Sample records for physicist thinks small

  1. Brief, Embedded, Spontaneous Metacognitive Talk Indicates Thinking Like a Physicist

    ERIC Educational Resources Information Center

    Sayre, Eleanor C.; Irving, Paul W.

    2015-01-01

    Instructors and researchers think "thinking like a physicist" is important for students' professional development. However, precise definitions and observational markers remain elusive. We reinterpret popular beliefs inventories in physics to indicate what physicists think thinking like a physicist entails. Through discourse analysis of…

  2. Brief, embedded, spontaneous metacognitive talk indicates thinking like a physicist

    NASA Astrophysics Data System (ADS)

    Sayre, Eleanor C.; Irving, Paul W.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Instructors and researchers think "thinking like a physicist" is important for students' professional development. However, precise definitions and observational markers remain elusive. We reinterpret popular beliefs inventories in physics to indicate what physicists think thinking like a physicist entails. Through discourse analysis of upper-division students' speech in natural settings, we show that students may appropriate or resist these elements. We identify a new element in the physicist speech genre: brief, embedded, spontaneous metacognitive talk (BESM talk). BESM talk communicates students' in-the-moment enacted expectations about physics as a technical field and a cultural endeavor. Students use BESM talk to position themselves as physicists or nonphysicists. Students also use BESM talk to communicate their expectations in four ways: understanding, confusion, spotting inconsistencies, and generalized expectations.

  3. Nuclear Physicists in Finance

    NASA Astrophysics Data System (ADS)

    Mattoni, Carlo

    2017-01-01

    The financial services industry presents an interesting alternative career path for nuclear physicists. Careers in finance typically offer intellectual challenge, a fast pace, high caliber colleagues, merit-based compensation with substantial upside, and an opportunity to deploy skills learned as a physicist. Physicists are employed at a wide range of financial institutions on both the ``buy side'' (hedge fund managers, private equity managers, mutual fund managers, etc.) and the ``sell side'' (investment banks and brokerages). Historically, physicists in finance were primarily ``quants'' tasked with applying stochastic calculus to determine the price of financial derivatives. With the maturation of the field of derivative pricing, physicists in finance today find work in a variety of roles ranging from quantification and management of risk to investment analysis to development of sophisticated software used to price, trade, and risk manage securities. Only a small subset of today's finance careers for physicists require the use of advanced math and practically none provide an opportunity to tinker with an apparatus, yet most nevertheless draw on important skills honed during the training of a nuclear physicist. Intellectually rigorous critical thinking, sophisticated problem solving, an attention to minute detail and an ability to create and test hypotheses based on incomplete information are key to both disciplines.

  4. Documenting and Interpreting Ways to Engage Students in `Thinking Like a Physicist'

    NASA Astrophysics Data System (ADS)

    van Zee, Emily; Manogue, Corinne

    2010-10-01

    The Paradigms in Physics Program at Oregon State University has adapted a variety of interactive pedagogies to engage students in `thinking like a physicist.' Video recordings of class sessions document what the students and instructor say and do. This paper discusses development of narrative interpretations of such videos. Examples are drawn from two detailed narratives of activities during which the main ideas emerged during the wrap-up discussions rather than during the tasks that the students had been doing in their small groups. The goal of these `compare and contrast' wrap-up discussions was to help the students envision connections among geometric and algebraic representations of the mathematics they would be using during the coming weeks of instruction in quantum mechanics. The purpose of the narratives is to provide examples of wrap-up discussions with commentary about ways in which the instructor was choosing to guide this process.

  5. Dad's in the Garage: Santa Barbara Physicists in the Long 1970s

    NASA Astrophysics Data System (ADS)

    Mody, Cyrus

    2013-03-01

    American physicists faced many challenges in the 1970s: declining research budgets; public skepticism of scientific authority; declining student enrollments; and pressure to shift to topics such as biomedicine, environmental remediation, alternative energy, public housing and transport, and disability technologies. This paper examines the responses to these challenges of a small group of Santa Barbara physicists. While this group is not representative of the American physics profession, the success and failure of their responses to changed conditions tells us something about how American physicists got through the 1970s, and about the origins of some features of American physics today. The three physicists examined here are Philip Wyatt, David Phillips, and Virgil Elings. In the late `60s, Wyatt left a defense think tank to found an instrumentation firm. The Santa Barbara oil spill and other factors pushed that firm toward civilian markets in biomedicine and pollution measurement. Phillips joined Wyatt's firm from UCSB, while also founding his own company, largely to sell electronic devices for parapsychology. Phillips was also the junior partner in a master's of scientific instrumentation degree curriculum founded by Elings in order to save UCSB Physics' graduate program. Through the MSI program, Elings moved into biomedical research and became a serial entrepreneur. By the 1990s, Wyatt, Phillips, and Elings' turn toward academic entrepreneurship, dual military-civilian markets for physics start-ups, and interdisciplinary collaborations between physicists and life scientists were no longer unusual. Together, their journey through the `70s shows how varied the physics' profession's response to crisis was, and how much it pivoted on new interactions between university and industry.

  6. Physics is …; The Physicist explores attributes of physics

    NASA Astrophysics Data System (ADS)

    Baker, F. Todd

    2016-12-01

    He's back! 'The physicist'returns with an entirely new compilation of questions and answers from his long-lived website where laypeople can ask questions about anything physics related. This book focuses on adjectives (practical, beautiful, surprising, cool, frivolous) instead of nouns like the first two books (atoms, photons, quanta, mechanics, relativity). The answers within 'Physics Is' are responses to people looking for answers to fascinating (and often uninformed) questions. It covers topics such as sports, electromagnetism, gravitational theory, special relativity, superheroes, videogames, and science fiction. These books are designed for laypeople and rely heavily on concepts rather than formalism. That said, they keep the physics correct and don't water down, so expert physicists will find this book and its two companion titles fun reads. They may actually recognize similar questions posed to them by friends and family. As with the first two books, 'Physics Is' ends with a chapter with questions from people who think that 'The physicist' is a psychic and from people who think they have the answers to life, the universe and everything.

  7. Learning from Mistakes: The Effect of Students' Written Self-Diagnoses on Subsequent Problem Solving

    ERIC Educational Resources Information Center

    Mason, Andrew; Yerushalmi, Edit; Cohen, Elisheva; Singh, Chandralekha

    2016-01-01

    Helping students learn to think like a physicist is an important goal of many introductory physics courses. One characteristic distinguishing more experienced physicists from novice students is that they make better use of problem solving as a learning opportunity. Experts were found to spend more time than novices in monitoring their work,…

  8. Going beyond Equations with Disciplinary Thinking in First-Year Physics

    ERIC Educational Resources Information Center

    Syed, M. Qasim

    2015-01-01

    Students in first-year physics courses generally focus on hunting for suitable equations and formulas when tackling a variety of physical situations and physics problems. There is a need for a framework that can guide them to disciplinary ways of thinking and help them begin to think like physicists. To serve this end, in this study, a framework…

  9. Thinking big

    NASA Astrophysics Data System (ADS)

    Collins, Harry

    2008-02-01

    Physicists are often quick to discount social research based on qualitative techniques such as ethnography and "deep case studies" - where a researcher draws conclusions about a community based on immersion in the field - thinking that only quantitative research backed up by statistical analysis is sound. The balance is not so clear, however.

  10. Evolution, Physics, and Cancer: Disrupting Traditional Approache

    NASA Astrophysics Data System (ADS)

    Austin, Robert

    Physicists who were recruited to try and assist with the stubbornly constant mortality rates of cancer world-wide over the past 100 years have basically had the invitation withdrawn by the oncology community. The oncologists became annoyed with the independence of thought and the skepticism of some physicists with continuation of the present paradigm of the cancer genome as the rosette stone as the key to cancer. To quote a recent letter in Physics Today: ``Curing cancer is a complex biological problem to be solved by biologists''. Apparently our mission as minions is is to be high-level technicians. But I think that is wrong and will lead to continuation of the string of failures and deceptions foisted on the public at large by the Medical Industrial Complex, I think we really need to re-think cancer as a phenomena which is driven by evolution and may be desired by the organism and be a product of both the aging of the proteome and the genome. Further, searching for mutations (The Cancer Genome) may be completely the wrong direction, searching for protected genes may be as important as looking for mutated genes. I'll try to present the case that physicists should not have been kicked out of the Medical Industrial Complex that keeps the cancer business humming and profitable.

  11. Post-modern physics, bathtub style

    NASA Astrophysics Data System (ADS)

    Robinson, Andrew

    2008-01-01

    We recently renovated our bathroom. One of the things that my wife - also a physicist - and I both agreed on was the absolute necessity for a large bathtub in which to stretch out, read a book and think. I find that most of my best ideas occur to me in the bath, and apparently I am not alone - the distinguished nuclear physicist Leo Szilárd is also reputed to have used bathtub meditation.

  12. Intertwining Evidence- and Model-Based Reasoning in Physics Sensemaking: An Example from Electrostatics

    ERIC Educational Resources Information Center

    Russ, Rosemary S.; Odden, Tor Ole B.

    2017-01-01

    Our field has long valued the goal of teaching students not just the facts of physics, but also the thinking and reasoning skills of professional physicists. The complexity inherent in scientific reasoning demands that we think carefully about how we conceptualize for ourselves, enact in our classes, and encourage in our students the relationship…

  13. "Physical Review Letters" in the Classroom

    ERIC Educational Resources Information Center

    Angiolillo, Paul J.; Lynch, Jonathan

    2010-01-01

    Ask any physicist what the preeminent journal in the field is, and I think the almost unanimous answer will be "Physical Review Letters" ("PRL"). This weekly journal of the American Physical Society publishes high-impact research from all the major subdisciplines of physics. This journal is not the one you would think is the first place a high…

  14. Thinking Like a Physicist: Design Criteria for a Physics Curriculum

    ERIC Educational Resources Information Center

    Main, Peter

    2014-01-01

    The physics curriculum is usually defined by content but this does not provide students with an authentic experience of the subject. An alternative is that physics is defined more as a way of thinking and this idea is explored in terms of the purposes of physics education, assessment and the relationship of the subject with other disciplines. A…

  15. The Mental Aftermath - The Mentality of German Physicists 1945-1949

    NASA Astrophysics Data System (ADS)

    Hentschel, Klaus

    2007-01-01

    Few scientific communities have been more thoroughly studied than 20th-century German physicists. Yet their behavior and patterns of thinking immediately after the war remains puzzling. During the first five postwar years they suspended their internecine battles and a strange solidarity emerged. Former enemies were suddenly willing to exonerate each other blindly and even morally upright physicists began to write tirades against the 'denazification mischief' or the 'export of scientists'. Personal idiosyncracies melded into a strangely uniform pattern of rejection or resistance to the Allied occupiers, with attendant repressed feelings and self-pity. Politics was once again perceived as remote, dirty business. It was feared that the least concession of guilt would bring down even more severe sanctions on their discipline. Using tools from the history of mentality, such as analysis of serial publications, these tendenciesare examined. The perspective of emigre physicists, as reflected in their private letters and reports, embellish this portrait.

  16. A Gendered Approach to Science Ethics for US and UK Physicists.

    PubMed

    Ecklund, Elaine Howard; Di, Di

    2017-02-01

    Some research indicates that women professionals-when compared to men-may be more ethical in the workplace. Existing literature that discusses gender and ethics is confined to the for-profit business sector and primarily to a US context. In particular, there is little attention paid to gender and ethics in science professions in a global context. This represents a significant gap, as science is a rapidly growing and global professional sector, as well as one with ethically ambiguous areas. Adopting an international comparative perspective, this paper relies on 121 semi-structured interviews with US and UK academic physicists to examine how physicists perceive the impact of gender on science ethics. Findings indicate that some US and UK physicists believe that female scientists handle ethical issues within science in a feminine way whereas their male colleagues approach ethics in a masculine way. Some of these physicists further claim that these different approaches to science ethics lead to male and female scientists' different levels of competitiveness in academic physics. In both the US and the UK, there are "gender-blind" physicists, who do not think gender is related to professional ethics. Relying on physicists' nuanced descriptions this paper contributes to the current understanding of gender and science and engineering ethics.

  17. ARC-20180410-AAV3109-SOFIA-Penrose-NASAWeb

    NASA Image and Video Library

    2018-04-10

    Lecture by Sir Roger Penrose on the New Cosmological View of Dark Matter, which Strangely and Slowly Decays. Sir Penrose shares his latest research and provides insight into the thinking of a modern day theoretical physicist.

  18. Urgency of evolution-process congruent thinking in physics

    NASA Astrophysics Data System (ADS)

    Roychoudhuri, Chandrasekhar

    2015-09-01

    It is now generally recognized that physics has not been contributing anything conceptually fundamentally new beyond the century old Relativity and 90 years old Quantum Mechanics [1-4]. We have also started recognizing that there is an increasing rate of species extinction all over the world, especially since the last century [5]; and we are beginning to understand that the related problems are being steadily accelerated by human behavior to conquer nature, rather than understanding nature as is and living within its system logics [6,7]. We are beginning to appreciate that our long-term sustainability as a species literally depends upon proactively learning to nurture the entire bio-diversity [8-10]. Thus, humans must consciously become evolution process congruent thinkers. The evolutionary biologists have been crying out loud for us to listen [5,6, 8-10]. Social scientists, political scientists, economic scientists [13] have started chiming in to become consilient thinkers [6] for re-constructing sustainable societies. But, the path to consilient thinking requires us to recognize and accept a common vision based thinking process, which functionally serves as a uniting platform. I am articulating that platform as the "evolution process congruent thinking" (EPCT). Do physicists have any obligation to co-opt this EPCT? Is there any immediate and/or long-term gain for them? This paper argues affirmatively that co-opting EPCT is the best way to re-anchor physics back to reality ontology and develop newer and deeper understanding of natural phenomena based on understanding of the diverse interaction processes going on in nature. Physics is mature enough to acknowledge that all of our theories are "work in progress". This is a good time to start iteratively re-evaluating and re-structuring all the foundational postulates behind all the working theories. This will also consistently energize all the follow-on generation of physicists to keep on fully utilizing their evolution-given enquiring minds without being afraid by the prevailing culture of "publish-or-perish", requiring them to stay within the bounds of the prevailing theories as the final ones. Current physics thinking has been successfully driven by Measurable Data Modeling Epistemology (MDM-E); which is basically curve-fitting without demanding to understand the actual physical processes nature is carrying out. I am proposing to add an iterative repertoire, Interaction Process mapping Epistemology (IPM-E) over and above successful MDM-E. This will facilitate the physicists to become conceptual reverse engineers of nature. The gap between physicists and engineers will start melting down and our collective sustainability will be re-assured as successful engineers of nature.

  19. Christmas in Physics Land

    NASA Astrophysics Data System (ADS)

    1999-01-01

    A short story of everyday folk for the Yuletide season It was a beautiful scene. Children were sledging, or at least adults were sledging whilst the children waited for a go. Snow flakes were falling gently to the ground. The physicist was extremely content. All the snow flakes had a perfectly symmetric hexagonal crystal structure; the sledges were all reaching the bottom of the slope at just the correct velocity, neglecting heat loss due to friction. A skater went past. The physicist smiled. The change in melting point under the blades was just as it should have been, and angular momentum was completely conserved in the pirouette. A snowball hit the physicist squarely in the face, probably thrown by a geographer. But even this made the physicist laugh, as the trajectory was perfect, as long as you accounted for the changing mass. How different to last year when the physicist had spent Christmas in the real world. How glad he was that he had come to Physics Land for the festive season where everything was just as it ought to be. Someone in the crowd barged into him, but it didn't matter, he was a boson, so they just ignored each other. How horrid it had been last Christmas.... As a young man carrying a light ladder went past, whistling merrily and enjoying the experience of the Doppler effect, the physicist leant back against the perfectly smooth wall, revelling in the joy of resolving his forces on the rough ground... and began to think dark thoughts about the previous year. You see the problem with the real world was that it didn't understand physicists at all. Probably the worst place of all for a physicist was at a party. So often things would go wrong and he would leave early in disgrace. How well he remembered the evening when he had been curious whether it was a pnp or npn type semiconductor controlling the disco lights. It had taken barely three hours to reassemble the lights, and indeed improve on the flashing sequence by altering the reverse bias voltage, but no-one thanked him. Oh no, they were all just annoyed that he had dismantled the lights at all. That was the real world for you. Conversation had been difficult. People kept asking questions, but then didn't appear to be interested in the answer. One host had commented on the weather and then very rudely drifted off to another guest just as the physicist was making a clear distinction between rotating and inertial reference frames as the fundamental cause of the geostrophic wind. Another guest had made an equally bad impression by being clearly uninterested in a small digression on energy balance which seemed the obvious response to his comment about how warm the room had become as people began to dance. The physicist came out of his day dream. An old man was walking a dog on the end of a light inextensible string. A young girl on a swing was executing simple harmonic motion using a small-angle approximation in the park. Two older boys were investigating moments on a see-saw. A boisterous teenager was having a great time with the centripetal force on a roundabout. Yes, this was the life. In Physics Land, it would be a very merry Christmas. Philip Britton

  20. Leo Szilard Lectureship Award Talk: From Reductionism to Complexity; A Theoretical Physicist's Journey into Biology and the Social Sciences

    NASA Astrophysics Data System (ADS)

    West, Geoffrey

    2013-04-01

    In this talk I review how a high energy physicist serendipitously migrated from quarks and gluons, dark matter and string theory to thinking about equally big topics like why we live for 100 years (and not a thousand or 2-3 like a mouse), how is this generated from molecular time scales, why do we sleep and where does 8 hours come from, and how is this related to the rate at which we evolve, can there be a quantitative, mathematisable science of cities and companies, and can our exponentially expanding socio-economic universe be sustained, etc, etc? I consider these as integral parts of physics, related to the interface between Reductionism and Complexity, Thermodynamics and Information Theory. The saga will be a personal one ranging from issues connected with the demise of the SSC and attacks on science to the future role of physics and transdisciplinary thinking.

  1. Darwin's legacy

    NASA Astrophysics Data System (ADS)

    Susskind, Leonard

    2009-07-01

    Charles Darwin was no theoretical physicist, and I am no biologist. Yet, as a theoretical physicist, I have found much to think about in Darwin's legacy - and in that of his fellow naturalist Alfred Russell Wallace. Darwin's style of science is not usually thought of as theoretical and certainly not mathematical: he was a careful observer of nature, kept copious notes, contributed to zoological collections; and eventually from his vast repertoire of observation deduced the idea of natural selection as the origin of species. The value of theorizing is often dismissed in the biological sciences as less important than observation; and Darwin was the master observer.

  2. A theoretical physicist's journey into biology: from quarks and strings to cells and whales.

    PubMed

    West, Geoffrey B

    2014-10-08

    Biology will almost certainly be the predominant science of the twenty-first century but, for it to become successfully so, it will need to embrace some of the quantitative, analytic, predictive culture that has made physics so successful. This includes the search for underlying principles, systemic thinking at all scales, the development of coarse-grained models, and closer ongoing collaboration between theorists and experimentalists. This article presents a personal, slightly provocative, perspective of a theoretical physicist working in close collaboration with biologists at the interface between the physical and biological sciences.

  3. Teller Award Acceptance Speech (LIRPP Vol. 12)

    NASA Astrophysics Data System (ADS)

    McCrory, Robert L.

    2016-10-01

    It is indeed an honor to receive an award named for such an accomplished and famous physicist who is present with us today, Dr. Edward Teller. In thinking over what to say on this occasion, I noted that the Teller Award was given for pioneering research in controlled fusion, in controlling fusion for the benefit of mankind. I think everyone in this audience certainly would agree that this lofty goal is truly one of the unconquered, grand challenges in applied physics...

  4. Investigating Learners' Epistemological Framings of Quantum Mechanics

    ERIC Educational Resources Information Center

    Dini, Vesal

    2017-01-01

    Classical mechanics challenges students to use their intuitions and experiences as a basis for understanding, in effect to approach learning as "a refinement of everyday thinking'' (Einstein, 1936). Moving on to quantum mechanics (QM), students, like physicists, need to adjust this approach, in particular with respect to the roles that…

  5. Can Psychometricians Learn to Think like Physicists?

    ERIC Educational Resources Information Center

    Stenner, A. Jackson; Burdick, Donald S.

    2011-01-01

    The last 50 years of human and social science measurement theory and practice have witnessed a steady retreat from physical science as the canonical model. Humphry unapologetically draws on metrology and physical science analogies to reformulate the relationship between discrimination and the unit. This brief note focuses on why this reformulation…

  6. Beckham as physicist?

    NASA Astrophysics Data System (ADS)

    Ireson, Gren

    2001-01-01

    It is hard to think of a medium that does not use football or soccer as a means of promotion. It is also hard to think of a student who has not heard of David Beckham. If football captures the interest of students it can be used to teach physics; in this case a Beckham free-kick can be used to introduce concepts such as drag, the Bernoulli principle, Reynolds number and the Magnus effect, by asking the simple question: How does he curve the ball so much? Much basic mechanics can also be introduced along the way.

  7. New Ways of Knowledge: The Sciences, Society, and Reconstructive Knowledge.

    ERIC Educational Resources Information Center

    Raskin, Marcus G.; And Others

    In this volume, physicists and social scientists challenge the bedrock of scientific thinking whose applications can prove destructive to existing social systems, and shift the debate to the need for a radical change of direction that would replace traditional "value-free" inquiry and research with a knowledge model that incorporates…

  8. Teaching Quantum Interpretations: Revisiting the Goals and Practices of Introductory Quantum Physics Courses

    ERIC Educational Resources Information Center

    Baily, Charles; Finkelstein, Noah D.

    2015-01-01

    Most introductory quantum physics instructors would agree that transitioning students from classical to quantum thinking is an important learning goal, but may disagree on whether or how this can be accomplished. Although (and perhaps because) physicists have long debated the physical interpretation of quantum theory, many instructors choose to…

  9. Case Study of a Successful Learner's Epistemological Framings of Quantum Mechanics

    ERIC Educational Resources Information Center

    Dini, Vesal; Hammer, David

    2017-01-01

    Research on student epistemologies in introductory courses has highlighted the importance of understanding physics as "a refinement of everyday thinking" [A. Einstein, J. Franklin Inst. 221, 349 (1936)]. That view is difficult to sustain in quantum mechanics, for students as for physicists. How might students manage the transition? In…

  10. T$sup 2$WR (think, talk, write, and reason)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unruh, C.M.; Willis, C.A.

    1972-01-01

    From third Health Physics Society midyear topical symposium; Los Angeles, California, USA (29 Jan 1969). See CONF-690103P3. The health physicist, if he is to be effective in his profession, needs to develop his communication capabilities with craftsmen, management, and the public. His communications should meet the needs of and be understood by those receiving them. Second only to a thorough knowledge of the principles of health physics, persuasion is the health physicist' s biggest and best tool. By effective persuasion the health physicist should be able to accomplish his necessary work but he should always be ready to insist andmore » to stand firm to assure a safe course of action should his persuasive efforts prove to be ineffective. Public communications in the health physics field should be frequent. The organizational location of a health physics program in a corporate structure is optional. Good people will lead to a good program. In most situations an organizational position high in the corporate structure will help to assure proper importance and emphasis to the health physics program. In all cases clear lines of authority should be established and mutually understood by the health physicist, the craftsmen, and management. (auth)« less

  11. What about Albert Einstein? Using Biographies to Promote Students' Scientific Thinking

    ERIC Educational Resources Information Center

    Fingon, Joan C.; Fingon, Shallon D.

    2009-01-01

    Who hasn't heard of Einstein? Science educators everywhere are familiar with Einstein's genius and general theory of relativity. Students easily recognize Einstein's image by his white flyaway hair and bushy mustache. It is well known that Einstein was a brilliant physicist and an abstract thinker who often used his creativity and imagination in…

  12. Creative and Critical Thinking in the Arts and Sciences: Some Examples of Congruence

    ERIC Educational Resources Information Center

    Karakas, Scott L.

    2010-01-01

    In his landmark 1959 Rede lecture and subsequent publication, physicist Charles Percy Snow expressed concerns over what he saw as a growing rift between scientific and literary scholarly communities (Snow 1959). In the 50 years since that time, scholars and other commentators have expended a great deal of intellectual capital in the analysis of…

  13. Hans Bethe's early life

    NASA Astrophysics Data System (ADS)

    Bernstein, Jeremy

    2012-10-01

    In 1937, two years after he moved to the US to escape Nazi persecution, the physicist Hans Bethe sent a letter to his mother in Germany. In it, he wrote, "I think I am about the leading theoretician in America. [Eugene] Wigner is certainly better and [Robert] Oppenheimer and [Edward] Teller probably just as good. But I do more and talk more and that counts too."

  14. Mechanics as the Logical Point of Entry for the Enculturation into Scientific Thinking

    ERIC Educational Resources Information Center

    Carson, Robert; Rowlands, Stuart

    2005-01-01

    Force in modern classical mechanics is unique, both in terms of its logical character and the conceptual difficulties it causes. Force is well defined by a set of axioms that not only structures mechanics but science in general. Force is also the dominant theme in the "misconceptions" literature and many philosophers and physicists alike have…

  15. Building baby universes

    NASA Astrophysics Data System (ADS)

    Coles, Peter

    2017-08-01

    The thought of a scientist trying to design a laboratory experiment in which to create a whole new universe probably sounds like it belongs in the plot of a science-fiction B-movie. But as author Zeeya Merali explains in her new book A Big Bang in a Little Room, there are more than a few eminent physicists who think that this is theoretically possible.

  16. A New Way to Demonstrate the Radiometer as a Heat Engine

    ERIC Educational Resources Information Center

    Hladkouski, V. I.; Pinchuk, A. I.

    2015-01-01

    While the radiometer is readily available as a toy, A. E. Woodruff notes that it is also a very useful tool to help us understand how to resolve certain scientific problems. Many physicists think they know how the radiometer works, but only a few actually understand it. Here we present a demonstration that shows that a radiometer can be thought of…

  17. Self-management and creativity

    NASA Astrophysics Data System (ADS)

    Medvedev, B. A.; Skaptsov, A. A.; Polikarpov, M. A.

    2008-06-01

    How to improve physicist's creativity? How one can make himself an instrument for creativity? What is the role of the humanities in initiation of intuitive moments in thinking? The problems are discussed in terms of such modern conception as Self-management, in context of the dialogue between nature and human being by Prigogine, "Farther reaches of human nature" by Maslow, and mathematical approach for modeling of mental structure elements.

  18. Circle of influence

    NASA Astrophysics Data System (ADS)

    Robinson, Andrew

    2018-04-01

    The founder of the Vienna Circle – a polymathic and influential group of intellectuals dedicated to the philosophy of science from the late 1920s until the Nazi takeover of Austria in 1938 – was German philosopher and physicist Moritz Schlick. Karl Sigmund's latest book – Exact Thinking in Demented Times: the Vienna Circle and the Epic Quest for the Foundations of Science – tells the story of the Vienna Circle's ideas and personalities.

  19. Former Intern: Skills Used For a Lifetime | Poster

    Cancer.gov

    Michelle Marcelino developed a strong interest in science as a child. The former Werner H. Kirsten student intern’s father was a physicist and often discussed with his daughters how the world works in terms of science. “I think my father instilled it in me from a very young age,” Marcelino said. “I remember being in elementary school and my father telling us colors are just

  20. Biophysics at the Boundaries: The Next Problem Sets

    NASA Astrophysics Data System (ADS)

    Skolnick, Malcolm

    2009-03-01

    The interface between physics and biology is one of the fastest growing subfields of physics. As knowledge of such topics as cellular processes and complex ecological systems advances, researchers have found that progress in understanding these and other systems requires application of more quantitative approaches. Today, there is a growing demand for quantitative and computational skills in biological research and the commercialization of that research. The fragmented teaching of science in our universities still leaves biology outside the quantitative and mathematical culture that is the foundation of physics. This is particularly inopportune at a time when the needs for quantitative thinking about biological systems are exploding. More physicists should be encouraged to become active in research and development in the growing application fields of biophysics including molecular genetics, biomedical imaging, tissue generation and regeneration, drug development, prosthetics, neural and brain function, kinetics of nonequilibrium open biological systems, metabolic networks, biological transport processes, large-scale biochemical networks and stochastic processes in biochemical systems to name a few. In addition to moving into basic research in these areas, there is increasing opportunity for physicists in industry beginning with entrepreneurial roles in taking research results out of the laboratory and in the industries who perfect and market the inventions and developments that physicists produce. In this talk we will identify and discuss emerging opportunities for physicists in biophysical and biotechnological pursuits ranging from basic research through development of applications and commercialization of results. This will include discussion of the roles of physicists in non-traditional areas apart from academia such as patent law, financial analysis and regulatory science and the problem sets assigned in education and training that will enable future biophysicists to fill these roles.

  1. Part II: Golfand

    NASA Astrophysics Data System (ADS)

    Eskin, Boris; Bolotovsky, Boris

    The following sections are included: * THE LIFE AND FATE OF YURI GOLFAND * The Mount of Rest * First digression * "What do you think?" (Kharkov childhood and adolescence) * "More than a fourth of all the physics in the country" * Turbulent years * FIAN * A theoretical physicist * The May vacation dissertation * "The kind of guy he was..." * Second digression The "Koretz-Landau-Rumer" Case * Love * Unemployment * In "Refusal" * "The Promised Land... But is it mine?" * Afterword * IN MEMORY OF YURI ABRAMOVICH GOLFAND

  2. Interactomes to Biological Phase Space: a call to begin thinking at a new level in computational biology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, George S.; Brown, William Michael

    2007-09-01

    Techniques for high throughput determinations of interactomes, together with high resolution protein collocalizations maps within organelles and through membranes will soon create a vast resource. With these data, biological descriptions, akin to the high dimensional phase spaces familiar to physicists, will become possible. These descriptions will capture sufficient information to make possible realistic, system-level models of cells. The descriptions and the computational models they enable will require powerful computing techniques. This report is offered as a call to the computational biology community to begin thinking at this scale and as a challenge to develop the required algorithms and codes tomore » make use of the new data.3« less

  3. A Deliberate Practice Instructional Approach for Upper Division Physics Courses

    NASA Astrophysics Data System (ADS)

    Jones, David

    2015-05-01

    In upper division physics courses, an overarching educational goal is to have students think about and use the material much as a practicing physicist in the field does. Specifically, this would include knowledge (such as concepts, formalism, and instruments), approaches, and metacognitive skills that physicists use in solving ``typical'' (research context) problems to both understand and predict physical observations and accompanying models. Using an interactive instructional approach known as deliberate practice (described earlier in this session) we will discuss our work on how to provide students with the necessary practice and feedback to achieve these skills in a core DAMOP course of modern optics. We present the results of a direct and explicit comparison between this approach and traditional lecture-based instruction revealing evidence that a significant improvement of the students' mastery of these skills occurs when deliberate practice is employed. Our work was supported by the University of British Columbia through the CWSEI.

  4. Tacit Knowledge Involvement in the Production of Nuclear Weapons: A Critical Component of a Credible US Nuclear Deterrent in the 21st Century

    DTIC Science & Technology

    2013-02-14

    important in sustaining a credible nuclear deterrent without testing. Thinking in the early days of the Manhattan Project was that designing a nuclear...weapon would occur quickly. Renowned physicist Edward Teller recalled being discouraged from joining the Manhattan Project at Los Alamos National...difficulties with their nuclear program in the early years despite involvement with portions of the Manhattan Project . With permission, the British

  5. Social norms of "good" design: Interdisciplinary perspectives from a survey of engineers and clinicians in bioengineering.

    PubMed

    Johnson, Angela N

    2016-08-01

    In bioengineering training for new researchers and engineers, a great deal of time is spent discussing what constitutes "good" design. Conceptualization of good design, however, varies widely across interdisciplinary team members, with potential to both foster innovation or lead to unproductive conflict. To explore how groups central to bioengineering teams (physicians/clinicians and engineers/physicists) conceptualize good design, we asked 176 professionals in bioengineering to complete a comprehensive online survey including items designed to assess cognitive and moral foundations (validated MFQ30 tool) and custom items assessing perceptions on good design in three areas (good design characteristics, reputation of design approvers, and perceived design patient/consumer suitability). Of those that responded, 82 completed all quantitative survey sections and were included in this preliminary analysis. Correlations between response areas were examined to explore the possible links between cognitive and moral biases and perspectives on good design. The survey results indicated that both groups were more conservative than average Americans based on previous reports, and clinicians scored higher on average for all MFQ30 domains. Numerous significant correlations with good design were observed among clinicians, while engineers/physicists most closely correlated good design with prescriber approval and scientific/technical literature. The exploratory analysis demonstrated the potential utility of sociological frameworks to explore relationships in design thinking with potential utility to stimulate thriving conversation on team-based design thinking in bioengineering education and practice.

  6. The Human Mind As General Problem Solver, Is Observed To Find ``Best'' Solutions, That Correspond To Highest Mental Coherence: Will Discuss ``sing Glass Type Theory'' of Princeton Physicist J J Hopfield, Points To How Best Use Our Own Human Mind!!

    NASA Astrophysics Data System (ADS)

    Gurr, Henry

    2014-03-01

    Princeton Physicist J. J. Hopfield's Mathematical Model of the Mammalian Brain, (Similar To Ising Glass Model of a crystal of magnetic spin particles) says our Brain-Work for Memory, Perception, Language, Thinking, etc, (Even the AHA-EUREKA-Flash Of Insight Type Problem Solving), is achieved by our massively inter-connected CNS Neurons ... working together ... MINIMIZING an analog of physical energy ... thus yielding Optimal Solutions: These ``best'' answers, correspond to highest mental coherence, for most facets organism response, beit mental (eg: perception, memory, ideas, thinking, etc) or physical-muscular-actions (eg speaking, tool using, trail following, etc). Our brain is this way, because living creature, MUST be evolved, so they will find & use the best actions, for survival!!! Our human heritage, is to instantly compute near optimal future plans, (mental & physical-muscular), and be able to accomplish plans reliably & efficiently. If you know of book or articles in these topic areas, please email to HenryG--USCA.edu How to work well, with your own ``self'', called mind-body, will follow!! Conjectures: Who is the ``I'' that appears to make decisions? Am ``I'' the master of my domain? Is there an ``I'' or am ``I'' merely an illusion of reality.

  7. Signing off

    NASA Astrophysics Data System (ADS)

    2001-03-01

    What are you thinking about? There is a crisis in recruiting physics teachers throughout Northern Europe. Detailed research has shown that the problem may be one of image. It seems that being a teacher is seen as something slightly strange. So is being a physicist. This makes anyone who is a physics teacher (strange)2. This effect becomes overwhelming when more than one physics teacher is present, making attendance at gatherings of physics teachers almost unthinkable for the average person. So just what is it that sets physicists aside from the rest of the population? Why do they think we are so strange? Clearly it is how we think about things. We enter a room and estimate its volume. We visit the fairground and we wonder about the g force. At a football match we estimate the size of the crowd. At sunset we see scattering and at the beach, as the sun glints off the clear water, we think about Brewster's angle, and we estimate the number of pebbles on the beach. We find potential visits and lesson-material at hospitals, concerts, restaurants and on every possible mode of transport. Thinking about things like that is what makes us physics teachers. Surely everyone has seen The Wizard of Oz. I want you to imagine that you are watching it along with some friends who are not physics teachers. Let's see what they are all thinking about. One is a Roads Engineer. What a state the yellow brick road is in! As the major route in the country of Oz it obviously needs an upgrade. A nice black tarmac surface, some road markings and lighting at the major intersections. There is something else wrong. Dorothy, the Tin man, Scarecrow and Lion are just walking along. Where are the road works, traffic jams and hold-ups? Another friend is a school principal. What an amazing leadership style the Wizard has. Perhaps it would work at school? Those munchkins run around a bit though. There would be a need for some rules about how to play in the playground. Perhaps if the mayor of the Munchkins were to be on performance related pay things might improve? And what are you thinking? What is the conductance of the Tin man? Would it vary measured from head to toe or hand to hand? Students could do extended investigations into the conductance of different body parts. There are surely some great opportunities for projects and science fairs. Students could investigate the suitability of different materials for making Tin man suits. They could do a special display... So you are thinking again, but so are they. Everyone sees the world from their own perspective. Perhaps people think the perspective of a physics teacher is a bit strange. We must stand up for ourselves and fight back. It is time to tell the world what good people we are to know - far more interesting than road engineers or school principals. After all, look at what they think about when they watch The Wizard of Oz! If this positive image projection fails to recruit more physics teachers I can propose an alternative. There are about as many giant pandas in the world as physics teachers in the UK. There is a breeding programme for pandas. Now there's an idea ... . What good people we are to know - far more interesting than road engineers or school principals. After all, look at what they think about when they watch The Wizard of Oz! Philip Britton Head of Physics, Leeds Grammar School, UK

  8. Former Intern: Skills Used For a Lifetime | Poster

    Cancer.gov

    Michelle Marcelino developed a strong interest in science as a child. The former Werner H. Kirsten student intern’s father was a physicist and often discussed with his daughters how the world works in terms of science. “I think my father instilled it in me from a very young age,” Marcelino said. “I remember being in elementary school and my father telling us colors are just wavelengths of light perceived by your eye. That’s my dad, explaining that concept in detail to a child.” 

  9. Oskar Klein

    NASA Astrophysics Data System (ADS)

    Fischer-Hjalmars, Inga; Laurent, Bertel

    2014-03-01

    Oskar Klein died on the fifth of February 1977 at the age of eighty-two. One of the most prominent Swedish physicists ever and an outstanding personality in the field of culture had passed away. He was a man whose interests knew no limits and as a scientist he greatly enriched our understanding of Nature. All those who knew him were astounded by his profound thinking, wealth of ideas, extensive insight and humanism, qualities that obviously had been stimulated by the spirit in his parents' home. His father, rabbi and professor in Stockholm, was deeply engaged in theological and humanitarian issues...

  10. An emotional contribution to the Festschrift of the Journal of Biomaterials Science for Teiji Tsuruta.

    PubMed

    Ringsdorf, Helmut

    It is a honor for me to contribute to the 'Festschrift for Teiji Tsuruta'! Being old, it is much easier for me to look back than to think ahead. Thus, please allow me to make a few 'historical remarks' about Biomaterials and Biotechnology, long before Science stepped in. Remarks about Georg Christoph Lichtenberg, the Göttinger physicist and philosopher, and his relation to Teiji Tsuruta. And talking about him as teacher, one cannot do it without looking at Hermann Staudinger and his dreams.

  11. Intertwining evidence- and model-based reasoning in physics sensemaking: An example from electrostatics

    NASA Astrophysics Data System (ADS)

    Russ, Rosemary S.; Odden, Tor Ole B.

    2017-12-01

    Our field has long valued the goal of teaching students not just the facts of physics, but also the thinking and reasoning skills of professional physicists. The complexity inherent in scientific reasoning demands that we think carefully about how we conceptualize for ourselves, enact in our classes, and encourage in our students the relationship between the multifaceted practices of professional science. The current study draws on existing research in the philosophy of science and psychology to advocate for intertwining two important aspects of scientific reasoning: using evidence from experimentation and modeling. We present a case from an undergraduate physics course to illustrate how these aspects can be intertwined productively and describe specific ways in which these aspects of reasoning can mutually reinforce one another in student learning. We end by discussing implications for this work for instruction in introductory physics courses and for research on scientific reasoning at the undergraduate level.

  12. No Time to be Brief - A scientific biography of Wolfgang Pauli

    NASA Astrophysics Data System (ADS)

    Enz, Charles P.

    2002-11-01

    This book retraces the life of the physicist Wolfgang Pauli, analyses his scientific work, and describes the evolution of his thinking. Pauli spent 30 years as a professor at the Federal Institute of Technology ETH in Zurich, which occupy a central place in this biography. It would be incomplete, however, without a rendering of Pauli's sarcastic wit and, most importantly, of the world of his dreams. It is through the latter that quite a different aspect of Pauli's life comes in, namely his association with the psychology of C.G. Jung and his school.

  13. Surveying trends in radiation oncology medical physics in the Asia Pacific Region.

    PubMed

    Kron, Tomas; Healy, Brendan; Ng, Kwan Hoong

    2016-07-01

    Our study aims to assess and track work load, working conditions and professional recognition of radiation oncology medical physicists (ROMPs) in the Asia Pacific Region over time. A structured questionnaire was mailed in 2008, 2011 and 2014 to senior medical physicists representing 23 countries. The questionnaire covers 7 themes: education and training including certification; staffing; typical tasks; professional organisations; resources; research and teaching; job satisfaction. Across all surveys the response rate was >85% with the replies representing practice affecting more than half of the world's population. The expectation of ROMP qualifications (MSc and between 1 and 3years of clinical experience) has not changed much over the years. However, compared to 2008, the number of medical physicists in many countries has doubled. Formal professional certification is only available in a small number of countries. The number of experienced ROMPs is small in particular in low and middle income countries. The increase in staff numbers from 2008 to 2014 is matched by a similar increase in the number of treatment units which is accompanied by an increase in treatment complexity. Many ROMPs are required to work overtime and not many find time for research. Resource availability has only improved marginally and ROMPs still feel generally overworked, but professional recognition, while varying widely, appears to be improving slowly. While number of physicists and complexity of treatment techniques and technologies have increased significantly, ROMP practice remains essentially unchanged over the last 6years in the Asia Pacific Region. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. A Physicist in Business: Opportunities, Pitfalls, and Lifestyle.

    NASA Astrophysics Data System (ADS)

    Woollam, John

    2007-03-01

    A traditional education in physics does not normally include business classes or dealing with opportunities to start a company, yet scientists often now start and run small companies. Physicists are mainly interested in technology. However, other factors quickly dominate chances for business success. These include finance, accounting, cash flow analysis, recruiting, interviewing, personnel issues, marketing, investments, retirement plans, patents and other not always so fun activities. Technical decisions are often strongly influenced by company finances and market-analysis. This talk discusses how to recognize opportunity, how to minimize chances for failure, and lifestyle changes one needs to be aware of before entrepreneurship involvement.

  15. Editorial: The role of medical physics in lung SBRT.

    PubMed

    Mancosu, Pietro; Nisbet, Andrew; Jornet, Núria

    2018-01-01

    Stereotactic body radiation therapy (SBRT) has become a standard treatment for non-operable patients with early stage non-small cell lung cancer (NSCLC). In this context, medical physics community has largely helped in the starting and the growth of this technique. In fact, SBRT requires the convergence of many different features for delivering large doses in few fractions to small moving target in an heterogeneous medium. The special issue of last month, was focused on the different physics challenges in lung SBRT. Eleven reviews were presented, covering: imaging for treatment planning and for treatment assessment; dosimetry and planning optimization; treatment delivery possibilities; image guidance during delivery; radiobiology. The current cutting edge role of medical physics was reported. We aimed to give a complete overview of different aspects of lung SBRT that would be of interest to both physicists implementing this technique in their institutions and more experienced physicists that would be inspired to start research projects in areas that still need further developments. We also feel that the role that medical physicists have played in the development and safe implementation of SBRT, particularly in lung region, can be taken as an excellent example to be translated to other areas, not only in Radiation Oncology but also in other health sectors. Copyright © 2018 Associazione Italiana di Fisica Medica. All rights reserved.

  16. A Physicist as President of the University

    NASA Astrophysics Data System (ADS)

    Dynes, Robert

    2005-03-01

    My wife, physicist Frances Hellman, is fond of referring to me as a ``restless soul,'' and I do not dispute her. In the 40 years since graduating from the University of Western Ontario with a bachelor's degree in mathematics and physics, I went on to earn master's and doctorate degrees in physics and an honorary doctor of science degree from McMaster University. In 22 years working at AT&T Bell Laboratories, I held five positions, was department head in two departments, and director of one laboratory. At the University of California, San Diego, I was a Professor of Physics, chair of the Department of Physics, senior vice chancellor and then chancellor. Currently, in addition to being a professor of Physics, I am president of the University of California. The ``restless'' trajectory of my career from physics undergraduate to university president follows the nature of physics itself. In physics, you are constantly seeking challenges, experimenting, creating hypotheses, looking for and finding solutions. I recall having a structured view of the world as a boy, a sense that there was a guiding ``master plan'' to most things and that wise, educated, benevolent people were there to implement the plan. ``They'' would do the right thing. Along the way, I realized, ``there is no `they' there; there is only us.'' Acknowledging the laws of thermodynamics-- ``you can't win, you can't break even, and you can't get out of the game'' --I nonetheless believe that if you have a restless mind, an open heart, and intellectual honesty without giving into wishful thinking, physicists can do anything. .

  17. Comparative Cognitive Task Analyses of Experimental Science and Instructional Laboratory Courses

    NASA Astrophysics Data System (ADS)

    Wieman, Carl

    2015-09-01

    Undergraduate instructional labs in physics generate intense opinions. Their advocates are passionate as to their importance for teaching physics as an experimental activity and providing "hands-on" learning experiences, while their detractors (often but not entirely students) offer harsh criticisms that they are pointless, confusing and unsatisfying, and "cookbook." Here, both to help understand the reason for such discrepant views and to aid in the design of instructional lab courses, I compare the mental tasks or types of thinking ("cognitive task analysis") associated with a physicist doing tabletop experimental research with the cognitive tasks of students in an introductory physics instructional lab involving traditional verification/confirmation exercises.

  18. Think outside the box

    NASA Astrophysics Data System (ADS)

    Rowlands, Peter

    2008-09-01

    Your editorial in the July issue (p17) drew attention to the fact that there are many physicists who feel they have a contribution to make, and are fully qualified to do so, but who, for reasons of age, lack of status, lack of good connections or lack of previous publications in the most prestigious journals, are not given an adequate hearing. In the last few decades, physics has become massively institutionalized, and attention is now only given to those people who meet all the "right" criteria of standard career progression, and who stick to the narrow research programmes (such as string theory) outlined by a few influential people.

  19. Historical Examples of Misrepresentation, Innovation, and Morality in Physical Science and Technology

    NASA Astrophysics Data System (ADS)

    Buchwald, Jed

    2016-03-01

    The pressures of publication, the desire to be first in innovation, and moral convictions have long been at work in the history of science and technology. Historians think and argue best through stories, so I've chosen three examples that exemplify one or more of these aspects. The first involves the discovery of electric waves by Heinrich Hertz in 1888; the second concerns the controlled production of electromagnetic radiation by Marconi and Fleming in the early 1900s; our final case involves a bitter controversy between the physicist Hermann von Helmholtz and the astronomer Friedrich Zöllner in the 1890s.

  20. Once a physicist: Umberto Guidoni

    NASA Astrophysics Data System (ADS)

    Guidoni, Umberto

    2008-09-01

    How did you first become interested in physics? As a teenager I was given a small telescope. It was only a toy but with it I could see the rings of Saturn. I was fascinated and decided I wanted to study space.

  1. A physicist's view of biotechnology. [small molecule crystal growth in space

    NASA Technical Reports Server (NTRS)

    Kroes, Roger L.

    1987-01-01

    Theories and techniques for small molecule crystal growth are reviewed, with emphasis on space processing possibilities, particularly for protein crystal growth. The general principles of nucleation, growth, and mass and heat transport are first discussed. Optical systems using schlieren, shadowgraph, and holographic techniques are considered, and are illustrated with the example of the NASA developed Fluids Experiment System flow aboard Spacelab 3.

  2. Turbulence in nature and in the laboratory

    PubMed Central

    Warhaft, Z.

    2002-01-01

    Fluid turbulence has attracted the attention of physicists, mathematicians, and engineers for over 100 years, yet it remains an unsolved problem. The reasons for the difficulties are outlined and recent advances in describing its small-scale statistical structure are described. Contrary to traditional notions, new experimental evidence indicates that the small scales are anisotropic, reflecting the overall character of the flow. The consequences of this finding with regard to the long-held postulate of the universality of the small-scale turbulence structure are discussed. PMID:11875199

  3. Solving a problem by using what you know: a physicist looks at a problem in ecology

    NASA Astrophysics Data System (ADS)

    Greenler, Robert

    2015-08-01

    Two philosophical ideas motivate this paper. The first is an answer to the question of what is an appropriate activity for a physicist. My answer is that an appropriate activity is anything where the tools of a physicist enable him or her to make a contribution to the solution of a significant problem. This may be obvious in areas that overlap physics (e.g. chemistry, engineering, geology) but also true in any endeavour where mathematical modelling may contribute insight to the solution of problems (e.g. timing of traffic lights, efficient ways to seat passengers on airplanes, whether it is better to walk or run in a rain shower). The second idea concerns an approach to problem solving. Before some people try to solve a problem, they think they first must learn everything that is known about the subject. However, sometimes an effective approach is to declare, ‘I’m going to solve this problem with what I know now!’ I see a relationship between this approach and the idea of back-of-the-envelope calculations, which many of us appreciate. Of course there are limitations to this method, but I believe that such an aggressive approach to a problem—uninfluenced by the methods everyone else has used—can be productive. This paper describes such an approach to a real-world problem, using only what is known by the teacher of the introductory, calculus-based physics course. The intent of this paper is to encourage students and teachers of physics to look for unconventional areas, outside of physics, where they might use the techniques they have learned to solve problems

  4. Early History of BELL'S Theorem Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Clauser, John F.

    Before 1980 it was unfashionable for a physicist to admit that he either did not understand and/or doubted the Truth and/or Orthodoxy of Quantum Mechanics (QM). Contemporary wisdom deemed it impossible that it may lead to incorrect predictions. Thus, it was foolish to suggest that it warranted further testing. Said wisdom proclaimed that nothing would ever be gained by any such pursuit. Bohr had won his debates with Einstein. Von Neumann had proven all other interpretations wrong. That was the end to it! Only an iconoclast dared think otherwise. Here I provide a brief history of some of my encounters with a few fellow iconoclasts, past denizens of a QM doubter's subculture.

  5. Remembering Yakov Abramovich

    NASA Astrophysics Data System (ADS)

    Frenkel, A.

    2013-06-01

    Shortly after its foundation in 1956 the Joint Institute for Nuclear Research in Dubna became an important training place for young physicists from Eastern-European countries. In those years I, too, was much younger than now, and from the late 1950s until the mid-1980s visited the Laboratory of Theoretical Physics many times for a few weeks. Discussions with Yakov Abramovich about particle physics and field theory were always interesting and instructive. When flavor SU(3) symmetry was discovered, his Dubna reprint review on the subject for me - and I think not only for me - proved to be a very helpful handbook during many subsequent years. Let me also tell you about an episode which I remember with gratitude...

  6. The case for biophysics super-groups in physics departments.

    PubMed

    Hoogenboom, Bart W; Leake, Mark

    2018-06-04

    Increasing numbers of physicists engage in research activities that address biological questions from physics perspectives or strive to develop physics insights from active biological processes. The on-going development and success of such activities morph our ways of thinking about what it is to 'do biophysics' and add to our understanding of the physics of life. Many scientists in this research and teaching landscape are homed in physics departments. A challenge for a hosting department is how to group, name and structure such biophysicists to best add value to their emerging research and teaching but also to the portfolio of the whole department. Here we discuss these issues and speculate on strategies. Creative Commons Attribution license.

  7. Planck, the Quantum, and the Historians

    NASA Astrophysics Data System (ADS)

    Gearhart, Clayton A.

    2002-05-01

    In late 1900, the German theoretical physicist Max Planck derived an expression for the spectrum of black-body radiation. That derivation was the first step in the introduction of quantum concepts into physics. But how did Planck think about his result in the early years of the twentieth century? Did he assume that his derivation was consistent with the continuous energies inherent in Maxwellian electrodynamics and Newtonian mechanics? Or did he see the beginnings, however tentative and uncertain, of the quantum revolution to come? Historians of physics have debated this question for over twenty years. In this article, I review that debate and, at the same time, present Planck's achievement in its historical context.

  8. Case study of a successful learner's epistemological framings of quantum mechanics

    NASA Astrophysics Data System (ADS)

    Dini, Vesal; Hammer, David

    2017-06-01

    Research on student epistemologies in introductory courses has highlighted the importance of understanding physics as "a refinement of everyday thinking" [A. Einstein, J. Franklin Inst. 221, 349 (1936), 10.1016/S0016-0032(36)91047-5]. That view is difficult to sustain in quantum mechanics, for students as for physicists. How might students manage the transition? In this article, we present a case study of a graduate student's approaches and reflections on learning over two semesters of quantum mechanics, based on a series of nine interviews. We recount his explicit grappling with the shift in epistemology from classical to quantum, and we argue that his success in learning largely involved his framing mathematics as expressing physical meaning. At the same time, we show he was not entirely stable in these framings, shifting away from them in particular during his study of scattering. The case speaks to literature on students' epistemologies, with respect to the roles of everyday thinking and mathematics. We discuss what this case suggests for further research, with possible implications for instruction.

  9. Computer Supported Collaborative Rocketry: Teaching students to distinguish good and bad data like expert physicists

    NASA Astrophysics Data System (ADS)

    d'Alessio, Matthew; Lundquist, Loraine

    2013-10-01

    Each year our physical science class for pre-service elementary teachers launches water-powered rockets based on the activity from NASA. We analyze the rocket flight using data from frame-by-frame video analysis of the launches. Before developing the methods presented in this paper, we noticed our students were mired in calculation details while losing sight of physical concepts. Sloppy measurements and calculations (even when using spreadsheets with formulas provided) sometimes led to such poor results that physical concepts could not be reliably taught from the data, but students were unmotivated to either notice or correct their errors. We adopted a collaborative, computer supported approach using simple and easily available functions in Google Spreadsheets to pool observations, provide instant feedback, and publicly display results from all teams side-by-side in real time. These instant comparisons promote student accountability and engagement, inspiring them to think more carefully about why answers may be different and notice sloppy data or unlikely outcomes—in short, to facilitate and motivate expert thinking about data.

  10. Thinking Outside the Lab

    NASA Astrophysics Data System (ADS)

    Colter, Tabitha

    2017-01-01

    As an undergraduate physics major who spent 2015 deep in a quantum optics lab at Oak Ridge National Laboratory, I knew my 2016 experience with the House of Representatives Energy and Commerce Committee would be a completely new challenge. I have long had a passion for the bridge of communication between the technical and non-technical worlds but it was only through my AIP Mather internship this summer that I was able to see that passion come to life in the realm of science policy. Suddenly, I went from squeezing political philosophy classes into my packed schedule to witnessing the political process first-hand. I was thrilled to find that the skills of critical thinking and communicating complex issues I have developed throughout my training as a physicist were directly applicable to my work in Congress. Overall, my experience this summer has given me insight into the inner workings of the federal policy process, deepened my appreciation for the work of government employees to keep Congressional members informed on the pressing current issues, and exposed me to a whole range of alternative careers within science. AIP and SPS

  11. Developing a Vision for Communicating Physics, Including Astronomy, in the 21st Century

    NASA Astrophysics Data System (ADS)

    Hooper, E. J.; Bardeen, M.; Barnett, M.; Campbell, D.; Landsberg, R.; Ruchti, R.; Simmons, E.; Aspen Physics E&O; Workshop Collaboration

    2004-12-01

    Physicists and astronomers are excited and fascinated by what they observe in nature. Sharing this excitement with students and the general public is rewarding to them as individuals and is extraordinarily beneficial for democratic societies. Educational outreach plays an increasing role in the careers of working physicists; many are already involved in outreach, and all are being encouraged by the federal granting agencies to share the excitement of their research fields with a broader audience. A two-week workshop at the Aspen Center for Physics in the summer of 2004 brought together physicists from several disciplines, including astronomy; K-12 educators; informal science educators; developers of educational materials; as well as professional science communicators from the media and publishing worlds. The participants shared their ongoing education and outreach projects, as well as their needs and wishes, in a mixture of presentations, demonstrations, and informal discussions. The rich panoply of education products and services produced by physicists and their organizations was apparent even from this relatively small cross-section. However, the full potential impact of these efforts may not be realized if the target audience, such as teachers, are either not aware of the opportunities or have difficulty implementing them due to time or curriculum needs. Hence, much of the discussion centered on access rather than new education initiatives. Teachers need one-stop shopping for materials and programs, as well as stronger grass-roots locally tailored partnerships with universities, research institutes, and museums. One of the proposals for addressing these and other needs is a small national virtual institute for physics education and outreach, patterned along the lines of successful virtual research institutes, such as the virtual Institute for Complex Adaptive Matter (ICAM). EJH is supported by an NSF AAPF. The Aspen Workshop was funded by NSF's MPS Directorate, ICAM, and the APS.

