Sample records for physically reasonable parameters

  1. Planning Robot-Control Parameters With Qualitative Reasoning

    NASA Technical Reports Server (NTRS)

    Peters, Stephen F.

    1993-01-01

    Qualitative-reasoning planning algorithm helps to determine quantitative parameters controlling motion of robot. Algorithm regarded as performing search in multidimensional space of control parameters from starting point to goal region in which desired result of robotic manipulation achieved. Makes use of directed graph representing qualitative physical equations describing task, and interacts, at each sampling period, with history of quantitative control parameters and sensory data, to narrow search for reliable values of quantitative control parameters.

  2. ESTIMATION OF PHYSICAL PROPERTIES AND CHEMICAL REACTIVITY PARAMETERS OF ORGANIC COMPOUNDS

    EPA Science Inventory

    The computer program SPARC (Sparc Performs Automated Reasoning in Chemistry)has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms ...

  3. PREDICTION OF CHEMICAL REACTIVITY PARAMETERS AND PHYSICAL PROPERTIES OF ORGANIC COMPOUNDS FROM MOLECULAR STRUCTURE USING SPARC

    EPA Science Inventory

    The computer program SPARC (SPARC Performs Automated Reasoning in Chemistry) has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms...

  4. Application of physical parameter identification to finite-element models

    NASA Technical Reports Server (NTRS)

    Bronowicki, Allen J.; Lukich, Michael S.; Kuritz, Steven P.

    1987-01-01

    The time domain parameter identification method described previously is applied to TRW's Large Space Structure Truss Experiment. Only control sensors and actuators are employed in the test procedure. The fit of the linear structural model to the test data is improved by more than an order of magnitude using a physically reasonable parameter set. The electro-magnetic control actuators are found to contribute significant damping due to a combination of eddy current and back electro-motive force (EMF) effects. Uncertainties in both estimated physical parameters and modal behavior variables are given.

  5. On the physical parameters for Centaurus X-3 and Hercules X-1.

    NASA Technical Reports Server (NTRS)

    Mccluskey, G. E., Jr.; Kondo, Y.

    1972-01-01

    It is shown how upper and lower limits on the physical parameters of X-ray sources in Centaurus X-3 and Hercules X-1 may be determined from a reasonably simple and straightforward consideration. The basic assumption is that component A (the non-X-ray emitting component) is not a star collapsing toward its Schwartzschild radius (i.e., a black hole). This assumption appears reasonable since component A (the radius of the central occulting star) appears to physically occult component X. If component A is a 'normal' star, both observation and theory indicate that its mass is not greater than about 60 solar masses. The possibility in which component X is either a neutron star or a white dwarf is considered.

  6. Revealing the jet substructure in a compressed spectrum of new physics

    NASA Astrophysics Data System (ADS)

    Han, Chengcheng; Park, Myeonghun

    2016-07-01

    The physics beyond the Standard Model with parameters of the compressed spectrum is well motivated both in the theory side and with phenomenological reasons, especially related to dark matter phenomenology. In this letter, we propose a method to tag soft final state particles from a decaying process of a new particle in this parameter space. By taking a supersymmetric gluino search as an example, we demonstrate how the Large Hadron Collider experimental collaborations can improve sensitivity in these nontrivial search regions.

  7. Quantum energy teleportation in a quantum Hall system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusa, Go; Izumida, Wataru; Hotta, Masahiro

    2011-09-15

    We propose an experimental method for a quantum protocol termed quantum energy teleportation (QET), which allows energy transportation to a remote location without physical carriers. Using a quantum Hall system as a realistic model, we discuss the physical significance of QET and estimate the order of energy gain using reasonable experimental parameters.

  8. Electrophysiological predictors of sudden cardiac death on physical exercise test in young athletes

    NASA Astrophysics Data System (ADS)

    Balykova, L. A.; Kotlyarov, A. A.; Ivyanskiy, S. A.; Shirokova, A. A.; Miheeva, K. A.; Makarov, L. M.

    2017-01-01

    The problem of sudden death of young athletes continues to be actual. Among its reasons, primary electric myocardium diseases along with organic heart troubles (cardiomyopathies, cordites, anomalies of coronary arteries) take an important place. The most frequent variant of channelopathesis long QT syndrome (LQTS). Both inherited and acquired LQTS may be the reason of sudden cardiac death during physical activity and have to be revealed prior to sports admission. LQTS diagnostics in young athletes become problematic due to secondary exercise-related QT prolongation. Physical load test may reveal myocardium electric instability and enhance LQTS diagnostics accuracy without genetic testing. The aim was to study electrophysiological parameters of myocardium repolarization and reveal the signs of electrical instability as predictors of the life-threatening arrhythmias in young athletes during physical exercise test. In conclusion, electrophysiological myocardium parameters during physical exercise test noted to be markers of electrical myocardial instability and in combination with the other Schwartz criteria, was evidenced the inherited or acquired LQTS. QTc prolongation in athletes at the peak of exercise as well as in early recovery period were noted to be additional predictor life-threatening arrhythmias and sudden cardiac death in young athletes

  9. ESTIMATION OF PHYSIOCHEMICAL PROPERTIES OF ORGANIC COMPOUNDS BY SPARC

    EPA Science Inventory

    The computer program SPARC (SPARC Performs Automated Reasoning in Chemistry) has been under development for several years to estimate physical properties and chemical reactivity parameters of organic compounds strictly from molecular structure. SPARC uses computational algorithms...

  10. UK audit of analysis of quantitative parameters from renography data generated using a physical phantom.

    PubMed

    Nijran, Kuldip S; Houston, Alex S; Fleming, John S; Jarritt, Peter H; Heikkinen, Jari O; Skrypniuk, John V

    2014-07-01

    In this second UK audit of quantitative parameters obtained from renography, phantom simulations were used in cases in which the 'true' values could be estimated, allowing the accuracy of the parameters measured to be assessed. A renal physical phantom was used to generate a set of three phantom simulations (six kidney functions) acquired on three different gamma camera systems. A total of nine phantom simulations and three real patient studies were distributed to UK hospitals participating in the audit. Centres were asked to provide results for the following parameters: relative function and time-to-peak (whole kidney and cortical region). As with previous audits, a questionnaire collated information on methodology. Errors were assessed as the root mean square deviation from the true value. Sixty-one centres responded to the audit, with some hospitals providing multiple sets of results. Twenty-one centres provided a complete set of parameter measurements. Relative function and time-to-peak showed a reasonable degree of accuracy and precision in most UK centres. The overall average root mean squared deviation of the results for (i) the time-to-peak measurement for the whole kidney and (ii) the relative function measurement from the true value was 7.7 and 4.5%, respectively. These results showed a measure of consistency in the relative function and time-to-peak that was similar to the results reported in a previous renogram audit by our group. Analysis of audit data suggests a reasonable degree of accuracy in the quantification of renography function using relative function and time-to-peak measurements. However, it is reasonable to conclude that the objectives of the audit could not be fully realized because of the limitations of the mechanical phantom in providing true values for renal parameters.

  11. Applicability of the Newtonian gravity concept inventory to introductory college physics classes

    NASA Astrophysics Data System (ADS)

    Williamson, Kathryn; Prather, Edward E.; Willoughby, Shannon

    2016-06-01

    The study described here extends the applicability of the Newtonian Gravity Concept Inventory (NGCI) to college algebra-based physics classes, beyond the general education astronomy courses for which it was originally developed. The four conceptual domains probed by the NGCI (Directionality, Force Law, Independence of Other Forces, and Threshold) are well suited for investigating students' reasoning about gravity in both populations, making the NGCI a highly versatile instrument. Classical test theory statistical analysis with physics student responses pre-instruction (N = 1,392) and post-instruction (N = 929) from eight colleges and universities across the United States indicate that the NGCI is composed of items with appropriate difficulty and discrimination and is reliable for this population. Also, expert review and student interviews support the NGCI's validity for the physics population. Emergent similarities and differences in how physics students reason about gravity compared to astronomy students are discussed, as well as future directions for analyzing the instrument's item parameters across both populations.

  12. The physical origins of the uncertainty theorem

    NASA Astrophysics Data System (ADS)

    Giese, Albrecht

    2013-10-01

    The uncertainty principle is an important element of quantum mechanics. It deals with certain pairs of physical parameters which cannot be determined to an arbitrary level of precision at the same time. According to the so-called Copenhagen interpretation of quantum mechanics, this uncertainty is an intrinsic property of the physical world. - This paper intends to show that there are good reasons for adopting a different view. According to the author, the uncertainty is not a property of the physical world but rather a limitation of our knowledge about the actual state of a physical process. This view conforms to the quantum theory of Louis de Broglie and to Albert Einstein's interpretation.

  13. Measurement-induced-nonlocality for Dirac particles in Garfinkle-Horowitz-Strominger dilation space-time

    NASA Astrophysics Data System (ADS)

    He, Juan; Xu, Shuai; Ye, Liu

    2016-05-01

    We investigate the quantum correlation via measurement-induced-nonlocality (MIN) for Dirac particles in Garfinkle-Horowitz-Strominger (GHS) dilation space-time. It is shown that the physical accessible quantum correlation decreases as the dilation parameter increases monotonically. Unlike the case of scalar fields, the physical accessible correlation is not zero when the Hawking temperature is infinite owing to the Pauli exclusion principle and the differences between Fermi-Dirac and Bose-Einstein statistics. Meanwhile, the boundary of MIN related to Bell-violation is derived, which indicates that MIN is more general than quantum nonlocality captured by the violation of Bell-inequality. As a by-product, a tenable quantitative relation about MIN redistribution is obtained whatever the dilation parameter is. In addition, it is worth emphasizing that the underlying reason why the physical accessible correlation and mutual information decrease is that they are redistributed to the physical inaccessible regions.

  14. Monitoring of patients treated with lithium for bipolar disorder: an international survey.

    PubMed

    Nederlof, M; Heerdink, E R; Egberts, A C G; Wilting, I; Stoker, L J; Hoekstra, R; Kupka, R W

    2018-04-14

    Adequate monitoring of patients using lithium is needed for optimal dosing and for early identification of patients with (potential) ADEs. The objective was to internationally assess how health care professionals monitor patients treated with lithium for bipolar disorder. Using networks of various professional organizations, an anonymous online survey was conducted among health care professionals prescribing lithium. Target lithium serum levels and frequency of monitoring was assessed together with monitoring of physical and laboratory parameters. Reasons to and not to monitor and use of guidelines and institutional protocols, and local monitoring systems were investigated. The survey was completed by 117 health care professionals incorporating responses from twenty-four countries. All prescribers reported to monitor lithium serum levels on a regular basis, with varying target ranges. Almost all (> 97%) monitored thyroid and renal function before start and during maintenance treatment. Reported monitoring of other laboratory and physical parameters was variable. The majority of respondents (74%) used guidelines or institutional protocols for monitoring. In general, the prescriber was responsible for monitoring, had to request every monitoring parameter separately and only a minority of patients was automatically invited. Lithium serum levels, renal and thyroid function were monitored by (almost) all physicians. However, there was considerable variation in other monitoring parameters. Our results help to understand why prescribers of lithium monitor patients and what their main reasons are not to monitor patients using lithium.

  15. The physical foundation of FN = kh(3/2) for conical/pyramidal indentation loading curves.

    PubMed

    Kaupp, G

    2016-01-01

    A physical deduction of the FN = kh(3/2) relation (where FN is normal force, k penetration resistance, and h penetration depth) for conical/pyramidal indentation loading curves has been achieved on the basis of elementary mathematics. The indentation process couples the productions of volume and pressure to the displaced material that often partly plasticizes due to such pressure. As the pressure/plasticizing depends on the indenter volume, it follows that FN = FNp(1/3) · FNV(2/3), where the index p stands for pressure/plasticizing and V for indentation volume. FNp does not contribute to the penetration, only FNV. The exponent 2/3 on FNV shows that while FN is experimentally applied; only FN(2/3) is responsible for the penetration depth h. Thus, FN = kh(3/2) is deduced and the physical reason is the loss of FN(1/3) for the depth. Unfortunately, this has not been considered in teaching, textbooks, and the previous deduction of numerous common mechanical parameters, when the Love/Sneddon deductions of an exponent 2 on h were accepted and applied. The various unexpected experimental verifications and applications of the correct exponent 3/2 are mentioned and cited. Undue mechanical parameters require correction not only for safety reasons. © Wiley Periodicals, Inc.

  16. Bloom - Microbial Bebop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larsen, Peter

    2012-10-01

    This musical composition was created from data of microbes (bacteria, algae and other microorganisms) sampled in the English Channel. Argonne National Laboratory biologist Peter Larsen created the songs as a unique way to present and comprehend large datasets. This composition highlights seasonal patterns in marine physical parameters at the L4 Station. The chords are generated from seasonal changes in photosynthetically active radiation. The melody of each measure is comprised of eight notes, each mapped to a physical environmental parameter, in the following order: temperature, soluble reactive phosphate, nitrate, nitrite, saline, silicate and chlorophyll A concentrations. More information at http://www.anl.gov/articles/songs-key... Photomore » of cyanobacteria colonies is courtesy Specious Reasons (http://www.flickr.com/photos/28594931...) at Flickr via Creative Commons.« less

  17. Interpreting the Weibull fitting parameters for diffusion-controlled release data

    NASA Astrophysics Data System (ADS)

    Ignacio, Maxime; Chubynsky, Mykyta V.; Slater, Gary W.

    2017-11-01

    We examine the diffusion-controlled release of molecules from passive delivery systems using both analytical solutions of the diffusion equation and numerically exact Lattice Monte Carlo data. For very short times, the release process follows a √{ t } power law, typical of diffusion processes, while the long-time asymptotic behavior is exponential. The crossover time between these two regimes is determined by the boundary conditions and initial loading of the system. We show that while the widely used Weibull function provides a reasonable fit (in terms of statistical error), it has two major drawbacks: (i) it does not capture the correct limits and (ii) there is no direct connection between the fitting parameters and the properties of the system. Using a physically motivated interpolating fitting function that correctly includes both time regimes, we are able to predict the values of the Weibull parameters which allows us to propose a physical interpretation.

  18. The dynamics of variability in introductory physics students' thinking: Examples from kinematics

    NASA Astrophysics Data System (ADS)

    Frank, Brian W.

    Physics education research has long emphasized the need for physics instruction to address students' existing intuitions about the physical world as an integral part of learning physics. Researchers, however, have not reached a consensus-view concerning the nature of this intuitive knowledge or the specific role that it does (or might) play in physics learning. While many early characterizations of student misconceptions cast students' intuitive thinking as largely static, unitary in structure, and counter-productive for the purpose of learning correct physics, much of contemporary research supports a conceptualization of intuitive thought as dynamic, manifold in structure, and generative in the development of expertise. This dissertation contributes to ongoing inquiry into the nature of students' intuitive thought and its role in learning physics through the pursuit of dynamic systems characterizations of student reasoning, with a particular focus on how students settle into and shift among multiple patterns of reasoning about motion. In one thread of this research, simple experimental designs are used to demonstrate how individual students can be predictably biased toward and away from different ways of thinking about the same physical situation when specific parameters of questions posed to students are varied. I qualitatively model students' thinking in terms of the activations and interactions among fine-grained intuitive knowledge and static features of the context. In a second thread of this research, case studies of more dynamic shifts in students' conceptual reasoning are developed from videos of student discussions during collaborative classroom activities. These show multiple local stabilities of students' thinking as well, with evidence of group-level dynamics shifting on the time scale of minutes. This work contributes to existing research paradigms that aim to characterize student thinking in physics education in two important ways: (1) through the use of methods that allow for forms of empirical accountability that connect descriptive models of student thinking to experimental data, and (2) through the theoretical development of explanatory mechanisms that account for patterns in students' reasoning at multiple levels of analysis.

  19. Effects of preparation steps on the physical parameters and electromechanical properties of IPMC actuators

    NASA Astrophysics Data System (ADS)

    Wang, Yanjie; Zhu, Zicai; Chen, Hualing; Luo, Bin; Chang, Longfei; Wang, Yongquan; Li, Dichen

    2014-12-01

    The electromechanical properties of ionic polymer-metal composites (IPMC) are affected by many factors, including resistivity of surface electrodes, bending stiffness and dielectric modulus, etc, which are closely related to physical and chemical preparation steps. This paper focuses on the effects of preparation steps on these physical parameters and electromechanical properties of IPMC actuators. The mechanisms of electrode formation in the preparation steps are also clarified and investigated. To obtain samples with different features, one or more of the crucial process steps, including pretreatment, impregnation-reduction and chemical plating, were selected to fabricate IPMC. The experimental observations revealed that the physical parameters of IPMC strongly depend on their electrode morphologies caused by different steps, which were reasonable from the standpoint of physics. IPMC with the characteristics of low surface resistance and low bending stiffness, and a large area of interface electrode exhibits a perfect performance. The improvements were considered to be attributed to the double-layer electrostatic effect, induced by the broad dispersion of penetrated electrode nanoparticles. An electrical component, consisting of an equivalent circuit of a parallel combination of the serial circuit of the resistance and the electric double-layer capacitance, is introduced to qualitatively explain the deformation behaviors of IPMC. This research helps to improve the preparation steps and promote the understanding of IPMC.

  20. The polarization of continuum radiation in sunspots. I - Rayleigh and Thomson scattering

    NASA Technical Reports Server (NTRS)

    Finn, G. D.; Jefferies, J. T.

    1974-01-01

    Expressions are derived for the Stokes parameters of light scattered by a layer of free electrons and hydrogen atoms in a sunspot. A physically reasonable sunspot model was found so that the direction of the calculated linear polarization agrees reasonably with observations. The magnitude of the calculated values of the linear polarization agrees generally with values observed in the continuum at 5830 A. Circular polarization in the continuum also accompanies electron scattering in spot regions; however for commonly accepted values of the longitudinal magnetic field, the predicted circular polarization is much smaller than observed.

  1. Discrete Element Method and its application to materials failure problem on the example of Brazilian Test

    NASA Astrophysics Data System (ADS)

    Klejment, Piotr; Kosmala, Alicja; Foltyn, Natalia; Dębski, Wojciech

    2017-04-01

    The earthquake focus is the point where a rock under external stress starts to fracture. Understanding earthquake nucleation and earthquake dynamics requires thus understanding of fracturing of brittle materials. This, however, is a continuing problem and enduring challenge to geoscience. In spite of significant progress we still do not fully understand the failure of rock materials due to extreme stress concentration in natural condition. One of the reason of this situation is that information about natural or induced seismic events is still not sufficient for precise description of physical processes in seismic foci. One of the possibility of improving this situation is using numerical simulations - a powerful tool of contemporary physics. For this reason we used an advanced implementation of the Discrete Element Method (DEM). DEM's main task is to calculate physical properties of materials which are represented as an assembly of a great number of particles interacting with each other. We analyze the possibility of using DEM for describing materials during so called Brazilian Test. Brazilian Test is a testing method to obtain the tensile strength of brittle material. One of the primary reasons for conducting such simulations is to measure macroscopic parameters of the rock sample. We would like to report our efforts of describing the fracturing process during the Brazilian Test from the microscopic point of view and give an insight into physical processes preceding materials failure.

  2. Synthetic Earthquake Statistics From Physical Fault Models for the Lower Rhine Embayment

    NASA Astrophysics Data System (ADS)

    Brietzke, G. B.; Hainzl, S.; Zöller, G.

    2012-04-01

    As of today, seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates they fail to provide a link between the observed seismicity and the underlying physical processes. Solving a state-of-the-art fully dynamic description set of all relevant physical processes related to earthquake fault systems is likely not useful since it comes with a large number of degrees of freedom, poor constraints on its model parameters and a huge computational effort. Here, quasi-static and quasi-dynamic physical fault simulators provide a compromise between physical completeness and computational affordability and aim at providing a link between basic physical concepts and statistics of seismicity. Within the framework of quasi-static and quasi-dynamic earthquake simulators we investigate a model of the Lower Rhine Embayment (LRE) that is based upon seismological and geological data. We present and discuss statistics of the spatio-temporal behavior of generated synthetic earthquake catalogs with respect to simplification (e.g. simple two-fault cases) as well as to complication (e.g. hidden faults, geometric complexity, heterogeneities of constitutive parameters).

  3. Mining the Internet for Intro Physics Data: Sports Equipment

    NASA Astrophysics Data System (ADS)

    Pawl, Andrew; Pritchard, David; Barrantes, Analia

    2008-10-01

    Problems using typical numbers for sports equipment parameters such as: ``A 0.285 kg tennis racket strikes a 0.058 kg tennis ball'' are common in introductory physics. The numbers are usually reasonable, but often do not tell the whole story. Continuing with the example above, tennis ball masses are tightly constrained by the International Tennis Federation (ITF) to range between 56.0 g and 59.4 g, but the rules do not restrict the mass of tennis rackets. Instead, physics plays an important role in fixing the preferred tennis racket mass. In this presentation, we give an example of how internet research using the readily available commercial websites of sports equipment manufacturers can enrich introductory physics problems and spark interesting follow-up questions.

  4. Physics textbooks from the viewpoint of network structures

    NASA Astrophysics Data System (ADS)

    Králiková, Petra; Teleki, Aba

    2017-01-01

    We can observe self-organized networks all around us. These networks are, in general, scale invariant networks described by the Bianconi-Barabasi model. The self-organized networks (networks formed naturally when feedback acts on the system) show certain universality. These networks, in simplified models, have scale invariant distribution (Pareto distribution type I) and parameter α has value between 2 and 5. The textbooks are extremely important in the learning process and from this reason we studied physics textbook at the level of sentences and physics terms (bipartite network). The nodes represent physics terms, sentences, and pictures, tables, connected by links (by physics terms and transitional words and transitional phrases). We suppose that learning process are more robust and goes faster and easier if the physics textbook has a structure similar to structures of self-organized networks.

  5. Mathematical interpretation of Brownian motor model: Limit cycles and directed transport phenomena

    NASA Astrophysics Data System (ADS)

    Yang, Jianqiang; Ma, Hong; Zhong, Suchuang

    2018-03-01

    In this article, we first suggest that the attractor of Brownian motor model is one of the reasons for the directed transport phenomenon of Brownian particle. We take the classical Smoluchowski-Feynman (SF) ratchet model as an example to investigate the relationship between limit cycles and directed transport phenomenon of the Brownian particle. We study the existence and variation rule of limit cycles of SF ratchet model at changing parameters through mathematical methods. The influences of these parameters on the directed transport phenomenon of a Brownian particle are then analyzed through numerical simulations. Reasonable mathematical explanations for the directed transport phenomenon of Brownian particle in SF ratchet model are also formulated on the basis of the existence and variation rule of the limit cycles and numerical simulations. These mathematical explanations provide a theoretical basis for applying these theories in physics, biology, chemistry, and engineering.

  6. Top ten models constrained by b {yields} s{gamma}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, J.L.

    1994-12-01

    The radiative decay b {yields} s{gamma} is examined in the Standard Model and in nine classes of models which contain physics beyond the Standard Model. The constraints which may be placed on these models from the recent results of the CLEO Collaboration on both inclusive and exclusive radiative B decays is summarized. Reasonable bounds are found for the parameters in some cases.

  7. The distribution of density in supersonic turbulence

    NASA Astrophysics Data System (ADS)

    Squire, Jonathan; Hopkins, Philip F.

    2017-11-01

    We propose a model for the statistics of the mass density in supersonic turbulence, which plays a crucial role in star formation and the physics of the interstellar medium (ISM). The model is derived by considering the density to be arranged as a collection of strong shocks of width ˜ M^{-2}, where M is the turbulent Mach number. With two physically motivated parameters, the model predicts all density statistics for M>1 turbulence: the density probability distribution and its intermittency (deviation from lognormality), the density variance-Mach number relation, power spectra and structure functions. For the proposed model parameters, reasonable agreement is seen between model predictions and numerical simulations, albeit within the large uncertainties associated with current simulation results. More generally, the model could provide a useful framework for more detailed analysis of future simulations and observational data. Due to the simple physical motivations for the model in terms of shocks, it is straightforward to generalize to more complex physical processes, which will be helpful in future more detailed applications to the ISM. We see good qualitative agreement between such extensions and recent simulations of non-isothermal turbulence.

  8. Quasi-dynamic earthquake fault systems with rheological heterogeneity

    NASA Astrophysics Data System (ADS)

    Brietzke, G. B.; Hainzl, S.; Zoeller, G.; Holschneider, M.

    2009-12-01

    Seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates, such models cannot allow for physical statements of the described seismicity. In contrary such empirical stochastic models, physics based earthquake fault systems models allow for a physical reasoning and interpretation of the produced seismicity and system dynamics. Recently different fault system earthquake simulators based on frictional stick-slip behavior have been used to study effects of stress heterogeneity, rheological heterogeneity, or geometrical complexity on earthquake occurrence, spatial and temporal clustering of earthquakes, and system dynamics. Here we present a comparison of characteristics of synthetic earthquake catalogs produced by two different formulations of quasi-dynamic fault system earthquake simulators. Both models are based on discretized frictional faults embedded in an elastic half-space. While one (1) is governed by rate- and state-dependent friction with allowing three evolutionary stages of independent fault patches, the other (2) is governed by instantaneous frictional weakening with scheduled (and therefore causal) stress transfer. We analyze spatial and temporal clustering of events and characteristics of system dynamics by means of physical parameters of the two approaches.

  9. Prediction of Building Limestone Physical and Mechanical Properties by Means of Ultrasonic P-Wave Velocity

    PubMed Central

    Concu, Giovanna; De Nicolo, Barbara; Valdes, Monica

    2014-01-01

    The aim of this study was to evaluate ultrasonic P-wave velocity as a feature for predicting some physical and mechanical properties that describe the behavior of local building limestone. To this end, both ultrasonic testing and compressive tests were carried out on several limestone specimens and statistical correlation between ultrasonic velocity and density, compressive strength, and modulus of elasticity was studied. The effectiveness of ultrasonic velocity was evaluated by regression, with the aim of observing the coefficient of determination r 2 between ultrasonic velocity and the aforementioned parameters, and the mathematical expressions of the correlations were found and discussed. The strong relations that were established between ultrasonic velocity and limestone properties indicate that these parameters can be reasonably estimated by means of this nondestructive parameter. This may be of great value in a preliminary phase of the diagnosis and inspection of stone masonry conditions, especially when the possibility of sampling material cores is reduced. PMID:24511286

  10. Prediction of building limestone physical and mechanical properties by means of ultrasonic P-wave velocity.

    PubMed

    Concu, Giovanna; De Nicolo, Barbara; Valdes, Monica

    2014-01-01

    The aim of this study was to evaluate ultrasonic P-wave velocity as a feature for predicting some physical and mechanical properties that describe the behavior of local building limestone. To this end, both ultrasonic testing and compressive tests were carried out on several limestone specimens and statistical correlation between ultrasonic velocity and density, compressive strength, and modulus of elasticity was studied. The effectiveness of ultrasonic velocity was evaluated by regression, with the aim of observing the coefficient of determination r(2) between ultrasonic velocity and the aforementioned parameters, and the mathematical expressions of the correlations were found and discussed. The strong relations that were established between ultrasonic velocity and limestone properties indicate that these parameters can be reasonably estimated by means of this nondestructive parameter. This may be of great value in a preliminary phase of the diagnosis and inspection of stone masonry conditions, especially when the possibility of sampling material cores is reduced.

  11. Parachute-deployment-parameter identification based on an analytical simulation of Viking BLDT AV-4

    NASA Technical Reports Server (NTRS)

    Talay, T. A.

    1974-01-01

    A six-degree-of-freedom analytical simulation of parachute deployment dynamics developed at the Langley Research Center is presented. A comparison study was made using flight results from the Viking Balloon Launched Decelerator Test (BLDT) AV-4. Since there are significant voids in the knowledge of vehicle and decelerator aerodynamics and suspension system physical properties, a set of deployment-parameter input has been defined which may be used as a basis for future studies of parachute deployment dynamics. The study indicates the analytical model is sufficiently sophisticated to investigate parachute deployment dynamics with reasonable accuracy.

  12. Significance of modeling internal damping in the control of structures

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Inman, D. J.

    1992-01-01

    Several simple systems are examined to illustrate the importance of the estimation of damping parameters in closed-loop system performance and stability. The negative effects of unmodeled damping are particularly pronounced in systems that do not use collocated sensors and actuators. An example is considered for which even the actuators (a tip jet nozzle and flexible hose) for a simple beam produce significant damping which, if ignored, results in a model that cannot yield a reasonable time response using physically meaningful parameter values. It is concluded that correct damping modeling is essential in structure control.

  13. On the remote sensing of cloud properties from satellite infrared sounder data

    NASA Technical Reports Server (NTRS)

    Yeh, H. Y. M.

    1984-01-01

    A method for remote sensing of cloud parameters by using infrared sounder data has been developed on the basis of the parameterized infrared transfer equation applicable to cloudy atmospheres. The method is utilized for the retrieval of the cloud height, amount, and emissivity in 11 micro m region. Numerical analyses and retrieval experiments have been carried out by utilizing the synthetic sounder data for the theoretical study. The sensitivity of the numerical procedures to the measurement and instrument errors are also examined. The retrieved results are physically discussed and numerically compared with the model atmospheres. Comparisons reveal that the recovered cloud parameters agree reasonably well with the pre-assumed values. However, for cases when relatively thin clouds and/or small cloud fractional cover within a field of view are present, the recovered cloud parameters show considerable fluctuations. Experiments on the proposed algorithm are carried out utilizing High Resolution Infrared Sounder (HIRS/2) data of NOAA 6 and TIROS-N. Results of experiments show reasonably good comparisons with the surface reports and GOES satellite images.

  14. Perspective: Sloppiness and emergent theories in physics, biology, and beyond.

    PubMed

    Transtrum, Mark K; Machta, Benjamin B; Brown, Kevin S; Daniels, Bryan C; Myers, Christopher R; Sethna, James P

    2015-07-07

    Large scale models of physical phenomena demand the development of new statistical and computational tools in order to be effective. Many such models are "sloppy," i.e., exhibit behavior controlled by a relatively small number of parameter combinations. We review an information theoretic framework for analyzing sloppy models. This formalism is based on the Fisher information matrix, which is interpreted as a Riemannian metric on a parameterized space of models. Distance in this space is a measure of how distinguishable two models are based on their predictions. Sloppy model manifolds are bounded with a hierarchy of widths and extrinsic curvatures. The manifold boundary approximation can extract the simple, hidden theory from complicated sloppy models. We attribute the success of simple effective models in physics as likewise emerging from complicated processes exhibiting a low effective dimensionality. We discuss the ramifications and consequences of sloppy models for biochemistry and science more generally. We suggest that the reason our complex world is understandable is due to the same fundamental reason: simple theories of macroscopic behavior are hidden inside complicated microscopic processes.

  15. Study of Falling Roof Vibrations in a Production Face at Roof Support Resistance in the Form of Concentrated Force

    NASA Astrophysics Data System (ADS)

    Buyalich, G. D.; Buyalich, K. G.; Umrikhina, V. Yu

    2016-08-01

    One of the main reasons of roof support failures in production faces is mismatch of their parameters and parameters of dynamic impact on the metal structure from the falling roof during its secondary convergences. To assess the parameters of vibrational interaction of roof support with the roof, it was suggested to use computational models of forces application and a partial differential equation of fourth order describing this process, its numerical solution allowed to assess frequency, amplitude and speed of roof strata movement depending on physical and mechanical properties of the roof strata as well as on load bearing and geometry parameters of the roof support. To simplify solving of the differential equation, roof support response was taken as the concentrated force.

  16. Systematic Clinical Reasoning in Physical Therapy (SCRIPT): Tool for the Purposeful Practice of Clinical Reasoning in Orthopedic Manual Physical Therapy.

    PubMed

    Baker, Sarah E; Painter, Elizabeth E; Morgan, Brandon C; Kaus, Anna L; Petersen, Evan J; Allen, Christopher S; Deyle, Gail D; Jensen, Gail M

    2017-01-01

    Clinical reasoning is essential to physical therapist practice. Solid clinical reasoning processes may lead to greater understanding of the patient condition, early diagnostic hypothesis development, and well-tolerated examination and intervention strategies, as well as mitigate the risk of diagnostic error. However, the complex and often subconscious nature of clinical reasoning can impede the development of this skill. Protracted tools have been published to help guide self-reflection on clinical reasoning but might not be feasible in typical clinical settings. This case illustrates how the Systematic Clinical Reasoning in Physical Therapy (SCRIPT) tool can be used to guide the clinical reasoning process and prompt a physical therapist to search the literature to answer a clinical question and facilitate formal mentorship sessions in postprofessional physical therapist training programs. The SCRIPT tool enabled the mentee to generate appropriate hypotheses, plan the examination, query the literature to answer a clinical question, establish a physical therapist diagnosis, and design an effective treatment plan. The SCRIPT tool also facilitated the mentee's clinical reasoning and provided the mentor insight into the mentee's clinical reasoning. The reliability and validity of the SCRIPT tool have not been formally studied. Clinical mentorship is a cornerstone of postprofessional training programs and intended to develop advanced clinical reasoning skills. However, clinical reasoning is often subconscious and, therefore, a challenging skill to develop. The use of a tool such as the SCRIPT may facilitate developing clinical reasoning skills by providing a systematic approach to data gathering and making clinical judgments to bring clinical reasoning to the conscious level, facilitate self-reflection, and make a mentored physical therapist's thought processes explicit to his or her clinical mentor. © 2017 American Physical Therapy Association

  17. Interrogating selectivity in catalysis using molecular vibrations

    NASA Astrophysics Data System (ADS)

    Milo, Anat; Bess, Elizabeth N.; Sigman, Matthew S.

    2014-03-01

    The delineation of molecular properties that underlie reactivity and selectivity is at the core of physical organic chemistry, and this knowledge can be used to inform the design of improved synthetic methods or identify new chemical transformations. For this reason, the mathematical representation of properties affecting reactivity and selectivity trends, that is, molecular parameters, is paramount. Correlations produced by equating these molecular parameters with experimental outcomes are often defined as free-energy relationships and can be used to evaluate the origin of selectivity and to generate new, experimentally testable hypotheses. The premise behind successful correlations of this type is that a systematically perturbed molecular property affects a transition-state interaction between the catalyst, substrate and any reaction components involved in the determination of selectivity. Classic physical organic molecular descriptors, such as Hammett, Taft or Charton parameters, seek to independently probe isolated electronic or steric effects. However, these parameters cannot address simultaneous, non-additive variations to more than one molecular property, which limits their utility. Here we report a parameter system based on the vibrational response of a molecule to infrared radiation that can be used to mathematically model and predict selectivity trends for reactions with interlinked steric and electronic effects at positions of interest. The disclosed parameter system is mechanistically derived and should find broad use in the study of chemical and biological systems.

  18. A new fitting law of rovibrationally inelastic rate constants for rapidly rotating molecules

    NASA Astrophysics Data System (ADS)

    Strekalov, M. L.

    2005-04-01

    Semiclassical scattering of a particle from a three-dimensional ellipsoid with internal structure is used to model vibration-rotation-translation (VRT) collisional transfer between atoms and diatomic molecules. The result is a very simple analytical expression containing two variable parameters that have a clear physical meaning. Predictions of the model for the Li 2 + Ne system are in reasonably good agreement with experimental results.

  19. Physical and mathematical modelling of ladle metallurgy operations. [steelmaking

    NASA Technical Reports Server (NTRS)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    Experimental measurements are reported, on the velocity fields and turbulence parameters on a water model of an argon stirred ladle. These velocity measurements are complemented by direct heat transfer measurements, obtained by studying the rate at which ice rods immersed into the system melt, at various locations. The theoretical work undertaken involved the use of the turbulence Navier-Stokes equations in conjunction with the kappa-epsilon model to predict the local velocity fields and the maps of the turbulence parameters. Theoretical predictions were in reasonably good agreement with the experimentally measured velocity fields; the agreement between the predicted and the measured turbulence parameters was less perfect, but still satisfactory. The implications of these findings to the modelling of ladle metallurgical operations are discussed.

  20. The Neurocognition of Conduct Disorder Behaviors: Specificity to Physical Aggression and Theft After Controlling for ADHD Symptoms

    PubMed Central

    Barker, Edward D.; Tremblay, Richard E.; van Lier, Pol A.C.; Vitaro, Frank; Nagin, Daniel S.; Assaad, Jean-Marc; Séguin, Jean R.

    2012-01-01

    There is growing evidence that among the different conduct disorder (CD) behaviors, physical aggression, but not theft, links to low neurocognitive abilities. Specifically, physical aggression has consistently been found to be negatively related to neurocognitive abilities, whereas theft has been shown to be either positively or not related to neurocognition. The specificity of these links needs further examination because attention deficit hyperactivity disorder (ADHD) links to both physical aggression and neurocognitive variation. The development of self-reported physical aggression and theft, from age 11 to 17 years, was studied in a prospective at-risk male cohort via a dual process latent growth curve model. Seven neurocognitive tests at age 20 were regressed on the growth parameters of physical aggression and theft. The links between neurocognition and the growth parameters of physical aggression and theft were adjusted for ADHD symptoms at ages 11 and 15 (parent, child and teacher reports). Results indicated that verbal abilities were negatively related to physical aggression while they were positively associated with theft. However, inductive reasoning was negatively associated with increases in theft across adolescence. Symptoms of ADHD accounted for part of the neurocognitive test links with physical aggression but did not account for the associations with theft. These differences emphasize the importance of examining specific CD behaviors to better understand their neurodevelopmental mechanisms. They also suggest that youth who engage in different levels of physical aggression or theft behaviors may require different preventive and corrective interventions. PMID:21046606

  1. The neurocognition of conduct disorder behaviors: specificity to physical aggression and theft after controlling for ADHD symptoms.

    PubMed

    Barker, Edward D; Tremblay, Richard E; van Lier, Pol A C; Vitaro, Frank; Nagin, Daniel S; Assaad, Jean-Marc; Séguin, Jean R

    2011-01-01

    There is growing evidence that among the different conduct disorder (CD) behaviors, physical aggression, but not theft, links to low neurocognitive abilities. Specifically, physical aggression has consistently been found to be negatively related to neurocognitive abilities, whereas theft has been shown to be either positively or not related to neurocognition. The specificity of these links needs further examination because attention deficit hyperactivity disorder (ADHD) links to both physical aggression and neurocognitive variation. The development of self-reported physical aggression and theft, from age 11 to 17 years, was studied in a prospective at-risk male cohort via a dual process latent growth curve model. Seven neurocognitive tests at age 20 were regressed on the growth parameters of physical aggression and theft. The links between neurocognition and the growth parameters of physical aggression and theft were adjusted for ADHD symptoms at ages 11 and 15 (parent, child and teacher reports). Results indicated that verbal abilities were negatively related to physical aggression while they were positively associated with theft. However, inductive reasoning was negatively associated with increases in theft across adolescence. Symptoms of ADHD accounted for part of the neurocognitive test links with physical aggression but did not account for the associations with theft. These differences emphasize the importance of examining specific CD behaviors to better understand their neurodevelopmental mechanisms. They also suggest that youth who engage in different levels of physical aggression or theft behaviors may require different preventive and corrective interventions. © 2010 Wiley-Liss, Inc.

  2. Why anthropic reasoning cannot predict Lambda.

    PubMed

    Starkman, Glenn D; Trotta, Roberto

    2006-11-17

    We revisit anthropic arguments purporting to explain the measured value of the cosmological constant. We argue that different ways of assigning probabilities to candidate universes lead to totally different anthropic predictions. As an explicit example, we show that weighting different universes by the total number of possible observations leads to an extremely small probability for observing a value of Lambda equal to or greater than what we now measure. We conclude that anthropic reasoning within the framework of probability as frequency is ill-defined and that in the absence of a fundamental motivation for selecting one weighting scheme over another the anthropic principle cannot be used to explain the value of Lambda, nor, likely, any other physical parameters.

  3. Emulation and design of terahertz reflection-mode confocal scanning microscopy based on virtual pinhole

    NASA Astrophysics Data System (ADS)

    Yang, Yong-fa; Li, Qi

    2014-12-01

    In the practical application of terahertz reflection-mode confocal scanning microscopy, the size of detector pinhole is an important factor that determines the performance of spatial resolution characteristic of the microscopic system. However, the use of physical pinhole brings some inconvenience to the experiment and the adjustment error has a great influence on the experiment result. Through reasonably selecting the parameter of matrix detector virtual pinhole (VPH), it can efficiently approximate the physical pinhole. By using this approach, the difficulty of experimental calibration is reduced significantly. In this article, an imaging scheme of terahertz reflection-mode confocal scanning microscopy that is based on the matrix detector VPH is put forward. The influence of detector pinhole size on the axial resolution of confocal scanning microscopy is emulated and analyzed. Then, the parameter of VPH is emulated when the best axial imaging performance is reached.

  4. Chemical effects of alkali atoms on critical temperature in superconducting alkali-doped fullerides

    NASA Astrophysics Data System (ADS)

    Hetfleisch, F.; Gunnarsson, O.; Srama, R.; Han, J. E.; Stepper, M.; Roeser, H.-P.; Bohr, A.; Lopez, J. S.; Mashmool, M.; Roth, S.

    2018-03-01

    Alkali metal doped fullerides (A3C60) are superconductors with critical temperatures, Tc, extending up to 38 K. Tc is known to depend strongly on the lattice parameter a, which can be adjusted by physical or chemical pressure. In the latter case an alkali atom is replaced by a different sized one, which changes a. We have collected an extensive data base of experimental data for Tc from very early up to recent measurements. We disentangle alkali atom chemical effects on Tc, beyond the well-known consequences of changing a. It is found that Tc, for a fixed a, is typically increased as smaller alkali atoms are replaced by larger ones, except for very large a. Possible reasons for these results are discussed. Although smaller in size than the lattice parameter contribution, the chemical effect is not negligible and should be considered in future physical model developments.

  5. [Relationship between physical activity and health in children and adolescents. Results of the German Health Interview and Examination Survey for Children and Adolescents (KiGGS) and the "Motorik-Modul" (MoMo)].

    PubMed

    Krug, S; Jekauc, D; Poethko-Müller, C; Woll, A; Schlaud, M

    2012-01-01

    The question of whether physical activity is associated with positive aspects of health becomes increasingly more important in the light of the health status in today's children and adolescents and due to the changing lifestyle with respect to everyday activity. The German Health Interview and Examination Survey for Children and Adolescents (KiGGS) collected the first set of nationwide representative cross-sectional data to examine the relationship between health and physical activity. Taking sociodemographic parameters into consideration, the results suggest a positive association between self-estimated general health and several types of physical activity. The results vary with respect to gender and type of physical activity. For methodological reasons, causal conclusions can only be drawn after longitudinal data of the second wave of KiGGS are available.

  6. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters.

    PubMed

    Liu, Xiang; Lee, Duu-Jong

    2014-05-01

    This meta-analysis evaluates adsorption studies that report thermodynamic parameters for heavy metals and dyes from wastewaters. The adsorbents were derived from agricultural waste, industrial wastes, inorganic particulates, or some natural products. The adsorption mechanisms, derivation of thermodynamic relationships, and possible flaws made in such evaluation are discussed. This analysis shows that conclusions from the examined standard enthalpy and entropy changes are highly contestable. The reason for this flaw may be the poor physical structure of adsorbents tested, such that pore transport controlled the solute flux, leaving a surface reaction process near equilibrium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Basic physics of laser interaction with vital tissue.

    PubMed

    Wigdor, Harvey

    2008-09-01

    It is essential for any practitioner who uses lasers in their clinical practice to understand the basic physics of lasers. It is this knowledge that allows for an educated assessment of the clinical outcomes that lasers produce in our patients. It is also this understanding that provides a scientific basis for the visual feedback the clinician uses to vary parameters as needed to get the desired clinical results. It is the intent of this paper to discuss the very basic reasons why lasers affect tissues the way they do, and to synthesize the plethora of information dental practitioners are seeing regularly in dental journals.

  8. A model of objective weighting for EIA.

    PubMed

    Ying, L G; Liu, Y C

    1995-06-01

    In spite of progress achieved in the research of environmental impact assessment (EIA), the problem of weight distribution for a set of parameters has not as yet, been properly solved. This paper presents an approach of objective weighting by using a procedure of P ij principal component-factor analysis (P ij PCFA), which suits specifically those parameters measured directly by physical scales. The P ij PCFA weighting procedure reforms the conventional weighting practice in two aspects: first, the expert subjective judgment is replaced by the standardized measure P ij as the original input of weight processing and, secondly, the principal component-factor analysis is introduced to approach the environmental parameters for their respective contributions to the totality of the regional ecosystem. Not only is the P ij PCFA weighting logical in theoretical reasoning, it also suits practically all levels of professional routines in natural environmental assessment and impact analysis. Having been assured of objectivity and accuracy in the EIA case study of the Chuansha County in Shanghai, China, the P ij PCFA weighting procedure has the potential to be applied in other geographical fields that need assigning weights to parameters that are measured by physical scales.

  9. Accelerating dark energy cosmological model in two fluids with hybrid scale factor

    NASA Astrophysics Data System (ADS)

    Mishra, B.; Sahoo, P. K.; Ray, Pratik P.

    In this paper, we have investigated the anisotropic behavior of the accelerating universe in Bianchi V spacetime in the framework of General Relativity (GR). The matter field we have considered is of two non-interacting fluids, i.e. the usual string fluid and dark energy (DE) fluid. In order to represent the pressure anisotropy, the skewness parameters are introduced along three different spatial directions. To achieve a physically realistic solutions to the field equations, we have considered a scale factor, known as hybrid scale factor, which is generated by a time-varying deceleration parameter. This simulates a cosmic transition from early deceleration to late time acceleration. It is observed that the string fluid dominates the universe at early deceleration phase but does not affect nature of cosmic dynamics substantially at late phase, whereas the DE fluid dominates the universe in present time, which is in accordance with the observations results. Hence, we analyzed here the role of two fluids in the transitional phases of universe with respect to time which depicts the reason behind the cosmic expansion and DE. The role of DE with variable equation of state parameter (EoS) and skewness parameters, is also discussed along with physical and geometrical properties.

  10. Visualization of International Solar-Terrestrial Physics Program (ISTP) data

    NASA Technical Reports Server (NTRS)

    Kessel, Ramona L.; Candey, Robert M.; Hsieh, Syau-Yun W.; Kayser, Susan

    1995-01-01

    The International Solar-Terrestrial Physics Program (ISTP) is a multispacecraft, multinational program whose objective is to promote further understanding of the Earth's complex plasma environment. Extensive data sharing and data analysis will be needed to ensure the success of the overall ISTP program. For this reason, there has been a special emphasis on data standards throughout ISTP. One of the key tools will be the common data format (CDF), developed, maintained, and evolved at the National Space Science Data Center (NSSDC), with the set of ISTP implementation guidelines specially designed for space physics data sets by the Space Physics Data Facility (associated with the NSSDC). The ISTP guidelines were developed to facilitate searching, plotting, merging, and subsetting of data sets. We focus here on the plotting application. A prototype software package was developed to plot key parameter (KP) data from the ISTP program at the Science Planning and Operations Facility (SPOF). The ISTP Key Parameter Visualization Tool is based on the Interactive Data Language (IDL) and is keyed to the ISTP guidelines, reading data stored in CDF. With the combination of CDF, the ISTP guidelines, and the visualization software, we can look forward to easier and more effective data sharing and use among ISTP scientists.

  11. Patterns of Clinical Reasoning in Physical Therapist Students.

    PubMed

    Gilliland, Sarah; Wainwright, Susan Flannery

    2017-05-01

    Clinical reasoning is a complex, nonlinear problem-solving process that is influenced by models of practice. The development of physical therapists' clinical reasoning abilities is a crucial yet underresearched aspect of entry-level (professional) physical therapist education. The purpose of this qualitative study was to examine the types of clinical reasoning strategies physical therapist students engage in during a patient encounter. A qualitative descriptive case study design involving within and across case analysis was used. Eight second-year, professional physical therapist students from 2 different programs completed an evaluation and initial intervention for a standardized patient followed by a retrospective think-aloud interview to explicate their reasoning processes. Participants' clinical reasoning strategies were examined using a 2-stage qualitative method of thematic analysis. Participants demonstrated consistent signs of development of physical therapy-specific reasoning processes, yet varied in their approach to the case and use of reflection. Participants who gave greater attention to patient education and empowerment also demonstrated greater use of reflection-in-action during the patient encounter. One negative case illustrates the variability in the rate at which students may develop these abilities. Participants demonstrated development toward physical therapist--specific clinical reasoning, yet demonstrated qualitatively different approaches to the patient encounter. Multiple factors, including the use of reflection-in-action, may enable students to develop greater flexibility in their reasoning processes. © 2017 American Physical Therapy Association

  12. 42 CFR 413.106 - Reasonable cost of physical and other therapy services furnished under arrangements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... physical, occupational, speech, and other therapists, and services of other health specialists (other than... 42 Public Health 2 2013-10-01 2013-10-01 false Reasonable cost of physical and other therapy... SKILLED NURSING FACILITIES Specific Categories of Costs § 413.106 Reasonable cost of physical and other...

  13. 42 CFR 413.106 - Reasonable cost of physical and other therapy services furnished under arrangements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... physical, occupational, speech, and other therapists, and services of other health specialists (other than... 42 Public Health 2 2012-10-01 2012-10-01 false Reasonable cost of physical and other therapy... SKILLED NURSING FACILITIES Specific Categories of Costs § 413.106 Reasonable cost of physical and other...

  14. 42 CFR 413.106 - Reasonable cost of physical and other therapy services furnished under arrangements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... physical, occupational, speech, and other therapists, and services of other health specialists (other than... 42 Public Health 2 2014-10-01 2014-10-01 false Reasonable cost of physical and other therapy... SKILLED NURSING FACILITIES Specific Categories of Costs § 413.106 Reasonable cost of physical and other...

  15. Gender and Physics: Feminist Philosophy and Science Education

    ERIC Educational Resources Information Center

    Rolin, Kristina

    2008-01-01

    Physics education reform movements should pay attention to feminist analyses of gender in the culture of physics for two reasons. One reason is that feminist analyses contribute to an understanding of a "chilly climate" women encounter in many physics university departments. Another reason is that feminist analyses reveal that certain styles of…

  16. Characterization of a Boron Carbide Heterojunction Neutron Detector

    DTIC Science & Technology

    2011-03-24

    owing to a constant SRC in BC. As previously discussed, the BC is taken as fully depleted (2 μm) at all biases . The bias dependence noted in UMKC#1...sensitivity shown below 3.8 eV. A general trend also shows higher sensitivity at lower biases . For this reason, zero bias detection was not included... dependence consistent with semiconductor physics below ~ -7 V. The bias dependence that is evident in these parameters at > -7 V indicates that the

  17. BayeSED: A General Approach to Fitting the Spectral Energy Distribution of Galaxies

    NASA Astrophysics Data System (ADS)

    Han, Yunkun; Han, Zhanwen

    2014-11-01

    We present a newly developed version of BayeSED, a general Bayesian approach to the spectral energy distribution (SED) fitting of galaxies. The new BayeSED code has been systematically tested on a mock sample of galaxies. The comparison between the estimated and input values of the parameters shows that BayeSED can recover the physical parameters of galaxies reasonably well. We then applied BayeSED to interpret the SEDs of a large Ks -selected sample of galaxies in the COSMOS/UltraVISTA field with stellar population synthesis models. Using the new BayeSED code, a Bayesian model comparison of stellar population synthesis models has been performed for the first time. We found that the 2003 model by Bruzual & Charlot, statistically speaking, has greater Bayesian evidence than the 2005 model by Maraston for the Ks -selected sample. In addition, while setting the stellar metallicity as a free parameter obviously increases the Bayesian evidence of both models, varying the initial mass function has a notable effect only on the Maraston model. Meanwhile, the physical parameters estimated with BayeSED are found to be generally consistent with those obtained using the popular grid-based FAST code, while the former parameters exhibit more natural distributions. Based on the estimated physical parameters of the galaxies in the sample, we qualitatively classified the galaxies in the sample into five populations that may represent galaxies at different evolution stages or in different environments. We conclude that BayeSED could be a reliable and powerful tool for investigating the formation and evolution of galaxies from the rich multi-wavelength observations currently available. A binary version of the BayeSED code parallelized with Message Passing Interface is publicly available at https://bitbucket.org/hanyk/bayesed.

  18. BayeSED: A GENERAL APPROACH TO FITTING THE SPECTRAL ENERGY DISTRIBUTION OF GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Yunkun; Han, Zhanwen, E-mail: hanyk@ynao.ac.cn, E-mail: zhanwenhan@ynao.ac.cn

    2014-11-01

    We present a newly developed version of BayeSED, a general Bayesian approach to the spectral energy distribution (SED) fitting of galaxies. The new BayeSED code has been systematically tested on a mock sample of galaxies. The comparison between the estimated and input values of the parameters shows that BayeSED can recover the physical parameters of galaxies reasonably well. We then applied BayeSED to interpret the SEDs of a large K{sub s} -selected sample of galaxies in the COSMOS/UltraVISTA field with stellar population synthesis models. Using the new BayeSED code, a Bayesian model comparison of stellar population synthesis models has beenmore » performed for the first time. We found that the 2003 model by Bruzual and Charlot, statistically speaking, has greater Bayesian evidence than the 2005 model by Maraston for the K{sub s} -selected sample. In addition, while setting the stellar metallicity as a free parameter obviously increases the Bayesian evidence of both models, varying the initial mass function has a notable effect only on the Maraston model. Meanwhile, the physical parameters estimated with BayeSED are found to be generally consistent with those obtained using the popular grid-based FAST code, while the former parameters exhibit more natural distributions. Based on the estimated physical parameters of the galaxies in the sample, we qualitatively classified the galaxies in the sample into five populations that may represent galaxies at different evolution stages or in different environments. We conclude that BayeSED could be a reliable and powerful tool for investigating the formation and evolution of galaxies from the rich multi-wavelength observations currently available. A binary version of the BayeSED code parallelized with Message Passing Interface is publicly available at https://bitbucket.org/hanyk/bayesed.« less

  19. Calibration of a convective parameterization scheme in the WRF model and its impact on the simulation of East Asian summer monsoon precipitation

    DOE PAGES

    Yang, Ben; Zhang, Yaocun; Qian, Yun; ...

    2014-03-26

    Reasonably modeling the magnitude, south-north gradient and seasonal propagation of precipitation associated with the East Asian Summer Monsoon (EASM) is a challenging task in the climate community. In this study we calibrate five key parameters in the Kain-Fritsch convection scheme in the WRF model using an efficient importance-sampling algorithm to improve the EASM simulation. We also examine the impacts of the improved EASM precipitation on other physical process. Our results suggest similar model sensitivity and values of optimized parameters across years with different EASM intensities. By applying the optimal parameters, the simulated precipitation and surface energy features are generally improved.more » The parameters related to downdraft, entrainment coefficients and CAPE consumption time (CCT) can most sensitively affect the precipitation and atmospheric features. Larger downdraft coefficient or CCT decrease the heavy rainfall frequency, while larger entrainment coefficient delays the convection development but build up more potential for heavy rainfall events, causing a possible northward shift of rainfall distribution. The CCT is the most sensitive parameter over wet region and the downdraft parameter plays more important roles over drier northern region. Long-term simulations confirm that by using the optimized parameters the precipitation distributions are better simulated in both weak and strong EASM years. Due to more reasonable simulated precipitation condensational heating, the monsoon circulations are also improved. Lastly, by using the optimized parameters the biases in the retreating (beginning) of Mei-yu (northern China rainfall) simulated by the standard WRF model are evidently reduced and the seasonal and sub-seasonal variations of the monsoon precipitation are remarkably improved.« less

  20. The strength study of the rotating device driver indexing spatial mechanism

    NASA Astrophysics Data System (ADS)

    Zakharenkov, N. V.; Kvasov, I. N.

    2018-04-01

    The indexing spatial mechanisms are widely used in automatic machines. The mechanisms maximum load-bearing capacity measurement is possible based on both the physical and numerical models tests results. The paper deals with the driven disk indexing spatial cam mechanism numerical model at the constant angular cam velocity. The presented mechanism kinematics and geometry parameters and finite element model are analyzed in the SolidWorks design environment. The calculation initial data and missing parameters having been found from the structure analysis were identified. The structure and kinematics analysis revealed the mechanism failures possible reasons. The numerical calculations results showing the structure performance at the contact and bending stresses are represented.

  1. Global Electromagnetic Imaging of Lithosphere and Upper Mantle from Space and Ground. Recent Results and Challenges

    NASA Astrophysics Data System (ADS)

    Kuvshinov, A. V.

    2016-12-01

    Electrical conductivity is one of the characteristic physical parameters of materials making up Earth's interior which is sensitive to variations of temperature, chemical composition, water content, and partial melt. As a consequence, estimating lithosphere and upper mantle (LUM) electrical conductivity structure is a potentially strong tool for mapping their chemistry, mineralogy and physical structure thus presenting a complementary method to seismic studies that focus on LUM elastic properties. Global electromagnetic (EM) studies, which provide information on LUM electrical conductivity, have attracted increasing interest during the last decade, mainly for three reasons. A primary reason is the recent growth in the amount of EM data available, especially from low-Earth orbiting magnetic satellite missions (Oersted, CHAMP, SAC-C, and Swarm). A second reason is the great interest in the characterization of the three-dimensional properties of Earth's interior on a global scale. Finally, the interest has also resulted from the significant methodological progress made during the last years in EM data analysis, forward modelling and inversion. In this talk I will summarize advances and challenges in EM data interpretation, and present recent global and regional models of LUM conductivity derived from satellite and ground-based data. I will also discuss possible topics for future research.

  2. A new supernova light curve modeling program

    NASA Astrophysics Data System (ADS)

    Jäger, Zoltán; Nagy, Andrea P.; Biro, Barna I.; Vinkó, József

    2017-12-01

    Supernovae are extremely energetic explosions that highlight the violent deaths of various types of stars. Studying such cosmic explosions may be important because of several reasons. Supernovae play a key role in cosmic nucleosynthesis processes, and they are also the anchors of methods of measuring extragalactic distances. Several exotic physical processes take place in the expanding ejecta produced by the explosion. We have developed a fast and simple semi-analytical code to model the the light curve of core collapse supernovae. This allows the determination of their most important basic physical parameters, like the the radius of the progenitor star, the mass of the ejected envelope, the mass of the radioactive nickel synthesized during the explosion, among others.

  3. Mathematical Reasoning Requirements in Swedish National Physics Tests

    ERIC Educational Resources Information Center

    Johansson, Helena

    2016-01-01

    This paper focuses on one aspect of mathematical competence, namely mathematical reasoning, and how this competency influences students' knowing of physics. This influence was studied by analysing the mathematical reasoning requirements upper secondary students meet when solving tasks in national physics tests. National tests are constructed to…

  4. Land surface hydrology parameterization for atmospheric general circulation models including subgrid scale spatial variability

    NASA Technical Reports Server (NTRS)

    Entekhabi, D.; Eagleson, P. S.

    1989-01-01

    Parameterizations are developed for the representation of subgrid hydrologic processes in atmospheric general circulation models. Reasonable a priori probability density functions of the spatial variability of soil moisture and of precipitation are introduced. These are used in conjunction with the deterministic equations describing basic soil moisture physics to derive expressions for the hydrologic processes that include subgrid scale variation in parameters. The major model sensitivities to soil type and to climatic forcing are explored.

  5. Installation Restoration Program. Operable Unit B1 Remedial Investigation/Feasibility Study. Appendices

    DTIC Science & Technology

    1993-06-30

    agency (California Health and Safety Code [H&SC], Section 25179.6[a][2]). 1.2.5 Porter-Cologne Water Quality Act and Related Policies The Porter-Cologne...which endangers the comfort, repose, and health and safety of the public. SMAQMD Rule 403 requires that all reasonable precautions be taken not to cause...concentration values on Figures C-1 through C-IO. Differences in soil physical parameters, listed in Table C-2 for different compounds were questiotned

  6. Probability versus representativeness in infancy: can infants use naïve physics to adjust population base rates in probabilistic inference?

    PubMed

    Denison, Stephanie; Trikutam, Pallavi; Xu, Fei

    2014-08-01

    A rich tradition in developmental psychology explores physical reasoning in infancy. However, no research to date has investigated whether infants can reason about physical objects that behave probabilistically, rather than deterministically. Physical events are often quite variable, in that similar-looking objects can be placed in similar contexts with different outcomes. Can infants rapidly acquire probabilistic physical knowledge, such as some leaves fall and some glasses break by simply observing the statistical regularity with which objects behave and apply that knowledge in subsequent reasoning? We taught 11-month-old infants physical constraints on objects and asked them to reason about the probability of different outcomes when objects were drawn from a large distribution. Infants could have reasoned either by using the perceptual similarity between the samples and larger distributions or by applying physical rules to adjust base rates and estimate the probabilities. Infants learned the physical constraints quickly and used them to estimate probabilities, rather than relying on similarity, a version of the representativeness heuristic. These results indicate that infants can rapidly and flexibly acquire physical knowledge about objects following very brief exposure and apply it in subsequent reasoning. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  7. A Characterization of Dynamic Reasoning: Reasoning with Time as Parameter

    ERIC Educational Resources Information Center

    Keene, Karen Allen

    2007-01-01

    Students incorporate and use the implicit and explicit parameter time to support their mathematical reasoning and deepen their understandings as they participate in a differential equations class during instruction on solutions to systems of differential equations. Therefore, dynamic reasoning is defined as developing and using conceptualizations…

  8. Physical activity and exercise priorities in community dwelling people with multiple sclerosis: a Delphi study.

    PubMed

    Stennett, Andrea; De Souza, Lorraine; Norris, Meriel

    2018-07-01

    Exercise and physical activity have been found to be beneficial in managing disabilities caused by multiple sclerosis. Despite the known benefits, many people with multiple sclerosis are inactive. This study aimed to identify the prioritised exercise and physical activity practices of people with multiple sclerosis living in the community and the reasons why they are engaged in these activities. A four Round Delphi questionnaire scoped and determined consensus of priorities for the top 10 exercise and physical activities and the reasons why people with multiple sclerosis (n = 101) are engaged in these activities. Data were analysed using content analysis, descriptive statistics, and non-parametric tests. The top 10 exercise and physical activity practices and the top 10 reasons why people with multiple sclerosis (n = 70) engaged in these activities were identified and prioritised. Consensus was achieved for the exercise and physical activities (W = 0.744, p < .0001) and for the reasons they engaged in exercise and physical activity (W = 0.723, p < .0001). The exercise and physical activity practices and the reasons people with multiple sclerosis engaged in exercise and physical activity were diverse. These self-selected activities and reasons highlighted that people with multiple sclerosis might conceptualise exercise and physical activity in ways that may not be fully appreciated or understood by health professionals. Considerations of the views of people with multiple sclerosis may be essential if the goal of increasing physical activity in this population is to be achieved. Implications for Rehabilitation Health professionals should work collaboratively with people with multiple sclerosis to understand how they prioritise activities, the underlying reasons for their prioritisations and embed these into rehabilitation programmes. Health professionals should utilise activities prioritised by people with multiple sclerosis in the community as a way to support, promote, and sustain exercise and physical activity in this population. Rehabilitation interventions should include both the activities people with multiple sclerosis prioritise and the reasons why they engage in exercise and physical activity as another option for increasing physical activity levels and reducing sedentary behaviours.

