Sample records for physicists create blackmax

  1. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    NASA Astrophysics Data System (ADS)

    Dai, De-Chang; Starkman, Glenn; Stojkovic, Dejan; Issever, Cigdem; Rizvi, Eram; Tseng, Jeff

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can be interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/~issever/BlackMax/blackmax.html.

  2. BlackMax: A black-hole event generator with rotation, recoil, split branes, and brane tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai Dechang; Starkman, Glenn; Stojkovic, Dejan

    2008-04-01

    We present a comprehensive black-hole event generator, BlackMax, which simulates the experimental signatures of microscopic and Planckian black-hole production and evolution at the LHC in the context of brane world models with low-scale quantum gravity. The generator is based on phenomenologically realistic models free of serious problems that plague low-scale gravity, thus offering more realistic predictions for hadron-hadron colliders. The generator includes all of the black-hole gray-body factors known to date and incorporates the effects of black-hole rotation, splitting between the fermions, nonzero brane tension, and black-hole recoil due to Hawking radiation (although not all simultaneously). The generator can bemore » interfaced with Herwig and Pythia. The main code can be downloaded from http://www-pnp.physics.ox.ac.uk/{approx}issever/BlackMax/blackmax.html.« less

  3. MO-E-213-02: Medical Physicist Involvement in Implementing Patient Protection Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seibert, J.

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks inmore » public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation protection than in past To be aware about possible emergence of medical radiation protection as a specialty and challenges for medical physicists.« less

  4. MO-E-213-01: Increasing Role of Medical Physicist in Radiation Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rehani, M.

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks inmore » public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation protection than in past To be aware about possible emergence of medical radiation protection as a specialty and challenges for medical physicists.« less

  5. MO-E-213-03: Newer Radiation Protection Requirements in Last Decade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, J.

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks inmore » public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation protection than in past To be aware about possible emergence of medical radiation protection as a specialty and challenges for medical physicists.« less

  6. MO-E-213-00: What Is Medical Physics Without Radiation Safety?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The focus of work of medical physicists in 1980’s was on quality control and quality assurance. Radiation safety was important but was dominated by occupational radiation protection. A series of over exposures of patients in radiotherapy, nuclear medicine and observation of skin injuries among patients undergoing interventional procedures in 1990’s started creating the need for focus on patient protection. It gave medical physicists new directions to develop expertise in patient dosimetry and dose management. Publications creating awareness on cancer risks from CT in early part of the current century and over exposures in CT in 2008 brought radiation risks inmore » public domain and created challenging situations for medical physicists. Increasing multiple exposures of individual patient and patient doses of few tens of mSv or exceeding 100 mSv are increasing the role of medical physicists. Expansion of usage of fluoroscopy in the hands of clinical professionals with hardly any training in radiation protection shall require further role for medical physicists. The increasing publications in journals, recent changes in Safety Standards, California law, all increase responsibilities of medical physicists in patient protection. Newer technological developments in dose efficiency and protective devices increase percentage of time devoted by medical physicists on radiation protection activities. Without radiation protection, the roles, responsibilities and day-to-day involvement of medical physicists in diagnostic radiology becomes questionable. In coming years either medical radiation protection may emerge as a specialty or medical physicists will have to keep major part of day-to-day work on radiation protection. Learning Objectives: To understand how radiation protection has been increasing its role in day-to-day activities of medical physicist To be aware about international safety Standards, national and State regulations that require higher attention to radiation protection than in past To be aware about possible emergence of medical radiation protection as a specialty and challenges for medical physicists.« less

  7. MO-DE-304-01: The Abt Study of Medical Physicist Work Values for Radiation Oncology Physics Services: Round IV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, M.

    The Abt study of medical physicist work values for radiation oncology physics services, Round IV is completed. It supersedes the Abt III study of 2008. The 2015 Abt study measured qualified medical physicist (QMP) work associated with routine radiation oncology procedures as well as some special procedures. As before, a work model was created to allow the medical physicist to defend QMP work based on both routine and special procedures service mix. The work model can be used to develop a cost justification report for setting charges for radiation oncology physics services. The Abt study Round IV was designed tomore » empower the medical physicist to negotiate a service or employment contract with providers based on measured national QMP workforce and staffing data. For a variety of reasons, the diagnostic imaging contingent of AAPM has had a more difficult time trying estimate workforce requirements than their therapy counterparts. Over the past several years, the Diagnostic Work and Workforce Study Subcommittee (DWWSS) has collected survey data from AAPM members, but the data have been very difficult to interpret. The DWWSS has reached out to include more AAPM volunteers to create a more full and accurate representation of actual clinical practice models on the subcommittee. Though much work remains, through hours of discussion and brainstorming, the DWWSS has somewhat of a clear path forward. This talk will provide attendees with an update on the efforts of the subcommittee. Learning Objectives: Understand the new information documented in the Abt studies. Understand how to use the Abt studies to justify medical physicist staffing. Learn relevant historical information on imaging physicist workforce. Understand the process of the DWWSS in 2014. Understand the intended path forward for the DWWSS.« less

  8. Nuclear Physicists in Finance

    NASA Astrophysics Data System (ADS)

    Mattoni, Carlo

    2017-01-01

    The financial services industry presents an interesting alternative career path for nuclear physicists. Careers in finance typically offer intellectual challenge, a fast pace, high caliber colleagues, merit-based compensation with substantial upside, and an opportunity to deploy skills learned as a physicist. Physicists are employed at a wide range of financial institutions on both the ``buy side'' (hedge fund managers, private equity managers, mutual fund managers, etc.) and the ``sell side'' (investment banks and brokerages). Historically, physicists in finance were primarily ``quants'' tasked with applying stochastic calculus to determine the price of financial derivatives. With the maturation of the field of derivative pricing, physicists in finance today find work in a variety of roles ranging from quantification and management of risk to investment analysis to development of sophisticated software used to price, trade, and risk manage securities. Only a small subset of today's finance careers for physicists require the use of advanced math and practically none provide an opportunity to tinker with an apparatus, yet most nevertheless draw on important skills honed during the training of a nuclear physicist. Intellectually rigorous critical thinking, sophisticated problem solving, an attention to minute detail and an ability to create and test hypotheses based on incomplete information are key to both disciplines.

  9. A day with the women physicists of Pakistan

    NASA Astrophysics Data System (ADS)

    Hasnain, Aziz Fatima; Islam, Aquila; Ali, Asima; Qureshi, Riffat Mehmood; Qamar, Anisa

    2015-12-01

    The Working Group on Women in Physics successfully organized a national-level meeting of women physicists at the National Centre for Physics, Quaid-e-Azam University, to discuss the agenda for the 5th IUPAP International Conference on Women in Physics. This report describes the outcome of the meeting and the status of female physicists in Pakistan. It also includes a comparative study of the enrollment of women in undergraduate and graduate programs in physics, along with a brief description of factors that create hurdles for female students opting for higher education in this field.

  10. MO-DE-304-02: Diagnostic Workforce Subcommittee Status and Direction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gress, D.

    2015-06-15

    The Abt study of medical physicist work values for radiation oncology physics services, Round IV is completed. It supersedes the Abt III study of 2008. The 2015 Abt study measured qualified medical physicist (QMP) work associated with routine radiation oncology procedures as well as some special procedures. As before, a work model was created to allow the medical physicist to defend QMP work based on both routine and special procedures service mix. The work model can be used to develop a cost justification report for setting charges for radiation oncology physics services. The Abt study Round IV was designed tomore » empower the medical physicist to negotiate a service or employment contract with providers based on measured national QMP workforce and staffing data. For a variety of reasons, the diagnostic imaging contingent of AAPM has had a more difficult time trying estimate workforce requirements than their therapy counterparts. Over the past several years, the Diagnostic Work and Workforce Study Subcommittee (DWWSS) has collected survey data from AAPM members, but the data have been very difficult to interpret. The DWWSS has reached out to include more AAPM volunteers to create a more full and accurate representation of actual clinical practice models on the subcommittee. Though much work remains, through hours of discussion and brainstorming, the DWWSS has somewhat of a clear path forward. This talk will provide attendees with an update on the efforts of the subcommittee. Learning Objectives: Understand the new information documented in the Abt studies. Understand how to use the Abt studies to justify medical physicist staffing. Learn relevant historical information on imaging physicist workforce. Understand the process of the DWWSS in 2014. Understand the intended path forward for the DWWSS.« less

  11. MO-DE-304-00: Workforce Assessment Committee Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    2015-06-15

    The Abt study of medical physicist work values for radiation oncology physics services, Round IV is completed. It supersedes the Abt III study of 2008. The 2015 Abt study measured qualified medical physicist (QMP) work associated with routine radiation oncology procedures as well as some special procedures. As before, a work model was created to allow the medical physicist to defend QMP work based on both routine and special procedures service mix. The work model can be used to develop a cost justification report for setting charges for radiation oncology physics services. The Abt study Round IV was designed tomore » empower the medical physicist to negotiate a service or employment contract with providers based on measured national QMP workforce and staffing data. For a variety of reasons, the diagnostic imaging contingent of AAPM has had a more difficult time trying estimate workforce requirements than their therapy counterparts. Over the past several years, the Diagnostic Work and Workforce Study Subcommittee (DWWSS) has collected survey data from AAPM members, but the data have been very difficult to interpret. The DWWSS has reached out to include more AAPM volunteers to create a more full and accurate representation of actual clinical practice models on the subcommittee. Though much work remains, through hours of discussion and brainstorming, the DWWSS has somewhat of a clear path forward. This talk will provide attendees with an update on the efforts of the subcommittee. Learning Objectives: Understand the new information documented in the Abt studies. Understand how to use the Abt studies to justify medical physicist staffing. Learn relevant historical information on imaging physicist workforce. Understand the process of the DWWSS in 2014. Understand the intended path forward for the DWWSS.« less

  12. The current status of education and career paths of students after completion of medical physicist programs in Japan: a survey by the Japanese Board for Medical Physicist Qualification.

    PubMed

    Kadoya, Noriyuki; Karasawa, Kumiko; Sumida, Iori; Arimura, Hidetaka; Yamada, Syogo

    2015-07-01

    To standardize educational programs and clinical training for medical physics students, the Japanese Board for Medical Physicist Qualification (JBMP) began to accredit master's, doctorate, and residency programs for medical physicists in 2012. At present, 16 universities accredited by the JBMP offer 22 courses. In this study, we aimed to survey the current status of educational programs and career paths of students after completion of the medical physicist program in Japan. A questionnaire was sent in August 2014 to 32 universities offering medical physicist programs. The questionnaire was created and organized by the educational course certification committee of the JBMP and comprised two sections: the first collected information about the university attended, and the second collected information about characteristics and career paths of students after completion of medical physicist programs from 2008 to 2014. Thirty universities (16 accredited and 14 non-accredited) completed the survey (response rate 94 %). A total of 209, 40, and 3 students graduated from the master's, doctorate, and residency programs, respectively. Undergraduates entered the medical physicist program constantly, indicating an interest in medical physics among undergraduates. A large percentage of the students held a bachelor's degree in radiological technology (master's program 94 %; doctorate program 70 %); graduates obtained a national radiological technologist license. Regarding career paths, although the number of the graduates who work as medical physicist remains low, 7 % with a master's degree and 50 % with a doctorate degree worked as medical physicists. Our results could be helpful for improving the medical physicist program in Japan.

  13. WE-G-19A-01: Radiologists and Medical Physicists: Working Together to Achieve Common Goals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A; Ma, J; Steele, J

    It is vitally important that medical physicists understand the clinical questions that radiologists are trying to answer with patient images. Knowledge of the types of information the radiologist needs helps medical physicists configure imaging protocols that appropriately balance radiation dose, time, and image quality. The ability to communicate with radiologists and understand medical terminology, anatomy, and physiology is key to creating such imaging protocols. In this session, radiologists will present clinical cases and describe the information they are seeking in the clinical images. Medical physicists will then discuss how imaging protocols are configured. Learning Objectives: Understand the types of informationmore » that radiologists seek in medical images. Apply this understanding in configuring the imaging equipment to deliver this information. Develop strategies for working with physician colleagues.« less

  14. Future trends in the supply and demand for radiation oncology physicists.

    PubMed

    Mills, Michael D; Thornewill, Judah; Esterhay, Robert J

    2010-04-12

    Significant controversy surrounds the 2012 / 2014 decision announced by the Trustees of the American Board of Radiology (ABR) in October of 2007. According to the ABR, only medical physicists who are graduates of a Commission on Accreditation of Medical Physics Education Programs, Inc. (CAMPEP) accredited academic or residency program will be admitted for examination in the years 2012 and 2013. Only graduates of a CAMPEP accredited residency program will be admitted for examination beginning in the year 2014. An essential question facing the radiation oncology physics community is an estimation of supply and demand for medical physicists through the year 2020. To that end, a Demand & Supply dynamic model was created using STELLA software. Inputs into the model include: a) projected new cancer incidence and prevalence 1990-2020; b) AAPM member ages and retirement projections 1990-2020; c) number of ABR physics diplomates 1990-2009; d) number of patients per Qualified Medical Physicist from Abt Reports I (1995), II (2002) and III (2008); e) non-CAMPEP physicists trained 1990-2009 and projected through 2014; f) CAMPEP physicists trained 1993-2008 and projected through 2014; and g) working Qualified Medical Physicists in radiation oncology in the United States (1990-2007). The model indicates that the number of qualified medical physicists working in radiation oncology required to meet demand in 2020 will be 150-175 per year. Because there is some elasticity in the workforce, a portion of the work effort might be assumed by practicing medical physicists. However, the minimum number of new radiation oncology physicists (ROPs) required for the health of the profession is estimated to be 125 per year in 2020. The radiation oncology physics community should plan to build residency programs to support these numbers for the future of the profession.

  15. Postdoctoral Opportunities in Medical Physics

    NASA Astrophysics Data System (ADS)

    Hogstrom, Kenneth

    2006-04-01

    The medical physicist is a professional who specializes in the application of the concepts and methods of physics to the diagnosis and treatment of human disease. Medical physicists identify their primary discipline to be radiation therapy (78%), medical imaging (16%), nuclear medicine (3%), or radiation safety (2%). They state their primary responsibility to be clinical (78%), academic (9%), research (4%), etc. Correspondingly, medical physicists reveal their primarily employment to be a private hospital (42%), university hospital (32%), physicist's service group (9%), physician's service group (9%), industry (5%), and government (3%). The most frequent job of medical physicists is clinical radiation therapy physicist, whose clinical duties include: equipment acquisition, facility design, commissioning, machine maintenance, calibration and quality assurance, patient treatment planning, patient dose calculation, management of patient procedures, development of new technology, radiation safety, and regulatory compliance. The number of medical physicists in the United States can be estimated by the number of members of the American Association of Physicists in Medicine (AAPM), which has increased 5.5% annually since 1969, currently being 5,000. New positions plus retirements create a current need >300 new medical physicists per year, which exceeds supply. This is supported by the steady growth in average salaries, being 100,000 for PhDs entering the field and reaching 180,000. Graduate programs alone cannot meet demand, and physicists entering the field through postdoctoral training in medical physics remain important. Details of postdoctoral research programs and medical physics residency programs will provide direction to physics PhD graduates interested in medical physics. [The AAPM, its annual Professional Information Report, and its Public Education Committee are acknowledged for information contributing to this presentation.

  16. Letters Home as an Alternative to Lab Reports

    ERIC Educational Resources Information Center

    Lane, W. Brian

    2014-01-01

    The traditional lab report is known to create several pedagogical shortcomings in the introductory physics course, particularly with regard to promoting student engagement and encouraging quality writing. This paper discusses the use of a "letter home" written to a non-physicist as an alternative to lab reports that creates a more…

  17. Automation of radiation treatment planning : Evaluation of head and neck cancer patient plans created by the Pinnacle3 scripting and Auto-Planning functions.