  12. Secondary Teachers' Conceptions of Creative Thinking within the Context of Environmental Education

    ERIC Educational Resources Information Center

    Daskolia, Maria; Dimos, Athanasios; Kampylis, Panagiotis G.

    2012-01-01

    Creative thinking in Environmental Education (EE) remains greatly under researched topic. Research on teachers' conceptions of creative thinking within EE context is also limited, although their role in facilitating creative thinking in students is well documented. The small-scale qualitative study presented here investigates Greek secondary…

  13. Citizen Science: The Small World Initiative Improved Lecture Grades and California Critical Thinking Skills Test Scores of Nonscience Major Students at Florida Atlantic University.

    PubMed

    Caruso, Joseph P; Israel, Natalie; Rowland, Kimberly; Lovelace, Matthew J; Saunders, Mary Jane

    2016-03-01

    Course-based undergraduate research is known to improve science, technology, engineering, and mathematics student achievement. We tested "The Small World Initiative, a Citizen-Science Project to Crowdsource Novel Antibiotic Discovery" to see if it also improved student performance and the critical thinking of non-science majors in Introductory Biology at Florida Atlantic University (a large, public, minority-dominant institution) in academic year 2014-15. California Critical Thinking Skills Test pre- and posttests were offered to both Small World Initiative (SWI) and control lab students for formative amounts of extra credit. SWI lab students earned significantly higher lecture grades than control lab students, had significantly fewer lecture grades of D+ or lower, and had significantly higher critical thinking posttest total scores than control students. Lastly, more SWI students were engaged while taking critical thinking tests. These results support the hypothesis that utilizing independent course-based undergraduate science research improves student achievement even in nonscience students.

  14. The happiest thought of Einstein's life.

    NASA Astrophysics Data System (ADS)

    Heller, M.

    It is a commonly told story that Einstein formulated his famous principle of equivalence when thinking about what happens in a freely falling elevator, and that it was an original idea of his genius distinguished by the rare capability to see deep problems in the most ordinary things. In the reading of Einstein's and Ernst Mach's works the author has discovered that it was not a physicist in an elevator which led to the principle of equivalence but rather somebody falling from a roof; moreover, the idea behind the principle was not invented by Einstein himself but rather read by him from the book by Mach entitled The Science of Mechanics. The influence this book had on young Einstein is very well known.

  15. Perspectives on theory at the interface of physics and biology.

    PubMed

    Bialek, William

    2018-01-01

    Theoretical physics is the search for simple and universal mathematical descriptions of the natural world. In contrast, much of modern biology is an exploration of the complexity and diversity of life. For many, this contrast is prima facie evidence that theory, in the sense that physicists use the word, is impossible in a biological context. For others, this contrast serves to highlight a grand challenge. I am an optimist, and believe (along with many colleagues) that the time is ripe for the emergence of a more unified theoretical physics of biological systems, building on successes in thinking about particular phenomena. In this essay I try to explain the reasons for my optimism, through a combination of historical and modern examples.

  16. Perspectives on theory at the interface of physics and biology

    NASA Astrophysics Data System (ADS)

    Bialek, William

    2018-01-01

    Theoretical physics is the search for simple and universal mathematical descriptions of the natural world. In contrast, much of modern biology is an exploration of the complexity and diversity of life. For many, this contrast is prima facie evidence that theory, in the sense that physicists use the word, is impossible in a biological context. For others, this contrast serves to highlight a grand challenge. I am an optimist, and believe (along with many colleagues) that the time is ripe for the emergence of a more unified theoretical physics of biological systems, building on successes in thinking about particular phenomena. In this essay I try to explain the reasons for my optimism, through a combination of historical and modern examples.

  17. Medical Physicists and Health Physicists: Radiation Occupations

    ERIC Educational Resources Information Center

    LaPointe, Jeffrey

    2011-01-01

    Physics is the study of matter and energy and the ways in which the two interact. Some physicists use their expertise in physics to focus on radiation. These specialists, called medical physicists and health physicists, work to help people or protect the environment. Medical physicists work with physicians, assisting patients who need imaging…

  18. Medical physics aspects of cancer care in the Asia Pacific region: 2014 survey results.

    PubMed

    Kron, Tomas; Azhari, H A; Voon, E O; Cheung, K Y; Ravindran, P; Soejoko, D; Inamura, K; Han, Y; Ung, N M; TsedenIsh, Bolortuya; Win, U M; Srivastava, R; Marsh, S; Farrukh, S; Rodriguez, L; Kuo, Men; Baggarley, S; DilipKumara, A H; Lee, C C; Krisanachinda, A; Nguyen, X C; Ng, K H

    2015-09-01

    It was the aim of this work to assess and track the workload, working conditions and professional recognition of radiation oncology medical physicists (ROMPs) in the Asia Pacific region over time. In this third survey since 2008, a structured questionnaire was mailed in 2014 to 22 senior medical physicists representing 23 countries. As in previous surveys the questionnaire covered seven themes: 1 education, training and professional certification, 2 staffing, 3 typical tasks, 4 professional organisations, 5 resources, 6 research and teaching, and 7 job satisfaction. The response rate of 100% is a result of performing a survey through a network, which allows easy follow-up. The replies cover 4841 ROMPs in 23 countries. Compared to 2008, the number of medical physicists in many countries has doubled. However, the number of experienced ROMPs compared to the overall workforce is still small, especially in low and middle income countries. The increase in staff is matched by a similar increase in the number of treatment units over the years. Furthermore, the number of countries using complex techniques (IMRT, IGRT) or installing high end equipment (tomotherapy, robotic linear accelerators) is increasing. Overall, ROMPs still feel generally overworked and the professional recognition, while varying widely, appears to be improving only slightly. Radiation oncology medical physics practice has not changed significantly over the last 6 years in the Asia Pacific Region even if the number of physicists and the number and complexity of treatment techniques and technologies have increased dramatically.

  19. LCPT: a program for finding linear canonical transformations. [In MACSYMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Char, B.W.; McNamara, B.

    This article describes a MACSYMA program to compute symbolically a canonical linear transformation between coordinate systems. The difficulties in implementation of this canonical small physics problem are also discussed, along with the implications that may be drawn from such difficulties about widespread MACSYMA usage by the community of computational/theoretical physicists.

  20. Two Kinds of Electron?

    ERIC Educational Resources Information Center

    Miller, Franklin, Jr.

    2007-01-01

    In the 1930s physicists were confronted by two conflicting values for the charge of the electron as measured with great precision by two different methods. Could it be that there are two kinds of (negative) electrons, differing in charge by a fraction of a percent? The experiments were reconciled when a small systematic error in one of the…

  1. Bugs and the big bang.

    PubMed

    Parsons, Jenni

    2008-10-01

    Now that's a cheery thought! Somewhere more than 100 km below the Geneva countryside two parallel beams of subatomic particles are whizzing around a 27 km circuit in opposite directions at about 99% of the speed of light, doing over 11 000 laps per second. Physicists hope to create a 'bang' that won't end the world, but will unlock some of its mysteries. I confess I have never thought of physicists as poets, but they certainly come up with some evocative models to explain the unknown such as 'dark matter', the invisible skeleton stretching through space; or 'dark energy', which drives the expansion of the universe; or the grandiose 'God's particle' (officially named 'Higgs boson') postulated to endow other particles with mass. These are concepts both too large and too small to grasp.

  2. Assessing Postgraduate Students' Critical Thinking Ability

    ERIC Educational Resources Information Center

    Javed, Muhammad; Nawaz, Muhammad Atif; Qurat-Ul-Ain, Ansa

    2015-01-01

    This paper addresses to assess the critical thinking ability of postgraduate students. The target population was the male and female students at University level in Pakistan. A small sample of 45 male and 45 female students were selected randomly from The Islamia University of Bahawalpur, Pakistan. Cornell Critical Thinking Test Series, The…

  3. Design Considerations for High Energy Electron -- Positron Storage Rings

    DOE R&D Accomplishments Database

    Richter, B.

    1966-11-01

    High energy electron-positron storage rings give a way of making a new attack on the most important problems of elementary particle physics. All of us who have worked in the storage ring field designing, building, or using storage rings know this. The importance of that part of storage ring work concerning tests of quantum electrodynamics and mu meson physics is also generally appreciated by the larger physics community. However, I do not think that most of the physicists working tin the elementary particle physics field realize the importance of the contribution that storage ring experiments can make to our understanding of the strongly interacting particles. I would therefore like to spend the next few minutes discussing the sort of things that one can do with storage rings in the strongly interacting particle field.

  4. Charles Darwin: genius or plodder?

    PubMed

    Wilkins, Adam S

    2009-11-01

    There is no doubt about the magnitude of Charles Darwin's contributions to science. There has, however, been a long-running debate about how brilliant he was. His kind of intelligence was clearly different from that of the great physicists who are deemed geniuses. Here, the nature of Darwin's intelligence is examined in the light of Darwin's actual style of working. Surprisingly, the world of literature and the field of neurobiology might supply more clues to resolving the puzzle than conventional scientific history. Those clues suggest that the apparent discrepancy between Darwin's achievements and his seemingly pedestrian way of thinking reveals nothing to Darwin's discredit but rather a too narrow and inappropriate set of criteria for "genius." The implications of Darwin's particular creative gifts with respect to the development of scientific genius in general are briefly discussed.

  5. BOOK REVIEW: Great Physicists - The Life and Times of Leading Physicists from Galileo to Hawking

    NASA Astrophysics Data System (ADS)

    Cropper, William H.

    2002-11-01

    The author, a former American chemistry professor, has organized his book into nine parts with 29 chapters, covering, in a fairly historical sequence and systemtic conceptual progression, all fundamentals of today's physics: i.e., mechanics, thermodynamics, electromagnetism, statistical mechanics, relativity, quantum mechanics, nuclear physics, particle physics, astronomy-astrophysics-cosmology. Obviously, the 20th century (when about 90% of professional physicists of all time worked) assumes with five topics the dominant role in this enterprise. For each topic, a small number (ranging from one to eight) of leading personalities is selected and the biographies of these 29 physicists, including two women (Marie Curie and Lise Meitner), are presented in some detail together with their achievements in the particular topic. Important relevant contributions of other scholars to each topic are also discussed. In addition, Cropper provides each of the topics with a short 'historical synopsis' justifying his selection of key persons. One may argue that concentrating on leading physicists constitutes an old-fashioned approach to displaying the history and contents of fundamental topics in physics. However, the mixture of biographies and explanation of leading contributions given here will certainly serve for a larger public, not just professional physicists and scientists, as a guide through the exciting development of physical ideas and discoveries. In general, the presentation of the material is quite satisfactory (with only few slips, e.g., in the Meitner story, where the author follows too closely a new biography) and gives the essence of the great advances in physics since the 15th century. One notices perhaps the limitation of the author in cases where no biography in English is available - this would also explain the omission of some of the main contributors to atomic and particle physics, such as Arnold Sommerfeld and Hideki Yukawa, or that French or Russian readers might occasionally miss a proper mention of their scientific heroes. These slightly critical observations should not obscure the impression that the chemist Cropper has succeeded with his goal of writing a very useful and informative book, displaying great understanding of the life of the physicists, their ingenious theoretical ideas and experimental discoveries. Simultaneously he has provided a pleasantly readable account of the great success story of physics extending over the past three hundred years. Both laymen and professionals may like to have the book in their public or private libraries. Helmut Rechenberg

  6. Status and Future Manpower Needs of Physicists in Medicine in the United States.

    ERIC Educational Resources Information Center

    Food and Drug Administration (DHEW), Rockville, MD. Bureau of Radiological Health.

    This study describes the duties and responsibilities of the medical physicist and estimates the number of medical physicists needed in the next decade. A questionnaire, sent to members of the American Association of Physicists in Medicine, was designed to cover: characteristics of medical physicists, nature of work in medical physics, distribution…

  7. MO-D-BRD-01: Memorial to Bengt Bjarngard - Memorial Lecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, I

    We lost a legendary medical physicist, Dr. Bengt Erik Bjarngard, to angiosarcoma an aggressive type of cancer. He devoted his life to providing improved methods of radiation treatment for this devastating disease over the last 36 years. Bengt was born in a rural village of Bjarnum in southern Sweden, located near forest and is known for its furniture making. He migrated to USA at the age of 35 and was recruited by Dr. Samuel Hellman to lead a group of physicists that became the “mecca of medical physics” known as the Joint Center of Radiation Therapy (JCRT) at Harvard Medicalmore » School in Boston. Bengt mentored some of the best physicists in the country, and many of our modern treatments go back to the early days of research at the JCRT. These accomplishments, dating from 1969–1989, include: dose optimization using computer control; soft wedges; stereotactic radiosurgery (SRS); total-body irradiation (TBI); CT-planning; and radiation dosimetry. Bengt worked at Brown University in Rhode Island and at the University of Pennsylvania in Philadelphia, where he provided major contributions in radiation dosimetry, specifically with the head scatter model. He advocated superior calculation algorithm through the Helax treatment planning system that was on par from most commercial systems. Bengt served as AAPM president in 1979 and was a recipient of the Coolidge Award in 1998. He had a lifelong love of nature, retiring in 2000 from the University of Pennsylvania to take care of his 200 acres of homestead forest in Maine. His legacy continues through his contributions to radiation dosimetry. This session, on small field dosimetry, is a small tribute to his memory. Further details can be found in his obituary in Med Phy, 41(4), 040801, 2014.« less

  8. A survey of the role of the UK physicist in nuclear medicine: a report of a joint working group of the British Institute of Radiology, British Nuclear Medicine Society, and the Institute of Physics and Engineering in Medicine.

    PubMed

    Tindale, W B; Thorley, P J; Nunan, T O; Lewington, V; Shields, R A; Williams, N R

    2003-01-01

    Guidelines for the provision of physics support to nuclear medicine were published in 1999 by a joint working group of the British Institute of Radiology, the British Nuclear Medicine Society, and the Institute of Physics and Engineering in Medicine. Following publication of the guidelines, a survey was conducted by the working group to gather data on the actual level of physicist support in UK hospitals of different types and on the activities undertaken by physicists. The data were collected in the 12 months following the publication of guidelines and cover different hospital models and seven UK regions. The results provide evidence that many of the smaller units - small teaching hospitals and, particularly, small district general hospitals - have insufficient physics support. Although, on average, there is good agreement between the guidelines and the survey data for medium and large district general hospitals, there is wide variation in the level of physics provision between hospitals delivering apparently similar services. This emphasizes the need for national guidelines, against which institutions may be bench-marked and which may be used as a recommendation for the staffing levels necessary to ensure services are delivered safely and standards are not compromised. The complexity and variety of workload is an important factor in determining the level of physics support. As services develop, it is vital that this aspect is recognized to ensure that appropriate resources are available for the required physics input, even if any new service represents only a modest clinical throughput in terms of patient numbers.

  9. Maternal Thinking and Beyond: Towards a Care-Full Pedagogy for Early Childhood

    ERIC Educational Resources Information Center

    Luff, Paulette; Kanyal, Mallika

    2015-01-01

    This paper explores feminist philosopher Sara Ruddick's concept of "maternal thinking" and considers the applicability and use of her ideas for early childhood pedagogy. This is illustrated through a small-scale case study, undertaken in early years settings in England, in which three dimensions of maternal thinking are evidenced in the…

  10. Nonprofit Sector: Workforce Education Needs and Opportunities

    ERIC Educational Resources Information Center

    Garvey, David

    2009-01-01

    When some people think of nonprofit organizations, they think of small charities that are short-staffed, often struggle financially, and provide basic human needs to the most vulnerable in the society. Others think of organizations that support the civic and social infrastructure of communities, states, and nation, and serve as a vital component…

  11. [Training of medical physicists in radiation therapy at the International Educational Center of the Association of Medical Physicists in Russia].

    PubMed

    Kostylev, V A; Lysenko, M N; Zhgutov, A V; Ulanov, D V; Kislyakova, M V; Kazantsev, P V; Kostylev, D V; Narkevich, B Y

    2015-01-01

    The efficiency of radiotherapy treatment for cancer patients and use of the state-of-the-art accelerator facilities, in the first place, depends on the qualification and number of medical physicists. The need for the training and continuing professional development (CPD) of medical radiation physicists in Russia and CIS countries has dramatically increased today. The article considers the system of refresher training which should provide the continuing professional development and advance training of medical radiation physicists. The authors analyze the experience of the International Educational Center of the Association of Medical Physicists in Russia involved in the CPD of medical physicists under the IAEA TC projects, RMAPO and N.N. Blokhin RCRC joint educational programs.

  12. Introducing the USAYPT--Do Research in Your High School then Debate Your Results with Other Schools

    ERIC Educational Resources Information Center

    Oldaker, Bruce G.; Jacobs, Greg; Bibilashvili, Tengiz

    2010-01-01

    We introduce the USAYPT--the United States Association for Young Physicists Tournaments, Inc. Our motto is "Better teaching and learning by doing research in your high school." We believe that all high school teachers can improve their knowledge of physics by forming small groups that perform non-trivial--but not cutting edge--research. In order…

  13. Workshop on Energy Research for Physics Graduate Students and Postdocs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Ken

    One-day workshop for a small group of graduate students and post-docs to hear talks and interact with experts in a variety of areas of energy research. The purpose is to provide an opportunity for young physicists to learn about cutting-edge research in which they might find a career utilizing their interest and background in physics.

  14. IN MY OPINION: Physics is fun - for whom?

    NASA Astrophysics Data System (ADS)

    Allday, Jonathan

    1998-09-01

    King's School, Canterbury, UK I'm compiling a physics joke book. So far I have one entry. How do you tell the difference between a physicist and an applied mathematician? You do an experimental test. You get them to make a cup of tea. You provide water, a kettle, a teabag, a teapot and a cup. The physicist goes into the room, fills the kettle with water and boils the water. She then places the teabag in the teapot and pours on the boiling water - thus a cup of tea is made. You then restore the initial conditions and send in the applied mathematician. He proceeds to do the same thing. Now, you make the test slightly harder. You fill the kettle with water prior to the subjects arriving. The physicist notes this, boils the water in the kettle and makes tea as before. The applied mathematician sees that the kettle is full of water, empties the kettle so reducing the situation to the previous problem, which he has already solved. When I first heard this I thought that it was rather funny. Since then, observation seems to suggest that I may well be the only person on the planet who thinks that it is at all funny, so I do not anticipate great sales for my joke book - if I ever find another joke to put in it. I am having rather better luck with the book of physics cartoons. I have been collecting physics-related cartoons for about 15 years now and have a substantial stock. Surprisingly I used to find Punch a rich vein of such material. These days I tend to rely on Larson's Far Side for providing new samples. Students are still bemused by the fact that at least one of his cartoons can reduce me to helpless laughter. I have it pinned to the wall in my lab - two scientists are in animated conflict over a pile of burning machinery in the middle of a desert. A caveman is observing from a distance. The caption reads `tempers flair when Professors Carson and Lazell, working independently, ironically set their time machines to identical coordinates'. Rather more telling is the (modified) Punch cartoon. Marcie and Linus are discussing life: Marcie `Thank you for the Chocolate Sundae, Linus' Linus `You're welcome... Maybe we can do it again sometime?' Marcie `I don't think so... I don't find you very interesting.' Linus, wistfully and leaning against a tree - `Physics....' This cartoon the students find funny. The fact that the study of physics should be a block to a meaningful relationship seems to strike a chord with them. It takes them by surprise that physicists have a real life. Now I realize that any teacher having a real life often takes students by surprise. I remember visiting my mother's infants school when I was a sixth-former and the kids there found it unbelievable that Mrs Allday should have a son. Teachers, you see, cease to exist the minute the students walk out of the classroom. However, physics and its practitioners seem to be especially branded in this way. From time to time I show videos to my students. Well chosen ones (so I think) that reflect modern developments and show physicists enjoying what they are doing. One such tape shows the reaction to the first pictures coming down from the newly repaired Hubble Space Telescope. The control room is filled with whoops, delighted cheering and general bouncing up and down with enthusiasm. This always raises a laugh. However, one can tell that they are being laughed at, not with. Another tape is about the comet strike on Jupiter. The narrator spends some time talking with Gene and Carolyn Shoemaker (two of the discoverers of the comet) - a married team of astronomers. You can see that their married life in part revolves round their joint love of astronomy and physics. I have overheard comments like `can you imagine the breakfast conversations?' Why do students find it so difficult to imagine that physicists in real life have fun doing physics? Pondering this I have come to the conclusion that they do not see enough teachers having fun teaching the subject. Perhaps with all the time we have spent trying to modernize our syllabuses, introducing new interesting physics, making physics fun for the students, we have forgotten to think about ourselves. I have had a theory for some years which is that students are never naturally interested in a subject - they are interested in a teacher first, and then the subject follows. Goodness knows, these days with investigations, modular examinations and the general paperwork that flows in the job, it is hard enough to find enough time to breathe let alone have fun. However, I am becoming increasingly convinced that it is vital. I propose that we use the declining numbers doing physics to our advantage. With smaller set sizes we can spend more time doing things that we enjoy. In my department we regularly ask sixth-formers why they chose Chemistry and Biology as A-levels rather than Physics. The common answer is that Physics is harder. Yes, it is. That is the nature of the science. There is nothing we can do about it. Physics is difficult, otherwise we would not need people of the stature of Newton and Einstein to do it! However, it's a lot more fun. There is a nice story about Feynman. He was being shown round CERN and was brought into one of the underground experimental chambers. Faced with a giant detector he turned to his guide and asked what it was for. After some explanation the guide finally broke down and apologised - he had forgotten that the experiment was designed to test one of the theories that Feynman had had a significant hand in. `Really' said Feynman, `and how much did this cost?'. `Thirty million dollars' came the reply. Feynman turned to his guide, looked at him in all seriousness and said `don't you trust me?' Now there was a man that had fun doing physics - and he let everyone know it.

  15. The gatekeepers of modern physics: periodicals and peer review in 1920s Britain.

    PubMed

    Clarke, Imogen

    2015-03-01

    This essay analyzes the processes behind the publication of physics papers in two British journals in the 1920s: the Proceedings of the Royal Society of London: Series A and the Philosophical Magazine. On the surface, it looked as though the Philosophical Magazine was managed very informally, while the Proceedings had in place a seemingly rigid system of committee approval and peer review. This essay shows, however, that in practice the two journals were both influenced by networks of expertise that afforded small groups of physicists considerable control over the content of these prestigious scientific publications. This study explores the nature of peer review, suggesting how a historical approach can contribute to contemporary debates. In studying these relationships, the essay also considers the interplay of "classical" and "modern" ideas and physicists in 1920s Britain and cautions against an anachronistic approach to this classification.

  16. Current Status of Women in Physics in Korea—and the New Physics Camp Initiative for High School Girls

    NASA Astrophysics Data System (ADS)

    Kim, Hyunjung; Song, Sanghoon; Park, Hyunjeong; Park, Jiseon; An, Jihye; Park, Joyoung; Yim, Haein; Song, Jeonghyeon; Yoon, Jin-Hee; Park, Youngah

    2009-04-01

    The Korean Physical Society (KPS) Women Committee has organized a series of the physics camps for high school girl students to give them an opportunity to work together and interact with professional physicists. Although the KPS Women Committee has successfully set the KPS's face toward women's issues, it still needs more systematic support for helping and promoting the activities of women physicists. We describe the physics camp initiative and present the current status of women in physics in Korea, comparing female ratios in undergraduate and graduate school and faculty for the last ten years (1998-2007). The employment rate for females is compared with that for males according to education level. The total number of female students in physics in Korea has increased; however, it is still a very small portion of females who stay in physics with professional positions.

  17. Charles Darwin: Genius or Plodder?

    PubMed Central

    Wilkins, Adam S.

    2009-01-01

    There is no doubt about the magnitude of Charles Darwin's contributions to science. There has, however, been a long-running debate about how brilliant he was. His kind of intelligence was clearly different from that of the great physicists who are deemed geniuses. Here, the nature of Darwin's intelligence is examined in the light of Darwin's actual style of working. Surprisingly, the world of literature and the field of neurobiology might supply more clues to resolving the puzzle than conventional scientific history. Those clues suggest that the apparent discrepancy between Darwin's achievements and his seemingly pedestrian way of thinking reveals nothing to Darwin's discredit but rather a too narrow and inappropriate set of criteria for “genius.” The implications of Darwin's particular creative gifts with respect to the development of scientific genius in general are briefly discussed. PMID:19933233

  18. Met The Press: What It's LIke to Talk to Reporters about Physics

    NASA Astrophysics Data System (ADS)

    Thompson, Rebecca

    2013-03-01

    Someone from the Huffington Post just called you because they are doing a story about science and you are a physicist. The problem is that they need you to take time away from your grapheme experiments to talk about the physics of exploding anvils. It's been a long time since you've shot an anvil in the air so you think you might not be right for this. But, as long as you understand general physics and can explain things well, you can be a real asset. This talk will recount first-hand experiences talking to a range of news outlets from the PBS New Hour to Real Simple Magazine about everything from quick-freezing water to pumpkin boats. It will include helpful information about preparing for an interview, learning new physics fast, timelines and follow-up.

  19. Replacing textbook problems with lab experiences

    NASA Astrophysics Data System (ADS)

    Register, Trevor

    2017-10-01

    End-of-the-chapter textbook problems are often the bread and butter of any traditional physics classroom. However, research strongly suggests that students be given the opportunity to apply their knowledge in multiple contexts as well as be provided with opportunities to do the process of science through laboratory experiences. Little correlation has been shown linking the number of textbook problems solved with conceptual understanding of topics in mechanics. Furthermore, textbook problems as the primary source of practice for students robs them of the joy and productive struggle of learning how to think like an experimental physicist. Methods such as Modeling Instruction tackle this problem head-on by starting each instructional unit with an inquiry-based lab aimed at establishing the important concepts and equations for the unit, and this article will discuss ideas and experiences for how to carry that philosophy throughout a unit.

  20. Intuitive biological thought: Developmental changes and effects of biology education in late adolescence.

    PubMed

    Coley, John D; Arenson, Melanie; Xu, Yian; Tanner, Kimberly D

    2017-02-01

    A large body of cognitive research has shown that people intuitively and effortlessly reason about the biological world in complex and systematic ways. We addressed two questions about the nature of intuitive biological reasoning: How does intuitive biological thinking change during adolescence and early adulthood? How does increasing biology education influence intuitive biological thinking? To do so, we developed a battery of measures to systematically test three components of intuitive biological thought: anthropocentric thinking, teleological thinking and essentialist thinking, and tested 8th graders and university students (both biology majors, and non-biology majors). Results reveal clear evidence of persistent intuitive reasoning among all populations studied, consistent but surprisingly small differences between 8th graders and college students on measures of intuitive biological thought, and consistent but again surprisingly small influence of increasing biology education on intuitive biological reasoning. Results speak to the persistence of intuitive reasoning, the importance of taking intuitive knowledge into account in science classrooms, and the necessity of interdisciplinary research to advance biology education. Further studies are necessary to investigate how cultural context and continued acquisition of expertise impact intuitive biology thinking. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Developing an action plan for patient radiation safety in adult cardiovascular medicine: proceedings from the Duke University Clinical Research Institute/American College of Cardiology Foundation/American Heart Association think tank held on February 28, 2011.

    PubMed

    Douglas, Pamela S; Carr, J Jeffery; Cerqueira, Manuel D; Cummings, Jennifer E; Gerber, Thomas C; Mukherjee, Debabrata; Taylor, Allen J

    2012-05-01

    Technological advances and increased utilization of medical testing and procedures have prompted greater attention to ensuring the patient safety of radiation use in the practice of adult cardiovascular medicine. In response, representatives from cardiovascular imaging societies, private payers, government and nongovernmental agencies, industry, medical physicists, and patient representatives met to develop goals and strategies toward this end; this report provides an overview of the discussions. This expert "think tank" reached consensus on several broad directions including: the need for broad collaboration across a large number of diverse stakeholders; clarification of the relationship between medical radiation and stochastic events; required education of ordering and providing physicians, and creation of a culture of safety; development of infrastructure to support robust dose assessment and longitudinal tracking; continued close attention to patient selection by balancing the benefit of cardiovascular testing and procedures against carefully minimized radiation exposures; collation, dissemination, and implementation of best practices; and robust education, not only across the healthcare community, but also to patients, the public, and media. Finally, because patient radiation safety in cardiovascular imaging is complex, any proposed actions need to be carefully vetted (and monitored) for possible unintended consequences.

  2. Developing an action plan for patient radiation safety in adult cardiovascular medicine: proceedings from the Duke University Clinical Research Institute/American College of Cardiology Foundation/American Heart Association Think Tank held on February 28, 2011.

    PubMed

    Douglas, Pamela S; Carr, J Jeffrey; Cerqueira, Manuel D; Cummings, Jennifer E; Gerber, Thomas C; Mukherjee, Debabrata; Taylor, Allen J

    2012-05-15

    Technological advances and increased utilization of medical testing and procedures have prompted greater attention to ensuring the patient safety of radiation use in the practice of adult cardiovascular medicine. In response, representatives from cardiovascular imaging societies, private payers, government and nongovernmental agencies, industry, medical physicists, and patient representatives met to develop goals and strategies toward this end; this report provides an overview of the discussions. This expert “think tank” reached consensus on several broad directions including: the need for broad collaboration across a large number of diverse stakeholders; clarification of the relationship between medical radiation and stochastic events; required education of ordering and providing physicians, and creation of a culture of safety; development of infrastructure to support robust dose assessment and longitudinal tracking; continued close attention to patient selection by balancing the benefit of cardiovascular testing and procedures against carefully minimized radiation exposures; collation, dissemination, and implementation of best practices; and robust education, not only across the healthcare community, but also to patients, the public, and media. Finally, because patient radiation safety in cardiovascular imaging is complex, any proposed actions need to be carefully vetted (and monitored) for possible unintended consequences.

  3. Developing an action plan for patient radiation safety in adult cardiovascular medicine. Proceedings from the Duke University Clinical Research Institute/American College of Cardiology Foundation/American Heart Association Think Tank Held on February 28, 2011.

    PubMed

    Douglas, Pamela S; Carr, J Jeffrey; Cerqueira, Manuel D; Cummings, Jennifer E; Gerber, Thomas C; Mukherjee, Debabrata; Taylor, Allen J

    2012-06-01

    Technological advances and increased utilization of medical testing and procedures have prompted greater attention to ensuring the patient safety of radiation use in the practice of adult cardiovascular medicine. In response, representatives from cardiovascular imaging societies, private payers, government and nongovernmental agencies, industry, medical physicists, and patient representatives met to develop goals and strategies toward this end; this report provides an overview of the discussions. This expert "think tank" reached consensus on several broad directions including: the need for broad collaboration across a large number of diverse stakeholders; clarification of the relationship between medical radiation and stochastic events; required education of ordering and providing physicians, and creation of a culture of safety; development of infrastructure to support robust dose assessment and longitudinal tracking; continued close attention to patient selection by balancing the benefit of cardiovascular testing and procedures against carefully minimized radiation exposures; collation, dissemination, and implementation of best practices; and robust education, not only across the healthcare community but also to patients, the public, and media. Finally, because patient radiation safety in cardiovascular imaging is complex, any proposed actions need to be carefully vetted (and monitored) for possible unintended consequences.

  4. Interpreting Bodies. Elena Castellani (ed.) Interpreting Bodies: Classical and Quantum Objects in Modern Physics (Princeton: Princeton University Press, 1998), viii+329 pp., ISBN 0-691-01725-5, paperback, 19.95 US, ISBN 0-691-01724-7, cloth, 65.00 US.

    NASA Astrophysics Data System (ADS)

    Ruetsche, Laura

    The objects of the empirical science known as particle physics are not like objects ordinarily conceived. Physicists' particles can enter states strangely entangled with those of other particles; they can obey statistics which suggest that they lack genidentity; their properties (some think) are created in measurement, or (others think) can only be limned from the symmetries of the theory describing them. 'The implications of contemporary physical theories for the debate on the nature of objects' provides 'the central theme' (p. 4) of Interpreting Bodies, editor Elena Castellani's new collection of essays. Contributions to the volume vary dramatically in vintage (Born's and Reichenbach's are well into middle age; others appear here for the first time); in approach (the collection includes Giuliano Toraldo diFrancia's nine-page history of the object concept from Democritus to d'Espagnat, Peter Mittelstaedt's discussion of the Kantian constitution of quantum objects, and Giulo Peruzzi's explication of the scattering cross section and its role in experimental particle physics); and in intended audience. Lacking the space to treat each contribution in turn, I will focus on those dealing with the problem of the One and the Many.

  5. What is Science?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quinn, H.

    Helen Quinn is a theoretical particle physicist at SLAC. Throughout her career, she has been passionately involved in science education and public understanding of science. In talking about science, whether to the public or to students, we scientists often assume that they share with us a common idea of science. In my experience that is often not the case. To oversimplify, scientists think of science both as a process for discovering properties of nature, and as the resulting body of knowledge, whereas most people seem to think of science, or perhaps scientists, as an authority that provides some information--just onemore » more story among the many that they use to help make sense of their world. Can we close that gap in understanding? Middle school teachers typically spend a day or so teaching something called the scientific method, but the process by which scientific ideas are developed and tested is messier and much more interesting than that typical capsule description. Some remarkable features of the process are seldom stressed in teaching science, nor are they addressed in explaining any one piece of science to the public. My goal in this column is to provide some ideas for closing that gap in understanding, and to encourage scientists and teachers to communicate about the process as they discuss scientific work.« less

  6. Working (And Sparring) With Luis: Some Personal Recollections

    NASA Astrophysics Data System (ADS)

    Pripstein, Moishe

    2011-04-01

    Luis Alvarez was the most remarkable physicist I have ever worked with. As a member of his bubble chamber group at the Lawrence Radiation Laboratory in Berkeley and subsequently as a leader of that group for several years, I could appreciate his outstanding attributes as a physicist and his forceful and colorful personality. Each day at the lab seemed exciting. Although he created the largest research group in particle physics in the world at the time, Luis was an ardent foe of group-think, which he characterized as ``intellectual phase-lock''. He had an uncanny intuition about physics and technology, coupled with an insatiable curiosity about the world around him. He is justly renowned as a member of the Inventors Hall of Fame for his myriad inventions and as a Nobel Laureate in physics for his contributions to particle physics through his development of the hydrogen bubble chamber technique, leading to the discovery of a large number of resonance states. However, it was his wide-ranging curiosity which led him to one of his finest achievements, while working with his son Walter - developing the asteroid impact theory as the explanation of the extinction of the dinosaurs. I will offer some personal recollections of Luis and the group in this period, including some of his other intriguing efforts which illustrate the breadth of his interests, pertaining to the Kennedy assassination and x-raying the pyramids, among them. All in all, a brilliant and most unusual scientist and stimulating colleague.

  7. Skating on Thin Ice: Evolution of Conservation in Energy Policy

    NASA Astrophysics Data System (ADS)

    Gibbons, Jack

    2009-05-01

    Why are we physicists so often drawn into the nexus of energy policy and governance? There are several explanations. First, we are quite accustomed to this phenomenon of ``cause and effect,'' so we instinctively examine those two ends as well as the connections between them (i.e., what happens between a lump of coal and a light bulb). That way of thinking makes energy production and consumption intiminately connected and ``conservation'' naturally becomes a technological strategy rather than an appendage. Strangely, however, ``conservation'' in our society (called ``The Cowboy Economy'' by economist Kenneth Boulding) has been widely interpreted as competitive with supply and ridiculed as only a minor option, entailing denial of an amenity. After nearly a half-century of dialogue, innovation, and frustration, the rationality of what I call the ``physics'' perspective seems to have come of age. The evolution of relevant science and technology and public policy has advanced markedly, reflected and sustained at the national level by a succession of organizations. The Congressional Office of Technology Assessment, the Federal Office of Energy Conservation, the Federal Energy Administration, the U.S. Department of Energy, and the Office of Science and Technology Policy. Not surprisingly, physicists continue to play key roles in the inculcation of science and analysis into the policy and governance. This requires, as implied by C.P. Snow, a bridging and strengthening of the thin ice between science and society. We still have a long road to travel.

  8. At the origins of the Trojan Horse Method

    NASA Astrophysics Data System (ADS)

    Lattuada, Marcello

    2018-01-01

    During the seventies and eighties a long experimental research program on the quasi-free reactions at low energy was carried out by a small group of nuclear physicists, where Claudio Spitaleri was one of the main protagonists. Nowadays, a posteriori, the results of these studies can be considered an essential step preparatory to the application of the Trojan Horse Method (THM) in Nuclear Astrophysics.

  9. The current status of education and career paths of students after completion of medical physicist programs in Japan: a survey by the Japanese Board for Medical Physicist Qualification.

    PubMed

    Kadoya, Noriyuki; Karasawa, Kumiko; Sumida, Iori; Arimura, Hidetaka; Yamada, Syogo

    2015-07-01

    To standardize educational programs and clinical training for medical physics students, the Japanese Board for Medical Physicist Qualification (JBMP) began to accredit master's, doctorate, and residency programs for medical physicists in 2012. At present, 16 universities accredited by the JBMP offer 22 courses. In this study, we aimed to survey the current status of educational programs and career paths of students after completion of the medical physicist program in Japan. A questionnaire was sent in August 2014 to 32 universities offering medical physicist programs. The questionnaire was created and organized by the educational course certification committee of the JBMP and comprised two sections: the first collected information about the university attended, and the second collected information about characteristics and career paths of students after completion of medical physicist programs from 2008 to 2014. Thirty universities (16 accredited and 14 non-accredited) completed the survey (response rate 94 %). A total of 209, 40, and 3 students graduated from the master's, doctorate, and residency programs, respectively. Undergraduates entered the medical physicist program constantly, indicating an interest in medical physics among undergraduates. A large percentage of the students held a bachelor's degree in radiological technology (master's program 94 %; doctorate program 70 %); graduates obtained a national radiological technologist license. Regarding career paths, although the number of the graduates who work as medical physicist remains low, 7 % with a master's degree and 50 % with a doctorate degree worked as medical physicists. Our results could be helpful for improving the medical physicist program in Japan.

  10. MO-E-213-02: Medical Physicist Involvement in Implementing Patient Protection Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seibert, J.

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks inmore » public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation protection than in past To be aware about possible emergence of medical radiation protection as a specialty and challenges for medical physicists.« less

  11. MO-E-213-01: Increasing Role of Medical Physicist in Radiation Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehani, M.

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks inmore » public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation protection than in past To be aware about possible emergence of medical radiation protection as a specialty and challenges for medical physicists.« less

  12. Grain Flow at High Stresses

    NASA Astrophysics Data System (ADS)

    McSaveney, M. J.

    2015-12-01

    The transport mechanism of rapid long-runout rock avalanches was a hotly debated topic when I came on the scene in 1967. So how come it is still debated today? My explanation is that it is the expected outcome of peer review, poor comprehension, and technological advances outpacing intellectual advances. Why think about the problem when we can model it! So let us think about the problem. Shreve thought that rock avalanches fell upon and trapped a layer of air. What physics was he thinking about? It is how feathers and tissue papers fall. When my rock avalanches fly, they fly like unlubricated bricks using the physics of projectiles and ballistics. But the main transport mechanism is not flight. The dominant impression from watching a rock avalanche in motion is of fluid flow, as Heim described it in 1882. A rock avalanche is a very large grain flow. Bagnold studied dispersive grain flows, but why should one assume that rock avalanches are dispersive grain flows as many do. The more common grain flow type is a dense grain flow and rock avalanches are dense grain flows in which the weight can and does generate very high stresses at grain contacts. Brittle rock deforms elastically up to its compressive strength, whereupon it breaks, releasing elastic strain as transient elastic strain (seismic energy to a seismologist, acoustic energy to a physicist). Melosh and others have shown that acoustic energy can fluidize a grain mass. There is no exotic physics behind grain flow at high stress. When grains break, the released elastic strain has to go somewhere, and it goes somewhere principally by transmission though grain contacts. Depending on the state of stress at the grain contact, the contact will pass the stress or will slip at conventional values of Coulomb friction. Enough thinking! A physical model of the entire process is too big for any laboratory. So whose numerical model will do it?

  13. Secret Lives of the Hidden Physicists---from Spandex to Spintronics

    NASA Astrophysics Data System (ADS)

    White, Gary

    2006-10-01

    What is a physicist? A case is made for defining a physicist as anyone with a bachelor's degree (or higher) in physics. Under this definition, a large fraction of physicists are hidden, that is, they have left, or never belonged to, the traditional lot of Ph.D. academicians. Data from the Statistical Research Center at the American Institute of Physics and from a survey of members of the national physics honor society, Sigma Pi Sigma, show the vast array of actual career paths taken by physicists. From spandex to blackberries to bioinformatics to flight control to wind energy to spintronics, physicists can be found in nearly every job sector in some of the coolest and most farfetched careers imaginable.

  14. Mechanical Properties of Semiconductors and Their Alloys

    DTIC Science & Technology

    1992-02-01

    Sher, Associate Director M.A. Berding, Research Physicist A.T. Paxton, International Fellow S. Krishnamurthy, Research Physicist Physical Electronics...Laboratory A.-B. Chen Auburn University Auburn, Alabama SRI Project 6682 Prepared for: . - Office of Scientific Research United States Air Force...THEIR ALLOYS A. Sher, Associate Director M.A. Berding, Research Physicist A.T. Paxton, International Fellow S. Knshnamurthy, Research Physicist Physical

  15. Once a physicist: Subhankar Banerjee

    NASA Astrophysics Data System (ADS)

    Banerjee, Subhankar

    2008-11-01

    Why did you originally choose to study engineering and physics? I was born in Berhampore, a small town in West Bengal, India. I was immersed in literature and cinema from early in my life, and at 13 my great uncle introduced me to painting. But growing up in a middle-income family, art was not something I could pursue as a career. I chose science and engineering as a practical option.

  16. Fritz Reiche and German Refugee Scientists

    NASA Astrophysics Data System (ADS)

    Bederson, Benjamin

    2003-04-01

    Fritz Reiche (1883-1969) was a distinguished theoretical physicist, a student and colleague of Wilhelm Roentgen, Max Planck, Fritz Haber, Rudolf Ladenburg, James Franck, Max Born, Max von Laue and other early luminaries. He was coauthor of the famous Thomas-Reiche-Kuhn sum rule, and author of the seminal book The Quantum Theory, first published in 1920. He was one of the last Jewish physicists to leave Germany during the Nazi period, in 1941. In his book "Heisenberg's War" Thomas Powers relates that Reiche bore news of German work on nuclear fission, in a message from Friedrich Houtermans to Wigner and others in Princeton, where Reiche lived in Einstein's home during the summer of 1941. Reiche's son Hans later claimed that this incident played a significant role in convincing Einstein to write that letter to President Roosevelt. In this talk I will relate the difficulties Reiche experienced, first in leaving Germany and then in reestablishing his physics career in the US. He finally obtained an adjunct position at NYU where he served until his retirement. The role played by the renowned Emergency Committee in Aid of Displaced Foreign Scholars will be discussed. The particular role played by Ladenburg, who was instrumental in obtaining a small grant for Reiche permitting him to obtain a US visa, in helping many physicists leave Nazi Germany and occupied countries, will also be described.

  17. Industrial Physics Careers: A Large Company Perspective

    NASA Astrophysics Data System (ADS)

    Zollner, Stefan

    2009-03-01

    Statistical data from the American Institute of Physics and the National Science Foundation show that only about a third of physics graduates get permanent jobs in academia. A few work in government labs and hospitals. The majority of physics Ph.D.s, however, find employment in the private sector (industry). This trend has been increasing, i.e., recent Ph.D.s are even more likely to start careers in industry. Industrial physicists work in small, medium or large companies in a broad range of fields, including aerospace, semiconductors, automotive, energy, information technology, contract research, medical, chemical, optics, etc. They are also represented in fields outside of physics, such as finance. Even the ``inventor'' of the Powerball lottery game is a Ph.D. physicist. In my talk, I will describe pathways to success for an industrial physicist, from the perspective of employment in three different large corporations. Based on the NIST Baldridge criteria of Performance Excellence, I will discuss how to achieve and measure organizational success through focus on products and customers. Individual performance is linked to the goals of the organization. Performance has two components: Goals and behaviors. Both are key to success as an individual contributor or manager.[4pt] References: [0pt] http://www.aip.org/statistics/trends/emptrends.html [0pt] http://www.aps.org/about/governance/committees/commemb/index.cfm [0pt] http://www.quality.nist.gov/

  18. Some Interesting Data About Women Physicists in Cuba (abstract)

    NASA Astrophysics Data System (ADS)

    de Fuentes, Olimpia Arias

    2009-04-01

    Although the number of women physicists in Cuba, as in the entire world, is less than men physicists, their presence in the academic leadership is strong, unlike the limited women's role in many other countries. Some interesting numeral data are presented to demonstrate this affirmation. This fact emphasizes the advantages reached by women and the increasing prestige obtained by women physicists in our country.

  19. Telementoring Physics: University-Community After-school Collaborations and the Mediation of the Formal/Informal Divide

    NASA Astrophysics Data System (ADS)

    Lecusay, Robert A.

    For several decades improvement of science education has been a major concern of policy makers concerned that the U.S. is a "nation at risk" owing to the dearth of students pursing careers in science. Recent policy proposals have argued that provision of broadband digital connectivity to organizations in the informal sector would increase the reach of the formal, academic sector to raise the overall level of science literacy in the country. This dissertation reports on a longitudinal study of a physics telementoring activity jointly run by a university-community collaborative at a community learning center. The activity implemented a digital infrastructure that exceeds the technical and social-institutional arrangements promoted by policy makers. In addition to broadband internet access (for tele-conferencing between students at the community center and physicists at a university), supplemented by digital software designed to promote physics education, the activity included the presence of a collaborating researcher/tutor at the community learning center to coordinate and document the instructional activities. The current research revealed a fundamental contradiction between the logic, goals, and practices of the physics instructors, and the corresponding logic, goals, and practices of the participants at the community learning center. This contradiction revolves around a contrast between the physicists' formal, logocentric ways of understanding expressed in the ability to explain the scientific rules underlying physical phenomena and the informal, pragmatic orientation of the youth and adults at the learning center. The observations in this dissertation should remind techno-enthusiasts, especially in the arena of public education policy, that there are no turnkey solutions in "distance" science education. Technically "connecting" people is not equivalent to creating conditions that expand opportunities to learn and a functioning socio-technical system that supports learning. Secondly, for designers and practitioners of informal learning in community-university collaborative settings, it is critically important to understand distance learning activities as developing "cross-cultural, " collaborative encounters, the results of which are more likely to be hybrids of different ways of learning and knowing than the conversion of informal learning into a tool for instruction that will allow youth to "think like physicists."

  20. MO-E-213-03: Newer Radiation Protection Requirements in Last Decade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, J.

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks inmore » public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation protection than in past To be aware about possible emergence of medical radiation protection as a specialty and challenges for medical physicists.« less

  1. MO-E-213-00: What Is Medical Physics Without Radiation Safety?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks inmore » public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation protection than in past To be aware about possible emergence of medical radiation protection as a specialty and challenges for medical physicists.« less

  2. ‘Particle genetics’: treating every cell as unique

    PubMed Central

    Yvert, Gaël

    2014-01-01

    Genotype-phenotype relations are usually inferred from a deterministic point of view. For example, quantitative trait loci (QTL), which describe regions of the genome associated with a particular phenotype, are based on a mean trait difference between genotype categories. However, living systems comprise huge numbers of cells (the ‘particles’ of biology). Each cell can exhibit substantial phenotypic individuality, which can have dramatic consequences at the organismal level. Now, with technology capable of interrogating individual cells, it is time to consider how genotypes shape the probability laws of single cell traits. The possibility of mapping single cell probabilistic trait loci (PTL), which link genomic regions to probabilities of cellular traits, is a promising step in this direction. This approach requires thinking about phenotypes in probabilistic terms, a concept that statistical physicists have been applying to particles for a century. Here, I describe PTL and discuss their potential to enlarge our understanding of genotype-phenotype relations. PMID:24315431

  3. Model-Free Views of Deep Inelastic Scattering

    NASA Astrophysics Data System (ADS)

    Schwinger, Julian

    2014-11-01

    Perhaps I should point out first that my choice of topic was dictated by the injunction that the nature of this symposium should revolve around subjects that might be conceivably of interest to Viki. Viki has, along with most high energy physicists been very interested in the subject of deep inelastic electron scattering. With his characteristic attention to directly visualizable approaches to physical phenomena, he has dealt with this in terms of rather specific models, attempting then to give very elementary explanations of these fascinating phenomena. I thought he might be interested to see the other side of the coin, namely, the extent to which one can correlate and comprehend these physical effects without the use of specific models. I think this may lend a certain useful balance to the way things are looked at these days. So my remarks are directed to Viki but you're all welcome to eavesdrop...

  4. Geoscience and Public Policy

    NASA Astrophysics Data System (ADS)

    White, K. S.

    2013-12-01

    Many current public policy issues have a geoscience component: climate change, natural hazards, energy, and mineral resources to name just a few. In addition, Congress makes decisions that directly affect scientists, such as funding allocations and visa and travel policy. Yet few geoscientists are engaged in the policy-making process. Members of Congress have called on scientists to become more active, including Ph.D. physicist and former-Representative Vernon Ehlers (R-MI). In an address at the 2010 AAAS Forum on Science and Technology Policy, he told scientists, "The gulf between the scientifically minded and those who are not scientifically minded is still tremendous. I think we are keeping far too quiet about what we know and how we would go about solving problems. We have so much to offer this country à solutions to various difficulties." This talk will provide information on avenues for geoscientists to more effectively engage in the public policy arena.

  5. Student use of model-based reasoning when troubleshooting an electronic circuit

    NASA Astrophysics Data System (ADS)

    Lewandowski, Heather; Stetzer, Mackenzie; van de Bogart, Kevin; Dounas-Frazer, Dimitri

    2016-03-01

    Troubleshooting systems is an integral part of experimental physics in both research and educational settings. Accordingly, ability to troubleshoot is an important learning goal for undergraduate physics lab courses. We investigate students' model-based reasoning on a troubleshooting task using data collected in think-aloud interviews during which pairs of students from two institutions attempted to diagnose and repair a malfunctioning circuit. Our analysis scheme was informed by the Experimental Modeling Framework, which describes physicists' use of mathematical and conceptual models when reasoning about experimental systems. We show that system and subsystem models were crucial for the evaluation of repairs to the circuit and played an important role in some troubleshooting strategies. Finally, drawing on data from interviews with electronics instructors from a broad range of institution types, we outline recommendations for model-based approaches to teaching and learning troubleshooting skills.

  6. Student use of model-based reasoning when troubleshooting an electric circuit

    NASA Astrophysics Data System (ADS)

    Dounas-Frazer, Dimitri

    2016-05-01

    Troubleshooting systems is an integral part of experimental physics in both research and educational settings. Accordingly, ability to troubleshoot is an important learning goal for undergraduate physics lab courses. We investigate students' model-based reasoning on a troubleshooting task using data collected in think-aloud interviews during which pairs of students from two institutions attempted to diagnose and repair a malfunctioning circuit. Our analysis scheme was informed by the Experimental Modeling Framework, which describes physicists' use of mathematical and conceptual models when reasoning about experimental systems. We show that system and subsystem models were crucial for the evaluation of repairs to the circuit and played an important role in some troubleshooting strategies. Finally, drawing on data from interviews with electronics instructors from a broad range of institution types, we outline recommendations for model-based approaches to teaching and learning troubleshooting skills.

  7. Music of the Spheres: Astronomy-Inspired Music as an EPO Tool

    NASA Astrophysics Data System (ADS)

    Fraknoi, A.

    2008-06-01

    In doing public programs, getting audiences to think about astronomy in the wider culture, or just having some fun with a class or museum group, it's useful to have them brainstorm about all the pieces of music they can identify that have an astronomical connection. We have found over 100 pieces of classical and popular music that draw their inspiration from serious astronomy (and not just the use of a single astronomical term). These include three rock songs about black holes, operas about Einstein and Kepler, an electronic piece in which the players are asked to expand like the universe, and many more. We also highlight several astronomers and physicists who perform science music and discuss how anyone can use music to catch audience interest. The full list of pieces and more information is available at: \\url{http://aer.noao.edu/cgi-bin/article.pl?id=193}.

  8. Physics in Populist Cultures: The Hard Lessons We Need to Learn

    NASA Astrophysics Data System (ADS)

    Lubell, Mike

    2017-01-01

    A populist revolution began more than half a dozen years ago and culminated in the election of Donald Trump in 2016. I will link its evolution to the impacts of science and technology on jobs, as well as income and opportunity disparity; the role of tax policies and regulatory practices that reinforced the technological impacts; the capacity of information technology to fan the populist flames; and finally the accelerating pace of technological change that has been so unsettling for most Americans. As physicists, we're in for very challenging times that go far beyond Donald Trump. I began calling attention to the issues in the aftermath of the 2010 election and more pointedly after the 2014 vote. My audiences at universities and national laboratories, I think never fully grasped how fast the world was changing and what dangers for science were becoming increasingly evident.

  9. Future trends in the supply and demand for radiation oncology physicists.

    PubMed

    Mills, Michael D; Thornewill, Judah; Esterhay, Robert J

    2010-04-12

    Significant controversy surrounds the 2012 / 2014 decision announced by the Trustees of the American Board of Radiology (ABR) in October of 2007. According to the ABR, only medical physicists who are graduates of a Commission on Accreditation of Medical Physics Education Programs, Inc. (CAMPEP) accredited academic or residency program will be admitted for examination in the years 2012 and 2013. Only graduates of a CAMPEP accredited residency program will be admitted for examination beginning in the year 2014. An essential question facing the radiation oncology physics community is an estimation of supply and demand for medical physicists through the year 2020. To that end, a Demand & Supply dynamic model was created using STELLA software. Inputs into the model include: a) projected new cancer incidence and prevalence 1990-2020; b) AAPM member ages and retirement projections 1990-2020; c) number of ABR physics diplomates 1990-2009; d) number of patients per Qualified Medical Physicist from Abt Reports I (1995), II (2002) and III (2008); e) non-CAMPEP physicists trained 1990-2009 and projected through 2014; f) CAMPEP physicists trained 1993-2008 and projected through 2014; and g) working Qualified Medical Physicists in radiation oncology in the United States (1990-2007). The model indicates that the number of qualified medical physicists working in radiation oncology required to meet demand in 2020 will be 150-175 per year. Because there is some elasticity in the workforce, a portion of the work effort might be assumed by practicing medical physicists. However, the minimum number of new radiation oncology physicists (ROPs) required for the health of the profession is estimated to be 125 per year in 2020. The radiation oncology physics community should plan to build residency programs to support these numbers for the future of the profession.

  10. Postdoctoral Opportunities in Medical Physics

    NASA Astrophysics Data System (ADS)

    Hogstrom, Kenneth

    2006-04-01

    The medical physicist is a professional who specializes in the application of the concepts and methods of physics to the diagnosis and treatment of human disease. Medical physicists identify their primary discipline to be radiation therapy (78%), medical imaging (16%), nuclear medicine (3%), or radiation safety (2%). They state their primary responsibility to be clinical (78%), academic (9%), research (4%), etc. Correspondingly, medical physicists reveal their primarily employment to be a private hospital (42%), university hospital (32%), physicist's service group (9%), physician's service group (9%), industry (5%), and government (3%). The most frequent job of medical physicists is clinical radiation therapy physicist, whose clinical duties include: equipment acquisition, facility design, commissioning, machine maintenance, calibration and quality assurance, patient treatment planning, patient dose calculation, management of patient procedures, development of new technology, radiation safety, and regulatory compliance. The number of medical physicists in the United States can be estimated by the number of members of the American Association of Physicists in Medicine (AAPM), which has increased 5.5% annually since 1969, currently being 5,000. New positions plus retirements create a current need >300 new medical physicists per year, which exceeds supply. This is supported by the steady growth in average salaries, being 100,000 for PhDs entering the field and reaching 180,000. Graduate programs alone cannot meet demand, and physicists entering the field through postdoctoral training in medical physics remain important. Details of postdoctoral research programs and medical physics residency programs will provide direction to physics PhD graduates interested in medical physics. [The AAPM, its annual Professional Information Report, and its Public Education Committee are acknowledged for information contributing to this presentation.

