifer; Gaughran, Fiona; Craig, Tom
2016-12-01
People with serious mental illness (SMI) experience a premature mortality gap of between 10 and 20 years. Interest is growing in the potential for peer support interventions (PSI) to improve the physical health of people with SMI. We conducted a systematic review investigating if PSI can improve the physical health, lifestyle factors, and physical health appointment attendance among people with SMI. A systematic search of major electronic databases was conducted from inception until February 2016 for any article investigating PSI seeking to improve physical health, lifestyle, or physical health appointment attendance. From 1347 initial hits, seven articles were eligible, including three pilot randomized, control trials (interventions: n = 85, controls: n = 81), and four pretest and post-test studies (n = 54). There was considerable heterogeneity in the type of PSI, and the role of the peer support workers (PSW) varied considerably. Three studies found that PSI resulted in insignificant reductions in weight. Evidence from three studies considering the impact of PSI on lifestyle changes was equivocal, with only one study demonstrating that PSI improved self-report physical activity and diet. Evidence regarding physical health appointment attendance was also unclear across four studies. In conclusion, there is inconsistent evidence to support the use of PSW to improve the physical health and promote lifestyle change among people with SMI. The small sample sizes, heterogeneity of interventions, outcome measures, and lack of clarity about the unique contribution of PSW means no definitive conclusions can be made about the benefits of PSW and physical health in SMI. © 2016 Australian College of Mental Health Nurses Inc.
2014-01-01
Background Physical activity has been inversely associated with risk of several cancers. We performed a systematic review and meta-analysis to evaluate the association between physical activity and risk of esophageal cancer (esophageal adenocarcinoma [EAC] and/or esophageal squamous cell carcinoma [ESCC]). Methods We conducted a comprehensive search of bibliographic databases and conference proceedings from inception through February 2013 for observational studies that examined associations between recreational and/or occupational physical activity and esophageal cancer risk. Summary adjusted odds ratio (OR) estimates with 95% confidence intervals (CI) were estimated using the random-effects model. Results The analysis included 9 studies (4 cohort, 5 case–control) reporting 1,871 cases of esophageal cancer among 1,381,844 patients. Meta-analysis demonstrated that the risk of esophageal cancer was 29% lower among the most physically active compared to the least physically active subjects (OR, 0.71; 95% CI, 0.57-0.89), with moderate heterogeneity (I2 = 47%). On histology-specific analysis, physical activity was associated with a 32% decreased risk of EAC (4 studies, 503 cases of EAC; OR, 0.68; 95% CI, 0.55-0.85) with minimal heterogeneity (I2 = 0%). There were only 3 studies reporting the association between physical activity and risk of ESCC with conflicting results, and the meta-analysis demonstrated a null association (OR, 1.10; 95% CI, 0.21-5.64). The results were consistent across study design, geographic location and study quality, with a non-significant trend towards a dose–response relationship. Conclusions Meta-analysis of published observational studies indicates that physical activity may be associated with reduced risk of esophageal adenocarcinoma. Lifestyle interventions focusing on increasing physical activity may decrease the global burden of EAC. PMID:24886123