    PubMed

    Speer, Stefan; Klein, Andreas; Kober, Lukas; Weiss, Alexander; Yohannes, Indra; Bert, Christoph

    2017-08-01

    Intensity-modulated radiotherapy (IMRT) techniques are now standard practice. IMRT or volumetric-modulated arc therapy (VMAT) allow treatment of the tumor while simultaneously sparing organs at risk. Nevertheless, treatment plan quality still depends on the physicist's individual skills, experiences, and personal preferences. It would therefore be advantageous to automate the planning process. This possibility is offered by the Pinnacle 3 treatment planning system (Philips Healthcare, Hamburg, Germany) via its scripting language or Auto-Planning (AP) module. AP module results were compared to in-house scripts and manually optimized treatment plans for standard head and neck cancer plans. Multiple treatment parameters were scored to judge plan quality (100 points = optimum plan). Patients were initially planned manually by different physicists and re-planned using scripts or AP. Script-based head and neck plans achieved a mean of 67.0 points and were, on average, superior to manually created (59.1 points) and AP plans (62.3 points). Moreover, they are characterized by reproducibility and lower standard deviation of treatment parameters. Even less experienced staff are able to create at least a good starting point for further optimization in a short time. However, for particular plans, experienced planners perform even better than scripts or AP. Experienced-user input is needed when setting up scripts or AP templates for the first time. Moreover, some minor drawbacks exist, such as the increase of monitor units (+35.5% for scripted plans). On average, automatically created plans are superior to manually created treatment plans. For particular plans, experienced physicists were able to perform better than scripts or AP; thus, the benefit is greatest when time is short or staff inexperienced.

  18. Fun D.C. Jobs for Physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark Cully

    2009-09-30

    Physicists make valuable contributions in a wide variety of careers, including those in Washington. Many national challenges, including energy, innovation, and security, create a demand for technically-competent individuals across government. Clark will discuss some of the many programs in D.C. designed to attract the best and brightest minds, from grad-students to professors, from short-term assignments to whole new careers. These are great opportunities to use your expertise and enrich your knowledge of the broader scientific enterprise, all while serving society.

  19. Diagnostic medical physicists and their clinical activities.

    PubMed

    Cypel, Yasmin S; Sunshine, Jonathan H

    2004-02-01

    The primary objective of this study was to obtain basic, descriptive information about medical physicists involved in diagnostic radiology-related activities, the diagnostic-related activities that they performed, and the time spent on these activities. A survey was sent to a randomly selected sample of 1511 medical physicists from July through October 2001 using primarily e-mail methods; a total of 851 surveys was received, for a response rate of 56%. Of these, 427 were responses from physicists who do partly or only clinical diagnostic medical physics; it is this group for which results are presented. Fifty-four percent of the physicists who reported doing any clinical diagnostic medical physics performed clinical activities only in diagnostic medical physics. Fourteen percent of all those doing clinical diagnostic medical physics were women. Over 97% of the physicists doing clinical diagnostic medical physics reported having graduate degrees in physics; 53% had PhDs. The mean total weekly hours worked by physicists doing clinical diagnostic medical physics was 42. Medical physicists doing only clinical diagnostic activities reported working approximately 40 hours weekly, whereas those doing partly clinical diagnostic medical physics reported working 14 hours weekly in the field (approximately one-third of their work time). Radiography and fluoroscopy, computed tomography, nuclear medicine, and mammography are all fields in which the majority of those doing any clinical diagnostic medical physics are active. Full-time physicists working only in diagnostic medical physics were responsible for a median of 25 units of equipment, compared with a median of 10 units for those working only partly in the field. Number of units evaluated, frequency of evaluation, and hours per evaluation were reported for almost 20 types of equipment. Medical physicists performing diagnostic clinical activities typically are responsible for a large number and wide variety of imaging equipment. It would be helpful to study their work further, focusing in particular on whether there is a shortage, as is true of diagnostic radiologists, and whether the variety of responsibilities creates strain.

  20. Women in physics in Bangladesh

    NASA Astrophysics Data System (ADS)

    Choudhury, Shamima K.

    2013-03-01

    Bangladesh has had a glorious physics tradition since the beginning of the last century, when the physicist S.N. Bose published a groundbreaking paper with Albert Einstein on Bose-Einstein statistics. However, women in Bangladesh traditionally have not been able to make their way in the realm of science in general and physics in particular. Since Bangladesh achieved independence in 1971, the situation has gradually changed and more and more women choose physics as an academic discipline. The percentage of women students in physics rose from 10% in 1970 to almost 30% in 2010. In recent years, women physicists have actively participated in many activities promoting science and technology, creating awareness among the public about the importance of physics education. The present status of women physicists in academic, research, and administrative programs in the government and private sectors in Bangladesh is reported. The greater inclusion of women scientists, particularly physicists, in policy-making roles on important issues of global and national interest is suggested.

  1. NRG Oncology medical physicists' manpower survey quantifying support demands for multi-institutional clinical trials.

    PubMed

    Monroe, James I; Boparai, Karan; Xiao, Ying; Followill, David; Galvin, James M; Klein, Eric E; Low, Daniel A; Moran, Jean M; Zhong, Haoyu; Sohn, Jason W

    2018-02-04

    A survey was created by NRG to assess a medical physicists' percent full time equivalent (FTE) contribution to multi-institutional clinical trials. A 2012 American Society for Radiation Oncology report, "Safety Is No Accident," quantified medical physics staffing contributions in FTE factors for clinical departments. No quantification of FTE effort associated with clinical trials was included. To address this lack of information, the NRG Medical Physics Subcommittee decided to obtain manpower data from the medical physics community to quantify the amount of time medical physicists spent supporting clinical trials. A survey, consisting of 16 questions, was designed to obtain information regarding physicists' time spent supporting clinical trials. The survey was distributed to medical physicists at 1996 radiation therapy institutions included on the membership rosters of the 5 National Clinical Trials Network clinical trial groups. Of the 451 institutions who responded, 50% (226) reported currently participating in radiation therapy trials. On average, the designated physicist at each institution spent 2.4 hours (standard deviation [SD], 5.5) per week supervising or interacting with clinical trial staff. On average, 1.2 hours (SD, 3.1), 1.8 hours (SD, 3.9), and 0.6 hours (SD, 1.1) per week were spent on trial patient simulations, treatment plan reviews, and maintaining a Digital Imaging and Communications in Medicine server, respectively. For all trial credentialing activities, physicists spent an average of 32 hours (SD, 57.2) yearly. Reading protocols and supporting dosimetrists, clinicians, and therapists took an average of 2.1 hours (SD, 3.4) per week. Physicists also attended clinical trial meetings, on average, 1.2 hours (SD, 1.9) per month. On average, physicist spent a nontrivial total of 9 hours per week (0.21 FTE) supporting an average of 10 active clinical trials. This time commitment indicates the complexity of radiation therapy clinical trials and should be taken into account when staffing radiation therapy institutions. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Physics Climate as Experienced by LGBT+ Physicists

    NASA Astrophysics Data System (ADS)

    Long, Elena

    2012-02-01

    In 2009, Elena Long created the LGBT+ Physicists website (http://lgbtphysicists.x10hosting.com) as a warehouse for resources useful for sexual and gender minorities working in physics. This resource has grown to include networking resources, lists of LGBT-friendly universities and localities, recommendations for enacting positive change in physics communities, and out-reach to other STEM-oriented LGBT organizations. This has been possible in large part by the dynamic community of LGBT+ physicists and allies looking to make physics more welcoming towards our community. In 2011, Elena used hir position as Member at Large on the executive committee of the Forum of Graduate Student Affairs (FGSA) to conduct a climate survey that included, among other things, the first serious look at LGBT+ demographics in physics. The survey focused particularly on issues of language heard and harassment experienced by physicists and was broken down into categories based on race, physical and mental ability, gender, and sexuality. Furthermore, it examined the outcomes of experienced harassment and the reasons for when harassment was not reported. Due to the nature of the study, overlapping demographics, especially ``multiple minorities,'' were also explored. This talk will give a brief history of the LGBT+ Physicists resource as well as an overview of the FGSA study.

  3. Can Industrial Physics Avoid Being Creatively Destroyed?

    NASA Astrophysics Data System (ADS)

    Hass, Kenneth C.

    2004-03-01

    Opportunities abound for physics and physicists to remain vital contributors to industrial innovation throughout the 21st century. The key questions are whether those trained in physics are sufficiently willing and flexible to continuously enhance their value to their companies by adapting to changing business priorities and whether business leaders are sufficiently enlightened to recognize and exploit the unique skills and creativity that physicists often provide. "Industrial physics" today is more diverse than ever, and answers to the above questions will vary with sector, company, and even individual physicists. Such heterogeneity creates new challenges for the physics community in general, which may need to undergo significant cultural change to maintain strong ties between physicists in industry, academia, and government. Insights from the emerging science of complex systems will be used to emphasize the importance of realistic mental models for the interactions between science and technology and the pathways from scientific advance to successful commercialization. Examples will be provided of the ongoing value of physics-based research in the auto industry and of the growing importance of interdisciplinary approaches to the technical needs of industry.

  4. SU-F-P-13: NRG Oncology Medical Physics Manpower Survey Quantifying Support Demands for Multi Institutional Clinical Trials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monroe, J; Case Western Reserve University; Boparai, K

    Purpose: A survey was taken by NRG Oncology to assess Full Time Equivalent (FTE) contributions to multi institutional clinical trials by medical physicists.No current quantification of physicists’ efforts in FTE units associated with clinical trials is available. The complexity of multi-institutional trials increases with new technologies and techniques. Proper staffing may directly impact the quality of trial data and outcomes. The demands on physics time supporting clinical trials needs to be assessed. Methods: The NRG Oncology Medical Physicist Subcommittee created a sixteen question survey to obtain this FTE data. IROC Houston distributed the survey to their list of 1802 contactmore » physicists. Results: After three weeks, 363 responded (20.1% response). 187 (51.5%) institutions reporting external beam participation were processed. There was a wide range in number of protocols active and supported at each institution. Of the 187 clinics, 134 (71.7%) participate in 0 to 10 trials, 28 (15%) in 11 to 20 trials, 10 (5.3%) in 21 to 30 trials, 9 (4.8%) had 40 to 75 trials. On average, physicist spent 2.7 hours (SD: 6.0) per week supervising or interacting with clinical trial staff. 1.25 hours (SD: 3.37), 1.83 hours (SD: 4.13), and 0.64 hours(SD: 1.13) per week were spent on patient simulation, reviewing treatment plans, and maintaining a DICOM server, respectively. For all protocol credentialing activities, physicist spent an average of 37.05 hours (SD: 96.94) yearly. To support dosimetrists, clinicians, and therapists, physicist spend on average 2.07 hours (SD: 3.52) per week just reading protocols. Physicist attended clinical trial meetings for on average 1.13 hours (SD: 1.85) per month. Conclusion: Responding physicists spend a nontrivial amount of time: 8.8 hours per week (0.22 FTE) supporting, on average, 9 active multi-institutional clinical trials.« less

  5. Physics moves to the provinces: the Siberian physics community and Soviet power, 1917-1940.

    PubMed

    Josephson, Paul; Sorokin, Aleksandr

    2017-06-01

    The rich tradition of Siberian science and higher education is little known outside Russian academic circles. Using institutional history, this article focuses on the founding and pre-war period of the Siberian Physical Technical Institute, the establishment of its research focus and its first difficult steps to become a leading centre of R & D in Siberia. Based on archival materials, the article describes how local and national physicists justified the institute's creation by demonstrating ties with industry and building on the presence of a cohort of locally trained physicists, whose numbers were augmented by Leningrad specialists. The strength of local cadres enabled the institute to navigate civil war and cultural revolution successfully. Physicists were able to take advantage of ongoing industrialization campaigns to gain support to create the institute, although local disputes and economic problems slowed its further development. The article describes the circulation of scientific, political and philosophical knowledge between Moscow, Leningrad and the provinces, and the impact of Bolshevik rule and Stalinism on the Siberian physics enterprise.

  6. Improving the workplace environment for female physicists

    NASA Astrophysics Data System (ADS)

    Butcher, Gillian

    2013-03-01

    The ideal workplace is one in which women and men can work to their potential and are respected and recognized for their contribution. But what are the conditions that would create this environment, and how can we achieve this? This paper highlights some of the best practices, discussed in a single-session workshop, to improve the workplace environment for female (and male) physicists. While there are many actions that can be taken at the personal, local, and even national level, it is necessary to understand when the issues have broader societal implications. Likewise, working toward the ideal environment should not lead us to ignore the necessity of training and assisting women to work effectively in the existing environment.

  7. QuarkNet: A Unique and Transformative Physics Education Program

    ERIC Educational Resources Information Center

    Bardeen, Marjorie; Wayne, Mitchell; Young, M. Jean

    2018-01-01

    The QuarkNet Collaboration has forged nontraditional relationships among particle physicists, high school teachers, and their students. QuarkNet centers are located at 50+ universities and labs across the United States and Puerto Rico. We provide professional development for teachers and create opportunities for teachers and students to engage in…

  8. "Micro-robots" team up to act like vacuum cleaner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snezhko, Alexey and Aronson, Igor

    2011-01-01

    "Micro-robots" designed by Argonne National Laboratory physicists Alexey Snezhko and Igor Aronson pick up free-floating particles. The competing hydrodynamic flows created by the four-aster assembly trap the particles. This video is courtesy of Nature Materials. Read more about the bots at http://go.usa.gov/KAT

  9. Report of the APS Ad-Hoc Committee on LGBT Issues - Presentation of Findings and Recommendations

    NASA Astrophysics Data System (ADS)

    Falk, Michael

    In 2014 the Executive Officer of the American Physical Society (APS), Kate Kirby, created an Ad-Hoc Committee on LGBT Issues (C-LGBT) charged with reporting on the obstacles to inclusion of LGBT physicists, a term which for the purpose of this report refers to persons who self-identify as lesbian, gay, bisexual, transgender, queer, questioning, intersex, or asexual, as well as other sexual and gender minorities. The full charge was as follows: ``The committee will advise the APS on the current status of LGBT issues in physics, provide recommendations for greater inclusion, and engage physicists in laying the foundation for a more inclusive physics community. ?More specifically, the committee will investigate LGBT representation in physics, assess the educational and professional climate in physics, recommend changes in policies and practices that impact LGBT physicists, and address other issues that affect inclusion.'' We will present the findings and recommendations of the C-LGBT final report, and a panel discussion will be held following the presentation to discuss the future of APS efforts toward LGBT inclusion in physics.

  10. Report of the APS Ad-Hoc Committee on LGBT Issues - Presentation of Findings and Recommendations

    NASA Astrophysics Data System (ADS)

    Long, Elena

    2016-03-01

    In 2014 the Executive Officer of the American Physical Society (APS), Kate Kirby, created an Ad-Hoc Committee on LGBT Issues (C-LGBT) charged with reporting on the obstacles to inclusion of LGBT physicists, a term which for the purpose of this report refers to persons who self-identify as lesbian, gay, bisexual, transgender, queer, questioning, intersex, or asexual, as well as other sexual and gender minorities. The full charge was as follows: ``The committee will advise the APS on the current status of LGBT issues in physics, provide recommendations for greater inclusion, and engage physicists in laying the foundation for a more inclusive physics community? More specifically, the committee will investigate LGBT representation in physics, assess the educational and professional climate in physics, recommend changes in policies and practices that impact LGBT physicists, and address other issues that affect inclusion.'' We will present the findings and recommendations of the C-LGBT final report, and a panel discussion will be held following the presentation to discuss the future of APS efforts toward LGBT inclusion in physics.

  11. A Radiation Homeland Security Workshop Presented to the City of Berkeley Fire Department

    NASA Astrophysics Data System (ADS)

    Matis, Howard

    2005-04-01

    A radiation incident in a community, ranging from a transportation accident to a dirty bomb, is expected to be rare, but still can occur. First responders to such an incident must be prepared. City of Berkeley officials met with members of the Lawrence Berkeley National Laboratory staff and agreed that the laboratory participants would create material and teach it to all of their fire fighting staff. To design such a course, nuclear physicists, biologists and health physicists merged some of their existing teaching material together with previous homeland security efforts to produce a course that lasted one full day. The material was designed to help alleviate the myths and fear of radiation experienced by many first responders. It included basic nuclear physics information, biological effects, and methods that health physicists use to detect and handle radiation. The curriculum included several hands on activities which involved working directly with the meters the Berkeley Fire Department possessed. In addition, I will discuss some observations from teaching this course material plus some unusual problems that we encountered, such as suddenly the whole class responding to a fire.

  12. Lens Ray Diagrams with a Spreadsheet

    ERIC Educational Resources Information Center

    González, Manuel I.