  11. Medical physics aspects of cancer care in the Asia Pacific region

    PubMed Central

    Kron, T; Cheung, KY; Dai, J; Ravindran, P; Soejoko, D; Inamura, K; Song, JY; Bold, L; Srivastava, R; Rodriguez, L; Wong, TJ; Kumara, A; Lee, CC; Krisanachinda, A; Nguyen, XC; Ng, KH

    2008-01-01

    Medical physics plays an essential role in modern medicine. This is particularly evident in cancer care where medical physicists are involved in radiotherapy treatment planning and quality assurance as well as in imaging and radiation protection. Due to the large variety of tasks and interests, medical physics is often subdivided into specialties such as radiology, nuclear medicine and radiation oncology medical physics. However, even within their specialty, the role of radiation oncology medical physicists (ROMPs) is diverse and varies between different societies. Therefore, a questionnaire was sent to leading medical physicists in most countries/areas in the Asia/Pacific region to determine the education, role and status of medical physicists. Answers were received from 17 countries/areas representing nearly 2800 radiation oncology medical physicists. There was general agreement that medical physicists should have both academic (typically at MSc level) and clinical (typically at least 2 years) training. ROMPs spent most of their time working in radiotherapy treatment planning (average 17 hours per week); however radiation protection and engineering tasks were also common. Typically, only physicists in large centres are involved in research and teaching. Most respondents thought that the workload of physicists was high, with more than 500 patients per year per physicist, less than one ROMP per two oncologists being the norm, and on average, one megavoltage treatment unit per medical physicist. There was also a clear indication of increased complexity of technology in the region with many countries/areas reporting to have installed helical tomotherapy, IMRT (Intensity Modulated Radiation Therapy), IGRT (Image Guided Radiation Therapy), Gamma-knife and Cyber-knife units. This and the continued workload from brachytherapy will require growing expertise and numbers in the medical physics workforce. Addressing these needs will be an important challenge for the future. PMID:21611001

  12. 7. WASTE CALCINING FACILITY, LOOKING AT NORTH END OF BUILDING. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. WASTE CALCINING FACILITY, LOOKING AT NORTH END OF BUILDING. CAMERA FACING SOUTH. TENT-ROOFED COVER IN RIGHT OF VIEW IS A TEMPORARY WEATHER-PROOFING SHELTER OVER THE BLOWER PIT IN CONNECTION WITH DEMOLITION PROCEDURES. SMALL BUILDING CPP-667 IN CENTER OF VIEW WAS USED FOR SUPPLEMENTARY OFFICE SPACE BY HEALTH PHYSICISTS AND OTHERS. INEEL PROOF SHEET NOT NUMBERED. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  13. Some observations on the creative process and its relation to mourning and various forms of understanding.

    PubMed

    Székely, L

    1983-01-01

    Highly abstract thinking is the manifestation of the inner working of mental life, which in the present instance is the creative activity of a theoretical physicist. Events in the 'creative workshop' are traditionally not the focus of psychoanalytic inquiry. The study here begins with a description of the intrapsychic consequences of object loss and mourning and their specific outcome during a period of creative work. Three distinctive events can be considered as direct consequences of mourning: (1) The conceptualization of the 'little wave'. (2) The belief, that the 'little wave' is solely his invention. (3) The assumption made in the preconscious, that the 'little wave' is a stable one. (2) and (3) had turned out to be erroneous and had been corrected by Alpha subsequently. Thereafter the scope of the psychoanalytic inquiry widens to include the cognitive strategies employed by the physicist and their genetic link to the collective alternates in Greenacre's sense. One such cognitive strategy is dealt with, to which the term 'tangled hierarchy' is applied. This considers how thought or knowledge acquired at one level is transferred to another, or vice versa, with the aim of achieving some degree of isomorphy between them. Interactions between events within the realm of object relations and those which take place in the preconscious creative sphere are pointed out. The transitional stages of a creative product bear the mark of the specific features of object relations, conflicts and defences. The final product, however, does not exhibit these same marks.

  14. Teaching Leadership

    ERIC Educational Resources Information Center

    Leshnower, Susan

    2008-01-01

    When thinking of leaders, people usually think of those in positions of power, such as political leaders, religious leaders, or student leaders. Yet, leaders can be found in all spheres of life, and leadership behaviors can be learned particularly in a small-group format (Hellriegel, Jackson, & Slocum, 2005). This article presents ideas and…

  15. Implementation and evaluation of critical thinking strategies to enhance critical thinking skills in Middle Eastern nurses.

    PubMed

    Simpson, Elaine; Courtney, Mary

    2008-12-01

    The purpose of this study was to develop, implement and evaluate critical thinking strategies to enhance critical thinking skills in Middle Eastern nurses. Critical thinking strategies such as questioning, debate, role play and small group activity were developed and used in a professional development programme, which was trialled on a sample of Middle Eastern nurses (n = 20), to promote critical thinking skills, encourage problem solving, development of clinical judgment making and care prioritization in order to improve patient care and outcomes. Classroom learning was transformed from memorization to interaction and active participation. The intervention programme was successful in developing critical thinking skills in both the nurse educators and student nurses in this programme. This programme successfully integrated critical thinking strategies into a Middle Eastern nursing curriculum. Recommendations are as follows: (1) utilize evidence-based practice and stem questions to encourage the formulation of critical thinking questions; (2) support the needs of nurse educators for them to effectively implement teaching strategies to foster critical thinking skills; and (3) adopt creative approaches to (i) transform students into interactive participants and (ii) open students' minds and stimulate higher-level thinking and problem-solving abilities.

  16. The specifics of superconductivity

    NASA Astrophysics Data System (ADS)

    Grant, Paul M.

    2011-07-01

    When addressing the general audience of any scientific discipline, it is wise to remember Abraham Lincoln, who (almost) said "You can please all physicists some of the time and some physicists all of the time, but never all physicists all of the time."

  17. SMP That Help Foster Algebraic Thinking

    ERIC Educational Resources Information Center

    Billings, Esther M. H.

    2017-01-01

    Arithmetic is a major mathematical focus in elementary school curriculum, and researchers such as Mason (2008) claim that "algebraic thinking is required in order to make sense of arithmetic" (p. 58). When adding, subtracting, multiplying, and dividing, learners must rely on a small set of fundamental properties also important for the…

  18. Development and evaluation of form three mathematics i-Think module (Mi-T3) on algebraic formulae topic

    NASA Astrophysics Data System (ADS)

    Sam, Sazilah; Abdullah, Mohd Faizal Nizam Lee

    2017-05-01

    This article introduces the Form Three Mathematics i-Think Module (Mi-T3). The main objective of this Mi-T3 is to assist form three students develop their higher order thinking skills (HOTS). The Sidek Module Development Model (SMDM) and eight innovative thinking maps (i-Think) were applied as a guideline in developing Mi-T3. A validation stage was carried out by eight experts, and content validation achievement more than 90% obtained. A group of form three students and teachers was piloted to check the module's reliability through one to one and small group evaluation and Cronbach Alpha more than 0.90 was obtained. Implications of the study are discussed in this article.

  19. Diagnostic medical physicists and their clinical activities.

    PubMed

    Cypel, Yasmin S; Sunshine, Jonathan H

    2004-02-01

    The primary objective of this study was to obtain basic, descriptive information about medical physicists involved in diagnostic radiology-related activities, the diagnostic-related activities that they performed, and the time spent on these activities. A survey was sent to a randomly selected sample of 1511 medical physicists from July through October 2001 using primarily e-mail methods; a total of 851 surveys was received, for a response rate of 56%. Of these, 427 were responses from physicists who do partly or only clinical diagnostic medical physics; it is this group for which results are presented. Fifty-four percent of the physicists who reported doing any clinical diagnostic medical physics performed clinical activities only in diagnostic medical physics. Fourteen percent of all those doing clinical diagnostic medical physics were women. Over 97% of the physicists doing clinical diagnostic medical physics reported having graduate degrees in physics; 53% had PhDs. The mean total weekly hours worked by physicists doing clinical diagnostic medical physics was 42. Medical physicists doing only clinical diagnostic activities reported working approximately 40 hours weekly, whereas those doing partly clinical diagnostic medical physics reported working 14 hours weekly in the field (approximately one-third of their work time). Radiography and fluoroscopy, computed tomography, nuclear medicine, and mammography are all fields in which the majority of those doing any clinical diagnostic medical physics are active. Full-time physicists working only in diagnostic medical physics were responsible for a median of 25 units of equipment, compared with a median of 10 units for those working only partly in the field. Number of units evaluated, frequency of evaluation, and hours per evaluation were reported for almost 20 types of equipment. Medical physicists performing diagnostic clinical activities typically are responsible for a large number and wide variety of imaging equipment. It would be helpful to study their work further, focusing in particular on whether there is a shortage, as is true of diagnostic radiologists, and whether the variety of responsibilities creates strain.

  20. SU-E-P-01: An Informative Review On the Role of Diagnostic Medical Physicist in the Academic and Private Medical Centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weir, V; Zhang, J

    Purpose: The role of physicist in the academic and private hospital environment continues to evolve and expand. This becomes more obvious with the newly revised requirements of the Joint Commission (JC) on imaging modalities and the continued updated requirements of ACR accreditation for medical physics (i.e., starting in June 2014, a physicists test will be needed before US accreditation). We provide an informative review on the role of diagnostic medical physicist and hope that our experience will expedite junior physicists in understanding their role in medical centers, and be ready to more opportunities. Methods: Based on our experience, diagnostic medicalmore » physicists in both academic and private medical centers perform several clinical functions. These include providing clinical service and physics support, ensuring that all ionizing radiation devices are tested and operated in compliance with the State and Federal laws, regulations and guidelines. We also discuss the training and education required to ensure that the radiation exposure to patients and staff is as low as reasonably achievable. We review the overlapping roles of medical and health physicist in some institutions. Results: A detailed scheme on the new requirements (effective 7/1/2014) of the JC is provided. In 2015, new standards for fluoroscopy, cone beam CT and the qualifications of staff will be phased in. A summary of new ACR requirements for different modalities is presented. Medical physicist have other duties such as sitting on CT and fluoroscopy committees for protocols design, training of non-radiologists to meet the new fluoroscopy rules, as well as helping with special therapies such as Yittrium 90 cases. Conclusion: Medical physicists in both academic and private hospitals are positioned to be more involved and prominent. Diagnostic physicists need to be more proactive to involve themselves in the day to day activities of the radiology department.« less

  1. Mário Schenberg: Physicist, politician and art critic

    NASA Astrophysics Data System (ADS)

    Guzzo, M. M.; Reggiani, N.

    2015-12-01

    Mário Schenberg is considered one of the greatest theoretical physicists of Brazil. He worked in different fields of physics including thermodynamics, quantum mechanics, statistical mechanics, general relativity, astrophysics and mathematics. He was assistant of the Ukrainian naturalized Italian physicist Gleb Wataghin and worked with prestigious physicists like as the Brazilians José Leite Lopes and César Lattes, the Russian-born American George Gamow and the Indian astrophysicist Subrahmanyan Chandrasekhar. Besides, he was also an active politician and critic of art.

  2. Mário Schenberg: Physicist, politician and art critic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzzo, M. M., E-mail: guzzo@ifi.unicamp.br; Reggiani, N.

    2015-12-17

    Mário Schenberg is considered one of the greatest theoretical physicists of Brazil. He worked in different fields of physics including thermodynamics, quantum mechanics, statistical mechanics, general relativity, astrophysics and mathematics. He was assistant of the Ukrainian naturalized Italian physicist Gleb Wataghin and worked with prestigious physicists like as the Brazilians José Leite Lopes and César Lattes, the Russian-born American George Gamow and the Indian astrophysicist Subrahmanyan Chandrasekhar. Besides, he was also an active politician and critic of art.

  3. LGBT Roundtable Discussion: Meet-up and Mentoring Discussion

    NASA Astrophysics Data System (ADS)

    2014-03-01

    The LGBT+ Physicists group welcomes those who identify as gender sexual minorities, as LGBTQQIAAP+, or as allies to participate in a round-table discussion on mentoring physicists. The session will provide an opportunity to learn and discuss successful mentoring strategies at different career stages for physicists in all environments, including academia, industry, etc. Attendees are encouraged to attend a social event to follow the panel to continue to network. Allies are especially welcome at this event to learn how to support and mentor LGBT+ physicists.

  4. Community-based Inquiry Improves Critical Thinking in General Education Biology

    PubMed Central

    Faiola, Celia L.; Johnson, James E.; Kurtz, Martha J.

    2008-01-01

    National stakeholders are becoming increasingly concerned about the inability of college graduates to think critically. Research shows that, while both faculty and students deem critical thinking essential, only a small fraction of graduates can demonstrate the thinking skills necessary for academic and professional success. Many faculty are considering nontraditional teaching methods that incorporate undergraduate research because they more closely align with the process of doing investigative science. This study compared a research-focused teaching method called community-based inquiry (CBI) with traditional lecture/laboratory in general education biology to discover which method would elicit greater gains in critical thinking. Results showed significant critical-thinking gains in the CBI group but decreases in a traditional group and a mixed CBI/traditional group. Prior critical-thinking skill, instructor, and ethnicity also significantly influenced critical-thinking gains, with nearly all ethnicities in the CBI group outperforming peers in both the mixed and traditional groups. Females, who showed decreased critical thinking in traditional courses relative to males, outperformed their male counterparts in CBI courses. Through the results of this study, it is hoped that faculty who value both research and critical thinking will consider using the CBI method. PMID:18765755

  5. A Physicists Journey Through Silicon Valley

    NASA Astrophysics Data System (ADS)

    Wilfley, Brian

    My experiences in grad school showed me many aspects of working in academic physics. The question on my mind, back then, was, What is it like in the commercial world? In this talk, I'll try to convey what it feels like to be in a small company focused on a commercial goal. In particular, I'll try to describe the kind of work one does and the kind of relationships one develops: the two can constructively interfere.

  6. Thinking Big about Getting Small: An Ideological Genealogy of Small-School Reform

    ERIC Educational Resources Information Center

    Kafka, Judith

    2008-01-01

    Background: Support for small schools, and specifically for the creation of small, autonomous schools of choice, has grown considerably in the past decade--particularly in the context of urban schooling. Funded by private and public monies, small-school initiatives have been implemented in most of the nation's city school districts and have become…

  7. Assessing Reflective Thinking: Pre-Service Teachers' and Professors' Perceptions of an Oral Examination

    ERIC Educational Resources Information Center

    Badger, James

    2010-01-01

    This paper investigates the role questioning occupies in an oral examination as it relates to King and Kitchener's theory of critical, reflective thinking. Pre-service teachers' experience of sitting an oral examination and professors' reflections on conducting the assessment in a small liberal arts university are considered. Findings from this…

  8. Birthday Cake Activity Structured Arrangement for Helping Children Determining Quantities

    ERIC Educational Resources Information Center

    Mariana, Neni

    2010-01-01

    Few researches have been concerned about relation between children's spatial thinking and number sense. Narrowing for this small research, we focused on one component of spatial thinking, that is structuring objects, and one component of number senses, that is cardinality by determining quantities. This study focused on a design research that was…

  9. 77 FR 65621 - Security Zone; Cruise Ships, Santa Barbara Harbor, Santa Barbara, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-30

    ... able to locate the cruise ships visually, due to the small geographic size and depth restrictions of... entities because vessel traffic can pass safely around the zones. If you think that your business... significant economic impact on it, please submit a comment (see ADDRESSES) explaining why you think it...

  10. 'Think Baby': online learning for student health visitors.

    PubMed

    Appleton, Jane V; Harris, Margaret; Kelly, Cat; Huppe, Irmgard

    2014-06-01

    'Think Baby' is an innovative online learning resource which has been developed to help student health visitors (and other specialist community public health nurses) build their skills in observing and assessing mother-infant interactions. The project's development and pilot work was funded by a small grant from the Higher Education Academy. It builds on the findings of the team's previous research, which found health visitors' initial training had left them ill-prepared to assess the intricacies of mother-infant relationships. The 'Think Baby' project sought to develop online training resources for student health visitors using video footage of mothers and babies to illustrate different types of interactions. A small group of student health visitors were engaged in reviewing and evaluating the materials and considering their acceptability. Once developed, the materials were piloted with student health visitors from three universities, community practice teachers and a health visitor academic, and they were then adapted for wider roll out. 'Think Baby' enables student health visitors to develop their core skills in assessment, which is really important in identifying when early help and support are needed for mothers and infants.

  11. 10 CFR 35.57 - Training for experienced Radiation Safety Officer, teletherapy or medical physicist, authorized...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., teletherapy or medical physicist, authorized medical physicist, authorized user, nuclear pharmacist, and authorized nuclear pharmacist. 35.57 Section 35.57 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF... pharmacist, and authorized nuclear pharmacist. (a)(1) An individual identified as a Radiation Safety Officer...

  12. 10 CFR 35.57 - Training for experienced Radiation Safety Officer, teletherapy or medical physicist, authorized...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., teletherapy or medical physicist, authorized medical physicist, authorized user, nuclear pharmacist, and authorized nuclear pharmacist. 35.57 Section 35.57 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF... pharmacist, and authorized nuclear pharmacist. (a)(1) An individual identified as a Radiation Safety Officer...

  13. 10 CFR 35.57 - Training for experienced Radiation Safety Officer, teletherapy or medical physicist, authorized...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., teletherapy or medical physicist, authorized medical physicist, authorized user, nuclear pharmacist, and authorized nuclear pharmacist. 35.57 Section 35.57 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF... pharmacist, and authorized nuclear pharmacist. (a)(1) An individual identified as a Radiation Safety Officer...

  14. 10 CFR 35.57 - Training for experienced Radiation Safety Officer, teletherapy or medical physicist, authorized...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., teletherapy or medical physicist, authorized medical physicist, authorized user, nuclear pharmacist, and authorized nuclear pharmacist. 35.57 Section 35.57 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF... pharmacist, and authorized nuclear pharmacist. (a)(1) An individual identified as a Radiation Safety Officer...

  15. 10 CFR 35.57 - Training for experienced Radiation Safety Officer, teletherapy or medical physicist, authorized...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., teletherapy or medical physicist, authorized medical physicist, authorized user, nuclear pharmacist, and authorized nuclear pharmacist. 35.57 Section 35.57 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF... pharmacist, and authorized nuclear pharmacist. (a)(1) An individual identified as a Radiation Safety Officer...

  16. Physicists and Astronomy--Will You Join the Dance?

    ERIC Educational Resources Information Center

    Harwit, Martin

    1981-01-01

    Focuses on past achievements of physicists beginning with the discovery of gaseous nebulae and listing seven commonly found characteristics of this and other observational discoveries which can foster further discovery. Suggests how theory is related to observation and where physicists make their greatest contributions to astronomy. (Author/JN)

  17. The Role of the Medical Physicist in Radiation Protection in Hospitals.

    ERIC Educational Resources Information Center

    Harrison, R. M.

    1989-01-01

    Described is the role of the medical physicist in five areas of medical application, including radiotherapy, nuclear medicine, diagnostic radiology, environmental radioactivity, and dosimetry and personal monitoring. The management contribution of the medical physicist is discussed. Provided are two examples of new techniques influencing radiation…

  18. Fermilab Today

    Science.gov Websites

    physicist invents new way to clean up oil spills Fermilab physicist Arden Warner revolutionizes oil spill cleanup with magnetizable-oil invention. Photo: Hanae Armitage Four years ago, Fermilab accelerator physicist Arden Warner watched national news of the BP oil spill and found himself frustrated with the

  19. Identical Collision Terms/Solutions of Kinetic Eqn. and Explanation of Damping of Waves in Plasmas and Solids Known by Different Names

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S. K.

    2010-11-23

    In this paper we show that identical collision terms are known by different names in gaseous plasmas and solids. Method used by plasma physicists and the one used by solid state physicists to solve Kinetic equation are also exactly same but they are also known by different names. In fact the physical explanation of damping of plasma Waves given by plasma physicists is quite similar to that given by solid state physicists to explain the absorption of acoustic waves in solids.

  20. Physics in Industry: A Case Study

    NASA Astrophysics Data System (ADS)

    Pratt-Ferguson, Ben

    2007-10-01

    Often ignored and sometimes even considered ``black sheep'' by the university & government-lab physicists, many industrial physicists continue making valuable scientific contributions in diverse areas, from computer science to aero and thermo-dynamics, communications, mathematics, engineering, and simulation, to name a few. This talk will focus on what industrial physicists do, what preparations are beneficial to obtaining a first industrial job, and what the business environment is like for physicists. The case study will be that of the author, starting with undergraduate and graduate studies and continuing on to jobs in industry.

  1. Medical physics in radiotherapy: The importance of preserving clinical responsibilities and expanding the profession's role in research, education, and quality control

    PubMed Central

    Malicki, Julian

    2015-01-01

    Medical physicists have long had an integral role in radiotherapy. In recent decades, medical physicists have slowly but surely stepped back from direct clinical responsibilities in planning radiotherapy treatments while medical dosimetrists have assumed more responsibility. In this article, I argue against this gradual withdrawal from routine therapy planning. It is essential that physicists be involved, at least to some extent, in treatment planning and clinical dosimetry for each and every patient; otherwise, physicists can no longer be considered clinical specialists. More importantly, this withdrawal could negatively impact treatment quality and patient safety. Medical physicists must have a sound understanding of human anatomy and physiology in order to be competent partners to radiation oncologists. In addition, they must possess a thorough knowledge of the physics of radiation as it interacts with body tissues, and also understand the limitations of the algorithms used in radiotherapy. Medical physicists should also take the lead in evaluating emerging challenges in quality and safety of radiotherapy. In this sense, the input of physicists in clinical audits and risk assessment is crucial. The way forward is to proactively take the necessary steps to maintain and advance our important role in clinical medicine. PMID:25949219

  2. MO-C-BRB-04: Observations of a Nuclear Radiologist on the Value of the Medical Physicist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenspan, B.

    With the profound changes currently occurring in medicine, the role of the medical physicist cannot stagnate, but must evolve to meet the challenges and opportunities that are presented. Medical physicists must understand these changes and establish themselves not only as relevant but as leaders in this new environment. We must increase our presence in clinical settings such as tumor boards, patient rounds, and the development of new diagnosis, imaging, and treatment techniques. By establishing ourselves as competent scientists, we can and must participate in the development of technologies through research, teaching, and clinical implementation. As medical physicists we must definemore » our roles and value to our physician colleagues, patients, referring physicians, and senior administrators. We cannot afford to be viewed solely as quality assurance technologists, but need to move forward in step with medical and practice advances, becoming recognized as having a leadership role in providing quality research, technological development, and quality patient care. In this session, four leaders in medical research and healthcare will discuss their observations on how medical physicists have contributed to advancements in healthcare and opportunities to continue leadership in providing quality medicine through the applications of physics to research, education, and clinical practice. Learning Objectives: Understand the changes in the healthcare environment and how medical physicists can contribute to improving patient care. Learn how medical physicists are currently leading research efforts to improve clinical imaging and diagnosis. Understand the role of medical physicists in developing new technology and leading its translation into clinical care.« less

  3. Is the "glass ceiling" a real problem for women physicists in Argentina?

    NASA Astrophysics Data System (ADS)

    Frechero, Marisa A.; Amador, Ana; Pastor, Antonio J. Ramirez; Tamarit, Francisco

    2015-12-01

    We evaluate the distribution of female physicists in the Argentinean workforce, analyzing the distribution of women at different levels of education and research using several indicators. Although important imbalances still occur, our findings are encouraging and the distribution of female physicists seems to be changing for the better.

  4. NREL Researcher is Top World Physicist

    Science.gov Websites

    is Top World Physicist For more information contact: Kerry Masson, (303) 275-4083 e:mail physicists in the world by the Institute of Scientific Information (ISI). The standing is based on the number your peers is the ultimate measure of the quality and quantity of world class research being conducted

  5. Alternate Careers for Physicists: Science Policy and Government Relations

    NASA Astrophysics Data System (ADS)

    Mack, Gregory

    While physics is an investigation of the world around us, physicists and the practice of physics research exist within the world in combination with aspects of society. This means that physicists and physics research are subject to federal policies and regulations that affect how physics is done. Who decides or influences those policies? Who speaks up on our behalf? Who investigates policy issues from a physics point of view? As physicists, we can lend our expertise and insight in order to ensure a fruitful future for physics and science more broadly, whether it be an occasional policy action taken or a career in science policy and government relations. In this talk I'll share the story of my transition from academia to a policy-focused career at APS and what it means to be a physicist on the frontlines of government relations.

  6. Physics and nuclear power

    NASA Astrophysics Data System (ADS)

    Buttery, N. E.

    2008-03-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors.

  7. The Origin of Mass and the Feebleness of Gravity

    ScienceCinema

    Wilczek, Frank

    2017-12-09

    BSA Distinguished Lecture presented by Frank Wilczek, co-winner of the 2004 Nobel Prize in Physics. Einstein's famous equation E=mc^2 asserts that energy and mass are different aspects of the same reality. The general public usually associates the equation with the idea that small amounts of mass can be converted into large amounts of energy, as in nuclear reactors and bombs. For physicists who study the basic nature of matter, however, the more important idea is just the opposite.

  8. Vibrational-Rotational Spectroscopy For Planetary Atmospheres, volume 1

    NASA Technical Reports Server (NTRS)

    Mumma, M. J. (Editor); Fox, K. (Editor); Hornstein, J. (Editor)

    1982-01-01

    Comprehensive information on the composition and dynamics of the varied planetary atmospheres is summarized. New observations resulted in new demands for supporting laboratory studies. Spectra observed from spacecraft used to interpret planetary atmospheric structure measurements, to aid in greenhouse and cloud physics calculations, and to plan future experiments are discussed. Current findings and new ideas of physicists, chemists, and planetry astronomers relating to the knowledge of the structure of things large and small, of planets and of molecules are summarized.

  9. NRG Oncology medical physicists' manpower survey quantifying support demands for multi-institutional clinical trials.

    PubMed

    Monroe, James I; Boparai, Karan; Xiao, Ying; Followill, David; Galvin, James M; Klein, Eric E; Low, Daniel A; Moran, Jean M; Zhong, Haoyu; Sohn, Jason W

    2018-02-04

    A survey was created by NRG to assess a medical physicists' percent full time equivalent (FTE) contribution to multi-institutional clinical trials. A 2012 American Society for Radiation Oncology report, "Safety Is No Accident," quantified medical physics staffing contributions in FTE factors for clinical departments. No quantification of FTE effort associated with clinical trials was included. To address this lack of information, the NRG Medical Physics Subcommittee decided to obtain manpower data from the medical physics community to quantify the amount of time medical physicists spent supporting clinical trials. A survey, consisting of 16 questions, was designed to obtain information regarding physicists' time spent supporting clinical trials. The survey was distributed to medical physicists at 1996 radiation therapy institutions included on the membership rosters of the 5 National Clinical Trials Network clinical trial groups. Of the 451 institutions who responded, 50% (226) reported currently participating in radiation therapy trials. On average, the designated physicist at each institution spent 2.4 hours (standard deviation [SD], 5.5) per week supervising or interacting with clinical trial staff. On average, 1.2 hours (SD, 3.1), 1.8 hours (SD, 3.9), and 0.6 hours (SD, 1.1) per week were spent on trial patient simulations, treatment plan reviews, and maintaining a Digital Imaging and Communications in Medicine server, respectively. For all trial credentialing activities, physicists spent an average of 32 hours (SD, 57.2) yearly. Reading protocols and supporting dosimetrists, clinicians, and therapists took an average of 2.1 hours (SD, 3.4) per week. Physicists also attended clinical trial meetings, on average, 1.2 hours (SD, 1.9) per month. On average, physicist spent a nontrivial total of 9 hours per week (0.21 FTE) supporting an average of 10 active clinical trials. This time commitment indicates the complexity of radiation therapy clinical trials and should be taken into account when staffing radiation therapy institutions. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Lithuanian female physicists: Reality and plans for the future

    NASA Astrophysics Data System (ADS)

    Šatkovskienė, Dalia; Giriunienė, Ramutė; Ruželė, Živilė; Rutkunienė, Živilė

    2013-03-01

    Changes in the issue of women in physics in Lithuanian in the three years since the 3rd IUPAP International Conference on Women in Physics are discussed on the basis of statistics as well as an exploratory study recently conducted among women physicists. The situation has changed slowly since 2008. However, the study shows that women physicists more clearly understand the inequities and the need for changes, including an active European Union mainstreaming policy targeted to ensure gender equality in the sciences, which gives hope for accelerating changes. Continued plans for improving women physicists' situation in Lithuania are discussed.

  11. How Scientists Use Critical-Thinking Skills: Isolating Both Total RNA and Protein Using the Same Small Organ

    ERIC Educational Resources Information Center

    Porta, Angela R.; Dhawan, Puneet

    2006-01-01

    Undergraduate biology programs are currently undergoing reform to involve students in biomedical research. Engaging students in more active, hands-on experiments allows students to discover scientific principles for themselves, and to develop techniques of critical thinking and problem solving. This models the world of real scientific research,…

  12. Making the Best of an Inappropriate Textbook: Using an "International Edition" to Teach Critical Thinking and Intercultural Understanding

    ERIC Educational Resources Information Center

    Marcellus, Kristina C.

    2016-01-01

    In this report, I outline and provide examples of an approach to using an international edition of an introductory sociology textbook to facilitate cross-cultural learning and critical thinking skills in an EFL (English as a foreign language) environment at a small engineering university in the United Arab Emirates.

  13. System Thinking Skills at the Elementary School Level

    ERIC Educational Resources Information Center

    Assaraf, Orit Ben-Zvi; Orion, Nir

    2010-01-01

    This study deals with the development of system thinking skills at the elementary school level. It addresses the question of whether elementary school students can deal with complex systems. The sample included 40 4th grade students from one school in a small town in Israel. The students studied an inquiry-based earth systems curriculum that…

  14. A "Summer Camp" on Banks of the Wye Gives Busy Scholars a Chance to Think.

    ERIC Educational Resources Information Center

    McMillen, Liz

    1985-01-01

    Faculty members spent their time reading, thinking, and talking about American values at the Wye Faculty Seminar on the Maryland Eastern Shore. The seminar draws academics from small liberal-arts colleges and representives from business, government, and the media to exchange ideas on American social and political values. (MLW)

  15. Small Schools in a Big World: Thinking about a Wicked Problem

    ERIC Educational Resources Information Center

    Corbett, Michael; Tinkham, Jennifer

    2014-01-01

    The position of small rural schools is precarious in much of rural Canada today. What is to be done about small schools in rural communities which are often experiencing population decline and aging, economic restructuring, and the loss of employment and services? We argue this issue is a classic "wicked" policy problem. Small schools…

  16. Student reasoning about ratio and proportion in introductory physics

    NASA Astrophysics Data System (ADS)

    Boudreaux, Andrew

    2012-02-01

    To many students, introductory physics must seem a fast-moving parade of abstract and somewhat mysterious quantities. Most such quantities are rooted in proportional reasoning. Using ratio, physicists construct the force experienced by a unit charge, and attach the name electric field, or characterize a motion with the velocity change that occurs in a unit time. While physicists reason about these ratios without conscious effort, students tend to resort to memorized algorithms, and at times struggle to match the appropriate algorithm to the situation encountered. Although the term ``proportional reasoning'' is prevalent, skill in reasoning with these ratio quantities is neither acquired nor applied as a single cognitive entity. Expert ability seems to be characterized by the intentional use of a variety of components, or elements of proportional reasoning, by a fluency in shifting from one component to another, and by a skill in selecting from among these components. Based on this perspective, it is natural to expect students to develop proportional reasoning ability in fits and starts as various facets are acquired and integrated into existing understandings. In an ongoing collaboration between Western Washington University, New Mexico State University, and Rutgers, we are attempting to map the rich cognitive terrain of proportional reasoning, and to use our findings to guide the design of instruction that develops fluency. This talk will present a provisional set of proportional reasoning components, along with research tasks that have been developed to measure student ability along these components. Student responses will be presented as evidence of specific modes of thinking. The talk will conclude with a brief outline of our approach to improving student understanding.

  17. Chinese physicists educated in Germany and America: Their scientific contributions and their impact on China's higher education

    NASA Astrophysics Data System (ADS)

    Qu, Jing Cheng

    1998-11-01

    This dissertation records the historical paths of Chinese physicists educated in Germany and America, explores their representative achievements in modern physics that have not been recognized by Chinese scholars, and provides sociological analyses of their contributions to China's higher education. We have found that Chinese students of physics in Germany and America were not passive recipients of Western science, but active contributors. They were also crucial contributors to science education and important scientific projects upon their return to China. Chapter One briefly describes physics knowledge in ancient China and introduces the transplantation of modern science and technology to China. Three distinct historical periods have been identified. In Chapter Two and Chapter Three, 30 Chinese physicists educated in Germany and 89 in America have been investigated. This research analyzes the significant achievements of these physicists. It also examines the political changes, the social background, and other factors impacting on their studies in the two countries. The selected cases in the two chapters are Li Fo-ki, Chinese physics students in Berlin, Werner Heisenberg and his Chinese students, Max Born and his Chinese students, Robert Millikan and Chinese physicists, the first two Chinese physicists from Harvard, and the Science Society of China. Chapter Four explores the geographical distribution, education and careers, return and expatriation, and the social influence exerted by these Chinese physicists. Statistical compilation and quantitative analyses comprise the basic methodology. In terms of two periods and two generations, this dissertation explores the physicists' contributions to the development of modern science in China and to education in China. Significant cases from Beijing University, Qinghua University, and Yanjing University are analyzed. The last chapter, Chapter Five, concludes that some of the achievements of these Chinese physicists were critical steps in modern physics even though China remained domestically rather weak in the development of modern science. Returning to China, most of them became pioneers and active contributors to modern science and to higher education in China. They comprised the majority of the physics community of China and played a leading role in the formation of modern science in China. After 1949, China continued to benefit from the contributions of these physicists. China independently constructed an atomic bomb in 1964 and a hydrogen bomb in 1967. In 1970, China successfully launched a man-made satellite. The Chinese physicists trained in Western countries constituted the main research force behind these projects.

  18. The Status of African American Physicists within the DOE Laboratories

    NASA Astrophysics Data System (ADS)

    Jackson, Keith

    2005-03-01

    In May 2002 there was a backpage article published in American Physical Society Newsletter by the President of the National Society of Black Physicists (NSBP). This article showed that of the 3372 professional physicists employed at the DOE national labs, only 11 are African American, which on a percentage basis is 4 times less than the total availability of Ph.D. African American physicists in the labor force. NSBP want to provide an update of the interaction between National Society of Black Physicists (NSBP) and the department of Energy in particular the Office of Science on the issue of employment of African American Physicists in scientific and technical. You might ask the following question: Why should the current generation of African American Physicists be concerned about their underepresentation on the scientific staffs of the DOE National Laboratories? The answer to this question may vary from person to person, but I would like to propose the following: The National Laboratories are the largest providers of career opportunities in Physics in the United States. There is a general view in the community; African Americans are not getting a return on their national investment in the DOE National Labs. Failure to engage with HBCU’s through their user facilities causes a training or skills deficit when it comes to preparing students to participate at the forefront of physics research. By rebuffing interactions with HBCU¹s, as many the laboratories have done, the national laboratories are in effect refusing to transfer scientific knowledge to the stakeholders in the African American community. The update will contain some additional information about NSBP proposals to solve the problem of underepresentation of African American and Hispanic physicists within the National Laboratories and how the Office of Science has response these proposals.

  19. Paul W. Kruse (1927-2012), In Memoriam

    NASA Astrophysics Data System (ADS)

    Reine, Marion B.; Norton, Paul R.; Stelzer, Ernie L.

    2013-06-01

    During his distinguished 37-year career as a research physicist at the Honeywell Research Center in Minneapolis, Minnesota, Dr. Paul W. Kruse (1927-2012) played leadership roles in two disruptive infrared detector technologies, the narrow-gap semiconductor alloy HgCdTe and the silicon CMOS-based microbolometer array, both of which revolutionized the worldwide infrared detector industry. He served on numerous government advisory boards and panels, including the Army Scientific Advisory Panel and the Army Science Board, for which he received the Outstanding Civilian Service Medal. After retiring for Honeywell in 1993, he remained active in the infrared detector field in several roles: as a successful small-business entrepreneur, as an author of two books, and as a SPIE lecturer. His books, papers and lectures have educated new generations of workers in the infrared detector industry. His career, a model for industrial research physicists, has had major and permanent impacts on the worldwide infrared detector industry. This paper is a summary of the career of Paul W. Kruse, as well as a tribute to that career and its lasting legacy.

  20. How does participation in inquiry-based activities influence gifted students' higher order thinking?

    NASA Astrophysics Data System (ADS)

    Reger, Barbara H.

    Inquiry-based learning is considered a useful technique to strengthen the critical thinking skills of students. The National Science Standards emphasize its use and the complexities and challenge it provides are well suited for meeting the needs of the gifted. While many studies have documented the effectiveness of this type of instruction, there is a lack of research on growth in higher-order thinking through participation in science inquiry. This study investigated such growth among a small group of gifted fifth-grade students. In this study a group of fifth-grade gifted science students completed a series of three forensics inquiry lessons, and documented questions, ideas and reflections as they constructed evidence to solve a crime. From this class of students, one small group was purposely selected to serve as the focus of the study. Using qualitative techniques, the questions and statements students made as they interacted in the activity were analyzed. Videotaped comments and student logs were coded for emerging patterns and also examined for evidence of increased levels of higher-order thinking based on a rubric that was designed using the six levels of Bloom's Taxonomy. Evidence from this study showed marked increase in and deeper levels of higher-order thinking for two of the students. The other boy and girl showed progress using the inquiry activities, but it was not as evident. The social dynamics of the group seemed to hinder one girl's participation during some of the activities. The social interactions played a role in strengthening the exchange of ideas and thinking skills for the others. The teacher had a tremendous influence over the production of higher-level statements by modeling that level of thinking as she questioned the students. Through her practice of answering a question with a question, she gradually solicited more analytical thinking from her students.

  1. FIAP Forum on Entrepreneurship in Physics

    NASA Astrophysics Data System (ADS)

    2015-03-01

    With the changes in science as globalization has taken root, the future role of physicists becoming a part of the industrial physics community is more imperative. When 80% of graduating physicists will not be employed in academic positions, and 50% of all jobs for these physicists will be industrial sector, the importance of bringing our next generation of scientists up to speed on industrial applications is becoming much more important with the rapid, world-wide development of technology. FIAP is initiating a forum on entrepreneurship as a major role for the next generation of scientists. As physicists are problem solvers and the entrepreneurial experience is all about problem solving: whether involving technology, building a team, or financing a business. This forum seeks to link successful entrepreneurial physicists with the upcoming generation, through the dissemination of their global expertise and experience. The forum will consist of a panel discussion and then be open to question and answers from the audience.

  2. The role of philosophy in the conceptual development of quantum physics

    NASA Astrophysics Data System (ADS)

    Diamond, Ethel

    Making a distinction between the context of discovery and the context of justification, I examine the relationship between philosophy and the discovery of quantum physics. I do this by focusing on four of the most important contributors to quantum theory: Albert Einstein, Werner Heisenberg, Erwin Schrodinger and Niels Bohr. Looking to the period immediately preceding the era in which quantum physics was developed, I first explore the scientific writings of Hermann von Helmholtz, Ernst Mach, Heinrich Hertz and Ludwig Boltzmann. In doing so, I uncover the integral role classic philosophy played in the scientific investigations of nineteenth-century German and Austrian physicists. After establishing the cultural link between scientific writing and philosophic training at that time and place in history, I investigate the formative philosophic influences on Einstein, Heisenberg, Schrodinger and Bohr. By a close examination of some of their most important scientific papers, this dissertation reveals the way in which these early twentieth-century scientists continued an important nineteenth-century European tradition of integrating philosophic thought in their scientific creative thinking.

  3. Shoichi Sakata: His Life and Physics ---Collections of Materials in Sakata Memorial Archival Library---

    NASA Astrophysics Data System (ADS)

    Tanabashi, M.

    Shoichi Sakata and his Nagoya School made a lot of important achievements at the predawn of the particle physics revolution. The ``two-meson'' theory (introduction of the second generation leptons), the ``C-meson theory'' (a theory which inspired Tomonaga's renormalization theory), the ``Sakata model'' (a precursor to the quark model), and the ``Maki-Nakagawa-Sakata'' theory on the neutrino mixings are among them. These outputs are now regarded as essential ingredients in modern particle physics. Sakata also took his leadership in setting up democratic administration system in his theoretical particle physics group (E-ken). It was this democratic atmosphere in which many excellent physicists were brought up as Sakata's diciples. In this talk, I introduce Sakata and his achievements in physics, showing various materials archived in the Sakata Memorial Archival Library (SMAL), an archival repository of primary material showing Sakata's activities. These SMAL documents vividly show Sakata's way of thinking in his approach to the new physics.

  4. Long-Distance Free Fall

    NASA Astrophysics Data System (ADS)

    Gallant, Joseph

    1999-04-01

    One of the goals of physics education is to instill a sense of wonder in our students. We hope our natural curiosity will rub off on them and that they will apply the critical thinking skills we teach them to other aspects of their lives outside the classroom. As an example of this, consider the situation described in Milton's epic poem ``Paradise Lost''. Milton wrote that when the devil was cast out of heaven, he fell for nine days before landing in hell. In Milton's universe, hell is a separate place from Earth, but many people place hell at the center of the Earth. Based on these ideas, we can apply Newton's laws of motion to calculate the distance from heaven to Earth. This exercise is an example of the kind of intellectual exercise a physicist (or a physics student) might carry out when confronted with such information. We apply the basic principles of physics to a situation described in work of literature while making no attempt to validate or refute any philosophy, theology or ideology.

  5. Generally objective measurement of human temperature and reading ability: some corollaries.

    PubMed

    Stenner, A Jackson; Stone, Mark

    2010-01-01

    We argue that a goal of measurement is general objectivity: point estimates of a person's measure (height, temperature, and reader ability) should be independent of the instrument and independent of the sample in which the person happens to find herself. In contrast, Rasch's concept of specific objectivity requires only differences (i.e., comparisons) between person measures to be independent of the instrument. We present a canonical case in which there is no overlap between instruments and persons: each person is measured by a unique instrument. We then show what is required to estimate measures in this degenerate case. The canonical case encourages a simplification and reconceptualization of validity and reliability. Not surprisingly, this reconceptualization looks a lot like the way physicists and chemometricians think about validity and measurement error. We animate this presentation with a technology that blurs the distinction between instruction, assessment, and generally objective measurement of reader ability. We encourage adaptation of this model to health outcomes measurement.

  6. The manifold definitions of time.

    PubMed

    Oestreicher, Christian

    2012-12-01

    We are unable, using our five senses, to feel time, nor, using our intelligence, to define it, because we stand inexorably within time. We achieve a representation of time through evaluation of changes in ourselves and in our environment. This is made possible by memory functions. What if time only existed as a construct in our minds, and what if the absence of this construct made our mode of thinking uncomfortable to us? If our two major tools for constructing our world, feeling and reasoning, are of little help, then the study of time, ie, chronology, might exist as a list of scientific hypotheses, and remain, to some extent, a philosophical question--an enigma that has been approached by thinkers for more than two millenia. In this review, various fields of knowledge are discussed in relation to time, from philosophy and physics to psychology and biology. We discuss the differences between Chronos and Tempus, respectively the time of physicists and that of psychologists.

  7. Search for electroweak single top-quark production with the CDF II experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Svenja

    2007-11-02

    Understanding the world -- This aim drives humankind since the beginning of conscious thinking. Especially the nature of matter has been of major interest. Nowadays, we have a complex image of the constitution of matter. Atoms consist of electrons and nucleons. But even nucleons are not elementary. Their basic constituents are called quarks. Physicists developed a model describing the elementary components of matter as well as the forces between them: the standard model of elementary particle physics. The substructure of matter is only visible in scattering experiments. In high energy physics, these experiments are done at particle accelerators. The world'smore » highest energetic collider, the Tevatron, is hosted by the Fermi National Accelerator Laboratory (FNAL), also called Fermilab, in the vicinity of Chicago. The proton-antiproton collisions with a center-of-mass energy of {radical}s = 1.96 TeV are recorded by two multipurpose detectors, namely D0 and CDF II.« less

  8. Multi-Valued Logic, Neutrosophy, and Schrödinger Equation

    NASA Astrophysics Data System (ADS)

    Smarandache, Florentin; Christianto, Victor

    2017-04-01

    Discussing some paradoxes in Quantum Mechanics from the viewpoint of Multi-Valued-logic pioneered by Lukasiewicz, and the recent concept Neutrosophic Logic. Essentially, this new concept offers new insights on the idea of `identity', which too often it has been accepted as given. Neutrosophy itself was developed in attempt to generalize Fuzzy-Logic introduced by L. Zadeh. The discussion is motivated by observation that despite almost eight decades, there is indication that some of those paradoxes known in Quantum Physics are not yet solved. In our knowledge, this is because the solution of those paradoxes requires re-examination of the foundations of logic itself, in particular on the notion of identity and multi-valuedness of entity. The discussion is also intended for young physicist fellows who think that somewhere there should be a `complete' explanation of these paradoxes in Quantum Mechanics. If this it doesn't answer all of their questions, it is our hope that at least it offers a new alternative viewpoint for these old questions.

  9. Life as an Ex-Physicist on Wall Street

    NASA Astrophysics Data System (ADS)

    Derman, Emanuel

    2001-06-01

    Financial theory looks deceptively like physics because of the techniques it uses. But physics models deal with the relatively unchanging parameters of the external world; in contrast, the parameters of financial theory are people's current estimates of, and sentiments about, future behavior. Life as a Ph.D. on Wall St is therefore very different from the way most people in academic life imagine it to be. For most of us, most of the time, it involves neither finding miraculous and previously undiscovered arbitrages, nor doing boring mindless programming. Instead, it demands an interdisciplinary mix of inventive computation, applied mathematics, financial understanding, self-education and educating others, applied in a hectic environment, to help build and maintain a business. Financial modeling as a practitioner means suffering many interruptions when you want to think quietly, and making many pragmatic compromises dictated by constraints on time and resources. It also means a stimulating and lively environment, using your imagination, avoiding complexity, and always trying to bridge the gap between analysis and intuition (yours and others).

  10. What Physicist Mean By The Equals Sign In Undergraduate Education

    NASA Astrophysics Data System (ADS)

    Zohrabi Alaee, Dina; Kornick, Kellianne; Sayre, Eleanor C.; Franklin, Scott V.

    2017-01-01

    Mathematical concepts and tools have an important role in physics. Faculties want students to think critically about mathematics and the underlying fundamental concepts, rather than simply memorizing a series of equations and answers. The equals sign - ubiquitous in problem solving - carries different conceptual meaning depending on how it is used; this meaning is deeply tied to cultural practices in problem solving in physics. We use symbolic forms to investigate the conceptual and cultural meanings of the equals sign across physics contexts. We built and validated a rubric to classify the ways that physics students use the equals sign in their written work. Our categories are causality, assignments, definitional, balancing, and just math. We analyze students' use of the equals sign in their written homework and exam solutions in an upper-division electrostatics course. We correlate the kinds of equal signs within problem solutions with the difficulty of the problem. We compare they ways students use the equals sign to their course lectures and textbook.

  11. Becoming a Physicist: The Roles of Research, Mindsets, and Milestones in Upper-Division Student Perceptions

    ERIC Educational Resources Information Center

    Irving, Paul W.; Sayre, Eleanor C.

    2015-01-01

    As part of a longitudinal study into identity development in upper-level physics students, we used a phenomenographic research method to examine students' perceptions of what it means to be a physicist. Analysis revealed six different categories of perception of what it means to be a physicist. We found the following themes: research and its…

  12. Developing Technology Products - A Physicist's Perspective

    NASA Astrophysics Data System (ADS)

    Burka, Michael

    2014-03-01

    There are many physicists working in the industrial sector. We rarely have the word physicist in our job title; we are far more commonly called engineers or scientists. But, we are physicists, and we succeed because our training in physics has given us the habits of mind and the technical skills that one needs to solve complex technical challenges. This talk will explore the transition from physics research to technology product development using examples from my own career, first as a postdoctoral fellow and research scientist on the LIGO project, and then developing products in the spectroscopy, telecommunications, and medical device industries. Approaches to identifying and pursuing opportunities in industry will be discussed.

  13. Managing a Small HRD Department: You Can Do More than You Think. First Edition.

    ERIC Educational Resources Information Center

    McCoy, Carol P.

    This book is a tool kit for human resource development (HRD) and training managers, trainers, and administrative assistants in small HRD departments. Part 1 deals with the challenges and opportunities of managing a small HRD department and with planning the strategy. Chapter 1 gives a sense of the workings of small HRD departments. Chapter 2…

  14. Southeast Asia Report

    DTIC Science & Technology

    1987-01-12

    bourgeoisie and strictly punish the speculators and black marketers, while using appropriate policies and measures to develop the positive aspects and...allowed to produce and distribute the goods themselves. The commercial bourgeoisie must be eliminated. However, small and medium-sized traders who have...production forces urgently demand new economic thinking. To renovate the party’s economic thinking is to apply the basic principle of Marxism - Leninism

  15. Increasing Higher Level Thinking Skills in Science of Gifted Students in Grades 1-4 through "Hands-On" Activities.

    ERIC Educational Resources Information Center

    Dindial, Myrna J.

    This practicum was designed to increase higher level thinking skills of gifted students in primary school. The project sought to retrain students from recalling science information from the textbook to a more challenging and active form of learning through individual projects and small group and large group activities. Students were given…

  16. How Do Small Things Make a Big Difference? Activities to Teach about Human-Microbe Interactions

    ERIC Educational Resources Information Center

    Jasti, Chandana; Hug, Barbara; Waters, Jillian L.; Whitaker, Rachel J.

    2014-01-01

    Recent scientific studies are providing increasing evidence for how microbes living in and on us are essential to our good health. However, many students still think of microbes only as germs that harm us. The classroom activities presented here are designed to shift student thinking on this topic. In these guided inquiry activities, students…

  17. Characterizations of Social-Based and Self-Based Contexts Associated with Students' Awareness, Evaluation, and Regulation of Their Thinking during Small-Group Mathematical Modeling

    ERIC Educational Resources Information Center

    Magiera, Marta T.; Zawojewski, Judith S.

    2011-01-01

    This exploratory study focused on characterizing problem-solving situations associated with spontaneous metacognitive activity. The results came from connected case studies of a group of 3 purposefully selected 9th-grade students working collaboratively on a series of 5 modeling problems. Students' descriptions of their own thinking during…

  18. Thinking with Your Hands: Speech-Gesture Activity during an L2 Awareness-Raising Task

    ERIC Educational Resources Information Center

    van Compernolle, Remi A.; Williams, Lawrence

    2011-01-01

    This article reports on a study of second language (L2) French learners' self-generated use of gesture to think through and resolve a metalinguistic awareness-raising task during small-group work with an expert mediator. Although the use of gesture in L2 communication and pedagogy has recently received increasing attention, little research has…

  19. An Innovative Teaching Strategy: Using Critical Thinking To Give Students a Guide to the Future.

    ERIC Educational Resources Information Center

    Oliver, Helen; Utermohlen, Robert

    College students in a Foundations of Education class at Rust College (Mississippi), a small historically black liberal arts college, were required in 1993 and again in 1994 to develop a modified personal strategic plan using critical thinking skills. The plan had four components: a family history; a present situation; a strengths, weaknesses,…

  20. Embracing the Village and Tribe: Critical Thinking for Social Workers from an African-Centered Approach

    ERIC Educational Resources Information Center

    Dyson, Yarneccia D.; Brice, Tanya Smith

    2016-01-01

    The social work department at a small historically Black college implemented an African-centered approach to the course Critical Thinking for Social Workers for freshmen students who declared social work as their major. We firmly believe that knowing and understanding the history and legacy of people of African descent is extremely important in…

  1. Physicists for Human Rights in the Former Soviet Union

    NASA Astrophysics Data System (ADS)

    Chernyak, Yuri

    2005-03-01

    In his 1940 paper `Freedom and Science' Albert Einstein emphasized that ``intellectual independence is a primary necessity for the scientific inquirer'' and that ``political liberty is also extraordinarily important for his work.'' Raised in the tradition of intellectual independence and dedicated to the scientific truth, physicists were among the first to stand up for freedom in the USSR. It was no coincidence that the founders of the first independent Human Rights Committee (1970) were physicists: Andrei Sakharov, Valery Chalidze and Andrei Tverdokhlebov. In 1973 a physicist, Alexander Voronel, founded a Moscow Sunday (refusenik) Seminar -- the first openly independent scientific body in the history of the USSR. In 1976 physicists Andrei Sakharov, Yuri Orlov and a mathematician Natan Sharansky were the leading force in founding the famous Moscow Helsinki Human Rights Watch group. This talk briefly describes the special position of physicists (often viewed as Einstein's colleagues) in Soviet society, as well as their unique role in the struggle for human rights. It describes in some detail the Moscow Sunday Seminar, and extensions thereof such as International Conferences, the Computer School and the Computer Database of Refuseniks. The Soviet government considered such truly independent organizations as a challenge to Soviet authority and tried to destroy them. The Seminar's success and its very existence owed much to the support of Western scientific organizations, who persuaded their members to attend the Seminar and visit scientist-refuseniks. The human rights struggle led by physicists contributed substantially to the demise of the Soviet system.

  2. Core curriculum for medical physicists in radiology. Recommendations from an EFOMP/ESR working group.

    PubMed

    Geleijns, Jacob; Breatnach, Eamann; Cantera, Alfonso Calzado; Damilakis, John; Dendy, Philip; Evans, Anthony; Faulkner, Keith; Padovani, Renato; Van Der Putten, Wil; Schad, Lothar; Wirestam, Ronnie; Eudaldo, Teresa

    2012-06-01

    Some years ago it was decided that a European curriculum should be developed for medical physicists professionally engaged in the support of clinical diagnostic imaging departments. With this in mind, EFOMP (European Federation of Organisations for Medical Physics) in association with ESR (European Society of Radiology) nominated an expert working group. This curriculum is now to hand. The curriculum is intended to promote best patient care in radiology departments through the harmonization of education and training of medical physicists to a high standard in diagnostic radiology. It is recommended that a medical physicist working in a radiology department should have an advanced level of professional expertise in X-ray imaging, and additionally, depending on local availability, should acquire knowledge and competencies in overseeing ultrasound imaging, nuclear medicine, and MRI technology. By demonstrating training to a standardized curriculum, medical physicists throughout Europe will enhance their mobility, while maintaining local high standards of medical physics expertise. This document also provides the basis for improved implementation of articles in the European medical exposure directives related to the medical physics expert. The curriculum is divided into three main sections: The first deals with general competencies in the principles of medical physics. The second section describes specific knowledge and skills required for a medical physicist (medical physics expert) to operate clinically in a department of diagnostic radiology. The final section outlines research skills that are also considered to be necessary and appropriate competencies in a career as medical physicist.

  3. Small-School Reform through the Lens of Complexity Theory: It's "Good to Think with"

    ERIC Educational Resources Information Center

    McQuillan, Patrick J.