  9. Physical condition for the slowing down of cosmic acceleration

    NASA Astrophysics Data System (ADS)

    Zhang, Ming-Jian; Xia, Jun-Qing

    2018-04-01

    The possible slowing down of cosmic acceleration was widely studied. However, judgment on this effect in different dark energy parameterizations was very ambiguous. Moreover, the reason of generating these uncertainties was still unknown. In the present paper, we analyze the derivative of deceleration parameter q‧ (z) using the Gaussian processes. This model-independent reconstruction suggests that no slowing down of acceleration is presented within 95% C.L. from the Union2.1 and JLA supernova data. However, q‧ (z) from the observational H (z) data is a little smaller than zero at 95% C.L., which indicates that future H (z) data may have a potential to test this effect. From the evolution of q‧ (z), we present an interesting constraint on the dark energy and observational data. The physical constraint clearly solves the problem of why some dark energy models cannot produce this effect in previous work. Comparison between the constraint and observational data also shows that most of current data are not in the allowed regions. This implies a reason of why current data cannot convincingly measure this effect.

  10. Scientific Reasoning: Theory Evidence Coordination in Physics-Based and Non-Physics-Based Tasks

    ERIC Educational Resources Information Center

    Ibrahim, Bashirah; Ding, Lin; Mollohan, Katherine N.; Stammen, Andria

    2016-01-01

    Scientific reasoning is crucial to any scientific discipline. One sub-skill particularly relevant to the scientific enterprise is theory evidence coordination. This study, underpinned by Kuhn's framework for scientific reasoning, investigates how university students coordinate their self-generated theory and evidence in a physics topic (energy)…

  11. Clinical Reasoning: Survey of Teaching Methods, Integration, and Assessment in Entry-Level Physical Therapist Academic Education.

    PubMed

    Christensen, Nicole; Black, Lisa; Furze, Jennifer; Huhn, Karen; Vendrely, Ann; Wainwright, Susan

    2017-02-01

    Although clinical reasoning abilities are important learning outcomes of physical therapist entry-level education, best practice standards have not been established to guide clinical reasoning curricular design and learning assessment. This research explored how clinical reasoning is currently defined, taught, and assessed in physical therapist entry-level education programs. A descriptive, cross-sectional survey was administered to physical therapist program representatives. An electronic 24-question survey was distributed to the directors of 207 programs accredited by the Commission on Accreditation in Physical Therapy Education. Descriptive statistical analysis and qualitative content analysis were performed. Post hoc demographic and wave analyses revealed no evidence of nonresponse bias. A response rate of 46.4% (n=96) was achieved. All respondents reported that their programs incorporated clinical reasoning into their curricula. Only 25% of respondents reported a common definition of clinical reasoning in their programs. Most respondents (90.6%) reported that clinical reasoning was explicit in their curricula, and 94.8% indicated that multiple methods of curricular integration were used. Instructor-designed materials were most commonly used to teach clinical reasoning (83.3%). Assessment of clinical reasoning included practical examinations (99%), clinical coursework (94.8%), written examinations (87.5%), and written assignments (83.3%). Curricular integration of clinical reasoning-related self-reflection skills was reported by 91%. A large number of incomplete surveys affected the response rate, and the program directors to whom the survey was sent may not have consulted the faculty members who were most knowledgeable about clinical reasoning in their curricula. The survey construction limited some responses and application of the results. Although clinical reasoning was explicitly integrated into program curricula, it was not consistently defined, taught, or assessed within or between the programs surveyed-resulting in significant variability in clinical reasoning education. These findings support the need for the development of best educational practices for clinical reasoning curricula and learning assessment. © 2017 American Physical Therapy Association

  12. Development of Matlab GUI educational software to assist a laboratory of physical optics

    NASA Astrophysics Data System (ADS)

    Fernández, Elena; Fuentes, Rosa; García, Celia; Pascual, Inmaculada

    2014-07-01

    Physical optics is one of the subjects in the Grade of Optics and Optometry in Spanish universities. The students who come to this degree often have difficulties to understand subjects that are related to physics. For this reason, the aim of this work is to develop optics simulation software that provides a virtual laboratory for studying the effects of different aspects of physical optics phenomena. This software can let optical undergraduates simulate many optical systems for a better understanding of the practical competences associated with the theoretical concepts studied in class. This interactive environment unifies the information that brings the manual of the practices, provides the visualization of the physical phenomena and allows users to vary the values of the parameters that come into play to check its effect. So, this virtual tool is the perfect complement to learning more about the practices developed in the laboratory. This software will be developed through the choices which have the Matlab to generate Graphical User Interfaces or GUIs. A set of knobs, buttons and handles will be included in the GUI's in order to control the parameters of the different physics phenomena. Graphics can also be inserted in the GUIs to show the behavior of such phenomena. Specifically, by using this software, the student is able to analyze the behaviour of the transmittance and reflectance of the TE and TM modes, the polarized light through of the Malus'Law or degree of polarization.

  13. Computational solution verification and validation applied to a thermal model of a ruggedized instrumentation package

    DOE PAGES

    Scott, Sarah Nicole; Templeton, Jeremy Alan; Hough, Patricia Diane; ...

    2014-01-01

    This study details a methodology for quantification of errors and uncertainties of a finite element heat transfer model applied to a Ruggedized Instrumentation Package (RIP). The proposed verification and validation (V&V) process includes solution verification to examine errors associated with the code's solution techniques, and model validation to assess the model's predictive capability for quantities of interest. The model was subjected to mesh resolution and numerical parameters sensitivity studies to determine reasonable parameter values and to understand how they change the overall model response and performance criteria. To facilitate quantification of the uncertainty associated with the mesh, automatic meshing andmore » mesh refining/coarsening algorithms were created and implemented on the complex geometry of the RIP. Automated software to vary model inputs was also developed to determine the solution’s sensitivity to numerical and physical parameters. The model was compared with an experiment to demonstrate its accuracy and determine the importance of both modelled and unmodelled physics in quantifying the results' uncertainty. An emphasis is placed on automating the V&V process to enable uncertainty quantification within tight development schedules.« less

  14. Thermal dynamic behavior during selective laser melting of K418 superalloy: numerical simulation and experimental verification

    NASA Astrophysics Data System (ADS)

    Chen, Zhen; Xiang, Yu; Wei, Zhengying; Wei, Pei; Lu, Bingheng; Zhang, Lijuan; Du, Jun

    2018-04-01

    During selective laser melting (SLM) of K418 powder, the influence of the process parameters, such as laser power P and scanning speed v, on the dynamic thermal behavior and morphology of the melted tracks was investigated numerically. A 3D finite difference method was established to predict the dynamic thermal behavior and flow mechanism of K418 powder irradiated by a Gaussian laser beam. A three-dimensional randomly packed powder bed composed of spherical particles was established by discrete element method. The powder particle information including particle size distribution and packing density were taken into account. The volume shrinkage and temperature-dependent thermophysical parameters such as thermal conductivity, specific heat, and other physical properties were also considered. The volume of fluid method was applied to reconstruct the free surface of the molten pool during SLM. The geometrical features, continuity boundaries, and irregularities of the molten pool were proved to be largely determined by the laser energy density. The numerical results are in good agreement with the experiments, which prove to be reasonable and effective. The results provide us some in-depth insight into the complex physical behavior during SLM and guide the optimization of process parameters.

  15. Developments in the kinetic theories of ion and electron swarms in the 1960s and 70s

    NASA Astrophysics Data System (ADS)

    Skullerud, H. R.

    2017-04-01

    The two decades between 1960 to 1980 saw quite a fantastic development in diverse areas in physics, and so also in the quantitative theoretical treatment and deeper understanding of the behaviour of isolated electrons and ions in gases—that is ‘charged particle swarm physics’. The evolution in swarm theory was strongly correlated with the contemporary advances in computer technology and the emergence of new and accurate experimental methods for finding charged particle transport parameters, as drift velocities, diffusion coefficients and reaction rates, and also with developments in neighbouring fields as plasma physics and the physics of electronic and molecular collisions. In 1960, low energy electron behaviour could already be calculated with reasonable accuracy in the so-called two-term approximation, while ion behaviour could only be treated at weak electric fields. By 1980, reasonably complete theories had been developed for perhaps most cases in interest—which is reflected in a number of reviews, books and journal articles published in the early 1980s. We will present a journey through the developments in this period and the basic theories behind the Boltzmann equation and Maxwell’s transfer equations. We will also indicate how the interaction between different studies of the same basic processes have led to the elimination of shortcomings and a better understanding.

  16. The application of hybrid artificial intelligence systems for forecasting

    NASA Astrophysics Data System (ADS)

    Lees, Brian; Corchado, Juan

    1999-03-01

    The results to date are presented from an ongoing investigation, in which the aim is to combine the strengths of different artificial intelligence methods into a single problem solving system. The premise underlying this research is that a system which embodies several cooperating problem solving methods will be capable of achieving better performance than if only a single method were employed. The work has so far concentrated on the combination of case-based reasoning and artificial neural networks. The relative merits of artificial neural networks and case-based reasoning problem solving paradigms, and their combination are discussed. The integration of these two AI problem solving methods in a hybrid systems architecture, such that the neural network provides support for learning from past experience in the case-based reasoning cycle, is then presented. The approach has been applied to the task of forecasting the variation of physical parameters of the ocean. Results obtained so far from tests carried out in the dynamic oceanic environment are presented.

  17. Clinical reasoning of Filipino physical therapists: Experiences in a developing nation.

    PubMed

    Rotor, Esmerita R; Capio, Catherine M

    2018-03-01

    Clinical reasoning is essential for physical therapists to engage in the process of client care, and has been known to contribute to professional development. The literature on clinical reasoning and experiences have been based on studies from Western and developed nations, from which multiple influencing factors have been found. A developing nation, the Philippines, has distinct social, economic, political, and cultural circumstances. Using a phenomenological approach, this study explored experiences of Filipino physical therapists on clinical reasoning. Ten therapists working in three settings: 1) hospital; 2) outpatient clinic; and 3) home health were interviewed. Major findings were: a prescription-based referral system limited clinical reasoning; procedural reasoning was a commonly experienced strategy while diagnostic and predictive reasoning were limited; factors that influenced clinical reasoning included practice setting and the professional relationship with the referring physician. Physical therapists' responses suggested a lack of autonomy in practice that appeared to stifle clinical reasoning. Based on our findings, we recommend that the current regulations governing PT practice in the Philippines may be updated, and encourage educators to strengthen teaching approaches and strategies that support clinical reasoning. These recommendations are consistent with the global trend toward autonomous practice.

  18. Calculating and Understanding: Formal Models and Causal Explanations in Science, Common Reasoning and Physics Teaching

    ERIC Educational Resources Information Center

    Besson, Ugo

    2010-01-01

    This paper presents an analysis of the different types of reasoning and physical explanation used in science, common thought, and physics teaching. It then reflects on the learning difficulties connected with these various approaches, and suggests some possible didactic strategies. Although causal reasoning occurs very frequently in common thought…

  19. Longevity and aging. Mechanisms and perspectives.

    PubMed

    Labat-Robert, J; Robert, L

    2015-12-01

    Longevity can mostly be determined with relative accuracy from birth and death registers when available. Aging is a multifactorial process, much more difficult to quantitate. Every measurable physiological function declines with specific speeds over a wide range. The mechanisms involved are also different, genetic factors are of importance for longevity determinations. The best-known genes involved are the Sirtuins, active at the genetic and epigenetic level. Aging is multifactorial, not "coded" in the genome. There are, however, a number of well-studied physical and biological parameters involved in aging, which can be determined and quantitated. We shall try to identify parameters affecting longevity as well as aging and suggest some reasonable predictions for the future. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Collapse of a Liquid Column: Numerical Simulation and Experimental Validation

    NASA Astrophysics Data System (ADS)

    Cruchaga, Marcela A.; Celentano, Diego J.; Tezduyar, Tayfun E.

    2007-03-01

    This paper is focused on the numerical and experimental analyses of the collapse of a liquid column. The measurements of the interface position in a set of experiments carried out with shampoo and water for two different initial column aspect ratios are presented together with the corresponding numerical predictions. The experimental procedure was found to provide acceptable recurrence in the observation of the interface evolution. Basic models describing some of the relevant physical aspects, e.g. wall friction and turbulence, are included in the simulations. Numerical experiments are conducted to evaluate the influence of the parameters involved in the modeling by comparing the results with the data from the measurements. The numerical predictions reasonably describe the physical trends.

  1. Perceived reasons, incentives, and barriers to physical activity in Swedish elderly men.

    PubMed

    Sjörs, Camilla; Bonn, Stephanie E; Trolle Lagerros, Ylva; Sjölander, Arvid; Bälter, Katarina

    2014-11-12

    Knowledge about factors influencing physical activity behavior is needed in order to tailor physical activity interventions to the individual. The aim of this study was to explore and describe the perceived reasons, barriers, and incentives to increased physical activity, as well as preferable activities, among elderly men in Sweden. In total, 150 men aged 50-86 years responded to a Web-based questionnaire. Men who reported that they exercised sometimes or often received questions about reasons for physical activity (n=104), while men who reported that they never or seldom exercised received questions about barriers (n=46). The most frequent perceived reason for being physically active was health (82%), followed by enjoyment (45%), and a desire to lose/maintain weight (27%). Lack of interest/motivation was identified as the primary perceived barrier (17%). Incentives for increasing the level of activity included becoming more motivated and having a training partner. Walking was the most preferred activity. Enjoyment and maintaining a good health were important reasons for engaging in physical activity among Swedish elderly men.

  2. Relative importance of physical and economic factors in Appalachian coalbed gas assessment

    USGS Publications Warehouse

    Attanasi, E.D.

    1998-01-01

    In the 1995 National Assessment of Oil and Gas Resources prepared by the U.S. Geological Survey, only 20% of the assessed technically recoverable Appalachian Province coalbed gas resources were economic. Physical and economic variables are examined to explain the disparity between economic and technically recoverable coalbed gas. The Anticline and Syncline plays of the Northern Appalachian Basin, which account for 77% of the assessed technically recoverable coalbed gas, are not economic. Analysis shows marginal reductions in costs or rate of return will not turn these plays into commercial successes. Physical parameters that determine ultimate well recoverability and the rate of gas recovery are primary reasons the Northern Appalachian Basin plays are non-commercial. If the application of new well stimulation technology could offset slow gas desorption rates, Appalachian Province economic gas could increase to more then 70% of the technically recoverable gas. Similarly, if operators are able to develop strategies to selectively drill plays by avoiding dry holes and non-commercial occurrences, the economic fraction of technically recoverable gas could increase to over half.In the 1995 National Assessment of Oil and Gas Resources prepared by the U.S. Geological Survey, only 20% of the assessed technically recoverable Appalachian Province coalbed gas resources were economic. Physical and economic variables are examined to explain the disparity between economic and technically recoverable coalbed gas. The Anticline and Syncline plays of the Northern Appalachian Basin, which account for 77% of the assessed technically recoverable coalbed gas, are not economic. Analysis shows marginal reductions in costs or rate of return will not turn these plays into commercial successes. Physical parameters that determine ultimate well recoverability and the rate of gas recovery are primary reasons the Northern Appalachian Basin plays are non-commercial. If the application of new well stimulation technology could offset slow gas desorption rates, Appalachian Province economic gas could increase to more then 70% of the technically recoverable gas. Similarly, if operators are able to develop strategies to selectively drill plays by avoiding dry holes and non-commercial occurrences, the economic fraction of technically recoverable gas could increase to over half.

  3. Intertwining evidence- and model-based reasoning in physics sensemaking: An example from electrostatics

    NASA Astrophysics Data System (ADS)

    Russ, Rosemary S.; Odden, Tor Ole B.

    2017-12-01

    Our field has long valued the goal of teaching students not just the facts of physics, but also the thinking and reasoning skills of professional physicists. The complexity inherent in scientific reasoning demands that we think carefully about how we conceptualize for ourselves, enact in our classes, and encourage in our students the relationship between the multifaceted practices of professional science. The current study draws on existing research in the philosophy of science and psychology to advocate for intertwining two important aspects of scientific reasoning: using evidence from experimentation and modeling. We present a case from an undergraduate physics course to illustrate how these aspects can be intertwined productively and describe specific ways in which these aspects of reasoning can mutually reinforce one another in student learning. We end by discussing implications for this work for instruction in introductory physics courses and for research on scientific reasoning at the undergraduate level.

  4. Limited clinical reasoning skills used by novice physiotherapists when involved in the assessment and management of patients with shoulder problems: a qualitative study

    PubMed Central

    May, Stephen; Withers, Sarah; Reeve, Sarah; Greasley, Alison

    2010-01-01

    The aim of this study was to explore the clinical reasoning process used by novice physical therapists in specific patient problems. Nine physical therapists in the UK with limited experience of managing musculoskeletal problems were included. Semi-structured interviews were conducted on how novice physical therapists would assess and manage a patient with a shoulder problem; interviews were transcribed and analyzed using framework analysis. To be included as a final theme at least 50% of participants had to mention that theme. A large number of items (n = 93) were excluded as fewer than 50% of participants referred to each item. Included items related to seven main themes: history (16), physical exam (13), investigations (1), diagnostic reasoning (1), clinical reasoning process (diagnostic pathway) (3), clinical reasoning process (management pathway) (5) and treatment options (1). Items mostly related to information gathering, although there was some use of hypothetico-deductive clinical reasoning there appeared to be limited understanding of the clinical implications of data gathered, and clinical reasoning through use of pattern recognition was minimal. Major weaknesses were apparent in the clinical reasoning skills of these novice therapists compared to previous reports of expert clinical reasoning, indicating areas for development in the education of student and junior physical therapists. PMID:21655390

  5. Particle physics in the very early universe

    NASA Technical Reports Server (NTRS)

    Schramm, D. N.

    1981-01-01

    Events in the very early big bang universe in which elementary particle physics effects may have been dominant are discussed, with attention to the generation of a net baryon number by way of grand unification theory, and emphasis on the possible role of massive neutrinos in increasing current understanding of various cosmological properties and of the constraints placed on neutrino properties by cosmology. It is noted that when grand unification theories are used to describe very early universe interactions, an initially baryon-symmetrical universe can evolve a net baryon excess of 10 to the -9th to 10 to the -11th per photon, given reasonable parameters. If neutrinos have mass, the bulk of the mass of the universe may be in the form of leptons, implying that the form of matter most familiar to physical science may not be the dominant form of matter in the universe.

  6. Smoking Behavior among Jordanians: Physical, Psychological, Social, and Economic Reasons.

    PubMed

    Sweis, Nadia J

    2018-03-12

    To highlight the physical, psychological, social, and economic reasons related to sex differences in smoking behaviors in Jordan. A cross-sectional questionnaire-based survey was conducted among Jordanian adult smokers. Sex was a significant predictor of physical reasons related to smoking; when controlling for other factors (t 765 = 5.027; P < 0.001), women were more affected by physical factors than were men. In addition, work status was a significant predictor of physical reasons (t 765 = -2.563; P = 0.011), as was the price of cigarettes (t 765 = 2.224; P = 0.026). Age was a significant predictor of psychological reasons (t 765 = -3.092; P = 0.002): younger individuals were more likely to state psychological factors as their reason for smoking than were older individuals. Conversely, sex was a significant predictor (t 765 = 2.798; P = 0.005) of social reasons for smoking, with more men than women reporting social motivations. Women were more likely to smoke for physical factors that are positively correlated with the price of cigarettes, rendering them less responsive to an increase in the price of cigarettes. Conversely, men were more likely to smoke for social reasons that are negatively correlated with the price of cigarettes; thus, men are more responsive to an increase in the price of cigarettes. Future public policies aiming to combat smoking in Jordan should consider sex differences in smoking behavior because one policy may not necessarily fit all. Copyright © 2018. Published by Elsevier Inc.

  7. Associations of students' self-reports of their teachers' verbal aggression, intrinsic motivation, and perceptions of reasons for discipline in Greek physical education classes.

    PubMed

    Bekiari, Alexandra; Kokaridas, Dimitrios; Sakellariou, Kimon

    2006-04-01

    In this study were examined associations among physical education teachers' verbal aggressiveness as perceived by students and students' intrinsic motivation and reasons for discipline. The sample consisted of 265 Greek adolescent students who completed four questionnaires, the Verbal Aggressiveness Scale, the Lesson Satisfaction Scale, the Reasons for Discipline Scale, and the Intrinsic Motivation Inventory during physical education classes. Analysis indicated significant positive correlations among students' perceptions of teachers' verbal aggressiveness with pressure/ tension, external reasons, introjected reasons, no reasons, and self-responsibility. Significant negative correlations were noted for students' perceptions of teachers' verbal aggression with lesson satisfaction, enjoyment/interest, competence, effort/importance, intrinsic reasons, and caring. Differences between the two sexes were observed in their perceptions of teachers' verbal aggressiveness, intrinsic motivation, and reasons for discipline. Findings and implications for teachers' type of communication were also discussed and suggestions for research made.

  8. Gaussian process model for extrapolation of scattering observables for complex molecules: From benzene to benzonitrile

    NASA Astrophysics Data System (ADS)

    Cui, Jie; Li, Zhiying; Krems, Roman V.

    2015-10-01

    We consider a problem of extrapolating the collision properties of a large polyatomic molecule A-H to make predictions of the dynamical properties for another molecule related to A-H by the substitution of the H atom with a small molecular group X, without explicitly computing the potential energy surface for A-X. We assume that the effect of the -H →-X substitution is embodied in a multidimensional function with unknown parameters characterizing the change of the potential energy surface. We propose to apply the Gaussian Process model to determine the dependence of the dynamical observables on the unknown parameters. This can be used to produce an interval of the observable values which corresponds to physical variations of the potential parameters. We show that the Gaussian Process model combined with classical trajectory calculations can be used to obtain the dependence of the cross sections for collisions of C6H5CN with He on the unknown parameters describing the interaction of the He atom with the CN fragment of the molecule. The unknown parameters are then varied within physically reasonable ranges to produce a prediction uncertainty of the cross sections. The results are normalized to the cross sections for He — C6H6 collisions obtained from quantum scattering calculations in order to provide a prediction interval of the thermally averaged cross sections for collisions of C6H5CN with He.

  9. The new AP Physics exams: Integrating qualitative and quantitative reasoning

    NASA Astrophysics Data System (ADS)

    Elby, Andrew

    2015-04-01

    When physics instructors and education researchers emphasize the importance of integrating qualitative and quantitative reasoning in problem solving, they usually mean using those types of reasoning serially and separately: first students should analyze the physical situation qualitatively/conceptually to figure out the relevant equations, then they should process those equations quantitatively to generate a solution, and finally they should use qualitative reasoning to check that answer for plausibility (Heller, Keith, & Anderson, 1992). The new AP Physics 1 and 2 exams will, of course, reward this approach to problem solving. But one kind of free response question will demand and reward a further integration of qualitative and quantitative reasoning, namely mathematical modeling and sense-making--inventing new equations to capture a physical situation and focusing on proportionalities, inverse proportionalities, and other functional relations to infer what the equation ``says'' about the physical world. In this talk, I discuss examples of these qualitative-quantitative translation questions, highlighting how they differ from both standard quantitative and standard qualitative questions. I then discuss the kinds of modeling activities that can help AP and college students develop these skills and habits of mind.

  10. Answer First: Applying the Heuristic-Analytic Theory of Reasoning to Examine Student Intuitive Thinking in the Context of Physics

    ERIC Educational Resources Information Center

    Kryjevskaia, Mila; Stetzer, MacKenzie R.; Grosz, Nathaniel

    2014-01-01

    We have applied the heuristic-analytic theory of reasoning to interpret inconsistencies in student reasoning approaches to physics problems. This study was motivated by an emerging body of evidence that suggests that student conceptual and reasoning competence demonstrated on one task often fails to be exhibited on another. Indeed, even after…

  11. Applying Self-Determination Theory to Understand the Motivation for Becoming a Physical Education Teacher

    ERIC Educational Resources Information Center

    Spittle, Michael; Jackson, Kevin; Casey, Meghan

    2009-01-01

    This study explored the reasons people choose physical education teaching as a profession and investigated the relationship of these choices with motivation. Physical education pre-service teachers (n = 324) completed the Academic Motivation Scale (AMS) and a measure of reasons for choosing physical education teaching. Confident interpersonal…

  12. Surveying implicit solvent models for estimating small molecule absolute hydration free energies

    PubMed Central

    Knight, Jennifer L.

    2011-01-01

    Implicit solvent models are powerful tools in accounting for the aqueous environment at a fraction of the computational expense of explicit solvent representations. Here, we compare the ability of common implicit solvent models (TC, OBC, OBC2, GBMV, GBMV2, GBSW, GBSW/MS, GBSW/MS2 and FACTS) to reproduce experimental absolute hydration free energies for a series of 499 small neutral molecules that are modeled using AMBER/GAFF parameters and AM1-BCC charges. Given optimized surface tension coefficients for scaling the surface area term in the nonpolar contribution, most implicit solvent models demonstrate reasonable agreement with extensive explicit solvent simulations (average difference 1.0-1.7 kcal/mol and R2=0.81-0.91) and with experimental hydration free energies (average unsigned errors=1.1-1.4 kcal/mol and R2=0.66-0.81). Chemical classes of compounds are identified that need further optimization of their ligand force field parameters and others that require improvement in the physical parameters of the implicit solvent models themselves. More sophisticated nonpolar models are also likely necessary to more effectively represent the underlying physics of solvation and take the quality of hydration free energies estimated from implicit solvent models to the next level. PMID:21735452

  13. Incorporation of Socio-Economic Features' Ranking in Multicriteria Analysis Based on Ecosystem Services for Marine Protected Area Planning

    PubMed Central

    Portman, Michelle E.; Shabtay-Yanai, Ateret; Zanzuri, Asaf

    2016-01-01

    Developed decades ago for spatial choice problems related to zoning in the urban planning field, multicriteria analysis (MCA) has more recently been applied to environmental conflicts and presented in several documented cases for the creation of protected area management plans. Its application is considered here for the development of zoning as part of a proposed marine protected area management plan. The case study incorporates specially-explicit conservation features while considering stakeholder preferences, expert opinion and characteristics of data quality. It involves the weighting of criteria using a modified analytical hierarchy process. Experts ranked physical attributes which include socio-economically valued physical features. The parameters used for the ranking of (physical) attributes important for socio-economic reasons are derived from the field of ecosystem services assessment. Inclusion of these feature values results in protection that emphasizes those areas closest to shore, most likely because of accessibility and familiarity parameters and because of data biases. Therefore, other spatial conservation prioritization methods should be considered to supplement the MCA and efforts should be made to improve data about ecosystem service values farther from shore. Otherwise, the MCA method allows incorporation of expert and stakeholder preferences and ecosystem services values while maintaining the advantages of simplicity and clarity. PMID:27183224

  14. Incorporation of Socio-Economic Features' Ranking in Multicriteria Analysis Based on Ecosystem Services for Marine Protected Area Planning.

    PubMed

    Portman, Michelle E; Shabtay-Yanai, Ateret; Zanzuri, Asaf

    2016-01-01

    Developed decades ago for spatial choice problems related to zoning in the urban planning field, multicriteria analysis (MCA) has more recently been applied to environmental conflicts and presented in several documented cases for the creation of protected area management plans. Its application is considered here for the development of zoning as part of a proposed marine protected area management plan. The case study incorporates specially-explicit conservation features while considering stakeholder preferences, expert opinion and characteristics of data quality. It involves the weighting of criteria using a modified analytical hierarchy process. Experts ranked physical attributes which include socio-economically valued physical features. The parameters used for the ranking of (physical) attributes important for socio-economic reasons are derived from the field of ecosystem services assessment. Inclusion of these feature values results in protection that emphasizes those areas closest to shore, most likely because of accessibility and familiarity parameters and because of data biases. Therefore, other spatial conservation prioritization methods should be considered to supplement the MCA and efforts should be made to improve data about ecosystem service values farther from shore. Otherwise, the MCA method allows incorporation of expert and stakeholder preferences and ecosystem services values while maintaining the advantages of simplicity and clarity.

  15. Radiogenic lead as coolant, reflector and moderator in advanced fast reactors

    NASA Astrophysics Data System (ADS)

    Kulikov, E. G.

    2017-01-01

    Main purpose of the study is assessing reasonability for recovery, production and application of radiogenic lead as a coolant, neutron moderator and neutron reflector in advanced fast reactors. When performing the study, thermal, physical and neutron-physical properties of natural and radiogenic lead were analyzed. The following results were obtained: 1. Radiogenic lead with high content of isotope 208Pb can be extracted from thorium or mixed thorium-uranium ores because 208Pb is a final product of 232Th natural decay chain. 2. The use of radiogenic lead with high 208Pb content in advanced fast reactors and accelerator-driven systems (ADS) makes it possible to improve significantly their neutron-physical and thermal-hydraulic parameters. 3. The use of radiogenic lead with high 208Pb content in advanced fast reactors as a coolant opens the possibilities for more intense fuel breeding and for application of well-known oxide fuel instead of the promising but not tested enough nitride fuel under the same safety parameters. 4. The use of radiogenic lead with high 208Pb content in ADS as a coolant can upgrade substantially the level of neutron flux in the ADS blanket, which enables effective transmutation of radioactive wastes with low cross-sections of radiative neutron capture.

  16. A Review of Diagnostic Techniques for ISHM Applications

    NASA Technical Reports Server (NTRS)

    Patterson-Hine, Ann; Biswas, Gautam; Aaseng, Gordon; Narasimhan, Sriam; Pattipati, Krishna

    2005-01-01

    System diagnosis is an integral part of any Integrated System Health Management application. Diagnostic applications make use of system information from the design phase, such as safety and mission assurance analysis, failure modes and effects analysis, hazards analysis, functional models, fault propagation models, and testability analysis. In modern process control and equipment monitoring systems, topological and analytic , models of the nominal system, derived from design documents, are also employed for fault isolation and identification. Depending on the complexity of the monitored signals from the physical system, diagnostic applications may involve straightforward trending and feature extraction techniques to retrieve the parameters of importance from the sensor streams. They also may involve very complex analysis routines, such as signal processing, learning or classification methods to derive the parameters of importance to diagnosis. The process that is used to diagnose anomalous conditions from monitored system signals varies widely across the different approaches to system diagnosis. Rule-based expert systems, case-based reasoning systems, model-based reasoning systems, learning systems, and probabilistic reasoning systems are examples of the many diverse approaches ta diagnostic reasoning. Many engineering disciplines have specific approaches to modeling, monitoring and diagnosing anomalous conditions. Therefore, there is no "one-size-fits-all" approach to building diagnostic and health monitoring capabilities for a system. For instance, the conventional approaches to diagnosing failures in rotorcraft applications are very different from those used in communications systems. Further, online and offline automated diagnostic applications are integrated into an operations framework with flight crews, flight controllers and maintenance teams. While the emphasis of this paper is automation of health management functions, striking the correct balance between automated and human-performed tasks is a vital concern.

  17. Self-efficacy for physical activity and insight into its benefits are modifiable factors associated with physical activity in people with COPD: a mixed-methods study.

    PubMed

    Hartman, Jorine E; ten Hacken, Nick H T; Boezen, H Marike; de Greef, Mathieu H G

    2013-06-01

    What are the perceived reasons for people with chronic obstructive pulmonary disease (COPD) to be physically active or sedentary? Are those reasons related to the actual measured level of physical activity? A mixed-methods study combining qualitative and quantitative approaches. People with mild to very severe COPD. Participants underwent a semi-structured interview and physical activity was measured by a triaxial accelerometer worn for one week. Of 118 enrolled, 115 participants (68% male, mean age 65 years, mean FEV1 57% predicted, mean modified Medical Research Council dyspnoea score 1.4) completed the study. The most frequently reported reason to be physically active was health benefits, followed by enjoyment, continuation of an active lifestyle from the past, and functional reasons. The most frequently reported reason to be sedentary was the weather, followed by health problems, and lack of intrinsic motivation. Mean steps per day ranged between 236 and 18 433 steps. A high physical activity level was related to enjoyment and self-efficacy for physical activity. A low physical activity level was related to the weather influencing health, financial constraints, health and shame. We identified important facilitators to being physically active and barriers that could be amenable to change. Furthermore, we distinguished three important potential strategies for increasing physical activity in sedentary people with COPD, namely reducing barriers and increasing insight into health benefits, tailoring type of activity, and improvement of self-efficacy. Copyright © 2013 Australian Physiotherapy Association. Published by .. All rights reserved.

  18. The Reasons and Motivation for Pre-Service Teachers Choosing to Specialise in Primary Physical Education Teacher Education

    ERIC Educational Resources Information Center

    Spittle, Sharna; Spittle, Michael

    2014-01-01

    This study explored the reasons for pre-service teachers choosing to specialise in primary physical education and how these choices related to their motivation. Pre-service teachers who then elected to specialise in primary physical education (n = 248) completed the Attractors and Facilitators for Physical Education (AFPE) questionnaire and the…

  19. Probability versus Representativeness in Infancy: Can Infants Use Naïve Physics to Adjust Population Base Rates in Probabilistic Inference?

    ERIC Educational Resources Information Center

    Denison, Stephanie; Trikutam, Pallavi; Xu, Fei

    2014-01-01

    A rich tradition in developmental psychology explores physical reasoning in infancy. However, no research to date has investigated whether infants can reason about physical objects that behave probabilistically, rather than deterministically. Physical events are often quite variable, in that similar-looking objects can be placed in similar…

  20. Inverse magnetic catalysis from improved holographic QCD in the Veneziano limit

    NASA Astrophysics Data System (ADS)

    Gürsoy, Umut; Iatrakis, Ioannis; Järvinen, Matti; Nijs, Govert

    2017-03-01

    We study the dependence of the chiral condensate on external magnetic field in the context of holographic QCD at large number of flavors. We consider a holographic QCD model where the flavor degrees of freedom fully backreact on the color dynamics. Perturbative QCD calculations have shown that B acts constructively on the chiral condensate, a phenomenon called "magnetic catalysis". In contrast, recent lattice calculations show that, depending on the number of flavors and temperature, the magnetic field may also act destructively, which is called "inverse magnetic catalysis". Here we show that the holographic theory is capable of both behaviors depending on the choice of parameters. For reasonable choice of the potentials entering the model we find qualitative agreement with the lattice expectations. Our results provide insight for the physical reasons behind the inverse magnetic catalysis. In particular, we argue that the backreaction of the flavors to the background geometry decatalyzes the condensate.

  1. Testing the Visual Soil Assessment tool on Estonian farm fields

    NASA Astrophysics Data System (ADS)

    Reintam, Endla; Are, Mihkel; Selge, Are

    2017-04-01

    Soil quality estimation plays important role in decision making on farm as well on policy level. Sustaining the production ability and good health of the soil the chemical, physical and biological indicators should be taken into account. The system to use soil chemical parameters is usually quite well established in most European counties, including Estonia. However, measuring soil physical properties, such bulk density, porosity, penetration resistance, structural stability ect is time consuming, needs special tools and is highly weather dependent. In that reason these parameters are excluded from controllable quality parameters in policy in Estonia. Within the project "Interactive Soil Quality Assessment in Europe and China for Agricultural Productivity and Environmental Resilience" (iSQAPER) the visual soil assessment (VSA) tool was developed for easy detection of soil quality as well the different soil friendly agricultural management practices (AMP) were detected. The aim of current study was to test the VSA tool on Estonian farm fields under different management practices and compare the results with laboratory measurements. The main focus was set on soil physical parameters. Next to the VSA, the undisturbed soil samples were collected from the depth of 5-10 cm and 25-30 cm. The study revealed that results of a visually assessed soil physical parameters, such a soil structure, soil structural stability, soil porosity, presence of tillage pan, were confirmed by laboratory measurements in most cases. Soil water stable structure measurement on field (on 1 cm2 net in one 1 l box with 4-6 cm air dry clods for 5-10 min) underestimated very well structured soil on grassland and overestimated the structure aggregates stability of compacted soil. The slightly better soil quality was detected under no-tillage compared to ploughed soils. However, the ploughed soil got higher quality points compared with minimum tillage. The slurry application (organic manuring) had controversial impact - it increased the number of earthworms but decreased soil structural stability. Even the manuring with slurry increases organic matter amount in the soil, the compaction due to the use of heavy machinery during the application, especially on wet soil, reduces the positive effect of slurry.

  2. 42 CFR 413.106 - Reasonable cost of physical and other therapy services furnished under arrangements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., occupational, speech, and other therapy services and the services of other health specialists (other than... 42 Public Health 2 2011-10-01 2011-10-01 false Reasonable cost of physical and other therapy... therapy services furnished under arrangements. (a) Principle. The reasonable cost of the services of...

  3. Verification of Causal Influences of Reasoning Skills and Epistemology on Physics Conceptual Learning

    ERIC Educational Resources Information Center

    Ding, Lin

    2014-01-01

    This study seeks to test the causal influences of reasoning skills and epistemologies on student conceptual learning in physics. A causal model, integrating multiple variables that were investigated separately in the prior literature, is proposed and tested through path analysis. These variables include student preinstructional reasoning skills…

  4. College Teaching and the Development of Reasoning

    ERIC Educational Resources Information Center

    Fuller, Robert G., Ed.; Campbell, Thomas C., Ed.; Dykstra, Dewey I., Jr., Ed.; Stevens, Scott M., Ed.

    2009-01-01

    This book is intended to offer college faculty members the insights of the development of reasoning movement that enlighten physics educators in the late 1970s and led to a variety of college programs directed at improving the reasoning patterns used by college students. While the original materials were directed at physics concepts, they quickly…

  5. Modeling and sensitivity analysis of mass transfer in active multilayer polymeric film for food applications

    NASA Astrophysics Data System (ADS)

    Bedane, T.; Di Maio, L.; Scarfato, P.; Incarnato, L.; Marra, F.

    2015-12-01

    The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values of poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction in the permeability and oxygen transfer rate values. Scavenging capacity of the multilayer film increased linearly with the increase of the reactive layer thickness and the oxygen absorption reaction at short times decreased proportionally with the thickness of the external PET layer.

  6. Modeling and sensitivity analysis of mass transfer in active multilayer polymeric film for food applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bedane, T.; Di Maio, L.; Scarfato, P.

    The barrier performance of multilayer polymeric films for food applications has been significantly improved by incorporating oxygen scavenging materials. The scavenging activity depends on parameters such as diffusion coefficient, solubility, concentration of scavenger loaded and the number of available reactive sites. These parameters influence the barrier performance of the film in different ways. Virtualization of the process is useful to characterize, design and optimize the barrier performance based on physical configuration of the films. Also, the knowledge of values of parameters is important to predict the performances. Inverse modeling and sensitivity analysis are sole way to find reasonable values ofmore » poorly defined, unmeasured parameters and to analyze the most influencing parameters. Thus, the objective of this work was to develop a model to predict barrier properties of multilayer film incorporated with reactive layers and to analyze and characterize their performances. Polymeric film based on three layers of Polyethylene terephthalate (PET), with a core reactive layer, at different thickness configurations was considered in the model. A one dimensional diffusion equation with reaction was solved numerically to predict the concentration of oxygen diffused into the polymer taking into account the reactive ability of the core layer. The model was solved using commercial software for different film layer configurations and sensitivity analysis based on inverse modeling was carried out to understand the effect of physical parameters. The results have shown that the use of sensitivity analysis can provide physical understanding of the parameters which highly affect the gas permeation into the film. Solubility and the number of available reactive sites were the factors mainly influencing the barrier performance of three layered polymeric film. Multilayer films slightly modified the steady transport properties in comparison to net PET, giving a small reduction in the permeability and oxygen transfer rate values. Scavenging capacity of the multilayer film increased linearly with the increase of the reactive layer thickness and the oxygen absorption reaction at short times decreased proportionally with the thickness of the external PET layer.« less

  7. Gaussian process model for extrapolation of scattering observables for complex molecules: From benzene to benzonitrile

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Jie; Krems, Roman V.; Li, Zhiying

    2015-10-21

    We consider a problem of extrapolating the collision properties of a large polyatomic molecule A–H to make predictions of the dynamical properties for another molecule related to A–H by the substitution of the H atom with a small molecular group X, without explicitly computing the potential energy surface for A–X. We assume that the effect of the −H →−X substitution is embodied in a multidimensional function with unknown parameters characterizing the change of the potential energy surface. We propose to apply the Gaussian Process model to determine the dependence of the dynamical observables on the unknown parameters. This can bemore » used to produce an interval of the observable values which corresponds to physical variations of the potential parameters. We show that the Gaussian Process model combined with classical trajectory calculations can be used to obtain the dependence of the cross sections for collisions of C{sub 6}H{sub 5}CN with He on the unknown parameters describing the interaction of the He atom with the CN fragment of the molecule. The unknown parameters are then varied within physically reasonable ranges to produce a prediction uncertainty of the cross sections. The results are normalized to the cross sections for He — C{sub 6}H{sub 6} collisions obtained from quantum scattering calculations in order to provide a prediction interval of the thermally averaged cross sections for collisions of C{sub 6}H{sub 5}CN with He.« less

  8. Male Adolescents' Reasons for Participating in Physical Activity, Barriers to Participation, and Suggestions for Increasing Participation

    ERIC Educational Resources Information Center

    Allison, Kenneth R.; Dwyer, John J. M.; Goldenberg, Ellie; Fein, Allan; Yoshida, Karen K.; Boutilier, Marie

    2005-01-01

    This study explored male adolescents' reasons for participating in moderate and vigorous physical activity, perceived barriers to moderate and vigorous physical activity, and suggestions as to what can be done to increase participation in physical activity. A total of 26 male 15- and 16-year-old adolescents participated in focus group sessions,…

  9. Chirality-specific lift forces of helix under shear flows: Helix perpendicular to shear plane.

    PubMed

    Zhang, Qi-Yi

    2017-02-01

    Chiral objects in shear flow experience a chirality-specific lift force. Shear flows past helices in a low Reynolds number regime were studied using slender-body theory. The chirality-specific lift forces in the vorticity direction experienced by helices are dominated by a set of helix geometry parameters: helix radius, pitch length, number of turns, and helix phase angle. Its analytical formula is given. The chirality-specific forces are the physical reasons for the chiral separation of helices in shear flow. Our results are well supported by the latest experimental observations. © 2016 Wiley Periodicals, Inc.

  10. The relative merits of ring laser gyroscopes and 'iron-wheel' gyroscopes in application to medium accuracy INS for combat aircraft

    NASA Astrophysics Data System (ADS)

    Watson, Norman F.

    The relative merits of gimballed INS based on mechanical gyroscopes and strapdown INS based on ring laser gyroscopes are compared with regard to their use in 1 nm/hr combat aircraft navigation. Navigation performance, velocity performance, attitude performance, body axis outputs, environmental influences, reliability and maintainability, cost, and physical parameters are taken into consideration. Some of the advantages which have been claimed elsewhere for the laser INS, such as dramatically lower life cycle costs than for gimballed INS, are shown to be unrealistic under reasonable assumptions.

  11. Parallelization and visual analysis of multidimensional fields: Application to ozone production, destruction, and transport in three dimensions

    NASA Technical Reports Server (NTRS)

    Schwan, Karsten

    1994-01-01

    Atmospheric modeling is a grand challenge problem for several reasons, including its inordinate computational requirements and its generation of large amounts of data concurrent with its use of very large data sets derived from measurement instruments like satellites. In addition, atmospheric models are typically run several times, on new data sets or to reprocess existing data sets, to investigate or reinvestigate specific chemical or physical processes occurring in the earth's atmosphere, to understand model fidelity with respect to observational data, or simply to experiment with specific model parameters or components.

  12. Tektite ablation - Some confirming calculations.

    NASA Technical Reports Server (NTRS)

    O'Keefe, J. A., III; Silver, A. D.; Cameron, W. S.; Adams , E. W.; Warmbrod, J. D.

    1973-01-01

    The calculation of tektite ablation has been redone, taking into account transient effects, internal radiation, melting and nonequilibrium vaporization of the glass, and the drag effect of the flanges. It is found that the results confirm the earlier calculations of Chapman and his group and of Adams and his co-workers. The general trend of the results is not sensitive to reasonable changes of the physical parameters. The ablation is predominantly by melting rather than by vaporization at all velocities up to 11 km/sec; this is surprising in view of the lack of detectable melt flow in most tektites. Chemical effects have not been considered.

  13. Modelling Mathematical Reasoning in Physics Education

    NASA Astrophysics Data System (ADS)

    Uhden, Olaf; Karam, Ricardo; Pietrocola, Maurício; Pospiech, Gesche

    2012-04-01

    Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.

  14. Dynamic Stability Analysis of Blunt Body Entry Vehicles Using Time-Lagged Aftbody Pitching Moments

    NASA Technical Reports Server (NTRS)

    Kazemba, Cole D.; Braun, Robert D.; Schoenenberger, Mark; Clark, Ian G.

    2013-01-01

    This analysis defines an analytic model for the pitching motion of blunt bodies during atmospheric entry. The proposed model is independent of the pitch damping sum coefficient present in the standard formulation of the equations of motion describing pitch oscillations of a decelerating blunt body, instead using the principle of a time-lagged aftbody moment as the forcing function for oscillation divergence. Four parameters, all with intuitive physical relevance, are introduced to fully define the aftbody moment and the associated time delay. It is shown that the dynamic oscillation responses typical to blunt bodies can be produced using hysteresis of the aftbody moment in place of the pitch damping coefficient. The approach used in this investigation is shown to be useful in understanding the governing physical mechanisms for blunt body dynamic stability and in guiding vehicle and mission design requirements. A validation case study using simulated ballistic range test data is conducted. From this, parameter identification is carried out through the use of a least squares optimizing routine. Results show good agreement with the limited existing literature for the parameters identified, suggesting that the model proposed could be validated by an experimental ballistic range test series. The trajectories produced by the identified parameters were found to match closely those from the MER ballistic range tests for a wide array of initial conditions and can be identified with a reasonable number of ballistic range shots and computational effort.

  15. More than just "plug-and-chug": Exploring how physics students make sense with equations

    NASA Astrophysics Data System (ADS)

    Kuo, Eric

    Although a large part the Physics Education Research (PER) literature investigates students' conceptual understanding in physics, these investigations focus on qualitative, conceptual reasoning. Even in modeling expert problem solving, attention to conceptual understanding means a focus on initial qualitative analysis of the problem; the equations are typically conceived of as tools for "plug-and-chug" calculations. In this dissertation, I explore the ways that undergraduate physics students make conceptual sense of physics equations and the factors that support this type of reasoning through three separate studies. In the first study, I investigate how students' can understand physics equations intuitively through use of a particular class of cognitive elements, symbolic forms (Sherin, 2001). Additionally, I show how students leverage this intuitive, conceptual meaning of equations in problem solving. By doing so, these students avoid algorithmic manipulations, instead using a heuristic approach that leverages the equation in a conceptual argument. The second study asks the question why some students use symbolic forms and others don't. Although it is possible that students simply lack the knowledge required, I argue that this is not the only explanation. Rather, symbolic forms use is connected to particular epistemological stances, in-the-moment views on what kinds of knowledge and reasoning are appropriate in physics. Specifically, stances that value coherence between formal, mathematical knowledge and intuitive, conceptual knowledge are likely to support symbolic forms use. Through the case study of one student, I argue that both reasoning with equations and epistemological stances are dynamic, and that shifts in epistemological stance can produce shifts in whether symbolic forms are used to reason with equations. The third study expands the focus to what influences how students reason with equations across disciplinary problem contexts. In seeking to understand differences in how the same student reasons on two similar problems in calculus and physics, I show two factors, beyond the content or structure of the problems, that can help explain why reasoning on these two problems would be so different. This contributes to an understanding of what can support or impede transfer of content knowledge across disciplinary boundaries.

  16. Two Universal Equations of State for Solids

    NASA Astrophysics Data System (ADS)

    Sun, Jiu-Xun; Wu, Qiang; Guo, Yang; Cai, Ling-Cang

    2010-01-01

    In this paper, two equations of state (EOSs) (Sun Jiu-Xun-Morse with parameters n = 3 and 4, designated by SMS3 and SMS4) with two parameters are proposed to satisfy four merits proposed previously and give improved results for the cohesive energy. By applying ten typical EOSs to fit experimental compression data of 50 materials, it is shown that the SMS4 EOS gives the best results; the Baonza and Morse EOSs give the second best results; the SMS3 and modified generalized Lennard-Jones (mGLJ) EOSs give the third best results. However, the Baonza and mGLJ EOSs cannot give physically reasonable values of cohesive energy and P-V curves in the expansion region; the SMS3 and SMS4 EOS give fairly good results, and have some advantages over the Baonza and mGLJ EOSs in practical applications.

  17. Tunneling from the past horizon

    NASA Astrophysics Data System (ADS)

    Kang, Subeom; Yeom, Dong-han

    2018-04-01

    We investigate a tunneling and emission process of a thin-shell from a Schwarzschild black hole, where the shell was initially located beyond the Einstein-Rosen bridge and finally appears at the right side of the Penrose diagram. In order to obtain such a solution, we should assume that the areal radius of the black hole horizon increases after the tunneling. Hence, there is a parameter range such that the tunneling rate is exponentially enhanced, rather than suppressed. We may have two interpretations regarding this. First, such a tunneling process from the past horizon is improbable by physical reasons; second, such a tunneling is possible in principle, but in order to obtain a stable Einstein-Rosen bridge, one needs to restrict the parameter spaces. If such a process is allowed, this can be a nonperturbative contribution to Einstein-Rosen bridges as well as eternal black holes.

  18. Inner Radiation Belt Dynamics and Climatology

    NASA Astrophysics Data System (ADS)

    Guild, T. B.; O'Brien, P. P.; Looper, M. D.

    2012-12-01

    We present preliminary results of inner belt proton data assimilation using an augmented version of the Selesnick et al. Inner Zone Model (SIZM). By varying modeled physics parameters and solar particle injection parameters to generate many ensembles of the inner belt, then optimizing the ensemble weights according to inner belt observations from SAMPEX/PET at LEO and HEO/DOS at high altitude, we obtain the best-fit state of the inner belt. We need to fully sample the range of solar proton injection sources among the ensemble members to ensure reasonable agreement between the model ensembles and observations. Once this is accomplished, we find the method is fairly robust. We will demonstrate the data assimilation by presenting an extended interval of solar proton injections and losses, illustrating how these short-term dynamics dominate long-term inner belt climatology.

  19. Item Response Theory in the context of Improving Student Reasoning

    NASA Astrophysics Data System (ADS)

    Goddard, Chase; Davis, Jeremy; Pyper, Brian

    2011-10-01

    We are interested to see if Item Response Theory can help to better inform the development of reasoning ability in introductory physics. A first pass through our latest batch of data from the Heat and Temperature Conceptual Evaluation, the Lawson Classroom Test of Scientific Reasoning, and the Epistemological Beliefs About Physics Survey may help in this effort.

  20. Intertwining Evidence- and Model-Based Reasoning in Physics Sensemaking: An Example from Electrostatics

    ERIC Educational Resources Information Center

    Russ, Rosemary S.; Odden, Tor Ole B.

    2017-01-01

    Our field has long valued the goal of teaching students not just the facts of physics, but also the thinking and reasoning skills of professional physicists. The complexity inherent in scientific reasoning demands that we think carefully about how we conceptualize for ourselves, enact in our classes, and encourage in our students the relationship…

  1. Modal Damping Ratio and Optimal Elastic Moduli of Human Body Segments for Anthropometric Vibratory Model of Standing Subjects.

    PubMed

    Gupta, Manoj; Gupta, T C

    2017-10-01

    The present study aims to accurately estimate inertial, physical, and dynamic parameters of human body vibratory model consistent with physical structure of the human body that also replicates its dynamic response. A 13 degree-of-freedom (DOF) lumped parameter model for standing person subjected to support excitation is established. Model parameters are determined from anthropometric measurements, uniform mass density, elastic modulus of individual body segments, and modal damping ratios. Elastic moduli of ellipsoidal body segments are initially estimated by comparing stiffness of spring elements, calculated from a detailed scheme, and values available in literature for same. These values are further optimized by minimizing difference between theoretically calculated platform-to-head transmissibility ratio (TR) and experimental measurements. Modal damping ratios are estimated from experimental transmissibility response using two dominant peaks in the frequency range of 0-25 Hz. From comparison between dynamic response determined form modal analysis and experimental results, a set of elastic moduli for different segments of human body and a novel scheme to determine modal damping ratios from TR plots, are established. Acceptable match between transmissibility values calculated from the vibratory model and experimental measurements for 50th percentile U.S. male, except at very low frequencies, establishes the human body model developed. Also, reasonable agreement obtained between theoretical response curve and experimental response envelop for average Indian male, affirms the technique used for constructing vibratory model of a standing person. Present work attempts to develop effective technique for constructing subject specific damped vibratory model based on its physical measurements.

  2. Reasoning, Attitudes, and Learning: What matters in Introductory Physics?

    NASA Astrophysics Data System (ADS)

    Bateman, Melissa; Pyper, Brian

    2009-05-01

    Recent research has been revealing a connection between epistemological beliefs, reasoning ability and conceptual understanding. Our project has been taking data collected from the Fall `08 and Winter `09 semesters to supplement existing data in strengthening the statistical value of our sample size. We administered four tests to selected introductory physics courses: the Epistemological Beliefs Assessment for Physical Science, the Lawson Classroom Test of Scientific Reasoning, The Force Concept Inventory, and the Conceptual Survey in Electricity and Magnetism. With these data we have been comparing test results to demographics to answer questions such as: Does gender affect how we learn physics? Does past physics experience affect how we learn physics? Does past math experience affect how we learn physics? And how do math background successes compare to physics background successes? As we answer these questions, we will be better prepared in the Physics classroom and better identify the struggles of our students and solutions to help them better succeed.

  3. Development of Reasoning Test Instruments Based on TIMSS Framework for Measuring Reasoning Ability of Senior High School Student on the Physics Concept

    NASA Astrophysics Data System (ADS)

    Muslim; Suhandi, A.; Nugraha, M. G.

    2017-02-01

    The purposes of this study are to determine the quality of reasoning test instruments that follow the framework of Trends in International Mathematics and Science Study (TIMSS) as a development results and to analyse the profile of reasoning skill of senior high school students on physics materials. This research used research and development method (R&D), furthermore the subject were 104 students at three senior high schools in Bandung selected by random sampling technique. Reasoning test instruments are constructed following the TIMSS framework in multiple choice forms in 30 questions that cover five subject matters i.e. parabolic motion and circular motion, Newton’s law of gravity, work and energy, harmonic oscillation, as well as the momentum and impulse. The quality of reasoning tests were analysed using the Content Validity Ratio (CVR) and classic test analysis include the validity of item, level of difficulty, discriminating power, reliability and Ferguson’s delta. As for the students’ reasoning skills profiles were analysed by the average score of achievements on eight aspects of the reasoning TIMSS framework. The results showed that reasoning test have a good quality as instruments to measure reasoning skills of senior high school students on five matters physics which developed and able to explore the reasoning of students on all aspects of reasoning based on TIMSS framework.

  4. Physical experience enhances science learning.

    PubMed

    Kontra, Carly; Lyons, Daniel J; Fischer, Susan M; Beilock, Sian L

    2015-06-01

    Three laboratory experiments involving students' behavior and brain imaging and one randomized field experiment in a college physics class explored the importance of physical experience in science learning. We reasoned that students' understanding of science concepts such as torque and angular momentum is aided by activation of sensorimotor brain systems that add kinetic detail and meaning to students' thinking. We tested whether physical experience with angular momentum increases involvement of sensorimotor brain systems during students' subsequent reasoning and whether this involvement aids their understanding. The physical experience, a brief exposure to forces associated with angular momentum, significantly improved quiz scores. Moreover, improved performance was explained by activation of sensorimotor brain regions when students later reasoned about angular momentum. This finding specifies a mechanism underlying the value of physical experience in science education and leads the way for classroom practices in which experience with the physical world is an integral part of learning. © The Author(s) 2015.

  5. Object Individuation and Physical Reasoning in Infancy: An Integrative Account

    PubMed Central

    Baillargeon, Renée; Stavans, Maayan; Wu, Di; Gertner, Yael; Setoh, Peipei; Kittredge, Audrey K.; Bernard, Amélie

    2012-01-01

    Much of the research on object individuation in infancy has used a task in which two different objects emerge in alternation from behind a large screen, which is then removed to reveal either one or two objects. In their seminal work, Xu and Carey (1996) found that it is typically not until the end of the first year that infants detect a violation when a single object is revealed. Since then, a large number of investigations have modified the standard task in various ways and found that young infants succeed with some but not with other modifications, yielding a complex and unwieldy picture. In this article, we argue that this confusing picture can be better understood by bringing to bear insights from a related subfield of infancy research, physical reasoning. By considering how infants reason about object information within and across physical events, we can make sense of apparently inconsistent findings from different object-individuation tasks. In turn, object-individuation findings deepen our understanding of how physical reasoning develops in infancy. Integrating the insights from physical-reasoning and object-individuation investigations thus enriches both subfields and brings about a clearer account of how infants represent objects and events. PMID:23204946

  6. Reconciling intuitive physics and Newtonian mechanics for colliding objects.

    PubMed

    Sanborn, Adam N; Mansinghka, Vikash K; Griffiths, Thomas L

    2013-04-01

    People have strong intuitions about the influence objects exert upon one another when they collide. Because people's judgments appear to deviate from Newtonian mechanics, psychologists have suggested that people depend on a variety of task-specific heuristics. This leaves open the question of how these heuristics could be chosen, and how to integrate them into a unified model that can explain human judgments across a wide range of physical reasoning tasks. We propose an alternative framework, in which people's judgments are based on optimal statistical inference over a Newtonian physical model that incorporates sensory noise and intrinsic uncertainty about the physical properties of the objects being viewed. This noisy Newton framework can be applied to a multitude of judgments, with people's answers determined by the uncertainty they have for physical variables and the constraints of Newtonian mechanics. We investigate a range of effects in mass judgments that have been taken as strong evidence for heuristic use and show that they are well explained by the interplay between Newtonian constraints and sensory uncertainty. We also consider an extended model that handles causality judgments, and obtain good quantitative agreement with human judgments across tasks that involve different judgment types with a single consistent set of parameters.

  7. The role of clinician emotion in clinical reasoning: Balancing the analytical process.

    PubMed

    Langridge, Neil; Roberts, Lisa; Pope, Catherine

    2016-02-01

    This review paper identifies and describes the role of clinicians' memory, emotions and physical responses in clinical reasoning processes. Clinical reasoning is complex and multi-factorial and key models of clinical reasoning within musculoskeletal physiotherapy are discussed, highlighting the omission of emotion and subsequent physical responses and how these can impact upon a clinician when making a decision. It is proposed that clinicians should consider the emotions associated with decision-making, especially when there is concern surrounding a presentation. Reflecting on practice in the clinical environment and subsequently applying this to a patient presentation should involve some acknowledgement of clinicians' physical responses, emotions and how they may play a part in any decision made. Presenting intuition and gut-feeling as separate reasoning methods and how these processes co-exist with other more accepted reasoning such as hypothetico-deductive is also discussed. Musculoskeletal physiotherapy should consider the elements of feelings, emotions and physical responses when applying reflective practice principles. Furthermore, clinicians dealing with difficult and challenging presentations should look at the emotional as well as the analytical experience when justifying decisions and learning from practice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Item response theory analysis of Centers for Disease Control and Prevention Health-Related Quality of Life (CDC HRQOL) items in adults with arthritis.

    PubMed

    Mielenz, Thelma J; Callahan, Leigh F; Edwards, Michael C

    2016-03-12

    Examine the feasibility of performing an item response theory (IRT) analysis on two of the Centers for Disease Control and Prevention health-related quality of life (CDC HRQOL) modules - the 4-item Healthy Days Core Module (HDCM) and the 5-item Healthy days Symptoms Module (HDSM). Previous principal components analyses confirm that the two scales both assess a mix of mental (CDC-MH) and physical health (CDC-PH). The purpose is to conduct item response theory (IRT) analysis on the CDC-MH and CDC-PH scales separately. 2182 patients with self-reported or physician-diagnosed arthritis completed a cross-sectional survey including HDCM and HDSM items. Besides global health, the other 8 items ask the number of days that some statement was true; we chose to recode the data into 8 categories based on observed clustering. The IRT assumptions were assessed using confirmatory factor analysis and the data could be modeled using an unidimensional IRT model. The graded response model was used for IRT analyses and CDC-MH and CDC-PH scales were analyzed separately in flexMIRT. The IRT parameter estimates for the five-item CDC-PH all appeared reasonable. The three-item CDC-MH did not have reasonable parameter estimates. The CDC-PH scale is amenable to IRT analysis but the existing The CDC-MH scale is not. We suggest either using the 4-item Healthy Days Core Module (HDCM) and the 5-item Healthy days Symptoms Module (HDSM) as they currently stand or the CDC-PH scale alone if the primary goal is to measure physical health related HRQOL.

  9. Study of photon emission by electron capture during solar nuclei acceleration, 1: Temperature-dependent cross section for charge changing processes

    NASA Technical Reports Server (NTRS)

    Perez-Peraza, J.; Alvarez, M.; Laville, A.; Gallegos, A.

    1985-01-01

    The study of charge changing cross sections of fast ions colliding with matter provides the fundamental basis for the analysis of the charge states produced in such interactions. Given the high degree of complexity of the phenomena, there is no theoretical treatment able to give a comprehensive description. In fact, the involved processes are very dependent on the basic parameters of the projectile, such as velocity charge state, and atomic number, and on the target parameters, the physical state (molecular, atomic or ionized matter) and density. The target velocity, may have also incidence on the process, through the temperature of the traversed medium. In addition, multiple electron transfer in single collisions intrincates more the phenomena. Though, in simplified cases, such as protons moving through atomic hydrogen, considerable agreement has been obtained between theory and experiments However, in general the available theoretical approaches have only limited validity in restricted regions of the basic parameters. Since most measurements of charge changing cross sections are performed in atomic matter at ambient temperature, models are commonly based on the assumption of targets at rest, however at Astrophysical scales, temperature displays a wide range in atomic and ionized matter. Therefore, due to the lack of experimental data , an attempt is made here to quantify temperature dependent cross sections on basis to somewhat arbitrary, but physically reasonable assumptions.