    2018-01-01

    Physicists create spreadsheets customarily to carry out numerical calculations and to display their results in a meaningful, nice-looking way. Spreadsheets can also be used to display a vivid geometrical model of a physical system. This statement is illustrated with an example taken from geometrical optics: images formed by a thin lens. A careful…

  13. Fermilab | Science at Fermilab | Experiments & Projects | Energy Frontier |

    Science.gov Websites

    Collider The LHC at CERN, the European Organization for Nuclear Research, is the largest, most complex and . Physicists take interest in collisions that stand out due to the force of their impact or for the types of identify the types of particles created by the collisions and to determine if they have discovered

  14. Gender performativity in physics: affordances or only constraints?

    NASA Astrophysics Data System (ADS)

    Danielsson, Anna T.; Lundin, Mattias

    2014-06-01

    In this forum we engage in a dialogue with Allison Gonsalves's paper `"Physics and the girly girl—there is a contradiction somewhere": Doctoral students' positioning around discourses of gender and competence in physics'. In her paper Gonsalves uses a sociocultural approach to examine women doctoral students' stories about becoming physicists. In doing so her paper focuses on how discourses of masculinity and femininity can create available and unavailable positions for the women students. In this dialogue we do a parallel reading of two of the student narratives presented by Gonsalves, using Judith Butler's (1990) concept of discursive agency as a means to more explicitly bring the affordances for women identity constitution offered by their localized physicist context to the fore, rather focusing on its, often more visible, constraints.

  15. Bugs and the big bang.

    PubMed

    Parsons, Jenni

    2008-10-01

    Now that's a cheery thought! Somewhere more than 100 km below the Geneva countryside two parallel beams of subatomic particles are whizzing around a 27 km circuit in opposite directions at about 99% of the speed of light, doing over 11 000 laps per second. Physicists hope to create a 'bang' that won't end the world, but will unlock some of its mysteries. I confess I have never thought of physicists as poets, but they certainly come up with some evocative models to explain the unknown such as 'dark matter', the invisible skeleton stretching through space; or 'dark energy', which drives the expansion of the universe; or the grandiose 'God's particle' (officially named 'Higgs boson') postulated to endow other particles with mass. These are concepts both too large and too small to grasp.

  16. Lens ray diagrams with a spreadsheet

    NASA Astrophysics Data System (ADS)

    González, Manuel I.

    2018-05-01

    Physicists create spreadsheets customarily to carry out numerical calculations and to display their results in a meaningful, nice-looking way. Spreadsheets can also be used to display a vivid geometrical model of a physical system. This statement is illustrated with an example taken from geometrical optics: images formed by a thin lens. A careful mixture of standard Excel functions allows to display a realistic automated ray diagram. The suggested spreadsheet is intended as an auxiliary didactic tool for instructors who wish to teach their students to create their own ray diagrams.

  17. Analysis and projections of physics in Chile

    NASA Astrophysics Data System (ADS)

    Soto, Leopoldo; Zambra, Marcelo; Loewe, Marcelo; Gutiérrez, Gonzalo; Molina, Mario; Barra, Felipe; Lund, Fernando; Saavedra, Carlos; Haberle, Patricio

    2008-11-01

    In the present work, an assessment of the Physics research capacity in Chile is presented. For this, the period between 2000 and June 2005 has been studied. In this period almost 200 physicists have contributed to scientific production in terms of ISI publications. Amongst these 200, ~160 correspond to theoretical physicists and only ~40 to experimental physicists; ~178 are men and only ~22 are women. A more detailed analysis shows that ~160 physicists have at least one appearance in ISI publications per year considering the last 3 years. Ten years ago, a similar criteria (at least one appearance per year in ISI articles, considering mobile three-year periods), the number of active physicists in the Chilean community was estimated at 70. Therefore, the Chilean active physicists' community has doubled in 10 years. There exist 20 centres in which scientific research is developed: 18 university centres, a government institute and a private institute. As regards scientific productivity, both as related to disciplines or research areas, and well as in relation to research centres, it is found that, generally, scientific production, in a particular area in Physics or in a research centre, is directly related to the number of corresponding researchers; that is to say, the percentage of the national productivity in an area or research centre corresponds to its share in the total number of physicists in the country. A geographical analysis shows that 50% of the productivity corresponds to Santiago and 50% to the rest of the country. The impact of the different funds for research is assessed, also: FONDECYT, Presidential Chairs and large projects and centres of excellence. According to Physics researchers opinion, Fondo Nacional de Ciencia y Tecnología (FONDECYT, National Fund fro Science and Technology) has become the best instrument to support researchi activities in Chile. However, the amount of projects awarded has practically not been increased, which is insufficient for a community that has doubled. Likewise, even 50% of the productivity corresponds to regional centres, only 35% of projects coming from FONDECYT are awarded to the regions (away from the metropolitan region). Regarding experimental Physics, this represents 20% of the community in both, researchers and productivity of the community. However, in the regular FONDECYT contest in 2005, only 2 projects (10%) were awarded in experimental Physics, which is undoubtedly insufficient. The study also includes a brief analysis according to social appraisal of Physics, dissemination activities to other areas of national living, and relation of Physics with the productive sector. Finally, some recommendations are made: - To create a special fund for experimental Physics in the regular FONDECYT contest. Complementarily, experimental Physics should be one of the priority areas for the technological and scientific development of the country. - To duplicate the amount assigned to Physics in the regular FONDECYT contest. - To create a system that allows increasing the salaries of the researchers in Physics so they could be assimilated to other professional salaries in our country or at an international level. Not only demands must be globalized but also the benefits.

  18. Women in Physics in the Philippines: Quantized Yet Taking Steps Toward a Mature Science Culture

    NASA Astrophysics Data System (ADS)

    Villagonzalo, Cristine; Bornales, Jinky; Betoya-Nonesa, Jelly Grace

    2009-04-01

    Scientific culture in the Philippines is young and physics is no exception. There are only four physics PhD-granting universities with research laboratories. More than 10 universities offer a bachelor's degree or master's degree in Physics. Like the world trend, these physics institutions are male dominated. However, four of the leading universities already have female PhD faculty members in physics occupying positions of an assistant professor or better. On a positive note, female physicists are no longer limited to work in the national capital region but have carved out their careers in other parts of the country. Also, female physicists have spread into other non-physics-degree-granting universities or found work in the industrial sector. The number of female graduates in physics in the undergraduate and graduate level have slowly but steadily increased since 2002. With the observed increase in number, a working group for women in physics in the Philippines was created this year. In order to provide recommendations to regulators and policy makers, the group's first step is to monitor the number of female students and physicists, their study and work environments, and the scholarships and opportunities for development that are available to them.

  19. Physics in WWI: Fighting the Acoustic War

    NASA Astrophysics Data System (ADS)

    Kevles, Daniel

    2015-01-01

    World War I was the first high-technology war, and when the United States began to prepare for it in 1915 the federal government turned to the storied inventor Thomas Edison. Edison formed a board that included industrial executives and engineers but only one physicist, its members holding that they wanted people who would do things and not just talk about them. However, in 1916, the nation's scientists managed to create a place for themselves in the preparedness effort by organizing the National Research Council under the National Academy of Sciences. Once the United States went to war, in April 1917, the NRC brought academic and industrial physicists together in efforts to detect incoming aircraft, submerged submarines, and the location of long-range artillery. The efforts employed devices that relied in the main on the detection and identification of sound waves from these weapons. The devices were passive responders, but they were marked by increasing sophistication and enabled the United States and its allies to prosecute an acoustic war. That branch of the war was militarily effective, overshadowed the work of Edison's group, and gained physicists high standing among leaders in both the military and industry.

  20. Building baby universes

    NASA Astrophysics Data System (ADS)

    Coles, Peter

    2017-08-01

    The thought of a scientist trying to design a laboratory experiment in which to create a whole new universe probably sounds like it belongs in the plot of a science-fiction B-movie. But as author Zeeya Merali explains in her new book A Big Bang in a Little Room, there are more than a few eminent physicists who think that this is theoretically possible.

  1. The APS in Public Affairs

    NASA Astrophysics Data System (ADS)

    Lustig, Harry

    2000-04-01

    Although the American Physical Society was created for the interchange of scientific ideas, the call to the founding meeting included the observation that the organization "could not fail to have an important influence in all matters affecting the interest of physicists". However for most of its history APS did not behave like "just another interest group in American society". Instead, at the beginning, it limited itself to such successful initiatives as the creation of the Bureau of Standards and such unsuccessful ones as adoption of the metric system. After World War II, speaking out on behalf of the freedom of science and scientists, such as Astin, Condon, and Oppenheimer, became important. In the 1970's, pushed by members, the Society became more "political", sponsoring sessions and studies on defense issues, taking a stand for the Equal Rights Amendment and creating the Panel on Public Affairs and the Forum on Physics and Society. Only in the last fifteen years has the APS unabashedly lobbied for the economic interests of physics and physicists. Adopting this new, if unavoidable role may have unintended consequences for the willingness and effectiveness of APS in speaking out on other public issues.

  2. Women are Needed to Change the Face of Physics (abstract)

    NASA Astrophysics Data System (ADS)

    El-Sayed, Karimat

    2009-04-01

    God created men and women differently so we can integrate with each other for the sake of the Earth's inhabitants, and form families that are the fundamental building blocks of healthy and prosperous nations. The world around us is full of many challenges (environment, energy, health, food). Physicists are able to contribute strongly in solving most of these challenges; moreover, physicists can help promote in the welfare and economic development of all nations. Advancing in physics understanding is an exciting intellectual challenge that benefits from the diverse and complementary approaches taken by both women and men. Accordingly, women are needed to change the face of physics. We have to encourage and attract them, beginning with the education of girls, scholarships, help balancing family and career, and positions of influence for women. These measures are discussed.

  3. Commercial Scholarship: Spinning Physics Research into a Business Enterprise

    NASA Astrophysics Data System (ADS)

    Butler, Orville

    2013-03-01

    The American Institute of Physics' Center for History of Physics has conducted a three year NSF funded study of physicist entrepreneurs during which we interviewed 140 physicists who have founded ninety-one startups. Forty of those companies have spun research out of twenty-some universities. Startups spun out of university research tend to be technology push companies, creating new potentially disruptive technologies for which markets do not yet clearly exist, in contrast to market pull companies founded to address innovations responding to market demands. This paper addresses the unique issues found in university spinout companies and their responses to them. While technology push companies are generally considered to be higher risk compared to market pull companies, the university spinouts in our study had a higher rate of both SBIR and venture capital funding than did the market pull companies in our study.

  4. Forging new, non-traditional partnerships among physicists, teachers and students

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardeen, Marjorie; Adams, Mark; Wayne, Mitchell

    The QuarkNet collaboration has forged new, nontraditional relationships among particle physicists, high school teachers and their students. QuarkNet provides professional development for teachers and creates opportunities for teachers and students to engage in particle physics data investigations and join research teams. Embedded in the U.S. particle research community, QuarkNet leverages the nature of particle physics research$-$the long duration of the experiments with extensive lead times, construction periods, and data collection and analysis periods. QuarkNet is patterned after the large collaborations with a central management infrastructure and a distributed workload across university- and lab-based research groups. As a result, we describemore » the important benefits of the QuarkNet outreach program that flow to university faculty and present successful strategies that others can adapt for use in their countries.« less

  5. Forging new, non-traditional partnerships among physicists, teachers and students

    DOE PAGES

    Bardeen, Marjorie; Adams, Mark; Wayne, Mitchell; ...

    2016-10-26

    The QuarkNet collaboration has forged new, nontraditional relationships among particle physicists, high school teachers and their students. QuarkNet provides professional development for teachers and creates opportunities for teachers and students to engage in particle physics data investigations and join research teams. Embedded in the U.S. particle research community, QuarkNet leverages the nature of particle physics research$-$the long duration of the experiments with extensive lead times, construction periods, and data collection and analysis periods. QuarkNet is patterned after the large collaborations with a central management infrastructure and a distributed workload across university- and lab-based research groups. As a result, we describemore » the important benefits of the QuarkNet outreach program that flow to university faculty and present successful strategies that others can adapt for use in their countries.« less

  6. Excel VBA for Physicists; A Primer

    NASA Astrophysics Data System (ADS)

    Liengme, Bernard V.

    2016-11-01

    This book is both an introduction and a demonstration of how Visual Basic for Applications (VBA) can greatly enhance Microsoft Excel® by giving users the ability to create their own functions within a worksheet and to create subroutines to perform repetitive actions. The book is written so readers are encouraged to experiment with VBA programming with examples using fairly simple physics or non-complicated mathematics such as root finding and numerical integration. Tested Excel® workbooks are available for each chapter and there is nothing to buy or install. A tested Excel workbook for each chapter can be downloaded from Book information

  7. Combating isolation: Building mutual mentoring networks

    NASA Astrophysics Data System (ADS)

    Cox, Anne J.

    2015-12-01

    Women physicists can often feel isolated at work. Support from a grant through the ADVANCE program of the National Science Foundation (U.S. government funding) created mutual mentoring networks aimed at combating isolation specifically for women faculty at undergraduate-only institutions. This paper will discuss the organization of one such network, what contributed to its success, some of the outcomes, and how it might be implemented in other contexts.

  8. Hot Quark Soup Produced at RHIC

    ScienceCinema

    None

    2018-01-16

    The Relativistic Heavy Ion Collider (RHIC, http://www.bnl.gov/rhic) is a 2.4-mile-circumference particle accelerator/collider that has been operating at Brookhaven Lab since 2000, delivering collisions of heavy ions, protons, and other particles to an international team of physicists investigating the basic structure and fundamental forces of matter. In 2005, RHIC physicists announced that the matter created in RHICs most energetic collisions behaves like a nearly perfect liquid in that it has extraordinarily low viscosity, or resistance to flow. Since then, the scientists have been taking a closer look at this remarkable form of matter, which last existed some 13 billion years ago, a mere fraction of a second after the Big Bang. Scientists have revealed new findings, including the first measurement of temperature very early in the collision events, and their implications for the nature of this early-universe matter.

  9. Simple Models for Nanocrystal Growth

    NASA Astrophysics Data System (ADS)

    Jensen, Pablo

    Growth of new materials with tailored properties is one of the most active research directions for physicists. As pointed out by Silvan Schweber in his brilliant analysis of the evolution of physics after World War II [1] "An important transformation has taken place in physics: As had previously happened in chemistry, an ever larger fraction of the efforts in the field were being devoted to the study of novelty rather than to the elucidation of fundamental laws and interactions […] The successes of quantum mechanics at the atomic level immediately made it clear to the more perspicacious physicists that the laws behind the phenomena had been apprehended, that they could therefore control the behavior of simple macroscopic systems and, more importantly, that they could create new structures, new objects and new phenomena […] Condensed matter physics has indeed become the study of systems that have never before existed. Phenomena such as superconductivity are genuine novelties in the universe."

  10. Riffing on the universe

    NASA Astrophysics Data System (ADS)

    Cox, Trevor

    2016-05-01

    Music and physics might seem like polar opposites, one having great emotional potency and the other being a cerebral subject of equations, theories and deductions. Both, however, benefit from improvisers - people who stand on the shoulders of giants, taking earlier triumphs and building on them to create something new. For me, analogies like these, which draw parallels between physicists and jazz musicians, are the most fascinating revelations in Stephon Alexander's book The Jazz of Physics.

  11. Muon Accelerator Program (MAP) | Muon Collider | Research Goals

    Science.gov Websites

    mysterious something else: dark matter and dark energy. We have learned that in fact we do not know what most what dark matter and dark energy are--and creating a revolution in our understanding of particle ? What are matter, energy, space and time? How did we get here and where are we going? Physicists have

  12. Three Generations of FPGA DAQ Development for the ATLAS Pixel Detector

    NASA Astrophysics Data System (ADS)

    Mayer, Joseph A., II

    The Large Hadron Collider (LHC) at the European Center for Nuclear Research (CERN) tracks a schedule of long physics runs, followed by periods of inactivity known as Long Shutdowns (LS). During these LS phases both the LHC, and the experiments around its ring, undergo maintenance and upgrades. For the LHC these upgrades improve their ability to create data for physicists; the more data the LHC can create the more opportunities there are for rare events to appear that physicists will be interested in. The experiments upgrade so they can record the data and ensure the event won't be missed. Currently the LHC is in Run 2 having completed the first LS of three. This thesis focuses on the development of Field-Programmable Gate Array (FPGA)-based readout systems that span across three major tasks of the ATLAS Pixel data acquisition (DAQ) system. The evolution of Pixel DAQ's Readout Driver (ROD) card is presented. Starting from improvements made to the new Insertable B-Layer (IBL) ROD design, which was part of the LS1 upgrade; to upgrading the old RODs from Run 1 to help them run more efficiently in Run 2. It also includes the research and development of FPGA based DAQs and integrated circuit emulators for the ITk upgrade which will occur during LS3 in 2025.

  13. PhET: Interactive Simulations for Teaching and Learning Physics

    NASA Astrophysics Data System (ADS)

    Perkins, Katherine; Adams, Wendy; Dubson, Michael; Finkelstein, Noah; Reid, Sam; Wieman, Carl; LeMaster, Ron

    2006-01-01

    The Physics Education Technology (PhET) project creates useful simulations for teaching and learning physics and makes them freely available from the PhET website (http://phet.colorado.edu). The simulations (sims) are animated, interactive, and game-like environments in which students learn through exploration. In these sims, we emphasize the connections between real-life phenomena and the underlying science, and seek to make the visual and conceptual models of expert physicists accessible to students. We use a research-based approach in our design—incorporating findings from prior research and our own testing to create sims that support student engagement with and understanding of physics concepts.