    2008-01-01

    Background/Context: In light of the consistent underperformance of the comprehensive high school, districts across the country, mostly urban, have begun creating small schools, believing that they may offer a more personalized, supportive, and demanding learning environment. To explore this assumption, this article examines small-school reform…

  4. The Teacher as Inventor--Making Small High Schools Work.

    ERIC Educational Resources Information Center

    Kleinfeld, Judith; And Others

    Designed to celebrate rural teachers' inventiveness and stimulate teacher thinking about opportunities that small schools offer, this booklet is a collection of ideas and resources that have worked in specific Alaska school settings. An introductory chapter challenges teachers to use small size to advantage. Chapter 2 shows what rural teachers are…

  5. Report on student participants at the 2003 Annual Meeting of the National Society of Black Physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julius Dollison, Michael Neuchatz

    The first meeting of African American physicists was held in 1973 at Fisk University in Nashville, Tennessee, with around 50 Black physicists in attendance. In 1977, this organization was formally established as the National Society of Black Physicists (NSBP) out of a need to address many concerns of African American physicists. During the ensuing years the Conference began to grow and was hosted by different institutions at various geographic locations. This year, the 2003 Annual Conference of the National Society of Black Physicists and Black Physics Students was hosted by Spelman College in Atlanta, Georgia during the weekend of Februarymore » 12th-15th, 2003. This Conference brought together over 500 African American physics students and working physicists. Also attending were corporate and graduate school recruiters, administrators, professional society representatives and others concerned with the small representation of minorities in the field of physics. The organizers of the Conference contracted with the Statistical Research Center of the American Institute of Physics to conduct a formal evaluative study of the meeting, resulting in this report. The evaluation questionnaire was designed by the organizers of the NSBP conference with input from the Statistical Research Center's staff. It included questions on the students' backgrounds and demographic characteristics, physics research experience, career goals, challenges faced in their academic pursuits, and ratings of various aspects of the conference. The questionnaire was distributed at the conference when the students signed in. Of the 330 students who were registered, roughly 304 attended and were given the four-page questionnaire to complete. Responses were collected on the last night of the conference, with 172 (approximately 57%) returning completed questionnaires. This low response rate could be attributed in part to the fact that respondents were asked to provide possibly sensitive personal information. Student participants at the conference were asked to provide data on various aspects of their backgrounds and demographic characteristics. We found that there were significantly more undergraduate participants than graduate participants present at the conference (65% versus 35%). More than two-thirds of the undergraduate student attendees were upperclassmen. On the other hand, close to half of the graduate student attendees were still in the early stages of their graduate career. The overall median age was 23 years. The median age for undergraduates was 21, while for graduate students it was 29 years. We found no age difference between undergraduate males and females. However, there was an age difference between graduate male and female students. While among females the median age was 27, for graduate males the median age was 30 years. As shown, we see that women were well represented at this year's conference. The overall proportion of female student respondents was 41%. Among undergraduates, the proportion of females was 48%. While comparable data on all Black physics students nationwide are not available, this number bachelors recipients going to women, as reported by Historically Black Colleges and Universities (HBCUs) on AIP's most recent ''Enrollments and Degrees Study''. HBCUs confer more than half of all physics degrees by African-Americans in the US. The proportion of females among graduate student participants at the NSBP conference was 29%.« less

  6. THE EDUCATION OF A PHYSICIST. AN ACCOUNT OF THE INTERNATIONAL CONFERENCE ON THE EDUCATION OF PROFESSIONAL PHYSICISTS, LONDON 15-21 JULY 1965.

    ERIC Educational Resources Information Center

    BROWN, SANBORN C.; CLARKE, NORMAN

    CONTAINED IN THIS BOOK ARE INTERPRETATIONS OF PAPERS AND DISCUSSIONS PRESENTED AT THE "THIRD INTERNATIONAL CONFERENCE ON THE EDUCATION OF THE PROFESSIONAL PHYSICIST" WHICH WAS HELD IN LONDON IN JULY, 1965, AND WAS ATTENDED BY REPRESENTATIVES FROM 25 COUNTRIES. THE MATERIAL WAS EDITED, AND ORGANIZED TO STRESS THE ESSENTIAL DIFFERENCES IN…

  7. WE-G-204-00: Post-Graduate Training of the Next Generation of Academic Medical Physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    While many indicators for academic medical physics are distressing – jobs are tight, demands on clinical time are high (and getting worse) and national funding has been flat for several years (meaning less money in reality) the present is perhaps one of the most exciting times in cancer research history, and medical physicists have an opportunity to make a difference. Many of us predict the impact of medical physics on cancer research over the next decade to be more significant than ever. Why is that? First, medical imaging is used for every cancer patient in developed countries. Every improvement inmore » the acquisition, processing or analysis of radiological images has the potential to impact patients. The use of radiation therapy is at an all-time high – and virtually cannot be performed without medical physics. Many of the advances in both biomedical imaging and radiation oncology are the result of the hard work of academic medical physicists who are thinking of the next generation of technologies that will be used against cancer or an even broader spectrum of diseases. A career in academic medical physics is demanding, particularly for those with clinical responsibilities. As the demands for justification of their clinical effort become increasingly metricized, the ability to do “unfunded research” will become even more difficult. This means that many will have to generate external salary support to justify their efforts in research and development. This comes at a time when funding for research is compressed and harder to obtain. Generally speaking, if you are not contributing 50% or more of your effort to research, you are competing at a disadvantage and it is very unlikely you will get an NIH/NCI/NIBIB grant. Furthermore, in the ongoing effort to improve patient care and safety, we have developed credentialing pathways that now require at least two-years of residency training. This full-time clinical training creates a gap in the research trajectory of graduate students who aspire to academic positions with an expectation for extramural funding. To address this, several residency programs have created hybrid programs where the two-years of clinical training is combined with one or two years of research effort to allow candidates to further establish an academic identity and to ensure adequate academic productivity to compete for a beginning faculty position. In conclusion, while the path to a successful career in academic medical physics is steep and sometimes hard to follow, reaching the apex is worth the journey. Different paths to a career in medical physics are available, you just have to decide which one is right for you. If improving cancer care is your goal as a physicist, then academic medical physics is the job for you!.« less

  8. The role, responsibilities and status of the clinical medical physicist in AFOMP.

    PubMed

    Ng, K H; Cheung, K Y; Hu, Y M; Inamura, K; Kim, H J; Krisanachinda, A; Leung, J; Pradhan, A S; Round, H; van Doomo, T; Wong, T J; Yi, B Y

    2009-12-01

    This document is the first of a series of policy statements being issued by the Asia-Oceania Federation of Organizations for Medical Physics (AFOMP). The document was developed by the AFOMP Professional Development Committee (PDC) and was endorsed for official release by AFOMP Council in 2006. The main purpose of the document was to give guidance to AFOMP member organizations on the role and responsibilities of clinical medical physicists. A definition of clinical medical physicist has also been provided. This document discusses the following topics: professional aspects of education and training; responsibilities of the clinical medical physicist; status and organization of the clinical medical physics service and the need for clinical medical physics service.

  9. Report on the 4th International IUPAP Women in Physics Conference

    NASA Astrophysics Data System (ADS)

    Correa, Cynthia

    2011-10-01

    Stellenbosch, South Africa was the site of the 4^th International Union of Pure and Applied Physics (IUPAP) International Conference on Women in Physics, which took place on April 5^th-8^th. This conference brought together the diverse contributions of 250 female physicist attendees from nearly 60 countries worldwide to dissect the challenges faced by female physicists worldwide and to propose strategies to attract and retain more girls and women to the field. Having served as a member of the U.S. Delegation, I will discuss the resolutions reached and highlight the most important results of Global Survey of Physicists, where nearly 15,000 physicists shine light on how gender affects their lives and careers.

  10. Solving a Problem by Using What You Know: A Physicist Looks at a Problem in Ecology

    ERIC Educational Resources Information Center

    Greenler, Robert

    2015-01-01

    Two philosophical ideas motivate this paper. The first is an answer to the question of what is an appropriate activity for a physicist. My answer is that an appropriate activity is anything where the tools of a physicist enable him or her to make a contribution to the solution of a significant problem. This may be obvious in areas that overlap…

  11. ``Physics and the girly girl—there is a contradiction somewhere'': doctoral students' positioning around discourses of gender and competence in physics

    NASA Astrophysics Data System (ADS)

    Gonsalves, Allison J.

    2014-06-01

    Doctoral physics students have stories about what kinds of actions, behaviours and ways of doing physics allow individuals to be recognized as physicists. Viewing a physics department as a case study, and individual participants as embedded cases, this study used a sociocultural approach to examine the ways doctoral students construct these stories about becoming physicists. Through observations, photo-elicitation, and life history interviews, eleven men and women shared stories about their experiences with physics, and the contexts that have enabled or constrained their trajectories into doctoral physics. The results of this study revealed the salience of recognition in the constitution of physicist identities; but how recognition was achieved often entailed the reproduction or reworking of persistent discourses of gender norms. Various interchangeable forms of competence (technical, analytical, and academic) emerged as assets that can be used to achieve recognition in this physics community. However, competence was not the only means by which one might be recognized as a physicist. Contributing to the possibility for recognition was the performance of stereotypical Discourses for physicist that relied on traditional gender norms for the field. The results demonstrated that achieving recognition as a competent physicist often involved a complex negotiation of gender roles and the practice of physics.

  12. Radiotherapy and Nuclear Medicine Project for an Integral Oncology Center at the Oaxaca High Specialization Regional Hospital

    NASA Astrophysics Data System (ADS)

    De Jesús, M.; Trujillo-Zamudio, F. E.

    2010-12-01

    A building project of Radiotherapy & Nuclear Medicine services (diagnostic and therapy), within an Integral Oncology Center (IOC), requires interdisciplinary participation of architects, biomedical engineers, radiation oncologists and medical physicists. This report focus on the medical physicist role in designing, building and commissioning stages, for the final clinical use of an IOC at the Oaxaca High Specialization Regional Hospital (HRAEO). As a first step, during design stage, the medical physicist participates in discussions about radiation safety and regulatory requirements for the National Regulatory Agency (called CNSNS in Mexico). Medical physicists propose solutions to clinical needs and take decisions about installing medical equipment, in order to fulfill technical and medical requirements. As a second step, during the construction stage, medical physicists keep an eye on building materials and structural specifications. Meanwhile, regulatory documentation must be sent to CNSNS. This documentation compiles information about medical equipment, radioactivity facility, radiation workers and nuclear material data, in order to obtain the license for the linear accelerator, brachytherapy and nuclear medicine facilities. As a final step, after equipment installation, the commissioning stage takes place. As the conclusion, we show that medical physicists are essentials in order to fulfill with Mexican regulatory requirements in medical facilities.

  13. Small Area Estimate Maps: Is a Hookah Less Harmful? - Small Area Estimates

    Cancer.gov

    This metric is defined as a person 18 years of age or older who must have reported that he/she thinks that smoking tobacco using a hookah is less harmful or much less harmful compared to smoking cigarettes.

  14. MO-C-BRB-02: The Physicists’ Leadership Role in Academic Radiology: The Chair’s Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arenson, R.

    With the profound changes currently occurring in medicine, the role of the medical physicist cannot stagnate, but must evolve to meet the challenges and opportunities that are presented. Medical physicists must understand these changes and establish themselves not only as relevant but as leaders in this new environment. We must increase our presence in clinical settings such as tumor boards, patient rounds, and the development of new diagnosis, imaging, and treatment techniques. By establishing ourselves as competent scientists, we can and must participate in the development of technologies through research, teaching, and clinical implementation. As medical physicists we must definemore » our roles and value to our physician colleagues, patients, referring physicians, and senior administrators. We cannot afford to be viewed solely as quality assurance technologists, but need to move forward in step with medical and practice advances, becoming recognized as having a leadership role in providing quality research, technological development, and quality patient care. In this session, four leaders in medical research and healthcare will discuss their observations on how medical physicists have contributed to advancements in healthcare and opportunities to continue leadership in providing quality medicine through the applications of physics to research, education, and clinical practice. Learning Objectives: Understand the changes in the healthcare environment and how medical physicists can contribute to improving patient care. Learn how medical physicists are currently leading research efforts to improve clinical imaging and diagnosis. Understand the role of medical physicists in developing new technology and leading its translation into clinical care.« less

  15. SU-F-P-13: NRG Oncology Medical Physics Manpower Survey Quantifying Support Demands for Multi Institutional Clinical Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monroe, J; Case Western Reserve University; Boparai, K

    Purpose: A survey was taken by NRG Oncology to assess Full Time Equivalent (FTE) contributions to multi institutional clinical trials by medical physicists.No current quantification of physicists’ efforts in FTE units associated with clinical trials is available. The complexity of multi-institutional trials increases with new technologies and techniques. Proper staffing may directly impact the quality of trial data and outcomes. The demands on physics time supporting clinical trials needs to be assessed. Methods: The NRG Oncology Medical Physicist Subcommittee created a sixteen question survey to obtain this FTE data. IROC Houston distributed the survey to their list of 1802 contactmore » physicists. Results: After three weeks, 363 responded (20.1% response). 187 (51.5%) institutions reporting external beam participation were processed. There was a wide range in number of protocols active and supported at each institution. Of the 187 clinics, 134 (71.7%) participate in 0 to 10 trials, 28 (15%) in 11 to 20 trials, 10 (5.3%) in 21 to 30 trials, 9 (4.8%) had 40 to 75 trials. On average, physicist spent 2.7 hours (SD: 6.0) per week supervising or interacting with clinical trial staff. 1.25 hours (SD: 3.37), 1.83 hours (SD: 4.13), and 0.64 hours(SD: 1.13) per week were spent on patient simulation, reviewing treatment plans, and maintaining a DICOM server, respectively. For all protocol credentialing activities, physicist spent an average of 37.05 hours (SD: 96.94) yearly. To support dosimetrists, clinicians, and therapists, physicist spend on average 2.07 hours (SD: 3.52) per week just reading protocols. Physicist attended clinical trial meetings for on average 1.13 hours (SD: 1.85) per month. Conclusion: Responding physicists spend a nontrivial amount of time: 8.8 hours per week (0.22 FTE) supporting, on average, 9 active multi-institutional clinical trials.« less

  16. TU-F-BRD-01: Biomedical Informatics for Medical Physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, M; Kalet, I; McNutt, T

    Biomedical informatics encompasses a very large domain of knowledge and applications. This broad and loosely defined field can make it difficult to navigate. Physicists often are called upon to provide informatics services and/or to take part in projects involving principles of the field. The purpose of the presentations in this symposium is to help medical physicists gain some knowledge about the breadth of the field and how, in the current clinical and research environment, they can participate and contribute. Three talks have been designed to give an overview from the perspective of physicists and to provide a more in-depth discussionmore » in two areas. One of the primary purposes, and the main subject of the first talk, is to help physicists achieve a perspective about the range of the topics and concepts that fall under the heading of 'informatics'. The approach is to de-mystify topics and jargon and to help physicists find resources in the field should they need them. The other talks explore two areas of biomedical informatics in more depth. The goal is to highlight two domains of intense current interest--databases and models--in enough depth into current approaches so that an adequate background for independent inquiry is achieved. These two areas will serve as good examples of how physicists, using informatics principles, can contribute to oncology practice and research. Learning Objectives: To understand how the principles of biomedical informatics are used by medical physicists. To put the relevant informatics concepts in perspective with regard to biomedicine in general. To use clinical database design as an example of biomedical informatics. To provide a solid background into the problems and issues of the design and use of data and databases in radiation oncology. To use modeling in the service of decision support systems as an example of modeling methods and data use. To provide a background into how uncertainty in our data and knowledge can be incorporated into modeling methods.« less

  17. Making a Big Bang on the small screen

    NASA Astrophysics Data System (ADS)

    Thomas, Nick

    2010-01-01

    While the quality of some TV sitcoms can leave viewers feeling cheated out of 30 minutes of their lives, audiences and critics are raving about the science-themed US comedy The Big Bang Theory. First shown on the CBS network in 2007, the series focuses on two brilliant postdoc physicists, Leonard and Sheldon, who are totally absorbed by science. Adhering to the stereotype, they also share a fanatical interest in science fiction, video-gaming and comic books, but unfortunately lack the social skills required to connect with their 20-something nonacademic contemporaries.

  18. The 'hard problem' and the quantum physicists. Part 1: the first generation.

    PubMed

    Smith, C U M

    2006-07-01

    All four of the most important figures in the early twentieth-century development of quantum physics-Niels Bohr, Erwin Schroedinger, Werner Heisenberg and Wolfgang Pauli-had strong interests in the traditional mind-brain, or 'hard,' problem. This paper reviews their approach to this problem, showing the influence of Bohr's complementarity thesis, the significance of Schroedinger's small book, 'What is life?,' the updated Platonism of Heisenberg and, perhaps most interesting of all, the interaction of Carl Jung and Wolfgang Pauli in the latter's search for a unification of mind and matter.

  19. Digital kids of the Heisei era: experiment at Toyonaka Bunka Kindergarten.

    PubMed

    Matsuda, S

    1999-01-01

    I wonder what most people think when they hear of small children playing on computers in kindergarten. One can almost hear the responses: "Why should kindergarten children have to use computers?" Small children are using computers? It's much too earlyl" "At kindergarten children should be singing, playing games, and making mud pies!" A computer is the epitome of the artificial. If we really make a mess of things, humans will become slaves to computers. What can they be thinking, putting such things in kindergartens as a child's toy? Many people who think in this way have never touched a computer, and it often seems the case that these "emotional opponents" are opposed to them only because of their own preconceptions. There is still a preconception that" a computer = a square machine like a TV with lots of difficult-looking keys". Computers are now in virtually all of the electronic appliances we use every day, refrigerators, washing machines, vacuums and televisions, and we think nothing of it. We live each day using computers, but only the "square" computer invites such contempt. Why is this the case? On the other side, there are the "proactive endorsers", who think "Computers have spread thus far in society and schools, so we must let children become familiar with them from a very young age!" These people often seem to want to teach everyone everything. There is much to know about the image and use of computers. They seem to think that if adults don't teach them, children won't understand anything. On this point, they are at the same level as the "emotional opponents", in that they conceive of computers as being something out of the ordinary.

  20. Do occupational therapy and physical therapy curricula teach critical thinking skills?

    PubMed

    Vogel, Kimberly A; Geelhoed, Michael; Grice, Kimatha O; Murphy, Douglas

    2009-01-01

    This study evaluated whether critical thinking ability can be improved through participation in occupational therapy (OT) and physical therapy (PT) curricula. The researchers compared levels of the critical thinking skills of OT and PT students at the beginning and end of their programs to determine whether changes occurred and to examine facets of the curricula that may have caused the differences. The curricula include teaching strategies of problem-based learning modules, small group discussion and problem-solving, case studies, clinical observation, and evidence-based practice assignments, as well as teaching about critical thinking as a process in itself. Fifty OT and PT students completed the Watson-Glaser Critical Thinking Appraisal at the beginning and end of 20 mos of the academic phase of their master's degree programs. Researchers analyzed the data using a one-way repeated-measures ANOVA. Results showed no differences between OT and PT students on the pretest or post-test and no differences for PT students between the pretest and post-test. OT students' scores increased significantly from pretest to post-test. The influence of the timing of teaching critical thinking skills in the resulting differences between the two curricula, as well as the validity of the Watson-Glaser Critical Thinking Appraisal is a valid measure of critical thinking changes in allied health students are discussed.

  1. SAIL: A Framework for Promoting Next-Generation Word Study

    ERIC Educational Resources Information Center

    Ganske, Kathy

    2016-01-01

    This article introduces SAIL, an instructional framework designed to help teachers optimize students' learning during small-group word study instruction. Small-group word study interactions afford opportunities for teachers to engage students in thinking, talking, advancing vocabulary knowledge (including general academic vocabulary), and making…

  2. Collaboration and critical thinking in an online chemistry environment

    NASA Astrophysics Data System (ADS)

    Kershisnik, Elizabeth Irene

    The purpose of this dissertation was to examine collaboration and student's critical thinking and cognitive achievement within online chemistry courses. This quantitative study focused on the apparent lack of research relating collaboration and critical thinking in online science courses. Collaboration was determined using the small group collaboration model coding scheme, which examined student postings in asynchronous discussion forums for quantity, equality, and shareness. Critical thinking was measured using the chemistry concept reasoning test, the online self-diagnostic test, and also asynchronous student homework discussion postings that were coded using the community of inquiry cognitive presence indicators. Finally cognitive achievement was determined using quiz scores and the student's final grade. Even though no significant findings were revealed in this exploratory quasi-experimental study, this research did add to the educational technology knowledge base since very few studies have investigated the chemistry discipline in an online environment. Continued research in this area is vital to understanding how critical thinking progresses, how it can be assessed, and what factors in the classroom, be it virtual or face-to-face, have the greatest effect on critical thinking.

  3. SU-F-T-250: What Does It Take to Correctly Assess the High Failure Modes of an Advanced Radiotherapy Procedure Such as Stereotactic Body Radiation Therapy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, D; Vile, D; Rosu, M

    Purpose: Assess the correct implementation of risk-based methodology of TG 100 to optimize quality management and patient safety procedures for Stereotactic Body Radiation Therapy. Methods: A detailed process map of SBRT treatment procedure was generated by a team of three physicists with varying clinical experience at our institution to assess the potential high-risk failure modes. The probabilities of occurrence (O), severity (S) and detectability (D) for potential failure mode in each step of the process map were assigned by these individuals independently on the scale from1 to 10. The risk priority numbers (RPN) were computed and analyzed. The highest 30more » potential modes from each physicist’s analysis were then compared. Results: The RPN values assessed by the three physicists ranged from 30 to 300. The magnitudes of the RPN values from each physicist were different, and there was no concordance in the highest RPN values recorded by three physicists independently. The 10 highest RPN values belonged to sub steps of CT simulation, contouring and delivery in the SBRT process map. For these 10 highest RPN values, at least two physicists, irrespective of their length of experience had concordance but no general conclusions emerged. Conclusion: This study clearly shows that the risk-based assessment of a clinical process map requires great deal of preparation, group discussions, and participation by all stakeholders. One group albeit physicists cannot effectively implement risk-based methodology proposed by TG100. It should be a team effort in which the physicists can certainly play the leading role. This also corroborates TG100 recommendation that risk-based assessment of clinical processes is a multidisciplinary team effort.« less

  4. MO-DE-304-01: The Abt Study of Medical Physicist Work Values for Radiation Oncology Physics Services: Round IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, M.

    The Abt study of medical physicist work values for radiation oncology physics services, Round IV is completed. It supersedes the Abt III study of 2008. The 2015 Abt study measured qualified medical physicist (QMP) work associated with routine radiation oncology procedures as well as some special procedures. As before, a work model was created to allow the medical physicist to defend QMP work based on both routine and special procedures service mix. The work model can be used to develop a cost justification report for setting charges for radiation oncology physics services. The Abt study Round IV was designed tomore » empower the medical physicist to negotiate a service or employment contract with providers based on measured national QMP workforce and staffing data. For a variety of reasons, the diagnostic imaging contingent of AAPM has had a more difficult time trying estimate workforce requirements than their therapy counterparts. Over the past several years, the Diagnostic Work and Workforce Study Subcommittee (DWWSS) has collected survey data from AAPM members, but the data have been very difficult to interpret. The DWWSS has reached out to include more AAPM volunteers to create a more full and accurate representation of actual clinical practice models on the subcommittee. Though much work remains, through hours of discussion and brainstorming, the DWWSS has somewhat of a clear path forward. This talk will provide attendees with an update on the efforts of the subcommittee. Learning Objectives: Understand the new information documented in the Abt studies. Understand how to use the Abt studies to justify medical physicist staffing. Learn relevant historical information on imaging physicist workforce. Understand the process of the DWWSS in 2014. Understand the intended path forward for the DWWSS.« less

  5. Book Review: The genius of science: a portrait gallery of twentieth-century physicists. Abraham Pais, Oxford University Press, New York, 2000, 365 pp., UK £26.50, ISBN 0-19-850614-7

    NASA Astrophysics Data System (ADS)

    Kragh, Helge

    Abraham Pais made important contributions to the physics of elementary particles and other areas of theoretical physics before he turned, in the 1970s, to the history of modern physics, a field he cultivated energetically and successfully until his death in 2000. Among the best works of the prolific physicist-historian (a better term, in this case, than historian of physics) is the acclaimed Einstein biography Subtle is the Lord (1982) and Inward Bound (1986), a comprehensive chronicle of elementary particle physics. More recently his autobiography, A Tale of Two Continents (1997), appeared, a book to a large extent based on Pais's friendship and acquaintance with many of the greatest physicists of the twentieth century. In the present book, the physicists who appeared as supporting cast in his autobiography are presented in their own right, chapter by chapter. Yet Pais himself is present throughout the book and the reader is constantly reminded of his friendship with the physicists portrayed.

  6. Joint Task Force on Undergraduate Physics Programs (J-TUPP): Overview and Major Findings

    NASA Astrophysics Data System (ADS)

    Heron, Paula

    2016-03-01

    The Joint Task Force on Undergraduate Physics Programs (JTUPP) was formed in response to growing awareness in the physics community that physics majors pursue a wide range of careers after graduation, with very few ending up in academia. The task force is charged with identifying the skills and knowledge that undergraduate physics degree holders should possess to be well prepared for a diverse set of careers, and providing guidance for physicists considering revising the undergraduate curriculum to improve the education of a diverse student population. Task force members represent large and small universities, professional societies, and industry, and have expertise in a broad range of areas including entrepreneurship, physics education research and systemic change in education. We reviewed employment data, surveys of employers, and reports generated by other disciplines. We also met with physicists in selected industries to get their views on the strengths and weaknesses of physics graduates, commissioned a series of interviews with recent physics graduates employed in the private sector, and identified exemplary programs that ensure that all of their students are well prepared to pursue a wide range of career paths. The findings and recommendations will be summarized.

  7. Geographical distribution of radiotherapy resources in Japan: investigating the inequitable distribution of human resources by using the Gini coefficient.

    PubMed

    Tanikawa, Takumi; Ohba, Hisateru; Ogasawara, Katsuhiko; Okuda, Yasuo; Ando, Yutaka

    2012-01-01

    This is a pilot study that aims to elucidate regional disparities in the distribution of medical resources in Japan. For this purpose, we employed the Gini coefficient (GC) in order to analyze the distribution of radiotherapy resources, which are allocated to each prefecture in Japan depending on the size of its population or physical area. Our study used data obtained from the 2005 and 2007 national surveys on the structure of radiation oncology in Japan, conducted by the Japanese Society for Therapeutic Radiology and Oncology (JASTRO). Our analysis showed that the regional disparities regarding the radiation oncologists and radiotherapy technologists were small, and concluded that such resources were almost equitably distributed. However, medical physicists are inequitably distributed. Thus, policymakers should create and implement measures to train and retain medical physicists in areas with limited radiotherapy resources. Further, almost 26% of the secondary medical service areas lacked radiotherapy institutions. We attribute this observation to the existence of tertiary medical service areas, and almost all of prefectures face a shortage of such resources. Therefore, patients' accessibility to these resources in such areas should be improved.

  8. Teaching Critical Thinking in Undergraduate Science Courses

    NASA Astrophysics Data System (ADS)

    Hager, Paul; Sleet, Ray; Logan, Peter; Hooper, Mal

    This paper reports on the design and evaluation of a project aimed at fostering the critical thinking abilities and dispositions of first year students at an Australian university. Novel paper and pencil problems were designed to foster the range of critical thinking abilities identified by Ennis (1991). Most of these critical thinking tasks relate to applications of chemistry and physics in everyday life. Some of the tasks were developed from information and/or ideas obtained from critical incident interviews with scientists in private and government organisations. The first year university students were required to attempt the tasks in co-operative groups and to interact in these groups in ways aimed at fostering the dispositions of Ennis' ideal critical thinker (Ennis 1996).The project was evaluated from discussions with groups of students, from comments of tutors who observed the students working in groups and from a questionnaire. Evidence obtained from these data indicated that many students considered their thinking skills were enhanced by their experience of attempting the tasks in small co-operative groups.

  9. The essence of student visual-spatial literacy and higher order thinking skills in undergraduate biology.

    PubMed

    Milner-Bolotin, Marina; Nashon, Samson Madera

    2012-02-01

    Science, engineering and mathematics-related disciplines have relied heavily on a researcher's ability to visualize phenomena under study and being able to link and superimpose various abstract and concrete representations including visual, spatial, and temporal. The spatial representations are especially important in all branches of biology (in developmental biology time becomes an important dimension), where 3D and often 4D representations are crucial for understanding the phenomena. By the time biology students get to undergraduate education, they are supposed to have acquired visual-spatial thinking skills, yet it has been documented that very few undergraduates and a small percentage of graduate students have had a chance to develop these skills to a sufficient degree. The current paper discusses the literature that highlights the essence of visual-spatial thinking and the development of visual-spatial literacy, considers the application of the visual-spatial thinking to biology education, and proposes how modern technology can help to promote visual-spatial literacy and higher order thinking among undergraduate students of biology.

  10. Converting Radiology Operations in a Six-Hospital Healthcare System from Film-Based to Digital: Another Leadership Role for the Diagnostic Medical Physicist

    NASA Astrophysics Data System (ADS)

    Arreola, Manuel M.; Rill, Lynn N.

    2004-09-01

    As medical facilities across the United States continue to convert their radiology operations from film-based to digital environments, partially accomplished and failed endeavors are frequent because of the lack of competent and knowledgeable leadership. The diagnostic medical physicist is, without a doubt, in a privileged position to take such a leadership role, not only because of her/his understanding of the basics principles of new imaging modalities, but also because of her/his inherent participation in workflow design and educational/training activities. A well-structured approach by the physicist will certainly lead the project to a successful completion, opening, in turn, new opportunities for the medical physicist to become an active participant in the decision-making process for an institution.

  11. A survey of Canadian medical physicists: software quality assurance of in-house software.

    PubMed

    Salomons, Greg J; Kelly, Diane

    2015-01-05

    This paper reports on a survey of medical physicists who write and use in-house written software as part of their professional work. The goal of the survey was to assess the extent of in-house software usage and the desire or need for related software quality guidelines. The survey contained eight multiple-choice questions, a ranking question, and seven free text questions. The survey was sent to medical physicists associated with cancer centers across Canada. The respondents to the survey expressed interest in having guidelines to help them in their software-related work, but also demonstrated extensive skills in the area of testing, safety, and communication. These existing skills form a basis for medical physicists to establish a set of software quality guidelines.

  12. Careers and people

    NASA Astrophysics Data System (ADS)

    2009-02-01

    Early-career scientists honoured Nine physicists were among 67 US-based researchers to be awarded a Presidential Early Career Award for Scientists and Engineers at a White House ceremony in late December 2008. The award comes with up to five years' funding for research deemed critical to government missions. This year's winners include nuclear physicist Mickey Chiu and particle physicist Hooman Davoudiasl, both of the Brookhaven National Laboratory; biophysicist Michael Elowitz of the California Institute of Technology; Chad Fertig, an atomic physicist at the University of Georgia; astronomer Charles Kankelborg of Montana State University; astrophysicist Merav Opher of George Mason University; theorist Robin Santra of the Argonne National Laboratory; quantum-computing researcher Raymond Simmons of the National Institute of Standards and Technologies in Boulder, Colorado; and string theorist Anastasia Volovich of Brown University.

  13. Women Physicists Speak Again

    NASA Astrophysics Data System (ADS)

    Ivie, Rachel; Guo, Stacy

    2005-10-01

    More than 1350 women physicists from more than 70 countries responded to a survey designed to identify issues important to women in physics. Women physicists had many areas of concern, notably discrimination and career/family balance. However, they also had many successes in physics. The majority would choose physics again and felt that they had progressed in their careers at least as quickly as their colleagues. Many spoke eloquently about their love of physics, the support they had received from others, and about their own determination and hard work.

  14. Belarusian female physicists: Statistics and perspectives

    NASA Astrophysics Data System (ADS)

    Fedotova, Julia; Tashlykova-Bushkevich, Iya

    2013-03-01

    The experience for women in physics remains challenging in Belarus. The proportion of female physics master's degree recipients is approximately 30%, while the percentage of female physics PhD recipients is 50%. Still, only a few female physicists occupy top positions in research laboratories, institutes, or universities. The basic problem for career-oriented female physicists in Belarus is public opinion, which cultivates a passive and dependent life philosophy for women. The Belarusian Women in Physics group was formed in 2003 as part of the Belarusian Physical Society.

  15. Fireworks on the 4th of July

    NASA Astrophysics Data System (ADS)

    Barnett, R. Michael

    2013-02-01

    After half a century of waiting, the drama was intense. Physicists slept overnight outside the auditorium to get seats for the seminar at the CERN lab in Geneva, Switzerland. Ten thousand miles away on the other side of the planet, at the world's most prestigious international particle physics conference, hundreds of physicists from every corner of the globe lined up to hear the seminar streamed live from Geneva (see Fig. 1). And in universities from North America to Asia, physicists and students gathered to watch the streaming talks.

  16. Early Jet Engines and the Transition from Centrifugal to Axial Compressors: A Case Study in Technological Change

    DTIC Science & Technology

    1988-01-01

    report, prepared by physicist Edgar Buckingham in 1922, did not encourage further development of the concept. 3 1 But Buckingham did not actually...because Buckingham , an able physicist, treated the problem as well-defined, as is usual in solving a scientific problem. Buckingham was not a...But Buckingham did not have the same purpose in mind as those later inventors. Buckingham the physicist did not ask the same questions as Whittle

  17. Developing Reflective Dispositions through Collaborative Knowledge-Building during Small Group Bible Study

    ERIC Educational Resources Information Center

    Toh, Tze Keong; Koh, Joyce Hwee Ling; Chai, Ching Sing

    2017-01-01

    This article explores the use of a constructivist pedagogical approach to cultivate reflective dispositions during small group Bible study. Conducted in a local church Bible class setting (n = 12), the instructional design emulated the reflective thinking process, while adopting collaborative knowledge-building as its pedagogical framework.…

  18. One Hundred Top Small District Executive Educators: Their Personalities and Leadership Styles.

    ERIC Educational Resources Information Center

    Lueder, Donald C.

    1989-01-01

    Of 75 small-district educational administrators identified as successful, a significant number displayed intuitive and thinking psychological types and preferred visionary rational leadership styles. This was particularly true for female administrators and was contrary to the traditional rational leadership style seen in earlier studies of…

  19. Strategy or No Strategy: Explaining the Absence of a Danish National Security Strategy

    DTIC Science & Technology

    2013-06-13

    the very people who are trying to protect and advance Danish interests. These experiences have led me to explore and try to understand the absence...France (Jackson and Soerensen 2007). 4These effects are thoroughly described in complexity theory as in systems thinking . 8...literature fails to examine how alliance policies interact with strategic thinking , or how small states can apply strategy as a leverage to maximize

  20. Fear rises among Iranian physicists

    NASA Astrophysics Data System (ADS)

    Dacey, James

    2011-01-01

    Academics in Iran have been left in a state of fear following the murder in Tehran last November of nuclear physicist Majid Shahriari and the attempted assassination of another nuclear researcher, Fereydoon Abbasi.

  1. A systematic review of selected evidence on developing nursing students' critical thinking through problem-based learning.

    PubMed

    Yuan, Haobin; Williams, Beverly A; Fan, Lin

    2008-08-01

    Rapidly changing developments and expanding roles in healthcare environment requires professional nurses to develop critical thinking. Nursing education strives to facilitate students' critical thinking through the appropriate instructional approaches. Problem-based learning (PBL) is a student-centered approach to learning which enables the students to work cooperatively in small groups for seeking solutions to situations/problems. The systematic review was conducted to provide the available evidence on developing nursing students' critical thinking through PBL. The computerized searches from 1990-2006 in CINAHL, Proquest, Cochrane library, Pubmed etc were performed. All studies which addressed the differences in critical thinking among nursing students in PBL were considered. Two independent reviewers assessed the eligibility of each study, its level of evidence and the methodological quality. As a result, only ten studies were retrieved, they were: one RCT with a Jadad quality score of 3, one nonrandomized control study, two quasi-experimental studies with non-controlled pretest-posttest design, and six descriptive studies. The available evidence in this review did not provide supportive evidence on developing nursing students' critical thinking through PBL. Clearly, there is a need for additional research with larger sample size and high quality to clarify the effects of PBL on critical thinking development within nursing educational context.

  2. What physicists should learn about finance (if they want to)

    NASA Astrophysics Data System (ADS)

    Schmidt, Anatoly

    2006-03-01

    There has been growing interest among physicists to Econophysics, i.e. analysis and modeling of financial and economic processes using the concepts of theoretical Physics. There has been also perception that the financial industry is a viable alternative for those physicists who are not able or are not willing to pursue career in their major field. However in our times, the Wall Street expects from applicants for quantitative positions not only the knowledge of the stochastic calculus and the methods of time series analysis but also of such concepts as option pricing, portfolio management, and risk measurement. Here I describe a synthetic course based on my book ``Quantitative Finance for Physicists'' (Elsevier, 2004) that outlines both worlds: Econophysics and Mathematical Finance. This course may be offered as elective for senior undergraduate or graduate Physics majors.

  3. WE-G-19A-01: Radiologists and Medical Physicists: Working Together to Achieve Common Goals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A; Ma, J; Steele, J

    It is vitally important that medical physicists understand the clinical questions that radiologists are trying to answer with patient images. Knowledge of the types of information the radiologist needs helps medical physicists configure imaging protocols that appropriately balance radiation dose, time, and image quality. The ability to communicate with radiologists and understand medical terminology, anatomy, and physiology is key to creating such imaging protocols. In this session, radiologists will present clinical cases and describe the information they are seeking in the clinical images. Medical physicists will then discuss how imaging protocols are configured. Learning Objectives: Understand the types of informationmore » that radiologists seek in medical images. Apply this understanding in configuring the imaging equipment to deliver this information. Develop strategies for working with physician colleagues.« less

  4. A survey of Canadian medical physicists: software quality assurance of in‐house software

    PubMed Central

    Kelly, Diane

    2015-01-01

    This paper reports on a survey of medical physicists who write and use in‐house written software as part of their professional work. The goal of the survey was to assess the extent of in‐house software usage and the desire or need for related software quality guidelines. The survey contained eight multiple‐choice questions, a ranking question, and seven free text questions. The survey was sent to medical physicists associated with cancer centers across Canada. The respondents to the survey expressed interest in having guidelines to help them in their software‐related work, but also demonstrated extensive skills in the area of testing, safety, and communication. These existing skills form a basis for medical physicists to establish a set of software quality guidelines. PACS number: 87.55.Qr PMID:25679168

  5. Radiative transfer and spectroscopic databases: A line-sampling Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Galtier, Mathieu; Blanco, Stéphane; Dauchet, Jérémi; El Hafi, Mouna; Eymet, Vincent; Fournier, Richard; Roger, Maxime; Spiesser, Christophe; Terrée, Guillaume

    2016-03-01

    Dealing with molecular-state transitions for radiative transfer purposes involves two successive steps that both reach the complexity level at which physicists start thinking about statistical approaches: (1) constructing line-shaped absorption spectra as the result of very numerous state-transitions, (2) integrating over optical-path domains. For the first time, we show here how these steps can be addressed simultaneously using the null-collision concept. This opens the door to the design of Monte Carlo codes directly estimating radiative transfer observables from spectroscopic databases. The intermediate step of producing accurate high-resolution absorption spectra is no longer required. A Monte Carlo algorithm is proposed and applied to six one-dimensional test cases. It allows the computation of spectrally integrated intensities (over 25 cm-1 bands or the full IR range) in a few seconds, regardless of the retained database and line model. But free parameters need to be selected and they impact the convergence. A first possible selection is provided in full detail. We observe that this selection is highly satisfactory for quite distinct atmospheric and combustion configurations, but a more systematic exploration is still in progress.

  6. Hubbert's Peak: A Physicist's View

    NASA Astrophysics Data System (ADS)

    McDonald, Richard

    2011-11-01

    Oil and its by-products, as used in manufacturing, agriculture, and transportation, are the lifeblood of today's 7 billion-person population and our 65T world economy. Despite this importance, estimates of future oil production seem dominated by wishful thinking rather than quantitative analysis. Better studies are needed. In 1956, Dr. M.King Hubbert proposed a theory of resource production and applied it successfully to predict peak U.S. oil production in 1970. Thus, the peak of oil production is referred to as ``Hubbert's Peak.'' Prof. Al Bartlett extended this work in publications and lectures on population and oil. Both Hubbert and Bartlett place peak world oil production at a similar time, essentially now. This paper extends this line of work to include analyses of individual countries, inclusion of multiple Gaussian peaks, and analysis of reserves data. While this is not strictly a predictive theory, we will demonstrate a ``closed'' story connecting production, oil-in-place, and reserves. This gives us the ``most likely'' estimate of future oil availability. Finally, we will comment on synthetic oil and the possibility of carbon-neutral synthetic oil for a sustainable future.

  7. A proposal to enhance Engineering education in biology and Medicine by following the legacy of René Favaloro.

    PubMed

    Armentano, Ricardo L; Cardelino, Juan; Wray, Sandra; Cymberknop, Leandro J; Kun, Luis

    2015-01-01

    The synergy amongst Engineering, Medicine and Biology evolves as fast as these disciplines. We propose to articulate these specialties based on the premise that new professionals must face different situations or crisis due to the so-called islands of excellence. René Favaloro focused his work and struggles against poverty, since malnutrition and environmental degradation may increase the propensity to cardiovascular diseases. Doctor Favaloro has dedicated, throughout his career, a considerable amount of time to prepare and qualify a research group, aware of the importance that an adequate working environment has over the final results. He created a team of young students, engineers, medical doctors, physicists, mathematicians and other specialists. He centered his attention on human resources, in order to disseminate his latest advances in Biology, Medicine and Engineering. We are revising the programs of biomedical engineering education and the application of new pedagogic paradigms, where critical thinking is the key: a holistic challenge that consists of a new way of learning, innovating, communicating and shearing, with a creative attitude that represents quality of perception.

  8. Paired Insulators and High-Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Geballe, T. H.; Kivelson, S. A.

    In common with all condensed matter physicists of our generations, our way of thinking about our field was shaped and greatly inspired by countless seminal works of Phil Anderson -- a debt we are pleased to have the opportunity to acknowledge. Discussing plans for this article, we spent many pleasant times debating which particular contribution to highlight -- super-exchange (THG), Anderson-Higgs (SAK), the Anderson--Morel pseudopotential (THG), poor man's scaling (SAK), etc. In the end, we opted to highlight a single specific paper which greatly affected each of us at the time, and which has continued to exert a strong intellectual influence on us in the ensuing years. Almost 40 years ago in Ref. 1, Phil introduced the negative U center to account for the fact that most glasses and amorphous semiconductors are diamagnetic. This paper has been highly influential, but certainly does not rank among Phil's most famous works; however, focusing on it enables us to re-acquaint a younger generation with another of Phil's contributions, and to use this as a springboard to discuss some forward-looking extensions that continue to fascinate us...

  9. The Statistical Fragmentation Theory of N. F. Mott

    NASA Astrophysics Data System (ADS)

    Grady, Dennis

    2004-07-01

    For a brief period during the height of World War II, Neville F. Mott left his position at the University of Bristol and headed up a concerted theoretical effort at Fort Halstead, UK, to investigate the operational science of weapons and armor technology. The seminal achievements resulting from the efforts of the participating scientists are extraordinary and have provided the basis for much of the continuing research in this field over the intervening six decades. N. F. Mott chose to study the phenomenon of the explosive-driven fragmentation of exploding shell cases. The approaches pursued by Mott are documented in several interim reports and open literature publications and offer a fascinating look into the insightful thinking and scientific methods of one of the preeminent physicists of the last century. This presentation offers a perspective into the several theoretical approaches pursued by Mott. In particular, the hallmark relation for the representation of exploding munitions fragmentation data to the present day is the Mott distribution. The efforts of Mott leading to this distribution are explored and a judgment is offered as to whether Mott himself would use this distribution today.

  10. Physics learning identity of a successful student: A plot twist

    NASA Astrophysics Data System (ADS)

    Li, Sissi L.; Demaree, Dedra

    2013-01-01

    Classroom interactions provide learning opportunities for understanding others and developing agency in a community of learners. Student learning identities were measured using a survey instrument targeting physics learning self-efficacy, expectations of classroom roles, and attitude toward social learning as components of physics learning identity. From a selection of students who scored relatively high or low on the survey sub scales, an academically successful student in an introductory physics course using an active engagement curriculum was selected to examine identity development. Findings indicate he didn't develop a sense of agency, nor did he feel a need to alter his participation, although there were ample opportunities to do so in the learning community. These results suggest that being a successful physics student in the traditional sense doesn't necessarily mean the student is successful at adopting meta-goals which are the non-content course goals of learning to think like a physicist. This student was prompted to engage meaningfully but didn't feel it was required for success which suggests that structural alignment is required to motivate students to achieve meta-goals.

  11. SU-B-213-03: Evaluation of Graduate Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, B.

    2015-06-15

    The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less

  12. SU-B-213-04: Evaluation of Residency Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reft, C.

    2015-06-15

    The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less

  13. SU-B-213-06: Development of ABR Examination Questions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, J.

    2015-06-15

    The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less

  14. SU-B-213-02: Development of CAMPEP Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckham, W.

    2015-06-15

    The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less

  15. SU-B-213-01: Introduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starkschall, G.

    2015-06-15

    The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less

  16. SU-B-213-07: Panel Discussion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starkschall, G.

    2015-06-15

    The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less

  17. Physics, Physicists and Revolutionary Capabilities for the Intelligence Community

    NASA Astrophysics Data System (ADS)

    Porter, Lisa

    2009-05-01

    Over the past several decades, physicists have made seminal contributions to technological capabilities that have enabled the U.S. intelligence community to provide unexpected and unparalleled information to our nation's decision makers and help dispel the cloud of uncertainty they face in dealing with crises and challenges around the world. As we look to the future, we recognize that the ever-quickening pace of changes in the world and the threats we must confront demand continued innovation and improvement in the capabilities needed to provide the information on which our leaders depend. This talk will focus on some of the major technological challenges that the intelligence community faces in the coming years, and the many ways that physicists can help to overcome those challenges. The potential impact of physicists on the future capabilities of the US intelligence community is huge. In addition to the more obvious and direct impact through research in areas ranging from novel sensors to quantum information science, the unique approach physicists bring to a problem can also have an indirect but important effect by influencing how challenges in areas ranging from cybersecurity to advanced analytics are approached and solved. Several examples will be given.

  18. Medical physics is alive and well and growing in South East Asia.

    PubMed

    Ng, K; Pirabul, R; Peralta, A; Soejoko, D

    1997-03-01

    In recent years there has been a significant economic growth in South East Asia, along with it a concurrent development of medical physics. The status of four countries--Malaysia, Thailand, the Philippines and Indonesia are presented. Medical physicists in these countries have been experiencing the usual problems of lack of recognition, low salaries, and insufficient facilities for education and training opportunities. However the situation has improved recently through the initiative of local enthusiastic medical physicists who have started MS graduate programs in medical physics and begun organizing professional activities to raise the profile of medical physics. The tremendous support and catalytic roles of the American Association of Physicists in Medicine (AAPM) and international organizations such as International Organization for Medical Physics (IOMP), International Atomic Energy Agency (IAEA), World Health Organization (WHO), and International Center for Theoretical Physics (ICTP) have been instrumental in achieving progress. Contributions by these organizations include co-sponsorship of workshops and conferences, travel grants, medical physics libraries programs, and providing experts and educators. The demand for medical physicists is expected to rise in tandem with the increased emphasis on innovative technology for health care, stringent governmental regulation, and acceptance by the medical community of the important role of medical physicists.

  19. SU-B-213-05: Development of ABR Certification Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seibert, J.

    2015-06-15

    The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less

  20. Discriminating solitary cysts from soft tissue lesions in mammography using a pretrained deep convolutional neural network.

    PubMed

    Kooi, Thijs; van Ginneken, Bram; Karssemeijer, Nico; den Heeten, Ard

    2017-03-01

    It is estimated that 7% of women in the western world will develop palpable breast cysts in their lifetime. Even though cysts have been correlated with risk of developing breast cancer, many of them are benign and do not require follow-up. We develop a method to discriminate benign solitary cysts from malignant masses in digital mammography. We think a system like this can have merit in the clinic as a decision aid or complementary to specialized modalities. We employ a deep convolutional neural network (CNN) to classify cyst and mass patches. Deep CNNs have been shown to be powerful classifiers, but need a large amount of training data for which medical problems are often difficult to come by. The key contribution of this paper is that we show good performance can be obtained on a small dataset by pretraining the network on a large dataset of a related task. We subsequently investigate the following: (a) when a mammographic exam is performed, two different views of the same breast are recorded. We investigate the merit of combining the output of the classifier from these two views. (b) We evaluate the importance of the resolution of the patches fed to the network. (c) A method dubbed tissue augmentation is subsequently employed, where we extract normal tissue from normal patches and superimpose this onto the actual samples aiming for a classifier invariant to occluding tissue. (d) We combine the representation extracted using the deep CNN with our previously developed features. We show that using the proposed deep learning method, an area under the ROC curve (AUC) value of 0.80 can be obtained on a set of benign solitary cysts and malignant mass findings recalled in screening. We find that it works significantly better than our previously developed approach by comparing the AUC of the ROC using bootstrapping. By combining views, the results can be further improved, though this difference was not found to be significant. We find no significant difference between using a resolution of 100 versus 200 micron. The proposed tissue augmentations give a small improvement in performance, but this improvement was also not found to be significant. The final system obtained an AUC of 0.80 with 95% confidence interval [0.78, 0.83], calculated using bootstrapping. The system works best for lesions larger than 27 mm where it obtains an AUC value of 0.87. We have presented a computer-aided diagnosis (CADx) method to discriminate cysts from solid lesion in mammography using features from a deep CNN trained on a large set of mass candidates, obtaining an AUC of 0.80 on a set of diagnostic exams recalled from screening. We believe the system shows great potential and comes close to the performance of recently developed spectral mammography. We think the system can be further improved when more data and computational power becomes available. © 2017 American Association of Physicists in Medicine.

  1. A study of the status of women in physics in Nagpur

    NASA Astrophysics Data System (ADS)

    Darisi, Sridevi; Ubale, Seema

    2015-12-01

    Networking plays an important role in ensuring that women participate equally in science and technology. In Nagpur, India, a growing city in the center of the country, a small and local network called Women in Physics in Nagpur was launched in July 2013 with about 10-15 members. A Google group of the same name was also launched. The main aim of the network was to set collective goals towards a vision for Indian women physicists. This paper reports on one of our early activities, a survey of women in Nagpur who have a physics background, and suggests future activities.

  2. Engaging Cuban Physicists Through the APS/CPS Partnership

    NASA Astrophysics Data System (ADS)

    Lerch, Irving A.; Lerch, Irving A.

    In his reflections on Cuban physics, Marcelo Alonso urges APS to take steps to promote interactions between Cuban and US physicists. As an introduction to Marcello's essay, this note will summarize past and current activities.

  3. An Observation of the Sluss-Tiller Civil Affairs Culmination Exercise at Freedom Village

    DTIC Science & Technology

    2017-08-01

    of everyday life. Arab-style modern music filled the air as we walked to meet our “guides” for the day. In addition, smoke from a small fire...Adaptive Thinking and Leadership (ATL) coach, the Special Operations Cognitive Enhancement Program (SOCEP) coach, and a unit psychologist. These...think of your next question while staying engaged? • Self-awareness: Were you able you calm yourself and remain focused? • Brain power ( cognitive

  4. PhySIC_IST: cleaning source trees to infer more informative supertrees

    PubMed Central

    Scornavacca, Celine; Berry, Vincent; Lefort, Vincent; Douzery, Emmanuel JP; Ranwez, Vincent

    2008-01-01

    Background Supertree methods combine phylogenies with overlapping sets of taxa into a larger one. Topological conflicts frequently arise among source trees for methodological or biological reasons, such as long branch attraction, lateral gene transfers, gene duplication/loss or deep gene coalescence. When topological conflicts occur among source trees, liberal methods infer supertrees containing the most frequent alternative, while veto methods infer supertrees not contradicting any source tree, i.e. discard all conflicting resolutions. When the source trees host a significant number of topological conflicts or have a small taxon overlap, supertree methods of both kinds can propose poorly resolved, hence uninformative, supertrees. Results To overcome this problem, we propose to infer non-plenary supertrees, i.e. supertrees that do not necessarily contain all the taxa present in the source trees, discarding those whose position greatly differs among source trees or for which insufficient information is provided. We detail a variant of the PhySIC veto method called PhySIC_IST that can infer non-plenary supertrees. PhySIC_IST aims at inferring supertrees that satisfy the same appealing theoretical properties as with PhySIC, while being as informative as possible under this constraint. The informativeness of a supertree is estimated using a variation of the CIC (Cladistic Information Content) criterion, that takes into account both the presence of multifurcations and the absence of some taxa. Additionally, we propose a statistical preprocessing step called STC (Source Trees Correction) to correct the source trees prior to the supertree inference. STC is a liberal step that removes the parts of each source tree that significantly conflict with other source trees. Combining STC with a veto method allows an explicit trade-off between veto and liberal approaches, tuned by a single parameter. Performing large-scale simulations, we observe that STC+PhySIC_IST infers much more informative supertrees than PhySIC, while preserving low type I error compared to the well-known MRP method. Two biological case studies on animals confirm that the STC preprocess successfully detects anomalies in the source trees while STC+PhySIC_IST provides well-resolved supertrees agreeing with current knowledge in systematics. Conclusion The paper introduces and tests two new methodologies, PhySIC_IST and STC, that demonstrate the interest in inferring non-plenary supertrees as well as preprocessing the source trees. An implementation of the methods is available at: . PMID:18834542

  5. PhySIC_IST: cleaning source trees to infer more informative supertrees.

    PubMed

    Scornavacca, Celine; Berry, Vincent; Lefort, Vincent; Douzery, Emmanuel J P; Ranwez, Vincent

    2008-10-04

    Supertree methods combine phylogenies with overlapping sets of taxa into a larger one. Topological conflicts frequently arise among source trees for methodological or biological reasons, such as long branch attraction, lateral gene transfers, gene duplication/loss or deep gene coalescence. When topological conflicts occur among source trees, liberal methods infer supertrees containing the most frequent alternative, while veto methods infer supertrees not contradicting any source tree, i.e. discard all conflicting resolutions. When the source trees host a significant number of topological conflicts or have a small taxon overlap, supertree methods of both kinds can propose poorly resolved, hence uninformative, supertrees. To overcome this problem, we propose to infer non-plenary supertrees, i.e. supertrees that do not necessarily contain all the taxa present in the source trees, discarding those whose position greatly differs among source trees or for which insufficient information is provided. We detail a variant of the PhySIC veto method called PhySIC_IST that can infer non-plenary supertrees. PhySIC_IST aims at inferring supertrees that satisfy the same appealing theoretical properties as with PhySIC, while being as informative as possible under this constraint. The informativeness of a supertree is estimated using a variation of the CIC (Cladistic Information Content) criterion, that takes into account both the presence of multifurcations and the absence of some taxa. Additionally, we propose a statistical preprocessing step called STC (Source Trees Correction) to correct the source trees prior to the supertree inference. STC is a liberal step that removes the parts of each source tree that significantly conflict with other source trees. Combining STC with a veto method allows an explicit trade-off between veto and liberal approaches, tuned by a single parameter.Performing large-scale simulations, we observe that STC+PhySIC_IST infers much more informative supertrees than PhySIC, while preserving low type I error compared to the well-known MRP method. Two biological case studies on animals confirm that the STC preprocess successfully detects anomalies in the source trees while STC+PhySIC_IST provides well-resolved supertrees agreeing with current knowledge in systematics. The paper introduces and tests two new methodologies, PhySIC_IST and STC, that demonstrate the interest in inferring non-plenary supertrees as well as preprocessing the source trees. An implementation of the methods is available at: http://www.atgc-montpellier.fr/physic_ist/.