  10. Adaptive control based on an on-line parameter estimation of an upper limb exoskeleton.

    PubMed

    Riani, Akram; Madani, Tarek; Hadri, Abdelhafid El; Benallegue, Abdelaziz

    2017-07-01

    This paper presents an adaptive control strategy for an upper-limb exoskeleton based on an on-line dynamic parameter estimator. The objective is to improve the control performance of this system that plays a critical role in assisting patients for shoulder, elbow and wrist joint movements. In general, the dynamic parameters of the human limb are unknown and differ from a person to another, which degrade the performances of the exoskeleton-human control system. For this reason, the proposed control scheme contains a supplementary loop based on a new efficient on-line estimator of the dynamic parameters. Indeed, the latter is acting upon the parameter adaptation of the controller to ensure the performances of the system in the presence of parameter uncertainties and perturbations. The exoskeleton used in this work is presented and a physical model of the exoskeleton interacting with a 7 Degree of Freedom (DoF) upper limb model is generated using the SimMechanics library of MatLab/Simulink. To illustrate the effectiveness of the proposed approach, an example of passive rehabilitation movements is performed using multi-body dynamic simulation. The aims is to maneuver the exoskeleton that drive the upper limb to track desired trajectories in the case of the passive arm movements.

  11. Mathematical Modeling of Fluid Flow in a Water Physical Model of an Aluminum Degassing Ladle Equipped with an Impeller-Injector

    NASA Astrophysics Data System (ADS)

    Gómez, Eudoxio Ramos; Zenit, Roberto; Rivera, Carlos González; Trápaga, Gerardo; Ramírez-Argáez, Marco A.

    2013-04-01

    In this work, a 3D numerical simulation using a Euler-Euler-based model implemented into a commercial CFD code was used to simulate fluid flow and turbulence structure in a water physical model of an aluminum ladle equipped with an impeller for degassing treatment. The effect of critical process parameters such as rotor speed, gas flow rate, and the point of gas injection (conventional injection through the shaft vs a novel injection through the bottom of the ladle) on the fluid flow and vortex formation was analyzed with this model. The commercial CFD code PHOENICS 3.4 was used to solve all conservation equations governing the process for this two-phase fluid flow system. The mathematical model was reasonably well validated against experimentally measured liquid velocity and vortex sizes in a water physical model built specifically for this investigation. From the results, it was concluded that the angular speed of the impeller is the most important parameter in promoting better stirred baths and creating smaller and better distributed bubbles in the liquid. The pumping effect of the impeller is increased as the impeller rotation speed increases. Gas flow rate is detrimental to bath stirring and diminishes the pumping effect of the impeller. Finally, although the injection point was the least significant variable, it was found that the "novel" injection improves stirring in the ladle.

  12. Pre-Service Physics Teachers' Difficulties in Understanding Special Relativity Topics

    ERIC Educational Resources Information Center

    Ünlü Yavas, Pervin; Kizilcik, Hasan Sahin

    2016-01-01

    The aim of this study is to identify the reasons why pre-service physics teachers have difficulties related to special relativity topics. In this study conducted with 25 pre-service physics teachers, the case study method, which is a qualitative research method, was used. Interviews were held with the participants about their reasons for…

  13. Patterns of Physics Reasoning in Face-to-Face and Online Forum Collaboration around a Digital Game

    ERIC Educational Resources Information Center

    Van Eaton, Grant; Clark, Douglas B.; Smith, Blaine E.

    2015-01-01

    Students playing digital learning games in the classroom rarely play alone, even in digital games that are ostensibly "single-player" games. This study explores the patterns of physics reasoning that emerge in face-to-face and online forum collaboration while students play a physics-focused educational game in their classroom. We…

  14. Can Short Duration Visual Cues Influence Students' Reasoning and Eye Movements in Physics Problems?

    ERIC Educational Resources Information Center

    Madsen, Adrian; Rouinfar, Amy; Larson, Adam M.; Loschky, Lester C.; Rebello, N. Sanjay

    2013-01-01

    We investigate the effects of visual cueing on students' eye movements and reasoning on introductory physics problems with diagrams. Participants in our study were randomly assigned to either the cued or noncued conditions, which differed by whether the participants saw conceptual physics problems overlaid with dynamic visual cues. Students in the…

  15. Resident Space Object Characterization and Behavior Understanding via Machine Learning and Ontology-based Bayesian Networks

    NASA Astrophysics Data System (ADS)

    Furfaro, R.; Linares, R.; Gaylor, D.; Jah, M.; Walls, R.

    2016-09-01

    In this paper, we present an end-to-end approach that employs machine learning techniques and Ontology-based Bayesian Networks (BN) to characterize the behavior of resident space objects. State-of-the-Art machine learning architectures (e.g. Extreme Learning Machines, Convolutional Deep Networks) are trained on physical models to learn the Resident Space Object (RSO) features in the vectorized energy and momentum states and parameters. The mapping from measurements to vectorized energy and momentum states and parameters enables behavior characterization via clustering in the features space and subsequent RSO classification. Additionally, Space Object Behavioral Ontologies (SOBO) are employed to define and capture the domain knowledge-base (KB) and BNs are constructed from the SOBO in a semi-automatic fashion to execute probabilistic reasoning over conclusions drawn from trained classifiers and/or directly from processed data. Such an approach enables integrating machine learning classifiers and probabilistic reasoning to support higher-level decision making for space domain awareness applications. The innovation here is to use these methods (which have enjoyed great success in other domains) in synergy so that it enables a "from data to discovery" paradigm by facilitating the linkage and fusion of large and disparate sources of information via a Big Data Science and Analytics framework.

  16. Possibilities: A framework for modeling students' deductive reasoning in physics

    NASA Astrophysics Data System (ADS)

    Gaffney, Jonathan David Housley

    Students often make errors when trying to solve qualitative or conceptual physics problems, and while many successful instructional interventions have been generated to prevent such errors, the process of deduction that students use when solving physics problems has not been thoroughly studied. In an effort to better understand that reasoning process, I have developed a new framework, which is based on the mental models framework in psychology championed by P. N. Johnson-Laird. My new framework models how students search possibility space when thinking about conceptual physics problems and suggests that errors arise from failing to flesh out all possibilities. It further suggests that instructional interventions should focus on making apparent those possibilities, as well as all physical consequences those possibilities would incur. The possibilities framework emerged from the analysis of data from a unique research project specifically invented for the purpose of understanding how students use deductive reasoning. In the selection task, participants were given a physics problem along with three written possible solutions with the goal of identifying which one of the three possible solutions was correct. Each participant was also asked to identify the errors in the incorrect solutions. For the study presented in this dissertation, participants not only performed the selection task individually on four problems, but they were also placed into groups of two or three and asked to discuss with each other the reasoning they used in making their choices and attempt to reach a consensus about which solution was correct. Finally, those groups were asked to work together to perform the selection task on three new problems. The possibilities framework appropriately models the reasoning that students use, and it makes useful predictions about potentially helpful instructional interventions. The study reported in this dissertation emphasizes the useful insight the possibilities framework provides. For example, this framework allows us to detect subtle differences in students' reasoning errors, even when those errors result in the same final answer. It also illuminates how simply mentioning overlooked quantities can instigate new lines of student reasoning. It allows us to better understand how well-known psychological biases, such as the belief bias, affect the reasoning process by preventing reasoners from fleshing out all of the possibilities. The possibilities framework also allows us to track student discussions about physics, revealing the need for all parties in communication to use the same set of possibilities in the conversations to facilitate successful understanding. The framework also suggests some of the influences that affect how reasoners choose between possible solutions to a given problem. This new framework for understanding how students reason when solving conceptual physics problems opens the door to a significant field of research. The framework itself needs to be further tested and developed, but it provides substantial suggestions for instructional interventions. If we hope to improve student reasoning in physics, the possibilities framework suggests that we are perhaps best served by teaching students how to fully flesh out the possibilities in every situation. This implies that we need to ensure students have a deep understanding of all of the implied possibilities afforded by the fundamental principles that are the cornerstones of the models we teach in physics classes.

  17. Algorithms and physical parameters involved in the calculation of model stellar atmospheres

    NASA Astrophysics Data System (ADS)

    Merlo, D. C.

    This contribution summarizes the Doctoral Thesis presented at Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba for the degree of PhD in Astronomy. We analyze some algorithms and physical parameters involved in the calculation of model stellar atmospheres, such as atomic partition functions, functional relations connecting gaseous and electronic pressure, molecular formation, temperature distribution, chemical compositions, Gaunt factors, atomic cross-sections and scattering sources, as well as computational codes for calculating models. Special attention is paid to the integration of hydrostatic equation. We compare our results with those obtained by other authors, finding reasonable agreement. We make efforts on the implementation of methods that modify the originally adopted temperature distribution in the atmosphere, in order to obtain constant energy flux throughout. We find limitations and we correct numerical instabilities. We integrate the transfer equation solving directly the integral equation involving the source function. As a by-product, we calculate updated atomic partition functions of the light elements. Also, we discuss and enumerate carefully selected formulae for the monochromatic absorption and dispersion of some atomic and molecular species. Finally, we obtain a flexible code to calculate model stellar atmospheres.

  18. Optimizing integrated luminosity of future hadron colliders

    NASA Astrophysics Data System (ADS)

    Benedikt, Michael; Schulte, Daniel; Zimmermann, Frank

    2015-10-01

    The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical "beam-beam limit"), or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value for the total beam-beam tune shift or for the event pileup in the detector. Our results are illustrated by examples for the proton-proton luminosity of the existing Large Hadron Collider (LHC) at its design parameters, of the High-Luminosity Large Hadron Collider (HL-LHC), and of the Future Circular Collider (FCC-hh).

  19. Calculating and Understanding: Formal Models and Causal Explanations in Science, Common Reasoning and Physics Teaching

    NASA Astrophysics Data System (ADS)

    Besson, Ugo

    2010-03-01

    This paper presents an analysis of the different types of reasoning and physical explanation used in science, common thought, and physics teaching. It then reflects on the learning difficulties connected with these various approaches, and suggests some possible didactic strategies. Although causal reasoning occurs very frequently in common thought and daily life, it has long been the subject of debate and criticism among philosophers and scientists. In this paper, I begin by providing a description of some general tendencies of common reasoning that have been identified by didactic research. Thereafter, I briefly discuss the role of causality in science, as well as some different types of explanation employed in the field of physics. I then present some results of a study examining the causal reasoning used by students in solid and fluid mechanics. The differences found between the types of reasoning typical of common thought and those usually proposed during instruction can create learning difficulties and impede student motivation. Many students do not seem satisfied by the mere application of formal laws and functional relations. Instead, they express the need for a causal explanation, a mechanism that allows them to understand how a state of affairs has come about. I discuss few didactic strategies aimed at overcoming these problems, and describe, in general terms, two examples of mechanics teaching sequences which were developed and tested in different contexts. The paper ends with a reflection on the possible role to be played in physics learning by intuitive and imaginative thought, and the use of simple explanatory models based on physical analogies and causal mechanisms.

  20. Welding arc plasma physics

    NASA Technical Reports Server (NTRS)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  1. A Meta-Analytic Review of the Theories of Reasoned Action and Planned Behavior in Physical Activity: Predictive Validity and the Contribution of Additional Variables.

    ERIC Educational Resources Information Center

    Hagger, Martin S.; Chatzisarantis, Nikos L. D.; Biddle, Stuart J. H.

    2002-01-01

    Examined relations between behavior, intentions, attitudes, subjective norms, perceived behavioral control, self-efficacy, and past behaviors using the Theories of Reasoned Action (TRA) and Planned Behavior (TPB) in physical activity. This quantitative integration of the physical activity literature supported the major relationships of the…

  2. An Integrative Perspective on Students' Proportional Reasoning in High School Physics in a West African Context

    ERIC Educational Resources Information Center

    Akatugba, Ayo Harriet; Wallace, John

    2009-01-01

    This study examines students' use of proportional reasoning in high school physics problem-solving in a West African school setting. An in-depth, constructivist, and interpretive case study was carried out with six physics students from a co-educational senior secondary school in Nigeria over a period of five months. The study aimed to elicit…

  3. Independent-particle models for light negative atomic ions

    NASA Technical Reports Server (NTRS)

    Ganas, P. S.; Talman, J. D.; Green, A. E. S.

    1980-01-01

    For the purposes of astrophysical, aeronomical, and laboratory application, a precise independent-particle model for electrons in negative atomic ions of the second and third period is discussed. The optimum-potential model (OPM) of Talman et al. (1979) is first used to generate numerical potentials for eight of these ions. Results for total energies and electron affinities are found to be very close to Hartree-Fock solutions. However, the OPM and HF electron affinities both depart significantly from experimental affinities. For this reason, two analytic potentials are developed whose inner energy levels are very close to the OPM and HF levels but whose last electron eigenvalues are adjusted precisely with the magnitudes of experimental affinities. These models are: (1) a four-parameter analytic characterization of the OPM potential and (2) a two-parameter potential model of the Green, Sellin, Zachor type. The system O(-) or e-O, which is important in upper atmospheric physics is examined in some detail.

  4. [Effects of sports and media consumption on the trunk muscle strength, posture and flexibility of the spine in 12- to 14- year-old adolescents].

    PubMed

    Küster, M

    2004-06-01

    Back pain and posture deficits get more common in childhood and adolescents. Lack of movement, insufficient physical education and high amounts of TV and PC are known as risk factors for chronic low back pain in later life. In a cross-sectional study, trunk muscle strength, posture and spinal flexibility were assessed in 200 untrained schoolchildren (117 girls, 83 boys). Independent variables, collected by a standardized questionnaire: age, height, weight, gender, weekly scope of TV, PC and sports (conditional, conditional-coordinative, coordinative). spinal parameter, tested by the Zebris CMS-System and IPN Back Check. PC and TV-consumption had negative effects on the spinal parameter, whereas esp. conditional-coordinative sports correlated positively. For general health and preventive reasons, children need a daily minimum of 30 minutes of movement. Conditional-coordinative sports are suited best because of their multifactorial load.

  5. A comprehensive method for preliminary design optimization of axial gas turbine stages

    NASA Technical Reports Server (NTRS)

    Jenkins, R. M.

    1982-01-01

    A method is presented that performs a rapid, reasonably accurate preliminary pitchline optimization of axial gas turbine annular flowpath geometry, as well as an initial estimate of blade profile shapes, given only a minimum of thermodynamic cycle requirements. No geometric parameters need be specified. The following preliminary design data are determined: (1) the optimum flowpath geometry, within mechanical stress limits; (2) initial estimates of cascade blade shapes; (3) predictions of expected turbine performance. The method uses an inverse calculation technique whereby blade profiles are generated by designing channels to yield a specified velocity distribution on the two walls. Velocity distributions are then used to calculate the cascade loss parameters. Calculated blade shapes are used primarily to determine whether the assumed velocity loadings are physically realistic. Model verification is accomplished by comparison of predicted turbine geometry and performance with four existing single stage turbines.

  6. Diagnosis by integrating model-based reasoning with knowledge-based reasoning

    NASA Technical Reports Server (NTRS)

    Bylander, Tom

    1988-01-01

    Our research investigates how observations can be categorized by integrating a qualitative physical model with experiential knowledge. Our domain is diagnosis of pathologic gait in humans, in which the observations are the gait motions, muscle activity during gait, and physical exam data, and the diagnostic hypotheses are the potential muscle weaknesses, muscle mistimings, and joint restrictions. Patients with underlying neurological disorders typically have several malfunctions. Among the problems that need to be faced are: the ambiguity of the observations, the ambiguity of the qualitative physical model, correspondence of the observations and hypotheses to the qualitative physical model, the inherent uncertainty of experiential knowledge, and the combinatorics involved in forming composite hypotheses. Our system divides the work so that the knowledge-based reasoning suggests which hypotheses appear more likely than others, the qualitative physical model is used to determine which hypotheses explain which observations, and another process combines these functionalities to construct a composite hypothesis based on explanatory power and plausibility. We speculate that the reasoning architecture of our system is generally applicable to complex domains in which a less-than-perfect physical model and less-than-perfect experiential knowledge need to be combined to perform diagnosis.

  7. 45 CFR 605.12 - Reasonable accommodation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... to the known physical or mental limitations of an otherwise qualified handicapped applicant or... reasonable accommodation to the physical or mental limitations of the employee or applicant. [47 FR 8573, Mar...

  8. 45 CFR 605.12 - Reasonable accommodation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... to the known physical or mental limitations of an otherwise qualified handicapped applicant or... reasonable accommodation to the physical or mental limitations of the employee or applicant. [47 FR 8573, Mar...

  9. 45 CFR 605.12 - Reasonable accommodation.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... to the known physical or mental limitations of an otherwise qualified handicapped applicant or... reasonable accommodation to the physical or mental limitations of the employee or applicant. [47 FR 8573, Mar...

  10. 45 CFR 605.12 - Reasonable accommodation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... to the known physical or mental limitations of an otherwise qualified handicapped applicant or... reasonable accommodation to the physical or mental limitations of the employee or applicant. [47 FR 8573, Mar...

  11. 45 CFR 605.12 - Reasonable accommodation.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Public Welfare Regulations Relating to Public Welfare (Continued) NATIONAL SCIENCE FOUNDATION... to the known physical or mental limitations of an otherwise qualified handicapped applicant or... reasonable accommodation to the physical or mental limitations of the employee or applicant. [47 FR 8573, Mar...

  12. Answer first: Applying the heuristic-analytic theory of reasoning to examine student intuitive thinking in the context of physics

    NASA Astrophysics Data System (ADS)

    Kryjevskaia, Mila; Stetzer, MacKenzie R.; Grosz, Nathaniel

    2014-12-01

    We have applied the heuristic-analytic theory of reasoning to interpret inconsistencies in student reasoning approaches to physics problems. This study was motivated by an emerging body of evidence that suggests that student conceptual and reasoning competence demonstrated on one task often fails to be exhibited on another. Indeed, even after instruction specifically designed to address student conceptual and reasoning difficulties identified by rigorous research, many undergraduate physics students fail to build reasoning chains from fundamental principles even though they possess the required knowledge and skills to do so. Instead, they often rely on a variety of intuitive reasoning strategies. In this study, we developed and employed a methodology that allowed for the disentanglement of student conceptual understanding and reasoning approaches through the use of sequences of related questions. We have shown that the heuristic-analytic theory of reasoning can be used to account for, in a mechanistic fashion, the observed inconsistencies in student responses. In particular, we found that students tended to apply their correct ideas in a selective manner that supported a specific and likely anticipated conclusion while neglecting to employ the same ideas to refute an erroneous intuitive conclusion. The observed reasoning patterns were consistent with the heuristic-analytic theory, according to which reasoners develop a "first-impression" mental model and then construct an argument in support of the answer suggested by this model. We discuss implications for instruction and argue that efforts to improve student metacognition, which serves to regulate the interaction between intuitive and analytical reasoning, is likely to lead to improved student reasoning.

  13. An Integrated Approach to Parameter Learning in Infinite-Dimensional Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Zachary M.; Wendelberger, Joanne Roth

    The availability of sophisticated modern physics codes has greatly extended the ability of domain scientists to understand the processes underlying their observations of complicated processes, but it has also introduced the curse of dimensionality via the many user-set parameters available to tune. Many of these parameters are naturally expressed as functional data, such as initial temperature distributions, equations of state, and controls. Thus, when attempting to find parameters that match observed data, being able to navigate parameter-space becomes highly non-trivial, especially considering that accurate simulations can be expensive both in terms of time and money. Existing solutions include batch-parallel simulations,more » high-dimensional, derivative-free optimization, and expert guessing, all of which make some contribution to solving the problem but do not completely resolve the issue. In this work, we explore the possibility of coupling together all three of the techniques just described by designing user-guided, batch-parallel optimization schemes. Our motivating example is a neutron diffusion partial differential equation where the time-varying multiplication factor serves as the unknown control parameter to be learned. We find that a simple, batch-parallelizable, random-walk scheme is able to make some progress on the problem but does not by itself produce satisfactory results. After reducing the dimensionality of the problem using functional principal component analysis (fPCA), we are able to track the progress of the solver in a visually simple way as well as viewing the associated principle components. This allows a human to make reasonable guesses about which points in the state space the random walker should try next. Thus, by combining the random walker's ability to find descent directions with the human's understanding of the underlying physics, it is possible to use expensive simulations more efficiently and more quickly arrive at the desired parameter set.« less

  14. A Ground Flash Fraction Retrieval Algorithm for GLM

    NASA Technical Reports Server (NTRS)

    Koshak, William J.

    2010-01-01

    A Bayesian inversion method is introduced for retrieving the fraction of ground flashes in a set of N lightning observed by a satellite lightning imager (such as the Geostationary Lightning Mapper, GLM). An exponential model is applied as a physically reasonable constraint to describe the measured lightning optical parameter distributions. Population statistics (i.e., the mean and variance) are invoked to add additional constraints to the retrieval process. The Maximum A Posteriori (MAP) solution is employed. The approach is tested by performing simulated retrievals, and retrieval error statistics are provided. The approach is feasible for N greater than 2000, and retrieval errors decrease as N is increased.

  15. On the Enthalpy and Entropy of Point Defect Formation in Crystals

    NASA Astrophysics Data System (ADS)

    Kobelev, N. P.; Khonik, V. A.

    2018-03-01

    A standard way to determine the formation enthalpy H and entropy S of point defect formation in crystals consists in the application of the Arrhenius equation for the defect concentration. In this work, we show that a formal use of this method actually gives the effective (apparent) values of these quantities, which appear to be significantly overestimated. The underlying physical reason lies in temperature-dependent formation enthalpy of the defects, which is controlled by temperature dependence of the elastic moduli. We present an evaluation of the "true" H- and S-values for aluminum, which are derived on the basis of experimental data by taking into account temperature dependence of the formation enthalpy related to temperature dependence of the elastic moduli. The knowledge of the "true" activation parameters is needed for a correct calculation of the defect concentration constituting thus an issue of major importance for different fundamental and application issues of condensed matter physics and chemistry.

  16. Advances in modeling sorption and diffusion of moisture in porous reactive materials.

    PubMed

    Harley, Stephen J; Glascoe, Elizabeth A; Lewicki, James P; Maxwell, Robert S

    2014-06-23

    Water-vapor-uptake experiments were performed on a silica-filled poly(dimethylsiloxane) (PDMS) network and modeled by using two different approaches. The data was modeled by using established methods and the model parameters were used to predict moisture uptake in a sample. The predictions are reasonably good, but not outstanding; many of the shortcomings of the modeling are discussed. A high-fidelity modeling approach is derived and used to improve the modeling of moisture uptake and diffusion. Our modeling approach captures the physics and kinetics of diffusion and adsorption/desorption, simultaneously. It predicts uptake better than the established method; more importantly, it is also able to predict outgassing. The material used for these studies is a filled-PDMS network; physical interpretations concerning the sorption and diffusion of moisture in this network are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Accelerometry-based classification of human activities using Markov modeling.

    PubMed

    Mannini, Andrea; Sabatini, Angelo Maria

    2011-01-01

    Accelerometers are a popular choice as body-motion sensors: the reason is partly in their capability of extracting information that is useful for automatically inferring the physical activity in which the human subject is involved, beside their role in feeding biomechanical parameters estimators. Automatic classification of human physical activities is highly attractive for pervasive computing systems, whereas contextual awareness may ease the human-machine interaction, and in biomedicine, whereas wearable sensor systems are proposed for long-term monitoring. This paper is concerned with the machine learning algorithms needed to perform the classification task. Hidden Markov Model (HMM) classifiers are studied by contrasting them with Gaussian Mixture Model (GMM) classifiers. HMMs incorporate the statistical information available on movement dynamics into the classification process, without discarding the time history of previous outcomes as GMMs do. An example of the benefits of the obtained statistical leverage is illustrated and discussed by analyzing two datasets of accelerometer time series.

  18. Ceres: predictions for near-surface water ice stability and implications for plume generating processes

    USGS Publications Warehouse

    Titus, Timothy N.

    2015-01-01

    This paper will constrain the possible sources and processes for the formation of recently observed H2O vapor plumes above the surface of the dwarf planet Ceres. Two hypotheses have been proposed: (1) cryovolcanism where the water source is the mantle and the heating source is still unknown or (2) comet-like sublimation where near-surface water ice is vaporized by seasonally increasing solar insolation. We test hypothesis #2, comet-like near-surface sublimation, by using a thermal model to examine the stability of water-ice in the near surface. For a reasonable range of physical parameters (thermal inertia, surface roughness, slopes), we find that water ice is only stable at latitudes higher than ~40-60 degrees. These results indicate that either (a) the physical properties of Ceres are unlike our expectations or (b) an alternative to comet-like sublimation, such as the cryovolcanism hypothesis, must be invoked.

  19. Cosmic reionization on computers. I. Design and calibration of simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnedin, Nickolay Y., E-mail: gnedin@fnal.gov

    Cosmic Reionization On Computers is a long-term program of numerical simulations of cosmic reionization. Its goal is to model fully self-consistently (albeit not necessarily from the first principles) all relevant physics, from radiative transfer to gas dynamics and star formation, in simulation volumes of up to 100 comoving Mpc, and with spatial resolution approaching 100 pc in physical units. In this method paper, we describe our numerical method, the design of simulations, and the calibration of numerical parameters. Using several sets (ensembles) of simulations in 20 h {sup –1} Mpc and 40 h {sup –1} Mpc boxes with spatial resolutionmore » reaching 125 pc at z = 6, we are able to match the observed galaxy UV luminosity functions at all redshifts between 6 and 10, as well as obtain reasonable agreement with the observational measurements of the Gunn-Peterson optical depth at z < 6.« less

  20. Spatial Localization in Dissipative Systems

    NASA Astrophysics Data System (ADS)

    Knobloch, E.

    2015-03-01

    Spatial localization is a common feature of physical systems, occurring in both conservative and dissipative systems. This article reviews the theoretical foundations of our understanding of spatial localization in forced dissipative systems, from both a mathematical point of view and a physics perspective. It explains the origin of the large multiplicity of simultaneously stable spatially localized states present in a parameter region called the pinning region and its relation to the notion of homoclinic snaking. The localized states are described as bound states of fronts, and the notions of front pinning, self-pinning, and depinning are emphasized. Both one-dimensional and two-dimensional systems are discussed, and the reasons behind the differences in behavior between dissipative systems with conserved and nonconserved dynamics are explained. The insights gained are specific to forced dissipative systems and are illustrated here using examples drawn from fluid mechanics (convection and shear flows) and a simple model of crystallization.

  1. Omics integrating physical techniques: aged Piedmontese meat analysis.

    PubMed

    Lana, Alessandro; Longo, Valentina; Dalmasso, Alessandra; D'Alessandro, Angelo; Bottero, Maria Teresa; Zolla, Lello

    2015-04-01

    Piedmontese meat tenderness becomes higher by extending the ageing period after slaughter up to 44 days. Classical physical analysis only partially explain this evidence, so in order to discover the reason of the potential beneficial effects of prolonged ageing, we performed omic analysis in the Longissimus thoracis muscle by examining main biochemical changes through mass spectrometry-based metabolomics and proteomics. We observed a progressive decline in myofibrillar structural integrity (underpinning meat tenderness) and impaired energy metabolism. Markers of autophagic responses (e.g. serine and glutathione metabolism) and nitrogen metabolism (urea cycle intermediates) accumulated until the end of the assayed period. Key metabolites such as glutamate, a mediator of the appreciated umami taste of the meat, were found to constantly accumulate until day 44. Finally, statistical analyses revealed that glutamate, serine and arginine could serve as good predictors of ultimate meat quality parameters, even though further studies are mandatory. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Use of the computer for research on student thinking in physics

    NASA Astrophysics Data System (ADS)

    Grayson, Diane J.; McDermott, Lillian C.

    1996-05-01

    This paper describes the use of the computer-based interview as a research technique for investigating how students think about physics. Two computer programs provide the context: one intended for instruction, the other for research. The one designed for use as an instructional aid displays the motion of a ball rolling along a track that has level and inclined segments. The associated motion graphs are also shown. The other program, which was expressly designed for use in research, is based on the simulated motion of a modified Atwood's machine. The programs require students to predict the effect of the initial conditions and system parameters on the motion or on a graph of the motion. The motion that would actually occur is then displayed. The investigation focuses on the reasoning used by the students as they try to resolve discrepancies between their predictions and observations.

  3. The effect of improving task representativeness on capturing nurses’ risk assessment judgements: a comparison of written case simulations and physical simulations

    PubMed Central

    2013-01-01

    Background The validity of studies describing clinicians’ judgements based on their responses to paper cases is questionable, because - commonly used - paper case simulations only partly reflect real clinical environments. In this study we test whether paper case simulations evoke similar risk assessment judgements to the more realistic simulated patients used in high fidelity physical simulations. Methods 97 nurses (34 experienced nurses and 63 student nurses) made dichotomous assessments of risk of acute deterioration on the same 25 simulated scenarios in both paper case and physical simulation settings. Scenarios were generated from real patient cases. Measures of judgement ‘ecology’ were derived from the same case records. The relationship between nurses’ judgements, actual patient outcomes (i.e. ecological criteria), and patient characteristics were described using the methodology of judgement analysis. Logistic regression models were constructed to calculate Lens Model Equation parameters. Parameters were then compared between the modeled paper-case and physical-simulation judgements. Results Participants had significantly less achievement (ra) judging physical simulations than when judging paper cases. They used less modelable knowledge (G) with physical simulations than with paper cases, while retaining similar cognitive control and consistency on repeated patients. Respiration rate, the most important cue for predicting patient risk in the ecological model, was weighted most heavily by participants. Conclusions To the extent that accuracy in judgement analysis studies is a function of task representativeness, improving task representativeness via high fidelity physical simulations resulted in lower judgement performance in risk assessments amongst nurses when compared to paper case simulations. Lens Model statistics could prove useful when comparing different options for the design of simulations used in clinical judgement analysis. The approach outlined may be of value to those designing and evaluating clinical simulations as part of education and training strategies aimed at improving clinical judgement and reasoning. PMID:23718556

  4. Exploring the implication of climate process uncertainties within the Earth System Framework

    NASA Astrophysics Data System (ADS)

    Booth, B.; Lambert, F. H.; McNeal, D.; Harris, G.; Sexton, D.; Boulton, C.; Murphy, J.

    2011-12-01

    Uncertainties in the magnitude of future climate change have been a focus of a great deal of research. Much of the work with General Circulation Models has focused on the atmospheric response to changes in atmospheric composition, while other processes remain outside these frameworks. Here we introduce an ensemble of new simulations, based on an Earth System configuration of HadCM3C, designed to explored uncertainties in both physical (atmospheric, oceanic and aerosol physics) and carbon cycle processes, using perturbed parameter approaches previously used to explore atmospheric uncertainty. Framed in the context of the climate response to future changes in emissions, the resultant future projections represent significantly broader uncertainty than existing concentration driven GCM assessments. The systematic nature of the ensemble design enables interactions between components to be explored. For example, we show how metrics of physical processes (such as climate sensitivity) are also influenced carbon cycle parameters. The suggestion from this work is that carbon cycle processes represent a comparable contribution to uncertainty in future climate projections as contributions from atmospheric feedbacks more conventionally explored. The broad range of climate responses explored within these ensembles, rather than representing a reason for inaction, provide information on lower likelihood but high impact changes. For example while the majority of these simulations suggest that future Amazon forest extent is resilient to the projected climate changes, a small number simulate dramatic forest dieback. This ensemble represents a framework to examine these risks, breaking them down into physical processes (such as ocean temperature drivers of rainfall change) and vegetation processes (where uncertainties point towards requirements for new observational constraints).

  5. Ultrasonic pulse velocity for the evaluation of physical and mechanical properties of a highly porous building limestone.

    PubMed

    Vasanelli, Emilia; Colangiuli, Donato; Calia, Angela; Sileo, Maria; Aiello, Maria Antonietta

    2015-07-01

    UPV as non-destructive technique can effectively contribute to the low invasive in situ analysis and diagnosis of masonry elements related to the conservation, rehabilitation and strengthening of the built heritage. The use of non-destructive and non-invasive techniques brings all the times many advantages in diagnostic activities on pre-existing buildings in terms of sustainability; moreover, it is a strong necessity with respect to the conservation constraints when dealing with the historical-architectural heritage. In this work laboratory experiments were carried out to investigate the effectiveness of ultrasonic pulse velocity (UPV) in evaluating physical and mechanical properties of Lecce stone, a soft and porous building limestone. UPV and selected physical-mechanical parameters such as density and uniaxial compressive strength (UCS) were determined. Factors such as anisotropy and water presence that induce variations on the ultrasonic velocity were also assessed. Correlations between the analysed parameters are presented and discussed. The presence of water greatly affected the values of the analysed parameters, leading to a decrease of UPV and to a strong reduction of the compressive strength. A discussion of the role of the water on these results is provided. Regression analysis showed a reliable linear correlation between UPV and compressive strength, which allows a reasonable estimation of the strength of Lecce stone by means of non-destructive testing methods such as the ultrasonic wave velocity. Low correlation between UPV and density was found, suggesting that other factors than density, related to the fabric and composition, also influence the response of the selected stone to the UPV. They have no influence on the UCS, that instead showed to be highly correlated with the packing density. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The Object Coordination Class Applied to Wave Pulses: Analyzing Student Reasoning in Wave Physics.

    ERIC Educational Resources Information Center

    Wittmann, Michael C.

    2002-01-01

    Analyzes student responses to interview and written questions on wave physics using diSessa and Sherin's coordination class model which suggests that student use of specific reasoning resources is guided by possibly unconscious cues. (Author/MM)

  7. Measures of GCM Performance as Functions of Model Parameters Affecting Clouds and Radiation

    NASA Astrophysics Data System (ADS)

    Jackson, C.; Mu, Q.; Sen, M.; Stoffa, P.

    2002-05-01

    This abstract is one of three related presentations at this meeting dealing with several issues surrounding optimal parameter and uncertainty estimation of model predictions of climate. Uncertainty in model predictions of climate depends in part on the uncertainty produced by model approximations or parameterizations of unresolved physics. Evaluating these uncertainties is computationally expensive because one needs to evaluate how arbitrary choices for any given combination of model parameters affects model performance. Because the computational effort grows exponentially with the number of parameters being investigated, it is important to choose parameters carefully. Evaluating whether a parameter is worth investigating depends on two considerations: 1) does reasonable choices of parameter values produce a large range in model response relative to observational uncertainty? and 2) does the model response depend non-linearly on various combinations of model parameters? We have decided to narrow our attention to selecting parameters that affect clouds and radiation, as it is likely that these parameters will dominate uncertainties in model predictions of future climate. We present preliminary results of ~20 to 30 AMIPII style climate model integrations using NCAR's CCM3.10 that show model performance as functions of individual parameters controlling 1) critical relative humidity for cloud formation (RHMIN), and 2) boundary layer critical Richardson number (RICR). We also explore various definitions of model performance that include some or all observational data sources (surface air temperature and pressure, meridional and zonal winds, clouds, long and short-wave cloud forcings, etc...) and evaluate in a few select cases whether the model's response depends non-linearly on the parameter values we have selected.

  8. On the Response of the Special Sensor Microwave/Imager to the Marine Environment: Implications for Atmospheric Parameter Retrievals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Petty, Grant W.

    1990-01-01

    A reasonably rigorous basis for understanding and extracting the physical information content of Special Sensor Microwave/Imager (SSM/I) satellite images of the marine environment is provided. To this end, a comprehensive algebraic parameterization is developed for the response of the SSM/I to a set of nine atmospheric and ocean surface parameters. The brightness temperature model includes a closed-form approximation to microwave radiative transfer in a non-scattering atmosphere and fitted models for surface emission and scattering based on geometric optics calculations for the roughened sea surface. The combined model is empirically tuned using suitable sets of SSM/I data and coincident surface observations. The brightness temperature model is then used to examine the sensitivity of the SSM/I to realistic variations in the scene being observed and to evaluate the theoretical maximum precision of global SSM/I retrievals of integrated water vapor, integrated cloud liquid water, and surface wind speed. A general minimum-variance method for optimally retrieving geophysical parameters from multichannel brightness temperature measurements is outlined, and several global statistical constraints of the type required by this method are computed. Finally, a unified set of efficient statistical and semi-physical algorithms is presented for obtaining fields of surface wind speed, integrated water vapor, cloud liquid water, and precipitation from SSM/I brightness temperature data. Features include: a semi-physical method for retrieving integrated cloud liquid water at 15 km resolution and with rms errors as small as approximately 0.02 kg/sq m; a 3-channel statistical algorithm for integrated water vapor which was constructed so as to have improved linear response to water vapor and reduced sensitivity to precipitation; and two complementary indices of precipitation activity (based on 37 GHz attenuation and 85 GHz scattering, respectively), each of which are relatively insensitive to variations in other environmental parameters.

  9. On Strong Positive Frequency Dependencies of Quality Factors in Local-Earthquake Seismic Studies

    NASA Astrophysics Data System (ADS)

    Morozov, Igor B.; Jhajhria, Atul; Deng, Wubing

    2018-03-01

    Many observations of seismic waves from local earthquakes are interpreted in terms of the frequency-dependent quality factor Q( f ) = Q0 f^{η } , where η is often close to or exceeds one. However, such steep positive frequency dependencies of Q require careful analysis with regard to their physical consistency. In particular, the case of η = 1 corresponds to frequency-independent (elastic) amplitude decays with time and consequently requires no Q-type attenuation mechanisms. For η > 1, several problems with physical meanings of such Q-factors occur. First, contrary to the key premise of seismic attenuation, high-frequency parts of the wavefield are enhanced with increasing propagation times relative to the low-frequency ones. Second, such attenuation cannot be implemented by mechanical models of wave-propagating media. Third, with η > 1, the velocity dispersion associated with such Q(f) occurs over unrealistically short frequency range and has an unexpected oscillatory shape. Cases η = 1 and η > 1 are usually attributed to scattering; however, this scattering must exhibit fortuitous tuning into the observation frequency band, which appears unlikely. The reason for the above problems is that the inferred Q values are affected by the conventional single-station measurement procedure. Both parameters Q 0 and are apparent, i.e., dependent on the selected parameterization and inversion method, and they should not be directly attributed to the subsurface. For η ≈ 1, parameter Q 0 actually describes the frequency-independent amplitude decay in access of some assumed geometric spreading t -α , where α is usually taken equal one. The case η > 1 is not allowed physically and could serve as an indicator of problematic interpretations. Although the case 0 < η < 1 is possible, its parameters Q 0 and may also be biased by the measurement procedure. To avoid such difficulties of Q-based approaches, we recommend measuring and interpreting the amplitude-decay rates (such as parameter α) directly.

  10. CT dose reduction in children.

    PubMed

    Vock, Peter

    2005-11-01

    World wide, the number of CT studies in children and the radiation exposure by CT increases. The same energy dose has a greater biological impact in children than in adults, and scan parameters have to be adapted to the smaller diameter of the juvenile body. Based on seven rules, a practical approach to paediatric CT is shown: Justification and patient preparation are important steps before scanning, and they differ from the preparation of adult patients. The subsequent choice of scan parameters aims at obtaining the minimal signal-to-noise ratio and volume coverage needed in a specific medical situation; exposure can be divided in two aspects: the CT dose index determining energy deposition per rotation and the dose-length product (DLP) determining the volume dose. DLP closely parallels the effective dose, the best parameter of the biological impact. Modern scanners offer dose modulation to locally minimise exposure while maintaining image quality. Beyond the selection of the physical parameters, the dose can be kept low by scanning the minimal length of the body and by avoiding any non-qualified repeated scanning of parts of the body. Following these rules, paediatric CT examinations of good quality can be obtained at a reasonable cost of radiation exposure.

  11. Evaluation of gamma dose effect on PIN photodiode using analytical model

    NASA Astrophysics Data System (ADS)

    Jafari, H.; Feghhi, S. A. H.; Boorboor, S.

    2018-03-01

    The PIN silicon photodiodes are widely used in the applications which may be found in radiation environment such as space mission, medical imaging and non-destructive testing. Radiation-induced damage in these devices causes to degrade the photodiode parameters. In this work, we have used new approach to evaluate gamma dose effects on a commercial PIN photodiode (BPX65) based on an analytical model. In this approach, the NIEL parameter has been calculated for gamma rays from a 60Co source by GEANT4. The radiation damage mechanisms have been considered by solving numerically the Poisson and continuity equations with the appropriate boundary conditions, parameters and physical models. Defects caused by radiation in silicon have been formulated in terms of the damage coefficient for the minority carriers' lifetime. The gamma induced degradation parameters of the silicon PIN photodiode have been analyzed in detail and the results were compared with experimental measurements and as well as the results of ATLAS semiconductor simulator to verify and parameterize the analytical model calculations. The results showed reasonable agreement between them for BPX65 silicon photodiode irradiated by 60Co gamma source at total doses up to 5 kGy under different reverse voltages.

  12. Modeling for the optimal biodegradation of toxic wastewater in a discontinuous reactor.

    PubMed

    Betancur, Manuel J; Moreno-Andrade, Iván; Moreno, Jaime A; Buitrón, Germán; Dochain, Denis

    2008-06-01

    The degradation of toxic compounds in Sequencing Batch Reactors (SBRs) poses inhibition problems. Time Optimal Control (TOC) methods may be used to avoid such inhibition thus exploiting the maximum capabilities of this class of reactors. Biomass and substrate online measurements, however, are usually unavailable for wastewater applications, so TOC must use only related variables as dissolved oxygen and volume. Although the standard mathematical model to describe the reaction phase of SBRs is good enough for explaining its general behavior in uncontrolled batch mode, better details are needed to model its dynamics when the reactor operates near the maximum degradation rate zone, as when TOC is used. In this paper two improvements to the model are suggested: to include the sensor delay effects and to modify the classical Haldane curve in a piecewise manner. These modifications offer a good solution for a reasonable complexification tradeoff. Additionally, a new way to look at the Haldane K-parameters (micro(o),K(I),K(S)) is described, the S-parameters (micro*,S*,S(m)). These parameters do have a clear physical meaning and, unlike the K-parameters, allow for the statistical treatment to find a single model to fit data from multiple experiments.

  13. Assessment of dynamic closure for premixed combustion large eddy simulation

    NASA Astrophysics Data System (ADS)

    Langella, Ivan; Swaminathan, Nedunchezhian; Gao, Yuan; Chakraborty, Nilanjan

    2015-09-01

    Turbulent piloted Bunsen flames of stoichiometric methane-air mixtures are computed using the large eddy simulation (LES) paradigm involving an algebraic closure for the filtered reaction rate. This closure involves the filtered scalar dissipation rate of a reaction progress variable. The model for this dissipation rate involves a parameter βc representing the flame front curvature effects induced by turbulence, chemical reactions, molecular dissipation, and their interactions at the sub-grid level, suggesting that this parameter may vary with filter width or be a scale-dependent. Thus, it would be ideal to evaluate this parameter dynamically by LES. A procedure for this evaluation is discussed and assessed using direct numerical simulation (DNS) data and LES calculations. The probability density functions of βc obtained from the DNS and LES calculations are very similar when the turbulent Reynolds number is sufficiently large and when the filter width normalised by the laminar flame thermal thickness is larger than unity. Results obtained using a constant (static) value for this parameter are also used for comparative evaluation. Detailed discussion presented in this paper suggests that the dynamic procedure works well and physical insights and reasonings are provided to explain the observed behaviour.

  14. Design and construction of miniature artificial ecosystem based on dynamic response optimization

    NASA Astrophysics Data System (ADS)

    Hu, Dawei; Liu, Hong; Tong, Ling; Li, Ming; Hu, Enzhu

    The miniature artificial ecosystem (MAES) is a combination of man, silkworm, salad and mi-croalgae to partially regenerate O2 , sanitary water and food, simultaneously dispose CO2 and wastes, therefore it have a fundamental life support function. In order to enhance the safety and reliability of MAES and eliminate the influences of internal variations and external dis-turbances, it was necessary to configure MAES as a closed-loop control system, and it could be considered as a prototype for future bioregenerative life support system. However, MAES is a complex system possessing large numbers of parameters, intricate nonlinearities, time-varying factors as well as uncertainties, hence it is difficult to perfectly design and construct a prototype through merely conducting experiments by trial and error method. Our research presented an effective way to resolve preceding problem by use of dynamic response optimiza-tion. Firstly the mathematical model of MAES with first-order nonlinear ordinary differential equations including parameters was developed based on relevant mechanisms and experimental data, secondly simulation model of MAES was derived on the platform of MatLab/Simulink to perform model validation and further digital simulations, thirdly reference trajectories of de-sired dynamic response of system outputs were specified according to prescribed requirements, and finally optimization for initial values, tuned parameter and independent parameters was carried out using the genetic algorithm, the advanced direct search method along with parallel computing methods through computer simulations. The result showed that all parameters and configurations of MAES were determined after a series of computer experiments, and its tran-sient response performances and steady characteristics closely matched the reference curves. Since the prototype is a physical system that represents the mathematical model with reason-able accuracy, so the process of designing and constructing a prototype of MAES is the reverse of mathematical modeling, and must have prerequisite assists from these results of computer simulation.

  15. News

    NASA Astrophysics Data System (ADS)

    2002-03-01

    UK Awards: Teacher of Physics Awards Institute Matters: Institute of Physics Education Conference UK Awards: Top SHAP students win prizes Competition: International creative essay competition UK Awards: Kelvin Medal Particle Physics Resources: New poster from PPARC Australia: Physics Students's Day at Adventure World UK Awards: Bragg Medal winners in a FLAP ASE Annual Meeting: Particle Physics at ASE 2002 UK Grants: PPARC Awards AAPT Winter Meeting: Physics First - but do you need maths? UK In-Service Training: The Particle Physics Institutes for A-level teachers Physics on Stage 2: Not too entertaining this time, please! Scotland: A reasoned approach wins reasonable funding Institute Matters: New education manager Germany: Physics gets real: curriculum change for better teaching Research Frontiers: Let there be light - if you hang on a minute

  16. Uncertainty quantification and propagation of errors of the Lennard-Jones 12-6 parameters for n-alkanes

    PubMed Central

    Knotts, Thomas A.

    2017-01-01

    Molecular simulation has the ability to predict various physical properties that are difficult to obtain experimentally. For example, we implement molecular simulation to predict the critical constants (i.e., critical temperature, critical density, critical pressure, and critical compressibility factor) for large n-alkanes that thermally decompose experimentally (as large as C48). Historically, molecular simulation has been viewed as a tool that is limited to providing qualitative insight. One key reason for this perceived weakness in molecular simulation is the difficulty to quantify the uncertainty in the results. This is because molecular simulations have many sources of uncertainty that propagate and are difficult to quantify. We investigate one of the most important sources of uncertainty, namely, the intermolecular force field parameters. Specifically, we quantify the uncertainty in the Lennard-Jones (LJ) 12-6 parameters for the CH4, CH3, and CH2 united-atom interaction sites. We then demonstrate how the uncertainties in the parameters lead to uncertainties in the saturated liquid density and critical constant values obtained from Gibbs Ensemble Monte Carlo simulation. Our results suggest that the uncertainties attributed to the LJ 12-6 parameters are small enough that quantitatively useful estimates of the saturated liquid density and the critical constants can be obtained from molecular simulation. PMID:28527455

  17. Teaching Scientific Reasoning to Liberal Arts Students

    NASA Astrophysics Data System (ADS)

    Rubbo, Louis

    2014-03-01

    University courses in conceptual physics and astronomy typically serve as the terminal science experience for the liberal arts student. Within this population significant content knowledge gains can be achieved by utilizing research verified pedagogical methods. However, from the standpoint of the Univeristy, students are expected to complete these courses not necessarily for the content knowledge but instead for the development of scientific reasoning skills. Results from physics education studies indicate that unless scientific reasoning instruction is made explicit students do not progress in their reasoning abilities. How do we complement the successful content based pedagogical methods with instruction that explicitly focuses on the development of scientific reasoning skills? This talk will explore methodologies that actively engages the non-science students with the explicit intent of fostering their scientific reasoning abilities.

  18. [Quality assurance from the viewpoint of the x-ray film industry].

    PubMed

    von Volkmann, T

    1992-08-01

    The parameters of a film-screen-combination are listed in the directive to section 16 of the german X-ray Regulation. These parameters are determined by methods described in DIN standards and published by the manufacturer. Comparable but less precise parameters are determined in the Acceptance Test. For physical reasons it is not possible to determine the speed of an X-ray film or the intensification factor of a screen separately. The films, screens and processing chemicals delivered by the members of the manufacturer association ZVEI are kept below a deviation (expressed as relative contribution to the system speed S) of +/- 10% for the majority of products, the upper limit is +/- 15%. Poor storage and transport conditions may adversely affect the quality of X-ray films. A special labeling of the film box shall serve to guarantee safe distribution channels. The processing conditions are adjusted at the Acceptance Test according to the manufacturers recommendations. The Constancy Test of film processing serves to maintain these correct conditions. Methods deviating from the DIN-method are of limited (Bayerische method) or no value (Stuttgart method).

  19. Clinically relevant determinants of body composition, function and nutritional status as mortality predictors in lung cancer patients.

    PubMed

    Kovarik, Miroslav; Hronek, Miloslav; Zadak, Zdenek

    2014-04-01

    Lung cancer belongs to the type of tumors with a relatively high frequency of malnutrition, sarcopenia and cachexia, severe metabolic syndromes related to impairment of physical function and quality of life, resistance to therapy and short survival. Inexpensive and accessible methods of evaluating changes in body composition, physical function and nutrition status are for this reason of great importance for clinical practice to enable the early identification, monitoring, preventing and treatment of these nutritional deficiencies. This could lead to improved outcomes in the quality of life, physical performance and survival of patients with lung cancer. The aim of this article is to summarize the recent knowledge for the use of such methods, their predictability for patient outcomes and an association with other clinically relevant parameters, specifically with lung cancer patients, because such an article collectively describing their practical application in clinical practice is lacking. The interest of this article is in the use of anthropometry, handgrip dynamometry, bioelectrical impedance analysis derived phase angle and nutritional screening questionnaires in lung cancer patients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. The psychological and social characteristics of patients referred for NHS cosmetic surgery: quantifying clinical need.

    PubMed

    Cook, Sharon A; Rosser, Robert; Toone, Helen; James, M Ian; Salmon, Peter

    2006-01-01

    Elective cosmetic surgery is expanding in the UK in both the public and private sectors. Because resources are constrained, many cosmetic procedures are being excluded within the National Health Service. If guidelines on who can receive such surgery are to be evidence-based, information is needed about the level of dysfunction in patients referred for elective surgery and whether this is related to their degree of physical abnormality. Consecutive patients referred to a regional plastic surgery and burns unit for assessment for elective cosmetic surgery completed standardised measures of physical and psychosocial dysfunction, and indicated their perception of the degree of their abnormality and their preoccupation with it. We distinguished between patients referred for physical reasons or appearance reasons only, and compared levels of physical and psychosocial dysfunction in each with published values for community and clinical samples. Surgeons indicated patients' degree of objective abnormality, and we identified the relationship of dysfunction with perceived and objective abnormality and preoccupation. Whether patients sought surgery for physical or appearance reasons, physical function was normal. Those seeking surgery for appearance reasons only had moderate psychosocial dysfunction, but were not as impaired as clinical groups with psychological problems. Patients seeking the correction of minor skin lesions for purely appearance reasons reported excellent physical and psychosocial function. Level of function was related (negatively) to patients' preoccupation with abnormality rather than to their perceived or objective abnormality. In general, patients referred for elective cosmetic surgery did not present with significant levels of dysfunction. Moreover, levels of functioning were related to preoccupation rather than to objective abnormality. Therefore, for most patients, whether surgical treatment is generally appropriate is questionable. Future guidelines must seek to identify the small minority who do have a clinical need for surgery.

  1. Scientific Reasoning Abilities of Nonscience Majors in Physics-Based Courses

    ERIC Educational Resources Information Center

    Moore, J. Christopher; Rubbo, Louis J.

    2012-01-01

    We have found that non-STEM (science, technology, engineering, and mathematics) majors taking either a conceptual physics or astronomy course at two regional comprehensive institutions score significantly lower preinstruction on the Lawson's Classroom Test of Scientific Reasoning (LCTSR) in comparison to national average STEM majors. Based on…

  2. Behavioral, Psychological, and Demographic Predictors of Physical Fitness.

    ERIC Educational Resources Information Center

    Conway, Terry L.

    Achieving higher levels of physical fitness has become a goal of many Americans both for personal reasons (e.g., improved health, appearance, and perceived well-being) and for organizational reasons (e.g., corporate cost-savings with healthy employees, operational readiness for the military services). Understanding the factors which have an impact…

  3. Addressing Barriers to Conceptual Understanding in IE Physics Classes

    NASA Astrophysics Data System (ADS)

    Coletta, Vincent P.; Phillips, Jeffrey A.

    2009-11-01

    We report on the Thinking in Physics project, which helps students who demonstrate weak scientific reasoning skills, as measured by low preinstruction scores on the Lawson Test of Scientific Reasoning Ability. Without special help, such students are unlikely to achieve a good conceptual understanding of introductory mechanics.

  4. Limiting Conditions of the "Physical Attractiveness Stereotype": Attributions about Divorce.

    ERIC Educational Resources Information Center

    Brigham, John C.

    1980-01-01

    Subjects, reading a profile of a couple filing for divorce, made attributions about responsibility, financial settlement, future behavior, and personality traits. Reasons for divorce, physical attractiveness of husband and wife, and sex of subject were varied. Attractiveness strongly influenced personality ratings. Reason for divorce was related…

  5. Scaled effective on-site Coulomb interaction in the DFT+U method for correlated materials

    NASA Astrophysics Data System (ADS)

    Nawa, Kenji; Akiyama, Toru; Ito, Tomonori; Nakamura, Kohji; Oguchi, Tamio; Weinert, M.

    2018-01-01

    The first-principles calculation of correlated materials within density functional theory remains challenging, but the inclusion of a Hubbard-type effective on-site Coulomb term (Ueff) often provides a computationally tractable and physically reasonable approach. However, the reported values of Ueff vary widely, even for the same ionic state and the same material. Since the final physical results can depend critically on the choice of parameter and the computational details, there is a need to have a consistent procedure to choose an appropriate one. We revisit this issue from constraint density functional theory, using the full-potential linearized augmented plane wave method. The calculated Ueff parameters for the prototypical transition-metal monoxides—MnO, FeO, CoO, and NiO—are found to depend significantly on the muffin-tin radius RMT, with variations of more than 2-3 eV as RMT changes from 2.0 to 2.7 aB. Despite this large variation in Ueff, the calculated valence bands differ only slightly. Moreover, we find an approximately linear relationship between Ueff(RMT) and the number of occupied localized electrons within the sphere, and give a simple scaling argument for Ueff; these results provide a rationalization for the large variation in reported values. Although our results imply that Ueff values are not directly transferable among different calculation methods (or even the same one with different input parameters such as RMT), use of this scaling relationship should help simplify the choice of Ueff.

  6. Evidence of Hierarchy in the Complex Fractured System of Geropotamos (Crete, Greece), as Extracted from Transient Electromagnetic Responses

    NASA Astrophysics Data System (ADS)

    Vallianatos, Filippos; Kouli, Maria; Kalisperi, Despina

    2018-03-01

    The essential goals of this paper are to test the transient electromagnetic (TEM) response in a fractured geological complex medium and to better understand the physics introduced by associating a roughness parameter β to the geological formation. An anomalous fractional diffusion approach is incorporated to describe the electromagnetic induction in rough multi-scaled geological structures. The multi-scaling characteristics of Geropotamos basin in Crete are revealed through the analysis of transient step-off response of an EM loop antenna. The semi-empirical parameters derived from late-time TEM measurements are correlated with the multi-scale heterogeneities of the medium. Certain interesting properties of the late-time slope γ(β) and the power law of near surface resistivity distribution, as extracted from TEM inversion for different depth, are presented. The analysis of the parameter γ(β) which scales the induced voltage in the loop in the late stage of the electromagnetic response leads to a different view of the EM geophysical data interpretation. We show that it is strongly correlated with areas of high fracture density within the geological formations of the Geropotamos area. For that reason, it is proposed as a local multi-scaling empirical index. The results of this paper suggest that anomalous diffusion could be a viable physical mechanism for the fractal transport of charge carriers, explaining observed late-time TEM responses across a variety of natural geological settings.

  7. The diagnostic capability of iron limes

    NASA Astrophysics Data System (ADS)

    Giannini, Teresa; Nisini, Brunella; Antoniucci, Simone; Alcala, Juan; Bacciotti, Francesca; Bonito, Rosaria; Podio, Linda; Stelzer, Beate; Whelan, Emma

    2013-07-01

    We present the VLT/X-Shooter spectrum of two jets from young protostars of different luminosity and mass, ESO-Halpha 574 and Par-Lup 3-4. In the covered spectral range (350-2500 nm) we detected more than 100 [FeII] and [FeIII] lines, which are used to precisely probe the key physical parameters of the gas (electron density and temperature, ionization degree, visual extinction). These quantities have been compared with shock-model predictions, which suggest that only the higher luminosity source (ESO-Ha 574) is able to drive a high-velocity and dissociative shock. The diagnostic capability of Iron, proven on the presented objects, represents a unique tool for the following reasons: 1) the large number of lines in the uv-infrared range makes possible to trace the physical conditions in a very large range of the parameter space; 2) at variance with the diagnostic commonly performed with other species, such as Oxygen, Nitrogen, and Sulphur, no assumption on the relative abundance is needed, since all the parameters are derived from line ratios of the same species; 3) in the unperturbed ISM, Iron is locked on the grain surfaces, while it is released in gas-phase if gas-grain or grain-grain collisions occur within a shock. Therefore the Iron abundance (derivable from ratios of Iron lines with those of other volatile species) is a direct probe of the presence of dust in the jet beam, an information crucial to understand whether jets originate close to the star or in the circumstellar disk.

  8. Perceptions of Harm and Reasons for Misuse of Prescription Opioid Drugs and Reasons for Not Seeking Treatment for Physical or Emotional Pain Among a Sample of College Students.

    PubMed

    Kenne, Deric R; Hamilton, Kelsey; Birmingham, Lauren; Oglesby, Willie H; Fischbein, Rebecca L; Delahanty, Douglas L

    2017-01-02

    Since the early 1990s, the United States has seen a significant increase in the prevalence of prescription opioid misuse. Despite benefits prescription opioids provide, misuse can be fatal. The current study was designed to investigate the prevalence of prescription opioid misuse, perceived harm of misuse, and reasons for misuse for physical or emotional pain instead of seeking professional medical or mental health treatment. Survey data were collected in the fall of 2013 via an online survey to a random sample of 668 students from a public Midwestern university. Lifetime prevalence of prescription opioid misuse was 9.5%. Misusers of prescription opioid drugs generally reported lower ratings of perceived harm as compared to individuals not reporting misuse of prescription opioid drugs. Primary reasons for misuse of prescription opioid drugs was to relieve pain (33.9%), "to feel good/get high" (23.2%) and experimentation (21.4%). Lifetime misuse of a prescription opioid drug for physical or emotional pain was reported by 8.1% and 2.2% of respondents, respectively. Primary reasons for misuse for physical pain included because pain was temporary, immediate relief was needed, and no health insurance/financial resources. Primary reasons for misuse for emotional pain included not wanting others to find out, embarrassment and fear. Conclusions/Importance: Reasons for misuse of prescription opioid drugs vary by type of prescription opioid drug. Reasons for not seeking treatment that ultimately lead to misuse, vary by type of pain being treated and may be important considerations in the effort to stem the misuse of prescription opioid drugs among college students.

  9. Research on the physical properties of supercritical CO2 and the log evaluation of CO2-bearing volcanic reservoirs

    NASA Astrophysics Data System (ADS)

    Pan, Baozhi; Lei, Jian; Zhang, Lihua; Guo, Yuhang

    2017-10-01

    CO2-bearing reservoirs are difficult to distinguish from other natural gas reservoirs during gas explorations. Due to the lack of physical parameters for supercritical CO2, particularly neutron porosity, at present a hydrocarbon gas log evaluation method is used to evaluate CO2-bearing reservoirs. The differences in the physical properties of hydrocarbon and CO2 gases have led to serious errors. In this study, the deep volcanic rock of the Songliao Basin was the research area. In accordance with the relationship between the density and acoustic velocity of supercritical CO2 and temperature and pressure, the regularity between the CO2 density and acoustic velocity, and the depth of the area was established. A neutron logging simulation was completed based on a Monte Carlo method. Through the simulation of the wet limestone neutron logging, the relationship between the count rate ratio of short and long space detectors and the neutron porosity was acquired. Then, the nature of the supercritical CO2 neutron moderation was obtained. With consideration given to the complexity of the volcanic rock mineral composition, a volcanic rock volume model was established, and the matrix neutron and density parameters were acquired using the ECS log. The properties of CO2 were applied in the log evaluation of the CO2-bearing volcanic reservoirs in the southern Songliao Basin. The porosity and saturation of CO2 were obtained, and a reasonable application was achieved in the CO2-bearing reservoir.

  10. n-dimensional isotropic Finch-Skea stars

    NASA Astrophysics Data System (ADS)

    Chilambwe, Brian; Hansraj, Sudan

    2015-02-01

    We study the impact of dimension on the physical properties of the Finch-Skea astrophysical model. It is shown that a positive definite, monotonically decreasing pressure and density are evident. A decrease in stellar radius emerges as the order of the dimension increases. This is accompanied by a corresponding increase in energy density. The model continues to display the necessary qualitative features inherent in the 4-dimensional Finch-Skea star and the conformity to the Walecka theory is preserved under dimensional increase. The causality condition is always satisfied for all dimensions considered resulting in the proposed models demonstrating a subluminal sound speed throughout the interior of the distribution. Moreover, the pressure and density decrease monotonically outwards from the centre and a pressure-free hypersurface exists demarcating the boundary of the perfect-fluid sphere. Since the study of the physical conditions is performed graphically, it is necessary to specify certain constants in the model. Reasonable values for such constants are arrived at on examining the behaviour of the model at the centre and demanding the satisfaction of all elementary conditions for physical plausibility. Finally two constants of integration are settled on matching of our solutions with the appropriate Schwarzschild-Tangherlini exterior metrics. Furthermore, the solution admits a barotropic equation of state despite the higher dimension. The compactification parameter as well as the density variation parameter are also computed. The models satisfy the weak, strong and dominant energy conditions in the interior of the stellar configuration.

  11. An efficient surrogate-based simulation-optimization method for calibrating a regional MODFLOW model

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.

    2017-01-01

    Simulation-optimization method entails a large number of model simulations, which is computationally intensive or even prohibitive if the model simulation is extremely time-consuming. Statistical models have been examined as a surrogate of the high-fidelity physical model during simulation-optimization process to tackle this problem. Among them, Multivariate Adaptive Regression Splines (MARS), a non-parametric adaptive regression method, is superior in overcoming problems of high-dimensions and discontinuities of the data. Furthermore, the stability and accuracy of MARS model can be improved by bootstrap aggregating methods, namely, bagging. In this paper, Bagging MARS (BMARS) method is integrated to a surrogate-based simulation-optimization framework to calibrate a three-dimensional MODFLOW model, which is developed to simulate the groundwater flow in an arid hardrock-alluvium region in northwestern Oman. The physical MODFLOW model is surrogated by the statistical model developed using BMARS algorithm. The surrogate model, which is fitted and validated using training dataset generated by the physical model, can approximate solutions rapidly. An efficient Sobol' method is employed to calculate global sensitivities of head outputs to input parameters, which are used to analyze their importance for the model outputs spatiotemporally. Only sensitive parameters are included in the calibration process to further improve the computational efficiency. Normalized root mean square error (NRMSE) between measured and simulated heads at observation wells is used as the objective function to be minimized during optimization. The reasonable history match between the simulated and observed heads demonstrated feasibility of this high-efficient calibration framework.