  14. MO-DE-BRA-04: The CREATE Medical Physics Research Training Network: Training of New Generation Innovators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seuntjens, J; Collins, L; Devic, S

    Purpose: Over the past century, physicists have played a major role in transforming scientific discovery into everyday clinical applications. However, with the increasingly stringent requirements to regulate medical physics as a health profession, the role of physicists as scientists and innovators has become at serious risk of erosion. These challenges trigger the need for a new, revolutionized training program at the graduate level that respects scientific rigor, attention for medical physics-relevant developments in basic sciences, innovation and entrepreneurship. Methods: A grant proposal was funded by the Collaborative REsearch and Training Experience program (CREATE) of the Natural Sciences and Engineering Researchmore » Council (NSERC) of Canada. This enabled the creation of the Medical Physics Research Training Network (MPRTN) around two CAMPEP-accredited medical physics programs. Members of the network consist of medical device companies, government (research and regulatory) and academia. The MPRTN/CREATE program proposes a curriculum with three main themes: (1) radiation physics, (2) imaging & image processing and (3) radiation response, outcomes and modeling. Results: The MPRTN was created mid 2013 (mprtn.com) and features (1) four new basic Ph.D. courses; (2) industry participation in research projects; (3) formal job-readiness training with involvement of guest faculty from academia, government and industry. MPRTN activities since 2013 include 22 conferences; 7 workshops and 4 exchange travels. Three patents were filed or issued, nine awards/best papers were won. Fifteen journal publications were accepted/published, 102 conference abstracts. There are now 13 industry partners. Conclusion: A medical physics research training network has been set up with the goal to harness graduate student’s job-readiness for industry, government and academia in addition to the conventional clinical role. Two years after inception, significant successes have been booked, but the true challenge will be to demonstrate that with this training philosophy CREATE scholars gain access to a much broader job market. Supported by the Natural Sciences and Engineering Research Council (NSERC) Canada.« less

  15. Medical Physicists and Health Physicists: Radiation Occupations

    ERIC Educational Resources Information Center

    LaPointe, Jeffrey

    2011-01-01

    Physics is the study of matter and energy and the ways in which the two interact. Some physicists use their expertise in physics to focus on radiation. These specialists, called medical physicists and health physicists, work to help people or protect the environment. Medical physicists work with physicians, assisting patients who need imaging…

  16. Counter Nuclear, Biological, and Chemical Operations, This document compliments JCS Pub 3-11

    DTIC Science & Technology

    2000-08-16

    Successful German Chemical Attack The concept of creating a toxic gas cloud from chemical cylinders was credited to Fritz Haber of the Kaiser Wilhelm Physical...of considerations: The high caliber of German theoretical and experimental physicists like Otto Hahn, Paul Harteck, Werner Heisenberg, Fritz ...Institute of Berlin in late 1914. Owing to a shortage of artillery shells, Haber thought a chemical gas cloud would negate the enemy’s earthworks

  17. The Production and Study of Antiprotons and Cold Antihydrogen

    DTIC Science & Technology

    2006-12-01

    Proceedings, 730 3-12 (2004). Publications for 2005 "Atoms Made Entirely of Antimatter : Two Methods Produce Slow Antihydrogen" (Review Paper) G. Gabrielse...8217stunning’ scientific accomplishment of creating antimatter , according to Provost Steven Hyman." "As the head of an international team of physicists at CERN...lower than previously realized," Hyman said. These techniques allow for extremely accurate measurements of the properties of matter and antimatter

  18. Systems interface biology

    PubMed Central

    Doyle, Francis J; Stelling, Jörg

    2006-01-01

    The field of systems biology has attracted the attention of biologists, engineers, mathematicians, physicists, chemists and others in an endeavour to create systems-level understanding of complex biological networks. In particular, systems engineering methods are finding unique opportunities in characterizing the rich behaviour exhibited by biological systems. In the same manner, these new classes of biological problems are motivating novel developments in theoretical systems approaches. Hence, the interface between systems and biology is of mutual benefit to both disciplines. PMID:16971329

  19. Strong Artificial Intelligence and National Security: Operational and Strategic Implications

    DTIC Science & Technology

    2015-05-18

    including Tesla/Space X founder Elon Musk and theoretical physicist Stephen Hawking, released an open letter warning of the existential risk presented by...the MIT Aeronautics and Astronautics Department’s 2014 Centennial Symposium, Elon Musk , a member of FLI, said that creating such a capable...pentagram and the holy water, it’s like yeah he’s sure he can control the demon. Didn’t work out.” Elon Musk , interview by Jaime Peraire, 2014

  20. Distributing and storing data efficiently by means of special datasets in the ATLAS collaboration

    NASA Astrophysics Data System (ADS)

    Köneke, Karsten; ATLAS Collaboration

    2011-12-01

    With the start of the LHC physics program, the ATLAS experiment started to record vast amounts of data. This data has to be distributed and stored on the world-wide computing grid in a smart way in order to enable an effective and efficient analysis by physicists. This article describes how the ATLAS collaboration chose to create specialized reduced datasets in order to efficiently use computing resources and facilitate physics analyses.

  1. Reaching Out: The Bachelor of Arts Degree In Physics

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    1996-05-01

    Physics degrees are not only for physicists. Our department believes that it would be healthy if attorneys, physicians, journalists, politicians, businesspeople, and others had undergraduate degrees in physics. Thus, we have begun offering a Bachelor of Arts degree in physics, for students who want to study physics as a background for other fields such as law (patents, environmental law), medical school, business (high-tech firms), journalism (science reporting, environmental reporting), music (accoustics, electronic music), and essentially any other profession. The program reaches outward, outside of physics, rather than pointing toward further work in physics. It begins with the algebra-based introductory course rather than the calculus-based course for future physicists and engineers. Two new courses are being created to provide these pre-professional students with broad science literacy and knowledge of physics-related technologies. The program is more flexible and less technical than the traditional Bachelor of Science program, allowing students time for outside electives and professional requirements in other fields.

  2. A PICKSC Science Gateway for enabling the common plasma physicist to run kinetic software

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Winjum, B. J.; Zonca, A.; Youn, C.; Tsung, F. S.; Mori, W. B.

    2017-10-01

    Computer simulations offer tremendous opportunities for studying plasmas, ranging from simulations for students that illuminate fundamental educational concepts to research-level simulations that advance scientific knowledge. Nevertheless, there is a significant hurdle to using simulation tools. Users must navigate codes and software libraries, determine how to wrangle output into meaningful plots, and oftentimes confront a significant cyberinfrastructure with powerful computational resources. Science gateways offer a Web-based environment to run simulations without needing to learn or manage the underlying software and computing cyberinfrastructure. We discuss our progress on creating a Science Gateway for the Particle-in-Cell and Kinetic Simulation Software Center that enables users to easily run and analyze kinetic simulations with our software. We envision that this technology could benefit a wide range of plasma physicists, both in the use of our simulation tools as well as in its adaptation for running other plasma simulation software. Supported by NSF under Grant ACI-1339893 and by the UCLA Institute for Digital Research and Education.

  3. Visualization Tools for Lattice QCD - Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massimo Di Pierro

    2012-03-15

    Our research project is about the development of visualization tools for Lattice QCD. We developed various tools by extending existing libraries, adding new algorithms, exposing new APIs, and creating web interfaces (including the new NERSC gauge connection web site). Our tools cover the full stack of operations from automating download of data, to generating VTK files (topological charge, plaquette, Polyakov lines, quark and meson propagators, currents), to turning the VTK files into images, movies, and web pages. Some of the tools have their own web interfaces. Some Lattice QCD visualization have been created in the past but, to our knowledge,more » our tools are the only ones of their kind since they are general purpose, customizable, and relatively easy to use. We believe they will be valuable to physicists working in the field. They can be used to better teach Lattice QCD concepts to new graduate students; they can be used to observe the changes in topological charge density and detect possible sources of bias in computations; they can be used to observe the convergence of the algorithms at a local level and determine possible problems; they can be used to probe heavy-light mesons with currents and determine their spatial distribution; they can be used to detect corrupted gauge configurations. There are some indirect results of this grant that will benefit a broader audience than Lattice QCD physicists.« less

  4. Change and Hope in Physics

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2009-05-01

    Physics = Ideas + Analyses. Newton reconciled Kepler's laws, Einstein's GR reconciled action at a distance. Our Planck Scale Statistics (see v3 and v4 of [1]) is a change that reconciles gravity with quantum physics simply. It does what a change should do and I will answer your questions again. It completes TOE, so what? There should not be any fear about disappearance of challenges. It will create other challenges to occupy creative physicists meaningfully. Physicists score highest on GRE score with the exception of mechanical engineers. They will come up with ideas applicable to other sectors like energy and economy. Newton, also a gold mine executive, introduced annuity for life, an insurance feature of social security. Here, I try one bold suggestion to illustrate the point. Putting 10% tax on new housing permits would raise the price of each house in the USA by an average of 2 x 10^4 dollars generating a wealth of 2x10^12 dollars for existing 10^8 houses, encouraging people to stick to their houses, inviting investors to grab existing houses, discouraging new construction which goes against the sale of existing houses, and injecting two trillion dollars in the economy without creating a deficit budget. The hope is that this change would challenge other high GRE scorers to come up with additional ideas. It is imaginative minds that solve problems, not subjective knowledge. [1] http://www.arXiv.org/pdf/physics/0210040.

  5. Status and Future Manpower Needs of Physicists in Medicine in the United States.

    ERIC Educational Resources Information Center

    Food and Drug Administration (DHEW), Rockville, MD. Bureau of Radiological Health.

    This study describes the duties and responsibilities of the medical physicist and estimates the number of medical physicists needed in the next decade. A questionnaire, sent to members of the American Association of Physicists in Medicine, was designed to cover: characteristics of medical physicists, nature of work in medical physics, distribution…

  6. [Training of medical physicists in radiation therapy at the International Educational Center of the Association of Medical Physicists in Russia].

    PubMed

    Kostylev, V A; Lysenko, M N; Zhgutov, A V; Ulanov, D V; Kislyakova, M V; Kazantsev, P V; Kostylev, D V; Narkevich, B Y

    2015-01-01

    The efficiency of radiotherapy treatment for cancer patients and use of the state-of-the-art accelerator facilities, in the first place, depends on the qualification and number of medical physicists. The need for the training and continuing professional development (CPD) of medical radiation physicists in Russia and CIS countries has dramatically increased today. The article considers the system of refresher training which should provide the continuing professional development and advance training of medical radiation physicists. The authors analyze the experience of the International Educational Center of the Association of Medical Physicists in Russia involved in the CPD of medical physicists under the IAEA TC projects, RMAPO and N.N. Blokhin RCRC joint educational programs.

  7. Hangout with CERN: Reaching the Public with the Collaborative Tools of Social Media

    NASA Astrophysics Data System (ADS)

    Goldfarb, S.; Kahle, K. L. M.; Rao, A.

    2014-06-01

    On 4 July 2012, particle physics became a celebrity. Around 1,000,000,000 people (yes, 1 billion) [1] saw rebroadcasts of two technical presentations announcing the discovery of a new boson. The occasion was a joint seminar of the CMS [2] and ATLAS [3] collaborations, and the target audience were particle physicists. Yet the world ate it up like a sporting event. Roughly two days later, in a parallel session of ICHEP in Melbourne, Australia [4], a group of physicists decided to explain the significance of this discovery to the public. They used a tool called "Hangout", part of the relatively new Google+ social media platform [5], to converse directly with the public via a webcast videoconference. The demand to join this Hangout [6] overloaded the server several times. In the end, a compromise involving Q&A via comments was set up, and the conversation was underway. We present a new project born shortly after this experience called Hangout with CERN [7], and discuss its success in creating an effective conversational channel between the public and particle physicists. We review earlier efforts by both CMS and ATLAS contributing to this development, and then describe the current programme, involving nearly all aspects of CERN, and some topics that go well beyond that. We conclude by discussing the potential of the programme both to improve our accountability to the public and to train our community for public communication.

  8. Brief, Embedded, Spontaneous Metacognitive Talk Indicates Thinking Like a Physicist

    ERIC Educational Resources Information Center

    Sayre, Eleanor C.; Irving, Paul W.

    2015-01-01

    Instructors and researchers think "thinking like a physicist" is important for students' professional development. However, precise definitions and observational markers remain elusive. We reinterpret popular beliefs inventories in physics to indicate what physicists think thinking like a physicist entails. Through discourse analysis of…

  9. TU-E-BRD-01: President’s Symposium: The Necessity of Innovation in Medical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayouth, J; Siewerdsen, J; Wahl, E

    This abstract will not blow you away, but speed-painting presenter Erik Wahl will certainly make a truly unique AAPM symposium that you will not want to miss. Along with clinical director John Bayouth and scientific leader Jeff Siewerdsen, this session will highlight innovation. To avoid being button pushers and irrelevant investigators of yesterday’s science, we must innovate. This is particularly challenging in the changing landscape of declining research funding and healthcare reimbursement. But all hope is not lost, Medical Physics is a field born out of innovation. As scientists we quickly translated the man-made and natural phenomena of radiation intomore » a tool that could diagnose broken bones, locate foreign objects imbedded within the body, and treat a spectrum of diseases. As hyperbolae surrounding the curative powers of radiation overcame society, physicists continued their systematic pursuit of a fundamental understanding of radiation and applied their knowledge to enable the diagnostic and therapeutic power of this new tool. Health economics and the decline in research funding have put the Medical Physicist in a precarious position: how do we optimally participate in medical research and advanced patient care in the face of many competing needs? Today's diagnostic imaging and therapeutic approaches are tremendously sophisticated. Researchers and commercial vendors are producing technologies at a remarkable rate; to enable their safe and effective implementation Medical Physicists must work from a fundamental understanding of these technologies. This requires all of us, clinically practicing Medical Physicists, Researchers and Educators alike, to combine our training in scientific methods with innovation. Innovation is the key to our past, a necessity for our contemporary challenges, and critical for the future of Medical Physics. The keynote speakers for the 2014 AAPM Presidential Symposium session will address the way we approach these vitally important technologies for diagnosis and therapy into opportunities to innovate. The speed-painting artist and lecturer Erik Wahl will finish the symposium with a fast-paced and entertaining presentation on embracing the future by creating disruptive innovation strategies. Learning Objectives: Identify connection between Medical Physics and Innovation. Understand how Innovation enables Clinical Medical Physicists to implement novel technologies. Learn how innovative Medical Physics solutions can address significant and relevant challenges in science. Become inspired to pursue a new scientific understanding, positive change in clinical practice, and benefit to patients.« less

  10. Babson, Bahnson, the DeWitts and the General Relativity Renaissance

    NASA Astrophysics Data System (ADS)

    Carter, Hamilton

    2012-03-01

    During the 1950s the efforts of an unlikely group composed of two colorful businessmen, a handful of physicists, and Air Force representatives helped to create a renaissance in general relativity research. Industrialist Agnew Bahson was an air conditioning magnate with connections to leading scientists, and the Air Force. In addition to his contribution to ``respectable'' physics, his life and death are shrouded in a cloak of UFO and anti-gravity conspiracy theories. Business theorist Roger Babson was driven to search for a solution to anti-gravity after first his sister and later his grandson drowned tragically as children. This presentation tells of the globe spanning, harrowing adventure of mountainside crashes, an international love affair, physicists masquerading as secretaries, the founding of Les Houches, the development of the first radar defense system and how Bahnson and Babson became benefactors of mainstream physics, leading to the creation of the Institute of Field Physics at the University of North Carolina Chapel Hill led by Cecile and Bryce DeWitt and ultimately to the groundbreaking research that predicted the Higgs boson.

  11. QuarkNet: Benefits for Teachers, Their Students and Physicists

    NASA Astrophysics Data System (ADS)

    Bardeen, Marjorie

    2017-01-01

    The QuarkNet Collaboration has forged nontraditional relationships among particle physicists, high school teachers and their students. QuarkNet centers are located at 50 + universities and labs across the U.S. and Puerto Rico. We provide professional development for teachers and create opportunities for teachers and students to engage in particle physics data investigations and join research teams. Students develop scientific knowledge and habits of mind by working alongside scientists to make sense of the world using authentic experimental data. Our program is based a classroom vision where teaching strategies emulate closely the way scientists build knowledge through inquiry. We look at how student engagement in research and masterclasses develops an understanding about the process of scientific discovery and science using current scientific data. We also look at ways and to what extent teachers provide scientific discovery and science practices for students and how QuarkNet contributes to the professionalism of participating teachers. Also, we describe success factors that enhance local center programs and describe important benefits of the program that flow to university faculty. Funded by the National Science Foundation and the US Department of Energy.