  6. Organo-axial volvulus of the small intestine: radiological case report and consideration for its mechanism.

    PubMed

    Ishiguro, Toshitaka; Hiyama, Takashi; Nasu, Katsuhiro; Akashi, Yoshimasa; Minami, Manabu

    2017-07-01

    Gastrointestinal volvulus is mainly classified into two subtypes, mesentero-axial volvulus and organo-axial volvulus. The detailed imaging findings of organo-axial volvulus of the small intestine have never been reported as far as we know. In this article, we report a case of organo-axial volvulus of the small intestine, focusing on the computed tomography (CT) findings. An 80-year-old man was radiologically diagnosed as having organo-axial volvulus of the terminal ileum and it was confirmed by open surgery without adhesion or any other anatomical abnormalities. CT showed two specific findings, split-bowel sign and rotating-C sign, which we think reflect pathophysiologic features of organo-axial volvulus. We think the pathogenic mechanism of organo-axial volvulus can be explained by the convergence of the reversed-rotational twist following the formation of a twisted but non-obstructive circular loop, even if there is no adhesion. Radiologists should be aware that organo-axial volvulus can occur even in the small intestine, and in the case of small bowel obstruction with single transition point, the two pathophysiologic signs mentioned above must be looked for to diagnose the possibility of organo-axial volvulus.

  7. A day with the women physicists of Pakistan

    NASA Astrophysics Data System (ADS)

    Hasnain, Aziz Fatima; Islam, Aquila; Ali, Asima; Qureshi, Riffat Mehmood; Qamar, Anisa

    2015-12-01

    The Working Group on Women in Physics successfully organized a national-level meeting of women physicists at the National Centre for Physics, Quaid-e-Azam University, to discuss the agenda for the 5th IUPAP International Conference on Women in Physics. This report describes the outcome of the meeting and the status of female physicists in Pakistan. It also includes a comparative study of the enrollment of women in undergraduate and graduate programs in physics, along with a brief description of factors that create hurdles for female students opting for higher education in this field.

  8. The Spatial Pattern of Intelligence in a Small Town.

    ERIC Educational Resources Information Center

    Bailey, William H.

    The document measures the spatial patterns of mental abilities of 94 seventh-grade students within a small town by correlating and mapping four variables--IQ test scores, achievement test scores, neighborhood quality as seen by town officials, and creativity test scores from the Torrance Tests of Creative Thinking. Objectives were to ascertain the…

  9. A Model for Teaching Large Classes: Facilitating a "Small Class Feel"

    ERIC Educational Resources Information Center

    Lynch, Rosealie P.; Pappas, Eric

    2017-01-01

    This paper presents a model for teaching large classes that facilitates a "small class feel" to counteract the distance, anonymity, and formality that often characterize large lecture-style courses in higher education. One author (E. P.) has been teaching a 300-student general education critical thinking course for ten years, and the…

  10. Methods and Strategies: Much Ado about Nothing

    ERIC Educational Resources Information Center

    Smith, P. Sean; Plumley, Courtney L.; Hayes, Meredith L.

    2017-01-01

    This column provides ideas and techniques to enhance your science teaching. This month's issue discusses how children think about the small-particle model of matter. What Richard Feynman referred to as the "atomic hypothesis" is perhaps more familiar to us as the small-particle model of matter. In its most basic form, the model states…

  11. Programming (Tips) for Physicists & Engineers

    ScienceCinema

    Ozcan, Erkcan

    2018-02-19

    Programming for today's physicists and engineers. Work environment: today's astroparticle, accelerator experiments and information industry rely on large collaborations. Need more than ever: code sharing/resuse, code building--framework integration, documentation and good visualization, working remotely, not reinventing the wheel.

  12. Will new gender policies stop the decrease of women physicists in Portugal?

    NASA Astrophysics Data System (ADS)

    Rosa, Carla Carmelo; Peña, Maria Teresa; Saavedra, Luisa; Providência, Constança

    2013-03-01

    The present context of women physicists in Portugal is discussed, updating our report for the 2002 IUPAP International Conference on Women in Physics, in which the 30 years prior to 2000 were analyzed.

  13. Programming (Tips) for Physicists & Engineers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Erkcan

    2010-07-13

    Programming for today's physicists and engineers. Work environment: today's astroparticle, accelerator experiments and information industry rely on large collaborations. Need more than ever: code sharing/resuse, code building--framework integration, documentation and good visualization, working remotely, not reinventing the wheel.

  14. Analysis of recurrent patterns in toroidal magnetic fields.

    PubMed

    Sanderson, Allen R; Chen, Guoning; Tricoche, Xavier; Pugmire, David; Kruger, Scott; Breslau, Joshua

    2010-01-01

    In the development of magnetic confinement fusion which will potentially be a future source for low cost power, physicists must be able to analyze the magnetic field that confines the burning plasma. While the magnetic field can be described as a vector field, traditional techniques for analyzing the field's topology cannot be used because of its Hamiltonian nature. In this paper we describe a technique developed as a collaboration between physicists and computer scientists that determines the topology of a toroidal magnetic field using fieldlines with near minimal lengths. More specifically, we analyze the Poincaré map of the sampled fieldlines in a Poincaré section including identifying critical points and other topological features of interest to physicists. The technique has been deployed into an interactive parallel visualization tool which physicists are using to gain new insight into simulations of magnetically confined burning plasmas.

  15. Dr. Inside and Dr. Outside: Physicists Involved With National Security and Foreign Policy

    NASA Astrophysics Data System (ADS)

    Zimmerman, Peter D.

    2009-05-01

    Physicists have had a special interest in American national security and arms control since at least the Manhattan Project. They have served our country in uniform and in the career civil service. Some have left academic careers for brief periods to work as political appointees, consultants, or resident scholars and then returned to an academic life, but often with changed goals. Some have tried government life and left nearly immediately, while others dipped a toe in and decided to stay. I will look at real-life examples, mostly using real names, drawn from my career and circle of colleagues to try to explain why some physicists have been extremely successful, why others have not, and what happens to a physicist who moved to Washington and decides to stay. I will also discuss routes into public service for those interesting in giving it a try.

  16. Does Goal Relevant Episodic Future Thinking Amplify the Effect on Delay Discounting?

    PubMed Central

    O’Donnell, Sara; Daniel, Tinuke Oluyomi; Epstein, Leonard H.

    2017-01-01

    Delay discounting (DD) is the preference for smaller immediate rewards over larger delayed rewards. Research shows episodic future thinking (EFT), or mentally simulating future experiences, reframes the choice between small immediate and larger delayed rewards, and can reduce DD. Only general EFT has been studied, whereby people reframe decisions in terms of non-goal related future events. Since future thinking is often goal-oriented and leads to greater activation of brain regions involved in prospection, goal-oriented EFT may be associated with greater reductions in DD than general goal-unrelated EFT. The present study (n = 104, Mage = 22.25, SD = 3.42; 50% Female) used a between-subjects 2×2 factorial design with type of episodic thinking (Goal, General) and temporal perspective (Episodic future versus recent thinking; EFT vs ERT) as between factors. Results showed a significant reduction in DD for EFT groups (p < 0.001, Cohen’s d effect size = 0.89), and goal-EFT was more effective than general-EFT on reducing DD (p = 0.03, d = 0.64). PMID:28282631

  17. Does goal relevant episodic future thinking amplify the effect on delay discounting?

    PubMed

    O'Donnell, Sara; Oluyomi Daniel, Tinuke; Epstein, Leonard H

    2017-05-01

    Delay discounting (DD) is the preference for smaller immediate rewards over larger delayed rewards. Research shows episodic future thinking (EFT), or mentally simulating future experiences, reframes the choice between small immediate and larger delayed rewards, and can reduce DD. Only general EFT has been studied, whereby people reframe decisions in terms of non-goal related future events. Since future thinking is often goal-oriented and leads to greater activation of brain regions involved in prospection, goal-oriented EFT may be associated with greater reductions in DD than general goal-unrelated EFT. The present study (n=104, M age =22.25, SD=3.42; 50% Female) used a between-subjects 2×2 factorial design with type of episodic thinking (Goal, General) and temporal perspective (Episodic future versus recent thinking; EFT vs ERT) as between factors. Results showed a significant reduction in DD for EFT groups (p<0.001, Cohen's d effect size=0.89), and goal-EFT was more effective than general-EFT on reducing DD (p=0.03, d=0.64). Copyright © 2017 Elsevier Inc. All rights reserved.

  18. SU-E-T-635: Process Mapping of Eye Plaque Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huynh, J; Kim, Y

    Purpose: To apply a risk-based assessment and analysis technique (AAPM TG 100) to eye plaque brachytherapy treatment of ocular melanoma. Methods: The role and responsibility of personnel involved in the eye plaque brachytherapy is defined for retinal specialist, radiation oncologist, nurse and medical physicist. The entire procedure was examined carefully. First, major processes were identified and then details for each major process were followed. Results: Seventy-one total potential modes were identified. Eight major processes (corresponding detailed number of modes) are patient consultation (2 modes), pretreatment tumor localization (11), treatment planning (13), seed ordering and calibration (10), eye plaque assembly (10),more » implantation (11), removal (11), and deconstruction (3), respectively. Half of the total modes (36 modes) are related to physicist while physicist is not involved in processes such as during the actual procedure of suturing and removing the plaque. Conclusion: Not only can failure modes arise from physicist-related procedures such as treatment planning and source activity calibration, but it can also exist in more clinical procedures by other medical staff. The improvement of the accurate communication for non-physicist-related clinical procedures could potentially be an approach to prevent human errors. More rigorous physics double check would reduce the error for physicist-related procedures. Eventually, based on this detailed process map, failure mode and effect analysis (FMEA) will identify top tiers of modes by ranking all possible modes with risk priority number (RPN). For those high risk modes, fault tree analysis (FTA) will provide possible preventive action plans.« less

  19. New US philanthropy alliance picks physicist as boss

    NASA Astrophysics Data System (ADS)

    Kruesi, Liz

    2015-04-01

    Marc Kastner, a physicist at the Massachusetts Institute of Technology (MIT), has become the first president of the Science Philanthropy Alliance (SPA) - a new group of six organizations aiming to increase private funding for fundamental research in the US.

  20. Measuring third year undergraduate nursing students' reflective thinking skills and critical reflection self-efficacy following high fidelity simulation: A pilot study.

    PubMed

    Tutticci, Naomi; Lewis, Peter A; Coyer, Fiona

    2016-05-01

    Critical reflection underpins critical thinking, a highly desirable generic nursing graduate capability. To improve the likelihood of critical thinking transferring to clinical practice, reflective thinking needs to be measured within the learning space of simulation. This study was divided into two phases to address the reliability and validity measures of previously untested surveys. Phase One data was collected from individuals (n = 6) using a 'think aloud' approach and an expert panel to review content validity, and verbatim comment analysis was undertaken. The Reflective Thinking Instrument and Critical Reflection Self-Efficacy Visual Analogue Scale items were contextualised to simulation. The expert review confirmed these instruments exhibited content validity. Phase Two data was collected through an online survey (n = 58). Cronbach's alpha measured internal consistency and was demonstrated by all subscales and the Instrument as a whole (.849). There was a small to medium positive correlation between critical reflection self-efficacy and general self-efficacy (r = .324, n = 56, p = .048). Participant responses were positive regarding the simulation experience. The research findings demonstrated that the Reflective Thinking and Simulation Satisfaction survey is reliable. Further development of this survey to establish validity is recommended to make it viable. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Positive and Negative Thinking in Tinnitus: Factor Structure of the Tinnitus Cognitions Questionnaire.

    PubMed

    Handscomb, Lucy E; Hall, Deborah A; Shorter, Gillian W; Hoare, Derek J

    Researchers and clinicians consider thinking to be important in the development and maintenance of tinnitus distress, and altering thoughts or thinking style is an object of many forms of psychological therapy for tinnitus. Those working with people with tinnitus require a reliable, psychometrically robust means of measuring both positive and negative thinking related to it. The Tinnitus Cognitions Questionnaire (TCQ) was designed as such a measure and its authors showed it to be reliable, with good psychometric properties. However, no research teams have yet carried out independent validation. This study aimed to use the TCQ to investigate thinking amongst members of the general population with both bothersome and nonbothersome tinnitus and also to verify its factor structure. Three hundred forty-two members of the public with tinnitus completed the TCQ online or on paper. They also rated their tinnitus on a scale as "not a problem," "a small problem," "a moderate problem," "a big problem," or a "very big problem." The authors tested the original factor structure of the TCQ using confirmatory factor analysis and then calculated the mean scores for each item, comparing mean total scores across "problem categories" for the full questionnaire and for the positive and negative subscales. The original two-factor structure of the TCQ was a good fit to the data when the correlation between positive and negative factors was fixed at zero (root mean square error of approximation = 0.064, 90% confidence interval = 0.058 to 0.070). Items pertaining to wishing the tinnitus would go away and despairing that it would ever get better had the highest mean scores. The mean total score for the "no problem" group (M = 31.17, SD = 16.03) was not significantly different from the mean total score for the "small problem" group (M = 34.00, SD = 12.44, p = 0.99). Differences between mean scores for all other groups were statistically significant. For the negative subscale, differences were statistically significant between all problem categories. For the positive subscale, the differences between mean scores were only statistically significant for the "no problem" group (M = 28.40, SD = 17.11) compared with the "moderate problem" group (M = 18.55, SD = 8.64, p = 0.02) and for the "moderate problem" group compared with the "very big problem" group (M = 26.79, SD = 11.66, p = 0.002). Positive and negative factors were uncorrelated (ρ = -0.03.) CONCLUSIONS:: The TCQ is a valid measure of positive and negative thinking in tinnitus, and the authors recommend its use in research and therapeutic settings. Negative thinking appears to be associated with more problematic tinnitus, but positive thinking is not associated with unproblematic tinnitus, suggesting that reducing negative thinking may be more important than teaching positive thinking in therapy.

  2. Physicist scorns syllabus that 'ill-equips' students

    NASA Astrophysics Data System (ADS)

    Randall, Ian

    2017-03-01

    Quantum physicist Michelle Simmons from the University of New South Wales has criticized the Australian school physics curriculum for reducing maths-based teaching and over-emphasizing essay-based questions - a move she says has left students “ill-equipped” on reaching university.

  3. AFOMP Policy Statement No. 3: recommendations for the education and training of medical physicists in AFOMP countries.

    PubMed

    Round, W H; Ng, K H; Healy, B; Rodriguez, L; Thayalan, K; Tang, F; Fukuda, S; Srivastava, R; Krisanachinda, A; Shiau, A C; Deng, X; Han, Y

    2011-09-01

    AFOMP recognizes that clinical medical physicists should demonstrate that they are competent to practice their profession by obtaining appropriate education, training and supervised experience in the specialties of medical physics in which they practice, as well as having a basic knowledge of other specialties. To help its member countries to achieve this, AFOMP has developed this policy to provide guidance when developing medical physicist education and training programs. The policy is compatible with the standards being promoted by the International Organization for Medical Physics and the International Medical Physics Certification Board.

  4. Professional development

    NASA Astrophysics Data System (ADS)

    Yoon, Jin Hee; Hartline, Beverly Karplus; Milner-Bolotin, Marina

    2013-03-01

    The three sessions of the professional development workshop series were each designed for a different audience. The purpose of the first session was to help mid-career physicists aspire for and achieve leadership roles. The second session brought together students, postdoctoral fellows, and early-career physicists to help them plan their career goals and navigate the steps important to launching a successful career. The final session sought to increase awareness of the results of physics education research, and how to use them to help students-especially women-learn physics better. The presentations and discussions were valuable for both female and male physicists.

  5. The Role of Physicists in Policy Making

    NASA Astrophysics Data System (ADS)

    Handler, Thomas

    2011-10-01

    Since World War II, physicists have been involved in various aspects of national life. The roles played have included: 1) Pure or applied researcher, 2) Advisor to policy makers, and 3) Congressman. Today there are many challenges and questions that the United States faces and scientists, physicists included, are often asked on how these challenges should be addressed. In addressing these concerns what is the ``proper'' role that scientists should play? Do scientists even know what the possible roles are? This talk will briefly address the possible roles that scientists play and what other avenues of input go into the making of policy.

  6. Physics and the car business

    NASA Astrophysics Data System (ADS)

    Compton, W. Dale; Reitz, John R.

    1981-01-01

    Physicists have made important contributions to many areas of Ford Motor Company activity, particularly in areas of basic and applied research and product development. A number have assumed positions with management responsibility. Many of the technical problems facing the automotive industry today require a fundamental understanding, and the ability of physicists to contribute to the solution of these problems is greater now than it has been in the past. The present paper discusses some of these problems, and also traces a few case histories of physicists at Ford Motor Company; these illustrate the wide diversity of career paths for persons entering industry with a physics background.

  7. Physics Climate as Experienced by LGBT+ Physicists

    NASA Astrophysics Data System (ADS)

    Long, Elena

    2012-02-01

    In 2009, Elena Long created the LGBT+ Physicists website (http://lgbtphysicists.x10hosting.com) as a warehouse for resources useful for sexual and gender minorities working in physics. This resource has grown to include networking resources, lists of LGBT-friendly universities and localities, recommendations for enacting positive change in physics communities, and out-reach to other STEM-oriented LGBT organizations. This has been possible in large part by the dynamic community of LGBT+ physicists and allies looking to make physics more welcoming towards our community. In 2011, Elena used hir position as Member at Large on the executive committee of the Forum of Graduate Student Affairs (FGSA) to conduct a climate survey that included, among other things, the first serious look at LGBT+ demographics in physics. The survey focused particularly on issues of language heard and harassment experienced by physicists and was broken down into categories based on race, physical and mental ability, gender, and sexuality. Furthermore, it examined the outcomes of experienced harassment and the reasons for when harassment was not reported. Due to the nature of the study, overlapping demographics, especially ``multiple minorities,'' were also explored. This talk will give a brief history of the LGBT+ Physicists resource as well as an overview of the FGSA study.

  8. SU-B-213-00: Education Council Symposium: Accreditation and Certification: Establishing Educational Standards and Evaluating Candidates Based on these Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less

  9. Higher Education Planning for a Strategic Goal with a Concept Mapping Process at a Small Private College

    ERIC Educational Resources Information Center

    Driscoll, Deborah P.

    2010-01-01

    Faculty, staff, and administrators at a small independent college determined that planning with a Concept Mapping process efficiently produced strategic thinking and action plans for the accomplishment of a strategic goal to expand experiential learning within the curriculum. One year into a new strategic plan, the college enjoyed enrollment…

  10. The Role of Teacher Instructional Discourse in Scaffolding Adolescent Students' Argumentation Strategy Use in Small Group Text-Based Discussions

    ERIC Educational Resources Information Center

    Anderson, Alyssa T. G.

    2017-01-01

    The goal of this study is to investigate the role of English Language Arts (ELA) teachers' verbal discourse moves in scaffolding adolescent students' argumentative thinking in small group interpretive discussions about literature. Demands related to argumentation may present particular challenges for adolescent students (Biancarosa & Snow,…

  11. Implementing a Laptop Program at a Small, Liberal Arts University.

    ERIC Educational Resources Information Center

    Anderson, Cheryl A.

    In the fall of 2000, the University of the Incarnate Word, a small, Catholic, liberal arts university located in San Antonio, Texas became the largest IBM ThinkPad University in the South. At present, 2,000 laptops have been distributed to students and faculty. This paper explains the implementation process and the components that made this a…

  12. Interplanetary Small Satellite Conference 2017 Program

    NASA Technical Reports Server (NTRS)

    Dalle, Derek Jordan

    2017-01-01

    The Interplanetary Small Satellite Conference will be held at San Jose State University on May 1 and 2, 2017. The program attached here contains logistical information for attendees, the agenda, and abstracts of the conference presentations. All abstracts were reviewed by their authors' home institute and approved for public release prior to inclusion in the program booklet. The ISSC explores mission concepts, emerging technologies, and fosters outside the box thinking critical to future interplanetary small satellite missions.

  13. An epistemic framing analysis of upper level physics students' use of mathematics

    NASA Astrophysics Data System (ADS)

    Bing, Thomas Joseph

    Mathematics is central to a professional physicist's work and, by extension, to a physics student's studies. It provides a language for abstraction, definition, computation, and connection to physical reality. This power of mathematics in physics is also the source of many of the difficulties it presents students. Simply put, many different activities could all be described as "using math in physics". Expertise entails a complicated coordination of these various activities. This work examines the many different kinds of thinking that are all facets of the use of mathematics in physics. It uses an epistemological lens, one that looks at the type of explanation a student presently sees as appropriate, to analyze the mathematical thinking of upper level physics undergraduates. Sometimes a student will turn to a detailed calculation to produce or justify an answer. Other times a physical argument is explicitly connected to the mathematics at hand. Still other times quoting a definition is seen as sufficient, and so on. Local coherencies evolve in students' thought around these various types of mathematical justifications. We use the cognitive process of framing to model students' navigation of these various facets of math use in physics. We first demonstrate several common framings observed in our students' mathematical thought and give several examples of each. Armed with this analysis tool, we then give several examples of how this framing analysis can be used to address a research question. We consider what effects, if any, a powerful symbolic calculator has on students' thinking. We also consider how to characterize growing expertise among physics students. Framing offers a lens for analysis that is a natural fit for these sample research questions. To active physics education researchers, the framing analysis presented in this dissertation can provide a useful tool for addressing other research questions. To physics teachers, we present this analysis so that it may make them more explicitly aware of the various types of reasoning, and the dynamics among them, that students employ in our physics classes. This awareness will help us better hear students' arguments and respond appropriately.

  14. Bloody or tarry stools

    MedlinePlus

    ... small intestine Diverticulosis (abnormal pouches in the colon) Hemorrhoids (common cause of bright red blood) Inflammatory bowel ... have an exam even if you think that hemorrhoids are causing the blood in your stool. In ...

  15. Ya.B. Zel''dovich (1914-1987). Chemist, Nuclear Physicist, Cosmologist

    NASA Astrophysics Data System (ADS)

    Sahni, Varun

    2011-06-01

    A scientific biography of the outstanding Soviet Chemist, Physicist and Cosmologist Yakov Borisovich Zeldovich (1914-1987) has been given by one of his pupils. A special concern has been given to cosmological works by Zel'dovich. Figures 4,Bibliography: 9.

  16. The Vector Calculus Gap: Mathematics (Does Not Equal) Physics.

    ERIC Educational Resources Information Center

    Dray, Tevian; Manogue, Corinne A.

    1999-01-01

    Discusses some of the differences between the ways mathematicians and physicists view vector calculus and the gap between the way this material is traditionally taught by mathematicians and the way physicists use it. Suggests some ways to narrow the gap. (Author/ASK)

  17. MO-DE-304-02: Diagnostic Workforce Subcommittee Status and Direction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gress, D.

    2015-06-15

    The Abt study of medical physicist work values for radiation oncology physics services, Round IV is completed. It supersedes the Abt III study of 2008. The 2015 Abt study measured qualified medical physicist (QMP) work associated with routine radiation oncology procedures as well as some special procedures. As before, a work model was created to allow the medical physicist to defend QMP work based on both routine and special procedures service mix. The work model can be used to develop a cost justification report for setting charges for radiation oncology physics services. The Abt study Round IV was designed tomore » empower the medical physicist to negotiate a service or employment contract with providers based on measured national QMP workforce and staffing data. For a variety of reasons, the diagnostic imaging contingent of AAPM has had a more difficult time trying estimate workforce requirements than their therapy counterparts. Over the past several years, the Diagnostic Work and Workforce Study Subcommittee (DWWSS) has collected survey data from AAPM members, but the data have been very difficult to interpret. The DWWSS has reached out to include more AAPM volunteers to create a more full and accurate representation of actual clinical practice models on the subcommittee. Though much work remains, through hours of discussion and brainstorming, the DWWSS has somewhat of a clear path forward. This talk will provide attendees with an update on the efforts of the subcommittee. Learning Objectives: Understand the new information documented in the Abt studies. Understand how to use the Abt studies to justify medical physicist staffing. Learn relevant historical information on imaging physicist workforce. Understand the process of the DWWSS in 2014. Understand the intended path forward for the DWWSS.« less

  18. MO-DE-304-00: Workforce Assessment Committee Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    The Abt study of medical physicist work values for radiation oncology physics services, Round IV is completed. It supersedes the Abt III study of 2008. The 2015 Abt study measured qualified medical physicist (QMP) work associated with routine radiation oncology procedures as well as some special procedures. As before, a work model was created to allow the medical physicist to defend QMP work based on both routine and special procedures service mix. The work model can be used to develop a cost justification report for setting charges for radiation oncology physics services. The Abt study Round IV was designed tomore » empower the medical physicist to negotiate a service or employment contract with providers based on measured national QMP workforce and staffing data. For a variety of reasons, the diagnostic imaging contingent of AAPM has had a more difficult time trying estimate workforce requirements than their therapy counterparts. Over the past several years, the Diagnostic Work and Workforce Study Subcommittee (DWWSS) has collected survey data from AAPM members, but the data have been very difficult to interpret. The DWWSS has reached out to include more AAPM volunteers to create a more full and accurate representation of actual clinical practice models on the subcommittee. Though much work remains, through hours of discussion and brainstorming, the DWWSS has somewhat of a clear path forward. This talk will provide attendees with an update on the efforts of the subcommittee. Learning Objectives: Understand the new information documented in the Abt studies. Understand how to use the Abt studies to justify medical physicist staffing. Learn relevant historical information on imaging physicist workforce. Understand the process of the DWWSS in 2014. Understand the intended path forward for the DWWSS.« less

  19. Using concurrent think-aloud and protocol analysis to explore student nurses' social learning information communication technology knowledge and skill development.

    PubMed

    Todhunter, Fern

    2015-06-01

    Observations obtained through concurrent think-aloud and protocol analysis offer new understanding about the influence of social learning on student nurses' acquisition of Information and Communication Technology (ICT) knowledge and skills. The software used provides a permanent record of the underpinning study method, events and analyses. The emerging themes reflect the dimensions of social engagement, and the characteristics of positive and negative reactions to ICT. The evidence shows that given the right conditions, stronger learners will support and guide their peers. To explore the use of concurrent think-aloud and protocol analysis as a method to examine how student nurses approach ICT. To identify the benefits and challenges of using observational technology to capture learning behaviours. To show the influence of small group arrangement and student interactions on their ICT knowledge and skills development. Previous studies examining social interaction between students show how they work together and respond to interactive problem solving. Social interaction has been shown to enhance skills in both ICT and collaborative decision making. Structured observational analysis using concurrent think-aloud and protocol analysis. Students displayed varying degrees of pastoral support and emotional need, leadership, reflection, suggestion and experimentation skills. Encouraging student nurses to work in small mixed ability groups can be conducive for social and ICT skill and knowledge development. Observational software gives a permanent record of the proceedings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. AAPM Task Group 103 report on peer review in clinical radiation oncology physics

    PubMed Central

    Halvorsen, Per H.; Das, Indra J.; Fraser, Martin; Freedman, D. Jay; Rice, Robert E.; Ibbott, Geoffrey S.; Parsai, E. Ishmael; Robin, T. Tydings; Thomadsen, Bruce R.

    2005-01-01

    This report provides guidelines for a peer review process between two clinical radiation oncology physicists. While the Task Group's work was primarily focused on ensuring timely and productive independent reviews for physicists in solo practice, these guidelines may also be appropriate for physicists in a group setting, particularly when dispersed over multiple separate clinic locations. To ensure that such reviews enable a collegial exchange of professional ideas and productive critique of the entire clinical physics program, the reviews should not be used as an employee evaluation instrument by the employer. Such use is neither intended nor supported by this Task Group. Detailed guidelines are presented on the minimum content of such reviews, as well as a recommended format for reporting the findings of a review. In consideration of the full schedules faced by most clinical physicists, the process outlined herein was designed to be completed in one working day. PACS numbers: 87.53.Xd, 87.90.+y PMID:16421500

  1. Future forum, Hobart, October 29, 2017: examining the role of medical physics in cancer research.

    PubMed

    Ebert, Martin A; Hardcastle, Nicholas; Kron, Tomas

    2018-06-25

    This commentary reports on a forum held in October 2017 in Hobart, Tasmania, attended by 20 Australasian medical physicists, to consider the future role of medical physics, as well as non-medical physics and allied disciplines, in oncology research. Attendees identified important areas of oncology research which physicists can be contributing to, with these evaluated in the context of a set of "Provocative Questions" recently generated by the American Association of Physicists in Medicine. Primary perceived barriers to participation in research were identified, including a "lack of knowledge of cancer science", together with potential solutions. Mechanisms were considered for engagement with the broader scientific community, consumers, advocates and policy makers. In considering future opportunities in oncology research for medical physicists, it was noted that a professional need to focus on the safety and accuracy of current treatments applied to patients, encouraging risk-aversion, is somewhat in competition with the role of physical scientists in the exploration and discovery of new concepts and understandings.

  2. Radiation Oncology Physics and Medical Physics Education

    NASA Astrophysics Data System (ADS)

    Bourland, Dan

    2011-10-01

    Medical physics, an applied field of physics, is the applications of physics in medicine. Medical physicists are essential professionals in contemporary healthcare, contributing primarily to the diagnosis and treatment of diseases through numerous inventions, advances, and improvements in medical imaging and cancer treatment. Clinical service, research, and teaching by medical physicists benefits thousands of patients and other individuals every day. This talk will cover three main topics. First, exciting current research and development areas in the medical physics sub-specialty of radiation oncology physics will be described, including advanced oncology imaging for treatment simulation, image-guided radiation therapy, and biologically-optimized radiation treatment. Challenges in patient safety in high-technology radiation treatments will be briefly reviewed. Second, the educational path to becoming a medical physicist will be reviewed, including undergraduate foundations, graduate training, residency, board certification, and career opportunities. Third, I will introduce the American Association of Physicists in Medicine (AAPM), which is the professional society that represents, advocates, and advances the field of medical physics (www.aapm.org).

  3. Women in physics in Bangladesh

    NASA Astrophysics Data System (ADS)

    Choudhury, Shamima K.

    2013-03-01

    Bangladesh has had a glorious physics tradition since the beginning of the last century, when the physicist S.N. Bose published a groundbreaking paper with Albert Einstein on Bose-Einstein statistics. However, women in Bangladesh traditionally have not been able to make their way in the realm of science in general and physics in particular. Since Bangladesh achieved independence in 1971, the situation has gradually changed and more and more women choose physics as an academic discipline. The percentage of women students in physics rose from 10% in 1970 to almost 30% in 2010. In recent years, women physicists have actively participated in many activities promoting science and technology, creating awareness among the public about the importance of physics education. The present status of women physicists in academic, research, and administrative programs in the government and private sectors in Bangladesh is reported. The greater inclusion of women scientists, particularly physicists, in policy-making roles on important issues of global and national interest is suggested.

  4. SU-B-BRA-00: The Medical Physicist Value Proposition for Tomorrow and Today

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherouse, G.

    In the current rapidly changing Healthcare environment, many groups are competing for limited resources. How can medical physicists position themselves to be a relevant stakeholder in the discussion of how those resources are allocated Our value goes beyond what can be shown in a business plan and is heavily involved with safety and quality. Three areas will be explored: What is our value? Who needs to receive that message? How do we communicate that message? To help frame the discussion in terms of how other stakeholders may view the value of medical physicists, a physician and an administrator will presentmore » their perspective. Lastly, a multidisciplinary panel will present real life examples of strategies that can be utilized today to establish the value of medical physicists. The presentation of these examples will lead into an interactive question and answer time. V. Willcut, I work for Elekta. There was no research associated with this talk.« less

  5. Physicists in Primary Schools (PIPS) Project: Fun Presentations for Physicists to Take into Schools Worldwide (abstract)

    NASA Astrophysics Data System (ADS)

    Marks, Ann

    2009-04-01

    The Physicists in Primary Schools (PIPS) project is a joint venture initiated by the UK Women in Physics Group. A team from the University of Sheffield, with Engineering and Physical Sciences Research Council funding, has developed fun presentations and novel class activities using everyday articles for physicists to take into primary schools. The objectives are to instill enthusiasm in young children-including girls-through the enjoyment and excitement of physics, and support primary school teachers with a curriculum which includes many abstract concepts. All PIPS material is free to download from the Institute of Physics website (www.iop.org/pips), providing PowerPoint presentations and detailed explanations, as well as videos of the activities in classrooms. The topics are suitable for children age 4 to 11 years. There is interest in translating the presentations into other languages as there are few words on the slides and the material is likely valuable for older age groups. The presentations therefore have the potential to be useful worldwide.

  6. Germany-US Nuclear Theory Exchange Program for QCD Studies of Hadrons & Nuclei 'GAUSTEQ'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudek, Jozef; Melnitchouk, Wally

    GAUSTEQ was a Germany-U.S. exchange program in nuclear theory whose purpose was to focus research efforts on QCD studies of hadrons and nuclei, centered around the current and future research programs of Jefferson Lab and the Gesellschaft fur Schwerionenforschung (GSI) in Germany. GAUSTEQ provided travel support for theoretical physicists at US institutions conducting collaborative research with physicists in Germany. GSI (with its Darmstadt and Helmholtz Institute Mainz braches) served as the German “hub” for visits of U.S. physicists, while Jefferson Lab served as the corresponding “hub” for visits of German physicists visiting U.S. institutions through the reciprocal GUSTEHP (German-US Theorymore » Exchange in Hadron Physics) program. GAUSTEQ was funded by the Office of Nuclear Physics of the U.S. Department of Energy, under Contract No.DE-SC0006758 and officially managed through Old Dominion University in Norfolk, Virginia. The program ran between 2011 and 2015.« less

  7. Nuclear and radiological emergencies: Building capacity in medical physics to support response.

    PubMed

    Berris, Theocharis; Nüsslin, Fridtjof; Meghzifene, Ahmed; Ansari, Armin; Herrera-Reyes, Eduardo; Dainiak, Nicholas; Akashi, Makoto; Gilley, Debbie; Ohtsuru, Akira

    2017-10-01

    Medical physicists represent a valuable asset at the disposal of a structured and planned response to nuclear or radiological emergencies (NREs), especially in the hospital environment. The recognition of this fact led the International Atomic Energy Agency (IAEA) and the International Organization for Medical Physics (IOMP) to start a fruitful collaboration aiming to improve education and training of medical physicists so that they may support response efforts in case of NREs. Existing shortcomings in specific technical areas were identified through international consultations supported by the IAEA and led to the development of a project aiming at preparing a specific and standardized training package for medical physicists in support to NREs. The Project was funded through extra-budgetary contribution from Japan within the IAEA Nuclear Safety Action Plan. This paper presents the work accomplished through that project and describes the current steps and future direction for enabling medical physicists to better support response to NREs. Copyright © 2017 Associazione Italiana di Fisica Medica. All rights reserved.

  8. After the War: Women in Physics in the United States

    NASA Astrophysics Data System (ADS)

    Howes, Ruth H.; Herzenberg, Caroline L.

    2015-12-01

    This book examines the lives and contributions of American women physicists who were active in the years following World War II, during the middle decades of the 20th century. It covers the strategies they used to survive and thrive in a time where their gender was against them. The percentage of woman taking PhDs in physics has risen from 6% in 1983 to 20% in 2012 (an all-time high for women). By understanding the history of women in physics, these gains can continue. It discusses two major classes of women physicists; those who worked on military projects, and those who worked in industrial laboratories and at universities largely in the late 1940s and 1950s. While it includes minimal discussion of physics and physicists in the 1960s and later, this book focuses on the challenges and successes of women physicists in the years immediately following World War II and before the eras of affirmative actions and the use of the personal computer.

  9. Application of QC_DR software for acceptance testing and routine quality control of direct digital radiography systems: initial experiences using the Italian Association of Physicist in Medicine quality control protocol.

    PubMed

    Nitrosi, Andrea; Bertolini, Marco; Borasi, Giovanni; Botti, Andrea; Barani, Adriana; Rivetti, Stefano; Pierotti, Luisa

    2009-12-01

    Ideally, medical x-ray imaging systems should be designed to deliver maximum image quality at an acceptable radiation risk to the patient. Quality assurance procedures are employed to ensure that these standards are maintained. A quality control protocol for direct digital radiography (DDR) systems is described and discussed. Software to automatically process and analyze the required images was developed. In this paper, the initial results obtained on equipment of different DDR manufacturers were reported. The protocol was developed to highlight even small discrepancies in standard operating performance.

  10. Physics and Entrepreneurship: A Small Business Perspective

    NASA Astrophysics Data System (ADS)

    Cleveland, Jason

    2013-03-01

    DARPA's Microsystems Technology Office, MTO, conceives and develops a wide range of technologies to benefit the US warfighter, from exotic GaN transistors to high-power fiber lasers, highly efficient embedded computer systems to synthetic biology. MTO has world class electrical and mechanical engineers, but we also have a cadre of extremely capable physicists, whose complementary skillset has been absolutely essential to identifying promising technological avenues for the office and for the agency. In this talk I will explain the DARPA model of technology development, using real examples from MTO, highlighting programs where physics-based insights have led to important new capabilities for the Dept of Defense.

  11. A Different Laboratory Tale: Fifty Years of Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Westfall, Catherine

    2006-05-01

    I explore the fifty-year development of Mössbauer spectroscopy by focusing on three episodes in its development at Argonne National Laboratory: work by nuclear physicists using radioactive sources in the early 1960s, work by solid-state physicists using radioactive resources from the mid- 1960s through the 1970s,and work by solid-state physicists using the Advanced Photon Source from the 1980s to 2005. These episodes show how knowledge about the properties of matter was produced in a national-laboratory context and highlights the web of connections that allow nationallaboratory scientists working at a variety of scales to produce both technological and scientific innovations.

  12. Herbert Fröhlich: A Physicist Ahead of His Time, by G.J. Hyland [Book Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devanathan, Ram

    This authoritative biography of Herbert Fröhlich (1905-1991), a well-known theoretical physicist, paints an intimate portrait of a pioneering scientist who made seminal contributions to condensed matter physics and left his mark on other domains such as biology over a 60-year career. From his vantage point as the last graduate student of this eminent physicist, Gerard Hyland has produced an account that weaves the personal experiences and travails of Fröhlich with detailed discussion of the theory of dielectrics. The political upheavals in Europe during the 20th century provide a dramatic backdrop for the narrative.

  13. Wars of the holographic world

    NASA Astrophysics Data System (ADS)

    Preskill, John

    2008-12-01

    In the popular imagination, the iconic American theoretical physicist is Richard Feynman, in all his safe-cracking, bongo-thumping, woman-chasing glory. I suspect that many physicists, if asked to name a living colleague who best captures the spirit of Feynman, would give the same answer as me: Leonard Susskind. As far as I know, Susskind does not crack safes, thump bongos, or chase women, yet he shares Feynman's brash cockiness (which in Susskind's case is leavened by occasional redeeming flashes of self-deprecation) and Feynman's gift for spinning fascinating anecdotes. If you are having a group of physicists over for dinner and want to be sure to have a good time, invite Susskind.

  14. From Newton to Einstein; Ask the physicist about mechanics and relativity

    NASA Astrophysics Data System (ADS)

    Baker, F. Todd

    2014-12-01

    Since 2006 the author has run a web site, WWW.AskThePhysicist.com, where he answers questions about physics. The site is not intended for answering highly technical questions; rather the purpose is to answer, with as little mathematics and formalism as possible, questions from intelligent and curious laypersons. This book is about classical mechanics. Usually `classical' calls to mind Newtonian mechanics and that is indeed where modern physics started. The bulk of the book is devoted to sections which will contain mainly categorized groups of Q&As from the web site, sort of a Best of Ask the Physicist.

  15. Worrying about What Others Think: A Social-Comparison Concern Intervention in Small Learning Groups

    ERIC Educational Resources Information Center

    Micari, Marina; Pazos, Pilar

    2014-01-01

    Small-group learning has become commonplace in education at all levels. While it has been shown to have many benefits, previous research has demonstrated that it may not always work to the advantage of every student. One potential problem is that less-prepared students may feel anxious about participating, for fear of looking "dumb" in…

  16. It's not easy being green: the tricky world of small-diameter timber.

    Treesearch

    Sally Duncan

    1998-01-01

    Big shifts have been made over the last decade in how society thinks forest lands should be managed. Forest policy has subsequently changed. Land managers now grapple with how to make society's intentions work in the forests of today.This issue of PNW Science Findings presents the Colville study's examination of the vast forests of small-diameter...

  17. Developing the Learning Physical Science Curriculum: Adapting a Small Enrollment, Laboratory and Discussion Based Physical Science Course for Large Enrollments

    ERIC Educational Resources Information Center

    Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael

    2012-01-01

    We report on the adaptation of the small enrollment, lab and discussion based physical science course, "Physical Science and Everyday Thinking" (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new "Learning Physical Science" (LEPS) curriculum was designed around specific principles based on research on learning to meet the…

  18. The View from the Observatory: History is Too Important to be Left to the Historians

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    2001-12-01

    As the first astronomer turned historian of astronomy relatively late in life to receive the LeRoy Doggett Prize, I am especially grateful to its Committee for this high honor. I knew LeRoy well and worked with him when he was Secretary`Treasurer of the HAD before his untimely death. I will begin my lecture by paying tribute to my mentors who encouraged and helped me to become a historian of astronomy, Mary Lea Heger Shane, Owen Gingerich, Helen Wright, and William G. Hoyt. Then I will speak briefly on why I think astronomers are interested in the history of their science, buttressed by quotations from Ecclesiasticus, Henry Ford, Thucydides, and Herodotus. Basically it is because we are interested in our roots, just as members of a family are interested in its roots. I will talk briefly about the Mary Lea Shane Archives of the Lick Observatory, and what a resource it is for my specialty, American Astronomy in the Big-Telescope Era. Its Curator, Dorothy Schaumberg, has helped me and hundreds of other historians of astronomy tremendously. I believe it helps anyone who wants to understand the history of astronomy to know and understand astronomy. History must be based on facts, which archives, scientific papers, and books can provide. Immersion in a field like astronomy makes one better qualified to understand what others have done in that field, and how they did it, as Ibsen, Hemingway, Tuchman, and Grisham have all stated and proved by example. Finally I will give a progress report on my current project, the life and scientific career of the early American astronomer and solar physicist Charles A. Young (1834-1908). Astronomy was very different in his ``small-telescope era," but there are many modern resonances in his problems and their solutions.

  19. Passeport pour les deux infinis: an educational project in French

    NASA Astrophysics Data System (ADS)

    Arnaud, Nicolas; Descotes-Genon, Sébastien; Kerhoas-Cavata, Sophie; Paul, Jacques; Robert-Esil, Jean-Luc; Royole-Degieux, Perrine

    2016-04-01

    Passeport pour les deux infinis (;Passport for the two infinities;, in short Pass2i) is a French educational project aiming at promoting the physics of the infinitely small (particle physics) and of the infinitely big (cosmology & astrophysics) to high-school teachers and students. It is managed since 2009 by a small team of outreach experts (physicists and engineers) from the CNRS and the CEA. The Pass2i cornerstone is a reversible book - where each side explores one of the two infinities - and which is given for free to science high school teachers who request it, thanks to the support of French funding agencies. The Pass2i non-profit association wants to be a bridge between science and education: training sessions are organized for teachers, educational resources created and made available for download on the Pass2i website (http://www.passeport2i.fr).

  20. Uncommon Sense - The Heretical Nature of Science

    NASA Astrophysics Data System (ADS)

    Cromer, Alan

    1995-08-01

    Most people believe that science arose as a natural end-product of our innate intelligence and curiosity, as an inevitable stage in human intellectual development. But physicist and educator Alan Cromer disputes this belief. Cromer argues that science is not the natural unfolding of human potential, but the invention of a particular culture, Greece, in a particular historical period. Indeed, far from being natural, scientific thinking goes so far against the grain of conventional human thought that if it hadn't been discovered in Greece, it might not have been discovered at all.In Uncommon Sense , Alan Cromer develops the argument that science represents a radically new and different way of thinking. Using Piaget's stages of intellectual development, he shows that conventional thinking remains mired in subjective, "egocentric" ways of looking at the world--most people even today still believe in astrology, ESP, UFOs, ghosts and other paranormal phenomena--a mode of thought that science has outgrown. He provides a fascinating explanation of why science began in Greece, contrasting the Greek practice of debate to the Judaic reliance on prophets for acquiring knowledge. Other factors, such as a maritime economy and wandering scholars (both of which prevented parochialism) and an essentially literary religion not dominated by priests, also promoted in Greece an objective, analytical way of thinking not found elsewhere in the ancient world. He examines India and China and explains why science could not develop in either country. In China, for instance, astronomy served only the state, and the private study of astronomy was forbidden. Cromer also provides a perceptive account of science in Renaissance Europe and of figures such as Copernicus, Galileo, and Newton. Along the way, Cromer touches on many intriguing topics, arguing, for instance, that much of science is essential complete; there are no new elements yet to be discovered. He debunks the vaunted SETI (Search for Extraterrestrial Intelligence) project, which costs taxpayers millions each year, showing that physical limits--such as the melting point of metal--put an absolute limit on the speed of space travel, making trips to even the nearest star all but impossible. Finally, Cromer discusses the deplorable state of science education in America and suggests several provocative innovations to improve high school education, including a radical proposal to give all students an intensive eighth and ninth year program, eliminating the last two years of high school.Uncommon Sense is an illuminating look at science, filled with provocative observations. Whether challenging Thomas Kuhn's theory of scientific revolutions, or extolling the virtues of Euclid's Elements , Alan Cromer is always insightful, outspoken, and refreshingly original.

  1. 77 FR 62538 - Advisory Committee on the Medical Uses of Isotopes: Call for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ...) nuclear medicine physicist; (d) therapy medical physicist; (e) radiation safety officer; (f) nuclear... NUCLEAR REGULATORY COMMISSION Advisory Committee on the Medical Uses of Isotopes: Call for Nominations AGENCY: U.S. Nuclear Regulatory Commission. ACTION: Call for nominations. SUMMARY: The U.S...

  2. ORNL Physicist Aims for the Stars with JENSA System

    ScienceCinema

    Chipps, Kelly

    2018-01-16

    Physicists studying stellar explosions, the origin of life and just about everything in between could gain light years in precision because of a system inspired by a team led by Kelly Chipps of the Department of Energy’s Oak Ridge National Laboratory.

  3. Good scientists and honest people

    NASA Astrophysics Data System (ADS)

    Robinson, Andrew

    2014-06-01

    In early 1948, less than three years after the end of the Second World War in Europe, Werner Heisenberg - the Nobel laureate and physicist leader of the failed German atomic bomb project - was invited to the UK as part of an attempt to repair relations between British and German physicists.

  4. The “Long Tail” and Public Health: New Thinking for Addressing Health Disparities

    PubMed Central

    Hovmand, Peter; Pfeiffer, Debbie J.; Fairchild, Maggie; Rath, Suchitra; Golla, Balaji; Casey, Chris

    2014-01-01

    The prevailing approach to improving population health focuses on shifting population means through a few targeted and universal interventions. The success of this approach for eliminating health disparities depends on an assumption about the distribution of demand for such interventions. We explored whether long tail thinking from business might yield greater progress in eliminating disparities. We examined 2011 to 2013 data from 513 state and local health agency representatives in 47 states who used an online system to create 4351 small media and client reminder products promoting colorectal cancer screening. Products in the long tail were more likely to target minority groups with higher rates of colorectal cancer and lower rates of screening than Whites. Long tail thinking could help improve the public's health and eliminate disparities. PMID:25322308

  5. What Happens Where the Water and the Rock Touch in Small Space Bodies

    NASA Astrophysics Data System (ADS)

    Byrne, P. K.; Regensburger, P. V.; Klimczak, C.; Bohnenstiehl, D. R.; Dombard, A. J.; Hauck, S. A., II

    2017-12-01

    There are several small space bodies that go around bigger worlds that might have a layer of water under a layer of ice. Lots of study has been done to understand the outside ice layer of these small space bodies, because the ice can tells us important things about the big water layer under it. Some of these small space bodies are very interesting because the right things for life—water, hot rock, and food—might be at the bottom of the water layer, where it touches the top of the next layer down, which is made of rock. But it is very hard to understand what this rock at the bottom of the water is like, because we can't see it. So, we are imagining what this rock is like by thinking about what the rock is like under the water layer on our own world. If hot rock comes out of the rock layer through cracks under the water, the cold of the water makes the hot rock go very cold very fast, and it makes funny rolls as it does so. This might happen on some small space bodies that are hot enough on the inside to make hot rock. We know that on our own world the rock layer under the water is wet to as far down as cracks can go, so it makes sense that this is true for small space bodies, too. We did some thinking about numbers and found out that the cracks can go a few ten hundred steps into the rock layer on small space bodies, but for bigger (well, not quite so small) space bodies, the cracks can go at least tens of ten hundred steps into the rock layer. This means that water goes into the rock layer this much, too. But get this: some small bodies are not really that small—one of them is bigger than the first world from the Sun! And on a few of these big (small) bodies, the layer of water is so heavy that the bottom of that water is pushed together from all sides and turns into a type of hot ice. This means that, for these big (small) worlds, the water can't get into the rock layer through cracks (since there is a layer of hot ice in the way), and so these bodies are not such good places to think about where life might be.

  6. "Shut up and calculate": the available discursive positions in quantum physics courses

    NASA Astrophysics Data System (ADS)

    Johansson, Anders; Andersson, Staffan; Salminen-Karlsson, Minna; Elmgren, Maja

    2018-03-01

    Educating new generations of physicists is often seen as a matter of attracting good students, teaching them physics and making sure that they stay at the university. Sometimes, questions are also raised about what could be done to increase diversity in recruitment. Using a discursive perspective, in this study of three introductory quantum physics courses at two Swedish universities, we instead ask what it means to become a physicist, and whether certain ways of becoming a physicist and doing physics is privileged in this process. Asking the question of what discursive positions are made accessible to students, we use observations of lectures and problem solving sessions together with interviews with students to characterize the discourse in the courses. Many students seem to have high expectations for the quantum physics course and generally express that they appreciate the course more than other courses. Nevertheless, our analysis shows that the ways of being a "good quantum physics student" are limited by the dominating focus on calculating quantum physics in the courses. We argue that this could have negative consequences both for the education of future physicists and the discipline of physics itself, in that it may reproduce an instrumental "shut up and calculate"-culture of physics, as well as an elitist physics education. Additionally, many students who take the courses are not future physicists, and the limitation of discursive positions may also affect these students significantly.

  7. TH-B-12A-01: TG124 “A Guide for Establishing a Credentialing and Privileging Program for Users of Fluoroscopic Equipment in Healthcare Organizations”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, M

    Fluoroscopy credentialing and privileging programs are being instituted because of recorded patient injuries and the widespread growth in fluoroscopy use by operators whose medical education did not include formal fluoroscopy training. This lack of training is recognized as a patient safety deficiency, and medical physicists and health physicists are finding themselves responsible for helping to establish fluoroscopy credentialing programs. While physicians are very knowledgeable about clinical credentials review and the privileging process, medical physicists and health physicists are not as familiar with the process and associated requirements. To assist the qualified medical physicist (QMP) and the radiation safety officer (RSO)more » with these new responsibilities, TG 124 provides an overview of the credentialing process, guidance for policy development and incorporating trained fluoroscopy users into a facility's established process, as well as recommendations for developing and maintaining a risk-based fluoroscopy safety training program. This lecture will review the major topics addressed in TG124 and relate them to practical situations. Learning Objectives: Understand the difference between credentialing and privileging. Understand the responsibilities, interaction and coordination among key individuals and committees. Understand options for integrating the QMP and/or RSO and Radiation Safety Committee into the credentialing and privileging process. Understand issues related to implementing the fluoroscopy safety training recommendations and with verifying and documenting successful completion.« less

  8. Collaborative Concept Mapping and Critical Thinking in Fourth-Year Medical Students.

    PubMed

    Bixler, G Michael; Brown, Amy; Way, David; Ledford, Cynthia; Mahan, John D

    2015-08-01

    To test the hypothesis that small group concept mapping of 4 core neonatal topics as part of a fourth-year allopathic medical student elective would improve critical thinking (CT) as measured by the California Critical Thinking Skills Test (CCTST). To describe any correlations between scores on the CCTST and the step 1 and step 2 Clinical Knowledge parts of the United States Medical Licensing Exam. Twenty-seven students participated in this pilot study during a 1-month elective. A pretest CCTST, California Critical Thinking Disposition Inventory (CCTDI), and multiple choice knowledge test (MCKT) were completed immediately before the elective began. Four weekly group sessions were held with assigned reading on each of the 4 neonatal topics. Concept mapping was performed in small groups of 4 to 6 students with a group concept map collected at the end of the exercise. A posttest CCTST and MCKT was completed after the 4 group sessions. Pre-CCTST overall score was 83.9 ± 6, and post-CCTST overall score was 85.6 ± 6.9 (P = .57). Pearson correlation of USMLE step 1 and pre-CCTST showed r(25) = .276, P = .164. Pearson correlation of USMLE step 2 CK and pre-CCTST revealed r(25) = .214, P = .482. The precourse MCKT average was 35%, and the postcourse average 50% (P ≤ .001). A recent meta-analysis confirms this is the first report of a comparison between the increasingly common CCTST and the USMLE. We confirmed that concept mapping is a valid mechanism to teach content knowledge. Although the difference in the CCTST scores was not significant, this study could serve as an important start toward development of a curriculum devoted to teaching content and improving CT. The small number of students may have prevented us from defining a significant impact. © The Author(s) 2015.

  9. Does good critical thinking equal effective decision-making among critical care nurses? A cross-sectional survey.

    PubMed

    Ludin, Salizar Mohamed

    2018-02-01

    A critical thinker may not necessarily be a good decision-maker, but critical care nurses are expected to utilise outstanding critical thinking skills in making complex clinical judgements. Studies have shown that critical care nurses' decisions focus mainly on doing rather than reflecting. To date, the link between critical care nurses' critical thinking and decision-making has not been examined closely in Malaysia. To understand whether critical care nurses' critical thinking disposition affects their clinical decision-making skills. This was a cross-sectional study in which Malay and English translations of the Short Form-Critical Thinking Disposition Inventory-Chinese Version (SF-CTDI-CV) and the Clinical Decision-making Nursing Scale (CDMNS) were used to collect data from 113 nurses working in seven critical care units of a tertiary hospital on the east coast of Malaysia. Participants were recruited through purposive sampling in October 2015. Critical care nurses perceived both their critical thinking disposition and decision-making skills to be high, with a total score of 71.5 and a mean of 48.55 for the SF-CTDI-CV, and a total score of 161 and a mean of 119.77 for the CDMNS. One-way ANOVA test results showed that while age, gender, ethnicity, education level and working experience factors significantly impacted critical thinking (p<0.05), only age and working experience significantly impacted clinical decision-making (p<0.05). Pearson's correlation analysis showed a strong and positive relationship between critical care nurses' critical thinking and clinical decision-making (r=0.637, p=0.001). While this small-scale study has shown a relationship exists between critical care nurses' critical thinking disposition and clinical decision-making in one hospital, further investigation using the same measurement tools is needed into this relationship in diverse clinical contexts and with greater numbers of participants. Critical care nurses' perceived high level of critical thinking and decision-making also needs further investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Critical thinking skills of undergraduate nursing students: description and demographic predictors.

    PubMed

    Hunter, Sharyn; Pitt, Victoria; Croce, Nic; Roche, Jan

    2014-05-01

    This study investigated the critical thinking skills among undergraduate nursing students in Australia to obtain a profile and determine demographic predictors of critical thinking. There is universal agreement that being a critical thinker is an outcome requirement for many accreditation and registering nursing bodies. Most studies provide descriptive statistical information about critical thinking skills while some have studied the changes in critical thinking after an intervention. Limited research about factors that predict critical thinking skills is available. A cross-sectional descriptive study was conducted using convenience sampling. Two hundred and sixty-nine students were recruited across three years of an undergraduate programme in 2009. Most students' age ranged from under 20 to 34 years (58%), 87% were female, 91% were Australian and 23% of first and second year students had nursing associated experience external to the university. Data about critical thinking skills were collected via the Health Science Reasoning Test (HSRT). Linear regression analysis investigated the predictors of nursing students' critical thinking skills. The students in third year had a profile of critical thinking skills comparable with HSRT norms. Year of study predicted higher critical thinking scores for all domains (p<0.001) except the subscale, analysis. Nationality predicted higher scores for total CT skill scores (p<0.001) and subscales, inductive (p=0.001) and deductive reasoning (p=0.001). Nursing associated experience predicted higher scores for the subscale, analysis (p<0.001). Age and gender were not predictive. However, these demographic predictors only accounted for a small variance obtained for the domains of CT skills. An understanding of factors that predict nursing students' CT skills is required. Despite this study finding a number of significant predictors of nursing students' CT skills, there are others yet to be understood. Future research is recommended exploring explicit CT instructional approaches and nursing students' CT skills. © 2013 Elsevier Ltd. All rights reserved.