  12. Information Modeling to Assess Eruptive Behavior and Possible Threats on Mt. Etna, Italy

    NASA Astrophysics Data System (ADS)

    Pshenichny, C.; Behncke, B.

    2008-12-01

    One of the best-studied volcanoes of the world, Mt. Etna in Sicily repeatedly exhibits eruptive scenarios that depart from the behavior considered typical for this volcano. Episodes of intense explosive activity, pyroclastic density currents, dome growth, cone collapse, and phreatomagmatic explosions pose a variety of previously underestimated threats to human lives in the summit area of the volcano. However, retrospective analysis of these events shows that they were likely caused by the same very sets of premises and starting conditions as "normal" effusive eruptions, yet combined in an unexpected, probably unique, way. Physical modeling tells us what may happen in terms of physical parameters but not what events we will actually see on a volcano. Bayesian modeling of volcanoes can unite physical parameters and observed events but, unlike physics, it lacks strictness of terms used to describe the events and, hence, may fail to provide a reasonably impartial, complete and self-consistent set of possible scenarios to be expected. Therefore, a tool is needed to process the observational knowledge as strictly as physical matters are treated by mathematics to provide an appropriate event-based framework for assessment of natural hazards during volcanic eruptions. This task requires a modeling not of the volcano itself but of our knowledge of it, and therefore falls into the field of informatis, knowledge engineering, and artificial intelligence. We involved an approach of artificial intelligence developed specially for the needs of geoscience, the method of event bush. Scenarios inferred from event bush fit the observed ones and allow one to foresee other low-probable events that may occur at the volcano. Application of the event bush provides a more impartial vision of volcanic phenomena and may serve as an intermediary between physical modeling, the expert knowledge and numerical assessment, e.g., by means of Bayesian belief networks.

  13. Lack of facilities rather than sociocultural factors as the primary barrier to physical activity among female Saudi university students.

    PubMed

    Samara, Anastasia; Nistrup, Anne; Al-Rammah, Tamader Y; Aro, Arja R

    2015-01-01

    The Kingdom of Saudi Arabia is experiencing a dramatic increase in physical inactivity, with women having higher levels of inactivity than men among all age groups. It is assumed that factors such as dress codes, restrictions on going outdoors, and conservative norms are the main reasons for women's low physical activity. Our aim was to explore the different parameters related to physical activity, including self-efficacy, as well as the perceived barriers to and benefits of physical activity in young Saudi females. Ninety-four first-year female Saudi university students in Riyadh, Kingdom of Saudi Arabia, participated in the present study in 2014. The students were from eight bachelor's programs in health and well-being, and each completed a questionnaire with questions divided into five parts as follows: 1) socioeconomic status, 2) physical activity, 3) self-efficacy 4) social factors, and 5) barriers and facilitators related to physical activity. The students exercised at home and alone, and there was low self-efficacy for physical activity (mean score =42±14). Among social factors, attending university was the only factor that hindered physical activity (32%). Physical activity was positively perceived overall (mean score =131±10). Students showed awareness of the benefits of physical activity for health and well-being. The most important barrier was the lack of designated areas available for physical activity. Students disagreed that family or the Islamic community were barriers to physical activity. The lack of facilities and lack of encouragement from the university, but not a lack of knowledge (a high level of knowledge is to be expected given their health and well-being studies backgrounds) and/or restrictions from families and society, seem to hinder female students' physical activity, at least young Saudi students.

  14. Getting the right answers for the right reasons: Linking measurements, analyses, and models to advance the science of hydrology

    NASA Astrophysics Data System (ADS)

    Kirchner, James W.

    2006-03-01

    The science of hydrology is on the threshold of major advances, driven by new hydrologic measurements, new methods for analyzing hydrologic data, and new approaches to modeling hydrologic systems. Here I suggest several promising directions forward, including (1) designing new data networks, field observations, and field experiments, with explicit recognition of the spatial and temporal heterogeneity of hydrologic processes, (2) replacing linear, additive "black box" models with "gray box" approaches that better capture the nonlinear and non-additive character of hydrologic systems, (3) developing physically based governing equations for hydrologic behavior at the catchment or hillslope scale, recognizing that they may look different from the equations that describe the small-scale physics, (4) developing models that are minimally parameterized and therefore stand some chance of failing the tests that they are subjected to, and (5) developing ways to test models more comprehensively and incisively. I argue that scientific progress will mostly be achieved through the collision of theory and data, rather than through increasingly elaborate and parameter-rich models that may succeed as mathematical marionettes, dancing to match the calibration data even if their underlying premises are unrealistic. Thus advancing the science of hydrology will require not only developing theories that get the right answers but also testing whether they get the right answers for the right reasons.

  15. Takahasi Nearest-Neighbour Gas Revisited II: Morse Gases

    NASA Astrophysics Data System (ADS)

    Matsumoto, Akira

    2011-12-01

    Some thermodynamic quantities for the Morse potential are analytically evaluated at an isobaric process. The parameters of Morse gases for 21 substances are obtained by the second virial coefficient data and the spectroscopic data of diatomic molecules. Also some thermodynamic quantities for water are calculated numerically and drawn graphically. The inflexion point of the length L which depends on temperature T and pressure P corresponds physically to a boiling point. L indicates the liquid phase from lower temperature to the inflexion point and the gaseous phase from the inflexion point to higher temperature. The boiling temperatures indicate reasonable values compared with experimental data. The behaviour of L suggests a chance of a first-order phase transition in one dimension.

  16. Morphology evolution of hierarchical ZnO nanostructures modulated by supersaturation and growth temperature

    NASA Astrophysics Data System (ADS)

    Yan, Youguo; Zhou, Lixia; Yu, Lianqing; Zhang, Ye

    2008-07-01

    Three kinds of ZnO hierarchical structures, nanocombs with tube- and needle-shaped teeth and hierarchical nanorod arrays, were successfully synthesized through the chemical vapor deposition method. Combining the experimental parameters, the microcosmic growing conditions (growth temperature and supersaturation) along the flux was discussed at length, and, based on the conclusions, three reasonable growth processes were proposed. The results and discussions were beneficial to further realize the relation between the growing behavior of the nanomaterial and microcosmic conditions, and the hierarchical nanostructures obtained were also expected to have potential applications as functional blocks in future nanodevices. Furthermore, the study of photoluminescence further indicated that the physical properties were strongly dependent on the crystal structure.

  17. Fitting of the Thomson scattering density and temperature profiles on the COMPASS tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefanikova, E.; Division of Fusion Plasma Physics, KTH Royal Institute of Technology, SE-10691 Stockholm; Peterka, M.

    2016-11-15

    A new technique for fitting the full radial profiles of electron density and temperature obtained by the Thomson scattering diagnostic in H-mode discharges on the COMPASS tokamak is described. The technique combines the conventionally used modified hyperbolic tangent function for the edge transport barrier (pedestal) fitting and a modification of a Gaussian function for fitting the core plasma. Low number of parameters of this combined function and their straightforward interpretability and controllability provide a robust method for obtaining physically reasonable profile fits. Deconvolution with the diagnostic instrument function is applied on the profile fit, taking into account the dependence onmore » the actual magnetic configuration.« less

  18. A new class of relativistic stellar models

    NASA Astrophysics Data System (ADS)

    Haggag, Salah

    1995-03-01

    Einstein field equations for a static and spherically symmetric perfect fluid are considered. A formulation given by Patino and Rago is used to obtain a class of nine solutions, two of them are Tolman solutions I, IV and the remaining seven are new. The solutions are the correct ones corresponding to expressions derived by Patino and Rago which have been shown by Knutsen to be incorrect. Similar to Tolan solution IV each of the new solutions satisfies energy conditions inside a sphere in some range of two independent parameters. Besides, each solution could be matched to the exterior Schwarzschild solution at a boundary where the pressure vanishes and thus the solutions constitute a class of new physically reasonable stellar models.

  19. Model-Based Reasoning in the Physics Laboratory: Framework and Initial Results

    ERIC Educational Resources Information Center

    Zwickl, Benjamin M.; Hu, Dehui; Finkelstein, Noah; Lewandowski, H. J.

    2015-01-01

    We review and extend existing frameworks on modeling to develop a new framework that describes model-based reasoning in introductory and upper-division physics laboratories. Constructing and using models are core scientific practices that have gained significant attention within K-12 and higher education. Although modeling is a broadly applicable…

  20. Volumetric breast density measurement: sensitivity analysis of a relative physics approach

    PubMed Central

    Lau, Susie; Abdul Aziz, Yang Faridah

    2016-01-01

    Objective: To investigate the sensitivity and robustness of a volumetric breast density (VBD) measurement system to errors in the imaging physics parameters including compressed breast thickness (CBT), tube voltage (kVp), filter thickness, tube current-exposure time product (mAs), detector gain, detector offset and image noise. Methods: 3317 raw digital mammograms were processed with Volpara® (Matakina Technology Ltd, Wellington, New Zealand) to obtain fibroglandular tissue volume (FGV), breast volume (BV) and VBD. Errors in parameters including CBT, kVp, filter thickness and mAs were simulated by varying them in the Digital Imaging and Communications in Medicine (DICOM) tags of the images up to ±10% of the original values. Errors in detector gain and offset were simulated by varying them in the Volpara configuration file up to ±10% from their default values. For image noise, Gaussian noise was generated and introduced into the original images. Results: Errors in filter thickness, mAs, detector gain and offset had limited effects on FGV, BV and VBD. Significant effects in VBD were observed when CBT, kVp, detector offset and image noise were varied (p < 0.0001). Maximum shifts in the mean (1.2%) and median (1.1%) VBD of the study population occurred when CBT was varied. Conclusion: Volpara was robust to expected clinical variations, with errors in most investigated parameters giving limited changes in results, although extreme variations in CBT and kVp could lead to greater errors. Advances in knowledge: Despite Volpara's robustness, rigorous quality control is essential to keep the parameter errors within reasonable bounds. Volpara appears robust within those bounds, albeit for more advanced applications such as tracking density change over time, it remains to be seen how accurate the measures need to be. PMID:27452264

  1. A Method for Improving Hotspot Directional Signatures in BRDF Models Used for MODIS

    NASA Technical Reports Server (NTRS)

    Jiao, Ziti; Schaaf, Crystal B.; Dong, Yadong; Roman, Miguel; Hill, Michael J.; Chen, Jing M.; Wang, Zhuosen; Zhang, Hu; Saenz, Edward; Poudyal, Rajesh; hide

    2016-01-01

    The semi-empirical, kernel-driven, linear RossThick-LiSparseReciprocal (RTLSR) Bidirectional Reflectance Distribution Function (BRDF) model is used to generate the routine MODIS BRDFAlbedo product due to its global applicability and the underlying physics. A challenge of this model in regard to surface reflectance anisotropy effects comes from its underestimation of the directional reflectance signatures near the Sun illumination direction; also known as the hotspot effect. In this study, a method has been developed for improving the ability of the RTLSR model to simulate the magnitude and width of the hotspot effect. The method corrects the volumetric scattering component of the RTLSR model using an exponential approximation of a physical hotspot kernel, which recreates the hotspot magnitude and width using two free parameters (C(sub 1) and C(sub 2), respectively). The approach allows one to reconstruct, with reasonable accuracy, the hotspot effect by adjusting or using the prior values of these two hotspot variables. Our results demonstrate that: (1) significant improvements in capturing hotspot effect can be made to this method by using the inverted hotspot parameters; (2) the reciprocal nature allow this method to be more adaptive for simulating the hotspot height and width with high accuracy, especially in cases where hotspot signatures are available; and (3) while the new approach is consistent with the heritage RTLSR model inversion used to estimate intrinsic narrowband and broadband albedos, it presents some differences for vegetation clumping index (CI) retrievals. With the hotspot-related model parameters determined a priori, this method offers improved performance for various ecological remote sensing applications; including the estimation of canopy structure parameters.

  2. Development and Training of a Neural Controller for Hind Leg Walking in a Dog Robot

    PubMed Central

    Hunt, Alexander; Szczecinski, Nicholas; Quinn, Roger

    2017-01-01

    Animals dynamically adapt to varying terrain and small perturbations with remarkable ease. These adaptations arise from complex interactions between the environment and biomechanical and neural components of the animal's body and nervous system. Research into mammalian locomotion has resulted in several neural and neuro-mechanical models, some of which have been tested in simulation, but few “synthetic nervous systems” have been implemented in physical hardware models of animal systems. One reason is that the implementation into a physical system is not straightforward. For example, it is difficult to make robotic actuators and sensors that model those in the animal. Therefore, even if the sensorimotor circuits were known in great detail, those parameters would not be applicable and new parameter values must be found for the network in the robotic model of the animal. This manuscript demonstrates an automatic method for setting parameter values in a synthetic nervous system composed of non-spiking leaky integrator neuron models. This method works by first using a model of the system to determine required motor neuron activations to produce stable walking. Parameters in the neural system are then tuned systematically such that it produces similar activations to the desired pattern determined using expected sensory feedback. We demonstrate that the developed method successfully produces adaptive locomotion in the rear legs of a dog-like robot actuated by artificial muscles. Furthermore, the results support the validity of current models of mammalian locomotion. This research will serve as a basis for testing more complex locomotion controllers and for testing specific sensory pathways and biomechanical designs. Additionally, the developed method can be used to automatically adapt the neural controller for different mechanical designs such that it could be used to control different robotic systems. PMID:28420977

  3. Volumetric breast density measurement: sensitivity analysis of a relative physics approach.

    PubMed

    Lau, Susie; Ng, Kwan Hoong; Abdul Aziz, Yang Faridah

    2016-10-01

    To investigate the sensitivity and robustness of a volumetric breast density (VBD) measurement system to errors in the imaging physics parameters including compressed breast thickness (CBT), tube voltage (kVp), filter thickness, tube current-exposure time product (mAs), detector gain, detector offset and image noise. 3317 raw digital mammograms were processed with Volpara(®) (Matakina Technology Ltd, Wellington, New Zealand) to obtain fibroglandular tissue volume (FGV), breast volume (BV) and VBD. Errors in parameters including CBT, kVp, filter thickness and mAs were simulated by varying them in the Digital Imaging and Communications in Medicine (DICOM) tags of the images up to ±10% of the original values. Errors in detector gain and offset were simulated by varying them in the Volpara configuration file up to ±10% from their default values. For image noise, Gaussian noise was generated and introduced into the original images. Errors in filter thickness, mAs, detector gain and offset had limited effects on FGV, BV and VBD. Significant effects in VBD were observed when CBT, kVp, detector offset and image noise were varied (p < 0.0001). Maximum shifts in the mean (1.2%) and median (1.1%) VBD of the study population occurred when CBT was varied. Volpara was robust to expected clinical variations, with errors in most investigated parameters giving limited changes in results, although extreme variations in CBT and kVp could lead to greater errors. Despite Volpara's robustness, rigorous quality control is essential to keep the parameter errors within reasonable bounds. Volpara appears robust within those bounds, albeit for more advanced applications such as tracking density change over time, it remains to be seen how accurate the measures need to be.

  4. The structure and dynamics of tornado-like vortices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolan, D.S.; Farrell, B.F.

    The structure and dynamics of axisymmetric tornado-like vortices are explored with a numerical model of axisymmetric incompressible flow based on recently developed numerical methods. The model is first shown to compare favorably with previous results and is then used to study the effects of varying the major parameters controlling the vortex: the strength of the convective forcing, the strength of the rotational forcing, and the magnitude of the model eddy viscosity. Dimensional analysis of the model problem indicates that the results must depend on only two dimensionless parameters. The natural choices for these two parameters are a convective Reynolds numbermore » (based on the velocity scale associated with the convective forcing) and a parameter analogous to the swirl ratio in laboratory models. However, by examining sets of simulations with different model parameters it is found that a dimensionless parameter known as the vortex Reynolds number, which is the ratio of the far-field circulation to the eddy viscosity, is more effective than the convention swirl ratio for predicting the structure of the vortex. The parameter space defined by the choices for model parameters is further explored with large sets of numerical simulations. For much of this parameter space it is confirmed that the vortex structure and time-dependent behavior depend strongly on the vortex Reynolds number and only weakly on the convective Reynolds number. The authors also find that for higher convective Reynolds numbers, the maximum possible wind speed increases, and the rotational forcing necessary to achieve that wind speed decreases. Physical reasoning is used to explain this behavior, and implications for tornado dynamics are discussed.« less

  5. A Solution to the Cosmological Problem of Relativity Theory

    NASA Astrophysics Data System (ADS)

    Janzen, Daryl

    After nearly a century of scientific investigation, the standard cosmological theory continues to have many unexplained problems, which invariably amount to one troubling statement: we know of no good reason for the Universe to appear just as it does, which is described extremely well by the flat ΛCDM cosmological model. Therefore, the problem is not that the physical model is at all incompatible with observation, but that, as our empirical results have been increasingly constrained, it has also become increasingly obvious that the Universe does not meet our prior expectations; e.g., the evidence suggests that the Universe began from a singularity of the theory that is used to describe it, and with space expanding thereafter in cosmic time, even though relativity theory is thought to imply that no such objective foliation of the spacetime continuum should reasonably exist. Furthermore, the expanding Universe is well-described as being flat, isotropic, and homogeneous, even though its shape and expansion rate are everywhere supposed to be the products of local energy-content---and the necessary prior uniform distribution, of just the right amount of matter for all three of these conditions to be met, could not have been causally determined to begin with. And finally, the empirically constrained density parameters now indicate that all of the matter that we directly observe should make up only four percent of the total, so that the dominant forms of energy in the Universe should be dark energy in the form of a cosmological constant, Λ, and cold dark matter (CDM). The most common ways of attacking these problems have been: to apply modifications to the basic physical model, e.g. as in the inflation and quintessence theories which strive to resolve the horizon, flatness, and cosmological constant problems; to use particle physics techniques in order to formulate the description of dark matter candidates that might fit with observations; and, in the case of the Big Bang singularity, to appeal to the need for a quantum theory of gravity. This thesis takes a very different approach to the problem, in hypothesising that, because our physical model really does appear to do a very good job of describing the observed cosmic expansion rate, and all the data indicate that our Universe might well expand precisely according to the flat ΛCDM scale-factor, it may not be the model, but our basic expectations that need to be modified in order to derive a physical theory that stands in reasonable agreement with the empirical results; i.e., that it may actually be that we need to re-examine, and rationally modify our expectations of what should theoretically be, so that we might derive a theory to explain the empirical results of cosmology, which would be based solely on reasonably acceptable first principles. Therefore, a self-consistent theory is constructed here, upon re-consideration of the cosmological foundations of relativity theory, which eventually does afford an explanation of the cosmological problem, as it provides good reason to actually expect observations in the fundamental rest-frame to be described precisely by the flat ΛCDM scale-factor which has been empirically constrained.

  6. The role and position of passive intervertebral motion assessment within clinical reasoning and decision-making in manual physical therapy: a qualitative interview study.

    PubMed

    van Trijffel, Emiel; Plochg, Thomas; van Hartingsveld, Frank; Lucas, Cees; Oostendorp, Rob A B

    2010-06-01

    Passive intervertebral motion (PIVM) assessment is a characterizing skill of manual physical therapists (MPTs) and is important for judgments about impairments in spinal joint function. It is unknown as to why and how MPTs use this mobility testing of spinal motion segments within their clinical reasoning and decision-making. This qualitative study aimed to explore and understand the role and position of PIVM assessment within the manual diagnostic process. Eight semistructured individual interviews with expert MPTs and three subsequent group interviews using manual physical therapy consultation platforms were conducted. Line-by-line coding was performed on the transcribed data, and final main themes were identified from subcategories. Three researchers were involved in the analysis process. Four themes emerged from the data: contextuality, consistency, impairment orientedness, and subjectivity. These themes were interrelated and linked to concepts of professionalism and clinical reasoning. MPTs used PIVM assessment within a multidimensional, biopsychosocial framework incorporating clinical data relating to mechanical dysfunction as well as to personal factors while applying various clinical reasoning strategies. Interpretation of PIVM assessment and subsequent decisions on manipulative treatment were strongly rooted within practitioners' practical knowledge. This study has identified the specific role and position of PIVM assessment as related to other clinical findings within clinical reasoning and decision-making in manual physical therapy in The Netherlands. We recommend future research in manual diagnostics to account for the multivariable character of physical examination of the spine.

  7. The role and position of passive intervertebral motion assessment within clinical reasoning and decision-making in manual physical therapy: a qualitative interview study

    PubMed Central

    van Trijffel, Emiel; Plochg, Thomas; van Hartingsveld, Frank; Lucas, Cees; Oostendorp, Rob A B

    2010-01-01

    Passive intervertebral motion (PIVM) assessment is a characterizing skill of manual physical therapists (MPTs) and is important for judgments about impairments in spinal joint function. It is unknown as to why and how MPTs use this mobility testing of spinal motion segments within their clinical reasoning and decision-making. This qualitative study aimed to explore and understand the role and position of PIVM assessment within the manual diagnostic process. Eight semistructured individual interviews with expert MPTs and three subsequent group interviews using manual physical therapy consultation platforms were conducted. Line-by-line coding was performed on the transcribed data, and final main themes were identified from subcategories. Three researchers were involved in the analysis process. Four themes emerged from the data: contextuality, consistency, impairment orientedness, and subjectivity. These themes were interrelated and linked to concepts of professionalism and clinical reasoning. MPTs used PIVM assessment within a multidimensional, biopsychosocial framework incorporating clinical data relating to mechanical dysfunction as well as to personal factors while applying various clinical reasoning strategies. Interpretation of PIVM assessment and subsequent decisions on manipulative treatment were strongly rooted within practitioners’ practical knowledge. This study has identified the specific role and position of PIVM assessment as related to other clinical findings within clinical reasoning and decision-making in manual physical therapy in The Netherlands. We recommend future research in manual diagnostics to account for the multivariable character of physical examination of the spine. PMID:21655394

  8. Review of inductively coupled plasmas: Nano-applications and bistable hysteresis physics

    NASA Astrophysics Data System (ADS)

    Lee, Hyo-Chang

    2018-03-01

    Many different gas discharges and plasmas exhibit bistable states under a given set of conditions, and the history-dependent hysteresis that is manifested by intensive quantities of the system upon variation of an external parameter has been observed in inductively coupled plasmas (ICPs). When the external parameters (such as discharge powers) increase, the plasma density increases suddenly from a low- to high-density mode, whereas decreasing the power maintains the plasma in a relatively high-density mode, resulting in significant hysteresis. To date, a comprehensive description of plasma hysteresis and a physical understanding of the main mechanism underlying their bistability remain elusive, despite many experimental observations of plasma bistability conducted under radio-frequency ICP excitation. This fundamental understanding of mode transitions and hysteresis is essential and highly important in various applied fields owing to the widespread use of ICPs, such as semiconductor/display/solar-cell processing (etching, deposition, and ashing), wireless light lamp, nanostructure fabrication, nuclear-fusion operation, spacecraft propulsion, gas reformation, and the removal of hazardous gases and materials. If, in such applications, plasma undergoes a mode transition and hysteresis occurs in response to external perturbations, the process result will be strongly affected. Due to these reasons, this paper comprehensively reviews both the current knowledge in the context of the various applied fields and the global understanding of the bistability and hysteresis physics in the ICPs. At first, the basic understanding of the ICP is given. After that, applications of ICPs to various applied fields of nano/environmental/energy-science are introduced. Finally, the mode transition and hysteresis in ICPs are studied in detail. This study will show the fundamental understanding of hysteresis physics in plasmas and give open possibilities for applications to various applied fields to find novel control knob and optimizing processing conditions.

  9. Examining the Relationship of Scientific Reasoning with Physics Problem Solving

    ERIC Educational Resources Information Center

    Fabby, Carol; Koenig, Kathleen

    2015-01-01

    Recent research suggests students with more formal reasoning patterns are more proficient learners. However, little research has been done to establish a relationship between scientific reasoning and problem solving abilities by novices. In this exploratory study, we compared scientific reasoning abilities of students enrolled in a college level…

  10. Unspoken Playground Rules Discourage Adolescent Physical Activity in School: A Focus Group Study of Constructs in the Prototype Willingness Model.

    PubMed

    Wheatley, Catherine M; Davies, Emma L; Dawes, Helen

    2018-03-01

    The health benefits of exercise in school are recognized, yet physical activity continues to decline during early adolescence despite numerous interventions. In this study, we investigated whether the prototype willingness model, an account of adolescent decision making that includes both reasoned behavioral choices and unplanned responses to social environments, might improve understanding of physical activity in school. We conducted focus groups with British pupils aged 12 to 13 years and used deductive thematic analysis to search for themes relating to the model. Participants described reasoned decisions about physical activity outside school and unplanned choices to be inactive during break, in response to social contexts described as more "judgmental" than in primary school. Social contexts appeared characterized by anxiety about competence, negative peer evaluation, and inactive playground norms. The prototype willingness model might more fully explain physical activity in school than reasoned behavioral models alone, indicating potential for interventions targeting anxieties about playground social environments.

  11. To Nap, Perchance to DREAM: A Factor Analysis of College Students' Self-Reported Reasons for Napping.

    PubMed

    Duggan, Katherine A; McDevitt, Elizabeth A; Whitehurst, Lauren N; Mednick, Sara C

    2018-01-01

    Although napping has received attention because of its associations with health and use as a method to understand the function of sleep, to our knowledge no study has systematically and statistically assessed reasons for napping. Using factor analysis, we determined the underlying structure of reasons for napping in diverse undergraduates (N = 430, 59% female) and examined their relationships with self-reported sleep, psychological health, and physical health. The five reasons for napping can be summarized using the acronym DREAM (Dysregulative, Restorative, Emotional, Appetitive, and Mindful). Only Emotional reasons for napping were uniformly related to lower well-being. The use of factor analysis raises possibilities for future research, including examining the stability, structure, and psychological and physical health processes related to napping throughout the lifespan.

  12. To nap, perchance to DREAM: A factor analysis of college students’ self-reported reasons for napping

    PubMed Central

    Duggan, Katherine A.; McDevitt, Elizabeth A.; Whitehurst, Lauren N.; Mednick, Sara C.

    2017-01-01

    Although napping has received attention because of its associations with health and use as a method to understand the function of sleep, to our knowledge no study has systematically and statistically assessed reasons for napping. Using factor analysis, we determined the underlying structure of reasons for napping in diverse undergraduates (N=430, 59% female) and examined their relationships with self-reported sleep, psychological, and physical health. The 5 reasons for napping can be summarized using the acronym DREAM (Dysregulative, Restorative, Emotional, Appetitive, and Mindful). Only Emotional reasons for napping were uniformly related to lower well-being. The use of factor analysis raises possibilities for future research, including examining the stability, structure, and psychological and physical health processes related to napping throughout the lifespan. PMID:27347727

  13. Qualitative investigation of students' views about experimental physics

    NASA Astrophysics Data System (ADS)

    Hu, Dehui; Zwickl, Benjamin M.; Wilcox, Bethany R.; Lewandowski, H. J.

    2017-12-01

    This study examines students' reasoning surrounding seemingly contradictory Likert-scale responses within five items in the Colorado Learning Attitudes About Science Survey for Experimental Physics (E-CLASS). We administered the E-CLASS with embedded open-ended prompts, which asked students to provide explanations after making a Likert-scale selection. The quantitative scores on those items showed that our sample of the 216 students enrolled in first year and beyond first year physics courses demonstrated the same trends as previous national data. A qualitative analysis of students' open-ended responses was used to examine common reasoning patterns related to particular Likert-scale responses. When explaining responses to items regarding the role of experiments in confirming known results and also contributing to the growth of scientific knowledge, a common reasoning pattern suggested that confirming known results in a classroom experiment can help with understanding concepts. Thus, physics experiments contribute to students' personal scientific knowledge growth, while also confirming widely known results. Many students agreed that having correct formatting and making well-reasoned conclusions are the main goal for communicating experimental results. Students who focused on sections and formatting emphasized how it enables clear and efficient communication. However, very few students discussed the link between well-reasoned conclusions and effective scientific communication. Lastly, many students argued it was possible to complete experiments without understanding equations and physics concepts. The most common justification was that they could simply follow instructions to finish the lab without understanding. The findings suggest several implications for teaching physics laboratory courses, for example, incorporating some lab activities with outcomes that are unknown to the students might have a significant impact on students' understanding of experiments as an important approach for developing scientific knowledge.

  14. Psychological abuse: a variable deserving critical attention in domestic violence.

    PubMed

    O'Leary, K D

    1999-01-01

    Policy makers and researchers give psychological abuse considerably less attention than physical abuse in the partner abuse area. One reason for the relative neglect of psychological abuse is that there are difficulties in arriving at a common definition of psychological abuse that might be useful to both the mental health and legal professions. Another reason for the relative neglect of psychological abuse has been an implicit assumption that physical abuse exacts a greater psychological toll on victims than does psychological abuse. At the extreme level of physical abuse, this assumption seems defensible, but at levels of physical aggression that are most common in marriage and long-term relationships, psychological abuse appears to have as great an impact as physical abuse. Even direct ratings of psychological and physical abuse by women in physically abusive relationships indicate that psychological abuse has a greater adverse effect on them than physical abuse. Retrospective reports, longitudinal research, and treatment dropout research all provide evidence that psychological abuse can exact a negative effect on relationships that is as great as that of physical abuse. Finally, psychological abuse almost always precedes physical abuse, so that prevention and treatment efforts clearly need to address psychological abuse. Eight measures of various forms of psychological abuse that have reasonable psychometric properties and considerable construct validity are reviewed and a definition of psychological abuse in intimate relations is provided.

  15. Secure and Efficient Signature Scheme Based on NTRU for Mobile Payment

    NASA Astrophysics Data System (ADS)

    Xia, Yunhao; You, Lirong; Sun, Zhe; Sun, Zhixin

    2017-10-01

    Mobile payment becomes more and more popular, however the traditional public-key encryption algorithm has higher requirements for hardware which is not suitable for mobile terminals of limited computing resources. In addition, these public-key encryption algorithms do not have the ability of anti-quantum computing. This paper researches public-key encryption algorithm NTRU for quantum computation through analyzing the influence of parameter q and k on the probability of generating reasonable signature value. Two methods are proposed to improve the probability of generating reasonable signature value. Firstly, increase the value of parameter q. Secondly, add the authentication condition that meet the reasonable signature requirements during the signature phase. Experimental results show that the proposed signature scheme can realize the zero leakage of the private key information of the signature value, and increase the probability of generating the reasonable signature value. It also improve rate of the signature, and avoid the invalid signature propagation in the network, but the scheme for parameter selection has certain restrictions.

  16. The coexistence of alternative and scientific conceptions in physics

    NASA Astrophysics Data System (ADS)

    Ozdemir, Omer F.

    The purpose of this study was to inquire about the simultaneous coexistence of alternative and scientific conceptions in the domain of physics. This study was particularly motivated by several arguments put forward in opposition to the Conceptual Change Model. In the simplest form, these arguments state that people construct different domains of knowledge and different modes of perception in different situations. Therefore, holding different conceptualizations is unavoidable and expecting a replacement in an individual's conceptual structure is not plausible in terms of instructional practices. The following research questions were generated to inquire about this argument: (1) Do individuals keep their alternative conceptions after they have acquired scientific conceptions? (2) Assuming that individuals who acquired scientific conceptions also have alternative conceptions, how are these different conceptions nested in their conceptual structure? (3) What kind of knowledge, skills, and reasoning are necessary to transfer scientific principles instead of alternative ones in the construction of a valid model? Analysis of the data collected from the non-physics group indicated that the nature of alternative conceptions is framed by two types of reasoning: reasoning by mental simulation and semiformal reasoning. Analysis of the data collected from the physics group revealed that mental images or scenes feeding reasoning by mental simulation had not disappeared after the acquisition of scientific conceptions. The analysis of data also provided enough evidence to conclude that alternative principles feeding semiformal reasoning have not necessarily disappeared after the acquisition of scientific conceptions. However, in regard to semiformal reasoning, compartmentalization was not as clear as the case demonstrated in reasoning by mental simulation; instead semiformal and scientific reasoning are intertwined in a way that the components of semiformal reasoning can easily take their place among the components of scientific reasoning. In spite of the fact that the coexistence of multiple conceptions might obstruct the transfer of scientific conceptions in problem-solving situations, several factors stimulating the use of scientific conceptions were noticed explicitly. These factors were categorized as follows: (a) the level of individuals' domain specific knowledge in the corresponding field, (b) the level of individuals' knowledge about the process of science (how science generates its knowledge claims), (c) the level of individuals' awareness of different types of reasoning and conceptions, and (d) the context in which the problem is situated. (Abstract shortened by UMI.)

  17. Scientific reasoning abilities of nonscience majors in physics-based courses

    NASA Astrophysics Data System (ADS)

    Moore, J. Christopher; Rubbo, Louis J.

    2012-06-01

    We have found that non-STEM (science, technology, engineering, and mathematics) majors taking either a conceptual physics or astronomy course at two regional comprehensive institutions score significantly lower preinstruction on the Lawson’s Classroom Test of Scientific Reasoning (LCTSR) in comparison to national average STEM majors. Based on LCTSR score, the majority of non-STEM students can be classified as either concrete operational or transitional reasoners in Piaget’s theory of cognitive development, whereas in the STEM population formal operational reasoners are far more prevalent. In particular, non-STEM students demonstrate significant difficulty with proportional and hypothetico-deductive reasoning. Prescores on the LCTSR are correlated with normalized learning gains on various concept inventories. The correlation is strongest for content that can be categorized as mostly theoretical, meaning a lack of directly observable exemplars, and weakest for content categorized as mostly descriptive, where directly observable exemplars are abundant. Although the implementation of research-verified, interactive engagement pedagogy can lead to gains in content knowledge, significant gains in theoretical content (such as force and energy) are more difficult with non-STEM students. We also observe no significant gains on the LCTSR without explicit instruction in scientific reasoning patterns. These results further demonstrate that differences in student populations are important when comparing normalized gains on concept inventories, and the achievement of significant gains in scientific reasoning requires a reevaluation of the traditional approach to physics for non-STEM students.

  18. Changes from 1986 to 2006 in reasons for liking leisure-time physical activity among adolescents.

    PubMed

    Wold, B; Littlecott, H; Tynjälä, J; Samdal, O; Moore, L; Roberts, C; Kannas, L; Villberg, J; Aarø, L E

    2016-08-01

    Reasons for participating in physical activity (PA) may have changed in accordance with the general modernization of society. The aim is to examine changes in self-reported reasons for liking leisure-time physical activity (LTPA) and their association with self-reported LTPA over a 20-year period. Data were collected among nationally representative samples of 13-year-olds in Finland, Norway, and Wales in 1986 and 2006 (N = 9252) as part of the WHO cross-national Health Behaviour in School-aged Children (HBSC) study. Univariate ANOVAs to establish differences according to gender, year, and country were conducted. In all countries, 13-year-olds in 2006 tended to report higher importance in terms of achievement and social reasons than their counterparts in 1986, while changes in health reasons were minor. These reasons were associated with LTPA in a similar way at both time points. Health reasons for liking LTPA were considered most important, and were the strongest predictor of LTPA. The findings seem robust as they were consistent across countries and genders. Health education constitutes the most viable strategy for promoting adolescents' motivation for PA, and interventions and educational efforts could be improved by an increased focus on LTPA and sport as a social activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Additional evidence of far transfer of scientific reasoning skills acquired in a CLASP reformed physics course

    NASA Astrophysics Data System (ADS)

    Potter, Wendell H.; Lynch, Robert B.

    2013-01-01

    The introductory physics course taken by biological science majors at UC Davis, Physics 7, was radically reformed 16 years ago in order to explicitly emphasize the development of scientific reasoning skills in all elements of the course. We have previously seen evidence of increased performance on the biological and physical science portions of the MCAT exam, in a rigorous systemic physiology course, and higher graduating GPAs for students who took Physics 7 rather than a traditionally taught introductory physics course. We report here on the increased performance by a group of biological-science majors in a general chemistry course who took the first quarter of Physics 7 prior to beginning the chemistry course sequence compared to a similar group who began taking physics after completing the first two quarters of general chemistry.

  20. Acquiring New Spatial Intuitions: Learning to Reason about Rotations

    ERIC Educational Resources Information Center

    Pani, John R.; Chariker, Julia H.; Dawson, Thomas E.; Johnson, Nathan

    2005-01-01

    There are certain simple rotations of objects that most people cannot reason about accurately. Reliable gaps in the understanding of a fundamental physical domain raise the question of how learning to reason in that domain might proceed. Using virtual reality techniques, this project investigated the nature of learning to reason across the domain…

  1. Bayesian Markov Chain Monte Carlo inversion for weak anisotropy parameters and fracture weaknesses using azimuthal elastic impedance

    NASA Astrophysics Data System (ADS)

    Chen, Huaizhen; Pan, Xinpeng; Ji, Yuxin; Zhang, Guangzhi

    2017-08-01

    A system of aligned vertical fractures and fine horizontal shale layers combine to form equivalent orthorhombic media. Weak anisotropy parameters and fracture weaknesses play an important role in the description of orthorhombic anisotropy (OA). We propose a novel approach of utilizing seismic reflection amplitudes to estimate weak anisotropy parameters and fracture weaknesses from observed seismic data, based on azimuthal elastic impedance (EI). We first propose perturbation in stiffness matrix in terms of weak anisotropy parameters and fracture weaknesses, and using the perturbation and scattering function, we derive PP-wave reflection coefficient and azimuthal EI for the case of an interface separating two OA media. Then we demonstrate an approach to first use a model constrained damped least-squares algorithm to estimate azimuthal EI from partially incidence-phase-angle-stack seismic reflection data at different azimuths, and then extract weak anisotropy parameters and fracture weaknesses from the estimated azimuthal EI using a Bayesian Markov Chain Monte Carlo inversion method. In addition, a new procedure to construct rock physics effective model is presented to estimate weak anisotropy parameters and fracture weaknesses from well log interpretation results (minerals and their volumes, porosity, saturation, fracture density, etc.). Tests on synthetic and real data indicate that unknown parameters including elastic properties (P- and S-wave impedances and density), weak anisotropy parameters and fracture weaknesses can be estimated stably in the case of seismic data containing a moderate noise, and our approach can make a reasonable estimation of anisotropy in a fractured shale reservoir.

  2. Numerical and Experimental Investigations of Humping Phenomena in Laser Micro Welding

    NASA Astrophysics Data System (ADS)

    Otto, Andreas; Patschger, Andreas; Seiler, Michael

    The Humping effect is a phenomenon which is observed approximately since 50 years in various welding procedures and is characterized by droplets due to a pile-up of the melt pool. It occurs within a broad range of process parameters. Particularly during micro welding, humping effect is critical due to typically high feed rates. In the past, essentially two approaches (fluid-dynamic approach of streaming melt within the molten pool and the Plateau-Rayleigh instability of a liquid jet) were discussed in order to explain the occurrence of the humping effect. But none of both can fully explain all observed effects. For this reason, experimental studies in micro welding of thin metal foils were performed in order to determine the influence of process parameters on the occurrence of humping effects. The experimental observations were compared with results from numerical multi-physical simulations (incorporating beam propagation, incoupling, heat transfer, fluid dynamics etc.) to provide a deeper understanding of the causes for hump formation.

  3. Minimum principles in electromagnetic scattering by small aspherical particles

    NASA Astrophysics Data System (ADS)

    Kostinski, Alex B.; Mongkolsittisilp, Ajaree

    2013-12-01

    We consider the question of optimal shapes, e.g., those causing minimal extinction among all shapes of equal volume. Guided by the isoperimetric property of a sphere, relevant in the geometrical optics limit of scattering by large particles, we examine an analogous question in the low frequency approximation, seeking to disentangle electric and geometric contributions. To that end, we survey the literature on shape functionals and focus on ellipsoids, giving a simple discussion of spherical optimality for the coated ellipsoidal particle. Monotonic increase with asphericity in the low frequency regime for orientation-averaged induced dipole moments and scattering cross-sections is also shown. Additional physical insight is obtained from the Rayleigh-Gans (transparent) limit and eccentricity expansions. We propose connecting low and high frequency regimes in a single minimum principle valid for all size parameters, provided that reasonable size distributions of randomly oriented aspherical particles wash out the resonances for intermediate size parameters. This proposal is further supported by the sum rule for integrated extinction.

  4. Sensor Fusion Based on an Integrated Neural Network and Probability Density Function (PDF) Dual Kalman Filter for On-Line Estimation of Vehicle Parameters and States.

    PubMed

    Vargas-Melendez, Leandro; Boada, Beatriz L; Boada, Maria Jesus L; Gauchia, Antonio; Diaz, Vicente

    2017-04-29

    Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles, are prone to rollover. This kind of accident causes nearly 33 % of all deaths from passenger vehicle crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve their safety. Most of the RSC systems require the vehicle roll angle as a known input variable to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason, it is important to estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other hand, the knowledge of the vehicle's parameters values is essential to obtain an accurate vehicle response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this paper, an algorithm for the simultaneous on-line estimation of vehicle's roll angle and parameters is proposed. This algorithm uses a probability density function (PDF)-based truncation method in combination with a dual Kalman filter (DKF), to guarantee that both vehicle's states and parameters are within bounds that have a physical meaning, using the information obtained from sensors mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm.

  5. Sensor Fusion Based on an Integrated Neural Network and Probability Density Function (PDF) Dual Kalman Filter for On-Line Estimation of Vehicle Parameters and States

    PubMed Central

    Vargas-Melendez, Leandro; Boada, Beatriz L.; Boada, Maria Jesus L.; Gauchia, Antonio; Diaz, Vicente

    2017-01-01

    Vehicles with a high center of gravity (COG), such as light trucks and heavy vehicles, are prone to rollover. This kind of accident causes nearly 33% of all deaths from passenger vehicle crashes. Nowadays, these vehicles are incorporating roll stability control (RSC) systems to improve their safety. Most of the RSC systems require the vehicle roll angle as a known input variable to predict the lateral load transfer. The vehicle roll angle can be directly measured by a dual antenna global positioning system (GPS), but it is expensive. For this reason, it is important to estimate the vehicle roll angle from sensors installed onboard in current vehicles. On the other hand, the knowledge of the vehicle’s parameters values is essential to obtain an accurate vehicle response. Some of vehicle parameters cannot be easily obtained and they can vary over time. In this paper, an algorithm for the simultaneous on-line estimation of vehicle’s roll angle and parameters is proposed. This algorithm uses a probability density function (PDF)-based truncation method in combination with a dual Kalman filter (DKF), to guarantee that both vehicle’s states and parameters are within bounds that have a physical meaning, using the information obtained from sensors mounted on vehicles. Experimental results show the effectiveness of the proposed algorithm. PMID:28468252

  6. Validation of AIRS/AMSU Cloud Retrievals Using MODIS Cloud Analyses

    NASA Technical Reports Server (NTRS)

    Molnar, Gyula I.; Susskind, Joel

    2005-01-01

    The AIRS/AMSU (flying on the EOS-AQUA satellite) sounding retrieval methodology allows for the retrieval of key atmospheric/surface parameters under partially cloudy conditions (Susskind et al.). In addition, cloud parameters are also derived from the AIRS/AMSU observations. Within each AIRS footprint, cloud parameters at up to 2 cloud layers are determined with differing cloud top pressures and effective (product of infrared emissivity at 11 microns and physical cloud fraction) cloud fractions. However, so far the AIRS cloud product has not been rigorously evaluated/validated. Fortunately, collocated/coincident radiances measured by MODIS/AQUA (at a much lower spectral resolution but roughly an order of-magnitude higher spatial resolution than that of AIRS) are used to determine analogous cloud products from MODIS. This allows us for a rather rare and interesting possibility: the intercomparisons and mutual validation of imager vs. sounder-based cloud products obtained from the same satellite positions. First, we present results of small-scale (granules) instantaneous intercomparisons. Next, we will evaluate differences of temporally averaged (monthly) means as well as the representation of inter-annual variability of cloud parameters as presented by the two cloud data sets. In particular, we present statistical differences in the retrieved parameters of cloud fraction and cloud top pressure. We will investigate what type of cloud systems are retrieved most consistently (if any) with both retrieval schemes, and attempt to assess reasons behind statistically significant differences.

  7. Kalman filter estimation of human pilot-model parameters

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Roland, V. R.

    1975-01-01

    The parameters of a human pilot-model transfer function are estimated by applying the extended Kalman filter to the corresponding retarded differential-difference equations in the time domain. Use of computer-generated data indicates that most of the parameters, including the implicit time delay, may be reasonably estimated in this way. When applied to two sets of experimental data obtained from a closed-loop tracking task performed by a human, the Kalman filter generated diverging residuals for one of the measurement types, apparently because of model assumption errors. Application of a modified adaptive technique was found to overcome the divergence and to produce reasonable estimates of most of the parameters.

  8. Estimation of interfacial heat transfer coefficient in inverse heat conduction problems based on artificial fish swarm algorithm

    NASA Astrophysics Data System (ADS)

    Wang, Xiaowei; Li, Huiping; Li, Zhichao

    2018-04-01

    The interfacial heat transfer coefficient (IHTC) is one of the most important thermal physical parameters which have significant effects on the calculation accuracy of physical fields in the numerical simulation. In this study, the artificial fish swarm algorithm (AFSA) was used to evaluate the IHTC between the heated sample and the quenchant in a one-dimensional heat conduction problem. AFSA is a global optimization method. In order to speed up the convergence speed, a hybrid method which is the combination of AFSA and normal distribution method (ZAFSA) was presented. The IHTC evaluated by ZAFSA were compared with those attained by AFSA and the advanced-retreat method and golden section method. The results show that the reasonable IHTC is obtained by using ZAFSA, the convergence of hybrid method is well. The algorithm based on ZAFSA can not only accelerate the convergence speed, but also reduce the numerical oscillation in the evaluation of IHTC.

  9. In-liquid arc plasma jet and its application to phenol degradation

    NASA Astrophysics Data System (ADS)

    Liu, Jing-Lin; Park, Hyun-Woo; Hamdan, Ahmad; Cha, Min Suk

    2018-03-01

    We present a new method for achieving chemical reactions induced by plasmas with liquids—an in-liquid arc plasma jet system—designed to have a few advantages over the existing methods. High-speed imaging and optical emission spectroscopy were adopted to highlight the physical aspects of the in-liquid arc plasma jet system, and the feasibility of the system was investigated in a wastewater treatment case with phenol as the model contaminant. We found that the specific energy input is a reasonable parameter by which to characterize the overall process. The phenol removal reaction could be modeled as a pseudo-first-order reaction, and the reaction constant became smaller as the phenol concentration increased. However, complete decomposition of the phenol into water and carbon dioxide required very high energy because the final intermediate, oxalic acid, is relatively stable. Detailed chemical and physical analyses, including byproducts, ions, solution acidity, and conductivity, were conducted to evaluate this new method for use in the appropriate applications.

  10. Low order physical models of vertical axis wind turbines

    NASA Astrophysics Data System (ADS)

    Craig, Anna; Dabiri, John; Koseff, Jeffrey

    2016-11-01

    In order to examine the ability of low-order physical models of vertical axis wind turbines to accurately reproduce key flow characteristics, experiments were conducted on rotating turbine models, rotating solid cylinders, and stationary porous flat plates (of both uniform and non-uniform porosities). From examination of the patterns of mean flow, the wake turbulence spectra, and several quantitative metrics, it was concluded that the rotating cylinders represent a reasonably accurate analog for the rotating turbines. In contrast, from examination of the patterns of mean flow, it was found that the porous flat plates represent only a limited analog for rotating turbines (for the parameters examined). These findings have implications for both laboratory experiments and numerical simulations, which have previously used analogous low order models in order to reduce experimental/computational costs. NSF GRF and SGF to A.C; ONR N000141211047 and the Gordon and Betty Moore Foundation Grant GBMF2645 to J.D.; and the Bob and Norma Street Environmental Fluid Mechanics Laboratory at Stanford University.

  11. Physics evaluation of compact tokamak ignition experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uckan, N.A.; Houlberg, W.A.; Sheffield, J.

    1985-01-01

    At present, several approaches for compact, high-field tokamak ignition experiments are being considered. A comprehensive method for analyzing the potential physics operating regimes and plasma performance characteristics of such ignition experiments with O-D (analytic) and 1-1/2-D (WHIST) transport models is presented. The results from both calculations are in agreement and show that there are regimes in parameter space in which a class of small (R/sub o/ approx. 1-2 m), high-field (B/sub o/ approx. 8-13 T) tokamaks with aB/sub o/S/q/sub */ approx. 25 +- 5 and kappa = b/a approx. 1.6-2.0 appears ignitable for a reasonable range of transport assumptions. Consideringmore » both the density and beta limits, an evaluation of the performance is presented for various forms of chi/sub e/ and chi/sub i/, including degradation at high power and sawtooth activity. The prospects of ohmic ignition are also examined. 16 refs., 13 figs.« less

  12. Prediction and typicality in multiverse cosmology

    NASA Astrophysics Data System (ADS)

    Azhar, Feraz

    2014-02-01

    In the absence of a fundamental theory that precisely predicts values for observable parameters, anthropic reasoning attempts to constrain probability distributions over those parameters in order to facilitate the extraction of testable predictions. The utility of this approach has been vigorously debated of late, particularly in light of theories that claim we live in a multiverse, where parameters may take differing values in regions lying outside our observable horizon. Within this cosmological framework, we investigate the efficacy of top-down anthropic reasoning based on the weak anthropic principle. We argue contrary to recent claims that it is not clear one can either dispense with notions of typicality altogether or presume typicality, in comparing resulting probability distributions with observations. We show in a concrete, top-down setting related to dark matter, that assumptions about typicality can dramatically affect predictions, thereby providing a guide to how errors in reasoning regarding typicality translate to errors in the assessment of predictive power. We conjecture that this dependence on typicality is an integral feature of anthropic reasoning in broader cosmological contexts, and argue in favour of the explicit inclusion of measures of typicality in schemes invoking anthropic reasoning, with a view to extracting predictions from multiverse scenarios.

  13. 14 CFR 1251.201 - Reasonable accommodation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... OF HANDICAP Employment Practices § 1251.201 Reasonable accommodation. (a) A recipient shall make reasonable accommodation to the known physical or mental limitations of an otherwise qualified handicapped... facilities used by employees readily accessible to and usable by handicapped persons; and (2) Job...

  14. 14 CFR 1251.201 - Reasonable accommodation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... OF HANDICAP Employment Practices § 1251.201 Reasonable accommodation. (a) A recipient shall make reasonable accommodation to the known physical or mental limitations of an otherwise qualified handicapped... facilities used by employees readily accessible to and usable by handicapped persons; and (2) Job...

  15. 14 CFR 1251.201 - Reasonable accommodation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... OF HANDICAP Employment Practices § 1251.201 Reasonable accommodation. (a) A recipient shall make reasonable accommodation to the known physical or mental limitations of an otherwise qualified handicapped... facilities used by employees readily accessible to and usable by handicapped persons; and (2) Job...

  16. 14 CFR 1251.201 - Reasonable accommodation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... OF HANDICAP Employment Practices § 1251.201 Reasonable accommodation. (a) A recipient shall make reasonable accommodation to the known physical or mental limitations of an otherwise qualified handicapped... facilities used by employees readily accessible to and usable by handicapped persons; and (2) Job...

  17. Reasoning in people with obsessive-compulsive disorder.

    PubMed

    Simpson, Jane; Cove, Jennifer; Fineberg, Naomi; Msetfi, Rachel M; J Ball, Linden

    2007-11-01

    The aim of this study was to investigate the inductive and deductive reasoning abilities of people with obsessive-compulsive disorder (OCD). Following previous research, it was predicted that people with OCD would show different abilities on inductive reasoning tasks but similar abilities to controls on deductive reasoning tasks. A two-group comparison was used with both groups matched on a range of demographic variables. Where appropriate, unmatched variables were entered into the analyses as covariates. Twenty-three people with OCD and 25 control participants were assessed on two tasks: an inductive reasoning task (the 20-questions task) and a deductive reasoning task (a syllogistic reasoning task with a content-neutral and content-emotional manipulation). While no group differences emerged on several of the parameters of the inductive reasoning task, the OCD group did differ on one, and arguably the most important, parameter by asking fewer correct direct-hypothesis questions. The syllogistic reasoning task results were analysed using both correct response and conclusion acceptance data. While no main effects of group were evident, significant interactions indicated important differences in the way the OCD group reasoned with content neutral and emotional syllogisms. It was argued that the OCD group's patterns of response on both tasks were characterized by the need for more information, states of uncertainty, and doubt and postponement of a final decision.

  18. Multimodal hybrid reasoning methodology for personalized wellbeing services.

    PubMed

    Ali, Rahman; Afzal, Muhammad; Hussain, Maqbool; Ali, Maqbool; Siddiqi, Muhammad Hameed; Lee, Sungyoung; Ho Kang, Byeong

    2016-02-01

    A wellness system provides wellbeing recommendations to support experts in promoting a healthier lifestyle and inducing individuals to adopt healthy habits. Adopting physical activity effectively promotes a healthier lifestyle. A physical activity recommendation system assists users to adopt daily routines to form a best practice of life by involving themselves in healthy physical activities. Traditional physical activity recommendation systems focus on general recommendations applicable to a community of users rather than specific individuals. These recommendations are general in nature and are fit for the community at a certain level, but they are not relevant to every individual based on specific requirements and personal interests. To cover this aspect, we propose a multimodal hybrid reasoning methodology (HRM) that generates personalized physical activity recommendations according to the user׳s specific needs and personal interests. The methodology integrates the rule-based reasoning (RBR), case-based reasoning (CBR), and preference-based reasoning (PBR) approaches in a linear combination that enables personalization of recommendations. RBR uses explicit knowledge rules from physical activity guidelines, CBR uses implicit knowledge from experts׳ past experiences, and PBR uses users׳ personal interests and preferences. To validate the methodology, a weight management scenario is considered and experimented with. The RBR part of the methodology generates goal, weight status, and plan recommendations, the CBR part suggests the top three relevant physical activities for executing the recommended plan, and the PBR part filters out irrelevant recommendations from the suggested ones using the user׳s personal preferences and interests. To evaluate the methodology, a baseline-RBR system is developed, which is improved first using ranged rules and ultimately using a hybrid-CBR. A comparison of the results of these systems shows that hybrid-CBR outperforms the modified-RBR and baseline-RBR systems. Hybrid-CBR yields a 0.94% recall, a 0.97% precision, a 0.95% f-score, and low Type I and Type II errors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Data-Aware Retrodiction for Asynchronous Harmonic Measurement in a Cyber-Physical Energy System.

    PubMed

    Liu, Youda; Wang, Xue; Liu, Yanchi; Cui, Sujin

    2016-08-18

    Cyber-physical energy systems provide a networked solution for safety, reliability and efficiency problems in smart grids. On the demand side, the secure and trustworthy energy supply requires real-time supervising and online power quality assessing. Harmonics measurement is necessary in power quality evaluation. However, under the large-scale distributed metering architecture, harmonic measurement faces the out-of-sequence measurement (OOSM) problem, which is the result of latencies in sensing or the communication process and brings deviations in data fusion. This paper depicts a distributed measurement network for large-scale asynchronous harmonic analysis and exploits a nonlinear autoregressive model with exogenous inputs (NARX) network to reorder the out-of-sequence measuring data. The NARX network gets the characteristics of the electrical harmonics from practical data rather than the kinematic equations. Thus, the data-aware network approximates the behavior of the practical electrical parameter with real-time data and improves the retrodiction accuracy. Theoretical analysis demonstrates that the data-aware method maintains a reasonable consumption of computing resources. Experiments on a practical testbed of a cyber-physical system are implemented, and harmonic measurement and analysis accuracy are adopted to evaluate the measuring mechanism under a distributed metering network. Results demonstrate an improvement of the harmonics analysis precision and validate the asynchronous measuring method in cyber-physical energy systems.

  20. Tool use in left-brain-damaged patients: Difficulties in reasoning but not in estimating the physical properties of objects.

    PubMed

    Faye, Alexandrine; Jacquin-Courtois, Sophie; Osiurak, François

    2018-03-01

    The purpose of this study was to deepen our understanding of the cognitive bases of human tool use based on the technical reasoning hypothesis (i.e., the reasoning-based approach). This approach assumes that tool use is supported by the ability to reason about an object's physical properties (e.g., length, weight, strength, etc.) to perform mechanical actions (e.g., lever). In this framework, an important issue is to understand whether left-brain-damaged (LBD) individuals with tool-use deficits are still able to estimate the physical object's properties necessary to use the tool. Eleven LBD patients and 12 control participants performed 3 original experimental tasks: Use-Length (visual evaluation of the length of a stick to bring down a target), Visual-Length (to visually compare objects of different lengths) and Addition-Length (to visually compare added lengths). Participants were also tested on conventional tasks: Familiar Tool Use and Mechanical Problem-Solving (novel tools). LBD patients had more difficulties than controls on both conventional tasks. No significant differences were observed for the 3 experimental tasks. These results extend the reasoning-based approach, stressing that it might not be the representation of length that is impaired in LBD patients, but rather the ability to generate mechanical actions based on physical object properties. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. An observational study of spectators’ step counts and reasons for attending a professional golf tournament in Scotland

    PubMed Central

    Murray, Andrew D; Turner, Kieran; Archibald, Daryll; Schiphorst, Chloe; Griffin, Steffan Arthur; Scott, Hilary; Hawkes, Roger; Kelly, Paul; Grant, Liz; Mutrie, Nanette

    2017-01-01

    Background Spectators at several hundred golf tournaments on six continents worldwide may gain health-enhancing physical activity (HEPA) during their time at the event. This study aims to investigate spectators’ reasons for attending and assess spectator physical activity (PA) (measured by step count). Methods Spectators at the Paul Lawrie Matchplay event in Scotland (August 2016) were invited to take part in this study. They were asked to complete a brief questionnaire with items to assess (1) demographics, (2) reasons for attendance and (3) baseline PA. In addition, participants were requested to wear a pedometer from time of entry to the venue until exit. Results A total of 339 spectators were recruited to the study and out of which 329 (97.2%) returned step-count data. Spectators took a mean of 11 589 steps (SD 4531). ‘Fresh air’ (rated median 9 out of 10) then ‘watching star players’, ‘exercise/physical activity’, ‘time with friends and family’ and ‘atmosphere’ (all median 8 out of 10) were rated the most important reasons for attending. Conclusion This study is the first to assess spectator physical activity while watching golf (measured by step count). Obtaining exercise/PA is rated as an important reason for attending a tournament by many golf spectators. Spectating at a golf tournament can provide HEPA. 82.9% of spectators achieved the recommended daily step count while spectating. Further research directly assessing whether spectating may constitute a ‘teachable moment’, for increasing physical activity beyond the tournament itself, is merited. PMID:28761718

  2. Adolescents' Decisions About Verbal and Physical Aggression: An Application of the Theory of Reasoned Action.

    ERIC Educational Resources Information Center

    Roberto, Anthony J.; Meyer, Gary; Boster, Franklin J.; Roberto, Heather L.

    2003-01-01

    Examines the ability of the theory of reasoned action to explain and predict adolescents' verbal (i.e., insulting) and physical (i.e., fighting) aggression, as well as behaviors that encourage aggression such as watching a fight or telling others about a fight that is going to happen. Reveals that attitudes and subjective norms predicted…

  3. An Exploration into the Use of Manipulatives to Develop Abstract Reasoning in an Introductory Science Course

    ERIC Educational Resources Information Center

    Fencl, Heidi; Butler, Angie Huenink

    2007-01-01

    Classical physics has a long history of using demonstrations and experiments to develop ideas in introductory courses. The purpose of this exploration is to examine the effectiveness of a desk-top activity for helping students develop abstract reasoning. In the pilot exploration, students in three laboratory sections of a single physics course…

  4. The Nature of Argumentation in School Mathematics and Physics Texts: The Case of Periodicity

    ERIC Educational Resources Information Center

    Triantafillou, Chrissavgi; Spiliotopoulou, Vasiliki; Potari, Despina

    2016-01-01

    The present study explores reasoning and argumentation in Greek mathematics and physics texts in specific topics related to the notion of periodicity. In our study, argumentation is taken as the sequence of the modes of reasoning (MsoR) that an author develops in a text when organizing and presenting new knowledge. Inductive content analysis was…

  5. Reasoning Using Particulate Nature of Matter: An Example of a Sociochemical Norm in a University-Level Physical Chemistry Class

    ERIC Educational Resources Information Center

    Becker, Nicole; Rasmussen, Chris; Sweeney, George; Wawro, Megan; Towns, Marcy; Cole, Renee

    2013-01-01

    In college level chemistry courses, reasoning using molecular and particulate descriptions of matter becomes central to understanding physical and chemical properties. In this study, we used a qualitative approach to analyzing classroom discourse derived from Toulmin's model of argumentation in order to describe the ways in which students develop…

  6. Reasons given by California physical therapists for not belonging to the american physical therapy association.

    PubMed

    McGinty, S M; Cicero, M C; Cicero, J M; Schultz-Janney, L; Williams-Shipman, K L

    2001-06-01

    In 1997, only 22% of licensed physical therapists living in California were members of the American Physical Therapy Association (APTA). This 1998 study was designed to identify the reason(s) why most licensed physical therapists in California choose not to belong to their profession's national association and to examine the demographics of nonmembers. The subjects were a random sample of 400 California licensed physical therapists who were not members of APTA. The survey instrument included a demographic questionnaire and statements for response using a 5-point Likert-type scale. Frequency distributions were calculated for responses and demographic data. Nonparametric analyses were used to determine statistical significance. Chi-square analysis was used to compare responses to statements by gender and by full-time versus part-time work status. Spearman rank correlation coefficients were used to determine any relationships between demographic data (eg, gender and work status). The Mann-Whitney U test was used to determine any differences in responses to specific representation questions by those respondents who worked in those environments. All statistical tests were 2-tailed tests conducted at the P(.05 level, unless otherwise indicated. Means, standard deviations, and ranges were used where appropriate. There was a 67% response rate. Eighty-nine percent of the respondents had been members of APTA. Eighty-eight percent of the respondents believed that APTA national dues were too high, and 90% thought California Chapter dues were too high. Cost was the primary reason given for APTA nonmembership in California.