  12. Secret Lives of the Hidden Physicists---from Spandex to Spintronics

    NASA Astrophysics Data System (ADS)

    White, Gary

    2006-10-01

    What is a physicist? A case is made for defining a physicist as anyone with a bachelor's degree (or higher) in physics. Under this definition, a large fraction of physicists are hidden, that is, they have left, or never belonged to, the traditional lot of Ph.D. academicians. Data from the Statistical Research Center at the American Institute of Physics and from a survey of members of the national physics honor society, Sigma Pi Sigma, show the vast array of actual career paths taken by physicists. From spandex to blackberries to bioinformatics to flight control to wind energy to spintronics, physicists can be found in nearly every job sector in some of the coolest and most farfetched careers imaginable.

  13. Science for the Public Through Collaboration and Humor

    NASA Astrophysics Data System (ADS)

    Wargo, Richard

    2013-03-01

    The transformation of all things media and information into a dynamic environment of user access has created what seems infinite possibilities to inform the public in many different ways - as well as seemingly infinite possibilities to confuse. This talk will describe a rather non-conventional collaboration between two different creative cultures and its significance to maintaining scientific accuracy and devising strategies important to audience engagement - among them humor. While focusing on the award-winning effort ``When Things Get Small'' created by University of California Television producer R. Wargo in collaboration with condensed matter physicist I.K. Schuller and actor Adam J. Smith, with both NSF and private support, the case study provides insight into a model and modes which can be used successfully by other scientists to engage the public in what they do.

  14. Science For The Public: Collaboration and Humor

    NASA Astrophysics Data System (ADS)

    Wargo, Richard

    2013-04-01

    The transformation of all things media and information into a dynamic environment of user access has created what seems infinite possibilities to inform the public in many different ways - as well as seemingly infinite possibilities to confuse. This talk will describe a rather non-conventional collaboration between two different creative cultures and its significance to maintaining scientific accuracy and devising strategies important to audience engagement - among them, humor. While focusing on the award-winning effort ``When Things Get Small'' created by University of California Television producer R. Wargo in collaboration with condensed matter physicist I.K. Schuller and actor Adam J. Smith, with both NSF and private support, the case study provides insight into a model and modes which can be used successfully by other scientists to engage the public in what they do.

  15. Mechanical Properties of Semiconductors and Their Alloys

    DTIC Science & Technology

    1992-02-01

    Sher, Associate Director M.A. Berding, Research Physicist A.T. Paxton, International Fellow S. Krishnamurthy, Research Physicist Physical Electronics...Laboratory A.-B. Chen Auburn University Auburn, Alabama SRI Project 6682 Prepared for: . - Office of Scientific Research United States Air Force...THEIR ALLOYS A. Sher, Associate Director M.A. Berding, Research Physicist A.T. Paxton, International Fellow S. Knshnamurthy, Research Physicist Physical

  16. News

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Italy’s Physics Olympiad creates greater interest and motivation House of Experiments: 'humour helps in the teaching of science' Science takes stage in Germany PPARC news: guide and awards Schools newspaper competition focuses on Venus Website offers practical advice SHAP workshop will sharpen up teachers' skills Students will soon use Faulkes Telescope North to see the stars Talk takes a tour of the universe ASE 2004 Welsh physicists share secrets Switch students on to physics Teachers Awards 2004 recognize quality of teaching AAPT spends winter in Miami sun Schools Physics Group meeting will take place at Rugby School

  17. Vavilov and FIAN: a perspective from 2016

    NASA Astrophysics Data System (ADS)

    Vitukhnovsky, A. G.

    2016-12-01

    The 2016 celebration of the 125th anniversary of the birth of Academician S I Vavilov, the outstanding physicist of the last century, provides an opportunity to compare what is going on today at the Russian Academy of Sciences (reforms, new members election, etc.) to the days long ago that preceded the foundation of the P N Lebedev Physical Institute (FIAN). The role of S I Vavilov and his academician colleagues in fighting bureaucracy and bureaucrats to create real academic science in our country is examined in this short paper.

  18. TH-E-209-00: Radiation Dose Monitoring and Protocol Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilitiesmore » over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.« less

  19. TH-E-209-01: Fluoroscopic Dose Monitoring and Patient Follow-Up Program at Massachusetts General Hospital

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, B.

    2016-06-15

    Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilitiesmore » over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.« less

  20. Preparing Physics Ph.D. Students as Instructors

    NASA Astrophysics Data System (ADS)

    Manhart, Michael; Knapen, Simon

    2012-03-01

    As demand grows for education in STEM fields, there is an increasing need for Ph.D. physicists with a strong aptitude for and commitment to teaching. Development of these skills begins in graduate school, where most physicists are first exposed to teaching as TAs to undergraduate courses. The TA experience thus has considerable impact on the development of their teaching skills. Unfortunately, many graduate programs do not provide detailed training to their TAs. However, if departments hope to produce physicists who are also outstanding educators, they must create a culture of excellence in teaching that includes adequate training and incentives to excel for their graduate student TAs. As current Ph.D. students in the Department of Physics and Astronomy at Rutgers University, we have designed and implemented a TA training program to achieve these goals. Our program, Developing Educational Leaders among TAs in Physics (DELTA P), is aimed at new physics TAs and consists of an intensive orientation followed by 10 weekly seminars during the semester. The orientation focuses on the essential practical issues relevant to TAs before they first step in the classroom, while the seminars delve into more specialized topics, ranging from motivating non-majors to physics education research. Students who complete the program are given an official credential by the department to certify their training. After two years DELTA P has begun to effect positive changes to our department's TA experience, and we believe DELTA P serves as a useful model for other departments. In this talk, we will present our program and hope to engage in an interactive discussion with the audience about these issues.

  1. A Physicist as President of the University

    NASA Astrophysics Data System (ADS)

    Dynes, Robert

    2005-03-01

    My wife, physicist Frances Hellman, is fond of referring to me as a ``restless soul,'' and I do not dispute her. In the 40 years since graduating from the University of Western Ontario with a bachelor's degree in mathematics and physics, I went on to earn master's and doctorate degrees in physics and an honorary doctor of science degree from McMaster University. In 22 years working at AT&T Bell Laboratories, I held five positions, was department head in two departments, and director of one laboratory. At the University of California, San Diego, I was a Professor of Physics, chair of the Department of Physics, senior vice chancellor and then chancellor. Currently, in addition to being a professor of Physics, I am president of the University of California. The ``restless'' trajectory of my career from physics undergraduate to university president follows the nature of physics itself. In physics, you are constantly seeking challenges, experimenting, creating hypotheses, looking for and finding solutions. I recall having a structured view of the world as a boy, a sense that there was a guiding ``master plan'' to most things and that wise, educated, benevolent people were there to implement the plan. ``They'' would do the right thing. Along the way, I realized, ``there is no `they' there; there is only us.'' Acknowledging the laws of thermodynamics-- ``you can't win, you can't break even, and you can't get out of the game'' --I nonetheless believe that if you have a restless mind, an open heart, and intellectual honesty without giving into wishful thinking, physicists can do anything. .

  2. TH-E-209-02: Dose Monitoring and Protocol Optimization: The Pediatric Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDougall, R.

    Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilitiesmore » over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.« less

  3. Some Interesting Data About Women Physicists in Cuba (abstract)

    NASA Astrophysics Data System (ADS)

    de Fuentes, Olimpia Arias

    2009-04-01

    Although the number of women physicists in Cuba, as in the entire world, is less than men physicists, their presence in the academic leadership is strong, unlike the limited women's role in many other countries. Some interesting numeral data are presented to demonstrate this affirmation. This fact emphasizes the advantages reached by women and the increasing prestige obtained by women physicists in our country.

  4. Medical physics aspects of cancer care in the Asia Pacific region

    PubMed Central

    Kron, T; Cheung, KY; Dai, J; Ravindran, P; Soejoko, D; Inamura, K; Song, JY; Bold, L; Srivastava, R; Rodriguez, L; Wong, TJ; Kumara, A; Lee, CC; Krisanachinda, A; Nguyen, XC; Ng, KH

    2008-01-01

    Medical physics plays an essential role in modern medicine. This is particularly evident in cancer care where medical physicists are involved in radiotherapy treatment planning and quality assurance as well as in imaging and radiation protection. Due to the large variety of tasks and interests, medical physics is often subdivided into specialties such as radiology, nuclear medicine and radiation oncology medical physics. However, even within their specialty, the role of radiation oncology medical physicists (ROMPs) is diverse and varies between different societies. Therefore, a questionnaire was sent to leading medical physicists in most countries/areas in the Asia/Pacific region to determine the education, role and status of medical physicists. Answers were received from 17 countries/areas representing nearly 2800 radiation oncology medical physicists. There was general agreement that medical physicists should have both academic (typically at MSc level) and clinical (typically at least 2 years) training. ROMPs spent most of their time working in radiotherapy treatment planning (average 17 hours per week); however radiation protection and engineering tasks were also common. Typically, only physicists in large centres are involved in research and teaching. Most respondents thought that the workload of physicists was high, with more than 500 patients per year per physicist, less than one ROMP per two oncologists being the norm, and on average, one megavoltage treatment unit per medical physicist. There was also a clear indication of increased complexity of technology in the region with many countries/areas reporting to have installed helical tomotherapy, IMRT (Intensity Modulated Radiation Therapy), IGRT (Image Guided Radiation Therapy), Gamma-knife and Cyber-knife units. This and the continued workload from brachytherapy will require growing expertise and numbers in the medical physics workforce. Addressing these needs will be an important challenge for the future. PMID:21611001

  5. Brief, embedded, spontaneous metacognitive talk indicates thinking like a physicist

    NASA Astrophysics Data System (ADS)

    Sayre, Eleanor C.; Irving, Paul W.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] Instructors and researchers think "thinking like a physicist" is important for students' professional development. However, precise definitions and observational markers remain elusive. We reinterpret popular beliefs inventories in physics to indicate what physicists think thinking like a physicist entails. Through discourse analysis of upper-division students' speech in natural settings, we show that students may appropriate or resist these elements. We identify a new element in the physicist speech genre: brief, embedded, spontaneous metacognitive talk (BESM talk). BESM talk communicates students' in-the-moment enacted expectations about physics as a technical field and a cultural endeavor. Students use BESM talk to position themselves as physicists or nonphysicists. Students also use BESM talk to communicate their expectations in four ways: understanding, confusion, spotting inconsistencies, and generalized expectations.

  6. The specifics of superconductivity

    NASA Astrophysics Data System (ADS)

    Grant, Paul M.

    2011-07-01

    When addressing the general audience of any scientific discipline, it is wise to remember Abraham Lincoln, who (almost) said "You can please all physicists some of the time and some physicists all of the time, but never all physicists all of the time."

  7. SU-E-P-01: An Informative Review On the Role of Diagnostic Medical Physicist in the Academic and Private Medical Centers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weir, V; Zhang, J

    Purpose: The role of physicist in the academic and private hospital environment continues to evolve and expand. This becomes more obvious with the newly revised requirements of the Joint Commission (JC) on imaging modalities and the continued updated requirements of ACR accreditation for medical physics (i.e., starting in June 2014, a physicists test will be needed before US accreditation). We provide an informative review on the role of diagnostic medical physicist and hope that our experience will expedite junior physicists in understanding their role in medical centers, and be ready to more opportunities. Methods: Based on our experience, diagnostic medicalmore » physicists in both academic and private medical centers perform several clinical functions. These include providing clinical service and physics support, ensuring that all ionizing radiation devices are tested and operated in compliance with the State and Federal laws, regulations and guidelines. We also discuss the training and education required to ensure that the radiation exposure to patients and staff is as low as reasonably achievable. We review the overlapping roles of medical and health physicist in some institutions. Results: A detailed scheme on the new requirements (effective 7/1/2014) of the JC is provided. In 2015, new standards for fluoroscopy, cone beam CT and the qualifications of staff will be phased in. A summary of new ACR requirements for different modalities is presented. Medical physicist have other duties such as sitting on CT and fluoroscopy committees for protocols design, training of non-radiologists to meet the new fluoroscopy rules, as well as helping with special therapies such as Yittrium 90 cases. Conclusion: Medical physicists in both academic and private hospitals are positioned to be more involved and prominent. Diagnostic physicists need to be more proactive to involve themselves in the day to day activities of the radiology department.« less

  8. Mário Schenberg: Physicist, politician and art critic

    NASA Astrophysics Data System (ADS)

    Guzzo, M. M.; Reggiani, N.

    2015-12-01

    Mário Schenberg is considered one of the greatest theoretical physicists of Brazil. He worked in different fields of physics including thermodynamics, quantum mechanics, statistical mechanics, general relativity, astrophysics and mathematics. He was assistant of the Ukrainian naturalized Italian physicist Gleb Wataghin and worked with prestigious physicists like as the Brazilians José Leite Lopes and César Lattes, the Russian-born American George Gamow and the Indian astrophysicist Subrahmanyan Chandrasekhar. Besides, he was also an active politician and critic of art.

  9. Mário Schenberg: Physicist, politician and art critic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzzo, M. M., E-mail: guzzo@ifi.unicamp.br; Reggiani, N.

    2015-12-17

    Mário Schenberg is considered one of the greatest theoretical physicists of Brazil. He worked in different fields of physics including thermodynamics, quantum mechanics, statistical mechanics, general relativity, astrophysics and mathematics. He was assistant of the Ukrainian naturalized Italian physicist Gleb Wataghin and worked with prestigious physicists like as the Brazilians José Leite Lopes and César Lattes, the Russian-born American George Gamow and the Indian astrophysicist Subrahmanyan Chandrasekhar. Besides, he was also an active politician and critic of art.

  10. LGBT Roundtable Discussion: Meet-up and Mentoring Discussion

    NASA Astrophysics Data System (ADS)

    2014-03-01

    The LGBT+ Physicists group welcomes those who identify as gender sexual minorities, as LGBTQQIAAP+, or as allies to participate in a round-table discussion on mentoring physicists. The session will provide an opportunity to learn and discuss successful mentoring strategies at different career stages for physicists in all environments, including academia, industry, etc. Attendees are encouraged to attend a social event to follow the panel to continue to network. Allies are especially welcome at this event to learn how to support and mentor LGBT+ physicists.

  11. Barriers in the Physics Pipeline from K-12 to Tenure

    NASA Astrophysics Data System (ADS)

    Kilburn, Micha

    2016-09-01

    The lack of diversity in physics is a known problem, and yet efforts to change our demographics have only had minor effects during the last decade. I will explain some of the hidden barriers that dissuade underrepresented minorities in becoming physicists using a framework borrowed from sociology, Maslow's hierarchy of needs. I will draw from current research at the undergraduate to faculty levels over a variety of STEM fields that are also addressing a lack of diversity. I will also provide analysis from the Joint Institute for Nuclear Astrophysics Center for the Evolution of Elements (JINA-CEE) outreach programs to understand the likelihood of current K-12 students in becoming physicists. Specifically, I will present results from the pre-surveys from our Art 2 Science Camps (ages 8-14) about their attitudes towards science as well as results from analysis of teacher recommendations for our high school summer program. I will conclude with a positive outlook describing the pipeline created by JINA-CEE to retain students from middle school through college. This work was supported in part by the National Science Foundation under Grant No. PHY-1430152 (JINA Center for the Evolution of the Elements).

  12. Geographical distribution of radiotherapy resources in Japan: investigating the inequitable distribution of human resources by using the Gini coefficient.

    PubMed

    Tanikawa, Takumi; Ohba, Hisateru; Ogasawara, Katsuhiko; Okuda, Yasuo; Ando, Yutaka

    2012-01-01

    This is a pilot study that aims to elucidate regional disparities in the distribution of medical resources in Japan. For this purpose, we employed the Gini coefficient (GC) in order to analyze the distribution of radiotherapy resources, which are allocated to each prefecture in Japan depending on the size of its population or physical area. Our study used data obtained from the 2005 and 2007 national surveys on the structure of radiation oncology in Japan, conducted by the Japanese Society for Therapeutic Radiology and Oncology (JASTRO). Our analysis showed that the regional disparities regarding the radiation oncologists and radiotherapy technologists were small, and concluded that such resources were almost equitably distributed. However, medical physicists are inequitably distributed. Thus, policymakers should create and implement measures to train and retain medical physicists in areas with limited radiotherapy resources. Further, almost 26% of the secondary medical service areas lacked radiotherapy institutions. We attribute this observation to the existence of tertiary medical service areas, and almost all of prefectures face a shortage of such resources. Therefore, patients' accessibility to these resources in such areas should be improved.