  11. Fermilab Education: Physicists

    Science.gov Websites

    Search Education and Outreach: Resources and Opportunties for Fermilab employees and Users A variety of resources and opportunities are available for physicists interested in education and outreach (For general Data (6–12) Physical Science/Physics Instructional Resources (K–12) US Particle Physics Education and

  12. Matter and Interactions: A Particle Physics Perspective

    ERIC Educational Resources Information Center

    Organtini, Giovanni

    2011-01-01

    In classical mechanics, matter and fields are completely separated; matter interacts with fields. For particle physicists this is not the case; both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this article we explain why particle physicists believe in…

  13. Gendered Hegemony and Its Contradictions among Finnish University Physicists

    ERIC Educational Resources Information Center

    Sannino, Annalisa; Vainio, Jenny

    2015-01-01

    This article addresses the issue of gender imbalance in Finnish universities in the domain of physics as a historical and dialectical phenomenon. Drawing from the Gramscian notion of hegemony and the activity-theoretical notion of contradiction, this paper analyses gendered hegemonic and contradictory forces steering physicists' careers. This…

  14. History of Physicists in Industry. Final Report

    ERIC Educational Resources Information Center

    Anderson, R. Joseph; Butler, Orville R.

    2008-01-01

    This project is the first systematic study of the organizational structure, communications patterns, and archival records of industrial physicists in the U.S., and it provides general guidelines for understanding and documenting their work. The study confirms that the organization and management of industrial R&D is volatile, changing in response…

  15. Complementary Colours for a Physicist

    ERIC Educational Resources Information Center

    Babic, Vitomir; Cepic, Mojca

    2009-01-01

    This paper reports on a simple experiment which enables splitting incident light into two different modes, each having a colour exactly complementary to the other. A brief historical development of colour theories and differences in a physicist's point of view with respect to an artist's one is discussed. An experimental system for producing…

  16. Signing off

    NASA Astrophysics Data System (ADS)

    2001-11-01

    How much do we value our physicists? Some banknotes carry pictures of great physicists. It seems obvious to conduct an investigation using this data to find out how much we value them. Research can be carried out by finding what denomination a country uses for its physicists and using some simple currency conversions. All discussions of the relative merits of physicists have so far ignored this data. Newton, so often the baseline of physics greatness, was once represented on the English one-pound note. Although he has since been shredded and replaced by coins we will use the Newton as our base unit of currency, where one Newton is equal to one pound [those making a dimensional analysis should remember we are talking about currency]. The Danes value Bohr at 42 Newtons, whilst the Austrians consider Schrödinger to be worth 46 Newtons At this point the research becomes interesting because an (only slightly varying) constant emerges. The Danes value Bohr at 42 Newtons, whilst the Austrians consider Schrödinger to be worth 46 Newtons. Obviously, as with all quantum physics effects, those spending Schrödingers (as well as anyone who has retired) will find that when you have money to spend there is not time, and when you have the time there is no money to spend. These figures clearly show a trend that all physicists trade at about 45 Newtons. And they also seem to show how much the UK has undervalued Newton. However, this result may well be a feature of a newly suggested inverse square law of being famous, that the longer ago you lived the less important you seem. Physicists are working hard to reconcile this with the 'never famous before you are dead' postulate. More data is needed. With Marie Curie on the 500 French Franc note, one Curie is worth 48 Newtons, supporting the theory. However, Pierre Curie also appeared on this note so Marie can only really be valued at 24 Newtons. Quite how two physicists superpose in their currency valuations is unknown by theorists. Appearing on two notes also raises questions about the effect on value of working in several countries. The idea is yet to be fully formulated, but it would be nice if it were exponential. Certainly the fact that New Zealand's hero Rutherford has been represented on the one hundred dollar note, valuing him at 28 Newtons, adds to the idea of an attenuation coefficient. There also seem to be transient effects on value, resulting from the personality of the physicist involved. It seems entirely appropriate that the mercurial Tesla should be represented by the ten billion dollar Yugoslavian note, which was nevertheless worth almost nothing. But of course any discussions of great physicists always involve Einstein. Amazingly he has been seen represented on the Israeli five-pound note, valuing him at about 0.08 Newtons. Before rushing off, in support of the great man, to prove that this is clearly a relativistic aberration, just pause. Perhaps calculating your salary in Einsteins could be really rather good for morale... More about physicists on money can be found at www2.physics.umd.edu/~redish/Money/ Philip Britton Head of Physics, Leeds Grammar School, UK

  17. SU-E-I-56: Threshold Effect of ASIR Before Which Image Improve and After Which Image Degrades.

    PubMed

    Abdulkhaliq, F; Mail, N; Saoudi, A

    2012-06-01

    This study showed to what extent ASIR improves CT-image and to what extent it degrades it. In our study we used GE HD750 CT-scanner, Siemens Sensation CT-scanner, Catphan, PTW-pin-ion- chamber, CTDI-phantom. We measured the CT-dose using the PTW-pinion-chamber and CTDI-phantom. Image-quality and noise were evaluated using catphan and GE water phantom. Image noise reduce as higher levels of ASIR are applied. A phantom scan showed that 50%ASIR with 50% lower-dose (10.8mGy) achieved the same image noise of standard FBP image with full dose 21.7mGy (noise∼5). To confirm that the two same-noise images retain same image-quality, two scans were compared; one with full dose 260mAs(21.7mGy) and the other one with 50% lower dose 130mAs(10.8mGy). The results showed that ASIR failed to retain the same quality. For high contrast resolution, 50%ASIR reduced the resolution of patterns = 71p/cm, however it improved the detectability of patterns = 61p/cm. ASIR has degraded the CNR of the low-contrast-objects of = 5HU (CNR of 1.4 at 260mAs STND to CNR of 1.08 at 130mAs ASIR), however it improved the CNR of the low-contrast-objects of = 10HU (CNR of 2.35 at 260mAs STND to CNR of 2.63 at 130mAs ASIR). ASIR degraded the edges and killed some of the small objects. This shows that ASIR has a critical point of improve/degrade. Also, ASIR can improve images for the same dose, but with high levels of ASIR (e.g. 100%ASIR), cause disapear of small low contrast objects (e.g. 2mm). People think that ASIR only improves image and reduces patient dose. Our study showed that ASIR has some drawbacks. There is a threshold before wich ASIR is positive and after which ASIR is negative. Recently only GE provide ASIR in the market but our study showed that other CTs such as Siemens can do similar performance like ASIR. © 2012 American Association of Physicists in Medicine.

  18. Positive and Negative Thinking in Tinnitus: Factor Structure of the Tinnitus Cognitions Questionnaire

    PubMed Central

    Hall, Deborah A.; Shorter, Gillian W.; Hoare, Derek J.

    2017-01-01

    Objectives: Researchers and clinicians consider thinking to be important in the development and maintenance of tinnitus distress, and altering thoughts or thinking style is an object of many forms of psychological therapy for tinnitus. Those working with people with tinnitus require a reliable, psychometrically robust means of measuring both positive and negative thinking related to it. The Tinnitus Cognitions Questionnaire (TCQ) was designed as such a measure and its authors showed it to be reliable, with good psychometric properties. However, no research teams have yet carried out independent validation. This study aimed to use the TCQ to investigate thinking amongst members of the general population with both bothersome and nonbothersome tinnitus and also to verify its factor structure. Design: Three hundred forty-two members of the public with tinnitus completed the TCQ online or on paper. They also rated their tinnitus on a scale as “not a problem,” “a small problem,” “a moderate problem,” “a big problem,” or a “very big problem.” The authors tested the original factor structure of the TCQ using confirmatory factor analysis and then calculated the mean scores for each item, comparing mean total scores across “problem categories” for the full questionnaire and for the positive and negative subscales. Results: The original two-factor structure of the TCQ was a good fit to the data when the correlation between positive and negative factors was fixed at zero (root mean square error of approximation = 0.064, 90% confidence interval = 0.058 to 0.070). Items pertaining to wishing the tinnitus would go away and despairing that it would ever get better had the highest mean scores. The mean total score for the “no problem” group (M = 31.17, SD = 16.03) was not significantly different from the mean total score for the “small problem” group (M = 34.00, SD = 12.44, p = 0.99). Differences between mean scores for all other groups were statistically significant. For the negative subscale, differences were statistically significant between all problem categories. For the positive subscale, the differences between mean scores were only statistically significant for the “no problem” group (M = 28.40, SD = 17.11) compared with the “moderate problem” group (M = 18.55, SD = 8.64, p = 0.02) and for the “moderate problem” group compared with the “very big problem” group (M = 26.79, SD = 11.66, p = 0.002). Positive and negative factors were uncorrelated (ρ = −0.03.) Conclusions: The TCQ is a valid measure of positive and negative thinking in tinnitus, and the authors recommend its use in research and therapeutic settings. Negative thinking appears to be associated with more problematic tinnitus, but positive thinking is not associated with unproblematic tinnitus, suggesting that reducing negative thinking may be more important than teaching positive thinking in therapy. PMID:27560491

  19. WE-H-201-00: Opportunities for Physicists to Support Low and Mid-Income Countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The desperate need for radiotherapy in low and mid-income countries (LMICs) has been well documented. Roughly 60 % of the worldwide incidence of cancer occurs in these resource-limited settings and the international community alongside governmental and non-profit agencies have begun publishing reports and seeking help from qualified volunteers. However, the focus of several reports has been on how dire the situation is and the magnitude of the problem, leaving most to feel overwhelmed and unsure as to how to help and why to get involved. This session will help to explain the specific ways that Medical Physicists can uniquely assistmore » in this grand effort to help bring radiotherapy to grossly-underserved areas. Not only can these experts fulfill an important purpose, they also can benefit professionally, academically, emotionally and socially from the endeavor. By assisting others worldwide with their skillset, Medical Physicists can end up helping themselves. Learning Objectives: Understand the need for radiotherapy in LMICs. Understand which agencies are seeking Medical Physicists for help in LMICs. Understand the potential research funding mechanisms are available to establish academic collaborations with LMIC researchers/physicians. Understand the potential social and emotional benefits for both the physicist and the LMIC partners when collaborations are made. Understand the potential for collaboration with other high-income scientists that can develop as the physicist partners with other large institutions to assist LMICs. Wil Ngwa - A recent United Nations Study reports that in developing countries more people have access to cell phones than toilets. In Africa, only 63% of the population has access to piped water, yet, 93% of Africans have cell phone service. Today, these cell phones, Skype, WhatsApp and other information and communication technologies (ICTs) connect us in unprecedented ways and are increasingly recognized as powerful, indispensable to global health. Thanks to ICTs, there are growing opportunities for Medical Physicists to reach out beyond the bunker and impact the world far beyond, without even having to travel. These growing opportunities in global health for Medical Physicists, powered by ICTs, will be highlighted in this presentation, illustrated by high impact examples/models across the globe that are improving patient safety and healthcare outcomes, saving lives. Learning Objectives: Published definitions of global health and the emerging field of global radiation oncology Learn about the transformative potential of ICTs in global radiation oncology care, research and education with focus on Medical Physics Learn about high impact examples of ICT-powered global radiation oncology and the increasing opportunities for participation by Medical Physicists. Yakov Pipman - The number and scope of volunteer Medical Physics activities in support of low-to-middle income countries has been increasing gradually. This happens through a variety of formal channels and to some extent through less formal but personal initiatives. A good deal of effort is dedicated by many, but many more could be recruited through a structured framework to volunteer. We will look into typical volunteer activities and how they fit with organizations already involved in advancing Medical Physics in LMIC. We will identify the range of these organizational activities and their scope to reveal areas of further need. We will point to a few key features of MPWB ( http://www.mpwb.org ) as a volunteering and collaborating structure and how members can get involved and contribute to these efforts at the grass roots level. The goal is that scarce resources can thus be channeled to complement rather than compete with those already in place. Learning Objectives: Understand the strengths and limitations of various organizations that support Medical Physics efforts in LMIC. Learn about ways to volunteer and contribute to Global Health through a grass roots organization focused on Medical Physics in LMIC. Perry Sprawls - With the growing capability and complexity of medical imaging methods in all countries of the world, the expanding role of medical physicists includes optimizing imaging procedures with respect to image quality, radiation dose, and other conflicting factors. With access to appropriate educational resources local medical physicists in all countries can provide direct clinical support and educational for other medical professionals. This is being supported through the process of Collaborative Teaching that combines the capabilities and experience of medical physicists in countries spanning the spectrum of economic, technological, and clinical development. The supporting resources are on the web at: http://www.sprawls.org/resources . Learning Objectives: Identify the medical physics educational needs to support effective and optimized medical imaging procedures. Use collaborative teaching resources to enhance the role of medical physicists in all countries of the world.« less

  20. WE-H-201-02: Emerging Models and Opportunities in Global Health for Medical Physicists Powered by Information and Communication Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngwa, W.

    The desperate need for radiotherapy in low and mid-income countries (LMICs) has been well documented. Roughly 60 % of the worldwide incidence of cancer occurs in these resource-limited settings and the international community alongside governmental and non-profit agencies have begun publishing reports and seeking help from qualified volunteers. However, the focus of several reports has been on how dire the situation is and the magnitude of the problem, leaving most to feel overwhelmed and unsure as to how to help and why to get involved. This session will help to explain the specific ways that Medical Physicists can uniquely assistmore » in this grand effort to help bring radiotherapy to grossly-underserved areas. Not only can these experts fulfill an important purpose, they also can benefit professionally, academically, emotionally and socially from the endeavor. By assisting others worldwide with their skillset, Medical Physicists can end up helping themselves. Learning Objectives: Understand the need for radiotherapy in LMICs. Understand which agencies are seeking Medical Physicists for help in LMICs. Understand the potential research funding mechanisms are available to establish academic collaborations with LMIC researchers/physicians. Understand the potential social and emotional benefits for both the physicist and the LMIC partners when collaborations are made. Understand the potential for collaboration with other high-income scientists that can develop as the physicist partners with other large institutions to assist LMICs. Wil Ngwa - A recent United Nations Study reports that in developing countries more people have access to cell phones than toilets. In Africa, only 63% of the population has access to piped water, yet, 93% of Africans have cell phone service. Today, these cell phones, Skype, WhatsApp and other information and communication technologies (ICTs) connect us in unprecedented ways and are increasingly recognized as powerful, indispensable to global health. Thanks to ICTs, there are growing opportunities for Medical Physicists to reach out beyond the bunker and impact the world far beyond, without even having to travel. These growing opportunities in global health for Medical Physicists, powered by ICTs, will be highlighted in this presentation, illustrated by high impact examples/models across the globe that are improving patient safety and healthcare outcomes, saving lives. Learning Objectives: Published definitions of global health and the emerging field of global radiation oncology Learn about the transformative potential of ICTs in global radiation oncology care, research and education with focus on Medical Physics Learn about high impact examples of ICT-powered global radiation oncology and the increasing opportunities for participation by Medical Physicists. Yakov Pipman - The number and scope of volunteer Medical Physics activities in support of low-to-middle income countries has been increasing gradually. This happens through a variety of formal channels and to some extent through less formal but personal initiatives. A good deal of effort is dedicated by many, but many more could be recruited through a structured framework to volunteer. We will look into typical volunteer activities and how they fit with organizations already involved in advancing Medical Physics in LMIC. We will identify the range of these organizational activities and their scope to reveal areas of further need. We will point to a few key features of MPWB ( http://www.mpwb.org ) as a volunteering and collaborating structure and how members can get involved and contribute to these efforts at the grass roots level. The goal is that scarce resources can thus be channeled to complement rather than compete with those already in place. Learning Objectives: Understand the strengths and limitations of various organizations that support Medical Physics efforts in LMIC. Learn about ways to volunteer and contribute to Global Health through a grass roots organization focused on Medical Physics in LMIC. Perry Sprawls - With the growing capability and complexity of medical imaging methods in all countries of the world, the expanding role of medical physicists includes optimizing imaging procedures with respect to image quality, radiation dose, and other conflicting factors. With access to appropriate educational resources local medical physicists in all countries can provide direct clinical support and educational for other medical professionals. This is being supported through the process of Collaborative Teaching that combines the capabilities and experience of medical physicists in countries spanning the spectrum of economic, technological, and clinical development. The supporting resources are on the web at: http://www.sprawls.org/resources . Learning Objectives: Identify the medical physics educational needs to support effective and optimized medical imaging procedures. Use collaborative teaching resources to enhance the role of medical physicists in all countries of the world.« less

  1. WE-H-201-04: Models for Developing Medical Physics Educators and Education Programs in the Developing Countries and the Potential Role of US Universities and Individual Medical Physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprawls, P.

    The desperate need for radiotherapy in low and mid-income countries (LMICs) has been well documented. Roughly 60 % of the worldwide incidence of cancer occurs in these resource-limited settings and the international community alongside governmental and non-profit agencies have begun publishing reports and seeking help from qualified volunteers. However, the focus of several reports has been on how dire the situation is and the magnitude of the problem, leaving most to feel overwhelmed and unsure as to how to help and why to get involved. This session will help to explain the specific ways that Medical Physicists can uniquely assistmore » in this grand effort to help bring radiotherapy to grossly-underserved areas. Not only can these experts fulfill an important purpose, they also can benefit professionally, academically, emotionally and socially from the endeavor. By assisting others worldwide with their skillset, Medical Physicists can end up helping themselves. Learning Objectives: Understand the need for radiotherapy in LMICs. Understand which agencies are seeking Medical Physicists for help in LMICs. Understand the potential research funding mechanisms are available to establish academic collaborations with LMIC researchers/physicians. Understand the potential social and emotional benefits for both the physicist and the LMIC partners when collaborations are made. Understand the potential for collaboration with other high-income scientists that can develop as the physicist partners with other large institutions to assist LMICs. Wil Ngwa - A recent United Nations Study reports that in developing countries more people have access to cell phones than toilets. In Africa, only 63% of the population has access to piped water, yet, 93% of Africans have cell phone service. Today, these cell phones, Skype, WhatsApp and other information and communication technologies (ICTs) connect us in unprecedented ways and are increasingly recognized as powerful, indispensable to global health. Thanks to ICTs, there are growing opportunities for Medical Physicists to reach out beyond the bunker and impact the world far beyond, without even having to travel. These growing opportunities in global health for Medical Physicists, powered by ICTs, will be highlighted in this presentation, illustrated by high impact examples/models across the globe that are improving patient safety and healthcare outcomes, saving lives. Learning Objectives: Published definitions of global health and the emerging field of global radiation oncology Learn about the transformative potential of ICTs in global radiation oncology care, research and education with focus on Medical Physics Learn about high impact examples of ICT-powered global radiation oncology and the increasing opportunities for participation by Medical Physicists. Yakov Pipman - The number and scope of volunteer Medical Physics activities in support of low-to-middle income countries has been increasing gradually. This happens through a variety of formal channels and to some extent through less formal but personal initiatives. A good deal of effort is dedicated by many, but many more could be recruited through a structured framework to volunteer. We will look into typical volunteer activities and how they fit with organizations already involved in advancing Medical Physics in LMIC. We will identify the range of these organizational activities and their scope to reveal areas of further need. We will point to a few key features of MPWB ( http://www.mpwb.org ) as a volunteering and collaborating structure and how members can get involved and contribute to these efforts at the grass roots level. The goal is that scarce resources can thus be channeled to complement rather than compete with those already in place. Learning Objectives: Understand the strengths and limitations of various organizations that support Medical Physics efforts in LMIC. Learn about ways to volunteer and contribute to Global Health through a grass roots organization focused on Medical Physics in LMIC. Perry Sprawls - With the growing capability and complexity of medical imaging methods in all countries of the world, the expanding role of medical physicists includes optimizing imaging procedures with respect to image quality, radiation dose, and other conflicting factors. With access to appropriate educational resources local medical physicists in all countries can provide direct clinical support and educational for other medical professionals. This is being supported through the process of Collaborative Teaching that combines the capabilities and experience of medical physicists in countries spanning the spectrum of economic, technological, and clinical development. The supporting resources are on the web at: http://www.sprawls.org/resources . Learning Objectives: Identify the medical physics educational needs to support effective and optimized medical imaging procedures. Use collaborative teaching resources to enhance the role of medical physicists in all countries of the world.« less

  2. Physicists' Forced Migrations under Hitler

    NASA Astrophysics Data System (ADS)

    Beyerchen, Alan

    2011-03-01

    When the Nazis came to power in early 1933 they initiated formal and informal measures that forced Jews and political opponents from public institutions such as universities. Some physicists retired and others went into industry, but most emigrated. International communication and contact made emigration a viable option despite the desperate economic times in the Great Depression. Another wave of emigrations followed the annexation of Austria in 1938. Individual cases as well as general patterns of migration and adaptation to new environments will be examined in this presentation. One important result of the forced migrations was that many of the physicists expelled under Hitler played important roles in strengthening physics elsewhere, often on the Allied side in World War II.

  3. Physicists in the Wild

    NASA Astrophysics Data System (ADS)

    Miller, Michael L.

    2017-09-01

    Startups and large corporations are full of physicists, many hiding in plain sight. Why? I will discuss the strong parallels between basic research in nuclear/particle physics, founding teams at great startups, and leaders at some of the world's largest corporations. How big are these opportunities (mission and capital), and what can we do to help prepare more physicists for such roles? I will provide lessons learned from my winding career that began at the NSCL as a philosophy undergrad, proceeded through a PhD, postdoc and brief stint as faculty, and continued through the founding of an early cloud computing startup, a sale to IBM, and the founding of one of Silicon Valley's most active venture capital firms.

  4. Rejoice in the hubris: useful things biologists could do for physicists

    NASA Astrophysics Data System (ADS)

    Austin, Robert H.

    2014-10-01

    Political correctness urges us to state how wonderful it is to work with biologists and how, just as the lion will someday lie down with the lamb, so will interdisciplinary work, where biologists and physicists are mixed together in light, airy buildings designed to force socialization, give rise to wonderful new science. But it has been said that the only drive in human nature stronger than the sex drive is the drive to censor and suppress, and so I claim that it is OK for physicists and biologists to maintain a wary distance from each other, so that neither one censors or suppresses the wild ideas of the other.

  5. The rationale behind Pierre Duhem's natural classification.

    PubMed

    Bhakthavatsalam, Sindhuja

    2015-06-01

    The central concern of this paper is the interpretation of Duhem's attitude towards physical theory. Based on his view that the classification of experimental laws yielded by theory progressively approaches a natural classification-a classification reflecting that of underlying realities-Duhem has been construed as a realist of sorts in recent literature. Here I argue that his positive attitude towards the theoretic classification of laws had rather to do with the pragmatic rationality of the physicist. Duhem's idea of natural classification was an intuitive idea in the mind of the physicist that had to be affirmed in order to justify the physicist's pursuit of theory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. AFOMP Policy No 5: career progression for clinical medical physicists in AFOMP countries.

    PubMed

    Round, W H; Stefanoyiannis, A P; Ng, K H; Rodriguez, L V; Thayalan, K; Han, Y; Tang, F; Fukuda, S; Srivastava, R; Krisanachinda, A; Shiau, A C; Deng, X

    2015-06-01

    This policy statement, which is the fifth of a series of documents being prepared by the Asia-Oceania Federation of Organizations for Medical Physics Professional Development Committee, gives guidance on how clinical medical physicists' careers should progress from their initial training to career end. It is not intended to be prescriptive as in some AFOMP countries career structures are already essentially defined by employment awards and because such matters will vary considerably from country to country depending on local culture, employment practices and legislation. It is intended to be advisory and set out options for member countries and employers of clinical medical physicists to develop suitable career structures.

  7. Mid-Career PhD Physicists: Academia & Beyond

    NASA Astrophysics Data System (ADS)

    White, Susan

    2017-01-01

    What jobs do mid-career PhD physicists hold? In a first-ever study, we collected data in 2011 from over 1,500 physics PhD recipients from the classes of 1996, 1997, 2000, and 2001. About 45% of the physics PhD recipients in these classes immediately took jobs that were not temporary, and over 40% accepted postdocs. How does taking a postdoc affect mid-career employment? What is the relationship between first job (after any postdocs) and mid-career employment? How do physicists' actual jobs compare with what they thought they would be doing when they graduated? Using our initial employment and mid-career data, I will answer these questions and more.

  8. Rejoice in the hubris: useful things biologists could do for physicists.

    PubMed

    Austin, Robert H

    2014-10-08

    Political correctness urges us to state how wonderful it is to work with biologists and how, just as the lion will someday lie down with the lamb, so will interdisciplinary work, where biologists and physicists are mixed together in light, airy buildings designed to force socialization, give rise to wonderful new science. But it has been said that the only drive in human nature stronger than the sex drive is the drive to censor and suppress, and so I claim that it is OK for physicists and biologists to maintain a wary distance from each other, so that neither one censors or suppresses the wild ideas of the other.

  9. Williams Holistic Approach Model (WHAM): Sustainable University Leadership from the Perspective of a Woman Physicist

    ERIC Educational Resources Information Center

    Williams, Elvira S.

    2010-01-01

    University leadership from career and organizational viewpoints are discussed from the perspective of a woman physicist. Laws of physics are used, through appropriate analogies, as templates for structuring useful life lessons on holistic WHAM leadership. Interactive university skill sets and program policies based on holistic WHAM approaches are…

  10. Why Aren’t Lightsabers Real Yet? Get the Lowdown from a Laser Physicist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunsberger, Maren; Liao, Zhi

    The release of "Star Wars: The Force Awakens" begs the obvious question: Why aren't lightsabers real yet? LLNL science communicator Maren Hunsberger gets the lowdown from laser physicist Zhi Liao in this first installment of "Inside the Lab," a new YouTube series exploring crazy-cool science questions.

  11. My Collaboration with Cuban Physicists

    NASA Astrophysics Data System (ADS)

    Leccabue, Fabrizio

    My first meeting with the scientific Cuban community was in 1969 when the first of four young Cuban physicists, Joaquín Torres Orosco†, came to the Physics Department of Parma University through the `Andrea Levialdi Fellowship,' an Italian bursary promoted by Roberto Fieschi using a fund, subscribed to voluntarily by the Italian physics community.

  12. No Space for Girliness in Physics: Understanding and Overcoming the Masculinity of Physics

    ERIC Educational Resources Information Center

    Götschel, Helene

    2014-01-01

    Allison Gonsalves' article on "women doctoral students' positioning around discourses of gender and competence in physics" explores narratives of Canadian women physicists concerning their strategies to gain recognition as physicists. In my response to her rewarding and inspiring analysis I will reflect on her findings and arguments and…

  13. Mathematics for Physicists and Engineers.

    ERIC Educational Resources Information Center

    Organisation for Economic Cooperation and Development, Paris (France).

    The text is a report of the OEEC Seminar on "The Mathematical Knowledge Required by the Physicist and Engineer" held in Paris, 1961. There are twelve major papers presented: (1) An American Parallel (describes the work of the Panel on Physical Sciences and Engineering of the Committee on the Undergraduate Program in Mathematics of the Mathematical…

  14. You Don't Look Like a Physicist

    ERIC Educational Resources Information Center

    Santos, Antonio Carlos Fontes

    2017-01-01

    "You don't look like a physicist!" "Sorry, this bus only goes to the university, Sir." "Where are you going, sir?" "So, you are a university professor? But a substitute one, aren't you?" "OK, you're a professor, but do you do research?" As a person of color teaching physics in Brazil, those are…

  15. Thoughts of Modern Women in Physics

    ERIC Educational Resources Information Center

    Ainsbury, Liz; Heaney, Libby; Hodges, Vicki; Harkness, Laura; Russell, Laura

    2011-01-01

    In 2007, the Women in Physics Group of the Institute of Physics initiated the Very Early Career Woman Physicist of the Year Award. The award seeks to recognise the outstanding achievements of women physicists who are embarking on a career in physics and to promote the career opportunities open to people with physics qualifications. The prize is…

  16. Collaborative Lab Reports with Google Docs

    ERIC Educational Resources Information Center

    Wood, Michael

    2011-01-01

    Science is a collaborative endeavor. The solitary genius working on the next great scientific breakthrough is a myth not seen much today. Instead, most physicists have worked in a group at one point in their careers, whether as a graduate student, faculty member, staff scientist, or industrial researcher. As an experimental nuclear physicist with…

  17. "Angels & Demons" May Help Physicists Explain What Matters

    ERIC Educational Resources Information Center

    Basken, Paul

    2009-01-01

    It's not every day that scientific researchers need to defend themselves against charges of destroying humanity. And yet a group of several dozen physicists associated with the Large Hadron Collider may be getting pretty good at it--and, at the same time, actively engaging in public education and debate in ways that university scientists have…

  18. Factors Influencing International PhD Students to Study Physics in Australia

    ERIC Educational Resources Information Center

    Choi, Serene H.-J.; Nieminen, Timo A.; Townson, Peter

    2012-01-01

    Since physics research is an activity of an active international community, international visits are a common way for physicists to share scientific knowledge and skills. International mobility of physicists is also important for PhD physics study and research training. We investigated personal and social factors that influenced the decision for…

  19. Fireworks on the 4th of July

    ERIC Educational Resources Information Center

    Barnett, R. Michael

    2013-01-01

    After half a century of waiting, the drama was intense. Physicists slept overnight outside the auditorium to get seats for the seminar at the CERN lab in Geneva, Switzerland. Ten thousand miles away on the other side of the planet, at the world's most prestigious international particle physics conference, hundreds of physicists from every corner…

  20. Moral theories in teaching applied ethics.

    PubMed

    Lawlor, Rob

    2007-06-01

    It is argued, in this paper, that moral theories should not be discussed extensively when teaching applied ethics. First, it is argued that, students are either presented with a large amount of information regarding the various subtle distinctions and the nuances of the theory and, as a result, the students simply fail to take it in or, alternatively, the students are presented with a simplified caricature of the theory, in which case the students may understand the information they are given, but what they have understood is of little or no value because it is merely a caricature of a theory. Second, there is a methodological problem with appealing to moral theories to solve particular issues in applied ethics. An analogy with science is appealed to. In physics there is a hope that we could discover a unified theory of everything. But this is, of course, a hugely ambitious project, and much harder than, for example, finding a theory of motion. If the physicist wants to understand motion, he should try to do so directly. We would think he was particularly misguided if he thought that, to answer this question, he first needed to construct a unified theory of everything.

  1. Comment on ‘Are physicists afraid of mathematics?’

    NASA Astrophysics Data System (ADS)

    Higginson, Andrew D.; Fawcett, Tim W.

    2016-11-01

    In 2012, we showed that the citation count for articles in ecology and evolutionary biology declines with increasing density of equations. Kollmer et al (2015 New J. Phys. 17 013036) claim this effect is an artefact of the manner in which we plotted the data. They also present citation data from Physical Review Letters and argue, based on graphs, that citation counts are unrelated to equation density. Here we show that both claims are misguided. We identified the effects in biology not by visual means, but using the most appropriate statistical analysis. Since Kollmer et al did not carry out any statistical analysis, they cannot draw reliable inferences about the citation patterns in physics. We show that when statistically analysed their data actually do provide evidence that in physics, as in biology, citation counts are lower for articles with a high density of equations. This indicates that a negative relationship between equation density and citations may extend across the breadth of the sciences, even those in which researchers are well accustomed to mathematical descriptions of natural phenomena. We restate our assessment that this is a genuine problem and discuss what we think should be done about it.

  2. Moral theories in teaching applied ethics

    PubMed Central

    Lawlor, Rob

    2007-01-01

    It is argued, in this paper, that moral theories should not be discussed extensively when teaching applied ethics. First, it is argued that, students are either presented with a large amount of information regarding the various subtle distinctions and the nuances of the theory and, as a result, the students simply fail to take it in or, alternatively, the students are presented with a simplified caricature of the theory, in which case the students may understand the information they are given, but what they have understood is of little or no value because it is merely a caricature of a theory. Second, there is a methodological problem with appealing to moral theories to solve particular issues in applied ethics. An analogy with science is appealed to. In physics there is a hope that we could discover a unified theory of everything. But this is, of course, a hugely ambitious project, and much harder than, for example, finding a theory of motion. If the physicist wants to understand motion, he should try to do so directly. We would think he was particularly misguided if he thought that, to answer this question, he first needed to construct a unified theory of everything. PMID:17526691

  3. Astronomers in the Chemist's War

    NASA Astrophysics Data System (ADS)

    Trimble, Virginia L.

    2012-01-01

    World War II, with radar, rockets, and "atomic" bombs was the physicists' war. And many of us know, or think we know, what our more senior colleagues did during it, with Hubble and Hoffleit at Aberdeen; M. Schwarzschild on active duty in Italy; Bondi, Gold, and Hoyle hunkered down in Dunsfeld, Surrey, talking about radar, and perhaps steady state; Greenstein and Henyey designing all-sky cameras; and many astronomers teaching navigation. World War I was The Chemists' War, featuring poison gases, the need to produce liquid fuels from coal on one side of the English Channel and to replace previously-imported dyesstuffs on the other. The talke will focus on what astronomers did and had done to them between 1914 and 1919, from Freundlich (taken prisoner on an eclipse expedition days after the outbreak of hostilities) to Edwin Hubble, returning from France without ever having quite reached the front lines. Other events bore richer fruit (Hale and the National Research Council), but very few of the stories are happy ones. Most of us have neither first nor second hand memories of The Chemists' War, but I had the pleasure of dining with a former Freundlich student a couple of weeks ago.

  4. Learning Each Other's Ropes: Negotiating Interdisciplinary Authenticity

    PubMed Central

    Redish, Edward F.; Cooke, Todd J.

    2013-01-01

    A common feature of the recent calls for reform of the undergraduate biology curriculum has been for better coordination between biology and the courses from the allied disciplines of mathematics, chemistry, and physics. Physics has lagged behind math and chemistry in creating new, biologically oriented curricula, although much activity is now taking place, and significant progress is being made. In this essay, we consider a case study: a multiyear conversation between a physicist interested in adapting his physics course for biologists (E.F.R.) and a biologist interested in including more physics in his biology course (T.J.C.). These extended discussions have led us both to a deeper understanding of each other's discipline and to significant changes in the way we each think about and present our classes. We discuss two examples in detail: the creation of a physics problem on fluid flow for a biology class and the creation of a biologically authentic physics problem on scaling and dimensional analysis. In each case, we see differences in how the two disciplines frame and see value in the tasks. We conclude with some generalizations about how biology and physics look at the world differently that help us navigate the minefield of counterproductive stereotypical responses. PMID:23737626

  5. Thinking in Pictures: John Wheeler, Richard Feynman and the Diagrammatic Approach to Problem Solving

    NASA Astrophysics Data System (ADS)

    Halpern, Paul

    While classical mechanics readily lends itself to sketches, many fields of modern physics, particularly quantum mechanics, quantum field theory, and general relativity, are notoriously hard to envision. Nevertheless, John Wheeler and Richard Feynman, who obtained his PhD under Wheeler, each insisted that diagrams were the most effective way to tackle modern physics questions as well. Beginning with Wheeler and Feynman's work together at Princeton, I'll show how the two influenced each other and encouraged each other's diagrammatic methods. I'll explore the influence on Feynman of not just Wheeler, but also of his first wife Arline, an aspiring artist. I'll describe how Feynman diagrams, introduced in the late 1940s, while first seen as `heretical' in the face of Bohr's complementarity, became standard, essential methods. I'll detail Wheeler's encouragement of his colleague Martin Kruskal's use of special diagrams to elucidate the properties of black holes. Finally, I'll show how each physicist supported art later in life: Wheeler helping to arrange the Putnam Collection of 20th century sculpture at Princeton and Feynman, in a kind of `second career,' becoming an artist himself.

  6. Can Industrial Physics Avoid Being Creatively Destroyed?

    NASA Astrophysics Data System (ADS)

    Hass, Kenneth C.

    2004-03-01

    Opportunities abound for physics and physicists to remain vital contributors to industrial innovation throughout the 21st century. The key questions are whether those trained in physics are sufficiently willing and flexible to continuously enhance their value to their companies by adapting to changing business priorities and whether business leaders are sufficiently enlightened to recognize and exploit the unique skills and creativity that physicists often provide. "Industrial physics" today is more diverse than ever, and answers to the above questions will vary with sector, company, and even individual physicists. Such heterogeneity creates new challenges for the physics community in general, which may need to undergo significant cultural change to maintain strong ties between physicists in industry, academia, and government. Insights from the emerging science of complex systems will be used to emphasize the importance of realistic mental models for the interactions between science and technology and the pathways from scientific advance to successful commercialization. Examples will be provided of the ongoing value of physics-based research in the auto industry and of the growing importance of interdisciplinary approaches to the technical needs of industry.

  7. Medical Physicists and AAPM

    NASA Astrophysics Data System (ADS)

    Amols, Howard

    2006-03-01

    The American Association of Physicists in Medicine (AAPM), a member society of the AIP is the largest professional society of medical physicists in the world with nearly 5700 members. Members operate in medical centers, university and community hospitals, research laboratories, industry, and private practice. Medical physics specialties include radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. The majority of AAPM members are based in hospital departments of radiation oncology or radiology and provide technical support for patient diagnosis and treatment in a clinical environment. Job functions include support of clinical care, calibration and quality assurance of medical devices such as linear accelerators for cancer therapy, CT, PET, MRI, and other diagnostic imaging devices, research, and teaching. Pathways into a career in medical physics require an advanced degree in medical physics, physics, engineering, or closely related field, plus clinical training in one or more medical physics specialties (radiation therapy physics, imaging physics, or radiation safety). Most clinically based medical physicists also obtain certification from the American Board of Radiology, and some states require licensure as well.

  8. Careers in Medical Physics and the American Association of Physicists in Medicine

    NASA Astrophysics Data System (ADS)

    Amols, Howard

    2006-03-01

    The American Association of Physicists in Medicine (AAPM), a member society of the AIP is the largest professional society of medical physicists in the world with nearly 5700 members. Members operate in medical centers, university and community hospitals, research laboratories, industry, and private practice. Medical physics specialties include radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. The majority of AAPM members is based in hospital departments of radiation oncology or radiology and provide technical support for patient diagnosis and treatment in a clinical environment. Job functions include support of clinical care, calibration and quality assurance of medical devices such as linear accelerators for cancer therapy, CT, PET, MRI, and other diagnostic imaging devices, research, and teaching. Pathways into a career in medical physics require an advanced degree in medical physics, physics, engineering, or closely related field, plus clinical training in one or more medical physics specialties (radiation therapy physics, imaging physics, or radiation safety). Most clinically based medical physicists also obtain certification from the American Board of Radiology, and some states require licensure as well.

  9. The role of medical physics in prostate cancer radiation therapy.

    PubMed

    Fiorino, Claudio; Seuntjens, Jan

    2016-03-01

    Medical physics, both as a scientific discipline and clinical service, hugely contributed and still contributes to the advances in the radiotherapy of prostate cancer. The traditional translational role in developing and safely implementing new technology and methods for better optimizing, delivering and monitoring the treatment is rapidly expanding to include new fields such as quantitative morphological and functional imaging and the possibility of individually predicting outcome and toxicity. The pivotal position of medical physicists in treatment personalization probably represents the main challenge of current and next years and needs a gradual change of vision and training, without losing the traditional and fundamental role of physicists to guarantee a high quality of the treatment. The current focus issue is intended to cover traditional and new fields of investigation in prostate cancer radiation therapy with the aim to provide up-to-date reference material to medical physicists daily working to cure prostate cancer patients. The papers presented in this focus issue touch upon present and upcoming challenges that need to be met in order to further advance prostate cancer radiation therapy. We suggest that there is a smart future for medical physicists willing to perform research and innovate, while they continue to provide high-quality clinical service. However, physicists are increasingly expected to actively integrate their implicitly translational, flexible and high-level skills within multi-disciplinary teams including many clinical figures (first of all radiation oncologists) as well as scientists from other disciplines. Copyright © 2016. Published by Elsevier Ltd.

  10. Using non-specialist observers in 4AFC human observer studies

    NASA Astrophysics Data System (ADS)

    Elangovan, Premkumar; Mackenzie, Alistair; Dance, David R.; Young, Kenneth C.; Wells, Kevin

    2017-03-01

    Virtual clinical trials (VCTs) are an emergent approach for rapid evaluation and comparison of various breast imaging technologies and techniques using computer-based modeling tools. Increasingly 4AFC (Four alternative forced choice) virtual clinical trials are used to compare detection performances of different breast imaging modalities. Most prior studies have used physicists and/or radiologists and physicists interchangeably. However, large scale use of statistically significant 4AFC observer studies is challenged by the individual time commitment and cost of such observers, often drawn from a limited local pool of specialists. This work aims to investigate whether non-specialist observers can be used to supplement such studies. A team of five specialist observers (medical physicists) and five non-specialists participated in a 4AFC study containing simulated 2D-mammography and DBT (digital breast tomosynthesis) images, produced using the OPTIMAM toolbox for VCTs. The images contained 4mm irregular solid masses and 4mm spherical targets at a range of contrast levels embedded in a realistic breast phantom background. There was no statistically significant difference between the detection performance of medical physicists and non-specialists (p>0.05). However, non-specialists took longer to complete the study than their physicist counterparts, which was statistically significant (p<0.05). Overall, the results from both observer groups indicate that DBT has a lower detectable threshold contrast than 2D-mammography for both masses and spheres, and both groups found spheres easier to detect than irregular solid masses.

  11. The Smallest Drops of the Hottest Matter? New Investigations at the Relativistic Heavy Ion Collider (493rd Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sickles, Anne

    2014-03-19

    Pool sharks at the billiards hall know that sometimes you aim to rocket the cue ball for a head-on collision, and other times, a mere glance will do. Physicists need to know more than a thing or two about collision geometry too, as they sift through data from the billions of ions that smash together at the Relativistic Heavy Ion Collider (RHIC). Determining whether ions crash head-on or just glance is crucial for the physicists analyzing data to study quark-gluon plasma—the ultra-hot, "perfect" liquid of quarks and gluons that existed more than 13 billion years ago, before the first protonsmore » and neutrons formed. For these physicists, collision geometry data provides insights about quark-gluon plasma's extremely low viscosity and other unusual properties, which are essential for understanding more about the "strong force" that holds together the nucleus, protons, and neutrons of every atom in the universe. Dr. Sickles explains how physicists use data collected at house-sized detectors like PHENIX and STAR to determine what happens before, during, and after individual particle collisions among billions at RHIC. She also explains how the ability to collide different "species" of nuclei at RHIC—including protons and gold ions today and possibly more with a proposed future electron-ion collider upgrade (eRHIC)—enables physicists to probe deeper into the mysteries of quark-gluon plasma and the strong force.« less

  12. The medical physics specialization system in Poland.

    PubMed

    Bulski, Wojciech; Kukołowicz, Paweł; Skrzyński, Witold

    2016-07-01

    This paper presents the situation of the profession of medical physicists in Poland. The official recognition of the profession of medical physicist in Polish legislation was in 2002. In recent years, more and more Universities which have Physics Faculties introduce a medical physics specialty. At present, there are about 15 Universities which offer such programmes. These Universities are able to graduate about 150 medical physicists per year. In 2002, the Ministry of Health introduced a programme of postgraduate specialization in medical physics along the same rules employed in the specialization of physicians in various branches of medicine. Five institutions, mostly large oncology centres, were selected as teaching institutions, based on their experience, the quality of the medical physics professionals, staffing levels, equipment availability, lecture halls, etc. The first cycle of the specialization programme started in 2006, and the first candidates completed their training at the end of 2008, and passed their official state exams in May 2009. As of January 2016, there are 196 specialized medical physicists in Poland. Another about 120 medical physicists are undergoing specialization. The system of training of medical physics professionals in Poland is well established. The principles of postgraduate training and specialization are well defined and the curriculum of the training is very demanding. The programme of specialization was revised in 2011 and is in accordance with EC and EFOMP recommendations. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Thinking Big or Small: Does Mental Abstraction Affect Social Network Organization?

    PubMed Central

    Bacev-Giles, Chantal; Peetz, Johanna

    2016-01-01

    Four studies examined how mental abstraction affects how people perceive their relationships with other people, specifically, how these relationships may be categorized in social groups. We expected that individuals induced to think abstractly would report fewer more global social groups, compared to those induced to think concretely, who would report more specific groups. However, induced abstract mindset did not affect how people structured their social groups (Study 2–4), despite evidence that the mindset manipulation changed the level of abstraction in their thoughts (Study 3) and evidence that it changed how people structured groups for a control condition (household objects, Study 4). Together, these studies suggest that while the way people organize their relationships into groups is malleable; cognitive abstraction does not seem to affect how people categorize their relationships into social groups. PMID:26808086

  14. The Rhetoric of Physics: AN Ethnography of the Research and Writing Processes in a Physics Laboratory.

    NASA Astrophysics Data System (ADS)

    Graves, Heather Ann Brodie

    1992-01-01

    This dissertation explores the extent to which rhetoric plays a role in the research and writing processes of physicists. It seeks to join the on-going conversation in the rhetoric of inquiry about the ways in which rhetorical forces shape all knowledge systems. Based on data collected during a six-month ethnography in a thin films laboratory, this study argues that these physicists use rhetoric in all stages of the knowledge creation process. After following the experimental process through all its stages from the inception of an experiment through to publication, this study maps out the types of heuristic devices employed by the physicists as they analyzed, interpreted, and presented their research data in a persuasive scientific article. In light of the insights gained from studying the dynamic interactions between physicists, this dissertation also comments on the theoretical and philosophical debates under discussion in the rhetoric of inquiry and the rhetoric of science. It examines current theories of language (as expressed by rhetoricians, critical theorists, and the physicists in this laboratory) to explore the relationship between reality and language, the role that rhetoric plays in knowledge creation in physics, and the ways in which reality and knowledge may be socially constructed. It concludes that these physicists use rhetorical invention strategies to interpret and present their data. It also argues that scientific knowledge is subject to rhetorical forces because it deals with contingent affairs--phenomena about which scientists advance propositions which appear to be true but about which there is no way to gain absolute certainty or truth. Finally, it concludes that rhetoric both is and is not epistemic in the physics research studied here, and it argues that instead of asking "Is rhetoric epistemic?" perhaps we might shift our attention to inquiring "When is rhetoric epistemic?".

  15. SU-F-E-16: A Specific Training Package for Medical Physicists in Support to Nuclear and Radiological Emergency Situations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meghzifene, A; Berris, T

    Purpose: To provide the professional medical physicists with adequate competencies and skills in order to help them get prepared to support Nuclear or Radiological Emergency (NRE) situations. Methods: Although clinical medical physicists working have in-depth knowledge in radiation dosimetry, including dose reconstruction and dose measurements, they are usually not involved in NRE situations. However, in a few instances where medical physicists were involved in NREs, it appeared that many lacked specific knowledge and skills that are required in such situations. This lack of specific knowledge and skills is probably due to the fact that most current medical physics curricula domore » not include a specific module on this topic. As a response to this finding, the IAEA decided to initiate a project to develop a specific training package to help prepare medical physicists to support NRE situations. The training package was developed with the kind support of the Government of Japan and in collaboration with Fukushima Medical University (FMU) and the National Institute of Radiological Sciences (NIRS). Results: The first International Workshop to test the training package was held in Fukushima, Japan in June 2015. It consisted of lectures, demonstrations, simulation, role play, and practical sessions followed by discussions. The training was delivered through 14 modules which were prepared with the support of 12 lecturers. A knowledge assessment test was done before the workshop, followed by the same test done at the end of the Workshop, to assess the knowledge acquired during the training. Conclusion: The Workshop was successfully implemented. The overall rating of the workshop by the participants was excellent and all participants reported that they acquired a good understanding of the main issues that are relevant to medical physics support in case of NRE situations. They are expected to disseminate the knowledge to other medical physicists in their countries.« less

  16. TU-F-213AB-01: Diagnostic Workforce and Manpower Survey.

    PubMed

    Mills, M; Nickoloff, E

    2012-06-01

    Since AAPM Report No. 33 on Diagnostic Radiology Physics staffing is more than 20 years old, the Diagnostic Work and Workforce Study Subcommittee (DWWSS) of the Professional Council was formed to conduct a new study and update the data. The intent of the DWWSS study has two goals. First, it wanted to assess the number of FTE diagnostic physicists needed to support the QC, acceptance tests, radiation safety and other clinical functions for various imaging modalities, such as: CT scanners, MRI units, angiography rooms, ultrasound units, nuclear medicine imagers and other equipment. For example, the preliminary results indicate that the median annual physics support for one CT scanner is 0.007 FTE or 12.6 hours per unit. Second, the study wanted to provide an estimate of the cost of these physics services in terms of a fraction of a dollar per patient examination performed. For example, the cost for physics support of CT would be $0.27 for each CT procedure. This information would be similar to the Abt study conducted in Radiation Oncology. Radiation therapy physicists have utilized the Abt studies to generate re-imbursement for physics services and to justify financially the cost of their work efforts. Appropriate recognition for physics efforts in Diagnostic Radiology has never been properly quantified nor appreciated. With all the current and future changes occurring in healthcare, the information from the DWWSS survey could be important to the future of diagnostic physicists. Although diagnostic physicists are involved with many other activities such as teaching of residents and research, information about the clinical equipment support effort could be used to assess diagnostic physics staffing needs. The goals of the DWWSS study and the preliminary findings will be presented. 1. Present the goals of the DWWSS Diagnostic Physicist Survey.2. Present potential benefits to the AAPM members from this survey.3. Present findings from the preliminary analysis of the survey. © 2012 American Association of Physicists in Medicine.

  17. The role of the health physicist in nuclear security.

    PubMed

    Waller, Edward J; van Maanen, Jim

    2015-04-01

    Health physics is a recognized safety function in the holistic context of the protection of workers, members of the public, and the environment against the hazardous effects of ionizing radiation, often generically designated as radiation protection. The role of the health physicist as protector dates back to the Manhattan Project. Nuclear security is the prevention and detection of, and response to, criminal or intentional unauthorized acts involving or directed at nuclear material, other radioactive material, associated facilities, or associated activities. Its importance has become more visible and pronounced in the post 9/11 environment, and it has a shared purpose with health physics in the context of protection of workers, members of the public, and the environment. However, the duties and responsibilities of the health physicist in the nuclear security domain are neither clearly defined nor recognized, while a fundamental understanding of nuclear phenomena in general, nuclear or other radioactive material specifically, and the potential hazards related to them is required for threat assessment, protection, and risk management. Furthermore, given the unique skills and attributes of professional health physicists, it is argued that the role of the health physicist should encompass all aspects of nuclear security, ranging from input in the development to implementation and execution of an efficient and effective nuclear security regime. As such, health physicists should transcend their current typical role as consultants in nuclear security issues and become fully integrated and recognized experts in the nuclear security domain and decision making process. Issues regarding the security clearances of health physics personnel and the possibility of insider threats must be addressed in the same manner as for other trusted individuals; however, the net gain from recognizing and integrating health physics expertise in all levels of a nuclear security regime far outweighs any negative aspects. In fact, it can be argued that health physics is essential in achieving an integrated approach toward nuclear safety, security, and safeguards.

  18. The Role of the Health Physicist in Nuclear Security

    PubMed Central

    Waller, Edward J.; van Maanen, Jim

    2015-01-01

    Abstract Health physics is a recognized safety function in the holistic context of the protection of workers, members of the public, and the environment against the hazardous effects of ionizing radiation, often generically designated as radiation protection. The role of the health physicist as protector dates back to the Manhattan Project. Nuclear security is the prevention and detection of, and response to, criminal or intentional unauthorized acts involving or directed at nuclear material, other radioactive material, associated facilities, or associated activities. Its importance has become more visible and pronounced in the post 9/11 environment, and it has a shared purpose with health physics in the context of protection of workers, members of the public, and the environment. However, the duties and responsibilities of the health physicist in the nuclear security domain are neither clearly defined nor recognized, while a fundamental understanding of nuclear phenomena in general, nuclear or other radioactive material specifically, and the potential hazards related to them is required for threat assessment, protection, and risk management. Furthermore, given the unique skills and attributes of professional health physicists, it is argued that the role of the health physicist should encompass all aspects of nuclear security, ranging from input in the development to implementation and execution of an efficient and effective nuclear security regime. As such, health physicists should transcend their current typical role as consultants in nuclear security issues and become fully integrated and recognized experts in the nuclear security domain and decision making process. Issues regarding the security clearances of health physics personnel and the possibility of insider threats must be addressed in the same manner as for other trusted individuals; however, the net gain from recognizing and integrating health physics expertise in all levels of a nuclear security regime far outweighs any negative aspects. In fact, it can be argued that health physics is essential in achieving an integrated approach toward nuclear safety, security, and safeguards. PMID:25706142

  19. Medical physics in 2020: will we still be relevant?

    PubMed

    Ng, K H

    2008-06-01

    From the time when Roentgen and other physicists made the discoveries which led to the development of radiology, radiotherapy and nuclear medicine, medical physicists have played a pivotal role in the development of new technologies that have revolutionized the way medicine is practiced today. Medical physicists have been transforming scientific advances in the research laboratories to improving the quality of life for patients; indeed innovations such as computed tomography, positron emission tomography and linear accelerators which collectively have improved the medical outcomes for millions of people. In order for radiation-delivery techniques to improve in targeting accuracy, optimal dose distribution and clinical outcome, convergence of imaging and therapy is the key. It is timely for these two specialties to work closer again. This can be achieved by means of cross-disciplinary research, common conferences and workshops, and collaboration in education and training for all. The current emphasis is on enhancing the specific skill development and competency of a medical physicist at the expense of their future roles and opportunities. This emphasis is largely driven by financial and political pressures for optimizing limited resources in health care. This has raised serious concern on the ability of the next generation of medical physicists to respond to new technologies. In addition in the background loom changes of tsunami proportion. The clearly defined boundaries between the different disciplines in medicine are increasingly blurred and those between diagnosis, therapy and management are also following suit. The use of radioactive particles to treat tumours using catheters, high-intensity focused ultrasound, electromagnetic wave ablation and photodynamic therapy are just some areas challenging the old paradigm. The uncertainty and turf battles will only explode further and medical physicists will not be spared. How would medical physicists fit into this changing scenario? We are in the midst of molecular revolution. Are we prepared to explore the newer technologies such as nanotechnology, drug discovery, pre-clinical imaging, optical imaging and biomedical informatics? How are our curricula adapting to the changing needs? We should remember the late Professor John Cameron who advocated imagination and creativity - these important attributes will make us still relevant in 2020 and beyond. To me the future is clear: "To achieve more, we should imagine together."

  20. Using the case study teaching method to promote college students' critical thinking skills

    NASA Astrophysics Data System (ADS)

    Terry, David Richard

    2007-12-01

    The purpose of this study was to examine general and domain-specific critical thinking skills in college students, particularly ways in which these skills might be increased through the use of the case study method of teaching. General critical thinking skills were measured using the Watson-Glaser Critical Thinking Appraisal (WGCTA) Short Form, a forty-item paper-and-pencil test designed to measure important abilities involved in critical thinking, including inference, recognition of assumptions, deduction, interpretation, and evaluation of arguments. The ability to identify claims and support those claims with evidence is also an important aspect of critical thinking. I developed a new instrument, the Claim and Evidence Assessment Tool (CEAT), to measure these skills in a domain-specific manner. Forty undergraduate students in a general science course for non-science majors at a small two-year college in the northeastern United States experienced positive changes in general critical thinking according to results obtained using the Watson-Glaser Critical Thinking Appraisal (WGCTA). In addition, the students showed cumulative improvement in their ability to identify claims and evidence, as measured by the Claim and Evidence Assessment Tool (CEAT). Mean score on the WGCTA improved from 22.15 +/- 4.59 to 23.48 +/- 4.24 (out of 40), and the mean CEAT score increased from 14.98 +/- 3.28 to 16.20 +/- 3.08 (out of 24). These increases were modest but statistically and educationally significant. No differences in claim and evidence identification were found between students who learned about specific biology topics using the case study method of instruction and those who were engaged in more traditional instruction, and the students' ability to identify claims and evidence and their factual knowledge showed little if any correlation. The results of this research were inconclusive regarding whether or not the case study teaching method promotes college students' general or domain-specific critical thinking skills, and future research addressing this issue should probably utilize larger sample sizes and a pretest-posttest randomized experimental design.