  7. Model-based reasoning in the physics laboratory: Framework and initial results

    NASA Astrophysics Data System (ADS)

    Zwickl, Benjamin M.; Hu, Dehui; Finkelstein, Noah; Lewandowski, H. J.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] We review and extend existing frameworks on modeling to develop a new framework that describes model-based reasoning in introductory and upper-division physics laboratories. Constructing and using models are core scientific practices that have gained significant attention within K-12 and higher education. Although modeling is a broadly applicable process, within physics education, it has been preferentially applied to the iterative development of broadly applicable principles (e.g., Newton's laws of motion in introductory mechanics). A significant feature of the new framework is that measurement tools (in addition to the physical system being studied) are subjected to the process of modeling. Think-aloud interviews were used to refine the framework and demonstrate its utility by documenting examples of model-based reasoning in the laboratory. When applied to the think-aloud interviews, the framework captures and differentiates students' model-based reasoning and helps identify areas of future research. The interviews showed how students productively applied similar facets of modeling to the physical system and measurement tools: construction, prediction, interpretation of data, identification of model limitations, and revision. Finally, we document students' challenges in explicitly articulating assumptions when constructing models of experimental systems and further challenges in model construction due to students' insufficient prior conceptual understanding. A modeling perspective reframes many of the seemingly arbitrary technical details of measurement tools and apparatus as an opportunity for authentic and engaging scientific sense making.

  8. Stochastic hydrogeology: what professionals really need?

    PubMed

    Renard, Philippe

    2007-01-01

    Quantitative hydrogeology celebrated its 150th anniversary in 2006. Geostatistics is younger but has had a very large impact in hydrogeology. Today, geostatistics is used routinely to interpolate deterministically most of the parameters that are required to analyze a problem or make a quantitative analysis. In a small number of cases, geostatistics is combined with deterministic approaches to forecast uncertainty. At a more academic level, geostatistics is used extensively to study physical processes in heterogeneous aquifers. Yet, there is an important gap between the academic use and the routine applications of geostatistics. The reasons for this gap are diverse. These include aspects related to the hydrogeology consulting market, technical reasons such as the lack of widely available software, but also a number of misconceptions. A change in this situation requires acting at different levels. First, regulators must be convinced of the benefit of using geostatistics. Second, the economic potential of the approach must be emphasized to customers. Third, the relevance of the theories needs to be increased. Last, but not least, software, data sets, and computing infrastructure such as grid computing need to be widely available.

  9. The applications of statistical quantification techniques in nanomechanics and nanoelectronics.

    PubMed

    Mai, Wenjie; Deng, Xinwei

    2010-10-08

    Although nanoscience and nanotechnology have been developing for approximately two decades and have achieved numerous breakthroughs, the experimental results from nanomaterials with a higher noise level and poorer repeatability than those from bulk materials still remain as a practical issue, and challenge many techniques of quantification of nanomaterials. This work proposes a physical-statistical modeling approach and a global fitting statistical method to use all the available discrete data or quasi-continuous curves to quantify a few targeted physical parameters, which can provide more accurate, efficient and reliable parameter estimates, and give reasonable physical explanations. In the resonance method for measuring the elastic modulus of ZnO nanowires (Zhou et al 2006 Solid State Commun. 139 222-6), our statistical technique gives E = 128.33 GPa instead of the original E = 108 GPa, and unveils a negative bias adjustment f(0). The causes are suggested by the systematic bias in measuring the length of the nanowires. In the electronic measurement of the resistivity of a Mo nanowire (Zach et al 2000 Science 290 2120-3), the proposed new method automatically identified the importance of accounting for the Ohmic contact resistance in the model of the Ohmic behavior in nanoelectronics experiments. The 95% confidence interval of resistivity in the proposed one-step procedure is determined to be 3.57 +/- 0.0274 x 10( - 5) ohm cm, which should be a more reliable and precise estimate. The statistical quantification technique should find wide applications in obtaining better estimations from various systematic errors and biased effects that become more significant at the nanoscale.

  10. Adolescents' Social Reasoning about Relational Aggression

    ERIC Educational Resources Information Center

    Goldstein, Sara E.; Tisak, Marie S.

    2010-01-01

    We examined early adolescents' reasoning about relational aggression, and the links that their reasoning has to their own relationally aggressive behavior. Thinking about relational aggression was compared to thinking about physical aggression, conventional violations, and personal behavior. In individual interviews, adolescents (N = 103) rated…

  11. The Coastal Zone: Man and Nature. An Application of the Socio-Scientific Reasoning Model.

    ERIC Educational Resources Information Center

    Maul, June Paradise; And Others

    The curriculum model described here has been designed by incorporating the socio-scientific reasoning model with a simulation design in an attempt to have students investigate the onshore impacts of Outer Continental Shelf (OCS) gas and oil development. The socio-scientific reasoning model incorporates a logical/physical reasoning component as…

  12. Uncertainty propagation by using spectral methods: A practical application to a two-dimensional turbulence fluid model

    NASA Astrophysics Data System (ADS)

    Riva, Fabio; Milanese, Lucio; Ricci, Paolo

    2017-10-01

    To reduce the computational cost of the uncertainty propagation analysis, which is used to study the impact of input parameter variations on the results of a simulation, a general and simple to apply methodology based on decomposing the solution to the model equations in terms of Chebyshev polynomials is discussed. This methodology, based on the work by Scheffel [Am. J. Comput. Math. 2, 173-193 (2012)], approximates the model equation solution with a semi-analytic expression that depends explicitly on time, spatial coordinates, and input parameters. By employing a weighted residual method, a set of nonlinear algebraic equations for the coefficients appearing in the Chebyshev decomposition is then obtained. The methodology is applied to a two-dimensional Braginskii model used to simulate plasma turbulence in basic plasma physics experiments and in the scrape-off layer of tokamaks, in order to study the impact on the simulation results of the input parameter that describes the parallel losses. The uncertainty that characterizes the time-averaged density gradient lengths, time-averaged densities, and fluctuation density level are evaluated. A reasonable estimate of the uncertainty of these distributions can be obtained with a single reduced-cost simulation.

  13. Detecting impossible changes in infancy: a three-system account

    PubMed Central

    Wang, Su-hua; Baillargeon, Renée

    2012-01-01

    Can infants detect that an object has magically disappeared, broken apart or changed color while briefly hidden? Recent research suggests that infants detect some but not other ‘impossible’ changes; and that various contextual manipulations can induce infants to detect changes they would not otherwise detect. We present an account that includes three systems: a physical-reasoning, an object-tracking, and an object-representation system. What impossible changes infants detect depends on what object information is included in the physical-reasoning system; this information becomes subject to a principle of persistence, which states that objects can undergo no spontaneous or uncaused change. What contextual manipulations induce infants to detect impossible changes depends on complex interplays between the physical-reasoning system and the object-tracking and object-representation systems. PMID:18078778

  14. Women's reasons for leaving abusive spouses.

    PubMed

    Ulrich, Y C

    1991-01-01

    Research has focused on factors associated with leaving physically abusive relationships, yet little is known about what the woman thinks when she leaves. Fifty-one formerly battered women from rural and metropolitan areas in two midwestern states described 86 reasons for leaving a physically abusive relationship. During open-ended interviews, women who rated themselves as severely abused spontaneously emphasized leaving as a process. Content analysis resulted in reasons categorized as safety, dependency, and personal growth. Self-report retrospective data from a nonrandom sample limit generalizability of results; however, the awareness and reasoning of the women, coupled with their emphasis on leaving as process and personal growth, suggest the importance of education and support programs for abused women and women at risk for abuse.

  15. Application of identified sensitive physical parameters in reducing the uncertainty of numerical simulation

    NASA Astrophysics Data System (ADS)

    Sun, Guodong; Mu, Mu

    2016-04-01

    An important source of uncertainty, which then causes further uncertainty in numerical simulations, is that residing in the parameters describing physical processes in numerical models. There are many physical parameters in numerical models in the atmospheric and oceanic sciences, and it would cost a great deal to reduce uncertainties in all physical parameters. Therefore, finding a subset of these parameters, which are relatively more sensitive and important parameters, and reducing the errors in the physical parameters in this subset would be a far more efficient way to reduce the uncertainties involved in simulations. In this context, we present a new approach based on the conditional nonlinear optimal perturbation related to parameter (CNOP-P) method. The approach provides a framework to ascertain the subset of those relatively more sensitive and important parameters among the physical parameters. The Lund-Potsdam-Jena (LPJ) dynamical global vegetation model was utilized to test the validity of the new approach. The results imply that nonlinear interactions among parameters play a key role in the uncertainty of numerical simulations in arid and semi-arid regions of China compared to those in northern, northeastern and southern China. The uncertainties in the numerical simulations were reduced considerably by reducing the errors of the subset of relatively more sensitive and important parameters. The results demonstrate that our approach not only offers a new route to identify relatively more sensitive and important physical parameters but also that it is viable to then apply "target observations" to reduce the uncertainties in model parameters.

  16. Optimization of diode-pumped doubly QML laser with neodymium-doped vanadate crystals at 1.34 μm

    NASA Astrophysics Data System (ADS)

    Zhang, Gang; Jiao, Zhiyong

    2018-05-01

    We present a theoretical model for a diode-pumped, 1.34 μm V3+:YAG laser that is equipped with an acoustic-optic modulator. The model includes the loss introduced by the acoustic-optic modulator combined with the physical properties of the laser resonator, the neodymium-doped vanadate crystals and the output coupler. The parameters are adjusted within a reasonable range to optimize the pulse output characteristics. A typical Q-switched and mode-locked Nd:Lu0.15Y0.85VO4 laser at 1.34 μm with acoustic-optic modulator and V3+:YAG is set up, and the experimental output characteristics are consistent with the theoretical simulation results.

  17. Electroactive fluorinate-based polymers: Ferroelectric and dielectric properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu Zhi; Chen Ang; Department of Physics and Department of Chemistry, University of Akron, Akron, Ohio 44325

    2004-12-15

    The dielectric, ferroelectric, and electroactive strain behavior of poly(vinylidene fluoride-trifluoroethylene) copolymers and poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymers is studied in a wide temperature and frequency range. The dielectric response from two dielectric polarization processes, modes A(A{sup '}) and B, and the dielectric-background contribution can be identified for these polymers by using the Cole-Cole plot method. Therefore physically reasonable parameters are obtained by fitting the relaxation time to the Vogel-Fulcher relation. On the other hand, the dielectric relaxation step and high strain decrease simultaneously with decreasing temperature; this indicates that the dielectric relaxation process and high strain behavior are strongly correlated. The electron-irradiationmore » effect in copolymers and the monomer effect in terpolymers are discussed.« less

  18. Reducing the risk of the collapse of the soil by macro system modeling the slopes stability of the quarries

    NASA Astrophysics Data System (ADS)

    Klimova, E. V.; Semeykin, A. Yu

    2018-01-01

    The urgent task of modern production is to reduce the risks of man-made disasters and, as a consequence, preserve the life and health of workers, material properties and natural environment. In the mining industry, one of the reasons for the high level of injuries and accidents is the collapse of the soil. Macro system modelling of slopes stability of the quarries is based on the compliance with the conditions of physical and mathematical correctness of the application of the model of a continuous medium. This type of modelling allows to choose the safe parameters of the slopes of the quarries and to reduce the risk of collapse of the soil.

  19. Compliant Turbomachine Sealing

    NASA Technical Reports Server (NTRS)

    Hendricks, R. C.; Braun, M. J.; Deng, D.; Hendricks, J. A.

    2011-01-01

    Sealing interface materials and coatings are sacrificial, giving up their integrity for the benefit of the component. Seals that are compliant while still controlling leakage, dynamics, and coolant flows are sought to enhance turbomachine performance. Herein we investigate the leaf-seal configuration. While the leaf seal is classified as contacting, a ready modification using the leaf-housing arrangement in conjunction with an interface film rider (a bore seal, for example) provides for a film-riding noncontact seal. The leaf housing and leaf elements can be made from a variety of materials from plastic to ceramic. Four simplistic models are used to identify the physics essential to controlling leakage. Corroborated by CFD, these results provide design parameters for applications to within reasonable engineering certainty. Some potential improvements are proposed.

  20. A Correction to the Stress-Strain Curve During Multistage Hot Deformation of 7150 Aluminum Alloy Using Instantaneous Friction Factors

    NASA Astrophysics Data System (ADS)

    Jiang, Fulin; Tang, Jie; Fu, Dinfa; Huang, Jianping; Zhang, Hui

    2018-04-01

    Multistage stress-strain curve correction based on an instantaneous friction factor was studied for axisymmetric uniaxial hot compression of 7150 aluminum alloy. Experimental friction factors were calculated based on continuous isothermal axisymmetric uniaxial compression tests at various deformation parameters. Then, an instantaneous friction factor equation was fitted by mathematic analysis. After verification by comparing single-pass flow stress correction with traditional average friction factor correction, the instantaneous friction factor equation was applied to correct multistage stress-strain curves. The corrected results were reasonable and validated by multistage relative softening calculations. This research provides a broad potential for implementing axisymmetric uniaxial compression in multistage physical simulations and friction optimization in finite element analysis.

  1. Long-distance continuous-variable quantum key distribution with a Gaussian modulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jouguet, Paul; SeQureNet, 23 avenue d'Italie, F-75013 Paris; Kunz-Jacques, Sebastien

    2011-12-15

    We designed high-efficiency error correcting codes allowing us to extract an errorless secret key in a continuous-variable quantum key distribution (CVQKD) protocol using a Gaussian modulation of coherent states and a homodyne detection. These codes are available for a wide range of signal-to-noise ratios on an additive white Gaussian noise channel with a binary modulation and can be combined with a multidimensional reconciliation method proven secure against arbitrary collective attacks. This improved reconciliation procedure considerably extends the secure range of a CVQKD with a Gaussian modulation, giving a secret key rate of about 10{sup -3} bit per pulse at amore » distance of 120 km for reasonable physical parameters.« less

  2. 7 CFR 15b.13 - Reasonable accommodation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) A recipient shall make reasonable accommodation to the known physical or mental limitations of an... accommodation would impose an undue hardship on the operation of its program or activity. (b) Reasonable... undue hardship on the operation of a recipient's programs or activities, factors to be considered...

  3. 24 CFR 8.11 - Reasonable accommodation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... make reasonable accommodation to the known physical or mental limitations of an otherwise qualified... accommodation would impose an undue hardship on the operation of its program. (b) Reasonable accommodation may... hardship on the operation of a recipient's program, factors to be considered include: (1) The overall size...

  4. 45 CFR 1232.10 - Reasonable accommodation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... shall make reasonable accommodation to the known physical or mental limitations of an otherwise... accommodation would impose an undue hardship on the operation of its program or activity. (b) Reasonable... would impose an undue hardship on the operation of a recipient's program or activity, factors to be...

  5. 10 CFR 4.123 - Reasonable accommodation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... shall make reasonable accommodation to the known physical or mental limitations of an otherwise... would impose an undue hardship on the operation of its program or activity. (b) Reasonable accommodation... on the operation of a recipient's program or activity, factors to be considered include: (1) The...

  6. University Programme Preferences of High School Science Students in Singapore and Reasons That Matter in Their Preferences: A Rasch Analysis

    ERIC Educational Resources Information Center

    Oon, Pey-Tee; Subramaniam, R.

    2015-01-01

    This study explored an under-researched area in science education--the university programmes preferred by high school students who take physical science subjects and the reasons that matter in their preferences. A total of 1,071 upper secondary and pre-university students in Singapore, who take physical science subjects among their range of…

  7. Lattice QCD inputs to the CKM unitarity triangle analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laiho, Jack; Department of Physics and Astronomy, University of Glasgow, Glasgow, G128 QQ; Lunghi, E.

    2010-02-01

    We perform a global fit to the Cabibbo-Kobayashi-Maskawa unitarity triangle using the latest experimental and theoretical constraints. Our emphasis is on the hadronic weak matrix elements that enter the analysis, which must be computed using lattice QCD or other nonperturbative methods. Realistic lattice QCD calculations which include the effects of the dynamical up, down, and strange quarks are now available for all of the standard inputs to the global fit. We therefore present lattice averages for all of the necessary hadronic weak matrix elements. We attempt to account for correlations between lattice QCD results in a reasonable but conservative manner:more » whenever there are reasons to believe that an error is correlated between two lattice calculations, we take the degree of correlation to be 100%. These averages are suitable for use as inputs both in the global Cabibbo-Kobayashi-Maskawa unitarity triangle fit and other phenomenological analyses. In order to illustrate the impact of the lattice averages, we make standard model predictions for the parameters B-circumflex{sub K}, |V{sub cb}|, and |V{sub ub}|/|V{sub cb}|. We find a (2-3){sigma} tension in the unitarity triangle, depending upon whether we use the inclusive or exclusive determination of |V{sub cb}|. If we interpret the tension as a sign of new physics in either neutral kaon or B mixing, we find that the scenario with new physics in kaon mixing is preferred by present data.« less

  8. Electrical conductivity modeling and experimental study of densely packed SWCNT networks.

    PubMed

    Jack, D A; Yeh, C-S; Liang, Z; Li, S; Park, J G; Fielding, J C

    2010-05-14

    Single-walled carbon nanotube (SWCNT) networks have become a subject of interest due to their ability to support structural, thermal and electrical loadings, but to date their application has been hindered due, in large part, to the inability to model macroscopic responses in an industrial product with any reasonable confidence. This paper seeks to address the relationship between macroscale electrical conductivity and the nanostructure of a dense network composed of SWCNTs and presents a uniquely formulated physics-based computational model for electrical conductivity predictions. The proposed model incorporates physics-based stochastic parameters for the individual nanotubes to construct the nanostructure such as: an experimentally obtained orientation distribution function, experimentally derived length and diameter distributions, and assumed distributions of chirality and registry of individual CNTs. Case studies are presented to investigate the relationship between macroscale conductivity and nanostructured variations in the bulk stochastic length, diameter and orientation distributions. Simulation results correspond nicely with those available in the literature for case studies of conductivity versus length and conductivity versus diameter. In addition, predictions for the increasing anisotropy of the bulk conductivity as a function of the tube orientation distribution are in reasonable agreement with our experimental results. Examples are presented to demonstrate the importance of incorporating various stochastic characteristics in bulk conductivity predictions. Finally, a design consideration for industrial applications is discussed based on localized network power emission considerations and may lend insight to the design engineer to better predict network failure under high current loading applications.

  9. Development and Assessment of CFD Models Including a Supplemental Program Code for Analyzing Buoyancy-Driven Flows Through BWR Fuel Assemblies in SFP Complete LOCA Scenarios

    NASA Astrophysics Data System (ADS)

    Artnak, Edward Joseph, III

    This work seeks to illustrate the potential benefits afforded by implementing aspects of fluid dynamics, especially the latest computational fluid dynamics (CFD) modeling approach, through numerical experimentation and the traditional discipline of physical experimentation to improve the calibration of the severe reactor accident analysis code, MELCOR, in one of several spent fuel pool (SFP) complete loss-ofcoolant accident (LOCA) scenarios. While the scope of experimental work performed by Sandia National Laboratories (SNL) extends well beyond that which is reasonably addressed by our allotted resources and computational time in accordance with initial project allocations to complete the report, these simulated case trials produced a significant array of supplementary high-fidelity solutions and hydraulic flow-field data in support of SNL research objectives. Results contained herein show FLUENT CFD model representations of a 9x9 BWR fuel assembly in conditions corresponding to a complete loss-of-coolant accident scenario. In addition to the CFD model developments, a MATLAB based controlvolume model was constructed to independently assess the 9x9 BWR fuel assembly under similar accident scenarios. The data produced from this work show that FLUENT CFD models are capable of resolving complex flow fields within a BWR fuel assembly in the realm of buoyancy-induced mass flow rates and that characteristic hydraulic parameters from such CFD simulations (or physical experiments) are reasonably employed in corresponding constitutive correlations for developing simplified numerical models of comparable solution accuracy.

  10. Lattice QCD Inputs to the CKM Unitarity Triangle Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van de Water, R.; Lunghi, E; Laiho, J

    2010-02-02

    We perform a global fit to the Cabibbo-Kobayashi-Maskawa unitarity triangle using the latest experimental and theoretical constraints. Our emphasis is on the hadronic weak matrix elements that enter the analysis, which must be computed using lattice QCD or other nonperturbative methods. Realistic lattice QCD calculations which include the effects of the dynamical up, down, and strange quarks are now available for all of the standard inputs to the global fit. We therefore present lattice averages for all of the necessary hadronic weak matrix elements. We attempt to account for correlations between lattice QCD results in a reasonable but conservative manner:more » whenever there are reasons to believe that an error is correlated between two lattice calculations, we take the degree of correlation to be 100%. These averages are suitable for use as inputs both in the global Cabibbo-Kobayashi-Maskawa unitarity triangle fit and other phenomenological analyses. In order to illustrate the impact of the lattice averages, we make standard model predictions for the parameters B{sub K}, |V{sub cb}|, and |V{sub ub}|/|Vcb|. We find a (2-3){sigma} tension in the unitarity triangle, depending upon whether we use the inclusive or exclusive determination of |V{sub cb}|. If we interpret the tension as a sign of new physics in either neutral kaon or B mixing, we find that the scenario with new physics in kaon mixing is preferred by present data.« less

  11. The Dripping Handrail Model: Transient Chaos in Accretion Systems

    NASA Technical Reports Server (NTRS)

    Young, Karl; Scargle, Jeffrey D.; Cuzzi, Jeffrey (Technical Monitor)

    1995-01-01

    We define and study a simple dynamical model for accretion systems, the "dripping handrail" (DHR). The time evolution of this spatially extended system is a mixture of periodic and apparently random (but actually deterministic) behavior. The nature of this mixture depends on the values of its physical parameters - the accretion rate, diffusion coefficient, and density threshold. The aperiodic component is a special kind of deterministic chaos called transient chaos. The model can simultaneously exhibit both the quasiperiodic oscillations (QPO) and very low frequency noise (VLFN) that characterize the power spectra of fluctuations of several classes of accretion systems in astronomy. For this reason, our model may be relevant to many such astrophysical systems, including binary stars with accretion onto a compact object - white dwarf, neutron star, or black hole - as well as active galactic nuclei. We describe the systematics of the DHR's temporal behavior, by exploring its physical parameter space using several diagnostics: power spectra, wavelet "scalegrams," and Lyapunov exponents. In addition, we note that for large accretion rates the DHR has periodic modes; the effective pulse shapes for these modes - evaluated by folding the time series at the known period - bear a resemblance to the similarly- determined shapes for some x-ray pulsars. The pulsing observed in some of these systems may be such periodic-mode accretion, and not due to pure rotation as in the standard pulsar model.

  12. Development of An Autonomous Underwater Glider for Observing Physical Ocean Parameters in Indonesian Seas

    NASA Astrophysics Data System (ADS)

    Ajie Linarka, Utoyo; Riyanto Trilaksono, Bambang; Sagala, M. Faisal; Hidayat, Egi; Sopaheluwakan, Ardhasena; Rizal, Jose; Heriyanto, Eko; Amsal Harapan, Ferdika; Eka Syahputra Makmur, Erwin

    2017-04-01

    Conducting a sustained monitoring and surveying of physical ocean parameters for research or operational purposes using moorings and ships would require high cost. Development of an inexpensive instrument capable to perform such tasks not only could reduce cost and risks but also increase cruising range and depth. For that reason, a prototype of underwater glider was developed, named "GaneshBlue". GaneshBlue works based on gliding principles which utilizes pitch angle and buoyancy control for moving. For one gliding movement, GaneshBlue passed through 5 phases of surface, descent, transition, ascent and back to surface. The glider is equipped with basic navigation system and remote control, programmable survey planning, temperature and salinity sampling instruments, lithium batteries for power supply, and information processing software. A field test at the shallow water showed that GaneshBule has successfully demonstrated gliding and surfacing movements with surge motion speed reaching 20 cm s-1and 20 m in depths. During the field test the glider was also equipped with three instruments, i.e. Inertial Measurement Unit (IMU) to estimate glider's speed and orientation; MiniCT to acquire temperature and conductivity data; and Altisounder to determine its distance to sea surface and to seabed. In general, all the instruments performed well but filter algorithm needs to be implemented on data collection procedure to remove data outliers.

  13. 43 CFR 17.211 - Reasonable accommodation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Reasonable accommodation. (a) A recipient shall make reasonable accommodation to the known physical or mental... that the accommodation would impose an undue hardship on the operation of its program or activity. (b... accommodation would impose an undue hardship on the operation of a recipient's program or activity, factors to...

  14. Reasoning with alternative explanations in physics: The cognitive accessibility rule

    NASA Astrophysics Data System (ADS)

    Heckler, Andrew F.; Bogdan, Abigail M.

    2018-06-01

    A critical component of scientific reasoning is the consideration of alternative explanations. Recognizing that decades of cognitive psychology research have demonstrated that relative cognitive accessibility, or "what comes to mind," strongly affects how people reason in a given context, we articulate a simple "cognitive accessibility rule", namely that alternative explanations are considered less frequently when an explanation with relatively high accessibility is offered first. In a series of four experiments, we test the cognitive accessibility rule in the context of consideration of alternative explanations for six physical scenarios commonly found in introductory physics curricula. First, we administer free recall and recognition tasks to operationally establish and distinguish between the relative accessibility and availability of common explanations for the physical scenarios. Then, we offer either high or low accessibility explanations for the physical scenarios and determine the extent to which students consider alternatives to the given explanations. We find two main results consistent across algebra- and calculus-based university level introductory physics students for multiple answer formats. First, we find evidence that, at least for some contexts, most explanatory factors are cognitively available to students but not cognitively accessible. Second, we empirically verify the cognitive accessibility rule and demonstrate that the rule is strongly predictive, accounting for up to 70% of the variance of the average student consideration of alternative explanations across scenarios. Overall, we find that cognitive accessibility can help to explain biases in the consideration of alternatives in reasoning about simple physical scenarios, and these findings lend support to the growing number of science education studies demonstrating that tasks relevant to science education curricula often involve rapid, automatic, and potentially predictable processes and outcomes.

  15. Integrating sequence stratigraphy and rock-physics to interpret seismic amplitudes and predict reservoir quality

    NASA Astrophysics Data System (ADS)

    Dutta, Tanima

    This dissertation focuses on the link between seismic amplitudes and reservoir properties. Prediction of reservoir properties, such as sorting, sand/shale ratio, and cement-volume from seismic amplitudes improves by integrating knowledge from multiple disciplines. The key contribution of this dissertation is to improve the prediction of reservoir properties by integrating sequence stratigraphy and rock physics. Sequence stratigraphy has been successfully used for qualitative interpretation of seismic amplitudes to predict reservoir properties. Rock physics modeling allows quantitative interpretation of seismic amplitudes. However, often there is uncertainty about selecting geologically appropriate rock physics model and its input parameters, away from the wells. In the present dissertation, we exploit the predictive power of sequence stratigraphy to extract the spatial trends of sedimentological parameters that control seismic amplitudes. These spatial trends of sedimentological parameters can serve as valuable constraints in rock physics modeling, especially away from the wells. Consequently, rock physics modeling, integrated with the trends from sequence stratigraphy, become useful for interpreting observed seismic amplitudes away from the wells in terms of underlying sedimentological parameters. We illustrate this methodology using a comprehensive dataset from channelized turbidite systems, deposited in minibasin settings in the offshore Equatorial Guinea, West Africa. First, we present a practical recipe for using closed-form expressions of effective medium models to predict seismic velocities in unconsolidated sandstones. We use an effective medium model that combines perfectly rough and smooth grains (the extended Walton model), and use that model to derive coordination number, porosity, and pressure relations for P and S wave velocities from experimental data. Our recipe provides reasonable fits to other experimental and borehole data, and specifically improves the predictions of shear wave velocities. In addition, we provide empirical relations on normal compaction depth trends of porosity, velocities, and VP/VS ratio for shale and clean sands in shallow, supra-salt sediments in the Gulf of Mexico. Next, we identify probable spatial trends of sand/shale ratio and sorting as predicted by the conventional sequence stratigraphic model in minibasin settings (spill-and-fill model). These spatial trends are evaluated using well data from offshore West Africa, and the same well data are used to calibrate rock physics models (modified soft-sand model) that provide links between P-impedance and quartz/clay ratio, and sorting. The spatial increase in sand/shale ratio and sorting corresponds to an overall increase in P-impedance, and AVO intercept and gradient. The results are used as a guide to interpret sedimentological parameters from seismic attributes, away from the well locations. We present a quantitative link between carbonate cement and seismic attributes by combining stratigraphie cycles and the rock physics model (modified differential effective medium model). The variation in carbonate cement volume in West Africa can be linked with two distinct stratigraphic cycles: the coarsening-upward cycles and the fining-upward cycles. Cemented sandstones associated with these cycles exhibit distinct signatures on P-impedance vs. porosity and AVO intercept vs. gradient crossplots. These observations are important for assessing reservoir properties in the West Africa as well as in other analogous depositional environments. Finally, we investigate the relationship between seismic velocities and time temperature index (TTI) using basin and petroleum system modeling at Rio Muni basin, West Africa. We find that both VP and VS increase exponentially with TTI. The results can be applied to predict TTI, and thereby thermal maturity, from observed velocities.

  16. 3D Reasoning from Blocks to Stability.

    PubMed

    Zhaoyin Jia; Gallagher, Andrew C; Saxena, Ashutosh; Chen, Tsuhan

    2015-05-01

    Objects occupy physical space and obey physical laws. To truly understand a scene, we must reason about the space that objects in it occupy, and how each objects is supported stably by each other. In other words, we seek to understand which objects would, if moved, cause other objects to fall. This 3D volumetric reasoning is important for many scene understanding tasks, ranging from segmentation of objects to perception of a rich 3D, physically well-founded, interpretations of the scene. In this paper, we propose a new algorithm to parse a single RGB-D image with 3D block units while jointly reasoning about the segments, volumes, supporting relationships, and object stability. Our algorithm is based on the intuition that a good 3D representation of the scene is one that fits the depth data well, and is a stable, self-supporting arrangement of objects (i.e., one that does not topple). We design an energy function for representing the quality of the block representation based on these properties. Our algorithm fits 3D blocks to the depth values corresponding to image segments, and iteratively optimizes the energy function. Our proposed algorithm is the first to consider stability of objects in complex arrangements for reasoning about the underlying structure of the scene. Experimental results show that our stability-reasoning framework improves RGB-D segmentation and scene volumetric representation.

  17. Physics Literacy for All Students

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2010-03-01

    Physics teachers must broaden their focus from physics for scientists to physics for all. The reason, as the American Association for the Advancement of Science puts it, is: ``Without a scientifically literate population, the outlook for a better world is not promising.'' Physics for all (including the first course for scientists) should be conceptual, not technical. It should describe the universe as we understand it today, including special and general relativity, quantum physics, modern cosmology, the standard model, and quantum fields. Many science writers have shown this is possible. It should include physics-related social topics such as global warming and nuclear weapons, because citizens need to vote on these issues. Above all, it should emphasize the scientific process and the difference between science and nonsense. Science is based not on beliefs but rather on evidence and reason. We should constantly ask ``How do we know?'' and ``What is the evidence?''

  18. A physically-based method for predicting peak discharge of floods caused by failure of natural and constructed earthen dams

    USGS Publications Warehouse

    Walder, J.S.; O'Connor, J. E.; Costa, J.E.; ,

    1997-01-01

    We analyse a simple, physically-based model of breach formation in natural and constructed earthen dams to elucidate the principal factors controlling the flood hydrograph at the breach. Formation of the breach, which is assumed trapezoidal in cross-section, is parameterized by the mean rate of downcutting, k, the value of which is constrained by observations. A dimensionless formulation of the model leads to the prediction that the breach hydrograph depends upon lake shape, the ratio r of breach width to depth, the side slope ?? of the breach, and the parameter ?? = (V.D3)(k/???gD), where V = lake volume, D = lake depth, and g is the acceleration due to gravity. Calculations show that peak discharge Qp depends weakly on lake shape r and ??, but strongly on ??, which is the product of a dimensionless lake volume and a dimensionless erosion rate. Qp(??) takes asymptotically distinct forms depending on whether < ??? 1 or < ??? 1. Theoretical predictions agree well with data from dam failures for which k could be reasonably estimated. The analysis provides a rapid and in many cases graphical way to estimate plausible values of Qp at the breach.We analyze a simple, physically-based model of breach formation in natural and constructed earthen dams to elucidate the principal factors controlling the flood hydrograph at the breach. Formation of the breach, which is assumed trapezoidal in cross-section, is parameterized by the mean rate of downcutting, k, the value of which is constrained by observations. A dimensionless formulation of the model leads to the prediction that the breach hydrograph depends upon lake shape, the ratio r of breach width to depth, the side slope ?? of the breach, and the parameter ?? = (V/D3)(k/???gD), where V = lake volume, D = lake depth, and g is the acceleration due to gravity. Calculations show that peak discharge Qp depends weakly on lake shape r and ??, but strongly on ??, which is the product of a dimensionless lake volume and a dimensionless erosion rate. Qp(??) takes asymptotically distinct forms depending on whether ?????1 or ?????1. Theoretical predictions agree well with data from dam failures for which k could be reasonably estimated. The analysis provides a rapid and in many cases graphical way to estimate plausible values of Qp at the breach.

  19. Basic physics of ultrasound imaging.

    PubMed

    Aldrich, John E

    2007-05-01

    The appearance of ultrasound images depends critically on the physical interactions of sound with the tissues in the body. The basic principles of ultrasound imaging and the physical reasons for many common artifacts are described.

  20. Academic Achievement in Physics-Chemistry: The Predictive Effect of Attitudes and Reasoning Abilities.

    PubMed

    Vilia, Paulo N; Candeias, Adelinda A; Neto, António S; Franco, Maria Da Glória S; Melo, Madalena

    2017-01-01

    Science education plays a critical role as political priority due to its fundamental importance in engaging students to pursue technological careers considered essential in modern societies, in order to face scientific development challenges. High-level achievement on science education and positive attitudes toward science constitutes a crucial challenge for formal education. Several studies indicate close relationships between students' attitudes, cognitive abilities, and academic achievement. The main purpose of this study is to analyze the impact of student's attitudes toward the school discipline of Physics and Chemistry and their reasoning abilities on academic achievement on that school subject, among Portuguese 9th grade students using the data collected during the Project Academic Performance and Development: a longitudinal study on the effects of school transitions in Portuguese students (PTDC/CPE-CED/104884/2008). The participants were 470 students (267 girls - 56.8% and 203 boys - 43.2%), aged 14-16 years old (μ = 14.3 ± 0.58). The attitude data were collected using the Attitude toward Physics-Chemistry Questionnaire (ATPCQ) and, the Reasoning Test Battery (RTB) was used to assess the students reasoning abilities. Achievement was measured using the students' quarterly (9-week) grades in the physics and chemistry subject. The relationships between the attitude dimensions toward Physics-chemistry and the reasoning dimensions and achievement in each of the three school terms were assessed by multiple regression stepwise analyses and standardized regression coefficients (β), calculated with IBM SPSS Statistics 21 software. Both variables studied proved to be significant predictor variables of school achievement. The models obtained from the use of both variables were always stronger accounting for higher proportions of student's grade variations. The results show that ATPCQ and RTB had a significantly positive relationship with student's achievement in Physics-chemistry, indicating that both attitudinal and cognitive variables should be taken into account on science education as well as in educative intervention.

  1. Academic Achievement in Physics-Chemistry: The Predictive Effect of Attitudes and Reasoning Abilities

    PubMed Central

    Vilia, Paulo N.; Candeias, Adelinda A.; Neto, António S.; Franco, Maria Da Glória S.; Melo, Madalena

    2017-01-01

    Science education plays a critical role as political priority due to its fundamental importance in engaging students to pursue technological careers considered essential in modern societies, in order to face scientific development challenges. High-level achievement on science education and positive attitudes toward science constitutes a crucial challenge for formal education. Several studies indicate close relationships between students’ attitudes, cognitive abilities, and academic achievement. The main purpose of this study is to analyze the impact of student’s attitudes toward the school discipline of Physics and Chemistry and their reasoning abilities on academic achievement on that school subject, among Portuguese 9th grade students using the data collected during the Project Academic Performance and Development: a longitudinal study on the effects of school transitions in Portuguese students (PTDC/CPE-CED/104884/2008). The participants were 470 students (267 girls – 56.8% and 203 boys – 43.2%), aged 14–16 years old (μ = 14.3 ± 0.58). The attitude data were collected using the Attitude toward Physics-Chemistry Questionnaire (ATPCQ) and, the Reasoning Test Battery (RTB) was used to assess the students reasoning abilities. Achievement was measured using the students’ quarterly (9-week) grades in the physics and chemistry subject. The relationships between the attitude dimensions toward Physics-chemistry and the reasoning dimensions and achievement in each of the three school terms were assessed by multiple regression stepwise analyses and standardized regression coefficients (β), calculated with IBM SPSS Statistics 21 software. Both variables studied proved to be significant predictor variables of school achievement. The models obtained from the use of both variables were always stronger accounting for higher proportions of student’s grade variations. The results show that ATPCQ and RTB had a significantly positive relationship with student’s achievement in Physics-chemistry, indicating that both attitudinal and cognitive variables should be taken into account on science education as well as in educative intervention. PMID:28701978

  2. Relationships among selected physical science misconceptions held by preservice elementary teachers and four variables: Formal reasoning ability, working memory capacity, verbal intelligence, and field dependence/independence

    NASA Astrophysics Data System (ADS)

    Griffin, Leslie Little

    The purpose of this study was to determine the relationship of selected cognitive abilities and physical science misconceptions held by preservice elementary teachers. The cognitive abilities under investigation were: formal reasoning ability as measured by the Lawson Classroom Test of Formal Reasoning (Lawson, 1978); working memory capacity as measured by the Figural Intersection Test (Burtis & Pascual-Leone, 1974); verbal intelligence as measured by the Acorn National Academic Aptitude Test: Verbal Intelligence (Kobal, Wrightstone, & Kunze, 1944); and field dependence/independence as measured by the Group Embedded Figures Test (Witkin, Oltman, & Raskin, 1971). The number of physical science misconceptions held by preservice elementary teachers was measured by the Misconceptions in Science Questionnaire (Franklin, 1992). The data utilized in this investigation were obtained from 36 preservice elementary teachers enrolled in two sections of a science methods course at a small regional university in the southeastern United States. Multiple regression techniques were used to analyze the collected data. The following conclusions were reached following an analysis of the data. The variables of formal reasoning ability and verbal intelligence were identified as having significant relationships, both individually and in combination, to the dependent variable of selected physical science misconceptions. Though the correlations were not high enough to yield strong predictors of physical science misconceptions or strong relationships, they were of sufficient magnitude to warrant further investigation. It is recommended that further investigation be conducted replicating this study with a larger sample size. In addition, experimental research should be implemented to explore the relationships suggested in this study between the cognitive variables of formal reasoning ability and verbal intelligence and the dependent variable of selected physical science misconceptions. Further research should also focus on the detection of a broad range of science misconceptions among preservice elementary teachers.

  3. The role of language in learning physics

    NASA Astrophysics Data System (ADS)

    Brookes, David T.

    Many studies in PER suggest that language poses a serious difficulty for students learning physics. These difficulties are mostly attributed to misunderstanding of specialized terminology. This terminology often assigns new meanings to everyday terms used to describe physical models and phenomena. In this dissertation I present a novel approach to analyzing of the role of language in learning physics. This approach is based on the analysis of the historical development of physics ideas, the language of modern physicists, and students' difficulties in the areas of quantum mechanics, classical mechanics, and thermodynamics. These data are analyzed using linguistic tools borrowed from cognitive linguistics and systemic functional grammar. Specifically, I combine the idea of conceptual metaphor and grammar to build a theoretical framework that accounts for: (1) the role and function that language serves for physicists when they speak and reason about physical ideas and phenomena, (2) specific features of students' reasoning and difficulties that may be related to or derived from language that students read or hear. The theoretical framework is developed using the methodology of a grounded theoretical approach. The theoretical framework allows us to make predictions about the relationship between student discourse and their conceptual and problem solving difficulties. Tests of the theoretical framework are presented in the context of "heat" in thermodynamics and "force" in dynamics. In each case the language that students use to reason about the concepts of "heat" and "force" is analyzed using the theoretical framework. The results of this analysis show that language is very important in students' learning. In particular, students are (1) using features of physicists' conceptual metaphors to reason about physical phenomena, often overextending and misapplying these features, (2) drawing cues from the grammar of physicists' speech and writing to categorize physics concepts; this categorization of physics concepts plays a key role in students' ability to solve physics problems. In summary, I present a theoretical framework that provides a possible explanation of the role that language plays in learning physics. The framework also attempts to account for how and why physicists' language influences students in the way that it does.

  4. Motives for and barriers to physical activity in twin pairs discordant for leisure time physical activity for 30 years.

    PubMed

    Aaltonen, S; Leskinen, T; Morris, T; Alen, M; Kaprio, J; Liukkonen, J; Kujala, U

    2012-02-01

    Long-term persistent physical activity is important in the prevention of chronic diseases, but a large number of people do not participate in physical activity to obtain health benefits. The purpose of this study was to examine the motives and perceived barriers to long-term engagement in leisure time physical activity. Same-sex twin pairs (N=16, mean age 60) discordant for physical activity over 30 years were identified from the Finnish Twin Cohort. We evaluated participants' physical activity motivation with the 73-item Recreational Exercise Motivation Measure and assessed barriers to physical activity with a 25-item questionnaire. The characteristics of physical activity motivation and perceived barriers between the active and inactive co-twins were analysed using paired tests. Motives related to the sub-dimensions of enjoyment and physical fitness and psychological state were the most important reasons for participation in physical activity among all the twin individuals analysed. The sub-dimensions mastery (p=0.018, Cohen's d=0.76), physical fitness (p=0.029, Cohen's d=0.69), and psychological state (p=0.039, Cohen's d=0.65) differed significantly between active and inactive co-twins. More than half of the participants reported no reasons for not being physically active. If reasons existed, participation in physical activity was deterred mostly by pain and various health problems. This study found no differences in perceived barriers between active and inactive co-twins. We conclude from our results that the main factors promoting persistent leisure time physical activity were participants' wish to improve or maintain their physical skills or techniques, a feeling that exercise would improve their mental and physical health and that they found the activity enjoyable. This study helps us understand the importance of the role of motives and the minor role of perceived barriers for engagement in persistent physical activity. © Georg Thieme Verlag KG Stuttgart · New York.

  5. A new approach to identify the sensitivity and importance of physical parameters combination within numerical models using the Lund-Potsdam-Jena (LPJ) model as an example

    NASA Astrophysics Data System (ADS)

    Sun, Guodong; Mu, Mu

    2017-05-01

    An important source of uncertainty, which causes further uncertainty in numerical simulations, is that residing in the parameters describing physical processes in numerical models. Therefore, finding a subset among numerous physical parameters in numerical models in the atmospheric and oceanic sciences, which are relatively more sensitive and important parameters, and reducing the errors in the physical parameters in this subset would be a far more efficient way to reduce the uncertainties involved in simulations. In this context, we present a new approach based on the conditional nonlinear optimal perturbation related to parameter (CNOP-P) method. The approach provides a framework to ascertain the subset of those relatively more sensitive and important parameters among the physical parameters. The Lund-Potsdam-Jena (LPJ) dynamical global vegetation model was utilized to test the validity of the new approach in China. The results imply that nonlinear interactions among parameters play a key role in the identification of sensitive parameters in arid and semi-arid regions of China compared to those in northern, northeastern, and southern China. The uncertainties in the numerical simulations were reduced considerably by reducing the errors of the subset of relatively more sensitive and important parameters. The results demonstrate that our approach not only offers a new route to identify relatively more sensitive and important physical parameters but also that it is viable to then apply "target observations" to reduce the uncertainties in model parameters.

  6. Do New Caledonian crows solve physical problems through causal reasoning?

    PubMed Central

    Taylor, A.H.; Hunt, G.R.; Medina, F.S.; Gray, R.D.

    2008-01-01

    The extent to which animals other than humans can reason about physical problems is contentious. The benchmark test for this ability has been the trap-tube task. We presented New Caledonian crows with a series of two-trap versions of this problem. Three out of six crows solved the initial trap-tube. These crows continued to avoid the trap when the arbitrary features that had previously been associated with successful performances were removed. However, they did not avoid the trap when a hole and a functional trap were in the tube. In contrast to a recent primate study, the three crows then solved a causally equivalent but visually distinct problem—the trap-table task. The performance of the three crows across the four transfers made explanations based on chance, associative learning, visual and tactile generalization, and previous dispositions unlikely. Our findings suggest that New Caledonian crows can solve complex physical problems by reasoning both causally and analogically about causal relations. Causal and analogical reasoning may form the basis of the New Caledonian crow's exceptional tool skills. PMID:18796393

  7. A parameter optimization tool for evaluating the physical consistency of the plot-scale water budget of the integrated eco-hydrological model GEOtop in complex terrain

    NASA Astrophysics Data System (ADS)

    Bertoldi, Giacomo; Cordano, Emanuele; Brenner, Johannes; Senoner, Samuel; Della Chiesa, Stefano; Niedrist, Georg

    2017-04-01

    In mountain regions, the plot- and catchment-scale water and energy budgets are controlled by a complex interplay of different abiotic (i.e. topography, geology, climate) and biotic (i.e. vegetation, land management) controlling factors. When integrated, physically-based eco-hydrological models are used in mountain areas, there are a large number of parameters, topographic and boundary conditions that need to be chosen. However, data on soil and land-cover properties are relatively scarce and do not reflect the strong variability at the local scale. For this reason, tools for uncertainty quantification and optimal parameters identification are essential not only to improve model performances, but also to identify most relevant parameters to be measured in the field and to evaluate the impact of different assumptions for topographic and boundary conditions (surface, lateral and subsurface water and energy fluxes), which are usually unknown. In this contribution, we present the results of a sensitivity analysis exercise for a set of 20 experimental stations located in the Italian Alps, representative of different conditions in terms of topography (elevation, slope, aspect), land use (pastures, meadows, and apple orchards), soil type and groundwater influence. Besides micrometeorological parameters, each station provides soil water content at different depths, and in three stations (one for each land cover) eddy covariance fluxes. The aims of this work are: (I) To present an approach for improving calibration of plot-scale soil moisture and evapotranspiration (ET). (II) To identify the most sensitive parameters and relevant factors controlling temporal and spatial differences among sites. (III) Identify possible model structural deficiencies or uncertainties in boundary conditions. Simulations have been performed with the GEOtop 2.0 model, which is a physically-based, fully distributed integrated eco-hydrological model that has been specifically designed for mountain regions, since it considers the effect of topography on radiation and water fluxes and integrates a snow module. A new automatic sensitivity and optimization tool based on the Particle Swarm Optimization theory has been developed, available as R package on https://github.com/EURAC-Ecohydro/geotopOptim2. The model, once calibrated for soil and vegetation parameters, predicts the plot-scale temporal SMC dynamics of SMC and ET with a RMSE of about 0.05 m3/m3 and 40 W/m2, respectively. However, the model tends to underestimate ET during summer months over apple orchards. Results show how most sensitive parameters are both soil and canopy structural properties. However, ranking is affected by the choice of the target function and local topographic conditions. In particular, local slope/aspect influences results in stations located over hillslopes, but with marked seasonal differences. Results for locations in the valley floor are strongly controlled by the choice of the bottom water flux boundary condition. The poorer model performances in simulating ET over apple orchards could be explained by a model structural deficiency in representing the stomatal control on vapor pressure deficit for this particular type of vegetation. The results of this sensitivity could be extended to other physically distributed models, and also provide valuable insights for optimizing new experimental designs.

  8. Advice as a smoking cessation strategy: a systematic review and implications for physical therapists.

    PubMed

    Bodner, Michael E; Dean, Elizabeth

    2009-07-01

    Although identified as a clinical priority, smoking cessation has been addressed minimally in the literature in the context of physical therapy practice. Smoking cessation advice delivered by a health professional can help smokers quit. The salient components of such advice however warranted elucidation to enable physical therapists to integrate this clinical competence into their practices. Therefore, we conducted a systematic review to elucidate the effectiveness of advice by a health professional and its components to optimize smoking cessation instituted in the context of physical therapy practice. Thirty source articles were identified. A random-effects model meta-analysis was used to assess the effectiveness of the advice parameters. Risk ratios (RRs) were used to estimate pooled treatment effects. RRs for brief, intermediate, and intensive advice were 1.74 (95% CI=1.37, 2.22), 1.71 (95% CI=1.39, 2.09), and 1.60 (95% CI=1.13, 2.27), respectively. Self-help materials, follow-up, and interventions based on psychological or motivational frameworks were particularly effective components of intermediate and intensive advice interventions. Advice can be readily integrated into physical therapy practice and used to initiate or support ongoing smoking cessation in clients irrespective of reason for referral. Incorporating smoking cessation as a physical therapy goal is consistent with the contemporary definition of the profession and the mandates of physical therapy professional associations to promote health and wellness, including smoking cessation for both primary health benefit and to minimize secondary effects (e.g., delayed healing and recovery, and medical and surgical complications). Thus, advice is an evidence-based strategy to effect smoking cessation that can be exploited in physical therapy practice. Further research to refine how best to assess smokers and, in turn, individualize brief smoking cessation advice could augment positive smoking cessation outcomes.

  9. Cognition of an expert tackling an unfamiliar conceptual physics problem

    NASA Astrophysics Data System (ADS)

    Schuster, David; Undreiu, Adriana

    2009-11-01

    We have investigated and analyzed the cognition of an expert tackling a qualitative conceptual physics problem of an unfamiliar type. Our goal was to elucidate the detailed cognitive processes and knowledge elements involved, irrespective of final solution form, and consider implications for instruction. The basic but non-trivial problem was to find qualitatively the direction of acceleration of a pendulum bob at various stages of its motion, a problem originally studied by Reif and Allen. Methodology included interviews, introspection, retrospection and self-reported metacognition. Multiple facets of cognition were revealed, with different reasoning strategies used at different stages and for different points on the path. An account is given of the zigzag thinking paths and interplay of reasoning modes and schema elements involved. We interpret the cognitive processes in terms of theoretical concepts that emerged, namely: case-based, principle-based, experiential-intuitive and practical-heuristic reasoning; knowledge elements and schemata; activation; metacognition and epistemic framing. The complexity of cognition revealed in this case study contrasts with the tidy principle-based solutions we present to students. The pervasive role of schemata, case-based reasoning, practical heuristic strategies, and their interplay with physics principles is noteworthy, since these aspects of cognition are generally neither recognized nor taught. The schema/reasoning-mode perspective has direct application in science teaching, learning and problem-solving.

  10. Content of Curriculum in Physical Education Teacher Education: Expectations of Undergraduate Physical Education Students

    ERIC Educational Resources Information Center

    Spittle, Michael; Spittle, Sharna

    2016-01-01

    This study explored the perceptions of university physical education students of the importance of physical education curriculum content areas and how those perceptions related to the reasons for course choice and motivation. Physical education degree students (n = 188) completed measures of their perceptions of physical education content areas,…

  11. Mapping ground water vulnerability to pesticide leaching with a process-based metamodel of EuroPEARL.

    PubMed

    Tiktak, A; Boesten, J J T I; van der Linden, A M A; Vanclooster, M

    2006-01-01

    To support EU policy, indicators of pesticide leaching at the European level are required. For this reason, a metamodel of the spatially distributed European pesticide leaching model EuroPEARL was developed. EuroPEARL considers transient flow and solute transport and assumes Freundlich adsorption, first-order degradation and passive plant uptake of pesticides. Physical parameters are depth dependent while (bio)-chemical parameters are depth, temperature, and moisture dependent. The metamodel is based on an analytical expression that describes the mass fraction of pesticide leached. The metamodel ignores vertical parameter variations and assumes steady flow. The calibration dataset was generated with EuroPEARL and consisted of approximately 60,000 simulations done for 56 pesticides with different half-lives and partitioning coefficients. The target variable was the 80th percentile of the annual average leaching concentration at 1-m depth from a time series of 20 yr. The metamodel explains over 90% of the variation of the original model with only four independent spatial attributes. These parameters are available in European soil and climate databases, so that the calibrated metamodel could be applied to generate maps of the predicted leaching concentration in the European Union. Maps generated with the metamodel showed a good similarity with the maps obtained with EuroPEARL, which was confirmed by means of quantitative performance indicators.

  12. A conceptual physics class where students found meaning in calculations

    NASA Astrophysics Data System (ADS)

    Hull, Michael M.; Elby, Andrew

    2013-01-01

    Prior to taking a translated version of the Maryland Open Source Tutorials (OSTs) as a stand-alone course, most students at Tokyo Gakugei University in Japan had experienced physics as memorizing laws and equations to use as computational tools. We might expect this reformed physics class, which emphasizes common sense and conceptual reasoning and rarely invokes equations, to produce students who see a disconnect between equation use and intuitive/conceptual reasoning. Many students at Gakugei, however, somehow learned to integrate mathematics into their "constructivist" epistemologies of physics, even though OSTs do not emphasize this integration. Tadao, for example, came to see that although a common-sense solution to a problem is preferable for explaining to someone who doesn't know physics, solving the problem with a quantitative calculation (that connects to physical meaning) can bring clarity and concreteness to communication between experts. How this integration occurred remains an open question for future research.

  13. Geometric Reasoning in an Active-Engagement Upper-Division E&M Classroom

    ERIC Educational Resources Information Center

    Cerny, Leonard Thomas

    2012-01-01

    A combination of theoretical perspectives is used to create a rich description of student reasoning when facing a highly-geometric electricity and magnetism problem in an upper-division active-engagement physics classroom at Oregon State University. Geometric reasoning as students encounter problem situations ranging from familiar to novel is…

  14. Caregivers' Reasons for Nursing Home Placement: Clues for Improving Discussions with Families Prior to the Transition

    ERIC Educational Resources Information Center

    Buhr, Gwendolen T.; Kuchibhatla, Maragatha; Clipp, Elizabeth C.

    2006-01-01

    Purpose: This study identifies the relative importance of reasons for institutionalization endorsed by caregivers of patients with dementia; examines the relationship between caregivers' reasons for institutionalization and indicators of caregiver and patient physical and emotional functioning measured in the prior year; and compares, on these…

  15. Reasoning about Magnetism at the Microscopic Level

    ERIC Educational Resources Information Center

    Cheng, Meng-Fei; Cheng, Yufang; Hung, Shuo-Hsien

    2014-01-01

    Based on our experience of teaching physics in middle and senior secondary school, we have found that students have difficulty in reasoning at the microscopic level. Their reasoning is limited to the observational level so they have problems in developing scientific models of magnetism. Here, we suggest several practical activities and the use of…

  16. Student understanding of control of variables: Deciding whether or not a variable influences the behavior of a system

    NASA Astrophysics Data System (ADS)

    Boudreaux, Andrew; Shaffer, Peter S.; Heron, Paula R. L.; McDermott, Lillian C.

    2008-02-01

    The ability of adult students to reason on the basis of the control of variables was the subject of an extended investigation. This paper describes the part of the study that focused on the reasoning required to decide whether or not a given variable influences the behavior of a system. The participants were undergraduates taking introductory Physics and K-8 teachers studying physics and physical science in inservice institutes and workshops. Although most of the students recognized the need to control variables, many had significant difficulty with the underlying reasoning. The results indicate serious shortcomings in the preparation of future scientists and in the education of a scientifically literate citizenry. There are also strong implications for the professional development of teachers, many of whom are expected to teach control of variables to young students.

  17. CONVECTION THEORY AND SUB-PHOTOSPHERIC STRATIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnett, David; Meakin, Casey; Young, Patrick A., E-mail: darnett@as.arizona.ed, E-mail: casey.meakin@gmail.co, E-mail: patrick.young.1@asu.ed

    2010-02-20

    As a preliminary step toward a complete theoretical integration of three-dimensional compressible hydrodynamic simulations into stellar evolution, convection at the surface and sub-surface layers of the Sun is re-examined, from a restricted point of view, in the language of mixing-length theory (MLT). Requiring that MLT use a hydrodynamically realistic dissipation length gives a new constraint on solar models. While the stellar structure which results is similar to that obtained by Yale Rotational Evolution Code (Guenther et al.; Bahcall and Pinsonneault) and Garching models (Schlattl et al.), the theoretical picture differs. A new quantitative connection is made between macro-turbulence, micro-turbulence, andmore » the convective velocity scale at the photosphere, which has finite values. The 'geometric parameter' in MLT is found to correspond more reasonably with the thickness of the superadiabatic region (SAR), as it must for consistency in MLT, and its integrated effect may correspond to that of the strong downward plumes which drive convection (Stein and Nordlund), and thus has a physical interpretation even in MLT. If we crudely require the thickness of the SAR to be consistent with the 'geometric factor' used in MLT, there is no longer a free parameter, at least in principle. Use of three-dimensional simulations of both adiabatic convection and stellar atmospheres will allow the determination of the dissipation length and the geometric parameter (i.e., the entropy jump) more realistically, and with no astronomical calibration. A physically realistic treatment of convection in stellar evolution will require substantial additional modifications beyond MLT, including nonlocal effects of kinetic energy flux, entrainment (the most dramatic difference from MLT found by Meakin and Arnett), rotation, and magnetic fields.« less

  18. Relationship between pore geometric characteristics and SIP/NMR parameters observed for mudstones

    NASA Astrophysics Data System (ADS)

    Robinson, J.; Slater, L. D.; Keating, K.; Parker, B. L.; Robinson, T.

    2017-12-01

    The reliable estimation of permeability remains one of the most challenging problems in hydrogeological characterization. Cost effective, non-invasive geophysical methods such as spectral induced polarization (SIP) and nuclear magnetic resonance (NMR) offer an alternative to traditional sampling methods as they are sensitive to the mineral surfaces and pore spaces that control permeability. We performed extensive physical characterization, SIP and NMR geophysical measurements on fractured rock cores extracted from a mudstone site in an effort to compare 1) the pore size characterization determined from traditional and geophysical methods and 2) the performance of permeability models based on these methods. We focus on two physical characterizations that are well-correlated with hydraulic properties: the pore volume normalized surface area (Spor) and an interconnected pore diameter (Λ). We find the SIP polarization magnitude and relaxation time are better correlated with Spor than Λ, the best correlation of these SIP measures for our sample dataset was found with Spor divided by the electrical formation factor (F). NMR parameters are, similarly, better correlated with Spor than Λ. We implement previously proposed mechanistic and empirical permeability models using SIP and NMR parameters. A sandstone-calibrated SIP model using a polarization magnitude does not perform well while a SIP model using a mean relaxation time performs better in part by more sufficiently accounting for the effects of fluid chemistry. A sandstone-calibrated NMR permeability model using an average measure of the relaxation time does not perform well, presumably due to small pore sizes which are either not connected or contain water of limited mobility. An NMR model based on the laboratory determined portions of the bound versus mobile portions of the relaxation distribution performed reasonably well. While limitations exist, there are many opportunities to use geophysical data to predict permeability in mudstone formations.

  19. Data-Aware Retrodiction for Asynchronous Harmonic Measurement in a Cyber-Physical Energy System

    PubMed Central

    Liu, Youda; Wang, Xue; Liu, Yanchi; Cui, Sujin

    2016-01-01

    Cyber-physical energy systems provide a networked solution for safety, reliability and efficiency problems in smart grids. On the demand side, the secure and trustworthy energy supply requires real-time supervising and online power quality assessing. Harmonics measurement is necessary in power quality evaluation. However, under the large-scale distributed metering architecture, harmonic measurement faces the out-of-sequence measurement (OOSM) problem, which is the result of latencies in sensing or the communication process and brings deviations in data fusion. This paper depicts a distributed measurement network for large-scale asynchronous harmonic analysis and exploits a nonlinear autoregressive model with exogenous inputs (NARX) network to reorder the out-of-sequence measuring data. The NARX network gets the characteristics of the electrical harmonics from practical data rather than the kinematic equations. Thus, the data-aware network approximates the behavior of the practical electrical parameter with real-time data and improves the retrodiction accuracy. Theoretical analysis demonstrates that the data-aware method maintains a reasonable consumption of computing resources. Experiments on a practical testbed of a cyber-physical system are implemented, and harmonic measurement and analysis accuracy are adopted to evaluate the measuring mechanism under a distributed metering network. Results demonstrate an improvement of the harmonics analysis precision and validate the asynchronous measuring method in cyber-physical energy systems. PMID:27548171

  20. Determinants of Teachers' Intentions To Teach Physically Active Physical Education Classes.

    ERIC Educational Resources Information Center

    Martin, Jeffrey J.; Kulinna, Pamela Hodges; Eklund, Robert C.; Reed, Brett

    2001-01-01

    Investigated elementary and secondary teachers' intentions to teach physically active physical education classes, examining a model hypothesizing that teachers' intentions were determined by subjective norm, attitude, perceived behavioral control, and self-efficacy. Teacher surveys supported the theories of reasoned action and planned behavior.…

  1. FACILITIES FOR PHYSICAL FITNESS.

    ERIC Educational Resources Information Center

    MUSIAL, STAN

    THIS ARTICLE CITES THE LOW PRIORITY THAT PHYSICAL EDUCATION GENERALLY HAS IN CURRICULUM AND SCHOOL FACILITY PLANNING. IT ALSO CITES THE REASONS FOR DEVELOPING MORE ADEQUATE PHYSICAL EDUCATION FACILITIES--(1) OUR WAY OF LIFE NO LONGER PROVIDES VIGOROUS PHYSICAL ACTIVITY NECESSARY FOR HEALTHY DEVELOPMENT, (2) A DIRECT RELATIONSHIP EXISTS BETWEEN…

  2. Effects of Physical Exercise Combined with Nutritional Supplements on Aging Brain Related Structures and Functions: A Systematic Review

    PubMed Central

    Schättin, Alexandra; Baur, Kilian; Stutz, Jan; Wolf, Peter; de Bruin, Eling D.

    2016-01-01

    Age-related decline in gray and white brain matter goes together with cognitive depletion. To influence cognitive functioning in elderly, several types of physical exercise and nutritional intervention have been performed. This paper systematically reviews the potential additive and complementary effects of nutrition/nutritional supplements and physical exercise on cognition. The search strategy was developed for EMBASE, Medline, PubMed, Cochrane, CINAHL, and PsycInfo databases and focused on the research question: “Is the combination of physical exercise with nutrition/nutritional supplementation more effective than nutrition/nutritional supplementation or physical exercise alone in effecting on brain structure, metabolism, and/or function?” Both mammalian and human studies were included. In humans, randomized controlled trials that evaluated the effects of nutrition/nutritional supplements and physical exercise on cognitive functioning and associated parameters in healthy elderly (>65 years) were included. The systematic search included English and German language literature without any limitation of publication date. The search strategy yielded a total of 3129 references of which 67 studies met the inclusion criteria; 43 human and 24 mammalian, mainly rodent, studies. Three out of 43 human studies investigated a nutrition/physical exercise combination and reported no additive effects. In rodent studies, additive effects were found for docosahexaenoic acid supplementation when combined with physical exercise. Although feasible combinations of physical exercise/nutritional supplements are available for influencing the brain, only a few studies evaluated which possible combinations of nutrition/nutritional supplementation and physical exercise might have an effect on brain structure, metabolism and/or function. The reason for no clear effects of combinatory approaches in humans might be explained by the misfit between the combinations of nutritional methods with the physical interventions in the sense that they were not selected on sharing of similar neuronal mechanisms. Based on the results from this systematic review, future human studies should focus on the combined effect of docosahexaenoic acid supplementation and physical exercise that contains elements of (motor) learning. PMID:27458371

  3. Artificial intelligence: Deep neural reasoning

    NASA Astrophysics Data System (ADS)

    Jaeger, Herbert

    2016-10-01

    The human brain can solve highly abstract reasoning problems using a neural network that is entirely physical. The underlying mechanisms are only partially understood, but an artificial network provides valuable insight. See Article p.471

  4. Problems in radiation transfer in astrophysics: An escape probability treatment of line overlap and a model of masers around VX Sgr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockett, P.B.