  13. EUTEMPE-RX, an EC supported FP7 project for the training and education of medical physics experts in radiology.

    PubMed

    Bosmans, H; Bliznakova, K; Padovani, R; Christofides, S; Van Peteghem, N; Tsapaki, V; Caruana, C J; Vassileva, J

    2015-07-01

    The core activity of the medical physics expert (MPE) is to ensure optimal use of ionising radiation in healthcare. It is essential that these healthcare professionals are trained to the highest level, defined as European Qualifications Framework for Lifelong Learning (EQF) level 8 by the European Commission's Radiation Protection Report 174 'Guidelines on the MPE'. The main objective of the EUTEMPE-RX project is to provide a model training scheme that allows the medical physicist in diagnostic and interventional radiology (D&IR) to reach this high level. A European network of partners was brought together in this FP7 EC project to ensure sufficient expertise in all aspects of the subject and to create a harmonised course programme. Targeted participants are medical physicists in D&IR in hospitals, engineers and scientists in medical device industries and officers working in regulatory authorities. Twelve course modules will be developed at EQF level 8, with radiation safety and diagnostic effectiveness being prevalent subjects. The modules will combine online with face-to-face teaching using a blended learning approach. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Why new neutron detector materials must replace helium-3

    NASA Astrophysics Data System (ADS)

    Hurd, Alan J.; Kouzes, Richard T.

    2014-10-01

    Helium-3 has such unique physical and nuclear properties that to a physicist it seems appalling the isotope was once indiscriminately released to the atmosphere as a waste gas. Not gravitationally bound to our planet, a He-3 atom is effectively lost to the human race once released. Consequently, when a confluence of independent factors in national security and research in the last decade created a "custody battle" over this scarce isotope, an intense search for substitutes and alternative technologies ensued for various applications. This Focus Point of EPJ Plus is dedicated to neutron detector alternatives.

  15. Campus as a Living Laboratory for Sustainability: The Physics Connection

    NASA Astrophysics Data System (ADS)

    Lindstrom, Timothy; Middlecamp, Catherine

    2018-04-01

    One of us is a physicist. The other is a chemist. For the past four years, we have been teaching a large introductory environmental science course that uses our campus as a lens through which to explore issues relating to sustainability. Our students "ask questions about the energy we use to heat and cool our buildings, the food we eat, the air we breathe, the electricity to run light bulbs and appliances, the goods we purchase, and the waste we create." This course fits in the genre of using "campus as a living laboratory," a term we will discuss later.

  16. Leo Szilard Lecturship Award: How can physicists help the public make better decisions about science and technology?

    NASA Astrophysics Data System (ADS)

    Primack, Joel

    2016-03-01

    For more than 40 years the APS has worked to improve governmental decision-making, mainly through the Congressional Science and Technology Fellowship program and through occasional studies of important science and technology issues. How productive have these been? How can the APS and other professional societies more effectively combat anti-science propaganda and help the public develop better-informed views about science and technology? How can individual scientists communicate scientific concepts in a more understandable and engaging way? How can we encourage young scientists and students to participate in creating a scientifically responsible future?

  17. Plasma physics goes beyond fusion

    NASA Astrophysics Data System (ADS)

    Franklin, Raoul

    2008-11-01

    I was interested to read the fusion supplement published with the October issue of Physics World. However, in asserting that fusion created the need to recognize plasma physics as a separate branch of the subject, Stephen Cowley, the new director of the United Kingdom Atomic Energy Authority, was not quite correct. In fact, the word "plasma" was appropriated from the Greek by the chemical physicist (and later Nobel laureate) Irving Langmuir in 1928. It was used to describe the positive column of a gas discharge, which was then the subject of research into better lighting sources and advertising displays, as well as the underlying science.

  18. TH-E-209-03: Development of An In-House CT Dose Monitoring and Management System Based On Open-Source Software Resources -- Pearls and Pitfalls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, D.

    Radiation dose monitoring solutions have opened up new opportunities for medical physicists to be more involved in modern clinical radiology practices. In particular, with the help of comprehensive radiation dose data, data-driven protocol management and informed case follow up are now feasible. Significant challenges remain however and the problems faced by medical physicists are highly heterogeneous. Imaging systems from multiple vendors and a wide range of vintages co-exist in the same department and employ data communication protocols that are not fully standardized or implemented making harmonization complex. Many different solutions for radiation dose monitoring have been implemented by imaging facilitiesmore » over the past few years. Such systems are based on commercial software, home-grown IT solutions, manual PACS data dumping, etc., and diverse pathways can be used to bring the data to impact clinical practice. The speakers will share their experiences with creating or tailoring radiation dose monitoring/management systems and procedures over the past few years, which vary significantly in design and scope. Topics to cover: (1) fluoroscopic dose monitoring and high radiation event handling from a large academic hospital; (2) dose monitoring and protocol optimization in pediatric radiology; and (3) development of a home-grown IT solution and dose data analysis framework. Learning Objectives: Describe the scope and range of radiation dose monitoring and protocol management in a modern radiology practice Review examples of data available from a variety of systems and how it managed and conveyed. Reflect on the role of the physicist in radiation dose awareness.« less

  19. Situated cognition in clinical visualization: the role of transparency in GammaKnife neurosurgery planning.

    PubMed

    Dinka, David; Nyce, James M; Timpka, Toomas

    2009-06-01

    The aim of this study was to investigate how the clinical use of visualization technology can be advanced by the application of a situated cognition perspective. The data were collected in the GammaKnife radiosurgery setting and analyzed using qualitative methods. Observations and in-depth interviews with neurosurgeons and physicists were performed at three clinics using the Leksell GammaKnife. The users' ability to perform cognitive tasks was found to be reduced each time visualizations incongruent with the particular user's perception of clinical reality were used. The main issue here was a lack of transparency, i.e. a black box problem where machine representations "stood between" users and the cognitive tasks they wanted to perform. For neurosurgeons, transparency meant their previous experience from traditional surgery could be applied, i.e. that they were not forced to perform additional cognitive work. From the view of the physicists, on the other hand, the concept of transparency was associated with mathematical precision and avoiding creating a cognitive distance between basic patient data and what is experienced as clinical reality. The physicists approached clinical visualization technology as though it was a laboratory apparatus--one that required continual adjustment and assessment in order to "capture" a quantitative clinical reality. Designers of visualization technology need to compare the cognitive interpretations generated by the new visualization systems to conceptions generated during "traditional" clinical work. This means that the viewpoint of different clinical user groups involved in a given clinical task would have to be taken into account as well. A way forward would be to acknowledge that visualization is a socio-cognitive function that has practice-based antecedents and consequences, and to reconsider what analytical and scientific challenges this presents us with.

  20. 10 CFR 35.57 - Training for experienced Radiation Safety Officer, teletherapy or medical physicist, authorized...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., teletherapy or medical physicist, authorized medical physicist, authorized user, nuclear pharmacist, and authorized nuclear pharmacist. 35.57 Section 35.57 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF... pharmacist, and authorized nuclear pharmacist. (a)(1) An individual identified as a Radiation Safety Officer...

  1. 10 CFR 35.57 - Training for experienced Radiation Safety Officer, teletherapy or medical physicist, authorized...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., teletherapy or medical physicist, authorized medical physicist, authorized user, nuclear pharmacist, and authorized nuclear pharmacist. 35.57 Section 35.57 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF... pharmacist, and authorized nuclear pharmacist. (a)(1) An individual identified as a Radiation Safety Officer...

  2. 10 CFR 35.57 - Training for experienced Radiation Safety Officer, teletherapy or medical physicist, authorized...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., teletherapy or medical physicist, authorized medical physicist, authorized user, nuclear pharmacist, and authorized nuclear pharmacist. 35.57 Section 35.57 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF... pharmacist, and authorized nuclear pharmacist. (a)(1) An individual identified as a Radiation Safety Officer...

  3. 10 CFR 35.57 - Training for experienced Radiation Safety Officer, teletherapy or medical physicist, authorized...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., teletherapy or medical physicist, authorized medical physicist, authorized user, nuclear pharmacist, and authorized nuclear pharmacist. 35.57 Section 35.57 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF... pharmacist, and authorized nuclear pharmacist. (a)(1) An individual identified as a Radiation Safety Officer...

  4. 10 CFR 35.57 - Training for experienced Radiation Safety Officer, teletherapy or medical physicist, authorized...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., teletherapy or medical physicist, authorized medical physicist, authorized user, nuclear pharmacist, and authorized nuclear pharmacist. 35.57 Section 35.57 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF... pharmacist, and authorized nuclear pharmacist. (a)(1) An individual identified as a Radiation Safety Officer...

  5. Physicists and Astronomy--Will You Join the Dance?

    ERIC Educational Resources Information Center

    Harwit, Martin

    1981-01-01

    Focuses on past achievements of physicists beginning with the discovery of gaseous nebulae and listing seven commonly found characteristics of this and other observational discoveries which can foster further discovery. Suggests how theory is related to observation and where physicists make their greatest contributions to astronomy. (Author/JN)

  6. The Role of the Medical Physicist in Radiation Protection in Hospitals.

    ERIC Educational Resources Information Center

    Harrison, R. M.

    1989-01-01

    Described is the role of the medical physicist in five areas of medical application, including radiotherapy, nuclear medicine, diagnostic radiology, environmental radioactivity, and dosimetry and personal monitoring. The management contribution of the medical physicist is discussed. Provided are two examples of new techniques influencing radiation…

  7. Fermilab Today

    Science.gov Websites

    physicist invents new way to clean up oil spills Fermilab physicist Arden Warner revolutionizes oil spill cleanup with magnetizable-oil invention. Photo: Hanae Armitage Four years ago, Fermilab accelerator physicist Arden Warner watched national news of the BP oil spill and found himself frustrated with the

  8. Identical Collision Terms/Solutions of Kinetic Eqn. and Explanation of Damping of Waves in Plasmas and Solids Known by Different Names

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, S. K.

    2010-11-23

    In this paper we show that identical collision terms are known by different names in gaseous plasmas and solids. Method used by plasma physicists and the one used by solid state physicists to solve Kinetic equation are also exactly same but they are also known by different names. In fact the physical explanation of damping of plasma Waves given by plasma physicists is quite similar to that given by solid state physicists to explain the absorption of acoustic waves in solids.

  9. Physics in Industry: A Case Study

    NASA Astrophysics Data System (ADS)

    Pratt-Ferguson, Ben

    2007-10-01

    Often ignored and sometimes even considered ``black sheep'' by the university & government-lab physicists, many industrial physicists continue making valuable scientific contributions in diverse areas, from computer science to aero and thermo-dynamics, communications, mathematics, engineering, and simulation, to name a few. This talk will focus on what industrial physicists do, what preparations are beneficial to obtaining a first industrial job, and what the business environment is like for physicists. The case study will be that of the author, starting with undergraduate and graduate studies and continuing on to jobs in industry.

  10. A Gendered Approach to Science Ethics for US and UK Physicists.

    PubMed

    Ecklund, Elaine Howard; Di, Di

    2017-02-01

    Some research indicates that women professionals-when compared to men-may be more ethical in the workplace. Existing literature that discusses gender and ethics is confined to the for-profit business sector and primarily to a US context. In particular, there is little attention paid to gender and ethics in science professions in a global context. This represents a significant gap, as science is a rapidly growing and global professional sector, as well as one with ethically ambiguous areas. Adopting an international comparative perspective, this paper relies on 121 semi-structured interviews with US and UK academic physicists to examine how physicists perceive the impact of gender on science ethics. Findings indicate that some US and UK physicists believe that female scientists handle ethical issues within science in a feminine way whereas their male colleagues approach ethics in a masculine way. Some of these physicists further claim that these different approaches to science ethics lead to male and female scientists' different levels of competitiveness in academic physics. In both the US and the UK, there are "gender-blind" physicists, who do not think gender is related to professional ethics. Relying on physicists' nuanced descriptions this paper contributes to the current understanding of gender and science and engineering ethics.

  11. Medical physics in radiotherapy: The importance of preserving clinical responsibilities and expanding the profession's role in research, education, and quality control

    PubMed Central

    Malicki, Julian

    2015-01-01

    Medical physicists have long had an integral role in radiotherapy. In recent decades, medical physicists have slowly but surely stepped back from direct clinical responsibilities in planning radiotherapy treatments while medical dosimetrists have assumed more responsibility. In this article, I argue against this gradual withdrawal from routine therapy planning. It is essential that physicists be involved, at least to some extent, in treatment planning and clinical dosimetry for each and every patient; otherwise, physicists can no longer be considered clinical specialists. More importantly, this withdrawal could negatively impact treatment quality and patient safety. Medical physicists must have a sound understanding of human anatomy and physiology in order to be competent partners to radiation oncologists. In addition, they must possess a thorough knowledge of the physics of radiation as it interacts with body tissues, and also understand the limitations of the algorithms used in radiotherapy. Medical physicists should also take the lead in evaluating emerging challenges in quality and safety of radiotherapy. In this sense, the input of physicists in clinical audits and risk assessment is crucial. The way forward is to proactively take the necessary steps to maintain and advance our important role in clinical medicine. PMID:25949219

  12. WE-G-204-00: Post-Graduate Training of the Next Generation of Academic Medical Physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    While many indicators for academic medical physics are distressing – jobs are tight, demands on clinical time are high (and getting worse) and national funding has been flat for several years (meaning less money in reality) the present is perhaps one of the most exciting times in cancer research history, and medical physicists have an opportunity to make a difference. Many of us predict the impact of medical physics on cancer research over the next decade to be more significant than ever. Why is that? First, medical imaging is used for every cancer patient in developed countries. Every improvement inmore » the acquisition, processing or analysis of radiological images has the potential to impact patients. The use of radiation therapy is at an all-time high – and virtually cannot be performed without medical physics. Many of the advances in both biomedical imaging and radiation oncology are the result of the hard work of academic medical physicists who are thinking of the next generation of technologies that will be used against cancer or an even broader spectrum of diseases. A career in academic medical physics is demanding, particularly for those with clinical responsibilities. As the demands for justification of their clinical effort become increasingly metricized, the ability to do “unfunded research” will become even more difficult. This means that many will have to generate external salary support to justify their efforts in research and development. This comes at a time when funding for research is compressed and harder to obtain. Generally speaking, if you are not contributing 50% or more of your effort to research, you are competing at a disadvantage and it is very unlikely you will get an NIH/NCI/NIBIB grant. Furthermore, in the ongoing effort to improve patient care and safety, we have developed credentialing pathways that now require at least two-years of residency training. This full-time clinical training creates a gap in the research trajectory of graduate students who aspire to academic positions with an expectation for extramural funding. To address this, several residency programs have created hybrid programs where the two-years of clinical training is combined with one or two years of research effort to allow candidates to further establish an academic identity and to ensure adequate academic productivity to compete for a beginning faculty position. In conclusion, while the path to a successful career in academic medical physics is steep and sometimes hard to follow, reaching the apex is worth the journey. Different paths to a career in medical physics are available, you just have to decide which one is right for you. If improving cancer care is your goal as a physicist, then academic medical physics is the job for you!.« less

  13. MO-C-BRB-04: Observations of a Nuclear Radiologist on the Value of the Medical Physicist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenspan, B.

    With the profound changes currently occurring in medicine, the role of the medical physicist cannot stagnate, but must evolve to meet the challenges and opportunities that are presented. Medical physicists must understand these changes and establish themselves not only as relevant but as leaders in this new environment. We must increase our presence in clinical settings such as tumor boards, patient rounds, and the development of new diagnosis, imaging, and treatment techniques. By establishing ourselves as competent scientists, we can and must participate in the development of technologies through research, teaching, and clinical implementation. As medical physicists we must definemore » our roles and value to our physician colleagues, patients, referring physicians, and senior administrators. We cannot afford to be viewed solely as quality assurance technologists, but need to move forward in step with medical and practice advances, becoming recognized as having a leadership role in providing quality research, technological development, and quality patient care. In this session, four leaders in medical research and healthcare will discuss their observations on how medical physicists have contributed to advancements in healthcare and opportunities to continue leadership in providing quality medicine through the applications of physics to research, education, and clinical practice. Learning Objectives: Understand the changes in the healthcare environment and how medical physicists can contribute to improving patient care. Learn how medical physicists are currently leading research efforts to improve clinical imaging and diagnosis. Understand the role of medical physicists in developing new technology and leading its translation into clinical care.« less

  14. Big Bang Day: 5 Particles - 3. The Anti-particle

    ScienceCinema

    None

    2017-12-09

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.