  1. An Alternative to Traditional Developmental Thinking.

    ERIC Educational Resources Information Center

    Tebelius, Ulla

    1992-01-01

    A Swedish folk high school program was focused on practicing an alternative style of living in a resource-saving and small-scale technology way. Emphasis was on examining the Western way of living from an ecological, human, and global perspective. (SK)

  2. Scientific Productivity and Academic Promotion: A Study on French and Italian Physicists. NBER Working Paper No. 16341

    ERIC Educational Resources Information Center

    Lissoni, Francesco; Mairesse, Jacques; Montobbio, Fabio; Pezzoni, Michele

    2010-01-01

    The paper examines the determinants of scientific productivity (number of articles and journals' impact factor) for a panel of about 3600 French and Italian academic physicists active in 2004-05. Endogeneity problems concerning promotion and productivity are addressed by specifying a generalized Tobit model, in which a selection probit equation…

  3. A proposal to study the experience of female scientists in Mexico: Physicists as a case study

    NASA Astrophysics Data System (ADS)

    Martínez, Amalia; Blázquez, Norma; Gómez, Yolanda; Vales, Caridad; Meza-Montes, Lilia

    2013-03-01

    Although the design of public policies to support and improve the status and opportunities for female scientists requires reliable data, studies of this type have not been done in Mexico. We present a proposal to conduct such a study at the national level, with physicists as a test group.

  4. SPIRES (STANFORD PHYSICS INFORMATION RETRIEVAL SYSTEM). ANNUAL REPORT.

    ERIC Educational Resources Information Center

    PARKER, EDWIN B.

    SPIRES WAS PLANNED AS A FIVE-YEAR EFFORT TO DEVELOP AND STUDY AN EXPERIMENTAL SYSTEM FOR PROVIDING FOR THE SCIENTIFIC INFORMATION NEEDS OF PHYSICISTS AT STANFORD. THERE ARE TWO COMPONENTS TO THE SPIRES PROJECT. ONE IS TO STUDY THE INFORMATION NEEDS AND INFORMATION-SEEKING BEHAVIOR OF A USER POPULATION OF ABOUT 100 HIGH- ENERGY PHYSICISTS. DETAILS…

  5. Women and Men of the Manhattan Project

    ERIC Educational Resources Information Center

    Marshall, Jill; Herzenber, Caroline; Howes, Ruth; Weaver, Ellen; Gans, Dorothy

    2010-01-01

    In the early 1990s Ruth Howes, a nuclear physicist on the faculty at Ball State University, and Caroline Herzenberg, a nuclear physicist at Argonne National Laboratory, were asked to write a chapter on the Manhattan Project for a volume on women working on weapons development for the military. Realizing that they knew very little about the women…

  6. Women Physicists Speak Again. AIP Report, Number R-441

    ERIC Educational Resources Information Center

    Ivie, Rachel; Guo, Stacy

    2006-01-01

    Across the world, women in physics have much in common. In almost all countries, women are largely under represented in physics. In the majority of countries for which data was obtainable for this report from reliable statistical agencies, women earned no more than one-fifth of the PhDs in physics. Many women physicists across the world also…

  7. Why Aren’t Lightsabers Real Yet? Get the Lowdown from a Laser Physicist

    ScienceCinema

    Hunsberger, Maren; Liao, Zhi

    2018-06-22

    The release of "Star Wars: The Force Awakens" begs the obvious question: Why aren't lightsabers real yet? LLNL science communicator Maren Hunsberger gets the lowdown from laser physicist Zhi Liao in this first installment of "Inside the Lab," a new YouTube series exploring crazy-cool science questions.

  8. Educational Pathways of Black Women Physicists: Stories of Experiencing and Overcoming Obstacles in Life

    ERIC Educational Resources Information Center

    Rosa, Katemari; Mensah, Felicia Moore

    2016-01-01

    This is an empirical study on the underrepresentation of people of color in scientific careers. Grounded in critical race theory, the paper examines the lived experiences of six Black women physicists and addresses obstacles faced in their career paths and strategies used to overcome these obstacles. Data for this study were collected through…

  9. Critique and Fiction: Doing Science Right in Rural Education Research

    ERIC Educational Resources Information Center

    Howley, Craig B.

    2006-01-01

    This essay explains the relevance of critique in rural education to novels about rural places. The most important quoted passage in the essay is from the noted physicist Richard Feynman: "Science is the belief in the ignorance of experts." Novelist-physicist C. P. Snow, historian Henry Adams, and poet and student-of-mathematics Kelly Cherry also…

  10. Higgs Boson: god particle or divine comedy?

    NASA Astrophysics Data System (ADS)

    Rangacharyulu, Chary

    2013-10-01

    While particle physicists around the world rejoice the announcement of discovery of Higgs particle as a momentous event, it is also an opportune moment to assess the physicists' conception of nature. Particle theorists, in their ingenious efforts to unravel mysteries of the physical universe at a very fundamental level, resort to macroscopic many body theoretical methods of solid state physicists. Their efforts render the universe a superconductor of correlated quasi-particle pairs. Experimentalists, devoted to ascertain the elementary constituents and symmetries, depend heavily on numerical simulations based on those models and conform to theoretical slang in planning and interpretation of measurements . It is to the extent that the boundaries between theory/modeling and experiment are blurred. Is it possible that they are meandering in Dante's Inferno?

  11. Half Century of Black-Hole Theory: From Physicists' Purgatory to Mathematicians' Paradise

    NASA Astrophysics Data System (ADS)

    Carter, Brandon

    2006-06-01

    Although implicit in the discovery of the Schwarzschild solution 40 years earlier, the issues raised by the theory of what are now known as black holes were so unsettling to physicists of Einstein's generation that the subject remained in a state of semiclandestine gestation until his demise. That turning point — just half a century after Einstein's original foundation of relativity theory, and just half a century ago today — can be considered to mark the birth of black hole theory as a subject of systematic development by physicists of a new and less inhibited generation, whose enthusastic investigations have revealed structures of unforeseen mathematical beauty, even though questions about the physical significance of the concomitant singularities remain controversial.

  12. Device physics vis-à-vis fundamental physics in Cold War America: the case of quantum optics.

    PubMed

    Bromberg, Joan Lisa

    2006-06-01

    Historians have convincingly shown the close ties U.S. physicists had with the military during the Cold War and have raised the question of whether this alliance affected the content of physics. Some have asserted that it distorted physics, shifting attention from fundamental problems to devices. Yet the papers of physicists in quantum electronics and quantum optics, fields that have been exemplary for those who hold the distortion thesis, show that the same scientists who worked on military devices simultaneously pursued fundamental and foundational topics. This essay examines one such physicist, Marlan O. Scully, with attention to both his extensive foundational studies and the way in which his applied and basic researches played off each other.

  13. [Drug innovation and reverse thinking].

    PubMed

    Guo, Zong-ru

    2016-03-01

    Drug innovation involves an individual molecular operation, and every new molecular entity features a hard-duplicated track of R&D. The transformation from an active compound to a new medicine carries out almost in a chaotic system devoid of regularity and periodic alteration. Since new millennium the dominant position in drug innovation has been occupied by the first-in-class drugs, yet the number of launched follow-on drugs has been distinctly decreased. The innovation of first-in-class drugs is characterized by a high risk throughout the whole process. To achieve initiative and uniqueness of drug discovery, the strategy and method of the inverse thinking might be a feasible way, because the inertial and conformity thinkings in drug discovery normally lead to ensemble with similar drug category. However, the study from the flipside or opposite of things(e.g. targets or effects) brand new routes might be opened. This article is to describe the strategy of reverse thinking in drug discovery by some examples including opioid receptor antagonist eluxadoline, HSP90 activator, h ERG channel agonist, covalent drugs, and ultra-small drugs.

  14. Open Source and Design Thinking at NASA: A Vision for Future Software

    NASA Technical Reports Server (NTRS)

    Trimble, Jay

    2017-01-01

    NASA Mission Control Software for the Visualization of data has historically been closed, accessible only to small groups of flight controllers, often bound to a specific mission discipline such as flight dynamics, health and status or mission planning. Open Mission Control Technologies (MCT) provides new capability for NASA mission controllers and, by being fully open source, opens up NASA software for the visualization of mission data to broader communities inside and outside of NASA. Open MCT is the product of a design thinking process within NASA, using participatory design and design sprints to build a product that serves users.

  15. The Myth of Gender Neutrality

    NASA Astrophysics Data System (ADS)

    Dancy, Melissa

    2004-09-01

    It is well known that women are underrepresented in physics. The prevailing view is that there is a "leaky pipeline" of female physicists which has lead to a focus on providing mentors and increasing the opportunity for girls to experience science. The assumption is that the numbers of women in physics can be increased by integrating women into the existing structure. Although it may seem reasonable, women are making only small gains in participation levels. In this paper, I explore the idea that there is no leaky pipeline. Rather, the environment is fundamentally "male" and women will never be equally represented until fundamental changes are made in both our educational system and in the cultural assumptions of our physics community.

  16. Explorer : des clés pour mieux comprendre la matière

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, Jonathan R.

    2011-02-14

    Will the LHC upset theories of the infinitely small? Physicists would like the accelerator to shake the standard model. This theory of elementary particles and forces leaves many gray areas. The LHC and its experiments have been designed to enlighten them. [Le LHC va-t-il bouleverser les théories de l'infiniment petit ? Les physiciens aimeraient que l'accélérateur fasse trembler le modèle standard. Cette théorie des particules élémentaires et des forces laisse de nombreuses zones d'ombre. Le LHC et ses expériences ont été conçus pour les éclairer.

  17. Fostering critical thinking and collaborative learning skills among medical students through a research protocol writing activity in the curriculum.

    PubMed

    Sahoo, Soumendra; Mohammed, Ciraj Ali

    2018-06-01

    This intervention was aimed to analyse the effect of academic writing and journal critiquing as educational approaches in improving critical thinking and collaborative learning among undergraduate medical students. A research proposal writing format was created for the 4th year medical students of Melaka Manipal Medical College, Malaysia during their ophthalmology clinical postings. The students worked in small groups and developed research protocols through an evidence based approach. This was followed by writing reflective summaries in academic portfolios about the activity undertaken. A mixed methods study was designed to explore the possible role of collaborative research proposal writing in enhancing critical thinking and collaborative learning. Analysis of reflections submitted by 188 medical students after the intervention indicate that majority of them found an improvement in their skills of critical thinking and collaborative learning as a result of research protocol writing. All participants agreed that the model helped in applying concepts to new situations in the form of designing their own study, which reflected in enhanced higher order cognitive skills. This study shows that the introduction of a structured module in the core medical curriculum that focuses on research writing skills embedded with collaborative and reflective practices can enhance collaborative learning, critical thinking, and reasoning among medical students.

  18. Gut feelings, deliberative thought, and paranoid ideation: A study of experiential and rational reasoning

    PubMed Central

    Freeman, Daniel; Evans, Nicole; Lister, Rachel

    2012-01-01

    Rapid intuitive hunches or gut feelings may be a compelling source of evidence for paranoid ideas. Conversely, a failure to apply effortful analytic thinking may contribute to the persistence of such thoughts. Our main aim was to examine for the first time the associations of persecutory thinking with experiential and rational thinking styles. Five hundred individuals recruited from the general population completed self-report assessments of current persecutory ideation, general reasoning styles and personality traits. Persecutory ideation was independently associated with greater use of experiential reasoning and less use of rational reasoning. The correlations were small. Persecutory ideation was also positively associated with neuroticism and negatively correlated with extraversion, agreeableness and conscientiousness. There was no evidence of an interaction between neuroticism and experiential reasoning in the prediction of paranoia, but high experiential reasoning in the context of low rational reasoning was particularly associated with persecutory ideation. Overall, the study provides rare evidence of self-reported general reasoning styles being associated with delusional ideation. Perceived reliance on intuition is associated with paranoid thinking, while perceived reliance on deliberation is associated with fewer such thoughts. The dual process theory of reasoning may provide a framework to contribute to the understanding of paranoid thinking. PMID:22406393

  19. Predictors of response to pain management treatment. The role of family environment and changes in cognitive processes.

    PubMed

    Tota-Faucette, M E; Gil, K M; Williams, D A; Keefe, F J; Goli, V

    1993-06-01

    The purpose of the present study was to examine factors that influence individual differences in treatment response after multidisciplinary pain management. Pre-post assessment design. 119 chronic pain inpatients. Outcome measures included pain report from the McGill Pain Questionnaire, emotional distress from the Symptom Checklist-90 Revised, and activity discomfort from the Activity Discomfort Scale. Process measures included the Family Environment Scale, the Coping Strategies Questionnaire, and the Inventory of Negative Thoughts in Response to Pain. Results indicated that pretreatment family environment, cognitive coping strategies, and negative thinking accounted for small yet significant proportions of the variance in outcome. The proportion of variance accounted for by the changes in cognitive coping and negative thinking was somewhat higher. An increase in pain control and rational thinking was related to decreases in depression and anxiety, pain report, and activity discomfort. Decreases in negative social cognitions were related to decreased depression at posttreatment. Changes in coping strategies and negative thinking may be important mechanisms related to improvement, or lack of improvement, in a range of outcome measures. Patients from families who are controlling and disorganized, and patients high on negative thinking at pretreatment may represent high-risk groups in need of further individually tailored interventions.

  20. Gut feelings, deliberative thought, and paranoid ideation: a study of experiential and rational reasoning.

    PubMed

    Freeman, Daniel; Evans, Nicole; Lister, Rachel

    2012-05-15

    Rapid intuitive hunches or gut feelings may be a compelling source of evidence for paranoid ideas. Conversely, a failure to apply effortful analytic thinking may contribute to the persistence of such thoughts. Our main aim was to examine for the first time the associations of persecutory thinking with experiential and rational thinking styles. Five hundred individuals recruited from the general population completed self-report assessments of current persecutory ideation, general reasoning styles and personality traits. Persecutory ideation was independently associated with greater use of experiential reasoning and less use of rational reasoning. The correlations were small. Persecutory ideation was also positively associated with neuroticism and negatively correlated with extraversion, agreeableness and conscientiousness. There was no evidence of an interaction between neuroticism and experiential reasoning in the prediction of paranoia, but high experiential reasoning in the context of low rational reasoning was particularly associated with persecutory ideation. Overall, the study provides rare evidence of self-reported general reasoning styles being associated with delusional ideation. Perceived reliance on intuition is associated with paranoid thinking, while perceived reliance on deliberation is associated with fewer such thoughts. The dual process theory of reasoning may provide a framework to contribute to the understanding of paranoid thinking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Review of teaching methods and critical thinking skills.

    PubMed

    Kowalczyk, Nina

    2011-01-01

    Critical information is needed to inform radiation science educators regarding successful critical thinking educational strategies. From an evidence-based research perspective, systematic reviews are identified as the most current and highest level of evidence. Analysis at this high level is crucial in analyzing those teaching methods most appropriate to the development of critical thinking skills. To conduct a systematic literature review to identify teaching methods that demonstrate a positive effect on the development of students' critical thinking skills and to identify how these teaching strategies can best translate to radiologic science educational programs. A comprehensive literature search was conducted resulting in an assessment of 59 full reports. Nineteen of the 59 reports met inclusion criteria and were reviewed based on the level of evidence presented. Inclusion criteria included studies conducted in the past 10 years on sample sizes of 20 or more individuals demonstrating use of specific teaching interventions for 5 to 36 months in postsecondary health-related educational programs. The majority of the research focused on problem-based learning (PBL) requiring standardized small-group activities. Six of the 19 studies focused on PBL and demonstrated significant differences in student critical thinking scores. PBL, as described in the nursing literature, is an effective teaching method that should be used in radiation science education. ©2011 by the American Society of Radiologic Technologists.

  2. Assessing Critical Thinking Outcomes of Dental Hygiene Students Utilizing Virtual Patient Simulation: A Mixed Methods Study.

    PubMed

    Allaire, Joanna L

    2015-09-01

    Dental hygiene educators must determine which educational practices best promote critical thinking, a quality necessary to translate knowledge into sound clinical decision making. The aim of this small pilot study was to determine whether virtual patient simulation had an effect on the critical thinking of dental hygiene students. A pretest-posttest design using the Health Science Reasoning Test was used to evaluate the critical thinking skills of senior dental hygiene students at The University of Texas School of Dentistry at Houston Dental Hygiene Program before and after their experience with computer-based patient simulation cases. Additional survey questions sought to identify the students' perceptions of whether the experience had helped develop their critical thinking skills and improved their ability to provide competent patient care. A convenience sample of 31 senior dental hygiene students completed both the pretest and posttest (81.5% of total students in that class); 30 senior dental hygiene students completed the survey on perceptions of the simulation (78.9% response rate). Although the results did not show a significant increase in mean scores, the students reported feeling that the use of virtual patients was an effective teaching method to promote critical thinking, problem-solving, and confidence in the clinical realm. The results of this pilot study may have implications to support the use of virtual patient simulations in dental hygiene education. Future research could include a larger controlled study to validate findings from this study.

  3. Thinking About Your Thyroid: Get to Know This Small But Mighty Gland

    MedlinePlus

    ... and older has an under-active thyroid, or hypothyroidism. When thyroid glands don’t produce enough hormones, ... because the symptoms are similar to other conditions. “Hypothyroidism can be very subtle,” says NIH’s Dr. Monica ...

  4. Workplace skills and the skills gaps related to employee critical thinking ability and science education curriculum

    NASA Astrophysics Data System (ADS)

    Alexander, William A.

    In recent years, business and industry have been vocal critics of education. Critics complain the American workforce, particularly young people, are deficient in workplace skills. A survey of 500 randomly selected Ohio businesses was used to determine opinions of respondents related to workplace skills gaps, rising skill levels, and level and type of critical thinking used on the job by all employees and entry-level employees. Four of 18 science outcomes promoted by the Ohio Department of Education had an application in business and these required critical-thinking skills to complete. These four formed the foundation in the survey because they provided a connection between thinking skills required on the Ohio 12 th Grade Proficiency Test and those required on the job. Pearson correlation coefficient was used to identify correlation between responses. The alpha level was p ≤ .05. Stepwise multiple linear regression analysis was conducted to identify significant (p ≤ .05) relationships between variables as represented by responses. In addition, one version of the Science Section of the Ohio 12th Grade Proficiency Test was analyzed for use of critical thinking using the SCAN's critical-thinking attributes as a standard. There were several findings related to workplace skills and critical thinking. Only 17.1% of respondents indicated dissatisfaction with the basic academic skill level of their employees. A majority (71.1%) of responding businesses perceived a lack of work ethic as more important than deficient academic skills. Only 17.1% of respondents reported the skill level of their entry-level employees was rising. Approximately 1/3 of responding businesses required no critical thinking at all from their entry-level employees. Small businesses were significantly more likely to require higher levels of critical thinking from their entry level employees than larger businesses. Employers who reported rising skill levels in entry-level employees required all of their employees to exhibit critical thinking similar to that required on the four tested outcomes on the Science Section, Ohio 12th Grade Proficiency Test.

  5. TU-G-213-00: The International Electrotechnical Commission (IEC): What Is It and Why Should Medical Physicists Care?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The International Electrotechnical Commission (IEC) writes standards that manufacturers of electrical equipment must comply with. Medical electrical equipment, such as medical imaging, radiation therapy, and radiation dosimetry devices, fall under Technical Committee 62. Of particular interest to medical physicists are the standards developed within Subcommittees (SC) 62B, which addresses diagnostic radiological imaging equipment, and 62C, which addresses equipment for radiation therapy, nuclear medicine and dosimetry. For example, a Working Group of SC 62B is responsible for safety and quality assurance standards for CT scanners and a Working Group of SC 62C is responsible for standards that set requirements for dosimetricmore » safety and accuracy of linacs and proton accelerators. IEC standards thus have an impact on every aspect of a medical physicist’s job, including equipment testing, shielding design, room layout, and workflow. Consequently, it is imperative that US medical physicists know about existing standards, as well as have input on those under development or undergoing revision. The structure of the IEC and current standards development work will be described in detail. The presentation will explain how US medical physicists can learn about IEC standards and contribute to their development. Learning Objectives: Learn about the structure of the IEC and the influence that IEC standards have on the design of equipment for radiology and radiation therapy. Learn about the mechanisms by which the US participates in the development and revision of standards. Understand the specific requirements of several standards having direct relevance to diagnostic and radiation therapy physicists.« less

  6. Curriculum for education and training of medical physicists in nuclear medicine: recommendations from the EANM Physics Committee, the EANM Dosimetry Committee and EFOMP.

    PubMed

    Del Guerra, Alberto; Bardies, Manuel; Belcari, Nicola; Caruana, Carmel J; Christofides, Stelios; Erba, Paola; Gori, Cesare; Lassmann, Michael; Lonsdale, Markus Nowak; Sattler, Bernhard; Waddington, Wendy

    2013-03-01

    To provide a guideline curriculum covering theoretical and practical aspects of education and training for Medical Physicists in Nuclear Medicine within Europe. National training programmes of Medical Physics, Radiation Physics and Nuclear Medicine physics from a range of European countries and from North America were reviewed and elements of best practice identified. An independent panel of experts was used to achieve consensus regarding the content of the curriculum. Guidelines have been developed for the specialist theoretical knowledge and practical experience required to practice as a Medical Physicist in Nuclear Medicine in Europe. It is assumed that the precondition for the beginning of the training is a good initial degree in Medical Physics at master level (or equivalent). The Learning Outcomes are categorised using the Knowledge, Skill and Competence approach along the lines recommended by the European Qualifications Framework. The minimum level expected in each topic in the theoretical knowledge and practical experience sections is intended to bring trainees up to the requirements expected of a Medical Physicist entering the field of Nuclear Medicine. This new joint EANM/EFOMP European guideline curriculum is a further step to harmonise specialist training of Medical Physicists in Nuclear Medicine within Europe. It provides a common framework for national Medical Physics societies to develop or benchmark their own curricula. The responsibility for the implementation and accreditation of these standards and guidelines resides within national training and regulatory bodies. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. Physicists' views on hadrontherapy: a survey of members of the Italian Association of Medical Physics (AIFM).

    PubMed

    Giandini, Tommaso; Tenconi, Chiara; Carrara, Mauro; Ciocca, Mario; Russo, Stefania; Panaino, Costanza M V; Cattani, Federica; Ciardo, Delia; Morlino, Sara; Avuzzi, Barbara; Bedini, Nice; Villa, Sergio; Marvaso, Giulia; Romanelli, Paola; Hasegawa, Azusa; Vischioni, Barbara; Valvo, Francesca; Jereczek-Fossa, Barbara A; Orecchia, Roberto; Valdagni, Riccardo; Pignoli, Emanuele

    2017-09-18

    This study was based on a survey to investigate perceptions of hadrontherapy of the members of the Italian Association of Medical Physics (AIFM). The survey was digitally submitted to the 991 members between the end of January and the beginning of April 2016. A 19-item questionnaire was designed focusing on advantages and disadvantages of hadrontherapy, current status and possible future improvements, and need and opportunities for future investments in Italy and abroad. Information about professional qualifications, main fields of clinical involvement and specific competencies of the respondents was also collected. The survey was completed by 121 AIFM members (response rate 12.2%). In the answers collected, it was shown that medical physicists expressed interest in hadrontherapy mainly for reasons of personal interest rather than for professional needs (90% ± 2.5% vs. 52% ± 4.3% of the respondents, respectively), with a good knowledge of the related basic aspects as well as of the pros and cons of its application. However, poor knowledge of the current status of hadrontherapy was observed among the medical physicists not directly involved at a professional level, who were less than 3% of the physicists working in radiotherapy. In light of these results, the implementation of new training and education initiatives should be devised to promote a deeper and global knowledge of hadrontherapy-related issues, not only from a theoretical point of view but also in practical terms. Moreover, a close collaboration between highly specialized medical physicists employed in hadrontherapy centers and others in oncology hospitals should be -encouraged.

  8. France's grandes écoles accused of elitism

    NASA Astrophysics Data System (ADS)

    Hellemans, Alexander

    2010-02-01

    Physicists in France have backed government plans to open up the country's elite grandes écoles to more students from poorer backgrounds. The government wants to allow up to 30% of students to be given free scholarships in an attempt to broaden the social mix of the student body. The physicists say this would not lead to a lowering of standards.

  9. Using Conceptual Metaphor and Functional Grammar to Explore How Language Used in Physics Affects Student Learning

    ERIC Educational Resources Information Center

    Brookes, David T.; Etkina, Eugenia

    2007-01-01

    This paper introduces a theory about the role of language in learning physics. The theory is developed in the context of physics students and physicists talking and writing about the subject of quantum mechanics. We found that physicists' language encodes different varieties of analogical models through the use of grammar and conceptual metaphor.…

  10. Students Know What Physicists Believe, but They Don't Agree: A Study Using the CLASS Survey

    ERIC Educational Resources Information Center

    Gray, Kara E.; Adams, Wendy K.; Wieman, Carl E.; Perkins, Katherine K.

    2008-01-01

    We measured what students perceive physicists to believe about physics and solving physics problems and how those perceptions differ from the students' personal beliefs. In this study, we used a modified version of the Colorado Learning Attitudes about Science Survey which asked students to respond to each statement with both their personal belief…

  11. How the wave mechanics of Schrodinger was met in the USSR?

    NASA Astrophysics Data System (ADS)

    Vizgin, Vl. P.

    1990-12-01

    The author is giving an almost complete review of the era of quantum mechanics in the USSR during 20-th of XX-th century. The author is making accent on the vision of Soviet physicists visavi the new area of science. The most important European and Soviet physicists with major and notable contributions in quantum mechanics are cited.

  12. A Superannuated Physicist's Attempts to Master Music Theory: Resolving Cognitive Conflicts and a Paradigm Clash

    ERIC Educational Resources Information Center

    Page-Shipp, Roy; van Niekerk, Caroline

    2014-01-01

    A sexagenarian retired physicist (the first author) set out, with the assistance of members of a university music department, to acquire some insight into Western music theory. For a lifelong singer and seasoned autodidact, this appeared to be a not too formidable challenge, yet he experienced significant difficulty in penetrating the music theory…

  13. Anniversary paper: evolution of ultrasound physics and the role of medical physicists and the AAPM and its journal in that evolution.

    PubMed

    Carson, Paul L; Fenster, Aaron

    2009-02-01

    Ultrasound has been the greatest imaging modality worldwide for many years by equipment purchase value and by number of machines and examinations. It is becoming increasingly the front end imaging modality; serving often as an extension of the physician's fingers. We believe that at the other extreme, high-end systems will continue to compete with all other imaging modalities in imaging departments to be the method of choice for various applications, particularly where safety and cost are paramount. Therapeutic ultrasound, in addition to the physiotherapy practiced for many decades, is just coming into its own as a major tool in the long progression to less invasive interventional treatment. The physics of medical ultrasound has evolved over many fronts throughout its history. For this reason, a topical review, rather than a primarily chronological one is presented. A brief review of medical ultrasound imaging and therapy is presented, with an emphasis on the contributions of medical physicists, the American Association of Physicists in Medicine (AAPM) and its publications, particularly its journal Medical Physics. The AAPM and Medical Physics have contributed substantially to training of physicists and engineers, medical practitioners, technologists, and the public.

  14. The Importance of Science Policy and its Challenges

    NASA Astrophysics Data System (ADS)

    Preis, Benjamin

    2015-03-01

    I worked for physicist and Congressman Bill Foster (D-IL) as the Mather Public Policy Intern through the American Institute of Physics and the Society of Physics Students during the summer of 2014. This internship is meant to connect undergraduate physics students with the policy process in Washington DC. As a Mather Public Policy Intern, I worked for Congressman Foster researching policy initiatives such as science funding, STEM education, and environmental regulations. This talk will discuss my experience and many of the things that I learned as an undergraduate physicist working on Capitol Hill. For example, through my experience with the internship, I attended lectures and hearings that illuminated for me how members of Congress conceive of scientific research. I also met with many physicists on Capitol Hill working to improve government interest in physics research -- AAAS Fellows, Members of Congress, and Government Relations Specialists -- and I will talk about how I saw physicists impacting governmental policies relating to scientific research and development. This internship is part of the Society of Physics Students internship program and was funded by the John and Jane Mather Foundation for Science and the Arts. This work was part of the Society of Physics Students internship Program.

  15. M. Hildred Blewett and the Blewett Scholarship

    NASA Astrophysics Data System (ADS)

    Whitten, Barbara

    2011-03-01

    M. Hildred Blewett became a physicist at a time when few women were physicists. After beginning her career at General Electric, she became a respected accelerator physicist, working at Brookhaven, Argonne, and eventually CERN. Blewett was married for a time to John Blewett, another accelerator physicist, but the couple divorced without children and she never remarried. She felt that her career in physics was hampered by her gender, and when she died in 2004 at the age of 93, she left the bulk of her estate to the American Physical Society, to found a Scholarship for women in physics. Since 2005 the Blewett Scholarship has been awarded to women in physics who are returning to physics after a career break, usually for family reasons. Family/career conflicts are one of the most important reasons why young women in early careers leave physics---a loss for them as well as the physics community, which has invested time and money in their training. The Blewett Scholarship is one way for the physics community, under the leadership of CSWP, to help these young women resume their careers. I will discuss the life and work of Hildred Blewett, the Blewett Scholarship, and its benefits to the physics community.

  16. WE-H-201-03: Enthusiasm and Generosity of Spirit Necessitate a Volunteering Structure to Make Them More Meaningful

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipman, Y.

    The desperate need for radiotherapy in low and mid-income countries (LMICs) has been well documented. Roughly 60 % of the worldwide incidence of cancer occurs in these resource-limited settings and the international community alongside governmental and non-profit agencies have begun publishing reports and seeking help from qualified volunteers. However, the focus of several reports has been on how dire the situation is and the magnitude of the problem, leaving most to feel overwhelmed and unsure as to how to help and why to get involved. This session will help to explain the specific ways that Medical Physicists can uniquely assistmore » in this grand effort to help bring radiotherapy to grossly-underserved areas. Not only can these experts fulfill an important purpose, they also can benefit professionally, academically, emotionally and socially from the endeavor. By assisting others worldwide with their skillset, Medical Physicists can end up helping themselves. Learning Objectives: Understand the need for radiotherapy in LMICs. Understand which agencies are seeking Medical Physicists for help in LMICs. Understand the potential research funding mechanisms are available to establish academic collaborations with LMIC researchers/physicians. Understand the potential social and emotional benefits for both the physicist and the LMIC partners when collaborations are made. Understand the potential for collaboration with other high-income scientists that can develop as the physicist partners with other large institutions to assist LMICs. Wil Ngwa - A recent United Nations Study reports that in developing countries more people have access to cell phones than toilets. In Africa, only 63% of the population has access to piped water, yet, 93% of Africans have cell phone service. Today, these cell phones, Skype, WhatsApp and other information and communication technologies (ICTs) connect us in unprecedented ways and are increasingly recognized as powerful, indispensable to global health. Thanks to ICTs, there are growing opportunities for Medical Physicists to reach out beyond the bunker and impact the world far beyond, without even having to travel. These growing opportunities in global health for Medical Physicists, powered by ICTs, will be highlighted in this presentation, illustrated by high impact examples/models across the globe that are improving patient safety and healthcare outcomes, saving lives. Learning Objectives: Published definitions of global health and the emerging field of global radiation oncology Learn about the transformative potential of ICTs in global radiation oncology care, research and education with focus on Medical Physics Learn about high impact examples of ICT-powered global radiation oncology and the increasing opportunities for participation by Medical Physicists. Yakov Pipman - The number and scope of volunteer Medical Physics activities in support of low-to-middle income countries has been increasing gradually. This happens through a variety of formal channels and to some extent through less formal but personal initiatives. A good deal of effort is dedicated by many, but many more could be recruited through a structured framework to volunteer. We will look into typical volunteer activities and how they fit with organizations already involved in advancing Medical Physics in LMIC. We will identify the range of these organizational activities and their scope to reveal areas of further need. We will point to a few key features of MPWB ( http://www.mpwb.org ) as a volunteering and collaborating structure and how members can get involved and contribute to these efforts at the grass roots level. The goal is that scarce resources can thus be channeled to complement rather than compete with those already in place. Learning Objectives: Understand the strengths and limitations of various organizations that support Medical Physics efforts in LMIC. Learn about ways to volunteer and contribute to Global Health through a grass roots organization focused on Medical Physics in LMIC. Perry Sprawls - With the growing capability and complexity of medical imaging methods in all countries of the world, the expanding role of medical physicists includes optimizing imaging procedures with respect to image quality, radiation dose, and other conflicting factors. With access to appropriate educational resources local medical physicists in all countries can provide direct clinical support and educational for other medical professionals. This is being supported through the process of Collaborative Teaching that combines the capabilities and experience of medical physicists in countries spanning the spectrum of economic, technological, and clinical development. The supporting resources are on the web at: http://www.sprawls.org/resources . Learning Objectives: Identify the medical physics educational needs to support effective and optimized medical imaging procedures. Use collaborative teaching resources to enhance the role of medical physicists in all countries of the world.« less

  17. WE-H-201-01: The Opportunities and Benefits of Helping LMICs: How Helping Them Can Help You

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollard, J.

    The desperate need for radiotherapy in low and mid-income countries (LMICs) has been well documented. Roughly 60 % of the worldwide incidence of cancer occurs in these resource-limited settings and the international community alongside governmental and non-profit agencies have begun publishing reports and seeking help from qualified volunteers. However, the focus of several reports has been on how dire the situation is and the magnitude of the problem, leaving most to feel overwhelmed and unsure as to how to help and why to get involved. This session will help to explain the specific ways that Medical Physicists can uniquely assistmore » in this grand effort to help bring radiotherapy to grossly-underserved areas. Not only can these experts fulfill an important purpose, they also can benefit professionally, academically, emotionally and socially from the endeavor. By assisting others worldwide with their skillset, Medical Physicists can end up helping themselves. Learning Objectives: Understand the need for radiotherapy in LMICs. Understand which agencies are seeking Medical Physicists for help in LMICs. Understand the potential research funding mechanisms are available to establish academic collaborations with LMIC researchers/physicians. Understand the potential social and emotional benefits for both the physicist and the LMIC partners when collaborations are made. Understand the potential for collaboration with other high-income scientists that can develop as the physicist partners with other large institutions to assist LMICs. Wil Ngwa - A recent United Nations Study reports that in developing countries more people have access to cell phones than toilets. In Africa, only 63% of the population has access to piped water, yet, 93% of Africans have cell phone service. Today, these cell phones, Skype, WhatsApp and other information and communication technologies (ICTs) connect us in unprecedented ways and are increasingly recognized as powerful, indispensable to global health. Thanks to ICTs, there are growing opportunities for Medical Physicists to reach out beyond the bunker and impact the world far beyond, without even having to travel. These growing opportunities in global health for Medical Physicists, powered by ICTs, will be highlighted in this presentation, illustrated by high impact examples/models across the globe that are improving patient safety and healthcare outcomes, saving lives. Learning Objectives: Published definitions of global health and the emerging field of global radiation oncology Learn about the transformative potential of ICTs in global radiation oncology care, research and education with focus on Medical Physics Learn about high impact examples of ICT-powered global radiation oncology and the increasing opportunities for participation by Medical Physicists. Yakov Pipman - The number and scope of volunteer Medical Physics activities in support of low-to-middle income countries has been increasing gradually. This happens through a variety of formal channels and to some extent through less formal but personal initiatives. A good deal of effort is dedicated by many, but many more could be recruited through a structured framework to volunteer. We will look into typical volunteer activities and how they fit with organizations already involved in advancing Medical Physics in LMIC. We will identify the range of these organizational activities and their scope to reveal areas of further need. We will point to a few key features of MPWB ( http://www.mpwb.org ) as a volunteering and collaborating structure and how members can get involved and contribute to these efforts at the grass roots level. The goal is that scarce resources can thus be channeled to complement rather than compete with those already in place. Learning Objectives: Understand the strengths and limitations of various organizations that support Medical Physics efforts in LMIC. Learn about ways to volunteer and contribute to Global Health through a grass roots organization focused on Medical Physics in LMIC. Perry Sprawls - With the growing capability and complexity of medical imaging methods in all countries of the world, the expanding role of medical physicists includes optimizing imaging procedures with respect to image quality, radiation dose, and other conflicting factors. With access to appropriate educational resources local medical physicists in all countries can provide direct clinical support and educational for other medical professionals. This is being supported through the process of Collaborative Teaching that combines the capabilities and experience of medical physicists in countries spanning the spectrum of economic, technological, and clinical development. The supporting resources are on the web at: http://www.sprawls.org/resources . Learning Objectives: Identify the medical physics educational needs to support effective and optimized medical imaging procedures. Use collaborative teaching resources to enhance the role of medical physicists in all countries of the world.« less

  18. Gene-environment interactions in cancer epidemiology: a National Cancer Institute Think Tank report.

    PubMed

    Hutter, Carolyn M; Mechanic, Leah E; Chatterjee, Nilanjan; Kraft, Peter; Gillanders, Elizabeth M

    2013-11-01

    Cancer risk is determined by a complex interplay of genetic and environmental factors. Genome-wide association studies (GWAS) have identified hundreds of common (minor allele frequency [MAF] > 0.05) and less common (0.01 < MAF < 0.05) genetic variants associated with cancer. The marginal effects of most of these variants have been small (odds ratios: 1.1-1.4). There remain unanswered questions on how best to incorporate the joint effects of genes and environment, including gene-environment (G × E) interactions, into epidemiologic studies of cancer. To help address these questions, and to better inform research priorities and allocation of resources, the National Cancer Institute sponsored a "Gene-Environment Think Tank" on January 10-11, 2012. The objective of the Think Tank was to facilitate discussions on (1) the state of the science, (2) the goals of G × E interaction studies in cancer epidemiology, and (3) opportunities for developing novel study designs and analysis tools. This report summarizes the Think Tank discussion, with a focus on contemporary approaches to the analysis of G × E interactions. Selecting the appropriate methods requires first identifying the relevant scientific question and rationale, with an important distinction made between analyses aiming to characterize the joint effects of putative or established genetic and environmental factors and analyses aiming to discover novel risk factors or novel interaction effects. Other discussion items include measurement error, statistical power, significance, and replication. Additional designs, exposure assessments, and analytical approaches need to be considered as we move from the current small number of success stories to a fuller understanding of the interplay of genetic and environmental factors. © 2013 WILEY PERIODICALS, INC.

  19. Gene-Environment Interactions in Cancer Epidemiology: A National Cancer Institute Think Tank Report

    PubMed Central

    Hutter, Carolyn M.; Mechanic, Leah E.; Chatterjee, Nilanjan; Kraft, Peter; Gillander, Elizabeth M.

    2014-01-01

    Cancer risk is determined by a complex interplay of genetic and environmental factors. Genome-wide association studies (GWAS) have identified hundreds of common (minor allele frequency [MAF]>0.05) and less common (0.01

  20. Translation, cultural adaptation and field-testing of the Thinking Healthy Program for Vietnam

    PubMed Central

    2014-01-01

    Background Depression and anxiety are prevalent among women in low- and lower-middle income countries who are pregnant or have recently given birth. There is promising evidence that culturally-adapted, evidence-informed, perinatal psycho-educational programs implemented in local communities are effective in reducing mental health problems. The Thinking Healthy Program (THP) has proved effective in Pakistan. The aims were to adapt the THP for rural Vietnam; establish the program’s comprehensibility, acceptability and salience for universal use, and investigate whether administration to small groups of women might be of equivalent effectiveness to administration in home visits to individual women. Methods The THP Handbook and Calendar were made available in English by the program developers and translated into Vietnamese. Cultural adaptation and field-testing were undertaken using WHO guidance. Field-testing of the four sessions of THP Module One was undertaken in weekly sessions with a small group in a rural commune and evaluated using baseline, process and endline surveys. Results The adapted Vietnamese version of the Thinking Healthy Program (THP-V) was found to be understandable, meaningful and relevant to pregnant women, and commune health centre and Women’s Union representatives in a rural district. It was delivered effectively by trained local facilitators. Role-play, brainstorming and small-group discussions to find shared solutions to common problems were appraised as helpful learning opportunities. Conclusions The THP-V is safe and comprehensible, acceptable and salient to pregnant women without mental health problems in rural Vietnam. Delivery in facilitated small groups provided valued opportunities for role-play rehearsal and shared problem solving. Local observers found the content and approach highly relevant to local needs and endorsed the approach as a mental health promotion strategy with potential for integration into local universal maternal and child health services. These preliminary data indicate that the impact of the THP-V should be tested in its complete form in a large scale trial. PMID:24886165

  1. Women physicists in Russia: Problems and solutions at a time of fiscal crisis

    NASA Astrophysics Data System (ADS)

    Didenko, Nelli; Ermolaeva, Elena; Kunitsyna, Ekaterina; Kratasyuk, Valentina; Vitman, Renata

    2013-03-01

    Recently Russia has been affected by the global financial crisis, which has had both positive and negative effects on women physicists. The feminization of science and the stratification that characterize the Russian scientific community in general also affect the field of physics. This paper discusses the proportion of women in leadership and managerial positions in different areas of science and education and highlights the differences between women and men in their careers in physics and defense of their theses. Lomonosov Moscow State University is used to demonstrate the dynamics of gender in different academic positions. The professional activity of young women physicists is illustrated by their participation in all-Russian scientific forums, demonstrating their commitment to remain active in their careers despite the challenges of the current economic conditions.

  2. The Efficacy of Residents as Teachers in an Ophthalmology Module.

    PubMed

    Ryg, Peter A; Hafler, Janet P; Forster, Susan H

    2016-01-01

    Resident physicians have reported spending upward of 25% of their time teaching fellow residents and medical students. Until relatively recently, there have not been formal requirements in residency programs to learn teaching skills. The first goal of this study was to develop a novel residents-as-teachers training program to educate Ophthalmology residents on facilitating group learning and emphasizing critical-thinking skills. The second goal was to educate residents on how to teach clinical reasoning skills. We designed a longitudinal residents-as-teachers program that consisted of a 2-hour workshop, voluntary observation of their teaching in the small group, and student feedback on their teaching. The focus of the workshop was to educate the residents on how to facilitate critical thinking and clinical reasoning in a small group format. Voluntary video recording of residents' teaching was offered, and feedback on their teaching was provided. Yale University School of Medicine, Department of Ophthalmology and Visual Science. In total, ten second-year medical student groups consisting of approximately 7 to 11 students in each group were organized in this course and each group had one teacher: 4 senior Ophthalmology residents and 6 community faculty. This study found that the resident teachers who completed the residents-as-teachers program were equally as effective as community faculty teachers in building medical students' comprehension of ophthalmic principles during small group seminars according to the students' evaluation of teaching performance. We also found that all of the medical students' responses were overwhelmingly positive toward having residents as teachers. The medical students particularly noted residents' preparedness and effectiveness in facilitating a discussion during the small group seminars. Our novel program was effective at teaching residents how to teach critical-thinking skills and the resident teachers were well received by medical students in the classroom. Given the requirement that residents learn teaching skills during residency and our preliminary success, we plan to continue inviting residents to teach small group seminars in Ophthalmology, and we will continue to provide them with the residents-as-teachers program. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.

  3. 76 FR 39115 - Notice of Proposed Information Collection: Transformation Initiative Family Self-Sufficiency...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-05

    ... Information Collection: Transformation Initiative Family Self-Sufficiency Demonstration Small Grants AGENCY... information: Title of Proposal: Notice of Funding Availability for the Transformation Initiative Family Self..., think tanks, consortia, Institutions of higher education accredited by a national or regional...

  4. Minority American Women Physicists Achieving at the Intersection of Race and Gender

    NASA Astrophysics Data System (ADS)

    Horton, K. Renee

    2005-10-01

    As minority women physicists, we stand at the intersection of race and gender. We are physicists to be sure, but we are also women of Native, African, Hispanic, and Asian descent. We are colleagues, mothers, sisters, friends and wives, as are our white counterparts, but our experiences cannot be distilled to only gender or race. As Prudence Carter (2005 Annual Meeting of the American Educational Research Association) and Scott Page (``The Logic of Diversity,'' private communication, 2004) remind us, women of color emerge from the interaction between race and gender. This distinction is important because most researchers who study American women's participation in science focus exclusively on the participation of white American women. Of those who acknowledge the existence of non-white women, most do so by disclaiming the exclusion of women of color because the numbers are so small or the experiences are different from white American women. There are some important differences, however. While American women are 15% of all scientists and engineers, black American women are 60% of all black scientists and engineers. Yet an average of less than 3 black women and less than 3 Hispanic women earn PhDs in the U.S. each year, out of about 1100. As Rachel Ivie and Kim Nies Ray point out in AIP Publication R-430.02, ``Minority women especially represent a great, untapped resource that could be drawn on to increase the size of the scientific workforce in the U.S.'' Donna Nelson's (University of Oklahoma) study of diversity in science and engineering faculties further finds that (with the exception of one black woman in astronomy) there are no female black or Native American full professors. In physics, there are no black women professors and no Native American women professors. Despite such a bleak picture, there is hope. Of the 18 departments that award at least 40% of bachelors degrees to women, 7 are in Historically Black Colleges and Universities (HBCUs). Black women are earning degrees from HBCUs at rates above equity, and many singles and firsts at predominantly white institutions continue to persevere despite the obstacles.

  5. Development and pilot-test of the Workplace Readiness Questionnaire, a theory-based instrument to measure small workplaces’ readiness to implement wellness programs

    PubMed Central

    Hannon, Peggy A.; Helfrich, Christian D.; Chan, K. Gary; Allen, Claire L.; Hammerback, Kristen; Kohn, Marlana J.; Parrish, Amanda T.; Weiner, Bryan J.; Harris, Jeffrey R.

    2016-01-01

    Purpose To develop a theory-based questionnaire to assess readiness for change in small workplaces adopting wellness programs. Design In developing our scale, we first tested items via “think-aloud” interviews. We tested the revised items in a cross-sectional quantitative telephone survey. Setting Small workplaces (20–250 employees) in low-wage industries. Subjects Decision-makers representing small workplaces in King County, Washington (think-aloud interviews, n=9) and the United States (telephone survey, n=201). Measures We generated items for each construct in Weiner’s theory of organizational readiness for change. We also measured workplace characteristics and current implementation of workplace wellness programs. Analysis We assessed reliability by coefficient alpha for each of the readiness questionnaire subscales. We tested the association of all subscales with employers’ current implementation of wellness policies, programs, and communications, and conducted a path analysis to test the associations in the theory of organizational readiness to change. Results Each of the readiness subscales exhibited acceptable internal reliability (coefficient alpha range = .75–.88) and was positively associated with wellness program implementation (p <.05). The path analysis was consistent with the theory of organizational readiness to change, except change efficacy did not predict change-related effort. Conclusion We developed a new questionnaire to assess small workplaces’ readiness to adopt and implement evidence-based wellness programs. Our findings also provide empirical validation of Weiner’s theory of readiness for change. PMID:26389975

  6. Development and Pilot Test of the Workplace Readiness Questionnaire, a Theory-Based Instrument to Measure Small Workplaces' Readiness to Implement Wellness Programs.

    PubMed

    Hannon, Peggy A; Helfrich, Christian D; Chan, K Gary; Allen, Claire L; Hammerback, Kristen; Kohn, Marlana J; Parrish, Amanda T; Weiner, Bryan J; Harris, Jeffrey R

    2017-01-01

    To develop a theory-based questionnaire to assess readiness for change in small workplaces adopting wellness programs. In developing our scale, we first tested items via "think-aloud" interviews. We tested the revised items in a cross-sectional quantitative telephone survey. The study setting comprised small workplaces (20-250 employees) in low-wage industries. Decision-makers representing small workplaces in King County, Washington (think-aloud interviews, n = 9), and the United States (telephone survey, n = 201) served as study subjects. We generated items for each construct in Weiner's theory of organizational readiness for change. We also measured workplace characteristics and current implementation of workplace wellness programs. We assessed reliability by coefficient alpha for each of the readiness questionnaire subscales. We tested the association of all subscales with employers' current implementation of wellness policies, programs, and communications, and conducted a path analysis to test the associations in the theory of organizational readiness to change. Each of the readiness subscales exhibited acceptable internal reliability (coefficient alpha range, .75-.88) and was positively associated with wellness program implementation ( p < .05). The path analysis was consistent with the theory of organizational readiness to change, except change efficacy did not predict change-related effort. We developed a new questionnaire to assess small workplaces' readiness to adopt and implement evidence-based wellness programs. Our findings also provide empirical validation of Weiner's theory of readiness for change.

  7. Teaching Computational Thinking: Deciding to Take Small Steps in a Curriculum

    NASA Astrophysics Data System (ADS)

    Madoff, R. D.; Putkonen, J.

    2016-12-01

    While computational thinking and reasoning are not necessarily the same as computer programming, programs such as MATLAB can provide the medium through which the logical and computational thinking at the foundation of science can be taught, learned, and experienced. And while math and computer anxiety are often discussed as critical obstacles to students' progress in their geoscience curriculum, it is here suggested that an unfamiliarity with the computational and logical reasoning is what poses a first stumbling block, in addition to the hurdle of expending the effort to learn how to translate a computational problem into the appropriate computer syntax in order to achieve the intended results. Because computational thinking is so vital for all fields, there is a need to initiate many and to build support in the curriculum for it. This presentation focuses on elements to bring into the teaching of computational thinking that are intended as additions to learning MATLAB programming as a basic tool. Such elements include: highlighting a key concept, discussing a basic geoscience problem where the concept would show up, having the student draw or outline a sketch of what they think an operation needs to do in order to perform a desired result, and then finding the relevant syntax to work with. This iterative pedagogy simulates what someone with more experience in programming does, so it discloses the thinking process in the black box of a result. Intended as only a very early stage introduction, advanced applications would need to be developed as students go through an academic program. The objective would be to expose and introduce computational thinking to majors and non-majors and to alleviate some of the math and computer anxiety so that students would choose to advance on with programming or modeling, whether it is built into a 4-year curriculum or not.

  8. Physicists and Physics in Munich

    NASA Astrophysics Data System (ADS)

    Teichmann, Jürgen; Eckert, Michael; Wolff, Stefan

    We give a tour of Munich and some outlying sites that focuses on the lives and work of the most prominent physicists who lived in the city, Count Rumford, Joseph Fraunhofer, Georg Simon Ohm, Max Planck, Ludwig Boltzmann, Albert Einstein, Wilhelm Conrad Röntgen, Wilhelm Wien, Arnold Sommerfeld, Max von Laue, and Werner Heisenberg. We close with a self-guided tour that describes how to reach these sites in Munich.

  9. Epistemic Views of the Relationship between Physics and Mathematics: Its Influence on the Approach of Undergraduate Students to Problem Solving

    ERIC Educational Resources Information Center

    Pereira de Ataide, Ana Raquel; Greca, Ileana Maria

    2013-01-01

    The relationship between physics and mathematics is hardly ever presented with sufficient clarity to satisfy either physicists or mathematicians. It is a situation that often leads to misunderstandings that may spread quickly from teacher to student, such as the idea that mathematics is a mere instrument for the physicist. In this paper, we…

  10. The "Hard Problem" and the Quantum Physicists. Part 2: Modern Times

    ERIC Educational Resources Information Center

    Smith, C. U. M.

    2009-01-01

    This is the second part of a review of the work of quantum physicists on the "hard part" of the problem of mind. After an introduction which sets the scene and a brief review of contemporary work on the neural correlates of consciousness (NCC) the work of four prominent modern investigators is examined: J.C. Eccles/Friedrich Beck; Henry Stapp;…

  11. Young physicists' forum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Adams et al.

    2001-11-02

    The Young Physicists' Forum was an opportunity for the younger members of the particle-physics community to gather at Snowmass 2001 and to study and debate major issues that face the field over the next twenty years. Discussions were organized around three major topics: outreach and education, the impact of globalization, and building a robust and balanced field. We report on the results of these discussions, as presented on July 17, 2001.

  12. A perspective on slow-relaxing molecular magnets built from rare-earths and nitronyl-nitroxide building blocks (invited)

    NASA Astrophysics Data System (ADS)

    Bogani, Lapo

    2011-04-01

    We offer a perspective, accessible to both chemists and physicists, of recent developments in the synthesis and characterization of molecular magnetic materials based on rare-earths and nitronyl-nitroxide radicals. We show both the rationale of the synthetic strategies and the observed behaviors. We highlight the relevance of these findings for synthetic chemists, material scientists, and physicists.

  13. Weapons Storage Area Survey of Munitions Storage Igloos at Medina Annex, San Antonio, Texas

    DTIC Science & Technology

    2013-11-13

    School of Aerospace Medicine Occupational and Environmental Health Department Consultative Services Division/OEC 2510 Fifth St. Wright-Patterson AFB...a. Purpose: The United States Air Force School of Aerospace Medicine, Occupational and Environmental Health Department, Radiation Health ...Attachment 3 with other pertinent regulatory issues. c. Survey Personnel: (1) Health Physicist, Air Force Safety Center (2) Health Physicist, USAFSAM

  14. SU-A-210-04: Panel Discussion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanford, J.

    The purpose of this student annual meeting is to address topics that are becoming more relevant to medical physicists, but are not frequently addressed, especially for students and trainees just entering the field. The talk is divided into two parts: medical billing and regulations. Hsinshun Wu – Why should we learn radiation oncology billing? Many medical physicists do not like to be involved with medical billing or coding during their career. They believe billing is not their responsibility and sometimes they even refuse to participate in the billing process if given the chance. This presentation will talk about a physicist’smore » long career and share his own experience that knowing medical billing is not only important and necessary for every young medical physicist, but that good billing knowledge could provide a valuable contribution to his/her medical physics development. Learning Objectives: The audience will learn the basic definition of Current Procedural Terminology (CPT) codes performed in a Radiation Oncology Department. Understand the differences between hospital coding and physician-based or freestanding coding. Apply proper CPT coding for each Radiation Oncology procedure. Each procedure with its specific CPT code will be discussed in detail. The talk will focus on the process of care and use of actual workflow to understand each CPT code. Example coding of a typical Radiation Oncology procedure. Special procedure coding such as brachytherapy, proton therapy, radiosurgery, and SBRT. Maryann Abogunde – Medical physics opportunities at the Nuclear Regulatory Commission (NRC) The NRC’s responsibilities include the regulation of medical uses of byproduct (radioactive) materials and oversight of medical use end-users (licensees) through a combination of regulatory requirements, licensing, safety oversight including inspection and enforcement, operational experience evaluation, and regulatory support activities. This presentation will explore the career options for medical physicists in the NRC, how the NRC interacts with clinical medical physicists, and a physicist’s experience as a regulator. Learning Objectives: Explore non-clinical career pathways for medical physics students and trainees at the Nuclear Regulatory Commission. Overview of NRC medical applications and medical use regulations. Understand the skills needed for physicists as regulators. Abogunde is funded to attend the meeting by her employer, the NRC.« less

  15. SU-A-210-03: Panel Discussion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, A.

    The purpose of this student annual meeting is to address topics that are becoming more relevant to medical physicists, but are not frequently addressed, especially for students and trainees just entering the field. The talk is divided into two parts: medical billing and regulations. Hsinshun Wu – Why should we learn radiation oncology billing? Many medical physicists do not like to be involved with medical billing or coding during their career. They believe billing is not their responsibility and sometimes they even refuse to participate in the billing process if given the chance. This presentation will talk about a physicist’smore » long career and share his own experience that knowing medical billing is not only important and necessary for every young medical physicist, but that good billing knowledge could provide a valuable contribution to his/her medical physics development. Learning Objectives: The audience will learn the basic definition of Current Procedural Terminology (CPT) codes performed in a Radiation Oncology Department. Understand the differences between hospital coding and physician-based or freestanding coding. Apply proper CPT coding for each Radiation Oncology procedure. Each procedure with its specific CPT code will be discussed in detail. The talk will focus on the process of care and use of actual workflow to understand each CPT code. Example coding of a typical Radiation Oncology procedure. Special procedure coding such as brachytherapy, proton therapy, radiosurgery, and SBRT. Maryann Abogunde – Medical physics opportunities at the Nuclear Regulatory Commission (NRC) The NRC’s responsibilities include the regulation of medical uses of byproduct (radioactive) materials and oversight of medical use end-users (licensees) through a combination of regulatory requirements, licensing, safety oversight including inspection and enforcement, operational experience evaluation, and regulatory support activities. This presentation will explore the career options for medical physicists in the NRC, how the NRC interacts with clinical medical physicists, and a physicist’s experience as a regulator. Learning Objectives: Explore non-clinical career pathways for medical physics students and trainees at the Nuclear Regulatory Commission. Overview of NRC medical applications and medical use regulations. Understand the skills needed for physicists as regulators. Abogunde is funded to attend the meeting by her employer, the NRC.« less

  16. Impact of spot charge inaccuracies in IMPT treatments.

    PubMed

    Kraan, Aafke C; Depauw, Nicolas; Clasie, Ben; Giunta, Marina; Madden, Tom; Kooy, Hanne M

    2017-08-01

    Spot charge is one parameter of pencil-beam scanning dose delivery system whose accuracy is typically high but whose required value has not been investigated. In this work we quantify the dose impact of spot charge inaccuracies on the dose distribution in patients. Knowing the effect of charge errors is relevant for conventional proton machines, as well as for new generation proton machines, where ensuring accurate charge may be challenging. Through perturbation of spot charge in treatment plans for seven patients and a phantom, we evaluated the dose impact of absolute (up to 5× 10 6 protons) and relative (up to 30%) charge errors. We investigated the dependence on beam width by studying scenarios with small, medium and large beam sizes. Treatment plan statistics included the Γ passing rate, dose-volume-histograms and dose differences. The allowable absolute charge error for small spot plans was about 2× 10 6 protons. Larger limits would be allowed if larger spots were used. For relative errors, the maximum allowable error size for small, medium and large spots was about 13%, 8% and 6% for small, medium and large spots, respectively. Dose distributions turned out to be surprisingly robust against random spot charge perturbation. Our study suggests that ensuring spot charge errors as small as 1-2% as is commonly aimed at in conventional proton therapy machines, is clinically not strictly needed. © 2017 American Association of Physicists in Medicine.