    1989-01-01

    The escape probability formalism is used in this dissertation to treat two problems in astrophysical radiative transfer. The first problem concerns line overlap, which occurs when two or more spectral lines lie close enough together that there is a significant probability that a photon emitted in one of the lines can be absorbed in another. The second problem involves creating a detailed model of the masers around the supergiant star, VX Sgr. The author has developed an escape probability procedure that accounts for the effects of line overlap by integrating the amount of absorption in each of the overlapping lines.more » This method was used to test the accuracy of a simpler escape probability formalism developed by Elitzur and Netzer that utilized rectangular line profiles. Good agreement between the two methods was found for a wide range of physical conditions. The more accurate method was also used to examine the effects of line overlap of the far infrared lines of the OH molecule. This overlap did have important effects on the level populations and could cause maser emission. He has also developed a detailed model of the OH 1612 and water masers around VX Sgr. He found that the masers can be adequately explained using reasonable estimates for the physical parameters. He also was able to provide a tighter constraint on the highly uncertain mass loss rate from the star. He had less success modeling the SiO masers. His explanation will require a more exact method of treating the many levels involved and also a more accurate knowledge of the relevant physical input parameters.« less

  5. Problems in radiative transfer in astrophysics: An escape probability treatment of line overlap and a model of the masers around VX Sgr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lockett, P.B.

    1989-01-01

    The escape probability formalism is used to treat two problems in astrophysical radiative transfer. The first problem concerns line overlap, which occurs when two or more spectral lines lie close enough together that there is a significant probability that a photon emitted in one of the lines can be absorbed in another. The second problem involved creating a detailed model of the masers around the supergiant star, VX Sgr. An escape probability procedure was developed that accounts for the effects of line overlap by integrating the amount of absorption in each of the overlapping lines. This method was used tomore » test the accuracy of a simpler escape probability formalism developed by Elitzur and Netzer that utilized rectangular line profiles. Good agreement between the two methods was found for a wide range of physical conditions. The more accurate method was also used to examine the effects of line overlap of the far infrared lines of the OH molecule. This overlap did have important effects on the level populations and could cause maser emission. A detailed model of the OH 1612 and water masers around VX Sgr were also developed. The masers can be adequately explained using reasonable estimates for the physical parameters. It is possible to provide a tighter constraint on the highly uncertain mass loss rate from the star. Modeling the SiO masers was less successful. Their explanation will require a more exact method of treating the many levels involved and also a more accurate knowledge of the relevant physical input parameters.« less

  6. Neutrino mass hierarchy and precision physics with medium-baseline reactors: Impact of energy-scale and flux-shape uncertainties

    NASA Astrophysics Data System (ADS)

    Capozzi, F.; Lisi, E.; Marrone, A.

    2015-11-01

    Nuclear reactors provide intense sources of electron antineutrinos, characterized by few-MeV energy E and unoscillated spectral shape Φ (E ). High-statistics observations of reactor neutrino oscillations over medium-baseline distances L ˜O (50 ) km would provide unprecedented opportunities to probe both the long-wavelength mass-mixing parameters (δ m2 and θ12) and the short-wavelength ones (Δ mee 2 and θ13), together with the subtle interference effects associated with the neutrino mass hierarchy (either normal or inverted). In a given experimental setting—here taken as in the JUNO project for definiteness—the achievable hierarchy sensitivity and parameter accuracy depend not only on the accumulated statistics but also on systematic uncertainties, which include (but are not limited to) the mass-mixing priors and the normalizations of signals and backgrounds. We examine, in addition, the effect of introducing smooth deformations of the detector energy scale, E →E'(E ), and of the reactor flux shape, Φ (E )→Φ'(E ), within reasonable error bands inspired by state-of-the-art estimates. It turns out that energy-scale and flux-shape systematics can noticeably affect the performance of a JUNO-like experiment, both on the hierarchy discrimination and on precision oscillation physics. It is shown that a significant reduction of the assumed energy-scale and flux-shape uncertainties (by, say, a factor of 2) would be highly beneficial to the physics program of medium-baseline reactor projects. Our results also shed some light on the role of the inverse-beta decay threshold, of geoneutrino backgrounds, and of matter effects in the analysis of future reactor oscillation data.

  7. Multiscale modeling of shock wave localization in porous energetic material

    NASA Astrophysics Data System (ADS)

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; Thompson, A. P.

    2018-01-01

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (<6 GPa), atomistic simulations of pore collapse are used to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock waves interacting with pores as a function of this viscoplastic material response. We find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.

  8. The meaning of "design".

    PubMed

    Leslie, J

    2001-12-01

    Our universe obeys elegant laws that permit living beings to evolve. This can suggest divine design. So can fine tuning of physical and cosmological parameters in ways that seem essential to life. Understanding the idea of design is, however, difficult for many reasons. For instance, could a designer be said to "fine tune" through choosing all-dictating laws very carefully? Again, would taking advantage of early quantum indeterminacies be a case of design, or would it be design-destroying interference? Can we speak of "design" if God is not a mind but an abstract Platonic principle? And what if, as Spinoza believed, the structure of our universe is just the structure of divine thinking? If such thinking extended to other universes which were lifeless, could those "exhibit design" simply through being orderly?

  9. ipole: Semianalytic scheme for relativistic polarized radiative transport

    NASA Astrophysics Data System (ADS)

    Moscibrodzka, Monika; Gammie, Charles F.

    2018-04-01

    ipole is a ray-tracing code for covariant, polarized radiative transport particularly useful for modeling Event Horizon Telescope sources, though may also be used for other relativistic transport problems. The code extends the ibothros scheme for covariant, unpolarized transport using two representations of the polarized radiation field: in the coordinate frame, it parallel transports the coherency tensor, and in the frame of the plasma, it evolves the Stokes parameters under emission, absorption, and Faraday conversion. The transport step is as spacetime- and coordinate- independent as possible; the emission, absorption, and Faraday conversion step is implemented using an analytic solution to the polarized transport equation with constant coefficients. As a result, ipole is stable, efficient, and produces a physically reasonable solution even for a step with high optical depth and Faraday depth.

  10. Use of Oral Contraceptives to Manipulate Menstruation in Young, Physically Active Women.

    PubMed

    Schaumberg, Mia A; Emmerton, Lynne M; Jenkins, David G; Burton, Nicola W; Janse de Jonge, Xanne A K; Skinner, Tina L

    2018-01-01

    Menstruation and menstrual symptoms are commonly cited barriers to physical activity in women. The delay or avoidance of menstruation through extended oral-contraceptive (OC) regimens may mitigate these barriers, yet information on menstrual-manipulation practices in young physically active women is sparse. The objective of this study was to investigate prevalence of, and reasons for, menstrual manipulation with OCs in recreationally and competitively active women. One hundred ninety-one recreationally active (self-reported moderate to vigorous physical activity 150-300 min/wk) women (age 23 ± 5 y), 160 subelite recreationally active (self-reported moderate to vigorous physical activity >300 min/wk) women (age 23 ± 5 y), and 108 competitive (state-, national- or international-level) female athletes (age 23 ± 4 y) completed a self-administered questionnaire assessing OC-regimen habits and reasons for manipulation of menstruation. The majority (74%) of OC users reported having deliberately manipulated menstruation at least once during the previous year, with 29% reporting having done so at least 4 times. Prevalence of menstrual manipulation (at least once in the previous year) was not different between competitive athletes, subelite recreationally active women, and recreationally active women (77% vs 74% vs 72%; P > .05). The most cited reasons for manipulating menstruation were special events or holidays (rated by 75% as important/very important), convenience (54%), and sport competition (54%). Menstrual manipulation through extended OC regimens is common practice in recreationally and competitively active young women, for a range of reasons relating to convenience that are not limited to physical activity. This strategy may help reduce hormone-related barriers to exercise participation, thereby positively affecting participation and performance.

  11. Reliability of objects in aerospace technologies and beyond: Holistic risk management approach

    NASA Astrophysics Data System (ADS)

    Shai, Yair; Ingman, D.; Suhir, E.

    A “ high level” , deductive-reasoning-based (“ holistic” ), approach is aimed at the direct analysis of the behavior of a system as a whole, rather than with an attempt to understand the system's behavior by conducting first a “ low level” , inductive-reasoning-based, analysis of the behavior and the contributions of the system's elements. The holistic view on treatment is widely accepted in medical practice, and “ holistic health” concept upholds that all the aspects of people's needs (psychological, physical or social), should be seen as a whole, and that a disease is caused by the combined effect of physical, emotional, spiritual, social and environmental imbalances. Holistic reasoning is applied in our analysis to model the behavior of engineering products (“ species” ) subjected to various economic, marketing, and reliability “ health” factors. Vehicular products (cars, aircraft, boats, etc.), e.g., might be still robust enough, but could be out-of-date, or functionally obsolete, or their further use might be viewed as unjustifiably expensive. High-level-performance functions (HLPF) are the essential feature of the approach. HLPFs are, in effect, “ signatures” of the “ species” of interest. The HLPFs describe, in a “ holistic” , and certainly in a probabilistic, way, numerous complex multi-dependable relations among the representatives of the “ species” under consideration. ; umerous inter-related “ stresses” , both actual (“ physical” ) and nonphysical, which affect the probabilistic predictions are inherently being taken into account by the HLPFs. There is no need, and might even be counter-productive, to conduct tedious, time- and labor-consuming experimentations and to invest significant amount of time and resources to accumulate “ representative statistics” to predict - he governing probabilistic characteristics of the system behavior, such as, e.g., life expectancy of a particular type of products. “ Species” of military aircraft, commercial aircraft and private cars have been chosen in our analysis as illustrations of the fruitfulness of the “ holistic” approach. The obtained data show that both commercial “ species” exhibit similar “ survival dynamics” in compare with those of the military species of aircraft: lifetime distributions were found to be Weibull distributions for all “ species” however for commercial vehicles, the shape parameters were a little higher than 2, and scale parameters were 19.8 years (aircraft) and 21.7 (cars) whereas for military aircraft, the shape parameters were much higher and the mean time to failure much longer. The difference between the lifetime characteristics of the “ species” can be attributed to the differences in the social, operational, economic and safety-and-reliability requirements and constraints. The obtained information can be used to make tentative predictions for the most likely trends in the given field of vehicular technology. The following major conclusions can be drawn from our analysis: 1) The suggested concept based on the use of HLPFs reflects the current state and the general perceptions in the given field of engineering, including aerospace technologies, and allows for all the inherent and induced factors to be taken into account: any type of failures, usage profiles, economic factors, environmental conditions, etc. The concept requires only very general input data for the entire population. There is no need for the less available information about individual articles. 2) Failure modes are not restricted to the physical type of failures and include economic, cultural or social effects. All possible causes, which might lead to making a decision to terminate the use of a particular type

  12. Verification of causal influences of reasoning skills and epistemology on physics conceptual learning

    NASA Astrophysics Data System (ADS)

    Ding, Lin

    2014-12-01

    This study seeks to test the causal influences of reasoning skills and epistemologies on student conceptual learning in physics. A causal model, integrating multiple variables that were investigated separately in the prior literature, is proposed and tested through path analysis. These variables include student preinstructional reasoning skills measured by the Classroom Test of Scientific Reasoning, pre- and postepistemological views measured by the Colorado Learning Attitudes about Science Survey, and pre- and postperformance on Newtonian concepts measured by the Force Concept Inventory. Students from a traditionally taught calculus-based introductory mechanics course at a research university participated in the study. Results largely support the postulated causal model and reveal strong influences of reasoning skills and preinstructional epistemology on student conceptual learning gains. Interestingly enough, postinstructional epistemology does not appear to have a significant influence on student learning gains. Moreover, pre- and postinstructional epistemology, although barely different from each other on average, have little causal connection between them.

  13. Bridging the Gulf between Formal Calculus and Physical Reasoning.

    ERIC Educational Resources Information Center

    Van Der Meer, A.

    1980-01-01

    Some ways to link calculus instruction with the mathematical models used in physics courses are presented. The activity of modelling is presented as a major tool in synchronizing physics and mathematics instruction in undergraduate engineering programs. (MP)

  14. Differences in the Processes of Solving Physics Problems between Good Physics Problem Solvers and Poor Physics Problem Solvers.

    ERIC Educational Resources Information Center

    Finegold, M.; Mass, R.

    1985-01-01

    Good problem solvers and poor problem solvers in advanced physics (N=8) were significantly different in their ability in translating, planning, and physical reasoning, as well as in problem solving time; no differences in reliance on algebraic solutions and checking problems were noted. Implications for physics teaching are discussed. (DH)

  15. Stromgren photometry of A-stars - A test of physical parameter determination

    NASA Astrophysics Data System (ADS)

    Torra, J.; Figueras, F.; Jordi, C.; Rossello, G.

    1990-08-01

    By use of known published values for Teff, log g, and Mv, a check on a procedure (Figueras et al, 1990) for determining the physical parameters of A v-type stars from Stromgren photometry has been performed. External errors for the calculated physical parameters have been obtained.

  16. Activity Specificity, Physical and Psychosocial Dimensions.

    ERIC Educational Resources Information Center

    Hatfield, Frederick C.

    The position is taken that the physical parameters of one's involvement in activity learning depend in large measure upon the objectives of the participant. General comments regarding the physical parameters of most activity classes are made. Underlying commonalities existing among these parameters are identified as: (1) freedom from disease; (2)…

  17. Stochastic analysis of experimentally determined physical parameters of HPMC:NiCl{sub 2} polymer composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thejas, Urs G.; Somashekar, R., E-mail: rs@physics.uni-mysore.ac.in; Sangappa, Y.

    A stochastic approach to explain the variation of physical parameters in polymer composites is discussed in this study. We have given a statistical model to derive the characteristic variation of physical parameters as a function of dopant concentration. Results of X-ray diffraction study and conductivity have been taken to validate this function, which can be extended to any of the physical parameters and polymer composites. For this study we have considered a polymer composites of HPMC doped with various concentrations of Nickel Chloride.

  18. Predicting final product properties of melt extruded solid dispersions from process parameters using Raman spectrometry.

    PubMed

    Vigh, Tamás; Drávavölgyi, Gábor; Sóti, Péter L; Pataki, Hajnalka; Igricz, Tamás; Wagner, István; Vajna, Balázs; Madarász, János; Marosi, György; Nagy, Zsombor K

    2014-09-01

    Raman spectrometry was utilized to estimate degraded drug percentage, residual drug crystallinity and glass-transition temperature in the case of melt-extruded pharmaceutical products. Tight correlation was shown between the results obtained by confocal Raman mapping and transmission Raman spectrometry, a PAT-compatible potential in-line analytical tool. Immediate-release spironolactone-Eudragit E solid dispersions were the model system, owing to the achievable amorphization and the heat-sensitivity of the drug compound. The deep investigation of the relationship between process parameters, residual drug crystallinity and degradation was performed using statistical tools and a factorial experimental design defining 54 different circumstances for the preparation of solid dispersions. From the examined factors, drug content (10, 20 and 30%), temperature (110, 130 and 150°C) and residence time (2.75, 11.00 and 24.75min) were found to have significant and considerable effect. By forming physically stable homogeneous dispersions, the originally very slow dissolution of the lipophilic and poorly water-soluble spironolactone was reasonably improved, making 3minute release possible in acidic medium. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Analysis of each branch current of serial solar cells by using an equivalent circuit model

    NASA Astrophysics Data System (ADS)

    Yi, Shi-Guang; Zhang, Wan-Hui; Ai, Bin; Song, Jing-Wei; Shen, Hui

    2014-02-01

    In this paper, based on the equivalent single diode circuit model of the solar cell, an equivalent circuit diagram for two serial solar cells is drawn. Its equations of current and voltage are derived from Kirchhoff's current and voltage law. First, parameters are obtained from the I—V (current—voltage) curves for typical monocrystalline silicon solar cells (125 mm × 125 mm). Then, by regarding photo-generated current, shunt resistance, serial resistance of the first solar cell, and resistance load as the variables. The properties of shunt currents (Ish1 and Ish2), diode currents (ID1 and ID2), and load current (IL) for the whole two serial solar cells are numerically analyzed in these four cases for the first time, and the corresponding physical explanations are made. We find that these parameters have different influences on the internal currents of solar cells. Our results will provide a reference for developing higher efficiency solar cell module and contribute to the better understanding of the reason of efficiency loss of solar cell module.

  20. Amino acid substitutions affecting protein dynamics in eglin C do not affect heat capacity change upon unfolding.

    PubMed

    Gribenko, Alexey V; Keiffer, Timothy R; Makhatadze, George I

    2006-08-01

    The heat capacity change upon unfolding (deltaC(p)) is a thermodynamic parameter that defines the temperature dependence of the thermodynamic stability of proteins; however, physical basis of the heat capacity change is not completely understood. Although empirical surface area-based calculations can predict heat capacity changes reasonably well, accumulating evidence suggests that changes in hydration of those surfaces is not the only parameter contributing to the observed heat capacity changes upon unfolding. Because packing density in the protein interior is similar to that observed in organic crystals, we hypothesized that changes in protein dynamics resulting in increased rigidity of the protein structure might contribute to the observed heat capacity change upon unfolding. Using differential scanning calorimetry we characterized the thermodynamic behavior of a serine protease inhibitor eglin C and two eglin C variants with altered native state dynamics, as determined by NMR. We found no evidence of changes in deltaC(p) in either of the variants, suggesting that changes in rigidity do not contribute to the heat capacity change upon unfolding in this model system. Copyright 2006 Wiley-Liss, Inc.

  1. Efficient technical solution for recycling textile materials by manufacturing nonwoven geotextiles

    NASA Astrophysics Data System (ADS)

    Leon, A. L.; Potop, G. L.; Hristian, L.; Manea, L. R.

    2016-08-01

    This paper aims to support the concept "circular economy" that was developed recently. It presents an efficient method for creating a closed loop in the Romanian textile industry by recycling textile materials, such as polyacrylonitrile knitted old products (collected from population) and small polyester woven patches from pre-consumer waste (garments manufacturing companies). Because of their properties, nonwoven geotextiles have many advantages in railways reinforcement, slopes stabilization, erosion control, drainage, filtration, paving roads, crops coverings, etc. The nonwoven geotextiles were obtained from three fibrous blends based on recovered fibers (PES and PAN) and fibers at first usage (PP) in different ratios. All experimental variants were processed on the same manufacturing line with the same technological parameters. There were tested the main physical and mechanical parameters and it was applied single factor ANOVA method for thickness, bulk density, air permeability and static puncture strength. The conclusion is that adding PP fibers in the blends represents a very important factor for geotextiles characteristics but it possible to decrease the ratio from economical reasons and still maintain a high quality level of nonwovens.

  2. Modeling viscous dissipation during vocal fold contact: the influence of tissue viscosity and thickness with implications for hydration.

    PubMed

    Erath, Byron D; Zañartu, Matías; Peterson, Sean D

    2017-06-01

    The mechanics of vocal fold contact during phonation is known to play a crucial role in both normal and pathological speech production, though the underlying physics is not well understood. Herein, a viscoelastic model of the stresses during vocal fold contact is developed. This model assumes the cover to be a poroelastic structure wherein interstitial fluid translocates in response to mechanical squeezing. The maximum interstitial fluid pressure is found to generally increase with decreasing viscous dissipation and/or decreasing tissue elasticity. A global minimum in the total contact stress, comprising interstitial fluid pressure and elastic stress in the tissue, is observed over the studied dimensionless parameter range. Interestingly, physiologically reasonable estimates for the governing parameters fall within this global minimum region. The model is validated against prior experimental and computational work, wherein the predicted contact stress magnitude and impact duration agree well with published results. Lastly, observations of the potential relationship between vocal fold hydration and increased risk of tissue damage are discussed based upon model predictions of stress as functions of cover layer thickness and viscosity.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zadora, A. S., E-mail: as.zadora@physics.msu.ru

    The objective of the present study is to consider in more detail the exotic color-charge-glow effect discovered recently and to analyze its possible physical manifestations associated with the treatment of ensembles of color-charged particles at a classical level. The ways in which this effect may appear in arbitrary systems consisting of pointlike massive particles and admitting the partition into elementary configurations like color charges and color dipoles are studied. The possible influence of this effect on particle dynamics (in particular, on gluon distributions) is also examined. Particle collisions at a given impact parameters are considered for a natural regularization ofmore » emerging expressions. It is shown that, in the case of reasonable impact-parameter values, collisions may proceed in the electrodynamic mode, in which case the charge-glow contribution to field strengths is suppressed in relation to what we have in the electrodynamic picture. From an analysis of the color-echo situation, it follows that the above conclusion remains valid for more complicated particle configurations as well, since hard gluon fields may arise only owing to a direct collision rather than owing to any echo-like effects.« less

  4. Optimal Shape in Electromagnetic Scattering by Small Aspherical Particles

    NASA Astrophysics Data System (ADS)

    Kostinski, A. B.; Mongkolsittisilp, A.

    2013-12-01

    We consider the question of optimal shape for scattering by randomly oriented particles, e.g., shape causing minimal extinction among those of equal volume. Guided by the isoperimetric property of a sphere, relevant in the geometrical optics limit of scattering by large particles, we examine an analogous question in the low frequency (electrostatics) approximation, seeking to disentangle electric and geometric contributions. To that end, we survey the literature on shape functionals and focus on ellipsoids, giving a simple proof of spherical optimality for the coated ellipsoidal particle. Monotonic increase with asphericity in the low frequency regime for orientation-averaged induced dipole moments and scattering cross-sections is also established. Additional physical insight is obtained from the Rayleigh-Gans (transparent) limit and eccentricity expansions. We propose linking low and high frequency regime in a single minimum principle valid for all size parameters, provided that reasonable size distributions wash out the resonances for inter-mediate size parameters. This proposal is further supported by the sum rule for integrated extinction. Implications for spectro-polarimetric scattering are explicitly considered.

  5. Electrical conductivity of metal powders under pressure

    NASA Astrophysics Data System (ADS)

    Montes, J. M.; Cuevas, F. G.; Cintas, J.; Urban, P.

    2011-12-01

    A model for calculating the electrical conductivity of a compressed powder mass consisting of oxide-coated metal particles has been derived. A theoretical tool previously developed by the authors, the so-called `equivalent simple cubic system', was used in the model deduction. This tool is based on relating the actual powder system to an equivalent one consisting of deforming spheres packed in a simple cubic lattice, which is much easier to examine. The proposed model relates the effective electrical conductivity of the powder mass under compression to its level of porosity. Other physically measurable parameters in the model are the conductivities of the metal and oxide constituting the powder particles, their radii, the mean thickness of the oxide layer and the tap porosity of the powder. Two additional parameters controlling the effect of the descaling of the particle oxide layer were empirically introduced. The proposed model was experimentally verified by measurements of the electrical conductivity of aluminium, bronze, iron, nickel and titanium powders under pressure. The consistency between theoretical predictions and experimental results was reasonably good in all cases.

  6. Gas inflow patterns and nuclear rings in barred galaxies

    NASA Astrophysics Data System (ADS)

    Shen, Juntai; Li, Zhi

    2017-06-01

    Nuclear rings, dust lanes, and nuclear spirals are common structures in the inner region of barred galaxies, with their shapes and properties linked to the physical parameters of the galaxies. We use high-resolution hydrodynamical simulations to study gas inflow patterns in barred galaxies, with special attention on the nuclear rings. The location and thickness of nuclear ringsare tightly correlated with galactic properties, such as the bar pattern speed and bulge central density, within certain ranges. We identify the backbone of nuclear rings with a major orbital family of bars. The rings form exactly at the radius where the residual angular momentum of inflowing gas balances the centrifugal force. We propose a new simple method to predict the bar pattern speed for barred galaxies possessing a nuclear ring, without actually doing simulations. We apply this method to some real galaxies and find that our predicted bar pattern speed compare reasonably well with other estimates. Our study may have important implications for using nuclear ringsto measure the parameters of real barred galaxies with detailed gas kinematics. We have also extended current hydrodynamical simulations to model gas features in the Milky Way.

  7. How Students Use Physics to Reason about Calculus Tasks

    ERIC Educational Resources Information Center

    Marrongelle, Karen A.

    2004-01-01

    The present research study investigates how undergraduate students in an integrated calculus and physics class use physics to help them solve calculus problems. Using Zandieh's (2000) framework for analyzing student understanding of derivative as a starting point, this study adds detail to her "paradigmatic physical" context and begins to address…

  8. Top 10 Reasons for Quality Physical Education

    ERIC Educational Resources Information Center

    Le Masurier, Guy; Corbin, Charles B.

    2006-01-01

    Substantial scientific evidence supports the role of physical activity in disease prevention and healthy lifestyle promotion, and quality physical education represents our best opportunity to provide all children with experiences that promote physical activity now and for a lifetime. The purpose of this article is to document the need for quality…

  9. Reaching More Students through Thinking in Physics

    ERIC Educational Resources Information Center

    Coletta, Vincent P.

    2017-01-01

    Thinking in Physics (TIP) is a new curriculum that is more effective than commonly used interactive engagement methods for students who have the greatest difficulty learning physics. Research has shown a correlation between learning in physics and other factors, including scientific reasoning ability. The TIP curriculum addresses those factors.…

  10. The Notion of Substance in Physical Theory

    NASA Astrophysics Data System (ADS)

    Vanzandt, Joseph David

    The thesis explores the philosophical consequences of adopting the view that the principle of non-contradiction, the principle of sufficient reason, and the monistic notion of substance are more closely linked than most modern and contemporary philosophers have supposed. This thesis is then applied to show the connections between the metaphysical views of Spinoza and the view of nature of Albert Einstein. The first chapter is an historical overview of the principles of sufficient reason and non-contradiction, and the notion of substance, followed by a presentation of the reasons that led the author to conclude that the usual treatment of these concepts requires revision. These reasons are based upon substantial cause theory, developed in the 1970s by Richard Cole. The second and third chapters are an interpretation of Book 1 of Spinoza's Ethics from the viewpoint presented in the first chapter. The implicit role of the principles of non-contradiction and sufficient reason in Spinoza's argument is drawn out through an examination of his definitions, axioms and propositions. The third and fourth chapters are an interpretation and criticism of Immanuel Kant. It is first shown that the common dismissal of Kant's philosophy based upon the discovery of non-Euclidean geometries and the denial of strict causality among some physical events is not well founded; ways in which Kant's framework can accommodate these problems are proposed. It is then argued that Kant's criticism of traditional metaphysics is not conclusive. In particular, Kant's arguments against the possibility of an ontological argument are examined and criticisms of his arguments are presented. The sixth and seventh chapters contain an historical account of the development of physics in the 20th century to illustrate the strong tendency toward unification found in science. It is suggested that this natural tendency to seek ever higher levels of unification is evidence that the principle of sufficient reason plays a role in the development of physical theory, although usually not a self-conscious one. The eighth chapter concludes the work with a discussion of the relation of Spinoza and Einstein. Some ways are presented in which Spinoza's monistic view of Nature may be understood in light of modern physical theory.

  11. Development of a hydraulic model of the human systemic circulation

    NASA Technical Reports Server (NTRS)

    Sharp, M. K.; Dharmalingham, R. K.

    1999-01-01

    Physical and numeric models of the human circulation are constructed for a number of objectives, including studies and training in physiologic control, interpretation of clinical observations, and testing of prosthetic cardiovascular devices. For many of these purposes it is important to quantitatively validate the dynamic response of the models in terms of the input impedance (Z = oscillatory pressure/oscillatory flow). To address this need, the authors developed an improved physical model. Using a computer study, the authors first identified the configuration of lumped parameter elements in a model of the systemic circulation; the result was a good match with human aortic input impedance with a minimum number of elements. Design, construction, and testing of a hydraulic model analogous to the computer model followed. Numeric results showed that a three element model with two resistors and one compliance produced reasonable matching without undue complication. The subsequent analogous hydraulic model included adjustable resistors incorporating a sliding plate to vary the flow area through a porous material and an adjustable compliance consisting of a variable-volume air chamber. The response of the hydraulic model compared favorably with other circulation models.

  12. The Physics of Decision Making:. Stochastic Differential Equations as Models for Neural Dynamics and Evidence Accumulation in Cortical Circuits

    NASA Astrophysics Data System (ADS)

    Holmes, Philip; Eckhoff, Philip; Wong-Lin, K. F.; Bogacz, Rafal; Zacksenhouse, Miriam; Cohen, Jonathan D.

    2010-03-01

    We describe how drift-diffusion (DD) processes - systems familiar in physics - can be used to model evidence accumulation and decision-making in two-alternative, forced choice tasks. We sketch the derivation of these stochastic differential equations from biophysically-detailed models of spiking neurons. DD processes are also continuum limits of the sequential probability ratio test and are therefore optimal in the sense that they deliver decisions of specified accuracy in the shortest possible time. This leaves open the critical balance of accuracy and speed. Using the DD model, we derive a speed-accuracy tradeoff that optimizes reward rate for a simple perceptual decision task, compare human performance with this benchmark, and discuss possible reasons for prevalent sub-optimality, focussing on the question of uncertain estimates of key parameters. We present an alternative theory of robust decisions that allows for uncertainty, and show that its predictions provide better fits to experimental data than a more prevalent account that emphasises a commitment to accuracy. The article illustrates how mathematical models can illuminate the neural basis of cognitive processes.

  13. Sphere Drag and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-07-01

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.

  14. Sphere Drag and Heat Transfer.

    PubMed

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-07-20

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.

  15. Teaching to Reason

    ERIC Educational Resources Information Center

    Riveros Rotge, Hector G.

    2014-01-01

    The objective of Physics courses is that the students learn how to use what they know to solve problems in the real world (competencies), but no one learns to do that seeing as the professor think in the blackboard. The program of a course uses topics as examples of reasoning. Reasoning involves the ability to use their knowledge. If we precisely…

  16. Students' Initial Knowledge of Electric and Magnetic Fields--More Profound Explanations and Reasoning Models for Undesired Conceptions

    ERIC Educational Resources Information Center

    Saarelainen, M.; Laaksonen, A.; Hirvonen, P. E.

    2007-01-01

    This study explores undergraduate students' understanding and reasoning models of electric and magnetic fields. The results indicate that the tested students had various alternative concepts in applying their reasoning to certain CSEM test questions. The total number of physics students tested at the beginning of the first course on…

  17. Developing a Construct-Based Assessment to Examine Students' Analogical Reasoning around Physical Models in Earth Science

    ERIC Educational Resources Information Center

    Rivet, Ann E.; Kastens, Kim A.

    2012-01-01

    In recent years, science education has placed increasing importance on learners' mastery of scientific reasoning. This growing emphasis presents a challenge for both developers and users of assessments. We report on our effort around the conceptualization, development, and testing the validity of an assessment of students' ability to reason around…

  18. Identifying Student Resources in Reasoning about Entropy and the Approach to Thermal Equilibrium

    ERIC Educational Resources Information Center

    Loverude, Michael

    2015-01-01

    As part of an ongoing project to examine student learning in upper-division courses in thermal and statistical physics, we have examined student reasoning about entropy and the second law of thermodynamics. We have examined reasoning in terms of heat transfer, entropy maximization, and statistical treatments of multiplicity and probability. In…

  19. 20 CFR 416.210 - You do not apply for other benefits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) We will not find you ineligible for SSI benefits if you have a good reason for not applying for the... whether a good reason exists, we will take into account any physical, mental, educational, or linguistic... apply for other benefits. You may have a good reason if, for example— (i) You are incapacitated (because...

  20. Rigorous theoretical constraint on constant negative EoS parameter [Formula: see text] and its effect for the late Universe.

    PubMed

    Burgazli, Alvina; Eingorn, Maxim; Zhuk, Alexander

    In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, the Universe is filled with inhomogeneously distributed discrete structures (galaxies, groups and clusters of galaxies). Supposing that the Universe contains also the cosmological constant and a perfect fluid with a negative constant equation of state (EoS) parameter [Formula: see text] (e.g., quintessence, phantom or frustrated network of topological defects), we investigate scalar perturbations of the Friedmann-Robertson-Walker metrics due to inhomogeneities. Our analysis shows that, to be compatible with the theory of scalar perturbations, this perfect fluid, first, should be clustered and, second, should have the EoS parameter [Formula: see text]. In particular, this value corresponds to the frustrated network of cosmic strings. Therefore, the frustrated network of domain walls with [Formula: see text] is ruled out. A perfect fluid with [Formula: see text] neither accelerates nor decelerates the Universe. We also obtain the equation for the nonrelativistic gravitational potential created by a system of inhomogeneities. Due to the perfect fluid with [Formula: see text], the physically reasonable solutions take place for flat, open and closed Universes. This perfect fluid is concentrated around the inhomogeneities and results in screening of the gravitational potential.

  1. Determination of Thermal State of Charge in Solar Heat Receivers

    NASA Technical Reports Server (NTRS)

    Glakpe, E. K.; Cannon, J. N.; Hall, C. A., III; Grimmett, I. W.

    1996-01-01

    The research project at Howard University seeks to develop analytical and numerical capabilities to study heat transfer and fluid flow characteristics, and the prediction of the performance of solar heat receivers for space applications. Specifically, the study seeks to elucidate the effects of internal and external thermal radiation, geometrical and applicable dimensionless parameters on the overall heat transfer in space solar heat receivers. Over the last year, a procedure for the characterization of the state-of-charge (SOC) in solar heat receivers for space applications has been developed. By identifying the various factors that affect the SOC, a dimensional analysis is performed resulting in a number of dimensionless groups of parameters. Although not accomplished during the first phase of the research, data generated from a thermal simulation program can be used to determine values of the dimensionless parameters and the state-of-charge and thereby obtain a correlation for the SOC. The simulation program selected for the purpose is HOTTube, a thermal numerical computer code based on a transient time-explicit, axisymmetric model of the total solar heat receiver. Simulation results obtained with the computer program are presented the minimum and maximum insolation orbits. In the absence of any validation of the code with experimental data, results from HOTTube appear reasonable qualitatively in representing the physical situations modeled.

  2. Applications of AMPS-1D for solar cell simulation

    NASA Astrophysics Data System (ADS)

    Zhu, Hong; Kalkan, Ali Kaan; Hou, Jingya; Fonash, Stephen J.

    1999-03-01

    The AMPS-1D PC computer program is now used by over 70 groups world-wide for detector and solar cell analysis. It has proved to be a very powerful tool in understanding device operation and physics for single crystal, poly-crystalline and amorphous structures. For example, AMPS-1D has been successful in explaining the "red kink" [1] and the "transient effect" in CdS/CIGS poly-crystalline solar cells. It has been used to show that thin film poly-Si structures, with reasonable light trapping, are capable of competitive solar cell conversion efficiencies. In the case of a-Si:H structures, it has been used, for example, to settle the discrepancies in bandgap measurement, to predict the effective QE>1 phenomenon later seen in these materials [2], to determine the relative roles of interface and bulk properties, and to point the direction toward 16% triple junction structures. In general AMPS-1D is used for cell and detector design, material parameter sensitivity studies, and parameter extraction. Recently we have shown that it can be used to determine optimum structure and light and voltage biasing conditions in the material parameter extraction function. Information on AMPS can be found at www.psu.edu/dept/AMPS/amps_web/AMPS.html and at other web sites set up by user groups.

  3. Detection of Natural Fractures from Observed Surface Seismic Data Based on a Linear-Slip Model

    NASA Astrophysics Data System (ADS)

    Chen, Huaizhen; Zhang, Guangzhi

    2018-03-01

    Natural fractures play an important role in migration of hydrocarbon fluids. Based on a rock physics effective model, the linear-slip model, which defines fracture parameters (fracture compliances) for quantitatively characterizing the effects of fractures on rock total compliance, we propose a method to detect natural fractures from observed seismic data via inversion for the fracture compliances. We first derive an approximate PP-wave reflection coefficient in terms of fracture compliances. Using the approximate reflection coefficient, we derive azimuthal elastic impedance as a function of fracture compliances. An inversion method to estimate fracture compliances from seismic data is presented based on a Bayesian framework and azimuthal elastic impedance, which is implemented in a two-step procedure: a least-squares inversion for azimuthal elastic impedance and an iterative inversion for fracture compliances. We apply the inversion method to synthetic and real data to verify its stability and reasonability. Synthetic tests confirm that the method can make a stable estimation of fracture compliances in the case of seismic data containing a moderate signal-to-noise ratio for Gaussian noise, and the test on real data reveals that reasonable fracture compliances are obtained using the proposed method.

  4. Why the enrollment in Physics Programs is decreasing

    NASA Astrophysics Data System (ADS)

    Masood, Samina

    There are several reasons for the decrease in enrollment in Physics programs which includes but not limited to the (1) lack of mathematical skill, (2) part time education, (3) financial burdens, (4) students liking for teachers is given more importance over the educational standards, (5) lack of team spirit and political environment of academia. All of these factors are compared with the international education standards to find out the reasons why students from certain regions and outside US are not only more hardworking but are better prepared to accept challenges of relatively more technical subjects such as Physics and they are less distracted as well.

  5. Emotional reasoning and anxiety sensitivity: associations with social anxiety disorder in childhood.

    PubMed

    Alkozei, Anna; Cooper, Peter J; Creswell, Cathy

    2014-01-01

    Two specific cognitive constructs that have been implicated in the development and maintenance of anxiety symptoms are anxiety sensitivity and emotional reasoning, both of which relate to the experience and meaning of physical symptoms of arousal or anxiety. The interpretation of physical symptoms has been particularly implicated in theories of social anxiety disorder, where internal physical symptoms are hypothesized to influence the individual's appraisals of the self as a social object. The current study compared 75 children on measures of anxiety sensitivity and emotional reasoning: 25 with social anxiety disorder, 25 with other anxiety disorders, and 25 nonanxious children (aged 7-12 years). Children with social anxiety disorder reported higher levels of anxiety sensitivity and were more likely than both other groups to view ambiguous situations as anxiety provoking, whether physical information was present or not. There were no group differences in the extent to which physical information altered children's interpretation of hypothetical scenarios. This study is the first to investigate emotional reasoning in clinically anxious children and therefore replication is needed. In addition, those in both anxious groups commonly had comorbid conditions and, consequently, specific conclusions about social anxiety disorder need to be treated with caution. The findings highlight cognitive characteristics that may be particularly pertinent in the context of social anxiety disorder in childhood and which may be potential targets for treatment. Furthermore, the findings suggest that strategies to modify these particular cognitive constructs may not be necessary in treatments of some other childhood anxiety disorders. © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  6. Emotional reasoning and anxiety sensitivity: Associations with social anxiety disorder in childhood☆

    PubMed Central

    Alkozei, Anna; Cooper, Peter J.; Creswell, Cathy

    2014-01-01

    Background Two specific cognitive constructs that have been implicated in the development and maintenance of anxiety symptoms are anxiety sensitivity and emotional reasoning, both of which relate to the experience and meaning of physical symptoms of arousal or anxiety. The interpretation of physical symptoms has been particularly implicated in theories of social anxiety disorder, where internal physical symptoms are hypothesized to influence the individual's appraisals of the self as a social object. Method The current study compared 75 children on measures of anxiety sensitivity and emotional reasoning: 25 with social anxiety disorder, 25 with other anxiety disorders, and 25 nonanxious children (aged 7–12 years). Results Children with social anxiety disorder reported higher levels of anxiety sensitivity and were more likely than both other groups to view ambiguous situations as anxiety provoking, whether physical information was present or not. There were no group differences in the extent to which physical information altered children's interpretation of hypothetical scenarios. Limitations This study is the first to investigate emotional reasoning in clinically anxious children and therefore replication is needed. In addition, those in both anxious groups commonly had comorbid conditions and, consequently, specific conclusions about social anxiety disorder need to be treated with caution. Conclusion The findings highlight cognitive characteristics that may be particularly pertinent in the context of social anxiety disorder in childhood and which may be potential targets for treatment. Furthermore, the findings suggest that strategies to modify these particular cognitive constructs may not be necessary in treatments of some other childhood anxiety disorders. PMID:24120086

  7. Advanced quantitative measurement methodology in physics education research

    NASA Astrophysics Data System (ADS)

    Wang, Jing

    The ultimate goal of physics education research (PER) is to develop a theoretical framework to understand and improve the learning process. In this journey of discovery, assessment serves as our headlamp and alpenstock. It sometimes detects signals in student mental structures, and sometimes presents the difference between expert understanding and novice understanding. Quantitative assessment is an important area in PER. Developing research-based effective assessment instruments and making meaningful inferences based on these instruments have always been important goals of the PER community. Quantitative studies are often conducted to provide bases for test development and result interpretation. Statistics are frequently used in quantitative studies. The selection of statistical methods and interpretation of the results obtained by these methods shall be connected to the education background. In this connecting process, the issues of educational models are often raised. Many widely used statistical methods do not make assumptions on the mental structure of subjects, nor do they provide explanations tailored to the educational audience. There are also other methods that consider the mental structure and are tailored to provide strong connections between statistics and education. These methods often involve model assumption and parameter estimation, and are complicated mathematically. The dissertation provides a practical view of some advanced quantitative assessment methods. The common feature of these methods is that they all make educational/psychological model assumptions beyond the minimum mathematical model. The purpose of the study is to provide a comparison between these advanced methods and the pure mathematical methods. The comparison is based on the performance of the two types of methods under physics education settings. In particular, the comparison uses both physics content assessments and scientific ability assessments. The dissertation includes three parts. The first part involves the comparison between item response theory (IRT) and classical test theory (CTT). The two theories both provide test item statistics for educational inferences and decisions. The two theories are both applied to Force Concept Inventory data obtained from students enrolled in The Ohio State University. Effort was made to examine the similarity and difference between the two theories, and the possible explanation to the difference. The study suggests that item response theory is more sensitive to the context and conceptual features of the test items than classical test theory. The IRT parameters provide a better measure than CTT parameters for the educational audience to investigate item features. The second part of the dissertation is on the measure of association for binary data. In quantitative assessment, binary data is often encountered because of its simplicity. The current popular measures of association fail under some extremely unbalanced conditions. However, the occurrence of these conditions is not rare in educational data. Two popular association measures, the Pearson's correlation and the tetrachoric correlation are examined. A new method, model based association is introduced, and an educational testing constraint is discussed. The existing popular methods are compared with the model based association measure with and without the constraint. Connections between the value of association and the context and conceptual features of questions are discussed in detail. Results show that all the methods have their advantages and disadvantages. Special attention to the test and data conditions is necessary. The last part of the dissertation is focused on exploratory factor analysis (EFA). The theoretical advantages of EFA are discussed. Typical misunderstanding and misusage of EFA are explored. The EFA is performed on Lawson's Classroom Test of Scientific Reasoning (LCTSR), a widely used assessment on scientific reasoning skills. The reasoning ability structures for U.S. and Chinese students at different educational levels are given by the analysis. A final discussion on the advanced quantitative assessment methodology and the pure mathematical methodology is presented at the end.

  8. 77 FR 50465 - Certain Small Diameter Carbon and Alloy Seamless Standard, Line and Pressure Pipe From Romania...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-21

    ...- 795, and the American Petroleum Institute (API) 5L specifications and meeting the physical parameters... standard, line, or pressure pipe applications and meeting the physical parameters described below.... The scope of this review includes all seamless pipe meeting the physical parameters described above...

  9. Learning about causes from people and about people as causes: probabilistic models and social causal reasoning.

    PubMed

    Buchsbaum, Daphna; Seiver, Elizabeth; Bridgers, Sophie; Gopnik, Alison

    2012-01-01

    A major challenge children face is uncovering the causal structure of the world around them. Previous research on children's causal inference has demonstrated their ability to learn about causal relationships in the physical environment using probabilistic evidence. However, children must also learn about causal relationships in the social environment, including discovering the causes of other people's behavior, and understanding the causal relationships between others' goal-directed actions and the outcomes of those actions. In this chapter, we argue that social reasoning and causal reasoning are deeply linked, both in the real world and in children's minds. Children use both types of information together and in fact reason about both physical and social causation in fundamentally similar ways. We suggest that children jointly construct and update causal theories about their social and physical environment and that this process is best captured by probabilistic models of cognition. We first present studies showing that adults are able to jointly infer causal structure and human action structure from videos of unsegmented human motion. Next, we describe how children use social information to make inferences about physical causes. We show that the pedagogical nature of a demonstrator influences children's choices of which actions to imitate from within a causal sequence and that this social information interacts with statistical causal evidence. We then discuss how children combine evidence from an informant's testimony and expressed confidence with evidence from their own causal observations to infer the efficacy of different potential causes. We also discuss how children use these same causal observations to make inferences about the knowledge state of the social informant. Finally, we suggest that psychological causation and attribution are part of the same causal system as physical causation. We present evidence that just as children use covariation between physical causes and their effects to learn physical causal relationships, they also use covaration between people's actions and the environment to make inferences about the causes of human behavior.

  10. Mathematization in introductory physics

    NASA Astrophysics Data System (ADS)

    Brahmia, Suzanne M.

    Mathematization is central to STEM disciplines as a cornerstone of the quantitative reasoning that characterizes these fields. Introductory physics is required for most STEM majors in part so that students develop expert-like mathematization. This dissertation describes coordinated research and curriculum development for strengthening mathematization in introductory physics; it blends scholarship in physics and mathematics education in the form of three papers. The first paper explores mathematization in the context of physics, and makes an original contribution to the measurement of physics students' struggle to mathematize. Instructors naturally assume students have a conceptual mastery of algebra before embarking on a college physics course because these students are enrolled in math courses beyond algebra. This paper provides evidence that refutes the validity of this assumption and categorizes some of the barriers students commonly encounter with quantification and representing ideas symbolically. The second paper develops a model of instruction that can help students progress from their starting points to their instructor's desired endpoints. Instructors recognize that the introductory physics course introduces new ideas at an astonishing rate. More than most physicists realize, however, the way that mathematics is used in the course is foreign to a large portion of class. This paper puts forth an instructional model that can move all students toward better quantitative and physical reasoning, despite the substantial variability of those students' initial states. The third paper describes the design and testing of curricular materials that foster mathematical creativity to prepare students to better understand physics reasoning. Few students enter introductory physics with experience generating equations in response to specific challenges involving unfamiliar quantities and units, yet this generative use of mathematics is typical of the thinking involved in doing physics. It contrasts with their more common experience with mathematics as the practice of specified procedures to improve efficiency. This paper describes new curricular materials based on invention instruction provide students with opportunities to generate mathematical relationships in physics, and the paper presents preliminary evidence of the effectiveness of this method with mathematically underprepared engineering students.

  11. Describing the clinical reasoning process: application of a model of enablement to a pediatric case.

    PubMed

    Furze, Jennifer; Nelson, Kelly; O'Hare, Megan; Ortner, Amanda; Threlkeld, A Joseph; Jensen, Gail M

    2013-04-01

    Clinical reasoning is a core tenet of physical therapy practice leading to optimal patient care. The purpose of this case was to describe the outcomes, subjective experience, and reflective clinical reasoning process for a child with cerebral palsy using the International Classification of Functioning, Disability, and Health (ICF) model. Application of the ICF framework to a 9-year-old boy with spastic triplegic cerebral palsy was utilized to capture the interwoven factors present in this case. Interventions in the pool occurred twice weekly for 1 h over a 10-week period. Immediately post and 4 months post-intervention, the child made functional and meaningful gains. The family unit also developed an enjoyment of exercising together. Each individual family member described psychological, emotional, or physical health improvements. Reflection using the ICF model as a framework to discuss clinical reasoning can highlight important factors contributing to effective patient management.

  12. Factors Influencing Physical Activity Behavior among Iranian Women with Type 2 Diabetes Using the Extended Theory of Reasoned Action.

    PubMed

    Didarloo, Alireza; Shojaeizadeh, Davoud; Ardebili, Hassan Eftekhar; Niknami, Shamsaddin; Hajizadeh, Ebrahim; Alizadeh, Mohammad

    2011-10-01

    Findings of most studies indicate that the only way to control diabetes and prevent its debilitating effects is through the continuous performance of self-care behaviors. Physical activity is a non-pharmacological method of diabetes treatment and because of its positive effects on diabetic patients, it is being increasingly considered by researchers and practitioners. This study aimed at determining factors influencing physical activity among diabetic women in Iran, using the extended theory of reasoned action in Iran. A sample of 352 women with type 2 diabetes, referring to a Diabetes Clinic in Khoy, Iran, participated in the study. Appropriate instruments were designed to measure the desired variables (knowledge of diabetes, personal beliefs, subjective norms, perceived self-efficacy, behavioral intention and physical activity behavior). The reliability and validity of the instruments were examined and approved. Statistical analyses of the study were conducted by inferential statistical techniques (independent t-test, correlations and regressions) using the SPSS package. The findings of this investigation indicated that among the constructs of the model, self efficacy was the strongest predictor of intentions among women with type 2 diabetes and both directly and indirectly affected physical activity. In addition to self efficacy, diabetic patients' physical activity also was influenced by other variables of the model and sociodemographic factors. Our findings suggest that the high ability of the theory of reasoned action extended by self-efficacy in forecasting and explaining physical activity can be a base for educational intervention. Educational interventions based on the proposed model are necessary for improving diabetics' physical activity behavior and controlling disease.

  13. Instructors' Support of Student Autonomy in an Introductory Physics Course

    NASA Astrophysics Data System (ADS)

    Hall, Nicholas; Webb, David

    2014-12-01

    The role of autonomy in the student experience in a large-enrollment undergraduate introductory physics course was studied from a self-determination theory perspective. A correlational study investigated whether certain aspects of the student experience correlated with how autonomy supportive (versus controlling) students perceived their instructors to be. An autonomy-supportive instructor acknowledges students' perspectives and feelings and provides students with information and opportunities for choice while minimizing external pressures (e.g., incentives or deadlines). It was found that the degree to which students perceived their instructors as autonomy supportive was positively correlated with student interest and enjoyment in learning physics (β =0.31***) and negatively correlated with student anxiety about taking physics (β =-0.23**). It was also positively correlated with how autonomous (versus controlled) students' reasons for studying physics became over the duration of the course (i.e., studying physics more because they wanted to versus had to; β =0.24***). This change in autonomous reasons for studying physics was in turn positively correlated with student performance in the course (β =0.17*). Additionally, the degree to which students perceived their instructors as autonomy supportive was directly correlated with performance for those students entering the course with relatively autonomous reasons for studying physics (β =0.25**). In summary, students who perceived their instructors as more autonomy supportive tended to have a more favorable motivational, affective, and performance experience in the course. The findings of the present study are consistent with experimental studies in other contexts that argue for autonomy-supportive instructor behaviors as the cause of a more favorable student experience.

  14. Ultrasonic characterization of engineering performanace of oriented strandboard

    NASA Astrophysics Data System (ADS)

    Vun, Ronnie Yunheu

    Direct-contact (DC) and non-contact (NC) ultrasonic transmission (UT) methods were developed to characterize the structural performance of oriented strandboard (OSB). The UT variable velocity was shown to be sensitive to the physical impediments caused by flake interfacial boundaries and embedded voids. Both attenuation and root mean square (RMS) voltage were good indicators of the "zero void" densification level for OSB, a point of the greatest transmissivity of the stress wave energy. For both DC and NC methods, the predicted densities of the model were validated for spatial distribution over each OSB type. Based on the control limits of +/-10% of the panel average density, density prediction improved with higher resin content (RC) and higher nominal density (ND) levels. From the out-of-limits plots, the predicted in-situ densities produced a reasonably spatial coherence to the measured values. All panels made with ND 0.60 g/cm3 or greater conformed well within the limits, with declining conformity towards lower RC panels. For each composite type made of different particle sizes, the equilibrium moisture content showed a decreasing trend toward smaller particle panels. The attenuation and RMS were good indicators for moisture change and densification level for each composite type. The velocity, sensitive to physical resistance of particle sizes, increased with increasing IB strength and sample density, manifesting the positive influence of layering, resin content, and the negative effect of bark as a constituent. The results of the creep rupture tests on commercial OSB using an acoustic emission (AE) technique indicated that the cumulative AE event count parameter was highly correlated with deflection parameter and appropriately represented the accumulation of incipient damage. Under high stress levels, specimens with high moisture content (MC) sustained the worse damages having the shortest creep rupture time followed by specimens with dynamically rising MC. Defects on the compression-side of the bending specimen were found critical to creep rupture than those on the tension-side. The in-plane fracture patterns tended to follow the defect trenches of low-density valleys, and worsened with greater variability of the horizontal density, indicating the need to measure and control the horizontal density variation within reasonable limits.

  15. A summary report on the search for current technologies and developers to develop depth profiling/physical parameter end effectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Q.H.

    1994-09-12

    This report documents the search strategies and results for available technologies and developers to develop tank waste depth profiling/physical parameter sensors. Sources searched include worldwide research reports, technical papers, journals, private industries, and work at Westinghouse Hanford Company (WHC) at Richland site. Tank waste physical parameters of interest are: abrasiveness, compressive strength, corrosiveness, density, pH, particle size/shape, porosity, radiation, settling velocity, shear strength, shear wave velocity, tensile strength, temperature, viscosity, and viscoelasticity. A list of related articles or sources for each physical parameters is provided.

  16. Basins of coexistence and extinction in spatially extended ecosystems of cyclically competing species.

    PubMed

    Ni, Xuan; Yang, Rui; Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2010-12-01

    Microscopic models based on evolutionary games on spatially extended scales have recently been developed to address the fundamental issue of species coexistence. In this pursuit almost all existing works focus on the relevant dynamical behaviors originated from a single but physically reasonable initial condition. To gain comprehensive and global insights into the dynamics of coexistence, here we explore the basins of coexistence and extinction and investigate how they evolve as a basic parameter of the system is varied. Our model is cyclic competitions among three species as described by the classical rock-paper-scissors game, and we consider both discrete lattice and continuous space, incorporating species mobility and intraspecific competitions. Our results reveal that, for all cases considered, a basin of coexistence always emerges and persists in a substantial part of the parameter space, indicating that coexistence is a robust phenomenon. Factors such as intraspecific competition can, in fact, promote coexistence by facilitating the emergence of the coexistence basin. In addition, we find that the extinction basins can exhibit quite complex structures in terms of the convergence time toward the final state for different initial conditions. We have also developed models based on partial differential equations, which yield basin structures that are in good agreement with those from microscopic stochastic simulations. To understand the origin and emergence of the observed complicated basin structures is challenging at the present due to the extremely high dimensional nature of the underlying dynamical system. © 2010 American Institute of Physics.

  17. Simulating effects of microtopography on wetland specific yield and hydroperiod

    USGS Publications Warehouse

    Summer, David M.; Wang, Xixi

    2011-01-01

    Specific yield and hydroperiod have proven to be useful parameters in hydrologic analysis of wetlands. Specific yield is a critical parameter to quantitatively relate hydrologic fluxes (e.g., rainfall, evapotranspiration, and runoff) and water level changes. Hydroperiod measures the temporal variability and frequency of land-surface inundation. Conventionally, hydrologic analyses used these concepts without considering the effects of land surface microtopography and assumed a smoothly-varying land surface. However, these microtopographic effects could result in small-scale variations in land surface inundation and water depth above or below the land surface, which in turn affect ecologic and hydrologic processes of wetlands. The objective of this chapter is to develop a physically-based approach for estimating specific yield and hydroperiod that enables the consideration of microtopographic features of wetlands, and to illustrate the approach at sites in the Florida Everglades. The results indicate that the physically-based approach can better capture the variations of specific yield with water level, in particular when the water level falls between the minimum and maximum land surface elevations. The suggested approach for hydroperiod computation predicted that the wetlands might be completely dry or completely wet much less frequently than suggested by the conventional approach neglecting microtopography. One reasonable generalization may be that the hydroperiod approaches presented in this chapter can be a more accurate prediction tool for water resources management to meet the specific hydroperiod threshold as required by a species of plant or animal of interest.

  18. Increasing Asian International College Students' Physical Activity Behavior: A Review of the Youth Physical Activity Promotion Model

    ERIC Educational Resources Information Center

    Yan, Zi; Cardinal, Bradley J.

    2013-01-01

    Asian students attending American colleges and universities report relatively low levels of physical activity participation, which may hinder their ability to realize their full human potential (i.e., cognitively, physically, socially). This paper reviewed the possible reasons underlying their generally inactive lifestyle, addressed the importance…

  19. Adolescent Girls' Perceptions of Physical Activity: A Focus Group Study

    ERIC Educational Resources Information Center

    Whitehead, Sarah; Biddle, Stuart

    2008-01-01

    Low levels of physical activity among adolescent girls are a cause for concern. Examining girls' physical activity perceptions and motivations through in-depth qualitative research allows for greater understanding of the reasons behind their physical activity-related choices. Forty-seven girls aged 14 to 16 years participated in exploratory focus…

  20. Career Changes among Physical Educators: Searching for New Goals or Escaping a Heavy Task Load?

    ERIC Educational Resources Information Center

    Bizet, Ivan; Laurencelle, Louis; Lemoyne, Jean; Larouche, Richard; Trudeau, Francois

    2010-01-01

    Physical educators experience several occupational constraints and a high risk of physical injury associated with a high attrition rate. Our investigation aimed at identifying the principal career reorientation factors among physical educators and reasons for their career changes. This research used semistructured interviews (n = 53) that were…

  1. Framing the structural role of mathematics in physics lectures: A case study on electromagnetism

    NASA Astrophysics Data System (ADS)

    Karam, Ricardo

    2014-06-01

    Physics education research has shown that students tend to struggle when trying to use mathematics in a meaningful way in physics (e.g., mathematizing a physical situation or making sense of equations). Concerning the possible reasons for these difficulties, little attention has been paid to the way mathematics is treated in physics instruction. Starting from an overall distinction between a technical approach, which involves an instrumental (tool-like) use of mathematics, and a structural one, focused on reasoning about the physical world mathematically, the goal of this study is to characterize the development of the latter in didactic contexts. For this purpose, a case study was conducted on the electromagnetism course given by a distinguished physics professor. The analysis of selected teaching episodes with the software Videograph led to the identification of a set of categories that describe different strategies used by the professor to emphasize the structural role of mathematics in his lectures. As a consequence of this research, an analytic tool to enable future comparative studies between didactic approaches regarding the way mathematics is treated in physics teaching is provided.

  2. 40 CFR 60.58c - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....57c(d), the owner or operator shall maintain all operating parameter data collected; (xvii) For...) Identification of calendar days for which data on emission rates or operating parameters specified under... operating parameters not measured, reasons for not obtaining the data, and a description of corrective...

  3. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds - the two-CN system approach

    NASA Astrophysics Data System (ADS)

    Soulis, K. X.; Valiantzas, J. D.

    2012-03-01

    The Soil Conservation Service Curve Number (SCS-CN) approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN parameter values corresponding to various soil, land cover, and land management conditions can be selected from tables, but it is preferable to estimate the CN value from measured rainfall-runoff data if available. However, previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. Hence, they suggested the determination of a single asymptotic CN value observed for very high rainfall depths to characterize the watersheds' runoff response. In this paper, the hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of soils and land cover spatial variability on its hydrologic response is being tested. Based on this hypothesis, the simplified concept of a two-CN heterogeneous system is introduced to model the observed CN-rainfall variation by reducing the CN spatial variability into two classes. The behaviour of the CN-rainfall function produced by the simplified two-CN system is approached theoretically, it is analysed systematically, and it is found to be similar to the variation observed in natural watersheds. Synthetic data tests, natural watersheds examples, and detailed study of two natural experimental watersheds with known spatial heterogeneity characteristics were used to evaluate the method. The results indicate that the determination of CN values from rainfall runoff data using the proposed two-CN system approach provides reasonable accuracy and it over performs the previous methods based on the determination of a single asymptotic CN value. Although the suggested method increases the number of unknown parameters to three (instead of one), a clear physical reasoning for them is presented.

  4. Where are the history and the physical?

    PubMed Central

    Bordage, G

    1995-01-01

    In clinical practice, the history and physical examination are being superseded by laboratory tests and biomedical technology. The author discusses the importance of the clinical examination as the basis for clinical reasoning and of direct observation of students at the patients' bedside in order to assess their diagnostic reasoning. Greater attention to the clinical examination would lead not only to improved clinical skills but also to more cost-effective use of ancillary investigations and, moreover, to a better understanding of the patient by the physician. PMID:7743445

  5. Cognition versus Constitution of Objects: From Kant to Modern Physics

    NASA Astrophysics Data System (ADS)

    Mittelstaedt, Peter

    2009-07-01

    Classical mechanics in phase space as well as quantum mechanics in Hilbert space lead to states and observables but not to objects that may be considered as carriers of observable quantities. However, in both cases objects can be constituted as new entities by means of invariance properties of the theories in question. We show, that this way of reasoning has a long history in physics and philosophy and that it can be traced back to the transcendental arguments in Kant’s critique of pure reason.

  6. Framing the Structural Role of Mathematics in Physics Lectures: A Case Study on Electromagnetism

    ERIC Educational Resources Information Center

    Karam, Ricardo

    2014-01-01

    Physics education research has shown that students tend to struggle when trying to use mathematics in a meaningful way in physics (e.g., mathematizing a physical situation or making sense of equations). Concerning the possible reasons for these difficulties, little attention has been paid to the way mathematics is treated in physics instruction.…

  7. Examination of Learning Equity among Prospective Science Teachers Who Are Concrete, Formal and Postformal Reasoners after an Argumentation-Based Inquiry Course

    ERIC Educational Resources Information Center

    Acar, Ömer; Patton, Bruce R.

    2016-01-01

    This study had two research purposes. First, we examined the scientific reasoning gains of prospective science teachers who are concrete, formal, and postformal reasoners in an argumentation-based physics inquiry instruction. Second, we sought conceptual knowledge and achievement gaps between these student groups before and after the instruction.…

  8. An Investigation of University Student and K-12 Teacher Reasoning about Key Ideas in the Development of the Particulate Nature of Matter

    ERIC Educational Resources Information Center

    Robertson, Amy D.

    2011-01-01

    This dissertation describes a systematic investigation of university student and K-12 teacher reasoning about key ideas relevant to the development of a particulate model for matter. Written assessments and individual demonstration interviews have been used to study the reasoning of introductory and sophomore-level physics students, introductory…

  9. Microwave Passive Ground-Based Retrievals of Cloud and Rain Liquid Water Path in Drizzling Clouds: Challenges and Possibilities

    DOE PAGES

    Cadeddu, Maria P.; Marchand, Roger; Orlandi, Emiliano; ...