  15. Big Bang Day: 5 Particles - 3. The Anti-particle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2009-10-07

    Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existencemore » be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.« less

  16. Stabilizing the false vacuum: Mott skyrmions

    PubMed Central

    Kanász-Nagy, M.; Dóra, B.; Demler, E. A.; Zaránd, G.

    2015-01-01

    Topological excitations keep fascinating physicists since many decades. While individual vortices and solitons emerge and have been observed in many areas of physics, their most intriguing higher dimensional topological relatives, skyrmions (smooth, topologically stable textures) and magnetic monopoles emerging almost necessarily in any grand unified theory and responsible for charge quantization remained mostly elusive. Here we propose that loading a three-component nematic superfluid such as 23Na into a deep optical lattice and thereby creating an insulating core, one can create topologically stable skyrmion textures. The skyrmion's extreme stability and its compact geometry enable one to investigate the skyrmion's structure, and the interplay of topology and excitations in detail. In particular, the superfluid's excitation spectrum as well as the quantum numbers are demonstrated to change dramatically due to the skyrmion, and reflect the presence of a trapped monopole, as imposed by the skyrmion's topology. PMID:25582915

  17. Stabilizing the false vacuum. Mott skyrmions

    DOE PAGES

    Kanász-Nagy, M.; Dóra, B.; Demler, E. A.; ...

    2015-01-13

    Topological excitations keep fascinating physicists since many decades. While individual vortices and solitons emerge and have been observed in many areas of physics, their most intriguing higher dimensional topological relatives, skyrmions (smooth, topologically stable textures) and magnetic monopoles emerging almost necessarily in any grand unified theory and responsible for charge quantization remained mostly elusive. Here we propose that loading a three-component nematic superfluid such as 23Na into a deep optical lattice and thereby creating an insulating core, one can create topologically stable skyrmion textures. The skyrmion’s extreme stability and its compact geometry enable one to investigate the skyrmion’s structure, andmore » the interplay of topology and excitations in detail. In particular, the superfluid’s excitation spectrum as well as the quantum numbers are demonstrated to change dramatically due to the skyrmion, and reflect the presence of a trapped monopole, as imposed by the skyrmion’s topology.« less

  18. Is the "glass ceiling" a real problem for women physicists in Argentina?

    NASA Astrophysics Data System (ADS)

    Frechero, Marisa A.; Amador, Ana; Pastor, Antonio J. Ramirez; Tamarit, Francisco

    2015-12-01

    We evaluate the distribution of female physicists in the Argentinean workforce, analyzing the distribution of women at different levels of education and research using several indicators. Although important imbalances still occur, our findings are encouraging and the distribution of female physicists seems to be changing for the better.

  19. NREL Researcher is Top World Physicist

    Science.gov Websites

    is Top World Physicist For more information contact: Kerry Masson, (303) 275-4083 e:mail physicists in the world by the Institute of Scientific Information (ISI). The standing is based on the number your peers is the ultimate measure of the quality and quantity of world class research being conducted

  20. Alternate Careers for Physicists: Science Policy and Government Relations

    NASA Astrophysics Data System (ADS)

    Mack, Gregory

    While physics is an investigation of the world around us, physicists and the practice of physics research exist within the world in combination with aspects of society. This means that physicists and physics research are subject to federal policies and regulations that affect how physics is done. Who decides or influences those policies? Who speaks up on our behalf? Who investigates policy issues from a physics point of view? As physicists, we can lend our expertise and insight in order to ensure a fruitful future for physics and science more broadly, whether it be an occasional policy action taken or a career in science policy and government relations. In this talk I'll share the story of my transition from academia to a policy-focused career at APS and what it means to be a physicist on the frontlines of government relations.

  1. Physics and nuclear power

    NASA Astrophysics Data System (ADS)

    Buttery, N. E.

    2008-03-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors.

  2. Lithuanian female physicists: Reality and plans for the future

    NASA Astrophysics Data System (ADS)

    Šatkovskienė, Dalia; Giriunienė, Ramutė; Ruželė, Živilė; Rutkunienė, Živilė

    2013-03-01

    Changes in the issue of women in physics in Lithuanian in the three years since the 3rd IUPAP International Conference on Women in Physics are discussed on the basis of statistics as well as an exploratory study recently conducted among women physicists. The situation has changed slowly since 2008. However, the study shows that women physicists more clearly understand the inequities and the need for changes, including an active European Union mainstreaming policy targeted to ensure gender equality in the sciences, which gives hope for accelerating changes. Continued plans for improving women physicists' situation in Lithuania are discussed.

  3. Physics Internationally From the Industrial Perspective

    NASA Astrophysics Data System (ADS)

    Venkatesan, T.

    2009-03-01

    Physicists traditionally get employed by academia, National Labs and industry. The investment of multi-national companies in R&D and manufacturing operations globally has been accelerating owing to availability of trained human resources and the economy of operation. This has created tremendous opportunities for candidates with global experience as opposed to a highly localized education. In the last decade, the investments made by Asian academic institutions in education and research has seen a significant increase creating opportunities for Graduate students and researchers alike in parts of the world other than US and Europe, the traditional destinations for students and researchers over the last several decades. Many Asian universities are hiring a diverse faculty from all over the world as opposed to hiring from local talent pools. Many of the Asian countries are focusing on creating local hitech economies by fostering global entrepreneurship programs. In my talk I will discuss this globalization phenomenon with specific examples from both academia and industry. I will also discuss strategies for academic institutions in terms of making the appropriate modification to their programs to deal with this inevitable evolution.

  4. Chinese physicists educated in Germany and America: Their scientific contributions and their impact on China's higher education

    NASA Astrophysics Data System (ADS)

    Qu, Jing Cheng

    1998-11-01

    This dissertation records the historical paths of Chinese physicists educated in Germany and America, explores their representative achievements in modern physics that have not been recognized by Chinese scholars, and provides sociological analyses of their contributions to China's higher education. We have found that Chinese students of physics in Germany and America were not passive recipients of Western science, but active contributors. They were also crucial contributors to science education and important scientific projects upon their return to China. Chapter One briefly describes physics knowledge in ancient China and introduces the transplantation of modern science and technology to China. Three distinct historical periods have been identified. In Chapter Two and Chapter Three, 30 Chinese physicists educated in Germany and 89 in America have been investigated. This research analyzes the significant achievements of these physicists. It also examines the political changes, the social background, and other factors impacting on their studies in the two countries. The selected cases in the two chapters are Li Fo-ki, Chinese physics students in Berlin, Werner Heisenberg and his Chinese students, Max Born and his Chinese students, Robert Millikan and Chinese physicists, the first two Chinese physicists from Harvard, and the Science Society of China. Chapter Four explores the geographical distribution, education and careers, return and expatriation, and the social influence exerted by these Chinese physicists. Statistical compilation and quantitative analyses comprise the basic methodology. In terms of two periods and two generations, this dissertation explores the physicists' contributions to the development of modern science in China and to education in China. Significant cases from Beijing University, Qinghua University, and Yanjing University are analyzed. The last chapter, Chapter Five, concludes that some of the achievements of these Chinese physicists were critical steps in modern physics even though China remained domestically rather weak in the development of modern science. Returning to China, most of them became pioneers and active contributors to modern science and to higher education in China. They comprised the majority of the physics community of China and played a leading role in the formation of modern science in China. After 1949, China continued to benefit from the contributions of these physicists. China independently constructed an atomic bomb in 1964 and a hydrogen bomb in 1967. In 1970, China successfully launched a man-made satellite. The Chinese physicists trained in Western countries constituted the main research force behind these projects.

  5. The Status of African American Physicists within the DOE Laboratories

    NASA Astrophysics Data System (ADS)

    Jackson, Keith

    2005-03-01

    In May 2002 there was a backpage article published in American Physical Society Newsletter by the President of the National Society of Black Physicists (NSBP). This article showed that of the 3372 professional physicists employed at the DOE national labs, only 11 are African American, which on a percentage basis is 4 times less than the total availability of Ph.D. African American physicists in the labor force. NSBP want to provide an update of the interaction between National Society of Black Physicists (NSBP) and the department of Energy in particular the Office of Science on the issue of employment of African American Physicists in scientific and technical. You might ask the following question: Why should the current generation of African American Physicists be concerned about their underepresentation on the scientific staffs of the DOE National Laboratories? The answer to this question may vary from person to person, but I would like to propose the following: The National Laboratories are the largest providers of career opportunities in Physics in the United States. There is a general view in the community; African Americans are not getting a return on their national investment in the DOE National Labs. Failure to engage with HBCU’s through their user facilities causes a training or skills deficit when it comes to preparing students to participate at the forefront of physics research. By rebuffing interactions with HBCU¹s, as many the laboratories have done, the national laboratories are in effect refusing to transfer scientific knowledge to the stakeholders in the African American community. The update will contain some additional information about NSBP proposals to solve the problem of underepresentation of African American and Hispanic physicists within the National Laboratories and how the Office of Science has response these proposals.

  6. FIAP Forum on Entrepreneurship in Physics

    NASA Astrophysics Data System (ADS)

    2015-03-01

    With the changes in science as globalization has taken root, the future role of physicists becoming a part of the industrial physics community is more imperative. When 80% of graduating physicists will not be employed in academic positions, and 50% of all jobs for these physicists will be industrial sector, the importance of bringing our next generation of scientists up to speed on industrial applications is becoming much more important with the rapid, world-wide development of technology. FIAP is initiating a forum on entrepreneurship as a major role for the next generation of scientists. As physicists are problem solvers and the entrepreneurial experience is all about problem solving: whether involving technology, building a team, or financing a business. This forum seeks to link successful entrepreneurial physicists with the upcoming generation, through the dissemination of their global expertise and experience. The forum will consist of a panel discussion and then be open to question and answers from the audience.

  7. Stopping time: Henry Fox Talbot and the origins of freeze-frame photography.

    PubMed

    Ramalingam, Chitra

    2008-09-01

    As an image-making tool for scientists studying the transient, instantaneous photography has long been seen as opening up a visual realm previously inaccessible to the inferior testimony of the human eye. But when photographic pioneer Henry Fox Talbot took the first photograph of a moving object by the light of an electric spark in 1851, he was guided by existing visual practices designed to create instantaneous vision in the eye itself. Exploring the background behind the peculiar subject of his experiment - a mechanically spinning disc - reveals a hidden prehistory of spark-illuminated photography: physicists' pre-photographic techniques for stopping time.

  8. A computational image analysis glossary for biologists.

    PubMed

    Roeder, Adrienne H K; Cunha, Alexandre; Burl, Michael C; Meyerowitz, Elliot M

    2012-09-01

    Recent advances in biological imaging have resulted in an explosion in the quality and quantity of images obtained in a digital format. Developmental biologists are increasingly acquiring beautiful and complex images, thus creating vast image datasets. In the past, patterns in image data have been detected by the human eye. Larger datasets, however, necessitate high-throughput objective analysis tools to computationally extract quantitative information from the images. These tools have been developed in collaborations between biologists, computer scientists, mathematicians and physicists. In this Primer we present a glossary of image analysis terms to aid biologists and briefly discuss the importance of robust image analysis in developmental studies.

  9. Becoming a Physicist: The Roles of Research, Mindsets, and Milestones in Upper-Division Student Perceptions

    ERIC Educational Resources Information Center

    Irving, Paul W.; Sayre, Eleanor C.

    2015-01-01

    As part of a longitudinal study into identity development in upper-level physics students, we used a phenomenographic research method to examine students' perceptions of what it means to be a physicist. Analysis revealed six different categories of perception of what it means to be a physicist. We found the following themes: research and its…

  10. Developing Technology Products - A Physicist's Perspective

    NASA Astrophysics Data System (ADS)

    Burka, Michael

    2014-03-01

    There are many physicists working in the industrial sector. We rarely have the word physicist in our job title; we are far more commonly called engineers or scientists. But, we are physicists, and we succeed because our training in physics has given us the habits of mind and the technical skills that one needs to solve complex technical challenges. This talk will explore the transition from physics research to technology product development using examples from my own career, first as a postdoctoral fellow and research scientist on the LIGO project, and then developing products in the spectroscopy, telecommunications, and medical device industries. Approaches to identifying and pursuing opportunities in industry will be discussed.

  11. Physicists for Human Rights in the Former Soviet Union

    NASA Astrophysics Data System (ADS)

    Chernyak, Yuri

    2005-03-01

    In his 1940 paper `Freedom and Science' Albert Einstein emphasized that ``intellectual independence is a primary necessity for the scientific inquirer'' and that ``political liberty is also extraordinarily important for his work.'' Raised in the tradition of intellectual independence and dedicated to the scientific truth, physicists were among the first to stand up for freedom in the USSR. It was no coincidence that the founders of the first independent Human Rights Committee (1970) were physicists: Andrei Sakharov, Valery Chalidze and Andrei Tverdokhlebov. In 1973 a physicist, Alexander Voronel, founded a Moscow Sunday (refusenik) Seminar -- the first openly independent scientific body in the history of the USSR. In 1976 physicists Andrei Sakharov, Yuri Orlov and a mathematician Natan Sharansky were the leading force in founding the famous Moscow Helsinki Human Rights Watch group. This talk briefly describes the special position of physicists (often viewed as Einstein's colleagues) in Soviet society, as well as their unique role in the struggle for human rights. It describes in some detail the Moscow Sunday Seminar, and extensions thereof such as International Conferences, the Computer School and the Computer Database of Refuseniks. The Soviet government considered such truly independent organizations as a challenge to Soviet authority and tried to destroy them. The Seminar's success and its very existence owed much to the support of Western scientific organizations, who persuaded their members to attend the Seminar and visit scientist-refuseniks. The human rights struggle led by physicists contributed substantially to the demise of the Soviet system.

  12. Core curriculum for medical physicists in radiology. Recommendations from an EFOMP/ESR working group.

    PubMed

    Geleijns, Jacob; Breatnach, Eamann; Cantera, Alfonso Calzado; Damilakis, John; Dendy, Philip; Evans, Anthony; Faulkner, Keith; Padovani, Renato; Van Der Putten, Wil; Schad, Lothar; Wirestam, Ronnie; Eudaldo, Teresa

    2012-06-01

    Some years ago it was decided that a European curriculum should be developed for medical physicists professionally engaged in the support of clinical diagnostic imaging departments. With this in mind, EFOMP (European Federation of Organisations for Medical Physics) in association with ESR (European Society of Radiology) nominated an expert working group. This curriculum is now to hand. The curriculum is intended to promote best patient care in radiology departments through the harmonization of education and training of medical physicists to a high standard in diagnostic radiology. It is recommended that a medical physicist working in a radiology department should have an advanced level of professional expertise in X-ray imaging, and additionally, depending on local availability, should acquire knowledge and competencies in overseeing ultrasound imaging, nuclear medicine, and MRI technology. By demonstrating training to a standardized curriculum, medical physicists throughout Europe will enhance their mobility, while maintaining local high standards of medical physics expertise. This document also provides the basis for improved implementation of articles in the European medical exposure directives related to the medical physics expert. The curriculum is divided into three main sections: The first deals with general competencies in the principles of medical physics. The second section describes specific knowledge and skills required for a medical physicist (medical physics expert) to operate clinically in a department of diagnostic radiology. The final section outlines research skills that are also considered to be necessary and appropriate competencies in a career as medical physicist.

  13. The Many Worlds of Leo Szilard: Physicist, Peacemaker, Provocateur

    NASA Astrophysics Data System (ADS)

    Lanouette, William

    2014-03-01

    Best known for being the first to conceive and patent the nuclear chain reaction in the 1930s, Leo Szilard should also be remembered for other insights in both physics and biology, and for historical initiatives to control the A-bomb he helped create. In physics, Szilard applied entropy to data in a seminal 1929 paper that laid the basis for ``information theory.'' Szilard co-designed an electromagnetic refrigerator pump with Einstein in the 1920s, in 1939 he co-designed the first nuclear reactor with Enrico Fermi, and he later thought up and named the nuclear ``breeder'' reactor. Biologist Francois Jacob called Szilard an ``intellectual bumblebee'' for the many novel ideas he shared, including one that earned Jacob and others the Nobel Prize. James D. Watson said that for intellectual stimulation he liked being around Szilard because ``Leo got excited about something before it was true.'' A political activist, Szilard proposed and drafted the 1939 letter Einstein sent to President Franklin Roosevelt that warned of German A-bomb work and led to the Manhattan Project - where Szilard was ``Chief Physicist.'' Yet Szilard then worked tirelessly to curb nuclear weapons, organizing a scientists' petition to President Truman and lobbying Congress for civilian control of the atom. Szilard loved dreaming up new institutions. He helped to create the Pugwash Conferences on Science and World Affairs, and founded the Council for a Livable World - the first political action committee for arms control. In biology, Szilard proposed the European Molecular Biology Organization modeled on CERN, and helped create the Salk Institute for Biological Studies, where he was one of the first fellows. Shy, witty, and eccentric, Szilard wrote a political satire in 1960 that predicted when the US-Soviet nuclear arms race would end in the late 1980s. Another satire, ``My Trial as a War Criminal'' about scientists' responsibilities for weapons of mass destruction, is credited with prompting Andrei Sakharov to the heroic political activism that earned him the Nobel Peace Prize. This year marks the 50th anniversary of Szilard's death, and the 75th anniversary of the Einstein letter. This talk will discuss other notable events in Szilard's life as well.