  17. Predicting recidivism with the Psychological Inventory of Criminal Thinking Styles (PICTS) in community-supervised male and female federal offenders.

    PubMed

    Walters, Glenn D; Lowenkamp, Christopher T

    2016-06-01

    Higher order scores derived from the Psychological Inventory of Criminal Thinking Styles (PICTS; Walters, 1995) have been found to predict recidivism in released prison inmates with effect sizes in the low-moderate to medium range. The current study sought to determine whether the PICTS is capable of predicting general recidivism in a sample of 81,881 male and 14,519 female offenders on federal probation or supervised release. Results indicated that the PICTS General Criminal Thinking, Proactive, and Reactive scores and 6 of the 7 thinking style scales predicted recidivism in follow-ups of 6 or more months, 12 or more months, and 24 or more months with effect sizes in the low-moderate to medium range. The effect sizes were reduced to small and low-moderate, respectively, when age and prior arrests were controlled for in a series of partial correlations. It was also noted that the PICTS General Criminal Thinking score contributed significant diagnostic information to recidivism prediction in both males and females above and beyond the information provided by a comprehensive risk assessment procedure. These results indicate that the PICTS may be a useful adjunct to other risk assessment procedures in providing comprehensive risk prediction and management services to offenders under community supervision. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  18. Fostering critical thinking and collaborative learning skills among medical students through a research protocol writing activity in the curriculum

    PubMed Central

    2018-01-01

    Purpose This intervention was aimed to analyse the effect of academic writing and journal critiquing as educational approaches in improving critical thinking and collaborative learning among undergraduate medical students. Methods A research proposal writing format was created for the 4th year medical students of Melaka Manipal Medical College, Malaysia during their ophthalmology clinical postings. The students worked in small groups and developed research protocols through an evidence based approach. This was followed by writing reflective summaries in academic portfolios about the activity undertaken.A mixed methods study was designed to explore the possible role of collaborative research proposal writing in enhancing critical thinking and collaborative learning. Results Analysis of reflections submitted by 188 medical students after the intervention indicate that majority of them found an improvement in their skills of critical thinking and collaborative learning as a result of research protocol writing. All participants agreed that the model helped in applying concepts to new situations in the form of designing their own study, which reflected in enhanced higher order cognitive skills. Conclusion This study shows that the introduction of a structured module in the core medical curriculum that focuses on research writing skills embedded with collaborative and reflective practices can enhance collaborative learning, critical thinking, and reasoning among medical students. PMID:29860777

  19. Thinking Big

    ERIC Educational Resources Information Center

    Kastens, Kim; Krumhansl, Ruth; Baker, Irene

    2015-01-01

    This article is aimed at teachers already experienced with activities involving small, student-collected data sets and who are now ready to begin working with large, online data sets collected by scientists and engineers. The authors discuss challenges, instructional strategies, and sources of appropriate lesson plans. With guidance, plus online…

  20. Cheep, Chirp, Twitter, and Whistle

    ERIC Educational Resources Information Center

    Silverman, Emily; Coffman, Margaret; Younker, Betty

    2007-01-01

    This article describes an interdisciplinary, activity-based lesson plan implemented in a third/fourth-grade classroom. During these activities, students use musical concepts to think about, illustrate, and discuss animal behavior, and they use scientific concepts to motivate musical composition and performance. The lesson ends with small group…

  1. Universities, SMEs and Innovation Frameworks: Think Global, Act Local?

    ERIC Educational Resources Information Center

    Pickernell, David; Clifton, Nick; Senyard, Julienne

    2009-01-01

    Universities are increasingly encouraged to take a leading role in economic development, particularly through innovation. Simultaneously, economic development policy itself is increasingly focused on small and medium-sized enterprises (SMEs), creating overlapping interactions in the roles of government policy, universities and SMEs and the…

  2. Physicists and Economic Growth: Preparing the Next Generation

    NASA Astrophysics Data System (ADS)

    Arion, Douglas

    2012-02-01

    For many years it has been recognized that many physicists are ``hidden'' -- deep in the industrial world or holding positions not named ``physicist.'' In parallel with this phenomenon is the recognition that many new and innovative product ideas are, in fact, generated by physicists. There are many more ideas that could be brought to market to the benefit of both society and the inventor, but physicists don't often see themselves as the innovators and inventors that they actually are. A number of education programs have arisen to try to address this issue and to engender a greater entrepreneurial spirit in the scientific community. The ScienceWorks program at Carthage College was one of the first to do so, and has for nearly twenty years prepared undergraduate science majors to understand and practice innovation and value creation. Other programs, such as professional masters degrees, also serve to bridge the technical and business universes. As it is no doubt easier to teach a scientist the world of business than it is to teach a businessperson the world of physics, providing educational experiences in innovation and commercialization to physics students can have tremendous economic impact, and will also better prepare them for whatever career direction they may ultimately pursue, even if it is the traditional tenure-track university position. This talk will discuss education programs that have been effective at preparing physics students for the professional work environment, and some of the positive outcomes that have resulted. Also discussed will be the variety of opportunities and resources that exist for faculty and students to develop the skills, knowledge and abilities to recognize and successfully commercialize innovations.

  3. Medical physics aspects of cancer care in the Asia Pacific region: 2011 survey results

    PubMed Central

    Kron, T; Azhari, HA; Voon, EO; Cheung, KY; Ravindran, P; Soejoko, D; Inamura, K; Han, Y; Ung, NM; Bold, L; Win, UM; Srivastava, R; Meyer, J; Farrukh, S; Rodriguez, L; Kuo, M; Lee, JCL; Kumara, A; Lee, CC; Krisanachinda, A; Nguyen, XC; Ng, KH

    2012-01-01

    Background: Medical physicists are essential members of the radiation oncology team. Given the increasing complexity of radiotherapy delivery, it is important to ensure adequate training and staffing. The aim of the present study was to update a similar survey from 2008 and assess the situation of medical physicists in the large and diverse Asia Pacific region. Methods: Between March and July 2011, a survey on profession and practice of radiation oncology medical physicists (ROMPs) in the Asia Pacific region was performed. The survey was sent to senior physicists in 22 countries. Replies were received from countries that collectively represent more than half of the world’s population. The survey questions explored five areas: education, staffing, work patterns including research and teaching, resources available, and job satisfaction. Results and discussion: Compared to a data from a similar survey conducted three years ago, the number of medical physicists in participating countries increased by 29% on average. This increase is similar to the increase in the number of linear accelerators, showing that previously identified staff shortages have yet to be substantially addressed. This is also highlighted by the fact that most ROMPs are expected to work overtime often and without adequate compensation. While job satisfaction has stayed similar compared to the previous survey, expectations for education and training have increased somewhat. This is in line with a trend towards certification of ROMPs. Conclusion: As organisations such as the International Labour Organization (ILO) start to recognise medical physics as a profession, it is evident that despite some encouraging signs there is still a lot of work required towards establishing an adequately trained and resourced medical physics workforce in the Asia Pacific region. PMID:22970066

  4. Radiation risk perception and public information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boggs-Mayes, C.J.

    1988-01-01

    We as Health Physicists face what, at many times, appears to be a hopeless task. The task simply stated is informing the public about the risks (or lack thereof) of radiation. Unfortunately, the public has perceived radiation risks to be much greater than they actually are. An example of this problem is shown in a paper by Arthur C. Upton. Three groups of people -- the League of Women Voters, students, and Business and Professional Club members -- were asked to rank 30 sources of risk according to their contribution to the number of deaths in the United States. Notmore » surprisingly, they ranked nuclear power much higher and medical x-rays much lower than the actual values. In addition to the perception problem, we are faced with another hurdle: health physicists as communicators. Members of the Health Physics Society (HPS) found that the communication styles of most health physicists appear to be dissimilar to those of the general public. These authors administered the Myers-Briggs Type Indicator to the HPS Baltimore-Washington Chapter. This test, a standardized test for psychological type developed by Isabel Myers, ask questions that provide a quantitative measure of our natural preferences in four areas. Assume that you as a health physicist have the necessary skills to communicate information about radiation to the public. Health physicists do nothing with these tools. Most people involved in radiation protection do not get involved with public information activies. What I will attempt to do is heighten your interest in such activities. I will share information about public information activities in which I have been involved and give you suggestions for sources of information and materials. 2 refs., 1 tab.« less

  5. Cross-cultural differences in the refusal to accept a small gift: the differential influence of reciprocity norms on Asians and North Americans.

    PubMed

    Shen, Hao; Wan, Fang; Wyer, Robert S

    2011-02-01

    Asians are more likely than North Americans to refuse a small gift that is offered to them by a casual acquaintance. Five experiments confirmed this difference and explored the reasons for its occurrence. Asians, who are inclined to think of themselves in relation to others, are more likely than North Americans to invoke a reciprocity norm in exchanging gifts with casual acquaintances, and they refuse a gift in order to avoid the feeling of indebtedness they would experience if they cannot reciprocate. North Americans, however, who are inclined to think of themselves independently of others, are more likely to base their acceptance of the gift on its attractiveness without considering their obligation to reciprocate. These cultural differences are not evident when the gift is offered by a close friend with whom individuals have a communal relationship. Implications of our findings for miscommunication between members of different cultures are discussed. (PsycINFO Database Record (c) 2010 APA, all rights reserved).

  6. WE-D-16A-01: ACR Radiology Leadership Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, G

    The Radiology Leadership Institute (RLI) was established in 2011 by the American College of Radiology with a mission to prepare leaders who will shape the future of radiology to ensure quality, elevate service and deliver extraordinary patient care. Leadership skills are critical to medical physicists in order for them to assure that imaging and therapy are safe and of the highest quality possible. This session will provide an introduction to the RLI and its programs with an emphasis on how medical physicists can get involved and what they might expect to gain through their engagement with the RLI. The sessionmore » will also provide a framework for leadership in healthcare with an emphasis on roles and opportunities for medical physicists to enhance their effectiveness as members of the healthcare, medical education, and research communities.« less

  7. Ask not what physics can do for biology--ask what biology can do for physics.

    PubMed

    Frauenfelder, Hans

    2014-10-08

    Stan Ulam, the famous mathematician, said once to Hans Frauenfelder: 'Ask not what Physics can do for biology, ask what biology can do for physics'. The interaction between biologists and physicists is a two-way street. Biology reveals the secrets of complex systems, physics provides the physical tools and the theoretical concepts to understand the complexity. The perspective gives a personal view of the path to some of the physical concepts that are relevant for biology and physics (Frauenfelder et al 1999 Rev. Mod. Phys. 71 S419-S442). Schrödinger's book (Schrödinger 1944 What is Life? (Cambridge: Cambridge University Press)), loved by physicists and hated by eminent biologists (Dronamraju 1999 Genetics 153 1071-6), still shows how a great physicist looked at biology well before the first protein structure was known.

  8. The Role of Physicists in Anti-Terrorism: Transportation

    NASA Astrophysics Data System (ADS)

    Fainberg, Anthony

    2002-04-01

    Physicists, along with many other categories of scientists, participate in efforts against terrorism in a multitude of ways, including developing explosive detectors, sensors, security procedures, technical analyses, and decision tools. Transportation, especially civil aviation, is a field of focus within the anti- and counterterrorism arenas. The most spectacular terrorist acts have generally aimed at this sector and this trend is likely to continue. Physicists play their roles in all sectors: government, private industry, and even academia. Defense against terrorism has become a national priority in the United States, and one may expect the roles of scientific experts to become more important. The tactics of terrorists will change and develop, so it will become necessary to develop ever more sophisticated measures to fight them. Technology is part of the answer, but human factors, vulnerability analyses, threat assessment, and security procedures are equally important.

  9. Predicting recidivism in sex offenders with the Psychological Inventory of Criminal Thinking Styles (PICTS).

    PubMed

    Walters, Glenn D; Deming, Adam; Casbon, Todd

    2015-04-01

    The purpose of this study was to determine whether the Psychological Inventory of Criminal Thinking Styles (PICTS) was capable of predicting recidivism in 322 male sex offenders released from prison-based sex offender programs in a Midwestern state. The Static-99R and PICTS General Criminal Thinking (GCT), Reactive (R), and Entitlement (En) scores all correlated significantly with general recidivism, the Static-99R correlated significantly with violent recidivism, and the Static-99R score and PICTS GCT, Proactive (P), and En scores correlated significantly with failure to register as a sex offender (FTR) recidivism. Area under the curve effect size estimates varied from small to large, and Cox regression analyses revealed that the PICTS En score achieved incremental validity relative to the Static-99R in predicting general recidivism and the PICTS GCT, P, and En scores achieved incremental validity relative to the Static-99R in predicting FTR recidivism. It is speculated that the PICTS in general and the En scale in particular may have utility in risk management and treatment planning for sex offenders by virtue of their focus on antisocial thinking. © The Author(s) 2014.

  10. NCI Think Tank Concerning the Identifiability of Biospecimens and “-Omic” Data

    PubMed Central

    Weil, Carol J.; Mechanic, Leah E.; Green, Tiffany; Kinsinger, Christopher; Lockhart, Nicole C.; Nelson, Stefanie A.; Rodriguez, Laura L.; Buccini, Laura D.

    2014-01-01

    On June 11 and 12, 2012, the National Cancer Institute (NCI) hosted a think tank concerning the identifiability of biospecimens and “omic” Data in order to explore challenges surrounding this complex and multifaceted topic. The think tank brought together forty-six leaders from several fields, including cancer genomics, bioinformatics, human subject protection, patient advocacy, and commercial genetics. The first day involved presentations regarding the state of the science of re-identification; current and proposed regulatory frameworks for assessing identifiability; developments in law, industry and biotechnology; and the expectations of patients and research participants. The second day was spent by think tank participants in small break-out groups designed to address specific sub-topics under the umbrella issue of identifiability, including considerations for the development of best practices for data sharing and consent, and targeted opportunities for further empirical research. We describe the outcomes of this two day meeting, including two complimentary themes that emerged from moderated discussions following the presentations on Day 1, and ideas presented for further empirical research to discern the preferences and concerns of research participants about data sharing and individual identifiability. PMID:23579437

  11. Experiments on the Dynamics of Molecular Processes: a Chronicle of Fifty Years

    NASA Astrophysics Data System (ADS)

    Boato, Giovanni; Volpi, Gian Gualberto

    1999-10-01

    This paper reviews the way in which, in the Italy of the years immediately after World War II, interest in the dynamics of molecular processes was awakened. The narrative begins with the work of a small number of chemists and physicists who, in the initial stage, interacted closely. In the course of the years, their interests diverged and younger people joined the newly formed groups. Even now, after half a century, a common approach can still to be seen regarding how to attack problems and perform experiments. Experimental work is discussed, bringing out the common viewpoint of fields as diverse as mass spectrometry, isotope effects, chemical kinetics, molecular beams, molecule-molecule interactions, molecule-ion interactions, molecule-surface interactions, and plasma chemistry.

  12. Science & Technology Review May 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aufderheide III, M B

    2006-04-03

    This month's issue has the following articles: (1) Science and Technology Help the Nation Counter Terrorism--Commentary by Raymond J. Juzaitis; (2) Imagers Provide Eyes to See Gamma Rays--Gamma-ray imagers provide increased radiation detection capabilities and enhance the nation's arsenal for homeland security; (3) Protecting the Nation's Livestock--Foot-and-mouth disease could devastate America's livestock; a new assay provides a rapid means to detect it; (4) Measures for Measures--Laboratory physicists combine emissivity and reflectivity to achieve highly accurate temperature measurements of metal foils; and (5) Looping through the Lamb Shift--Livermore scientists measured a small perturbation in the spectra of highly ionized uranium--the firstmore » measurement of the two-loop Lamb shift in a bound state.« less

  13. Explorer : des clés pour mieux comprendre la matière

    ScienceCinema

    Ellis, Jonathan R.

    2018-01-12

    Will the LHC upset theories of the infinitely small? Physicists would like the accelerator to shake the standard model. This theory of elementary particles and forces leaves many gray areas. The LHC and its experiments have been designed to enlighten them. [Le LHC va-t-il bouleverser les théories de l'infiniment petit ? Les physiciens aimeraient que l'accélérateur fasse trembler le modèle standard. Cette théorie des particules élémentaires et des forces laisse de nombreuses zones d'ombre. Le LHC et ses expériences ont été conçus pour les éclairer.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hellemans, A.

    Space beam weapons and unlimited energy from fusion may have been pipe dreams of the 1980s. But today these dreams are giving birth to practical laboratory tools: tabletop x-ray lasers that may open up whole new areas of chemistry and biology. The first x-ray lasers were energized by nuclear explosions or jolts of light from giant glass lasers built for fusion experiments-hardly bench-top equipment. Now, says Joseph Nilsen, a physicist at Lawrence Livermore National Laboratory (LLNL), {open_quotes}several small university-size places are actually making a lot of progress toward tabletop lasers people can use every day.{close_quotes} This article highlight progress towardsmore » cheap ubiquitous X-ray lasers as described at the 5th International Conference on X-ray Lasers.« less

  15. Teaching physics and understanding infrared thermal imaging

    NASA Astrophysics Data System (ADS)

    Vollmer, Michael; Möllmann, Klaus-Peter

    2017-08-01

    Infrared thermal imaging is a very rapidly evolving field. The latest trends are small smartphone IR camera accessories, making infrared imaging a widespread and well-known consumer product. Applications range from medical diagnosis methods via building inspections and industrial predictive maintenance etc. also to visualization in the natural sciences. Infrared cameras do allow qualitative imaging and visualization but also quantitative measurements of the surface temperatures of objects. On the one hand, they are a particularly suitable tool to teach optics and radiation physics and many selected topics in different fields of physics, on the other hand there is an increasing need of engineers and physicists who understand these complex state of the art photonics systems. Therefore students must also learn and understand the physics underlying these systems.

  16. Positron emission tomography

    NASA Astrophysics Data System (ADS)

    Yamamoto, Y. Lucas; Thompson, Christopher J.; Diksic, Mirko; Meyer, Ernest; Feindel, William H.

    One of the most exciting new technologies introduced in the last 10 yr is positron emission tomography (PET). PET provides quantitative, three-dimensional images for the study of specific biochemical and physiological processes in the human body. This approach is analogous to quantitative in-vivo autoradiography but has the added advantage of permitting non-invasive in vivo studies. PET scanning requires a small cyclotron to produce short-lived positron emitting isotopes such as oxygen-15, carbon-11, nitrogen-13 and fluorine-18. Proper radiochemical facilities and advanced computer equipment are also needed. Most important, PET requires a multidisciplinary scientific team of physicists, radiochemists, mathematicians, biochemists and physicians. This review analyzes the most recent trends in the imaging technology, radiochemistry, methodology and clinical applications of positron emission tomography.

  17. Off the Beat. An Appreciation of Werner Heisenberg and Some Talk About How Physics Was in the Good Old Days

    ERIC Educational Resources Information Center

    Thomsen, Dietrick E.

    1976-01-01

    Presented is an insight into man's idea about physics and being a physicist in the days when Heisenberg, P. A. M. Dirac, Louis de Broglic and other famous physicists were young men. Heisenberg is compared to Newton, inventing new math as he needed it. Emphasis is placed on the fact that he was not a Nazi sympathizer. (EB)

  18. Kristian Camilleri: Heisenberg and the Interpretation of Quantum Mechanics—The Physicist as Philosopher. Cambridge University Press, 2009, ISBN-13:9780521884846, 211 pp.

    NASA Astrophysics Data System (ADS)

    Kleemans, Machiel

    2010-11-01

    The book Heisenberg and the Interpretation of Quantum Mechanics—The Physicist as Philosopher, by Kristian Camilleri is critically reviewed. The work details Heisenberg’s philosophical development from an early positivist commitment towards a later philosophy of language. It is of interest to researchers and graduate students in the history and philosophy of quantum mechanics.

  19. The Bohr paradox

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2008-05-01

    In his book Niels Bohr's Times, the physicist Abraham Pais captures a paradox in his subject's legacy by quoting three conflicting assessments. Pais cites Max Born, of the first generation of quantum physics, and Werner Heisenberg, of the second, as saying that Bohr had a greater influence on physics and physicists than any other scientist. Yet Pais also reports a distinguished younger colleague asking with puzzlement and scepticism "What did Bohr really do?".

  20. Intuitive Space Weather Displays to Improve Space Situational Awareness (SSA)

    DTIC Science & Technology

    2011-09-01

    parsimonious offering. After engaging several mathematicians and space physicists to devise valid computational formulas for aggregating the four hazard... PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Aptima, Inc.,12 Gill Street Ste 200,Woburn,MA... physicists , the operational users find little use in receiving particle fluxes or magnetometer readings collected by the scientific community. Fortunately

  1. Dmitry Ivanenko-a superstar of Soviet Physics

    NASA Astrophysics Data System (ADS)

    Sardanashvily, Gennady

    A detailed biography and bibliography (about 300 articles and a number of books available in Libraries) of professor Dmitry Dmitryevich Ivanenko (Iwanenko) (1904-1994) has beeen given by one of his disciples. The book includes also references of some widely known physicists about one of the lieding theoretical physicists of the Physics Department of the Moscow State University. Some documents from the personal archive of Ivanenko(Iwanenko) are included in the book.

  2. Physicist falls foul of US export law

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2008-10-01

    A retired US plasma physicist is seeking to overturn his conviction last month of offences under the American Arms Export Control Act, which prohibits the export, without a government licence, of technology and data to foreign nationals or nations. A jury in Knoxville, Tennessee, found JReece Roth, 70, guilty of illegally exporting technical information about a military project to develop plasma technology for guiding spyplanes that operate as weapons or surveillance devices.

  3. The Status of Women Physicists in Pakistan

    NASA Astrophysics Data System (ADS)

    Hasnain, Aziz Fatima; Islam, Jabeen

    2009-04-01

    A significant number of women physicists work in high-ranking positions in the universities and research institutes of Pakistan; however, the number of women is much lower compared with men. We surveyed these women about the challenges they faced in the workplace and the pace of their progress and scientific work in a male-dominant society. We also surveyed girls' attitudes toward studying physics at the graduate and undergraduate levels.

  4. WE-G-204-01: Building a Career in Academic Medical Physics: The Hardest and Best Job You Will Ever Have!

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazle, J.

    While many indicators for academic medical physics are distressing – jobs are tight, demands on clinical time are high (and getting worse) and national funding has been flat for several years (meaning less money in reality) the present is perhaps one of the most exciting times in cancer research history, and medical physicists have an opportunity to make a difference. Many of us predict the impact of medical physics on cancer research over the next decade to be more significant than ever. Why is that? First, medical imaging is used for every cancer patient in developed countries. Every improvement inmore » the acquisition, processing or analysis of radiological images has the potential to impact patients. The use of radiation therapy is at an all-time high – and virtually cannot be performed without medical physics. Many of the advances in both biomedical imaging and radiation oncology are the result of the hard work of academic medical physicists who are thinking of the next generation of technologies that will be used against cancer or an even broader spectrum of diseases. A career in academic medical physics is demanding, particularly for those with clinical responsibilities. As the demands for justification of their clinical effort become increasingly metricized, the ability to do “unfunded research” will become even more difficult. This means that many will have to generate external salary support to justify their efforts in research and development. This comes at a time when funding for research is compressed and harder to obtain. Generally speaking, if you are not contributing 50% or more of your effort to research, you are competing at a disadvantage and it is very unlikely you will get an NIH/NCI/NIBIB grant. Furthermore, in the ongoing effort to improve patient care and safety, we have developed credentialing pathways that now require at least two-years of residency training. This full-time clinical training creates a gap in the research trajectory of graduate students who aspire to academic positions with an expectation for extramural funding. To address this, several residency programs have created hybrid programs where the two-years of clinical training is combined with one or two years of research effort to allow candidates to further establish an academic identity and to ensure adequate academic productivity to compete for a beginning faculty position. In conclusion, while the path to a successful career in academic medical physics is steep and sometimes hard to follow, reaching the apex is worth the journey. Different paths to a career in medical physics are available, you just have to decide which one is right for you. If improving cancer care is your goal as a physicist, then academic medical physics is the job for you!.« less

  5. WE-G-204-02: So You Want to Do Research: Two Approaches to Beginning a Career in Medical Physics Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deasy, J.

    While many indicators for academic medical physics are distressing – jobs are tight, demands on clinical time are high (and getting worse) and national funding has been flat for several years (meaning less money in reality) the present is perhaps one of the most exciting times in cancer research history, and medical physicists have an opportunity to make a difference. Many of us predict the impact of medical physics on cancer research over the next decade to be more significant than ever. Why is that? First, medical imaging is used for every cancer patient in developed countries. Every improvement inmore » the acquisition, processing or analysis of radiological images has the potential to impact patients. The use of radiation therapy is at an all-time high – and virtually cannot be performed without medical physics. Many of the advances in both biomedical imaging and radiation oncology are the result of the hard work of academic medical physicists who are thinking of the next generation of technologies that will be used against cancer or an even broader spectrum of diseases. A career in academic medical physics is demanding, particularly for those with clinical responsibilities. As the demands for justification of their clinical effort become increasingly metricized, the ability to do “unfunded research” will become even more difficult. This means that many will have to generate external salary support to justify their efforts in research and development. This comes at a time when funding for research is compressed and harder to obtain. Generally speaking, if you are not contributing 50% or more of your effort to research, you are competing at a disadvantage and it is very unlikely you will get an NIH/NCI/NIBIB grant. Furthermore, in the ongoing effort to improve patient care and safety, we have developed credentialing pathways that now require at least two-years of residency training. This full-time clinical training creates a gap in the research trajectory of graduate students who aspire to academic positions with an expectation for extramural funding. To address this, several residency programs have created hybrid programs where the two-years of clinical training is combined with one or two years of research effort to allow candidates to further establish an academic identity and to ensure adequate academic productivity to compete for a beginning faculty position. In conclusion, while the path to a successful career in academic medical physics is steep and sometimes hard to follow, reaching the apex is worth the journey. Different paths to a career in medical physics are available, you just have to decide which one is right for you. If improving cancer care is your goal as a physicist, then academic medical physics is the job for you!.« less

  6. A proposed protocol for acceptance and constancy control of computed tomography systems: a Nordic Association for Clinical Physics (NACP) work group report.

    PubMed

    Kuttner, Samuel; Bujila, Robert; Kortesniemi, Mika; Andersson, Henrik; Kull, Love; Østerås, Bjørn Helge; Thygesen, Jesper; Tarp, Ivanka Sojat

    2013-03-01

    Quality assurance (QA) of computed tomography (CT) systems is one of the routine tasks for medical physicists in the Nordic countries. However, standardized QA protocols do not yet exist and the QA methods, as well as the applied tolerance levels, vary in scope and extent at different hospitals. To propose a standardized protocol for acceptance and constancy testing of CT scanners in the Nordic Region. Following a Nordic Association for Clinical Physics (NACP) initiative, a group of medical physicists, with representatives from four Nordic countries, was formed. Based on international literature and practical experience within the group, a comprehensive standardized test protocol was developed. The proposed protocol includes tests related to the mechanical functionality, X-ray tube, detector, and image quality for CT scanners. For each test, recommendations regarding the purpose, equipment needed, an outline of the test method, the measured parameter, tolerance levels, and the testing frequency are stated. In addition, a number of optional tests are briefly discussed that may provide further information about the CT system. Based on international references and medical physicists' practical experiences, a comprehensive QA protocol for CT systems is proposed, including both acceptance and constancy tests. The protocol may serve as a reference for medical physicists in the Nordic countries.

  7. TH-A-16A-01: Image Quality for the Radiation Oncology Physicist: Review of the Fundamentals and Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seibert, J; Imbergamo, P

    The expansion and integration of diagnostic imaging technologies such as On Board Imaging (OBI) and Cone Beam Computed Tomography (CBCT) into radiation oncology has required radiation oncology physicists to be responsible for and become familiar with assessing image quality. Unfortunately many radiation oncology physicists have had little or no training or experience in measuring and assessing image quality. Many physicists have turned to automated QA analysis software without having a fundamental understanding of image quality measures. This session will review the basic image quality measures of imaging technologies used in the radiation oncology clinic, such as low contrast resolution, highmore » contrast resolution, uniformity, noise, and contrast scale, and how to measure and assess them in a meaningful way. Additionally a discussion of the implementation of an image quality assurance program in compliance with Task Group recommendations will be presented along with the advantages and disadvantages of automated analysis methods. Learning Objectives: Review and understanding of the fundamentals of image quality. Review and understanding of the basic image quality measures of imaging modalities used in the radiation oncology clinic. Understand how to implement an image quality assurance program and to assess basic image quality measures in a meaningful way.« less

  8. Teaching and Learning Science in Hungary, 1867-1945: Schools, Personalities, Influences

    NASA Astrophysics Data System (ADS)

    Frank, Tibor

    2012-03-01

    The article provides an overview of the development of teaching science in Hungary during both the time of the dual monarchy and the newly established independent Hungary after 1920. The integration of Hungary into the Austro-Hungarian Monarchy (1867-1918) strengthened the effect of German speaking European science, the results of which were quickly channelled into the Hungarian school system at all levels. The Hungarian Academy as well as the University of Budapest (today Eötvös Loránd University) played a leading role in the „nationalization" of European science in the educational system. Scientific developments in Hungary strengthened the position of rational and secular thinking in a highly religious society and contributed to the erosion of the mental power of the church tradition, particularly that of the Roman Catholic Church. Toward World War I, influenced by the Protestant Churches, the Jewish tradition, and agnosticism, the public picture of science became more international, occasionally ready to consider challenges of the accepted world view, and sometimes less dogmatic. Leading Hungarian figures with an international reputation who played a decisive role in making science part of Hungarian thinking included the physicists Baron Loránd Eötvös and Sándor Mikola, the mathematicians László Rácz and George Pólya as well as a host of others in related fields. Emigration, mostly Jewish, after World War I, contributed to the curtailment of efforts to teach science effectively as some of the best people left Hungary for, mostly, Germany, Britain, and the United States. However, the interwar school system, the Hungarian version of the German Gymnasium, continued to disseminate scientific thought in Hungarian education. Much of the information was foreign and appeared simply in translation—but an impressive array of indigeneous scientific results paved the way to a larger educated middle class then in the making.

  9. Student Motivation in Response to Problem-Based Learning

    ERIC Educational Resources Information Center

    Fukuzawa, Sherry; Boyd, Cleo; Cahn, Joel

    2017-01-01

    Problem-based learning (PBL) is a self-directed learning strategy where students work collaboratively in small groups to investigate open-ended relatable case scenarios. Students develop transferable skills that can be applied across disciplines, such as collaboration, problem-solving, and critical thinking. Despite extensive research on…

  10. 77 FR 60096 - Adding International Energy Efficiency (IEE) Certificate to List of Certificates a Recognized...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... Efficiency IMO International Maritime Organization MARPOL Protocol International Convention for the... rule. On July 15, 2011, in resolution MEPC.203(62), the International Maritime Organization's (IMO... think that your business, organization, or governmental jurisdiction qualifies as a small entity and...

  11. JPRS Report, Soviet Union, Political Affairs

    DTIC Science & Technology

    1989-11-14

    other over some strawberries ? It was the same in Sukhumi. Does anyone really think all that bloodshed took place over a branch of the univer- sity...departments within them which service the capitols... Second, office space. We are literally jammed into small rooms and two of our employees

  12. The strategic offense initiative? The Soviets and Star Wars

    NASA Astrophysics Data System (ADS)

    Westwick, Peter J.

    2014-05-01

    Historians of the Cold War have paid too little attention to Soviet fears of "space-strike weapons" - that is, possible offensive uses of President Ronald Reagan's Strategic Defense Initiative. In fifteen years or so, soldiers will no longer shoot rifles but will use some kind of lightning, some sort of a machine emitting a holocaustal electrical beam. Tell me, what can we invent in this line so as to surprise our neighbors?... Alas, we are only capable of imitating and purchasing weapons from others, and we do well if we manage to repair them ourselves. --Fyodor Dostoevsky, A Writer's Diary, 1873. [Khlinov, a physicist]: "I know that he has made an important discovery concerning the transmission of infra-red rays over a distance.... Heat waves at a temperature of a thousand degrees centigrade transmitted parallel to each other constitute a monstrous weapon of destruction and defense in time of war. The whole secret lies in the transmission of a ray that does not disperse. So far nobody has been able to do this. Judging by your story, Garin has constructed a machine that will do it. If so it is an extremely important discovery." "I've been thinking for a long time that this invention smells of higher politics," said Shelga. --Aleksei Tolstoy, The Garin Death Ray, 1927 (translated by George Hanna)

  13. TH-E-201-00: Teaching Radiology Residents: What, How, and Expectation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program.more » The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.« less

  14. Flint and the British Tradition of Relativity Theory

    NASA Astrophysics Data System (ADS)

    Beichler, James

    2009-03-01

    Most scientists and scholars are familiar with Sir Arthur Eddington's role in verifying General Relativity in 1919. A few less are aware of his work introducing the theory to the English scientific community. Still less know of Eddington's extensions of relativity theory, especially his attempts to develop a unified field theory. But very few scholars, historians or even physicists are aware of the important role played by other English scientists in the acceptance and development of relativity. In fact, H.T. Flint and his colleagues published more than thirty-five articles in peer reviewed journals in Britain over a period of four decades in an attempt to extend relativity to include electromagnetism and the quantum. Yet his work and that of his close associates is almost completely unknown today, in spite of the fact that he published a book describing his complete unified field theory in the 1960s, well before most quantum theorists even began thinking along the lines of unification. In a world filled with speculations about gravitons, superstrings, quantum loops and other unification models, Flint did it first, but his work has all but disappeared from the scientific consciousness. From Eddington to Flint, the English school of relativists has produced ardent supporters of relativity and numerous advances beyond the standard interpretations of general relativity.

  15. TH-E-201-01: Diagnostic Radiology Residents Physics Curriculum and Updates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sensakovic, W.

    The ABR Core Examination stresses integrating physics into real-world clinical practice and, accordingly, has shifted its focus from passive recall of facts to active application of physics principles. Physics education of radiology residents poses a challenge. The traditional method of didactic lectures alone is insufficient, yet it is difficult to incorporate physics teaching consistently into clinical rotations due to time constraints. Faced with this challenge, diagnostic medical physicists who teach radiology residents, have been thinking about how to adapt their teaching to the new paradigm, what to teach and meet expectation of the radiology resident and the radiology residency program.more » The proposed lecture attempts to discuss above questions. Newly developed diagnostic radiology residents physics curriculum by the AAPM Imaging Physics Curricula Subcommittee will be reviewed. Initial experience on hands-on physics teaching will be discussed. Radiology resident who will have taken the BAR Core Examination will share the expectation of physics teaching from a resident perspective. The lecture will help develop robust educational approaches to prepare radiology residents for safer and more effective lifelong practice. Learning Objectives: Learn updated physics requirements for radiology residents Pursue effective approaches to teach physics to radiology residents Learn expectation of physics teaching from resident perspective J. Zhang, This topic is partially supported by RSNA Education Scholar Grant.« less

  16. Quantitative critical thinking: Student activities using Bayesian updating

    NASA Astrophysics Data System (ADS)

    Warren, Aaron R.

    2018-05-01

    One of the central roles of physics education is the development of students' ability to evaluate proposed hypotheses and models. This ability is important not just for students' understanding of physics but also to prepare students for future learning beyond physics. In particular, it is often hoped that students will better understand the manner in which physicists leverage the availability of prior knowledge to guide and constrain the construction of new knowledge. Here, we discuss how the use of Bayes' Theorem to update the estimated likelihood of hypotheses and models can help achieve these educational goals through its integration with evaluative activities that use hypothetico-deductive reasoning. Several types of classroom and laboratory activities are presented that engage students in the practice of Bayesian likelihood updating on the basis of either consistency with experimental data or consistency with pre-established principles and models. This approach is sufficiently simple for introductory physics students while offering a robust mechanism to guide relatively sophisticated student reflection concerning models, hypotheses, and problem-solutions. A quasi-experimental study utilizing algebra-based introductory courses is presented to assess the impact of these activities on student epistemological development. The results indicate gains on the Epistemological Beliefs Assessment for Physical Science (EBAPS) at a minimal cost of class-time.

  17. Value Added: History of Physics in a ``Science, Technology, and Society'' General Education Undergraduate Course

    NASA Astrophysics Data System (ADS)

    Neuenschwander, Dwight

    2016-03-01

    In thirty years of teaching a capstone ``Science, Technology, and Society'' course to undergraduate students of all majors, I have found that, upon entering STS, to most of them the Manhattan Project seems about as remote as the Civil War; few can describe the difference between nuclear and large non-nuclear weapons. With similar lack of awareness, many students seem to think the Big Bang was dreamed up by science sorcerers. One might suppose that a basic mental picture of weapons that held entire populations hostage should be part of informed citizenship. One might also suppose that questions about origins, as they are put to nature through evidence-based reasoning, should be integral to a culture's identity. Over the years I have found the history of physics to be an effective tool for bringing such subjects to life for STS students. Upon hearing some of the history behind (for example) nuclear weapons and big bang cosmology, these students can better imagine themselves called upon to help in a Manhattan Project, or see themselves sleuthing about in a forensic science like cosmology. In this talk I share sample student responses to our class discussions on nuclear weapons, and on cosmology. The history of physics is too engaging to be appreciated only by physicists.

  18. How to Cool the Planet by Jeff Goodell

    NASA Astrophysics Data System (ADS)

    Goodell, J.

    2010-12-01

    How to Cool the Planet is a narrative about the radical and controversial world of geoengineering - the deliberate, large-scale manipulation of the earth’s climate to reduce the risk of global warming. Unlike other books on this subject, it is not a polemic or historical review. It is the story of the author, a best-selling author and journalist for the New York Times Magazine, Rolling Stone, and other publications, to answer a not-so-simple question: is geoengineering a crazy idea or not? To answer this question, the author sets out on a quest to talk with - and test the sanity of - the leading scientists in this field, from David Keith, a physicist at the University of Calgary, to James Lovelock, independent scientist best known for his Gaia theory. Along the way, Goodell explores the science behind ideas like cloud brightening and the injection of sulfur particles into the stratosphere to deflect sunlight. But he is equally interested in the moral and ethical issues behind these ideas, as well the hopes and fears of the scientists who are exploring them. In the end, the book is a kind of radical experiment itself, exploring the not just the complexities of an emerging field of science, but the complexities of communicating such audacious thinking to non-scientific readers.

  19. Gender studies and the role of women in physics

    NASA Astrophysics Data System (ADS)

    Horton, K. Renee; Holbrook, J. C.

    2013-03-01

    While many physicists care about improving the success of women in physics, research on effective intervention strategies has been meager. What research that does exist focuses largely on the dynamics of under-representation: the factors that discourage women from choosing and remaining committed to the physics community. Rather than focusing on these deficits, this workshop set out to provide tools physicists can use to produce, analyze, and apply evidence about what works for women.

  20. Beyond the Standard Models

    NASA Astrophysics Data System (ADS)

    Weinberg, Steven

    2014-03-01

    I am grateful for this chance to return to Stockholm and speak in honor of a great theoretical physicist, Oskar Klein. All physicists know of Klein's famous contributions to quantum mechanics, recalled to us when we speak of the Klein-Nishina formula, the Klein paradox, and the Klein-Gordon equation. More than that, Klein seems to have had the gift of prophecy -- he could see farther into the future of physics than is given to most of us...

  1. Theory of Anion-Substituted Nitrogen-Bearing III-V Alloys

    DTIC Science & Technology

    1998-07-20

    was found by Zunger group). When more than 4% arsenic is incorporated into GaN in an ordered array, the band gap closes . Calculations of the...arsenic is incorporated into GaN in an ordered array, the band gap closes . Calculations of the properties of random alloys predict smaller bowing...BEARING lll-V ALLOYS Prepared by: M. A. Berding, Senior Research Physicist M. van Schilfgaarde, Senior Research Physicist A. Sher, Associate Director

  2. PARTICLE PHYSICS: CERN Collider Glimpses Supersymmetry--Maybe.

    PubMed

    Seife, C

    2000-07-14

    Last week, particle physicists at the CERN laboratory in Switzerland announced that by smashing together matter and antimatter in four experiments, they detected an unexpected effect in the sprays of particles that ensued. The anomaly is subtle, and physicists caution that it might still be a statistical fluke. If confirmed, however, it could mark the long-sought discovery of a whole zoo of new particles--and the end of a long-standing model of particle physics.

  3. Guide of good practices for occupational radiological protection in plutonium facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-06-01

    This Technical Standard (TS) does not contain any new requirements. Its purpose is to provide guides to good practice, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. the technical rationale is given to allow US Department of Energy (DOE) health physicists to adapt the recommendations to similar situations throughout the DOE complex. Generally, DOE contractor health physicists will be responsible to implement radiation protection activities at DOE facilities and DOE health physicists will be responsible for oversight of those activities. This guidance is meant to be useful for both efforts. This TSmore » replaces PNL-6534, Health Physics Manual of Good Practices for Plutonium Facilities, by providing more complete and current information and by emphasizing the situations that are typical of DOE`s current plutonium operations; safe storage, decontamination, and decommissioning (environmental restoration); and weapons disassembly.« less

  4. Physics and Diplomacy: A True Story

    NASA Astrophysics Data System (ADS)

    Sessoms, Allen

    2017-01-01

    Physics has played a prominent role in U.S. diplomacy since the development of nuclear weapons during World War II. The discipline expanded its reach during the Atoms for Peace initiative of president Eisenhower and continued through the Cold War with the Soviet Union. Physics maintains a prominent role in the diplomatic dialogue through efforts in the nuclear non-proliferation arena and in major international science collaborations such as in experiments at CERN, ITER and the International Space Station. Physics has also served as the template for the much broader impact of science on diplomacy. For example, climate change, energy efficiency and ocean science have all benefitted from the path blazed by physicists. But how effective have physicists been in steering clear of political dynamics while trying to infuse scientific facts into policy debates? This talk will consider this through the eyes of a physicist who has spent many years providing advice to policy makers, both inside and outside of government.

  5. Woman in Physics in Slovenia

    NASA Astrophysics Data System (ADS)

    Zeleznik, Nadja; Conradi, Marjetka; Remskar, Maja

    2009-04-01

    Slovenian female physicists are organized in an informal network that incorporates more than 100 women working in research, academia, government, and industry. In the past three years we have accomplished several actions in order to motivate young girls and students to pursue physics. Our main achievement was publishing the monograph Physics—My Education in September 2007. The book includes 79 autobiographic contributions of female physicists presenting their life and work in different areas: science (institutes and universities), teaching, industry, and government. We have also organized an exhibition about Slovene women in physics, presenting the very first female physicists and all the next generations. A very popular item among women and men was also a T-shirt with our logo. By selling the books and T-shirts we have collected money for scholarships for female students of physics. The first four scholarships were awarded on March 8, 2008, in the spirit of the International Women's Day.

  6. Ask not what physics can do for biology—ask what biology can do for physics

    NASA Astrophysics Data System (ADS)

    Frauenfelder, Hans

    2014-10-01

    Stan Ulam, the famous mathematician, said once to Hans Frauenfelder: ‘Ask not what Physics can do for biology, ask what biology can do for physics’. The interaction between biologists and physicists is a two-way street. Biology reveals the secrets of complex systems, physics provides the physical tools and the theoretical concepts to understand the complexity. The perspective gives a personal view of the path to some of the physical concepts that are relevant for biology and physics (Frauenfelder et al 1999 Rev. Mod. Phys. 71 S419-S442). Schrödinger’s book (Schrödinger 1944 What is Life? (Cambridge: Cambridge University Press)), loved by physicists and hated by eminent biologists (Dronamraju 1999 Genetics 153 1071-6), still shows how a great physicist looked at biology well before the first protein structure was known.

  7. Workshop on Models for Plasma Spectroscopy

    NASA Astrophysics Data System (ADS)

    1993-09-01

    A meeting was held at St. Johns College, Oxford from Monday 27th to Thursday 30th of September 1993 to bring together a group of physicists working on computational modelling of plasma spectroscopy. The group came from the UK, France, Israel and the USA. The meeting was organized by myself, Dr. Steven Rose of RAL and Dr. R.W. Lee of LLNL. It was funded by the U.S. European Office of Aerospace Research and Development and by LLNL. The meeting grew out of a wish by a group of core participants to make available to practicing plasma physicists (particularly those engaged in the design and analysis of experiments) sophisticated numerical models of plasma physics. Additional plasma physicists attended the meeting in Oxford by invitation. These were experimentalists and users of plasma physics simulation codes whose input to the meeting was to advise the core group as to what was really needed.

  8. MO-DE-201-03: This course presents a review of radiologic anatomy and physiology as it applies to projection radiography, fluoroscopy, CT, MRI, U/S, and nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahey, F.

    Fundamental knowledge of radiologic anatomy and physiology is critical for medical physicists. Many physicists are exposed to this topic only in graduate school, and knowledge is seldom formally evaluated or assessed after Part I of the ABR exam. Successful interactions with clinicians, including surgeons, radiologists, and oncologists requires that the medical physicist possess this knowledge. This course presents a review of radiologic anatomy and physiology as it applies to projection radiography, fluoroscopy, CT, MRI, U/S, and nuclear medicine. We will review structural anatomy, manipulation of tissue contrast, the marriage between anatomy and physiology, and explore how medical imaging exploits normalmore » and pathological processes in the body to generate contrast. Learning Objectives: Review radiologic anatomy. Examine techniques to manipulate tissue contrast in radiology. Integrate anatomy and physiology in molecular imaging.« less

  9. Heinrich Hertz and Philipp Lenard: Two Distinguished Physicists, Two Disparate Men

    NASA Astrophysics Data System (ADS)

    Mulligan, Joseph F.

    1999-12-01

    Heinrich Hertz (1857-1894) and Philipp Lenard (1862-1947) both had distinguished careers as physicists. They were together in Bonn from April 1891 to January 1894, Hertz as Director of the Bonn Physics Institute, and Lenard as his assistant. Each did important experimental work on cathode rays and the photoelectric effect, and in 1905 Lenard received the Nobel Prize for his work in these fields. Lenard had great respect and admiration for Hertz before going to Bonn and while there, but gradually allowed his esteem for his mentor (who died in 1894) to diminish as Lenard became increasingly anti-Semitic and involved in National Socialism and the Nazi movement. This article illustrates how differences in their characters and personalities, together with the tragic events of the Great War and its aftermath, resulted in Hertz deservedly being much more highly regarded today both as a physicist and as a man than is Lenard.

  10. Thirty years from now: future physics contributions in nuclear medicine.

    PubMed

    Bailey, Dale L

    2014-12-01

    This paper is the first in a series of invited perspectives by pioneers of nuclear medicine imaging and physics. A medical physicist and a nuclear medicine physician each take a backward and a forward look at the contributions of physics to nuclear medicine. Here, we provide a forward look from the medical physicist's perspective. The author examines a number of developments in nuclear medicine and discusses the ways in which physics has contributed to these. Future developments are postulated in the context of an increasingly personalised approach to medical diagnostics and therapies. A skill set for the next generation of medical physicists in nuclear medicine is proposed in the context of the increasing complexity of 'Molecular Imaging' in the next three decades. The author sees a shift away from 'traditional' roles in instrumentation QA to more innovative approaches in understanding radiobiology and human disease.

  11. A special report of current state of the medical physicist workforce — results of the 2012 ASTRO Comprehensive Workforce Study

    PubMed Central

    Arnone, Anna; Sillanpaa, Jussi K; Yu, Yan; Mills, Michael D.

    2015-01-01

    The medical physics profession is undergoing significant changes. Starting in 2014, candidates registering for certification exams by the American Board of Radiology must have completed a CAMPEP‐accredited residency. This requirement, along with tightened state regulations, uncertainty in future reimbursement, and a stronger emphasis on board certification, have raised questions concerning the state of the medical physics workforce and its ability to adapt to changing requirements. In 2012, ASTRO conducted a workforce study of the comprehensive field of radiation oncology. This article reviews the findings of the medical physics section of the study, including age and gender distribution, educational background, workload, and primary work setting. We also report on job satisfaction, the perceived supply and demand of medical physicists, and the medical physicists' main concerns pertaining to patient safety and quality assurance. PACS number: 87.90 PMID:26103483

  12. SU-B-BRA-07: Panel Member

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halvorsen, P.

    2016-06-15

    In the current rapidly changing Healthcare environment, many groups are competing for limited resources. How can medical physicists position themselves to be a relevant stakeholder in the discussion of how those resources are allocated Our value goes beyond what can be shown in a business plan and is heavily involved with safety and quality. Three areas will be explored: What is our value? Who needs to receive that message? How do we communicate that message? To help frame the discussion in terms of how other stakeholders may view the value of medical physicists, a physician and an administrator will presentmore » their perspective. Lastly, a multidisciplinary panel will present real life examples of strategies that can be utilized today to establish the value of medical physicists. The presentation of these examples will lead into an interactive question and answer time. V. Willcut, I work for Elekta. There was no research associated with this talk.« less

  13. SU-B-BRA-09: Panel Member

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willcut, V.

    2016-06-15

    In the current rapidly changing Healthcare environment, many groups are competing for limited resources. How can medical physicists position themselves to be a relevant stakeholder in the discussion of how those resources are allocated Our value goes beyond what can be shown in a business plan and is heavily involved with safety and quality. Three areas will be explored: What is our value? Who needs to receive that message? How do we communicate that message? To help frame the discussion in terms of how other stakeholders may view the value of medical physicists, a physician and an administrator will presentmore » their perspective. Lastly, a multidisciplinary panel will present real life examples of strategies that can be utilized today to establish the value of medical physicists. The presentation of these examples will lead into an interactive question and answer time. V. Willcut, I work for Elekta. There was no research associated with this talk.« less

  14. SU-B-BRA-08: Panel Member

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazle, J.

    2016-06-15

    In the current rapidly changing Healthcare environment, many groups are competing for limited resources. How can medical physicists position themselves to be a relevant stakeholder in the discussion of how those resources are allocated Our value goes beyond what can be shown in a business plan and is heavily involved with safety and quality. Three areas will be explored: What is our value? Who needs to receive that message? How do we communicate that message? To help frame the discussion in terms of how other stakeholders may view the value of medical physicists, a physician and an administrator will presentmore » their perspective. Lastly, a multidisciplinary panel will present real life examples of strategies that can be utilized today to establish the value of medical physicists. The presentation of these examples will lead into an interactive question and answer time. V. Willcut, I work for Elekta. There was no research associated with this talk.« less

  15. SU-B-BRA-05: Panel Member

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavord, D.

    2016-06-15

    In the current rapidly changing Healthcare environment, many groups are competing for limited resources. How can medical physicists position themselves to be a relevant stakeholder in the discussion of how those resources are allocated Our value goes beyond what can be shown in a business plan and is heavily involved with safety and quality. Three areas will be explored: What is our value? Who needs to receive that message? How do we communicate that message? To help frame the discussion in terms of how other stakeholders may view the value of medical physicists, a physician and an administrator will presentmore » their perspective. Lastly, a multidisciplinary panel will present real life examples of strategies that can be utilized today to establish the value of medical physicists. The presentation of these examples will lead into an interactive question and answer time. V. Willcut, I work for Elekta. There was no research associated with this talk.« less

  16. SU-B-BRA-06: Panel Member

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, J.

    2016-06-15

    In the current rapidly changing Healthcare environment, many groups are competing for limited resources. How can medical physicists position themselves to be a relevant stakeholder in the discussion of how those resources are allocated Our value goes beyond what can be shown in a business plan and is heavily involved with safety and quality. Three areas will be explored: What is our value? Who needs to receive that message? How do we communicate that message? To help frame the discussion in terms of how other stakeholders may view the value of medical physicists, a physician and an administrator will presentmore » their perspective. Lastly, a multidisciplinary panel will present real life examples of strategies that can be utilized today to establish the value of medical physicists. The presentation of these examples will lead into an interactive question and answer time. V. Willcut, I work for Elekta. There was no research associated with this talk.« less

  17. Internationalizing the Curriculum: Re-Thinking Pedagogical Approaches to World Literature and English Composition

    ERIC Educational Resources Information Center

    Pitts, Candice A.

    2017-01-01

    This study explores the pedagogical approaches to internationalizing World Literature and English Composition courses at Albany State University, a small HBCU in Albany, Georgia. This attempt to internationalize the World Literature curriculum introduces, adds, and (re)positions strategically multimedia texts, such as "My Mother the Crazy…

  18. Using the Film JFK To Teach Critical Thinking.

    ERIC Educational Resources Information Center

    Bassham, Gregory; Nardone, Henry

    1997-01-01

    A college instructional module uses the film "JFK" and related reading materials to convince even the less motivated students that reasoning abilities can be of significant personal and public value. Small groups are assigned presentations based on research and readings. Student response has been enthusiastic and the technique has been…

  19. Exploring Geometric Sequences

    ERIC Educational Resources Information Center

    Reiser, Elana

    2016-01-01

    In this brief article Elana Reiser describes her favorite lesson that combines popular culture with mathematics in a way that motivates student thinking and participation. Exploring open-ended problems, students may feel uneasy at first, but working in small groups often leads them to experiment with a variety of solutions. Reiser explains that…

  20. Revising Ophelia: Rethinking Questions of Gender and Power in School.

    ERIC Educational Resources Information Center

    O'Donnell-Allen, Cindy; Smagorinsky, Peter

    1999-01-01

    Looks at the discussion of a small group of girls (ordinarily reticent or diffident in class) in a senior English class as they interpreted the character of Ophelia in Shakespeare's "Hamlet." Discusses the idea that thinking can develop through dialogic (collaborative) rather than dialectic (conflictive) transactions. Notes classroom…

Top