    2017-08-11

    Satellite and ground-based microwave radiometers are routinely used for the retrieval of liquid water path (LWP) under all atmospheric conditions. The retrieval of water vapor and LWP from ground-based radiometers during rain has proved to be a difficult challenge for two principal reasons: the inadequacy of the nonscattering approximation in precipitating clouds and the deposition of rain drops on the instrument's radome. In this paper, we combine model computations and real ground-based, zenith-viewing passive microwave radiometer brightness temperature measurements to investigate how total, cloud, and rain LWP retrievals are affected by assumptions on the cloud drop size distribution (DSD) andmore » under which conditions a nonscattering approximation can be considered reasonably accurate. Results show that until the drop effective diameter is larger than similar to 200 mu m, a nonscattering approximation yields results that are still accurate at frequencies less than 90 GHz. For larger drop sizes, it is shown that higher microwave frequencies contain useful information that can be used to separate cloud and rain LWP provided that the vertical distribution of hydrometeors, as well as the DSD, is reasonably known. The choice of the DSD parameters becomes important to ensure retrievals that are consistent with the measurements. A physical retrieval is tested on a synthetic data set and is then used to retrieve total, cloud, and rain LWP from radiometric measurements during two drizzling cases at the atmospheric radiation measurement Eastern North Atlantic site.« less

  10. Microwave Passive Ground-Based Retrievals of Cloud and Rain Liquid Water Path in Drizzling Clouds: Challenges and Possibilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadeddu, Maria P.; Marchand, Roger; Orlandi, Emiliano

    Satellite and ground-based microwave radiometers are routinely used for the retrieval of liquid water path (LWP) under all atmospheric conditions. The retrieval of water vapor and LWP from ground-based radiometers during rain has proved to be a difficult challenge for two principal reasons: the inadequacy of the nonscattering approximation in precipitating clouds and the deposition of rain drops on the instrument's radome. In this paper, we combine model computations and real ground-based, zenith-viewing passive microwave radiometer brightness temperature measurements to investigate how total, cloud, and rain LWP retrievals are affected by assumptions on the cloud drop size distribution (DSD) andmore » under which conditions a nonscattering approximation can be considered reasonably accurate. Results show that until the drop effective diameter is larger than similar to 200 mu m, a nonscattering approximation yields results that are still accurate at frequencies less than 90 GHz. For larger drop sizes, it is shown that higher microwave frequencies contain useful information that can be used to separate cloud and rain LWP provided that the vertical distribution of hydrometeors, as well as the DSD, is reasonably known. The choice of the DSD parameters becomes important to ensure retrievals that are consistent with the measurements. A physical retrieval is tested on a synthetic data set and is then used to retrieve total, cloud, and rain LWP from radiometric measurements during two drizzling cases at the atmospheric radiation measurement Eastern North Atlantic site.« less

  11. Automated modal parameter estimation using correlation analysis and bootstrap sampling

    NASA Astrophysics Data System (ADS)

    Yaghoubi, Vahid; Vakilzadeh, Majid K.; Abrahamsson, Thomas J. S.

    2018-02-01

    The estimation of modal parameters from a set of noisy measured data is a highly judgmental task, with user expertise playing a significant role in distinguishing between estimated physical and noise modes of a test-piece. Various methods have been developed to automate this procedure. The common approach is to identify models with different orders and cluster similar modes together. However, most proposed methods based on this approach suffer from high-dimensional optimization problems in either the estimation or clustering step. To overcome this problem, this study presents an algorithm for autonomous modal parameter estimation in which the only required optimization is performed in a three-dimensional space. To this end, a subspace-based identification method is employed for the estimation and a non-iterative correlation-based method is used for the clustering. This clustering is at the heart of the paper. The keys to success are correlation metrics that are able to treat the problems of spatial eigenvector aliasing and nonunique eigenvectors of coalescent modes simultaneously. The algorithm commences by the identification of an excessively high-order model from frequency response function test data. The high number of modes of this model provides bases for two subspaces: one for likely physical modes of the tested system and one for its complement dubbed the subspace of noise modes. By employing the bootstrap resampling technique, several subsets are generated from the same basic dataset and for each of them a model is identified to form a set of models. Then, by correlation analysis with the two aforementioned subspaces, highly correlated modes of these models which appear repeatedly are clustered together and the noise modes are collected in a so-called Trashbox cluster. Stray noise modes attracted to the mode clusters are trimmed away in a second step by correlation analysis. The final step of the algorithm is a fuzzy c-means clustering procedure applied to a three-dimensional feature space to assign a degree of physicalness to each cluster. The proposed algorithm is applied to two case studies: one with synthetic data and one with real test data obtained from a hammer impact test. The results indicate that the algorithm successfully clusters similar modes and gives a reasonable quantification of the extent to which each cluster is physical.

  12. Why Presidents Quit.

    ERIC Educational Resources Information Center

    Alton, Bruce T.

    1982-01-01

    Two surveys, taken 10 years apart, describe college presidents' tenure in their positions and their reasons for leaving. Those reasons include achievement of objectives, a longer-than-average term, becoming chancellor, governing board relationships, faculty relations, family needs, physical stamina, retrenchment, and merger. (MSE)

  13. Mechanical Characteristics Analysis of Surrounding Rock on Anchor Bar Reinforcement

    NASA Astrophysics Data System (ADS)

    Gu, Shuan-cheng; Zhou, Pan; Huang, Rong-bin

    2018-03-01

    Through the homogenization method, the composite of rock and anchor bar is considered as the equivalent material of continuous, homogeneous, isotropic and strength parameter enhancement, which is defined as reinforcement body. On the basis of elasticity, the composite and the reinforcement are analyzed, Based on strengthening theory of surrounding rock and displacement equivalent conditions, the expression of reinforcement body strength parameters and mechanical parameters is deduced. The example calculation shows that the theoretical results are close to the results of the Jia-mei Gao[9], however, closer to the results of FLAC3D numerical simulation, it is proved that the model and surrounding rock reinforcement body theory are reasonable. the model is easy to analyze and calculate, provides a new way for determining reasonable bolt support parameters, can also provides reference for the stability analysis of underground cavern bolting support.

  14. Student Reasoning about Graphs in Different Contexts

    ERIC Educational Resources Information Center

    Ivanjek, Lana; Susac, Ana; Planinic, Maja; Andrasevic, Aneta; Milin-Sipus, Zeljka

    2016-01-01

    This study investigates university students' graph interpretation strategies and difficulties in mathematics, physics (kinematics), and contexts other than physics. Eight sets of parallel (isomorphic) mathematics, physics, and other context questions about graphs, which were developed by us, were administered to 385 first-year students at the…

  15. Retrocausal Effects As A Consequence of Orthodox Quantum Mechanics Refined To Accommodate The Principle Of Sufficient Reason

    NASA Astrophysics Data System (ADS)

    Stapp, Henry P.

    2011-11-01

    The principle of sufficient reason asserts that anything that happens does so for a reason: no definite state of affairs can come into being unless there is a sufficient reason why that particular thing should happen. This principle is usually attributed to Leibniz, although the first recorded Western philosopher to use it was Anaximander of Miletus. The demand that nature be rational, in the sense that it be compatible with the principle of sufficient reason, conflicts with a basic feature of contemporary orthodox physical theory, namely the notion that nature's response to the probing action of an observer is determined by pure chance, and hence on the basis of absolutely no reason at all. This appeal to pure chance can be deemed to have no rational fundamental place in reason-based Western science. It is argued here, on the basis of the other basic principles of quantum physics, that in a world that conforms to the principle of sufficient reason, the usual quantum statistical rules will naturally emerge at the pragmatic level, in cases where the reason behind nature's choice of response is unknown, but that the usual statistics can become biased in an empirically manifest way when the reason for the choice is empirically identifiable. It is shown here that if the statistical laws of quantum mechanics were to be biased in this way then the basically forward-in-time unfolding of empirical reality described by orthodox quantum mechanics would generate the appearances of backward-time-effects of the kind that have been reported in the scientific literature.

  16. Reasons for homicide and suicide in episodes by dyadic death in Yorkshire and Humberside.

    PubMed

    Milroy, C M

    1995-07-01

    Fifty-two episodes of homicide-suicide were examined to determine the reasons behind the episodes. Forty-nine of the assailants were male. The major reason for homicide-suicide was breakdown in a relationship (46%), the victim usually being the spouse. Mental illness was the second commonest reason (21%). Physical ill health (11%) and financial stress (10%) were important reasons in older couples. Criminal behaviour was the reason in 11% of cases. Alcohol was detected in 15 (29%) of assailants, with 10 (19%) having a blood-alcohol level over 100mg/100ml. The results are compared with other published studies.

  17. 10 CFR 63.304 - Reasonable expectation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REPOSITORY AT YUCCA MOUNTAIN, NEVADA Postclosure Public Health and Environmental Standards § 63.304... uncertainties in making long-term projections of the performance of the Yucca Mountain disposal system; (3) Does... the full range of defensible and reasonable parameter distributions rather than only upon extreme...

  18. 10 CFR 63.304 - Reasonable expectation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REPOSITORY AT YUCCA MOUNTAIN, NEVADA Postclosure Public Health and Environmental Standards § 63.304... uncertainties in making long-term projections of the performance of the Yucca Mountain disposal system; (3) Does... the full range of defensible and reasonable parameter distributions rather than only upon extreme...

  19. 10 CFR 63.304 - Reasonable expectation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REPOSITORY AT YUCCA MOUNTAIN, NEVADA Postclosure Public Health and Environmental Standards § 63.304... uncertainties in making long-term projections of the performance of the Yucca Mountain disposal system; (3) Does... the full range of defensible and reasonable parameter distributions rather than only upon extreme...

  20. 10 CFR 63.304 - Reasonable expectation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REPOSITORY AT YUCCA MOUNTAIN, NEVADA Postclosure Public Health and Environmental Standards § 63.304... uncertainties in making long-term projections of the performance of the Yucca Mountain disposal system; (3) Does... the full range of defensible and reasonable parameter distributions rather than only upon extreme...

  1. 10 CFR 63.304 - Reasonable expectation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REPOSITORY AT YUCCA MOUNTAIN, NEVADA Postclosure Public Health and Environmental Standards § 63.304... uncertainties in making long-term projections of the performance of the Yucca Mountain disposal system; (3) Does... the full range of defensible and reasonable parameter distributions rather than only upon extreme...

  2. Cutoffs of Short-Term Heart Rate Variability Parameters in Brazilian Adolescents Male.

    PubMed

    Farah, Breno Quintella; Christofaro, Diego Giulliano Destro; Cavalcante, Bruno Remígio; Andrade-Lima, Aluísio; Germano-Soares, Antonio Henrique; Vanderlei, Luiz Carlos Marques; Lanza, Fernanda Cordoba; Ritti-Dias, Raphael Mendes

    2018-05-15

    A low heart rate variability (HRV) has been associated with cardiovascular risk factors in adolescents. However, no cut-off points are known for HRV parameters in this age group, making it difficult to use in clinical practice. Thus, the aims of the current study were to establish cutoffs of HRV parameters and to examine their association with cardiovascular risk in Brazilian adolescents male. For this reason, this cross-sectional study included 1152 adolescent boys (16.6 ± 1.2 years old). HRV measures of time (SD of all RR intervals, root mean square of the squared differences between adjacent normal RR intervals, and the percentage of adjacent intervals over 50 ms), frequency domains [low (LF) and high (HF) frequency], and Poincaré plot (SD1, SD2 and SD1/SD2 ratio) were assessed. Cardiovascular risk was assessed by sum of abdominal obesity, high blood pressure, overweight, and low physical activity level. The proposed cutoffs showed moderate to high sensitivity, specificity, and area under curve values (p < 0.05). HRV frequency parameters were statistically superior when compared to time-domain and Poincaré plot parameters. The binary logistic regression analysis indicated that all proposed HRV cutoffs were independently associated with a clustering of cardiovascular risk factors, with greater magnitude of HF and SD1/SD2 ratio (two or more risk factors: OR = 3.59 and 95% CI 1.76-7.34). In conclusion, proposed HRV cutoffs have moderate to high sensitivity in detecting of the cardiovascular risk factor and HRV frequency-domain were better discriminants of cardiovascular risk than time-domain and Poincaré plot parameters.

  3. Anharmonic interatomic force constants and thermal conductivity from Grüneisen parameters: An application to graphene

    NASA Astrophysics Data System (ADS)

    Lee, Ching Hua; Gan, Chee Kwan

    2017-07-01

    Phonon-mediated thermal conductivity, which is of great technological relevance, arises due fundamentally to anharmonic scattering from interatomic potentials. Despite its prevalence, accurate first-principles calculations of thermal conductivity remain challenging, primarily due to the high computational cost of anharmonic interatomic force constant (IFC) calculations. Meanwhile, the related anharmonic phenomenon of thermal expansion is much more tractable, being computable from the Grüneisen parameters associated with phonon frequency shifts due to crystal deformations. In this work, we propose an approach for computing the largest cubic IFCs from the Grüneisen parameter data. This allows an approximate determination of the thermal conductivity via a much less expensive route. The key insight is that although the Grüneisen parameters cannot possibly contain all the information on the cubic IFCs, being derivable from spatially uniform deformations, they can still unambiguously and accurately determine the largest and most physically relevant ones. By fitting the anisotropic Grüneisen parameter data along judiciously designed deformations, we can deduce (i.e., reverse-engineer) the dominant cubic IFCs and estimate three-phonon scattering amplitudes. We illustrate our approach by explicitly computing the largest cubic IFCs and thermal conductivity of graphene, especially for its out-of-plane (flexural) modes that exhibit anomalously large anharmonic shifts and thermal conductivity contributions. Our calculations on graphene not only exhibit reasonable agreement with established density-functional theory results, but they also present a pedagogical opportunity for introducing an elegant analytic treatment of the Grüneisen parameters of generic two-band models. Our approach can be readily extended to more complicated crystalline materials with nontrivial anharmonic lattice effects.

  4. Probabilistic calibration of the SPITFIRE fire spread model using Earth observation data

    NASA Astrophysics Data System (ADS)

    Gomez-Dans, Jose; Wooster, Martin; Lewis, Philip; Spessa, Allan

    2010-05-01

    There is a great interest in understanding how fire affects vegetation distribution and dynamics in the context of global vegetation modelling. A way to include these effects is through the development of embedded fire spread models. However, fire is a complex phenomenon, thus difficult to model. Statistical models based on fire return intervals, or fire danger indices need large amounts of data for calibration, and are often prisoner to the epoch they were calibrated to. Mechanistic models, such as SPITFIRE, try to model the complete fire phenomenon based on simple physical rules, making these models mostly independent of calibration data. However, the processes expressed in models such as SPITFIRE require many parameters. These parametrisations are often reliant on site-specific experiments, or in some other cases, paremeters might not be measured directly. Additionally, in many cases, changes in temporal and/or spatial resolution result in parameters becoming effective. To address the difficulties with parametrisation and the often-used fitting methodologies, we propose using a probabilistic framework to calibrate some areas of the SPITFIRE fire spread model. We calibrate the model against Earth Observation (EO) data, a global and ever-expanding source of relevant data. We develop a methodology that tries to incorporate the limitations of the EO data, reasonable prior values for parameters and that results in distributions of parameters, which can be used to infer uncertainty due to parameter estimates. Additionally, the covariance structure of parameters and observations is also derived, whcih can help inform data gathering efforts and model development, respectively. For this work, we focus on Southern African savannas, an important ecosystem for fire studies, and one with a good amount of EO data relevnt to fire studies. As calibration datasets, we use burned area data, estimated number of fires and vegetation moisture dynamics.

  5. Cross-cultural similarities and differences in person-body reasoning: experimental evidence from the United Kingdom and Brazilian Amazon.

    PubMed

    Cohen, Emma; Burdett, Emily; Knight, Nicola; Barrett, Justin

    2011-01-01

    We report the results of a cross-cultural investigation of person-body reasoning in the United Kingdom and northern Brazilian Amazon (Marajó Island). The study provides evidence that directly bears upon divergent theoretical claims in cognitive psychology and anthropology, respectively, on the cognitive origins and cross-cultural incidence of mind-body dualism. In a novel reasoning task, we found that participants across the two sample populations parsed a wide range of capacities similarly in terms of the capacities' perceived anchoring to bodily function. Patterns of reasoning concerning the respective roles of physical and biological properties in sustaining various capacities did vary between sample populations, however. Further, the data challenge prior ad-hoc categorizations in the empirical literature on the developmental origins of and cognitive constraints on psycho-physical reasoning (e.g., in afterlife concepts). We suggest cross-culturally validated categories of "Body Dependent" and "Body Independent" items for future developmental and cross-cultural research in this emerging area. Copyright © 2011 Cognitive Science Society, Inc.

  6. [Correlation between physical characteristics of sticks and quality of traditional Chinese medicine pills prepared by plastic molded method].

    PubMed

    Wang, Ling; Xian, Jiechen; Hong, Yanlong; Lin, Xiao; Feng, Yi

    2012-05-01

    To quantify the physical characteristics of sticks of traditional Chinese medicine (TCM) honeyed pills prepared by the plastic molded method and the correlation of adhesiveness and plasticity-related parameters of sticks and quality of pills, in order to find major parameters and the appropriate range impacting pill quality. Sticks were detected by texture analyzer for their physical characteristic parameters such as hardness and compression action, and pills were observed by visual evaluation for their quality. The correlation of both data was determined by the stepwise discriminant analysis. Stick physical characteristic parameter l(CD) can exactly depict the adhesiveness, with the discriminant equation of Y0 - Y1 = 6.415 - 41.594l(CD). When Y0 < Y1, pills were scattered well; when Y0 > Y1, pills were adhesive with each other. Pills' physical characteristic parameters l(CD) and l(AC), Ar, Tr can exactly depict smoothness of pills, with the discriminant equation of Z0 - Z1 = -195.318 + 78.79l(AC) - 3 258. 982Ar + 3437.935Tr. When Z0 < Z1, pills were smooth on surface. When Z0 > Z1, pills were rough on surface. The stepwise discriminant analysis is made to show the obvious correlation between key physical characteristic parameters l(CD) and l(AC), Ar, Tr of sticks and appearance quality of pills, defining the molding process for preparing pills by the plastic molded and qualifying ranges of key physical characteristic parameters characterizing intermediate sticks, in order to provide theoretical basis for prescription screening and technical parameter adjustment for pills.

  7. Randomness in quantum mechanics: philosophy, physics and technology.

    PubMed

    Bera, Manabendra Nath; Acín, Antonio; Kuś, Marek; Mitchell, Morgan W; Lewenstein, Maciej

    2017-12-01

    This progress report covers recent developments in the area of quantum randomness, which is an extraordinarily interdisciplinary area that belongs not only to physics, but also to philosophy, mathematics, computer science, and technology. For this reason the article contains three parts that will be essentially devoted to different aspects of quantum randomness, and even directed, although not restricted, to various audiences: a philosophical part, a physical part, and a technological part. For these reasons the article is written on an elementary level, combining simple and non-technical descriptions with a concise review of more advanced results. In this way readers of various provenances will be able to gain while reading the article.

  8. Randomness in quantum mechanics: philosophy, physics and technology

    NASA Astrophysics Data System (ADS)

    Nath Bera, Manabendra; Acín, Antonio; Kuś, Marek; Mitchell, Morgan W.; Lewenstein, Maciej

    2017-12-01

    This progress report covers recent developments in the area of quantum randomness, which is an extraordinarily interdisciplinary area that belongs not only to physics, but also to philosophy, mathematics, computer science, and technology. For this reason the article contains three parts that will be essentially devoted to different aspects of quantum randomness, and even directed, although not restricted, to various audiences: a philosophical part, a physical part, and a technological part. For these reasons the article is written on an elementary level, combining simple and non-technical descriptions with a concise review of more advanced results. In this way readers of various provenances will be able to gain while reading the article.

  9. The effects of an integrated Algebra 1/physical science curriculum on student achievement in Algebra 1, proportional reasoning and graphing abilities

    NASA Astrophysics Data System (ADS)

    Lawrence, Lettie Carol

    1997-08-01

    The purpose of this investigation was to determine if an integrated curriculum in algebra 1/physical science facilitates acquisition of proportional reasoning and graphing abilities better than a non-integrated, traditional, algebra 1 curriculum. Also, this study was to ascertain if the integrated algebra 1/physical science curriculum resulted in greater student achievement in algebra 1. The curriculum used in the experimental class was SAM 9 (Science and Mathematics 9), an investigation-based curriculum that was written to integrate physical science and basic algebra content. The experiment was conducted over one school year. The subjects in the study were 61 ninth grade students. The experimental group consisted of one class taught concurrently by a mathematics teacher and a physical science teacher. The control group consisted of three classes of algebra 1 students taught by one mathematics teacher and taking physical science with other teachers in the school who were not participating in the SAM 9 program. This study utilized a quasi-experimental non-randomized control group pretest-posttest design. The investigator obtained end-of-algebra 1 scores from student records. The written open-ended graphing instruments and the proportional reasoning instrument were administered to both groups as pretests and posttests. The graphing instruments were also administered as a midtest. A two sample t-test for independent means was used to determine significant differences in achievement on the end-of-course algebra 1 test. Quantitative data from the proportional reasoning and graphing instruments were analyzed using a repeated measures analysis of variance to determine differences in scores over time for the experimental and control groups. The findings indicate no significant difference between the experimental and control groups on the end-of-course algebra 1 test. Results also indicate no significant differences in proportional reasoning and graphing abilities between the two groups over time. However, all subjects (experimental and control groups) made significant improvement in graphing abilities over one school year. In this study, students participating in an investigation-based curriculum integrating algebra 1 and physical science performed as well on the instruments as the students in the traditional curriculum. Therefore, an argument can be made that instruction using an integrated curriculum (algebra l/physical science) is a viable alternative to instruction using a more traditional algebra 1 curriculum. Finally, the integrated curriculum adheres to the constructivist theoretical perspective (Krupnik-Gotlieb, 1995) and is more consistent with recommendations in the NCTM Standards (1992) than the traditional curriculum.

  10. Construct validity of the Health Science Reasoning Test.

    PubMed

    Huhn, Karen; Black, Lisa; Jensen, Gail M; Deutsch, Judith E

    2011-01-01

    The aim of this study was to evaluate the construct validity of the Health Science Reasoning Test (HSRT) by determining if the test could discriminate between expert and novice physical therapists' critical-thinking skills. Experts identified from a random list of certified clinical specialists and students in the first year of their physical therapy education from two physical therapy programs completed the HSRT. Experts (n = 73) had a higher total HSRT score (mean 24.06, SD 3.92) than the novices (n = 79) (mean 22.49, SD 3.2), with the difference being statistically significant t (148) = 2.67, p = 0.008. The HSRT total score discriminated between expert and novice critical-thinking skills, therefore establishing construct validity. To our knowledge, this is the first study to compare expert and novice performance on a standardized test. The opportunity to have a tool that provides evidence of students' critical thinking skills could be helpful for educators and students. The test results could aid in identifying areas of students' strengths and weaknesses, thereby enabling targeted remediation to improve critical thinking skills, which are key factors in clinical reasoning, a necessary skill for effective physical therapy practice.

  11. M. Hildred Blewett and the Blewett Scholarship

    NASA Astrophysics Data System (ADS)

    Whitten, Barbara

    2011-03-01

    M. Hildred Blewett became a physicist at a time when few women were physicists. After beginning her career at General Electric, she became a respected accelerator physicist, working at Brookhaven, Argonne, and eventually CERN. Blewett was married for a time to John Blewett, another accelerator physicist, but the couple divorced without children and she never remarried. She felt that her career in physics was hampered by her gender, and when she died in 2004 at the age of 93, she left the bulk of her estate to the American Physical Society, to found a Scholarship for women in physics. Since 2005 the Blewett Scholarship has been awarded to women in physics who are returning to physics after a career break, usually for family reasons. Family/career conflicts are one of the most important reasons why young women in early careers leave physics---a loss for them as well as the physics community, which has invested time and money in their training. The Blewett Scholarship is one way for the physics community, under the leadership of CSWP, to help these young women resume their careers. I will discuss the life and work of Hildred Blewett, the Blewett Scholarship, and its benefits to the physics community.

  12. A Pilot Survey of Physical Activity in Men with an Intellectual Disability

    ERIC Educational Resources Information Center

    McKeon, Michael; Slevin, Eamonn; Taggart, Laurence

    2013-01-01

    People with intellectual disability (ID) are reported as a sedentary population with increased risks of poor health due to an inactive and sedentary lifestyle. As the benefits of physical activity are acknowledged, measuring physical activity accurately is important to help identify reasons for low and high physical activity in order to assist and…

  13. Using Interviews and Peer Pairs to Better Understand How School Environments Affect Young Children's Playground Physical Activity Levels: A Qualitative Study

    ERIC Educational Resources Information Center

    Parrish, Anne-Maree; Yeatman, Heather; Iverson, Don; Russell, Ken

    2012-01-01

    School break times provide a daily opportunity for children to be active; however, research indicates this time is underutilized. Reasons for low children's playground activity levels have primarily focused on physical barriers. This research aimed to contribute to physical environmental findings affecting children's playground physical activity…

  14. What Do Pre-Service Physics Teachers Know and Think about Concept Mapping?

    ERIC Educational Resources Information Center

    Didis, Nilüfer; Özcan, Özgür; Azar, Ali

    2014-01-01

    In order to use concept maps in physics classes effectively, teachers' knowledge and ideas about concept mapping are as important as the physics knowledge used in mapping. For this reason, we aimed to examine pre-service physics teachers' knowledge on concept mapping, their ideas about the implementation of concept mapping in physics…

  15. Consequences of using different soil texture determination methodologies for soil physical quality and unsaturated zone time lag estimates

    NASA Astrophysics Data System (ADS)

    Fenton, O.; Vero, S.; Ibrahim, T. G.; Murphy, P. N. C.; Sherriff, S. C.; Ó hUallacháin, D.

    2015-11-01

    Elucidation of when the loss of pollutants, below the rooting zone in agricultural landscapes, affects water quality is important when assessing the efficacy of mitigation measures. Investigation of this inherent time lag (tT) is divided into unsaturated (tu) and saturated (ts) components. The duration of these components relative to each other differs depending on soil characteristics and the landscape position. The present field study focuses on tu estimation in a scenario where the saturated zone is likely to constitute a higher proportion of tT. In such instances, or where only initial breakthrough (IBT) or centre of mass (COM) is of interest, utilisation of site and depth specific "simple" textural class or actual sand-silt-clay percentages to generate soil water characteristic curves with associated soil hydraulic parameters is acceptable. With the same data it is also possible to estimate a soil physical quality (S) parameter for each soil layer which can be used to infer many other physical, chemical and biological quality indicators. In this study, hand texturing in the field was used to determine textural classes of a soil profile. Laboratory methods, including hydrometer, pipette and laser diffraction methods were used to determine actual sand-silt-clay percentages of sections of the same soil profile. Results showed that in terms of S, hand texturing resulted in a lower index value (inferring a degraded soil) than that of pipette, hydrometer and laser equivalents. There was no difference between S index values determined using the pipette, hydrometer and laser diffraction methods. The difference between the three laboratory methods on both the IBT and COM stages of tu were negligible, and in this instance were unlikely to affect either groundwater monitoring decisions, or to be of consequence from a policy perspective. When tu estimates are made over the full depth of the vadose zone, which may extend to several metres, errors resulting from the use of hydraulic parameters generated from hand texture data will be resultantly greater, and may lead to flawed predictions regarding the achievability of water policy targets. For this reason laboratory analysis, regardless of method, should be preferred to simple field assessments.

  16. Air Pollution Instrumentation: A Trend toward Physical Methods

    ERIC Educational Resources Information Center

    Maugh, Thomas H., II

    1972-01-01

    Reviews reasons for the trend from wet chemical'' analytic techniques for measuring air pollutants toward physical methods based upon chemiluminescence, electrochemical transduction, flame ionization coupled with gas chromotography, and spectroscopy. (AL)

  17. Microbiological parameters and maturity degree during composting of Posidonia oceanica residues mixed with vegetable wastes in semi-arid pedo-climatic condition.

    PubMed

    Saidi, Neyla; Kouki, Soulwene; M'hiri, Fadhel; Jedidi, Naceur; Mahrouk, Meriam; Hassen, Abdennaceur; Ouzari, Hadda

    2009-01-01

    The aim of this study was to characterize the biological stability and maturity degree of compost during a controlled pile-composting trial of mixed vegetable residues (VR) collected from markets of Tunis City with residues of Posidonia oceanica (PoR), collected from Tunis beaches. The accumulation in beaches (as well as their removal) constitutes a serious environmental problem in all Mediterranean countries particularly in Tunisia. Aerobic-thermophilic composting is the most reasonable way to profit highly-valuable content of organic matter in these wastes for agricultural purposes. The physical, chemical, and biological parameters were monitored during composting over 150 d. The most appropriate parameters were selected to establish the maturity degree. The main result of this research was the deduction of the following maturity criterion: (a) C/N ratio < 15; (b) NH4+-N < 400 mg/kg; (c) CO2-C < 2000 mg CO2-C/kg; (d) dehydrogenase activity < 1 mg TPF/g dry matter; (e) germination index (GI) > 80%. These five parameters, considered jointly are indicative of a high maturity degree and thus of a high-quality organic amendment which employed in a rational way, may improve soil fertility and soil quality. The mature compost was relatively rich in N (13.0 g/kg), P (4.74 g/kg) and MgO (15.80 g/kg). Thus composting definitively constitutes the most optimal option to exploit these wastes.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Chang; Deng, Na; Wang, Haimin

    Adverse space-weather effects can often be traced to solar flares, the prediction of which has drawn significant research interests. The Helioseismic and Magnetic Imager (HMI) produces full-disk vector magnetograms with continuous high cadence, while flare prediction efforts utilizing this unprecedented data source are still limited. Here we report results of flare prediction using physical parameters provided by the Space-weather HMI Active Region Patches (SHARP) and related data products. We survey X-ray flares that occurred from 2010 May to 2016 December and categorize their source regions into four classes (B, C, M, and X) according to the maximum GOES magnitude ofmore » flares they generated. We then retrieve SHARP-related parameters for each selected region at the beginning of its flare date to build a database. Finally, we train a machine-learning algorithm, called random forest (RF), to predict the occurrence of a certain class of flares in a given active region within 24 hr, evaluate the classifier performance using the 10-fold cross-validation scheme, and characterize the results using standard performance metrics. Compared to previous works, our experiments indicate that using the HMI parameters and RF is a valid method for flare forecasting with fairly reasonable prediction performance. To our knowledge, this is the first time that RF has been used to make multiclass predictions of solar flares. We also find that the total unsigned quantities of vertical current, current helicity, and flux near the polarity inversion line are among the most important parameters for classifying flaring regions into different classes.« less

  19. Changes in Attitudes of P.S.S.C. Physics Students: A Second Look

    ERIC Educational Resources Information Center

    Gardner, P. L.

    1973-01-01

    Reports data which provide a partial replication of an earlier study of changes in attitudes of Physical Science Study Committee (PSSC) physics students. Data from the present research failed to support earlier findings. Several reasons for the discrepancies are advanced. (JR)

  20. The Pythagorean Roots of Introductory Physics

    ERIC Educational Resources Information Center

    Clarage, James B.

    2013-01-01

    Much of the mathematical reasoning employed in the typical introductory physics course can be traced to Pythagorean roots planted over two thousand years ago. Besides obvious examples involving the Pythagorean theorem, I draw attention to standard physics problems and derivations which often unknowingly rely upon the Pythagoreans' work on…

  1. Survey of Voyager plasma science ions at Jupiter: 1. Analysis method

    NASA Astrophysics Data System (ADS)

    Bagenal, F.; Dougherty, L. P.; Bodisch, K. M.; Richardson, J. D.; Belcher, J. M.

    2017-08-01

    The Voyagers 1 and 2 spacecraft flew by Jupiter in March and July of 1979, respectively. The Plasma Science instrument (PLS) acquired detailed measurements of the plasma environment in the equatorial region of the magnetosphere between 4.9 and 4 RJ. While bulk plasma properties such as charge density, ion temperature, and bulk flow were reasonably well determined, the ion composition was only well constrained in occasional regions of cold plasma. The ion data obtained by the PLS instrument have been reanalyzed using physical chemistry models to constrain the composition and reduce the number of free parameters, particularly in regions of hotter plasma. This paper describes the method used for fitting the plasma data and presents the results versus time. Two companion papers describe the composition of heavy ions and present analysis of protons plus other minor ions.

  2. Fracture as a material sink

    NASA Astrophysics Data System (ADS)

    Volokh, K. Y.

    2017-12-01

    Cracks are created by massive breakage of molecular or atomic bonds. The latter, in its turn, leads to the highly localized loss of material, which is the reason why even closed cracks are visible by a naked eye. Thus, fracture can be interpreted as the local material sink. Mass conservation is violated locally in the area of material failure. We consider a theoretical formulation of the coupled mass and momenta balance equations for a description of fracture. Our focus is on brittle fracture and we propose a finite strain hyperelastic thermodynamic framework for the coupled mass-flow-elastic boundary value problem. The attractiveness of the proposed framework as compared to the traditional continuum damage theories is that no internal parameters (like damage variables, phase fields, etc.) are used while the regularization of the failure localization is provided by the physically sound law of mass balance.

  3. Theoretical topics in B-physics

    NASA Astrophysics Data System (ADS)

    Bjorken, James D.

    1990-12-01

    The bottom quark should need no introduction. Other than the undiscovered top quark, it is by far the most fashionable of the six. There is good reason for this. It is bottom-quark behavior which holds out the most hope of measuring and understanding some of the most fundamental and delicate parameters of the standard model -- those having to do with the origin of electroweak mixing - and thereby in all probability also the origin of quark mass. Also interwoven into this is the subject of CP violation, and its proposed interpretation in terms of electroweak mixing. In this section we shall review the basics of electroweak mixing and how it is impacted by the study of b-quark properties. There are by now many lecture series and workshop proceedings devoted to this topic, so I will not try to be comprehensive, but only hit some highlights.

  4. Partially-Averaged Navier Stokes Model for Turbulence: Implementation and Validation

    NASA Technical Reports Server (NTRS)

    Girimaji, Sharath S.; Abdol-Hamid, Khaled S.

    2005-01-01

    Partially-averaged Navier Stokes (PANS) is a suite of turbulence closure models of various modeled-to-resolved scale ratios ranging from Reynolds-averaged Navier Stokes (RANS) to Navier-Stokes (direct numerical simulations). The objective of PANS, like hybrid models, is to resolve large scale structures at reasonable computational expense. The modeled-to-resolved scale ratio or the level of physical resolution in PANS is quantified by two parameters: the unresolved-to-total ratios of kinetic energy (f(sub k)) and dissipation (f(sub epsilon)). The unresolved-scale stress is modeled with the Boussinesq approximation and modeled transport equations are solved for the unresolved kinetic energy and dissipation. In this paper, we first present a brief discussion of the PANS philosophy followed by a description of the implementation procedure and finally perform preliminary evaluation in benchmark problems.

  5. Multiscale modeling of shock wave localization in porous energetic material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock wavesmore » interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nekkab, M., E-mail: mohammed-nekkab@yahoo.com; LESIMS laboratory, Physics Department, Faculty of Sciences, University of Setif 1, 19000 Setif; Kahoul, A.

    The analytical methods based on X-ray fluorescence are advantageous for practical applications in a variety of fields including atomic physics, X-ray fluorescence surface chemical analysis and medical research and so the accurate fluorescence yields (ω{sub K}) are required for these applications. In this contribution we report a new parameters for calculation of K-shell fluorescence yields (ω{sub K}) of elements in the range of 11≤Z≤30. The experimental data are interpolated by using the famous analytical function (ω{sub k}/(1−ω{sub k})){sup 1/q} (were q=3, 3.5 and 4) vs Z to deduce the empirical K-shell fluorescence yields. A comparison is made between the resultsmore » of the procedures followed here and those theoretical and other semi-empirical fluorescence yield values. Reasonable agreement was typically obtained between our result and other works.« less

  7. Physical Vapor Transport of Mercurous Chloride Crystals: Design of a Microgravity Experiment

    NASA Technical Reports Server (NTRS)

    Duval, W, M. B.; Singh, N. B.; Glicksman, M. E.

    1997-01-01

    Flow field characteristics predicted from a computational model show that the dynamical state of the flow, for practical crystal growth conditions of mercurous chloride, can range from steady to unsteady. Evidence that the flow field can be strongly dominated by convection for ground-based conditions is provided by the prediction of asymmetric velocity profiles bv the model which show reasonable agreement with laser Doppler velocimetry experiments in both magnitude and planform. Unsteady flow is shown to be correlated with a degradation of crystal quality as quantified by light scattering pattern measurements, A microgravity experiment is designed to show that an experiment performed with parameters which yield an unsteady flow becomes steady (diffusive-advective) in a microgravity environment of 10(exp -3) g(sub 0) as predicted by the model, and hence yields crystals with optimal quality.

  8. Model of Pressure Distribution in Vortex Flow Controls

    NASA Astrophysics Data System (ADS)

    Mielczarek, Szymon; Sawicki, Jerzy M.

    2015-06-01

    Vortex valves belong to the category of hydrodynamic flow controls. They are important and theoretically interesting devices, so complex from hydraulic point of view, that probably for this reason none rational concept of their operation has been proposed so far. In consequence, functioning of vortex valves is described by CFD-methods (computer-aided simulation of technical objects) or by means of simple empirical relations (using discharge coefficient or hydraulic loss coefficient). Such rational model of the considered device is proposed in the paper. It has a simple algebraic form, but is well grounded physically. The basic quantitative relationship, which describes the valve operation, i.e. dependence between the flow discharge and the circumferential pressure head, caused by the rotation, has been verified empirically. Conformity between calculated and measured parameters of the device allows for acceptation of the proposed concept.

  9. Effect of damping on the laser induced ultrafast switching in rare earth-transition metal alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oniciuc, Eugen; Stoleriu, Laurentiu; Cimpoesu, Dorin

    2014-06-02

    In this paper, we present simulations of thermally induced magnetic switching in ferrimagnetic systems performed with a Landau-Lifshitz-Bloch (LLB) equation for damping constant in a wide range of values. We have systematically studied the GdFeCo ferrimagnet with various concentrations of Gd and compared for some values of parameters the LLB results with atomistic simulations. The agreement is remarkably good, which shows that the dynamics described by the ferrimagnetic LLB is a reasonable approximation of this complex physical phenomenon. As an important element, we show that the LLB is able to also describe the intermediate formation of a ferromagnetic state whichmore » seems to be essential to understand laser induced ultrafast switching. The study reveals the fundamental role of damping during the switching process.« less

  10. Investigation of radiative interaction in laminar flows using Monte Carlo simulation

    NASA Technical Reports Server (NTRS)

    Liu, Jiwen; Tiwari, S. N.

    1993-01-01

    The Monte Carlo method (MCM) is employed to study the radiative interactions in fully developed laminar flow between two parallel plates. Taking advantage of the characteristics of easy mathematical treatment of the MCM, a general numerical procedure is developed for nongray radiative interaction. The nongray model is based on the statistical narrow band model with an exponential-tailed inverse intensity distribution. To validate the Monte Carlo simulation for nongray radiation problems, the results of radiative dissipation from the MCM are compared with two available solutions for a given temperature profile between two plates. After this validation, the MCM is employed to solve the present physical problem and results for the bulk temperature are compared with available solutions. In general, good agreement is noted and reasons for some discrepancies in certain ranges of parameters are explained.

  11. Calculation of K-shell fluorescence yields for low-Z elements

    NASA Astrophysics Data System (ADS)

    Nekkab, M.; Kahoul, A.; Deghfel, B.; Aylikci, N. Küp; Aylikçi, V.

    2015-03-01

    The analytical methods based on X-ray fluorescence are advantageous for practical applications in a variety of fields including atomic physics, X-ray fluorescence surface chemical analysis and medical research and so the accurate fluorescence yields (ωK) are required for these applications. In this contribution we report a new parameters for calculation of K-shell fluorescence yields (ωK) of elements in the range of 11≤Z≤30. The experimental data are interpolated by using the famous analytical function (ωk/(1 -ωk)) 1 /q (were q=3, 3.5 and 4) vs Z to deduce the empirical K-shell fluorescence yields. A comparison is made between the results of the procedures followed here and those theoretical and other semi-empirical fluorescence yield values. Reasonable agreement was typically obtained between our result and other works.

  12. Efficient Flowline Simulations of Ice Shelf-Ocean Interactions: Sensitivity Studies with a Fully Coupled Model

    NASA Technical Reports Server (NTRS)

    Walker, Ryan Thomas; Holland, David; Parizek, Byron R.; Alley, Richard B.; Nowicki, Sophie M. J.; Jenkins, Adrian

    2013-01-01

    Thermodynamic flowline and plume models for the ice shelf-ocean system simplify the ice and ocean dynamics sufficiently to allow extensive exploration of parameters affecting ice-sheet stability while including key physical processes. Comparison between geophysically and laboratory-based treatments of ice-ocean interface thermodynamics shows reasonable agreement between calculated melt rates, except where steep basal slopes and relatively high ocean temperatures are present. Results are especially sensitive to the poorly known drag coefficient, highlighting the need for additional field experiments to constrain its value. These experiments also suggest that if the ice-ocean interface near the grounding line is steeper than some threshold, further steepening of the slope may drive higher entrainment that limits buoyancy, slowing the plume and reducing melting; if confirmed, this will provide a stabilizing feedback on ice sheets under some circumstances.

  13. Multiscale modeling of shock wave localization in porous energetic material

    DOE PAGES

    Wood, M. A.; Kittell, D. E.; Yarrington, C. D.; ...

    2018-01-30

    Shock wave interactions with defects, such as pores, are known to play a key role in the chemical initiation of energetic materials. The shock response of hexanitrostilbene is studied through a combination of large-scale reactive molecular dynamics and mesoscale hydrodynamic simulations. In order to extend our simulation capability at the mesoscale to include weak shock conditions (< 6 GPa), atomistic simulations of pore collapse are used here to define a strain-rate-dependent strength model. Comparing these simulation methods allows us to impose physically reasonable constraints on the mesoscale model parameters. In doing so, we have been able to study shock wavesmore » interacting with pores as a function of this viscoplastic material response. Finally, we find that the pore collapse behavior of weak shocks is characteristically different than that of strong shocks.« less

  14. Vertex detectors: The state of the art and future prospects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damerell, C.J.S.

    1997-01-01

    We review the current status of vertex detectors (tracking microscopes for the recognition of charm and bottom particle decays). The reasons why silicon has become the dominant detector medium are explained. Energy loss mechanisms are reviewed, as well as the physics and technology of semiconductor devices, emphasizing the areas of most relevance for detectors. The main design options (microstrips and pixel devices, both CCD`s and APS`s) are discussed, as well as the issue of radiation damage, which probably implies the need to change to detector media beyond silicon for some vertexing applications. Finally, the evolution of key performance parameters overmore » the past 15 years is reviewed, and an attempt is made to extrapolate to the likely performance of detectors working at the energy frontier ten years from now.« less

  15. Keno-21: Fundamental Issues in the Design of Geophysical Simulation Experiments and Resource Allocation in Climate Modelling

    NASA Astrophysics Data System (ADS)

    Smith, L. A.

    2001-05-01

    Many sources of uncertainty come into play when modelling geophysical systems by simulation. These include uncertainty in the initial condition, uncertainty in model parameter values (and the parameterisations themselves) and error in the model class from which the model(s) was selected. In recent decades, climate simulations have focused resources on reducing the last of these by including more and more details into the model. One can question when this ``kitchen sink'' approach should be complimented with realistic estimates of the impact from other uncertainties noted above. Indeed while the impact of model error can never be fully quantified, as all simulation experiments are interpreted a the rosy scenario which assumes a priori that nothing crucial is missing, the impact of other uncertainties can be quantified at only the cost of computational power; as illustrated, for example, in ensemble climate modelling experiments like Casino-21. This talk illustrates the interplay uncertainties in the context of a trivial nonlinear system and an ensemble of models. The simple systems considered in this small scale experiment, Keno-21, are meant to illustrate issues of experimental design; they are not intended to provide true climate simulations. The use of simulation models with huge numbers of parameters given limited data is usually justified by an appeal to the Laws of Physics: the number of free degrees-of-freedom are many fewer than the number of variables; both variables, parameterisations, and parameter values are constrained by ``the physics" and the resulting simulation yields a realistic reproduction of the entire planet's climate system to within reasonable bounds. But what bounds? exactly? In a single model run under transient forcing scenario, there are good statistical grounds for considering only large space and time averages; most of these reasons vanish if an ensemble of runs are made. Ensemble runs can quantify the (in)ability of a model to provide insight on regional changes: if a model cannot capture regional variations in the data on which the model was constructed (that is, in-sample) claims that out-of-sample predictions of those same regional averages should be used in policy making are vacuous. While motivated by climate modelling and illustrated on a trivial nonlinear system, these issues have implications across the range of geophysical modelling. These include implications for appropriate resource allocation, on the making of science policy, and on the public understanding of science and the role of uncertainty in decision making.

  16. UFOs and Physical Sciences

    NASA Astrophysics Data System (ADS)

    Teodorani, M.

    1999-03-01

    The psycho-sociological reasons why the academic science is not willing to face operatively and officially a hard problem such as the 'UFO phenomenon', are introduced in the ambit of an episthemological discussion. It is shown how such a phenomenon, due to his peculiar nature, might impose a drastic revision of the laws of physics which are commonly accepted. It is demonstrated how a strict application of the measurement methods which are normally adopted by physics can permit to obtain relevant quantitative results, whatever they are. As an example of such a procedure, the anomalous light phenomenology which reoccurs in the Hessdalen valley in Norway is presented, by showing that it represents so far the ideal worldly physical laboratory for the study of luminous phenomena in the low atmosphere. After describing the multiform morphologic and dynamic characteristics of the luminous component of the phenomenon as they are deduced from visual and photographic reports, the results coming out from the magnetometric, radiometric and radar monitoring operations which were carried out by Project Hessdalen in 1984, are presented in detail. Subsequently, the postumous analysis carried out by the author is shown, by pointing out the clear cohexistence of the magnetic and the optical phenomenology and the apparent correlation of the magnetic component of the phenomenon with maxima of solar activity. In a subsequent phase, the most credited physical theories, which have been proposed so far in order to interpret the phenomenon, are described and discussed, together with 'non-canonical hypotheses'. Finally, it is pointed out how the physical parameters which are expected to be measured with the proper instrumented equipment and aimed tactics and strategies, resemble strictly the methodology which is normally used during astrophysical observations.

  17. Factors Influencing Physical Activity Behavior among Iranian Women with Type 2 Diabetes Using the Extended Theory of Reasoned Action

    PubMed Central

    Didarloo, Alireza; Ardebili, Hassan Eftekhar; Niknami, Shamsaddin; Hajizadeh, Ebrahim; Alizadeh, Mohammad

    2011-01-01

    Background Findings of most studies indicate that the only way to control diabetes and prevent its debilitating effects is through the continuous performance of self-care behaviors. Physical activity is a non-pharmacological method of diabetes treatment and because of its positive effects on diabetic patients, it is being increasingly considered by researchers and practitioners. This study aimed at determining factors influencing physical activity among diabetic women in Iran, using the extended theory of reasoned action in Iran. Methods A sample of 352 women with type 2 diabetes, referring to a Diabetes Clinic in Khoy, Iran, participated in the study. Appropriate instruments were designed to measure the desired variables (knowledge of diabetes, personal beliefs, subjective norms, perceived self-efficacy, behavioral intention and physical activity behavior). The reliability and validity of the instruments were examined and approved. Statistical analyses of the study were conducted by inferential statistical techniques (independent t-test, correlations and regressions) using the SPSS package. Results The findings of this investigation indicated that among the constructs of the model, self efficacy was the strongest predictor of intentions among women with type 2 diabetes and both directly and indirectly affected physical activity. In addition to self efficacy, diabetic patients' physical activity also was influenced by other variables of the model and sociodemographic factors. Conclusion Our findings suggest that the high ability of the theory of reasoned action extended by self-efficacy in forecasting and explaining physical activity can be a base for educational intervention. Educational interventions based on the proposed model are necessary for improving diabetics' physical activity behavior and controlling disease. PMID:22111043

  18. Young Children's Reasoning About Physical & Behavioural Family Resemblance: Is There a Place for a Precursor Model of Inheritance?

    NASA Astrophysics Data System (ADS)

    Ergazaki, Marida; Alexaki, Aspa; Papadopoulou, Chrysa; Kalpakiori, Marieleni

    2014-02-01

    This paper aims at exploring (a) whether preschoolers recognize that offspring share physical traits with their parents due to birth and behavioural ones due to nurture, and (b) whether they seem ready to explain shared physical traits with a `pre-biological' causal model that includes the contribution of both parents and a rudimentary notion of genes. This exploration is supposed to provide evidence for our next step, which is the development of an early years' learning environment about inheritance. Conducting individual, semi-structured interviews with 90 preschoolers (age 4.5-5.5) of four public kindergartens in Patras, we attempted to trace their reasoning about (a) whether and why offspring share physical and behavioural traits with parents and (b) which mechanism could better explain the shared physical traits. The probes were a modified six-case version of Solomon et al. (Child Dev 67:151-171, 1996) `adoption task, as well as a three-case task based on Springer's (Child Dev 66:547-558, 1995) `mechanism task' and on Solomon and Johnson's (Br J Dev Psychol 18(1):81-96, 2000) idea of genes as a `conceptual placeholder'. The qualitative and quantitative analysis of the interviews showed overlapping reasoning about the origin of physical and behavioural family resemblance. Nevertheless, we did trace the `birth-driven' argument for the attribution of the offspring's physical traits to the biological parents, as well as a preference for the `pre-biological' model that introduces a rudimentary idea of genes in order to explain shared physical traits between parents and offspring. The findings of the study and the educational implications are thoroughly discussed.

  19. Properties of iopamidol-incorporated poly(vinyl alcohol) microparticle as an X-ray imaging flow tracer.

    PubMed

    Ahn, Sungsook; Jung, Sung Yong; Lee, Jin Pyung; Lee, Sang Joon

    2011-02-10

    We have recently reported on poly(vinyl alcohol) microparticles containing X-ray contrast agent, iopamidol, designed as a flow tracer working in synchrotron X-ray imaging ( Biosens. Bioelectron. 2010 , 25 , 1571 ). Although iopamidol is physically encapsulated in the microparticles, it displays a great contrast enhancement and stable feasibility in in vitro human blood pool. Nonetheless, a direct relation between the absolute amount of incorporated iopamidol and the enhancement in imaging efficiency was not observed. In this study, physical properties of the designed microparticle are systematically investigated experimentally with theoretical interpretation to correlate an enhancement in X-ray imaging efficiency. The compositional ratio of X-ray contrast agent in polymeric microparticle is controlled as 1/1 and 10/1 [contrast agent/polymer microparticle (w/w)] with changed degree of cross-linkings. Flory-Huggins interaction parameter (χ), retractive force (τ) and degree of swelling of the designed polymeric microparticles are investigated. In addition, the hydrodynamic size (D(H)) and ζ-potential are evaluated in terms of environment responsiveness. The physical properties of the designed flow tracer microparticles under a given condition are observed to be strongly related with the X-ray absorption efficiency, which are also supported by the Beer-Lambert-Bouguer law. The designed microparticles are almost nontoxic with a reasonable concentration and time period, enough to be utilized as a flow tracer in various biomedical applications. This study would contribute to the basic understanding on the physical property connected with the imaging efficiency of contrast agents.

  20. Modeling socio-cultural processes in network-centric environments

    NASA Astrophysics Data System (ADS)

    Santos, Eunice E.; Santos, Eugene, Jr.; Korah, John; George, Riya; Gu, Qi; Kim, Keumjoo; Li, Deqing; Russell, Jacob; Subramanian, Suresh

    2012-05-01

    The major focus in the field of modeling & simulation for network centric environments has been on the physical layer while making simplifications for the human-in-the-loop. However, the human element has a big impact on the capabilities of network centric systems. Taking into account the socio-behavioral aspects of processes such as team building, group decision-making, etc. are critical to realistically modeling and analyzing system performance. Modeling socio-cultural processes is a challenge because of the complexity of the networks, dynamism in the physical and social layers, feedback loops and uncertainty in the modeling data. We propose an overarching framework to represent, model and analyze various socio-cultural processes within network centric environments. The key innovation in our methodology is to simultaneously model the dynamism in both the physical and social layers while providing functional mappings between them. We represent socio-cultural information such as friendships, professional relationships and temperament by leveraging the Culturally Infused Social Network (CISN) framework. The notion of intent is used to relate the underlying socio-cultural factors to observed behavior. We will model intent using Bayesian Knowledge Bases (BKBs), a probabilistic reasoning network, which can represent incomplete and uncertain socio-cultural information. We will leverage previous work on a network performance modeling framework called Network-Centric Operations Performance and Prediction (N-COPP) to incorporate dynamism in various aspects of the physical layer such as node mobility, transmission parameters, etc. We validate our framework by simulating a suitable scenario, incorporating relevant factors and providing analyses of the results.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sen, Amiya K.

    The goal of this grant has been to study the basic physics of various sources of anomalous transport in tokamaks. Anomalous transport in tokamaks continues to be one of the major problems in magnetic fusion research. As a tokamak is not a physics device by design, direct experimental observation and identification of the instabilities responsible for transport, as well as physics studies of the transport in tokamaks, have been difficult and of limited value. It is noted that direct experimental observation, identification and physics study of microinstabilities including ITG, ETG, and trapped electron/ion modes in tokamaks has been very difficultmore » and nearly impossible. The primary reasons are co-existence of many instabilities, their broadband fluctuation spectra, lack of flexibility for parameter scans and absence of good local diagnostics. This has motivated us to study the suspected tokamak instabilities and their transport consequences in a simpler, steady state Columbia Linear Machine (CLM) with collisionless plasma and the flexibility of wide parameter variations. Earlier work as part of this grant was focused on both ITG turbulence, widely believed to be a primary source of ion thermal transport in tokamaks, and the effects of isotope scaling on transport levels. Prior work from our research team has produced and definitively identified both the slab and toroidal branches of this instability and determined the physics criteria for their existence. All the experimentally observed linear physics corroborate well with theoretical predictions. However, one of the large areas of research dealt with turbulent transport results that indicate some significant differences between our experimental results and most theoretical predictions. Latter years of this proposal were focused on anomalous electron transport with a special focus on ETG. There are several advanced tokamak scenarios with internal transport barriers (ITB), when the ion transport is reduced to neoclassical values by combined mechanisms of ExB and diamagnetic flow shear suppression of the ion temperature gradient (ITG) instabilities. However, even when the ion transport is strongly suppressed, the electron transport remains highly anomalous. The most plausible physics scenario for the anomalous electron transport is based on electron temperature gradient (ETG) instabilities. This instability is an electron analog of and nearly isomorphic to the ITG instability, which we had studied before extensively. However, this isomorphism is broken nonlinearily. It is noted that as the typical ETG mode growth rates are larger (in contrast to ITG modes) than ExB shearing rates in usual tokamaks, the flow shear suppression of ETG modes is highly unlikely. This motivated a broader range of investigations of other physics scenarios of nonlinear saturation and transport scaling of ETG modes.« less

  2. Aging Brain, Aging Mind.

    ERIC Educational Resources Information Center

    Selkoe, Dennis J.

    1992-01-01

    Discusses the aging process related to physical changes of the human neural structure involved in learning, memory, and reasoning. Presents evidence that indicates such alterations do not necessarily signal the decline in cognitive function. Vignettes provide images of brain structures involved in learning, memory, and reasoning; hippocampal…

  3. 50 CFR 216.103 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... hunting areas; (ii) Directly displacing subsistence users; or (iii) Placing physical barriers between the... General Regulations Governing Small Takes of Marine Mammals Incidental to Specified Activities § 216.103... from the specified activity that cannot be reasonably expected to, and is not reasonably likely to...

  4. Handbook of Reasonable Accommodation.

    ERIC Educational Resources Information Center

    Heaton, Sandra M.; And Others

    The booklet discusses a basic concept in affirmative action and nondiscrimination for the handicapped, which requires federal agencies to make reasonable accommodation to the physical or mental limitations of a qualified handicapped applicant or employee unless the accommodation would impose an undue hardship on the agency. Reasonable…

  5. Why Preschoolers Need Physical Education

    ERIC Educational Resources Information Center

    Pica, Rae

    2011-01-01

    NAEYC, the National Association for Sport and Physical Education, and the US Department of Health and Human Services all recommend that preschool programs offer physical education. There are many reasons why. First, young children form healthy habits early in life. Before entering elementary school they learn to brush their teeth, bathe…

  6. More than Just "Plug-and-Chug": Exploring How Physics Students Make Sense with Equations

    ERIC Educational Resources Information Center

    Kuo, Eric

    2013-01-01

    Although a large part the Physics Education Research (PER) literature investigates students' conceptual understanding in physics, these investigations focus on qualitative, conceptual reasoning. Even in modeling expert problem solving, attention to conceptual understanding means a focus on initial qualitative analysis of the problem; the equations…

  7. Get Real!--Physically Reasonable Values for Teaching Electrostatics

    ERIC Educational Resources Information Center

    Morse, Robert A.

    2016-01-01

    Students get a sense of realistic values for physical situations from texts, but more importantly from solving problems. Therefore, problems should use realistic values for quantities to provide needed practice. Unfortunately, some problems on tests and in textbooks do not use realistic values. Physical situations in electrostatics seem to be…

  8. 28 CFR 540.18 - Special mail.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... mail only in the presence of the inmate for inspection for physical contraband and the qualification of... a threat of physical harm to the recipient (e.g., the inmate has previously used special mail to threaten physical harm to a recipient). (ii) The Warden shall notify the inmate in writing of the reason...

  9. Modelling Mathematical Reasoning in Physics Education

    ERIC Educational Resources Information Center

    Uhden, Olaf; Karam, Ricardo; Pietrocola, Mauricio; Pospiech, Gesche

    2012-01-01

    Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a…

  10. Supplemental optical specifications for imaging systems: parameters of phase gradient

    NASA Astrophysics Data System (ADS)

    Xuan, Bin; Li, Jun-Feng; Wang, Peng; Chen, Xiao-Ping; Song, Shu-Mei; Xie, Jing-Jiang

    2009-12-01

    Specifications of phase error, peak to valley (PV), and root mean square (rms) are not able to represent the properties of a wavefront reasonably because of their irresponsibility for spatial frequencies. Power spectral density is a parameter that is especially effective to indicate the frequency regime. However, it seems not convenient for opticians to implement. Parameters of phase gradient, PV gradient, and rms gradient are most correlated with a point-spread function of an imaging system, and they can provide clear instruction of manufacture. The algorithms of gradient parameters have been modified in order to represent the image quality better. In order to demonstrate the analyses, an experimental spherical mirror has been worked out. It is clear that imaging performances can be maintained while manufacture difficulties are decreased when a reasonable trade-off between specifications of phase error and phase gradient is made.

  11. How many steps/day are enough? For adults.

    PubMed

    Tudor-Locke, Catrine; Craig, Cora L; Brown, Wendy J; Clemes, Stacy A; De Cocker, Katrien; Giles-Corti, Billie; Hatano, Yoshiro; Inoue, Shigeru; Matsudo, Sandra M; Mutrie, Nanette; Oppert, Jean-Michel; Rowe, David A; Schmidt, Michael D; Schofield, Grant M; Spence, John C; Teixeira, Pedro J; Tully, Mark A; Blair, Steven N

    2011-07-28

    Physical activity guidelines from around the world are typically expressed in terms of frequency, duration, and intensity parameters. Objective monitoring using pedometers and accelerometers offers a new opportunity to measure and communicate physical activity in terms of steps/day. Various step-based versions or translations of physical activity guidelines are emerging, reflecting public interest in such guidance. However, there appears to be a wide discrepancy in the exact values that are being communicated. It makes sense that step-based recommendations should be harmonious with existing evidence-based public health guidelines that recognize that "some physical activity is better than none" while maintaining a focus on time spent in moderate-to-vigorous physical activity (MVPA). Thus, the purpose of this review was to update our existing knowledge of "How many steps/day are enough?", and to inform step-based recommendations consistent with current physical activity guidelines. Normative data indicate that healthy adults typically take between 4,000 and 18,000 steps/day, and that 10,000 steps/day is reasonable for this population, although there are notable "low active populations." Interventions demonstrate incremental increases on the order of 2,000-2,500 steps/day. The results of seven different controlled studies demonstrate that there is a strong relationship between cadence and intensity. Further, despite some inter-individual variation, 100 steps/minute represents a reasonable floor value indicative of moderate intensity walking. Multiplying this cadence by 30 minutes (i.e., typical of a daily recommendation) produces a minimum of 3,000 steps that is best used as a heuristic (i.e., guiding) value, but these steps must be taken over and above habitual activity levels to be a true expression of free-living steps/day that also includes recommendations for minimal amounts of time in MVPA. Computed steps/day translations of time in MVPA that also include estimates of habitual activity levels equate to 7,100 to 11,000 steps/day. A direct estimate of minimal amounts of MVPA accumulated in the course of objectively monitored free-living behaviour is 7,000-8,000 steps/day. A scale that spans a wide range of incremental increases in steps/day and is congruent with public health recognition that "some physical activity is better than none," yet still incorporates step-based translations of recommended amounts of time in MVPA may be useful in research and practice. The full range of users (researchers to practitioners to the general public) of objective monitoring instruments that provide step-based outputs require good reference data and evidence-based recommendations to be able to design effective health messages congruent with public health physical activity guidelines, guide behaviour change, and ultimately measure, track, and interpret steps/day.

  12. How many steps/day are enough? for adults

    PubMed Central

    2011-01-01

    Physical activity guidelines from around the world are typically expressed in terms of frequency, duration, and intensity parameters. Objective monitoring using pedometers and accelerometers offers a new opportunity to measure and communicate physical activity in terms of steps/day. Various step-based versions or translations of physical activity guidelines are emerging, reflecting public interest in such guidance. However, there appears to be a wide discrepancy in the exact values that are being communicated. It makes sense that step-based recommendations should be harmonious with existing evidence-based public health guidelines that recognize that "some physical activity is better than none" while maintaining a focus on time spent in moderate-to-vigorous physical activity (MVPA). Thus, the purpose of this review was to update our existing knowledge of "How many steps/day are enough?", and to inform step-based recommendations consistent with current physical activity guidelines. Normative data indicate that healthy adults typically take between 4,000 and 18,000 steps/day, and that 10,000 steps/day is reasonable for this population, although there are notable "low active populations." Interventions demonstrate incremental increases on the order of 2,000-2,500 steps/day. The results of seven different controlled studies demonstrate that there is a strong relationship between cadence and intensity. Further, despite some inter-individual variation, 100 steps/minute represents a reasonable floor value indicative of moderate intensity walking. Multiplying this cadence by 30 minutes (i.e., typical of a daily recommendation) produces a minimum of 3,000 steps that is best used as a heuristic (i.e., guiding) value, but these steps must be taken over and above habitual activity levels to be a true expression of free-living steps/day that also includes recommendations for minimal amounts of time in MVPA. Computed steps/day translations of time in MVPA that also include estimates of habitual activity levels equate to 7,100 to 11,000 steps/day. A direct estimate of minimal amounts of MVPA accumulated in the course of objectively monitored free-living behaviour is 7,000-8,000 steps/day. A scale that spans a wide range of incremental increases in steps/day and is congruent with public health recognition that "some physical activity is better than none," yet still incorporates step-based translations of recommended amounts of time in MVPA may be useful in research and practice. The full range of users (researchers to practitioners to the general public) of objective monitoring instruments that provide step-based outputs require good reference data and evidence-based recommendations to be able to design effective health messages congruent with public health physical activity guidelines, guide behaviour change, and ultimately measure, track, and interpret steps/day. PMID:21798015

  13. Reflexive reasoning for distributed real-time systems

    NASA Technical Reports Server (NTRS)

    Goldstein, David

    1994-01-01

    This paper discusses the implementation and use of reflexive reasoning in real-time, distributed knowledge-based applications. Recently there has been a great deal of interest in agent-oriented systems. Implementing such systems implies a mechanism for sharing knowledge, goals and other state information among the agents. Our techniques facilitate an agent examining both state information about other agents and the parameters of the knowledge-based system shell implementing its reasoning algorithms. The shell implementing the reasoning is the Distributed Artificial Intelligence Toolkit, which is a derivative of CLIPS.

  14. Medical Rapid Response in Psychiatry: Reasons for Activation and Immediate Outcome.

    PubMed

    Manu, Peter; Loewenstein, Kristy; Girshman, Yankel J; Bhatia, Padam; Barnes, Maira; Whelan, Joseph; Solderitch, Victoria A; Rogozea, Liliana; McManus, Marybeth

    2015-12-01

    Rapid response teams are used to improve the recognition of acute deteriorations in medical and surgical settings. They are activated by abnormal physiological parameters, symptoms or clinical concern, and are believed to decrease hospital mortality rates. We evaluated the reasons for activation and the outcome of rapid response interventions in a 222-bed psychiatric hospital in New York City using data obtained at the time of all activations from January through November, 2012. The primary outcome was the admission rate to a medical or surgical unit for each of the main reasons for activation. The 169 activations were initiated by nursing staff (78.7 %) and psychiatrists (13 %) for acute changes in condition (64.5 %), abnormal physiological parameters (27.2 %) and non-specified concern (8.3 %). The most common reasons for activation were chest pain (14.2 %), fluctuating level of consciousness (9.5 %), hypertension (9.5 %), syncope or fall (8.9 %), hypotension (8.3 %), dyspnea (7.7 %) and seizures (5.9 %). The rapid response team transferred 127 (75.2 %) patients to the Emergency Department and 46 (27.2 %) were admitted to a medical or surgical unit. The admission rates were statistically similar for acute changes in condition, abnormal physiological parameters, and clinicians' concern. In conclusion, a majority of rapid response activations in a self-standing psychiatric hospital were initiated by nursing staff for changes in condition, rather than for policy-specified abnormal physiological parameters. The findings suggest that a rapid response system may empower psychiatric nurses to use their clinical skills to identify patients requiring urgent transfer to a general hospital.

  15. Physical and numerical studies of a fracture system model

    NASA Astrophysics Data System (ADS)

    Piggott, Andrew R.; Elsworth, Derek

    1989-03-01

    Physical and numerical studies of transient flow in a model of discretely fractured rock are presented. The physical model is a thermal analogue to fractured media flow consisting of idealized disc-shaped fractures. The numerical model is used to predict the behavior of the physical model. The use of different insulating materials to encase the physical model allows the effects of differing leakage magnitudes to be examined. A procedure for determining appropriate leakage parameters is documented. These parameters are used in forward analysis to predict the thermal response of the physical model. Knowledge of the leakage parameters and of the temporal variation of boundary conditions are shown to be essential to an accurate prediction. Favorable agreement is illustrated between numerical and physical results. The physical model provides a data source for the benchmarking of alternative numerical algorithms.

  16. Top 10 Reasons Why Children Find Physical Activity to Be 'Unfun'

    ERIC Educational Resources Information Center

    Hopple, Christine J.

    2018-01-01

    "That was so fun!" is a phrase that physical education teachers and coaches will likely never get tired of hearing from children. Without fun, youth are unlikely to voluntarily engage in physical activity. While the notion of fun (i.e., enjoyment) in physical activity has been increasingly studied over the past few decades, there has…

  17. Positioning Australia's Contemporary Health and Physical Education Curriculum to Address Poor Physical Activity Participation Rates by Adolescent Girls

    ERIC Educational Resources Information Center

    Usher, Wayne; Edwards, Allan; Cudmore, Laura

    2016-01-01

    Background: Given the wealth of research identifying how schools are in a strong position to promote physical activity (PA) among children, it would be reasonable to suggest that initial experiences of physical education and school sport are critical factors influencing whether a student will develop a healthy relationship to PA. However, research…

  18. "Why Do I Slog through the Physics?" Understanding High School Students' Difficulties in Learning Physics

    ERIC Educational Resources Information Center

    Ekici, Erhan

    2016-01-01

    The aim of this study is to develop a valid and reliable instrument to assess why physics courses are perceived as one of the most difficult courses among high school students and to investigate the reasons why students have difficulty in learning physics through this scale. This study includes the development and validation studies of the…

  19. The Four-Year Investigation of Physical and Physiological Features of Students in a Physical Education and Sports Department

    ERIC Educational Resources Information Center

    Ocak, Yucel

    2016-01-01

    Problem Statement: Student candidates who want to be a Physical Education Teacher in Turkey should take special ability exams of Physical Education and Sports Schools. In this exam, it is required to have a high physical capability apart from a high level of special branch skills. For this reason, the students who pass and start their education at…

  20. Efficacy and Mediation of a Theory-Based Physical Activity Intervention for African American Men Who Have Sex with Men: A Randomized Controlled Trial.

    PubMed

    Zhang, Jingwen; Jemmott, John B; O'Leary, Ann; Stevens, Robin; Jemmott, Loretta Sweet; Icard, Larry D; Hsu, Janet; Rutledge, Scott E

    2017-02-01

    Few trials have tested physical-activity interventions among sexual minorities, including African American men who have sex with men (MSM). We examined the efficacy and mediation of the Being Responsible for Ourselves (BRO) physical-activity intervention among African American MSM. African American MSM were randomized to the physical-activity intervention consisting of three 90-min one-on-one sessions or an attention-matched control intervention and completed pre-intervention, immediately post-intervention, and 6- and 12-month post-intervention audio computer-based surveys. Of the 595 participants, 503 completed the 12-month follow-up. Generalized estimating equation models revealed that the intervention increased self-reported physical activity compared with the control intervention, adjusted for pre-intervention physical activity. Mediation analyses suggested that the intervention increased reasoned action approach variables, subjective norm and self-efficacy, increasing intention immediately post-intervention, which increased physical activity during the follow-up period. Interventions targeting reasoned action approach variables may contribute to efforts to increase African American MSM's physical activity. The trial was registered with the ClinicalTrials.gov Identifier NCT02561286 .

  1. Alcohol consumption and physical functioning among middle-aged and older adults in Central and Eastern Europe: results from the HAPIEE study.

    PubMed

    Hu, Yaoyue; Pikhart, Hynek; Malyutina, Sofia; Pajak, Andrzej; Kubinova, Ruzena; Nikitin, Yuri; Peasey, Anne; Marmot, Michael; Bobak, Martin

    2015-01-01

    light-to-moderate drinking is apparently associated with a decreased risk of physical limitations in middle-aged and older adults. to investigate the association between alcohol consumption and physical limitations in Eastern European populations. a cross-sectional survey of 28,783 randomly selected residents (45-69 years) in Novosibirsk (Russia), Krakow (Poland) and seven towns of Czech Republic. physical limitations were defined as <75% of optimal physical functioning using the Physical Functioning (PF-10) Subscale of the Short-Form-36 questionnaire. Alcohol consumption was assessed by a graduated frequency questionnaire, and problem drinking was defined as ≥2 positive responses on the CAGE questionnaire. In the Russian sample, past drinking was also assessed. the odds of physical limitations were highest among non-drinkers, decreased with increasing drinking frequency, annual consumption and average drinking quantity and were not associated with problem drinking. The adjusted odds ratio (OR) of physical limitations in non-drinkers versus regular moderate drinkers was 1.61 (95% confidence interval: 1.48-1.75). In the Russian sample with past drinking available, the adjusted OR in those who stopped drinking for health reasons versus continuing drinkers was 3.19 (2.58-3.95); ORs in lifetime abstainers, former drinkers for non-health reasons and reduced drinkers for health reasons were 1.27 (1.02-1.57), 1.48 (1.18-1.85) and 2.40 (2.05-2.81), respectively. this study found an inverse association between alcohol consumption and physical limitations. The high odds of physical limitations in non-drinkers can be largely explained by poor health of former drinkers. The apparently protective effect of heavier drinking was partly due to less healthy former heavy drinkers who moved to lower drinking categories. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society.

  2. Retrocausal Effects as a Consequence of Quantum Mechanics Refined to Accommodate the Principle of Sufficient Reason

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapp, Henry P.

    2011-05-10

    The principle of sufficient reason asserts that anything that happens does so for a reason: no definite state of affairs can come into being unless there is a sufficient reason why that particular thing should happen. This principle is usually attributed to Leibniz, although the first recorded Western philosopher to use it was Anaximander of Miletus. The demand that nature be rational, in the sense that it be compatible with the principle of sufficient reason, conflicts with a basic feature of contemporary orthodox physical theory, namely the notion that nature's response to the probing action of an observer is determinedmore » by pure chance, and hence on the basis of absolutely no reason at all. This appeal to pure chance can be deemed to have no rational fundamental place in reason-based Western science. It is argued here, on the basis of the other basic principles of quantum physics, that in a world that conforms to the principle of sufficient reason, the usual quantum statistical rules will naturally emerge at the pragmatic level, in cases where the reason behind nature's choice of response is unknown, but that the usual statistics can become biased in an empirically manifest way when the reason for the choice is empirically identifiable. It is shown here that if the statistical laws of quantum mechanics were to be biased in this way then the basically forward-in-time unfolding of empirical reality described by orthodox quantum mechanics would generate the appearances of backward-time-effects of the kind that have been reported in the scientific literature.« less

  3. Longitudinal development of physical and performance parameters during biological maturation of young male swimmers.

    PubMed

    Lätt, Evelin; Jürimäe, Jaak; Haljaste, Kaja; Cicchella, Antonio; Purge, Priit; Jürimäe, Toivo

    2009-02-01

    The aim of the study was to examine the development of specific physical, physiological, and biomechanical parameters in 29 young male swimmers for whom measurements were made three times for two consecutive years. During the 400-m front-crawl swimming, the energy cost of swimming, and stroking parameters were assessed. Peak oxygen consumption (VO2 peak) was assessed by means of the backward-extrapolation technique recording VO2 during the first 20 sec. of recovery period after a maximal trial of 400-m distance. Swimming performance at different points of physical maturity was mainly related to the increases in body height and arm-span values from physical parameters, improvement in sport-specific VO2 peak value from physiological characteristics, and improvement in stroke indices on biomechanical parameters. In addition, biomechanical factors characterised best the 400-m swimming performance followed by physical and physiological factors during the 2-yr. study period for the young male swimmers.

  4. Double density dynamics: realizing a joint distribution of a physical system and a parameter system

    NASA Astrophysics Data System (ADS)

    Fukuda, Ikuo; Moritsugu, Kei

    2015-11-01

    To perform a variety of types of molecular dynamics simulations, we created a deterministic method termed ‘double density dynamics’ (DDD), which realizes an arbitrary distribution for both physical variables and their associated parameters simultaneously. Specifically, we constructed an ordinary differential equation that has an invariant density relating to a joint distribution of the physical system and the parameter system. A generalized density function leads to a physical system that develops under nonequilibrium environment-describing superstatistics. The joint distribution density of the physical system and the parameter system appears as the Radon-Nikodym derivative of a distribution that is created by a scaled long-time average, generated from the flow of the differential equation under an ergodic assumption. The general mathematical framework is fully discussed to address the theoretical possibility of our method, and a numerical example representing a 1D harmonic oscillator is provided to validate the method being applied to the temperature parameters.

  5. Physical parameters for proton induced K-, L-, and M-shell ionization processes

    NASA Astrophysics Data System (ADS)

    Shehla; Puri, Sanjiv

    2016-10-01

    The proton induced atomic inner-shell ionization processes comprising radiative and non-radiative transitions are characterized by physical parameters, namely, the proton ionization cross sections, X-ray emission rates, fluorescence yields and Coster-Kronig (CK) transition probabilities. These parameters are required to calculate the K/L/M shell X-ray production (XRP) cross sections and relative X-ray intensity ratios, which in turn are required for different analytical applications. The current status of different physical parameters is presented in this report for use in various applications.

  6. Enhancement of cognitive and neural functions through complex reasoning training: evidence from normal and clinical populations

    PubMed Central

    Chapman, Sandra B.; Mudar, Raksha A.

    2014-01-01

    Public awareness of cognitive health is fairly recent compared to physical health. Growing evidence suggests that cognitive training offers promise in augmenting cognitive brain performance in normal and clinical populations. Targeting higher-order cognitive functions, such as reasoning in particular, may promote generalized cognitive changes necessary for supporting the complexities of daily life. This data-driven perspective highlights cognitive and brain changes measured in randomized clinical trials that trained gist reasoning strategies in populations ranging from teenagers to healthy older adults, individuals with brain injury to those at-risk for Alzheimer's disease. The evidence presented across studies support the potential for Gist reasoning training to strengthen cognitive performance in trained and untrained domains and to engage more efficient communication across widespread neural networks that support higher-order cognition. The meaningful benefits of Gist training provide compelling motivation to examine optimal dose for sustained benefits as well as to explore additive benefits of meditation, physical exercise, and/or improved sleep in future studies. PMID:24808834

  7. Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83)

    DOE PAGES

    Atchley, Adam L.; Painter, Scott L.; Harp, Dylan R.; ...

    2015-09-01

    Climate change is profoundly transforming the carbon-rich Arctic tundra landscape, potentially moving it from a carbon sink to a carbon source by increasing the thickness of soil that thaws on a seasonal basis. Thus, the modeling capability and precise parameterizations of the physical characteristics needed to estimate projected active layer thickness (ALT) are limited in Earth system models (ESMs). In particular, discrepancies in spatial scale between field measurements and Earth system models challenge validation and parameterization of hydrothermal models. A recently developed surface–subsurface model for permafrost thermal hydrology, the Advanced Terrestrial Simulator (ATS), is used in combination with field measurementsmore » to achieve the goals of constructing a process-rich model based on plausible parameters and to identify fine-scale controls of ALT in ice-wedge polygon tundra in Barrow, Alaska. An iterative model refinement procedure that cycles between borehole temperature and snow cover measurements and simulations functions to evaluate and parameterize different model processes necessary to simulate freeze–thaw processes and ALT formation. After model refinement and calibration, reasonable matches between simulated and measured soil temperatures are obtained, with the largest errors occurring during early summer above ice wedges (e.g., troughs). The results suggest that properly constructed and calibrated one-dimensional thermal hydrology models have the potential to provide reasonable representation of the subsurface thermal response and can be used to infer model input parameters and process representations. The models for soil thermal conductivity and snow distribution were found to be the most sensitive process representations. However, information on lateral flow and snowpack evolution might be needed to constrain model representations of surface hydrology and snow depth.« less

  8. SCS-CN parameter determination using rainfall-runoff data in heterogeneous watersheds. The two-CN system approach

    NASA Astrophysics Data System (ADS)

    Soulis, K. X.; Valiantzas, J. D.

    2011-10-01

    The Soil Conservation Service Curve Number (SCS-CN) approach is widely used as a simple method for predicting direct runoff volume for a given rainfall event. The CN values can be estimated by being selected from tables. However, it is more accurate to estimate the CN value from measured rainfall-runoff data (assumed available) in a watershed. Previous researchers indicated that the CN values calculated from measured rainfall-runoff data vary systematically with the rainfall depth. They suggested the determination of a single asymptotic CN value observed for very high rainfall depths to characterize the watersheds' runoff response. In this paper, the novel hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of the inevitable presence of soil-cover complex spatial variability along watersheds is being tested. Based on this hypothesis, the simplified concept of a two-CN heterogeneous system is introduced to model the observed CN-rainfall variation by reducing the CN spatial variability into two classes. The behavior of the CN-rainfall function produced by the proposed two-CN system concept is approached theoretically, it is analyzed systematically, and it is found to be similar to the variation observed in natural watersheds. Synthetic data tests, natural watersheds examples, and detailed study of two natural experimental watersheds with known spatial heterogeneity characteristics were used to evaluate the method. The results indicate that the determination of CN values from rainfall runoff data using the proposed two-CN system approach provides reasonable accuracy and it over performs the previous original method based on the determination of a single asymptotic CN value. Although the suggested method increases the number of unknown parameters to three (instead of one), a clear physical reasoning for them is presented.

  9. A SiQuENC for solving physics problems

    NASA Astrophysics Data System (ADS)

    Liao, David

    2018-04-01

    Students often struggle in AP Physics 1 because they have not been previously trained to develop qualitative arguments. Extensive literature on multiple representations and qualitative reasoning provides strategies to address this challenge. Table I presents three examples, including SiQuENC, which I adapted from a strategy promoted by Etkina et al. To remind students that they can use qualitative reasoning (e.g., arguing from proportionalities), rather than relying only on algebra, I replaced "Solve" with "Analyze." I added a "Communicate" step to guide planning of written responses to AP Physics 1 and 2 questions. To perform this step, draw a circled number around each key point identified in figures, equations, and sentence fragments. Then, convert numbered points into sentences.

  10. Building an Evaluation Framework for the VIC Model in the NLDAS Testbed

    NASA Astrophysics Data System (ADS)

    Xia, Y.; Mocko, D. M.; Wang, S.; Pan, M.; Kumar, S.; Peters-Lidard, C. D.; Wei, H.; Ek, M. B.

    2017-12-01

    Since the second phase of North American Land Data Assimilation System (NLDAS-2) was operationally implemented at NCEP in August 2014, developing the third phase of NLDAS system (NLDAS-3) has been a key task for the NCEP and NASA NLDAS team. The Variable Infiltration Capacity (VIC) model is one major component of the NLDAS system. The current operational NLDAS-2 uses version 4.0.3 (VIC403), research NLDAS-2 uses version 4.0.5 (VIC405), and LIS-based (Land Information System) NLDAS uses version 4.1.2 (VIC412). The purpose of this study is to compressively evaluate three versions and document changes in model behavior towards VIC412 for NLDAS-3. To do that, we develop a relatively comprehensive framework including multiple variables and metrics to assess the performance of different versions. This framework is being incorporated into the NASA Land Verification Toolkit (LVT) for evaluation of other LSMs for NLDAS-3 development. The evaluation results show that there are large and significant improvements for VIC412 in southeastern United States when compared with VIC403 and VIC405. In the other regions, there are very limited improvements or even some degree of deteriorations. Potential reasons are due to: (1) few USGS streamflow observations for soil and hydrologic parameter calibration, (2) the lack of re-calibration of VIC412 in the NLDAS domain, and (3) changes in model physics from VIC403 to VIC412. Overall, the model version upgrade largely/significantly enhances model performance and skill score for all United States except for the Great Plains, suggesting a right direction for VIC model development. Some further efforts are needed for science understanding of land surface physical processes in GP and a re-calibration for VIC412 using reasonable reference datasets is suggested.

  11. Improving flood forecasting capability of physically based distributed hydrological model by parameter optimization

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Li, J.; Xu, H.

    2015-10-01

    Physically based distributed hydrological models discrete the terrain of the whole catchment into a number of grid cells at fine resolution, and assimilate different terrain data and precipitation to different cells, and are regarded to have the potential to improve the catchment hydrological processes simulation and prediction capability. In the early stage, physically based distributed hydrological models are assumed to derive model parameters from the terrain properties directly, so there is no need to calibrate model parameters, but unfortunately, the uncertanties associated with this model parameter deriving is very high, which impacted their application in flood forecasting, so parameter optimization may also be necessary. There are two main purposes for this study, the first is to propose a parameter optimization method for physically based distributed hydrological models in catchment flood forecasting by using PSO algorithm and to test its competence and to improve its performances, the second is to explore the possibility of improving physically based distributed hydrological models capability in cathcment flood forecasting by parameter optimization. In this paper, based on the scalar concept, a general framework for parameter optimization of the PBDHMs for catchment flood forecasting is first proposed that could be used for all PBDHMs. Then, with Liuxihe model as the study model, which is a physically based distributed hydrological model proposed for catchment flood forecasting, the improverd Particle Swarm Optimization (PSO) algorithm is developed for the parameter optimization of Liuxihe model in catchment flood forecasting, the improvements include to adopt the linear decreasing inertia weight strategy to change the inertia weight, and the arccosine function strategy to adjust the acceleration coefficients. This method has been tested in two catchments in southern China with different sizes, and the results show that the improved PSO algorithm could be used for Liuxihe model parameter optimization effectively, and could improve the model capability largely in catchment flood forecasting, thus proven that parameter optimization is necessary to improve the flood forecasting capability of physically based distributed hydrological model. It also has been found that the appropriate particle number and the maximum evolution number of PSO algorithm used for Liuxihe model catchment flood forcasting is 20 and 30, respectively.

  12. Safety Assessment of Tretinoin Loaded Nano Emulsion and Nanostructured Lipid Carriers: A Non-invasive Trial on Human Volunteers.

    PubMed

    Nasrollahi, Saman Ahmad; Hassanzade, Hurnaz; Moradi, Azadeh; Sabouri, Mahsa; Samadi, Aniseh; Kashani, Mansour Nassiri; Firooz, Alireza

    2017-01-01

    Topical application of tretinoin (TRE) is followed by a high incidence of side effects. One method to overcome the problem is loading TRE into lipid nanoparticles. The potential safety of the nanoparticle materials has been always considered as a major concern. In this in vivo study, changes in human skin biophysical parameters including hydration, TEWL, erythema, and pH have been used to determine the safety of tretinoin loaded nano emulsion (NE) and nanostructured lipid carriers (NLC). TRE loaded NE and NLC were prepared using a high pressure homogenizer. Skin biophysical parameters were measured on the volar forearms of twenty healthy volunteers, before and after applying TRE-NE and TRE-NLC lotions. All the measurements were done using respective probes of MPA 580Cutometer®. We obtained particles of nanometric size (<130 nm) with narrow distribution and optimal physical stability. None of the formulations made any statistically significant change in any of the measured skin properties. P-values were 0.646, 0.139, 0.386, 0.169 after applying TRE-NE and 0.508, 0.051, 0.139, 0.333 after applying TRE-NLC, respectively. Both formulations are reasonably safe to apply on human skin and topical application of TRE-NE and TRE-NLC had almost similar effects on skin biophysical parameters. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. A New Characterization of the Compton Process in the ULX Spectra

    NASA Astrophysics Data System (ADS)

    Kobayashi, S.; Nakazawa, K.; Makishima, K.

    2015-07-01

    Ultra Luminous X-ray sources (ULXs) are unusually luminous point sources located at arms of spiral galaxies, and are candidates for the intermediate mass black holes (Makishima+2000). Their spectra make transition betweens power-law shapes (PL state) and convex shapes (disk-like state). The latter state can be explained with either the multi-color disk (MCD)+thermal Comptonization (THC) model or a Slim disk model (Watari+2000). We adopt the former modeling, because it generally gives physically more reasonable parameters (Miyawaki+2009). To characterize the ULXs spectra with a unified way, we applied the MCD+THC model to several datasets of ULXs obtained by Suzaku, XMM-Newton, and Nu-Star. The model well explains all the spectra, in terms of cool disk (T_{in}˜0.2 keV), and a cool thick (T_{e}˜2 keV, τ ˜10) corona. The derived parameters can be characterized by two new parameters. One is Q≡ T_{e}/T_{in} which describes balance between the Compton cooling and gravitational heating of the corona, while the other is f≡ L_{raw}/L_{tot}, namely, the directly-visible (without Comptonization) MCD luminosity. Then, the PL state spectra have been found to show Q˜10 and f˜0.7, while those of the disk-like state Q˜ 3 and f≤0.01. Thus, the two states are clearly separated in terms of Q and f.

  14. Poroelastic properties of the Arbuckle Group in Oklahoma derived from well fluid level response to the 3 September 2016 Mw 5.8 Pawnee and 7 November 2016 Mw 5.0 Cushing earthquakes

    USGS Publications Warehouse

    Kroll, Kayla A.; Cochran, Elizabeth S.; Murray, Kyle E.

    2017-01-01

    The Arbuckle Group (Arbuckle) is a basal sedimentary unit that is the primary target for saltwater disposal in Oklahoma. Thus, the reservoir characteristics of the Arbuckle, including how the poroelastic properties change laterally and over time are of significant interest. We report observations of fluid level changes in two monitoring wells in response to the 3 September 2016 Mw 5.8 Pawnee and the 7 November 2016 Mw 5.0 Cushing earthquakes. We investigate the relationship between static strain resulting from these events and the fluid level changes observed in the wells. We model the fluid level response by estimating static strains from a set of earthquake source parameters and spatiotemporal poroelastic properties of the Arbuckle in the neighborhood of the monitoring wells. Results suggest that both the direction of the observed fluid level step and the amplitude can be predicted from the computed volumetric strain change and a reasonable set of poroelastic parameters. Modeling results indicate that poroelastic parameters differ at the time of the Pawnee and Cushing earthquakes, with a moderately higher Skempton’s coefficient required to fit the response to the Cushing earthquake. This may indicate that dynamic shaking resulted in physical alteration of the Arbuckle at distances up to ∼50  km from the Pawnee earthquake.

  15. Environmental quality of the operating theaters in Campania Region: long lasting monitoring results.

    PubMed

    Triassi, M; Novi, C; Nardone, A; Russo, I; Montuori, P

    2015-01-01

    The health risk level in the operating theaters is directly correlated to the safety level offered by the healthcare facilities. This is the reason why the national Authorities released several regulations in order to monitor better environmental conditions of the operating theaters, to prevent occupational injuries and disease and to optimize working conditions. For the monitoring of environmental quality of the operating theaters following parameters are considered: quantity of supplied gases, anesthetics concentration, operating theatres volume measurement, air change rate, air conditioning system and air filtration. The objective is to minimize the risks in the operating theaters and to provide the optimal environmental working conditions. This paper reports the environmental conditions of operating rooms performed for several years in the public hospitals of the Campania Region. Investigation of environmental conditions of 162 operating theaters in Campania Region from January 2012 till July 2014 was conducted. Monitoring and analysis of physical and chemical parameters was done. The analysis of the results has been made considering specific standards suggested by national and international regulations. The study showed that 75% of the operating theaters presented normal values for microclimatic monitoring, while the 25% of the operating theaters had at least one parameter outside the limits. The monitoring of the anesthetics gases showed that in 9% of measurements of nitrous oxides and 4% of measurements of halogenated was not within the normal values.

  16. Photon counting detector for the personal radiography inspection system "SIBSCAN"

    NASA Astrophysics Data System (ADS)

    Babichev, E. A.; Baru, S. E.; Grigoriev, D. N.; Leonov, V. V.; Oleynikov, V. P.; Porosev, V. V.; Savinov, G. A.

    2017-02-01

    X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator - SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.

  17. Social aspects of classroom learning: Results of a discourse analysis in an inquiry-oriented physical chemistry class

    NASA Astrophysics Data System (ADS)

    Becker, Nicole M.

    Engaging students in classroom discourse offers opportunities for students to participate in the construction of joint understandings, to negotiate relationships between different types of evidence, and to practice making evidence-based claims about science content. However, close attention to social aspects of learning is critical to creating inquiry-oriented classroom environments in which students learn with understanding. This study examined the social influences that contribute to classroom learning in an inquiry-oriented undergraduate physical chemistry class using the Process Oriented Guided Inquiry Learning (POGIL) approach. A qualitative approach to analyzing classroom discourse derived from Toulmin's (1968) model of argumentation was used to document patterns in classroom reasoning that reflect normative aspects of social interaction. Adapting the constructs of social and sociomathematical norms from the work of Yackel and Cobb (1996), I describe social aspects of the classroom environment by discussing normative aspects of social interaction (social norms) and discipline-specific criteria related to reasoning and justification in chemistry contexts, referred to here as sociochemical norms. This work discusses four social norms and two sociochemical norms that were documented over a five-week period of observation in Dr. Black's POGIL physical chemistry class. In small group activities, the socially established expectations that students explain reasoning, negotiate understandings of terminology and symbolic representations, and arrive at a consensus on critical thinking questions shaped small group interactions and reasoning. In whole class discussion, there was an expectation that students share reasoning with the class, and that the instructor provide feedback on student reasoning in ways that extended student contributions and elaborated relationships between macroscopic, particulate, and symbolic-level ideas. The ways in which the class constructed evidence-based claims about chemistry content reflected the influence of sociochemical norms that were enacted through classroom discourse. Two sociochemical norms were documented in both whole class and small group activities: first, the class used particulate-level evidence to make claims about chemical and physical properties; second, particular ways of using mathematical reasoning to justify claims about thermodynamics content became normative for the class. These similarities and differences between social and sociochemical norms in small group and whole class discussion highlight ways in which instructor facilitation can support productive interactions in classroom activities.

  18. Determinants of Physical Activity in Middle School Children.

    ERIC Educational Resources Information Center

    Trost, Stewart G.; Saunders, Ruth; Ward, Dianne S.

    2002-01-01

    Evaluated the theory of reasoned action (TRA) and theory of planned behavior (TPB) in predicting moderate-to-vigorous physical activity (MVPA) in sixth grade students. Student surveys on physical activity behavior and attitudes and measurement of MVPA indicated that the TRA and TPB accounted for only a small percentage of the variance in MVPA. (SM)

  19. The Nature and Role of Thought Experiments in Solving Conceptual Physics Problems

    ERIC Educational Resources Information Center

    Kösem, Sule Dönertas; Özdemir, Ömer Faruk

    2014-01-01

    This study describes the possible variations of thought experiments in terms of their nature, purpose, and reasoning resources adopted during the solution of conceptual physics problems. A phenomenographic research approach was adopted for this study. Three groups of participants with varying levels of physics knowledge--low, medium, and high…

  20. Recruitment of Secondary School Physics Teachers--An International Viewpoint.

    ERIC Educational Resources Information Center

    Mayfield, M. R.

    This report of the findings of the working group on "recruitment" of the International Congress on the Education of Secondary School Physics Teachers held in Hungary in September, 1970, includes reasons for the shortage of physics teachers (low salaries, excessive class load, lack of prestige, and inadequate programs of teacher preparation),…

  1. Possibilities: A Framework for Modeling Students' Deductive Reasoning in Physics

    ERIC Educational Resources Information Center

    Gaffney, Jonathan David Housley

    2010-01-01

    Students often make errors when trying to solve qualitative or conceptual physics problems, and while many successful instructional interventions have been generated to prevent such errors, the process of deduction that students use when solving physics problems has not been thoroughly studied. In an effort to better understand that reasoning…

  2. Learning to Play: A "Hedgehog Concept" for Physical Education

    ERIC Educational Resources Information Center

    Johnson, Tyler

    2014-01-01

    What is physical education and why does it exist? Despite its relatively long and storied history, consensus about the main purpose of physical education remains minimal. This article explores three questions, developed by Jim Collins in his best-selling book Good to Great, to help organizations identify a hedgehog concept, or primary reason for…

  3. Chapter 5: Influences of Perceived Motor Competence and Motives on Children's Physical Activity

    ERIC Educational Resources Information Center

    Woods, Amelia Mays; Bolton, Kristin N.; Graber, Kim C.; Crull, Gary S.

    2007-01-01

    Biddle (1997) claims that examining the reasons that children give for being physically active, or their participation motives, is a useful foundation for understanding the decisions that children make about engaging in activities. Unfortunately, little has been heard about children's motivation to be physically active from their own voices. The…

  4. Measuring Psychological and Physical Abuse of Children with the Conflict Tactics Scales.

    ERIC Educational Resources Information Center

    Straus, Murray A.

    Application of the Conflict Tactics Scales (CTS) to the assessment of child abuse is described. The CTS is a brief instrument designed to measure three aspects of parent-to-child behavior: (1) reasoning; (2) psychological aggression; and (3) physical aggression. The psychological and physical aggression indexes are intended to measure the…

  5. Females' Reasons for Their Physical Aggression in Dating Relationships

    ERIC Educational Resources Information Center

    Hettrich, Emma L.; O'Leary, K. Daniel

    2007-01-01

    Approximately 32% of dating college females reported that they engaged in physical aggression against their partners and that they engaged in acts of physical aggression more often than their male partners engaged in aggression against them. However, the females also reported that their male partners attempted to force them to engage in oral sex…

  6. Fostering Critical Thinking in Physical Education Students

    ERIC Educational Resources Information Center

    Lodewyk, Ken R.

    2009-01-01

    Critical thinking is essentially "better thinking." When students think critically they consider complex information from numerous sources and perspectives in order to make a reasonable judgment that they can justify. It has been associated with academic qualities such as decision-making, creativity, reasoning, problem-solving, debating,…

  7. 46 CFR 16.250 - Reasonable cause testing requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Reasonable cause testing requirements. 16.250 Section 16... belief that the individual has used a dangerous drug based on direct observation of specific, contemporaneous physical, behavioral, or performance indicators of probable use. Where practicable, this belief...

  8. 46 CFR 16.250 - Reasonable cause testing requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Reasonable cause testing requirements. 16.250 Section 16... belief that the individual has used a dangerous drug based on direct observation of specific, contemporaneous physical, behavioral, or performance indicators of probable use. Where practicable, this belief...

  9. 46 CFR 16.250 - Reasonable cause testing requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Reasonable cause testing requirements. 16.250 Section 16... belief that the individual has used a dangerous drug based on direct observation of specific, contemporaneous physical, behavioral, or performance indicators of probable use. Where practicable, this belief...

  10. 46 CFR 16.250 - Reasonable cause testing requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Reasonable cause testing requirements. 16.250 Section 16... belief that the individual has used a dangerous drug based on direct observation of specific, contemporaneous physical, behavioral, or performance indicators of probable use. Where practicable, this belief...

  11. 46 CFR 16.250 - Reasonable cause testing requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Reasonable cause testing requirements. 16.250 Section 16... belief that the individual has used a dangerous drug based on direct observation of specific, contemporaneous physical, behavioral, or performance indicators of probable use. Where practicable, this belief...

  12. 22 CFR 217.12 - Reasonable accommodation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... accommodation. (a) A recipient shall make reasonable accommodation to the known physical or mental limitations... the accommodation would impose an undue hardship on the operation of its program or activity. (b... would impose an undue hardship on the operation of a recipient's program or activity, factors to be...

  13. Quantifying sampling noise and parametric uncertainty in atomistic-to-continuum simulations using surrogate models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salloum, Maher N.; Sargsyan, Khachik; Jones, Reese E.

    2015-08-11

    We present a methodology to assess the predictive fidelity of multiscale simulations by incorporating uncertainty in the information exchanged between the components of an atomistic-to-continuum simulation. We account for both the uncertainty due to finite sampling in molecular dynamics (MD) simulations and the uncertainty in the physical parameters of the model. Using Bayesian inference, we represent the expensive atomistic component by a surrogate model that relates the long-term output of the atomistic simulation to its uncertain inputs. We then present algorithms to solve for the variables exchanged across the atomistic-continuum interface in terms of polynomial chaos expansions (PCEs). We alsomore » consider a simple Couette flow where velocities are exchanged between the atomistic and continuum components, while accounting for uncertainty in the atomistic model parameters and the continuum boundary conditions. Results show convergence of the coupling algorithm at a reasonable number of iterations. As a result, the uncertainty in the obtained variables significantly depends on the amount of data sampled from the MD simulations and on the width of the time averaging window used in the MD simulations.« less

  14. A new test statistic for climate models that includes field and spatial dependencies using Gaussian Markov random fields

    DOE PAGES

    Nosedal-Sanchez, Alvaro; Jackson, Charles S.; Huerta, Gabriel

    2016-07-20

    A new test statistic for climate model evaluation has been developed that potentially mitigates some of the limitations that exist for observing and representing field and space dependencies of climate phenomena. Traditionally such dependencies have been ignored when climate models have been evaluated against observational data, which makes it difficult to assess whether any given model is simulating observed climate for the right reasons. The new statistic uses Gaussian Markov random fields for estimating field and space dependencies within a first-order grid point neighborhood structure. We illustrate the ability of Gaussian Markov random fields to represent empirical estimates of fieldmore » and space covariances using "witch hat" graphs. We further use the new statistic to evaluate the tropical response of a climate model (CAM3.1) to changes in two parameters important to its representation of cloud and precipitation physics. Overall, the inclusion of dependency information did not alter significantly the recognition of those regions of parameter space that best approximated observations. However, there were some qualitative differences in the shape of the response surface that suggest how such a measure could affect estimates of model uncertainty.« less

  15. Experiments in structural dynamics and control using a grid

    NASA Technical Reports Server (NTRS)

    Montgomery, R. C.

    1985-01-01

    Future spacecraft are being conceived that are highly flexible and of extreme size. The two features of flexibility and size pose new problems in control system design. Since large scale structures are not testable in ground based facilities, the decision on component placement must be made prior to full-scale tests on the spacecraft. Control law research is directed at solving problems of inadequate modelling knowledge prior to operation required to achieve peak performance. Another crucial problem addressed is accommodating failures in systems with smart components that are physically distributed on highly flexible structures. Parameter adaptive control is a method of promise that provides on-orbit tuning of the control system to improve performance by upgrading the mathematical model of the spacecraft during operation. Two specific questions are answered in this work. They are: What limits does on-line parameter identification with realistic sensors and actuators place on the ultimate achievable performance of a system in the highly flexible environment? Also, how well must the mathematical model used in on-board analytic redundancy be known and what are the reasonable expectations for advanced redundancy management schemes in the highly flexible and distributed component environment?

  16. A Calibration to Predict the Concentrations of Impurities in Plutonium Oxide by Prompt Gamma Analysis Revision 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narlesky, Joshua Edward; Kelly, Elizabeth J.

    2015-09-10

    This report documents the new PG calibration regression equation. These calibration equations incorporate new data that have become available since revision 1 of “A Calibration to Predict the Concentrations of Impurities in Plutonium Oxide by Prompt Gamma Analysis” was issued [3] The calibration equations are based on a weighted least squares (WLS) approach for the regression. The WLS method gives each data point its proper amount of influence over the parameter estimates. This gives two big advantages, more precise parameter estimates and better and more defensible estimates of uncertainties. The WLS approach makes sense both statistically and experimentally because themore » variances increase with concentration, and there are physical reasons that the higher measurements are less reliable and should be less influential. The new magnesium calibration includes a correction for sodium and separate calibration equation for items with and without chlorine. These additional calibration equations allow for better predictions and smaller uncertainties for sodium in materials with and without chlorine. Chlorine and sodium have separate equations for RICH materials. Again, these equations give better predictions and smaller uncertainties chlorine and sodium for RICH materials.« less

  17. Evaluating the effects of modeling errors for isolated finite three-dimensional targets

    NASA Astrophysics Data System (ADS)

    Henn, Mark-Alexander; Barnes, Bryan M.; Zhou, Hui

    2017-10-01

    Optical three-dimensional (3-D) nanostructure metrology utilizes a model-based metrology approach to determine critical dimensions (CDs) that are well below the inspection wavelength. Our project at the National Institute of Standards and Technology is evaluating how to attain key CD and shape parameters from engineered in-die capable metrology targets. More specifically, the quantities of interest are determined by varying the input parameters for a physical model until the simulations agree with the actual measurements within acceptable error bounds. As in most applications, establishing a reasonable balance between model accuracy and time efficiency is a complicated task. A well-established simplification is to model the intrinsically finite 3-D nanostructures as either periodic or infinite in one direction, reducing the computationally expensive 3-D simulations to usually less complex two-dimensional (2-D) problems. Systematic errors caused by this simplified model can directly influence the fitting of the model to the measurement data and are expected to become more apparent with decreasing lengths of the structures. We identify these effects using selected simulation results and present experimental setups, e.g., illumination numerical apertures and focal ranges, that can increase the validity of the 2-D approach.

  18. On non-coplanar Hohmann transfer using angles as parameters

    NASA Astrophysics Data System (ADS)

    Rincón, Ángel; Rojo, Patricio; Lacruz, Elvis; Abellán, Gabriel; Díaz, Sttiwuer

    2015-09-01

    We study a more complex case of Hohmann orbital transfer of a satellite by considering non-coplanar and elliptical orbits, instead of planar and circular orbits. We use as parameter the angle between the initial and transference planes that minimizes the energy, and therefore the fuel of a satellite, through the application of two non-tangential impulses for all possible cases. We found an analytical expression that minimizes the energy for each configuration. Some reasonable physical constraints are used: we apply impulses at perigee or apogee of the orbit, we consider the duration of the impulse to be short compared to the duration of the trip, we take the nodal line of three orbits to be coincident and the three semimajor axes to lie in the same plane. We study the only four possible cases but assuming non-coplanar elliptic orbits. In addition, we validate our method through a numerical solution obtained by using some of the actual orbital elements of Sputnik I and Vanguard I satellites. For these orbits, we found that the most fuel-efficient transfer is obtained by applying the initial impulse at apocenter and keeping the transfer orbit aligned with the initial orbit.

  19. A new test statistic for climate models that includes field and spatial dependencies using Gaussian Markov random fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nosedal-Sanchez, Alvaro; Jackson, Charles S.; Huerta, Gabriel

    A new test statistic for climate model evaluation has been developed that potentially mitigates some of the limitations that exist for observing and representing field and space dependencies of climate phenomena. Traditionally such dependencies have been ignored when climate models have been evaluated against observational data, which makes it difficult to assess whether any given model is simulating observed climate for the right reasons. The new statistic uses Gaussian Markov random fields for estimating field and space dependencies within a first-order grid point neighborhood structure. We illustrate the ability of Gaussian Markov random fields to represent empirical estimates of fieldmore » and space covariances using "witch hat" graphs. We further use the new statistic to evaluate the tropical response of a climate model (CAM3.1) to changes in two parameters important to its representation of cloud and precipitation physics. Overall, the inclusion of dependency information did not alter significantly the recognition of those regions of parameter space that best approximated observations. However, there were some qualitative differences in the shape of the response surface that suggest how such a measure could affect estimates of model uncertainty.« less

  20. Replica exchange Monte-Carlo simulations of helix bundle membrane proteins: rotational parameters of helices

    NASA Astrophysics Data System (ADS)

    Wu, H.-H.; Chen, C.-C.; Chen, C.-M.

    2012-03-01

    We propose a united-residue model of membrane proteins to investigate the structures of helix bundle membrane proteins (HBMPs) using coarse-grained (CG) replica exchange Monte-Carlo (REMC) simulations. To demonstrate the method, it is used to identify the ground state of HBMPs in a CG model, including bacteriorhodopsin (BR), halorhodopsin (HR), and their subdomains. The rotational parameters of transmembrane helices (TMHs) are extracted directly from the simulations, which can be compared with their experimental measurements from site-directed dichroism. In particular, the effects of amphiphilic interaction among the surfaces of TMHs on the rotational angles of helices are discussed. The proposed CG model gives a reasonably good structure prediction of HBMPs, as well as a clear physical picture for the packing, tilting, orientation, and rotation of TMHs. The root mean square deviation (RMSD) in coordinates of Cα atoms of the ground state CG structure from the X-ray structure is 5.03 Å for BR and 6.70 Å for HR. The final structure of HBMPs is obtained from the all-atom molecular dynamics simulations by refining the predicted CG structure, whose RMSD is 4.38 Å for BR and 5.70 Å for HR.

  1. Information fusion methods based on physical laws.

    PubMed

    Rao, Nageswara S V; Reister, David B; Barhen, Jacob

    2005-01-01

    We consider systems whose parameters satisfy certain easily computable physical laws. Each parameter is directly measured by a number of sensors, or estimated using measurements, or both. The measurement process may introduce both systematic and random errors which may then propagate into the estimates. Furthermore, the actual parameter values are not known since every parameter is measured or estimated, which makes the existing sample-based fusion methods inapplicable. We propose a fusion method for combining the measurements and estimators based on the least violation of physical laws that relate the parameters. Under fairly general smoothness and nonsmoothness conditions on the physical laws, we show the asymptotic convergence of our method and also derive distribution-free performance bounds based on finite samples. For suitable choices of the fuser classes, we show that for each parameter the fused estimate is probabilistically at least as good as its best measurement as well as best estimate. We illustrate the effectiveness of this method for a practical problem of fusing well-log data in methane hydrate exploration.

  2. Production of drug nanosuspensions: effect of drug physical properties on nanosizing efficiency.

    PubMed

    Liu, Tao; Müller, Rainer H; Möschwitzer, Jan P

    2018-02-01

    Drug nanosuspension is one of the established methods to improve the bioavailability of poorly soluble drugs. Drug physical properties aspect (morphology, solid state, starting size et al) is a critical parameter determining the production efficiency. Some drug modification approaches such as spray-drying were proved to improve the millability of drug powders. However, the mechanism behind those improved performances is unclear. This study is to systematically investigate the influence of those physical properties. Five different APIs (active pharmaceutical ingredients) with different millabilities, i.e. resveratrol, hesperetin, glibenclamide, rutin, and quercetin, were processed by standard high pressure homogenization (HPH), wet bead milling (WBM), and a combinative method of spray-drying and HPH. Smaller starting sizes of certain APIs could accelerate the particle size reduction velocity during both HPH and WBM processes. Spherical particles were observed for almost all spray-dried powders (except spray-dried hesperetin) after spray-drying. The crystallinity of some spray-dried samples such as rutin and glibenclamide became much lower than their corresponding unmodified powders. Almost all spray-dried drug powders after HPH processes could lead to smaller nanocrystal particle size than unmodified APIs. The modified microstructure instead of solid state after spray-drying explained the potential reason for improved nanosizing efficiency. In addition, the contribution of starting size on the production efficiency was also critical according to both HPH and WBM results.

  3. Sensor System Fo4r Buried Waste Containment Sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, Mary Catherine

    2003-11-18

    A sensor system for a buried waste containment site having a bottom wall barrier and sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  4. Sensor system for buried waste containment sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, May Catherine

    2000-01-01

    A sensor system is disclosed for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  5. Sensor System Fo4r Buried Waste Containment Sites

    DOEpatents

    Smith, Ann Marie; Gardner, Bradley M.; Kostelnik, Kevin M.; Partin, Judy K.; Lancaster, Gregory D.; Pfeifer, Mary Catherine

    2005-09-27

    A sensor system for a buried waste containment site having a bottom wall barrier and/or sidewall barriers, for containing hazardous waste. The sensor system includes one or more sensor devices disposed in one or more of the barriers for detecting a physical parameter either of the barrier itself or of the physical condition of the surrounding soils and buried waste, and for producing a signal representing the physical parameter detected. Also included is a signal processor for receiving signals produced by the sensor device and for developing information identifying the physical parameter detected, either for sounding an alarm, displaying a graphic representation of a physical parameter detected on a viewing screen and/or a hard copy printout. The sensor devices may be deployed in or adjacent the barriers at the same time the barriers are deployed and may be adapted to detect strain or cracking in the barriers, leakage of radiation through the barriers, the presence and leaking through the barriers of volatile organic compounds, or similar physical conditions.

  6. Gender Discrimination in Physics and Astronomy: Graduate Student Experiences of Sexism and Gender Microaggressions

    ERIC Educational Resources Information Center

    Barthelemy, Ramón S.; McCormick, Melinda; Henderson, Charles

    2016-01-01

    Sexism occurs when men are believed to be superior to women, and is thought to be one of the reasons for women's underrepresentation in physics and astronomy. The issue of sexism in physics and astronomy has not been thoroughly explored in the physics education literature and there is currently no clear language for discussing sexism in the field.…

  7. Space or Physics? Children Use Physical Reasoning to Solve the Trap Problem from 2.5 Years of Age

    ERIC Educational Resources Information Center

    Seed, Amanda M.; Call, Josep

    2014-01-01

    By 3 years of age, children can solve tasks involving physical principles such as locating a ball that rolled down a ramp behind an occluder by the position of a partially visible solid wall (Berthier, DeBlois, Poirer, Novak, & Clifton, 2000; Hood, Carey, & Prasada, 2000). However, the extent to which children use physical information (the…

  8. A situated reasoning architecture for space-based repair and replace tasks

    NASA Technical Reports Server (NTRS)

    Bloom, Ben; Mcgrath, Debra; Sanborn, Jim

    1989-01-01

    Space-based robots need low level control for collision detection and avoidance, short-term load management, fine-grained motion, and other physical tasks. In addition, higher level control is required to focus strategic decision making as missions are assigned and carried out. Reasoning and control must be responsive to ongoing changes in the environment. Research aimed at bridging the gap between high level artificial intelligence (AI) planning techniques and task-level robot programming for telerobotic systems is described. Situated reasoning is incorporated into AI and Robotics systems in order to coordinate a robot's activity within its environment. An integrated system under development in a component maintenance domain is described. It is geared towards replacing worn and/or failed Orbital Replacement Units (ORUs) designed for use aboard NASA's Space Station Freedom based on the collection of components available at a given time. High level control reasons in component space in order to maximize the number operational component-cells over time, while the task-level controls sensors and effectors, detects collisions, and carries out pick and place tasks in physical space. Situated reasoning is used throughout the system to cope with component failures, imperfect information, and unexpected events.

  9. The development of clinical reasoning and interprofessional behaviors: service-learning at a student-run free clinic.

    PubMed

    Seif, Gretchen; Coker-Bolt, Patty; Kraft, Sara; Gonsalves, Wanda; Simpson, Kit; Johnson, Emily

    2014-11-01

    This article examines the benefits of a student run free clinic (SRFC) as a service learning experience for students in medicine, pharmacy, occupational therapy, physical therapy and physician assistant programs. We hypothesized that students who participate in an interprofessional service learning course and volunteer at a SRFC would demonstrate significant increases in perceptions and attitudes for working in interprofessional health care teams and clinical reasoning skills compared to students who did not participate. Three assessments were administered to an experimental and control group of pre-clinical students from medical, occupational therapy, physical therapy, pharmacy and physician assistant programs before and after participation in an interprofessional service-learning course and volunteering at the SRFC. The tools were the Interdisciplinary Education Perception Scale (IEPS), Readiness for Interprofessional Learning Scale (RIPLS) and the Self-Assessment of Clinical Reflection and Reasoning (SACRR). Students who completed the course had improvements in interprofessional perceptions and attitudes (p = 0.03) and perceptions of clinical reasoning skills when compared to the control group (p = 0.002). This study is novel as it examined students' perceptions of interprofessional attitudes and clinical reasoning following participation in an interprofessional service-learning course and participation in a SRFC.

  10. Comparative Application of Dimensionless Bankfull Hydraulic Relations for Earth and Titan

    NASA Astrophysics Data System (ADS)

    Parker, G.

    2005-12-01

    Recent evidence from the Huygens Probe of the Cassini Mission suggests that Titan, a satellite of Saturn, has rivers of flowing liquid methane which transport disaggregated crustal sediment in the form of ice. Surface images from the Huygens Probe show gravel-sized ice clasts that appear to be well-rounded by fluvial processes. If river morphodynamics on Earth is truly understood at a physical level, then relations that provide reasonable results on Earth ought to provide similarly reasonable results on Titan. These basic relations should be expressed in terms of dimensionless variabes. At least three dimensioned parameters that would be used to form the relevant dimensionless variables can be expected to vary notably between Earth and Titan. These are a) the acceleration of gravity, the kinematic viscosity of the flowing fluid and the submerged specific gravity of the sediment. Dimensionless relations for the threshold of motion, the threshold of significant suspension and bankfull hydraulic geometry that are known to work on Earth are used to predict features of rivers on Titan. Wildcards that make the predictions tentative include the formation of hydrocarbons on Titan that might add a kind of cohesivity not encountered on Earth and a freeze-thaw process of methane that might not be analogous to freeze-thaw processes in high-latitude rivers on Earth.

  11. Whole Class Dialogic Discussion Meets Taiwan's Physics Teachers: Attitudes and Culture

    NASA Astrophysics Data System (ADS)

    Eshach, Haim; Wu, Hsin-Kai; Hwang, Fu-Kwun; Hsu, Ying-Shao

    2014-02-01

    There is a distance between the power that whole class dialogic discussions (WCDD) may offer to the science class and their use in practice. Teachers' attitudes toward WCDD are part of the problem. The aims of this study were twofold: (a) to examine Taiwanese physics teachers' attitudes toward WCDD by considering cultural perspectives and describe how these attitudes changed as a result of a special workshop designed for this purpose, and (b) to report on how these attitudes should be taken into account in designing such workshops in the future. Nine experienced physics teachers participated in the WCDD workshop. The workshop was based on the WCDD model developed by Eshach (2010). Inductive analyses were performed on interviews with the teachers and their students, which were composed of 36 questions and developed specially for the purpose of this study, yielded the following categories: (1) In-school reasons for opposing WCDD—reasons belonging to school ways/tradition of teaching that may cause barriers to WCDD implementation; (2) External Factors—cultural reasons relating to Taiwanese views concerning education in general, which cause barriers to WCDD implementation; and (3) Cognitive aspect—refers to what teachers know about WCDD. The paper concludes with a discussion on what should be done in order to successfully bring WCDD to the Taiwanese physics class.

  12. Perspective: moving students beyond an organ-based approach when teaching medical interviewing and physical examination skills.

    PubMed

    Alexander, Erik K

    2008-10-01

    Medical interviewing and physical examination skills are core pillars of clinical medicine. Though nearly all U.S. medical students participate in preclinical courses designed to teach these skills, medical school faculty often comment that students' abilities remain limited on entering their clinical clerkships. The reason for this contention is not clear.The author briefly describes the current preclinical curricula at most medical schools that are designed to teach patient interviewing and examination. An organ-based curriculum is commonly employed, although the limitations of such an approach readily become apparent. For example, many hospitalized patients do not suffer from single-organ illnesses, but rather from infections or metabolic derangements, which cause numerous abnormalities to several body systems. Furthermore, clinical reasoning skills are rarely taught in such preclinical courses, though these abilities form the foundation for effective doctoring. These findings suggest an opportunity for content development surrounding patient interviewing and examination. The author proposes an educational approach that depicts how the confluence of both content knowledge skills and clinical reasoning skills can work synergistically to enhance preclinical teaching of the medical interview and physical examination.

  13. Preschool physics: Using the invisible property of weight in causal reasoning tasks

    PubMed Central

    Williamson, Rebecca A.; Meltzoff, Andrew N.

    2018-01-01

    Causal reasoning is an important aspect of scientific thinking. Even young human children can use causal reasoning to explain observations, make predictions, and design actions to bring about specific outcomes in the physical world. Weight is an interesting type of cause because it is an invisible property. Here, we tested preschool children with causal problem-solving tasks that assessed their understanding of weight. In an experimental setting, 2- to 5-year-old children completed three different tasks in which they had to use weight to produce physical effects—an object displacement task, a balance-scale task, and a tower-building task. The results showed that the children’s understanding of how to use object weight to produce specific object-to-object causal outcomes improved as a function of age, with 4- and 5-year-olds showing above-chance performance on all three tasks. The younger children’s performance was more variable. The pattern of results provides theoretical insights into which aspects of weight processing are particularly difficult for preschool children and why they find it difficult. PMID:29561840

  14. Preschool physics: Using the invisible property of weight in causal reasoning tasks.

    PubMed

    Wang, Zhidan; Williamson, Rebecca A; Meltzoff, Andrew N

    2018-01-01

    Causal reasoning is an important aspect of scientific thinking. Even young human children can use causal reasoning to explain observations, make predictions, and design actions to bring about specific outcomes in the physical world. Weight is an interesting type of cause because it is an invisible property. Here, we tested preschool children with causal problem-solving tasks that assessed their understanding of weight. In an experimental setting, 2- to 5-year-old children completed three different tasks in which they had to use weight to produce physical effects-an object displacement task, a balance-scale task, and a tower-building task. The results showed that the children's understanding of how to use object weight to produce specific object-to-object causal outcomes improved as a function of age, with 4- and 5-year-olds showing above-chance performance on all three tasks. The younger children's performance was more variable. The pattern of results provides theoretical insights into which aspects of weight processing are particularly difficult for preschool children and why they find it difficult.

  15. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-07-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disc galaxy set-ups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disc. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation, and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine-tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, and require a better star formation prescription or most likely some combination of these issues.

  16. Supernova feedback in numerical simulations of galaxy formation: separating physics from numerics

    NASA Astrophysics Data System (ADS)

    Smith, Matthew C.; Sijacki, Debora; Shen, Sijing

    2018-04-01

    While feedback from massive stars exploding as supernovae (SNe) is thought to be one of the key ingredients regulating galaxy formation, theoretically it is still unclear how the available energy couples to the interstellar medium and how galactic scale outflows are launched. We present a novel implementation of six sub-grid SN feedback schemes in the moving-mesh code AREPO, including injections of thermal and/or kinetic energy, two parametrizations of delayed cooling feedback and a `mechanical' feedback scheme that injects the correct amount of momentum depending on the relevant scale of the SN remnant resolved. All schemes make use of individually time-resolved SN events. Adopting isolated disk galaxy setups at different resolutions, with the highest resolution runs reasonably resolving the Sedov-Taylor phase of the SN, we aim to find a physically motivated scheme with as few tunable parameters as possible. As expected, simple injections of energy overcool at all but the highest resolution. Our delayed cooling schemes result in overstrong feedback, destroying the disk. The mechanical feedback scheme is efficient at suppressing star formation, agrees well with the Kennicutt-Schmidt relation and leads to converged star formation rates and galaxy morphologies with increasing resolution without fine tuning any parameters. However, we find it difficult to produce outflows with high enough mass loading factors at all but the highest resolution, indicating either that we have oversimplified the evolution of unresolved SN remnants, require other stellar feedback processes to be included, require a better star formation prescription or most likely some combination of these issues.

  17. The influence of API concentration on the roller compaction process: modeling and prediction of the post compacted ribbon, granule and tablet properties using multivariate data analysis.

    PubMed

    Boersen, Nathan; Carvajal, M Teresa; Morris, Kenneth R; Peck, Garnet E; Pinal, Rodolfo

    2015-01-01

    While previous research has demonstrated roller compaction operating parameters strongly influence the properties of the final product, a greater emphasis might be placed on the raw material attributes of the formulation. There were two main objectives to this study. First, to assess the effects of different process variables on the properties of the obtained ribbons and downstream granules produced from the rolled compacted ribbons. Second, was to establish if models obtained with formulations of one active pharmaceutical ingredient (API) could predict the properties of similar formulations in terms of the excipients used, but with a different API. Tolmetin and acetaminophen, chosen for their different compaction properties, were roller compacted on Fitzpatrick roller compactor using the same formulation. Models created using tolmetin and tested using acetaminophen. The physical properties of the blends, ribbon, granule and tablet were characterized. Multivariate analysis using partial least squares was used to analyze all data. Multivariate models showed that the operating parameters and raw material attributes were essential in the prediction of ribbon porosity and post-milled particle size. The post compacted ribbon and granule attributes also significantly contributed to the prediction of the tablet tensile strength. Models derived using tolmetin could reasonably predict the ribbon porosity of a second API. After further processing, the post-milled ribbon and granules properties, rather than the physical attributes of the formulation were needed to predict downstream tablet properties. An understanding of the percolation threshold of the formulation significantly improved the predictive ability of the models.

  18. A review of the influence of physical condition parameters on a typical aerospace stress effect: Decompression sickness

    NASA Technical Reports Server (NTRS)

    West, V. R.; Parker, J. F., Jr.

    1973-01-01

    The study examines data on episodes of decompression sickness, particularly from recent Navy work in which the event occurred under multiple stress conditions, to determine the extent to which decompression sickness might be predicted on the basis of personal characteristics such as age, weight, and physical condition. Such information should ultimately be useful for establishing medical selection criteria to screen individuals prior to participation inactivities involving extensive changes in ambient pressure, including those encountered in space operations. The main conclusions were as follows. There is a definite and positive relationship between increasing age and weight and the likelihood of decompression sickness. However, for predictive purposes, the relationship is low. To reduce the risk of bends, particularly for older individuals, strenuous exercise should be avoided immediately after ambient pressure changes. Temperatures should be kept at the low end of the comfort zone. For space activities, pressure changes of over 6-7 psi should be avoided. Prospective participants in future missions such as the Space Shuttle should not be excluded on the basis of age, certainly to age 60, if their general condition is reasonably good and they are not grossly obese. (Modified author abstract)

  19. Particle formation induced by sonication during yogurt fermentation - Impact of exopolysaccharide-producing starter cultures on physical properties.

    PubMed

    Körzendörfer, Adrian; Nöbel, Stefan; Hinrichs, Jörg

    2017-07-01

    Two major quality defects of yogurt are syneresis and the presence of large particles, and several reasons have been extensively discussed. Vibrations during fermentation, particularly generated by pumps, must be considered as a further cause as latest research showed that both ultrasound and low frequencies induced visible particles. The aim of this study was to investigate the impact of sonication during fermentation with starter cultures differing in exopolysaccharide (EPS) synthesis on the physical properties of set (syneresis, firmness) and stirred yogurt (large particles, laser diffraction, rheology). Skim milk was fermented with starter cultures YC-471 (low EPS) or YF-L 901 (high EPS) (Chr. Hansen) and sonicated for 5min at pH5.2. Sonicated set gels exhibited syneresis and were softer than respective controls. The mechanical treatment was adjusted to quantify visible particles (d≥0.9mm) in stirred yogurts properly. Sonication significantly increased particle numbers, however, the effect was less pronounced when YF-L 901 was used, indicating EPS as a tool to reduce syneresis and particle formation due to vibrations. Rheological parameters and size of microgel particles were rather influenced by starter cultures than by sonication. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. A physically-based method for predicting peak discharge of floods caused by failure of natural and constructed earthen dams

    USGS Publications Warehouse

    Walder, J.S.

    1997-01-01

    We analyse a simple, physically-based model of breach formation in natural and constructed earthen dams to elucidate the principal factors controlling the flood hydrograph at the breach. Formation of the breach, which is assumed trapezoidal in cross-section, is parameterized by the mean rate of downcutting, k, the value of which is constrained by observations. A dimensionless formulation of the model leads to the prediction that the breach hydrograph depends upon lake shape, the ratio r of breach width to depth, the side slope ?? of the breach, and the parameter ?? = (V/ D3)(k/???gD), where V = lake volume, D = lake depth, and g is the acceleration due to gravity. Calculations show that peak discharge Qp depends weakly on lake shape r and ??, but strongly on ??, which is the product of a dimensionless lake volume and a dimensionless erosion rate. Qp(??) takes asymptotically distinct forms depending on whether ?? > 1. Theoretical predictions agree well with data from dam failures for which k could be reasonably estimated. The analysis provides a rapid and in many cases graphical way to estimate plausible values of Qp at the breach.

Top