  14. THE EDUCATION OF A PHYSICIST. AN ACCOUNT OF THE INTERNATIONAL CONFERENCE ON THE EDUCATION OF PROFESSIONAL PHYSICISTS, LONDON 15-21 JULY 1965.

    ERIC Educational Resources Information Center

    BROWN, SANBORN C.; CLARKE, NORMAN

    CONTAINED IN THIS BOOK ARE INTERPRETATIONS OF PAPERS AND DISCUSSIONS PRESENTED AT THE "THIRD INTERNATIONAL CONFERENCE ON THE EDUCATION OF THE PROFESSIONAL PHYSICIST" WHICH WAS HELD IN LONDON IN JULY, 1965, AND WAS ATTENDED BY REPRESENTATIVES FROM 25 COUNTRIES. THE MATERIAL WAS EDITED, AND ORGANIZED TO STRESS THE ESSENTIAL DIFFERENCES IN…

  15. The role, responsibilities and status of the clinical medical physicist in AFOMP.

    PubMed

    Ng, K H; Cheung, K Y; Hu, Y M; Inamura, K; Kim, H J; Krisanachinda, A; Leung, J; Pradhan, A S; Round, H; van Doomo, T; Wong, T J; Yi, B Y

    2009-12-01

    This document is the first of a series of policy statements being issued by the Asia-Oceania Federation of Organizations for Medical Physics (AFOMP). The document was developed by the AFOMP Professional Development Committee (PDC) and was endorsed for official release by AFOMP Council in 2006. The main purpose of the document was to give guidance to AFOMP member organizations on the role and responsibilities of clinical medical physicists. A definition of clinical medical physicist has also been provided. This document discusses the following topics: professional aspects of education and training; responsibilities of the clinical medical physicist; status and organization of the clinical medical physics service and the need for clinical medical physics service.

  16. Report on the 4th International IUPAP Women in Physics Conference

    NASA Astrophysics Data System (ADS)

    Correa, Cynthia

    2011-10-01

    Stellenbosch, South Africa was the site of the 4^th International Union of Pure and Applied Physics (IUPAP) International Conference on Women in Physics, which took place on April 5^th-8^th. This conference brought together the diverse contributions of 250 female physicist attendees from nearly 60 countries worldwide to dissect the challenges faced by female physicists worldwide and to propose strategies to attract and retain more girls and women to the field. Having served as a member of the U.S. Delegation, I will discuss the resolutions reached and highlight the most important results of Global Survey of Physicists, where nearly 15,000 physicists shine light on how gender affects their lives and careers.

  17. Solving a Problem by Using What You Know: A Physicist Looks at a Problem in Ecology

    ERIC Educational Resources Information Center

    Greenler, Robert

    2015-01-01

    Two philosophical ideas motivate this paper. The first is an answer to the question of what is an appropriate activity for a physicist. My answer is that an appropriate activity is anything where the tools of a physicist enable him or her to make a contribution to the solution of a significant problem. This may be obvious in areas that overlap…

  18. ``Physics and the girly girl—there is a contradiction somewhere'': doctoral students' positioning around discourses of gender and competence in physics

    NASA Astrophysics Data System (ADS)

    Gonsalves, Allison J.

    2014-06-01

    Doctoral physics students have stories about what kinds of actions, behaviours and ways of doing physics allow individuals to be recognized as physicists. Viewing a physics department as a case study, and individual participants as embedded cases, this study used a sociocultural approach to examine the ways doctoral students construct these stories about becoming physicists. Through observations, photo-elicitation, and life history interviews, eleven men and women shared stories about their experiences with physics, and the contexts that have enabled or constrained their trajectories into doctoral physics. The results of this study revealed the salience of recognition in the constitution of physicist identities; but how recognition was achieved often entailed the reproduction or reworking of persistent discourses of gender norms. Various interchangeable forms of competence (technical, analytical, and academic) emerged as assets that can be used to achieve recognition in this physics community. However, competence was not the only means by which one might be recognized as a physicist. Contributing to the possibility for recognition was the performance of stereotypical Discourses for physicist that relied on traditional gender norms for the field. The results demonstrated that achieving recognition as a competent physicist often involved a complex negotiation of gender roles and the practice of physics.

  19. Radiotherapy and Nuclear Medicine Project for an Integral Oncology Center at the Oaxaca High Specialization Regional Hospital

    NASA Astrophysics Data System (ADS)

    De Jesús, M.; Trujillo-Zamudio, F. E.

    2010-12-01

    A building project of Radiotherapy & Nuclear Medicine services (diagnostic and therapy), within an Integral Oncology Center (IOC), requires interdisciplinary participation of architects, biomedical engineers, radiation oncologists and medical physicists. This report focus on the medical physicist role in designing, building and commissioning stages, for the final clinical use of an IOC at the Oaxaca High Specialization Regional Hospital (HRAEO). As a first step, during design stage, the medical physicist participates in discussions about radiation safety and regulatory requirements for the National Regulatory Agency (called CNSNS in Mexico). Medical physicists propose solutions to clinical needs and take decisions about installing medical equipment, in order to fulfill technical and medical requirements. As a second step, during the construction stage, medical physicists keep an eye on building materials and structural specifications. Meanwhile, regulatory documentation must be sent to CNSNS. This documentation compiles information about medical equipment, radioactivity facility, radiation workers and nuclear material data, in order to obtain the license for the linear accelerator, brachytherapy and nuclear medicine facilities. As a final step, after equipment installation, the commissioning stage takes place. As the conclusion, we show that medical physicists are essentials in order to fulfill with Mexican regulatory requirements in medical facilities.

  20. MO-C-BRB-02: The Physicists’ Leadership Role in Academic Radiology: The Chair’s Perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arenson, R.

    With the profound changes currently occurring in medicine, the role of the medical physicist cannot stagnate, but must evolve to meet the challenges and opportunities that are presented. Medical physicists must understand these changes and establish themselves not only as relevant but as leaders in this new environment. We must increase our presence in clinical settings such as tumor boards, patient rounds, and the development of new diagnosis, imaging, and treatment techniques. By establishing ourselves as competent scientists, we can and must participate in the development of technologies through research, teaching, and clinical implementation. As medical physicists we must definemore » our roles and value to our physician colleagues, patients, referring physicians, and senior administrators. We cannot afford to be viewed solely as quality assurance technologists, but need to move forward in step with medical and practice advances, becoming recognized as having a leadership role in providing quality research, technological development, and quality patient care. In this session, four leaders in medical research and healthcare will discuss their observations on how medical physicists have contributed to advancements in healthcare and opportunities to continue leadership in providing quality medicine through the applications of physics to research, education, and clinical practice. Learning Objectives: Understand the changes in the healthcare environment and how medical physicists can contribute to improving patient care. Learn how medical physicists are currently leading research efforts to improve clinical imaging and diagnosis. Understand the role of medical physicists in developing new technology and leading its translation into clinical care.« less

  1. TU-F-BRD-01: Biomedical Informatics for Medical Physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, M; Kalet, I; McNutt, T

    Biomedical informatics encompasses a very large domain of knowledge and applications. This broad and loosely defined field can make it difficult to navigate. Physicists often are called upon to provide informatics services and/or to take part in projects involving principles of the field. The purpose of the presentations in this symposium is to help medical physicists gain some knowledge about the breadth of the field and how, in the current clinical and research environment, they can participate and contribute. Three talks have been designed to give an overview from the perspective of physicists and to provide a more in-depth discussionmore » in two areas. One of the primary purposes, and the main subject of the first talk, is to help physicists achieve a perspective about the range of the topics and concepts that fall under the heading of 'informatics'. The approach is to de-mystify topics and jargon and to help physicists find resources in the field should they need them. The other talks explore two areas of biomedical informatics in more depth. The goal is to highlight two domains of intense current interest--databases and models--in enough depth into current approaches so that an adequate background for independent inquiry is achieved. These two areas will serve as good examples of how physicists, using informatics principles, can contribute to oncology practice and research. Learning Objectives: To understand how the principles of biomedical informatics are used by medical physicists. To put the relevant informatics concepts in perspective with regard to biomedicine in general. To use clinical database design as an example of biomedical informatics. To provide a solid background into the problems and issues of the design and use of data and databases in radiation oncology. To use modeling in the service of decision support systems as an example of modeling methods and data use. To provide a background into how uncertainty in our data and knowledge can be incorporated into modeling methods.« less

  2. Quantum physics reimagined for the general public

    NASA Astrophysics Data System (ADS)

    Bobroff, Julien

    2015-03-01

    Quantum Physics has always been a challenging issue for outreach. It is invisible, non-intuitive and written in sophisticated mathematics. In our ``Physics Reimagined'' research group, we explore new ways to present that field to the general public. Our approach is to develop close collaborations between physicists and designers or graphic artists. By developing this new kind of dialogue, we seek to find new ways to present complex phenomena and recent research topics to the public at large. For example, we created with web-illustrators a series of 3D animations about basic quantum laws and research topics (graphene, Bose-Einstein condensation, decoherence, pump-probe techniques, ARPES...). We collaborated with designers to develop original setups, from quantum wave animated models or foldings to a superconducting circus with levitating animals. With illustrators, we produced exhibits, comic strips or postcards displaying the physicists in their labs, either famous ones or even our own colleagues in their daily life as researchers. With artists, we recently made a stop-motion picture to explain in an esthetic way the process of discovery and scientific publication. We will discuss how these new types of outreach projects allowed us to engage the public with modern physics both on a scientific and cultural level and how the concepts and process can easily be replicated and expanded by other physicists. We are at the precise time when creative tools, interfaces, and ways of sharing and learning are rapidly evolving (wikipedia, MOOCs, smartphones...). If scientists don't step forward to employ these tools and develop new resources, other people will, and the integrity of the science and underlying character of research risks being compromised. All our productions are free to use and can be downloaded at www.PhysicsReimagined.com (for 3D quantum videos, specific link: www.QuantumMadeSimple.com) This work benefited from the support of the Chair ``Physics Reimagined'' (Paris-Sud University/Air Liquide).

  3. SU-F-P-06: Moving From Computed Radiography to Digital Radiography: A Collaborative Approach to Improve Image Quality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandoval, D; Mlady, G; Selwyn, R

    Purpose: To bring together radiologists, technologists, and physicists to utilize post-processing techniques in digital radiography (DR) in order to optimize image acquisition and improve image quality. Methods: Sub-optimal images acquired on a new General Electric (GE) DR system were flagged for follow-up by radiologists and reviewed by technologists and medical physicists. Various exam types from adult musculoskeletal (n=35), adult chest (n=4), and pediatric (n=7) were chosen for review. 673 total images were reviewed. These images were processed using five customized algorithms provided by GE. An image score sheet was created allowing the radiologist to assign a numeric score to eachmore » of the processed images, this allowed for objective comparison to the original images. Each image was scored based on seven properties: 1) overall image look, 2) soft tissue contrast, 3) high contrast, 4) latitude, 5) tissue equalization, 6) edge enhancement, 7) visualization of structures. Additional space allowed for additional comments not captured in scoring categories. Radiologists scored the images from 1 – 10 with 1 being non-diagnostic quality and 10 being superior diagnostic quality. Scores for each custom algorithm for each image set were summed. The algorithm with the highest score for each image set was then set as the default processing. Results: Images placed into the PACS “QC folder” for image processing reasons decreased. Feedback from radiologists was, overall, that image quality for these studies had improved. All default processing for these image types was changed to the new algorithm. Conclusion: This work is an example of the collaboration between radiologists, technologists, and physicists at the University of New Mexico to add value to the radiology department. The significant amount of work required to prepare the processing algorithms, reprocessing and scoring of the images was eagerly taken on by all team members in order to produce better quality images and improve patient care.« less

  4. WE-E-211-01: Medical Physics in Federal and State Governments.

    PubMed

    Mills, T; Winter, D; Keith, S; Fletcher, D

    2012-06-01

    In 2010, FDA's Center for Devices and Radiological Health (CDRH) launched an "Initiative to Reduce Unnecessary Radiation Exposure from Medical Imaging" and held a public meeting on "Device Improvements to Reduce Unnecessary Radiation Exposure from Medical Imaging" March 30- 31, 2010). In follow-up, FDA is pursuing efforts using its regulatory authority as it applies to imaging equipment and manufacturers and also partnering with professional organizations such as AAPM, industry and other governmental agencies to incorporate radiation protection principles into facility quality assurance, personnel credentialing, and training requirements.The current U.S. Federal guidance on medical x-rays was published in 1976 and addresses film imaging for radiographie and dental modalities. The Medical Workgroup of the Interagency Steering Committee on Radiation Standards (ISCORS) has modernized that document to address both diagnostic and interventional approaches, film and digital imaging, and the broad range of modalities that include radiography, computed tomography, interventional fluoroscopy, dentistry, bone densitometry, and veterinary practice. The current scope and status of the document will be presented.The Military Health System is committed to providing state-of- the-art care to its beneficiaries; both at home and abroad. Personnel constraints and the continuing wars oversees have created obstacles to this objective. In the past decade, tremendous advances have occurred in Electronic Health Records (EHR) and Teleradiology. Military Radiology seeks to leverage these advances as a means of surmounting many of the challenges it faces. In this talk, the current status of DoD teleradiology and EHR will be presented. 1. To provide a venue in which physicists working in the public sector can interface and discuss specific issues related to supporting the federal and state governments 2. To provide a venue for medical physicists to voice specific concerns with federal/state programs where medical physics should be involved in and/or more effective. 3. To educate audience on federal or state new or updated guidelines. © 2012 American Association of Physicists in Medicine.

  5. WE-H-BRC-09: Simulated Errors in Mock Radiotherapy Plans to Quantify the Effectiveness of the Physics Plan Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gopan, O; Kalet, A; Smith, W

    2016-06-15

    Purpose: A standard tool for ensuring the quality of radiation therapy treatments is the initial physics plan review. However, little is known about its performance in practice. The goal of this study is to measure the effectiveness of physics plan review by introducing simulated errors into “mock” treatment plans and measuring the performance of plan review by physicists. Methods: We generated six mock treatment plans containing multiple errors. These errors were based on incident learning system data both within the department and internationally (SAFRON). These errors were scored for severity and frequency. Those with the highest scores were included inmore » the simulations (13 errors total). Observer bias was minimized using a multiple co-correlated distractor approach. Eight physicists reviewed these plans for errors, with each physicist reviewing, on average, 3/6 plans. The confidence interval for the proportion of errors detected was computed using the Wilson score interval. Results: Simulated errors were detected in 65% of reviews [51–75%] (95% confidence interval [CI] in brackets). The following error scenarios had the highest detection rates: incorrect isocenter in DRRs/CBCT (91% [73–98%]) and a planned dose different from the prescribed dose (100% [61–100%]). Errors with low detection rates involved incorrect field parameters in record and verify system (38%, [18–61%]) and incorrect isocenter localization in planning system (29% [8–64%]). Though pre-treatment QA failure was reliably identified (100%), less than 20% of participants reported the error that caused the failure. Conclusion: This is one of the first quantitative studies of error detection. Although physics plan review is a key safety measure and can identify some errors with high fidelity, others errors are more challenging to detect. This data will guide future work on standardization and automation. Creating new checks or improving existing ones (i.e., via automation) will help in detecting those errors with low detection rates.« less

  6. Self-Cleaning Surfaces Prepared By Microstructuring System

    NASA Astrophysics Data System (ADS)

    Sabbah, Abbas; Vandeparre, H.; Brau, F.; Damman, P.

    The wettability of materials is a very important aspect of surface science governed by the chemical composition of the surface and its morphology. In this context, materials replicating nature's superhydrophobic surfaces, such as lotus leafs, rose petals and butterfly wings, have widely attracted attention of physicists and material engineers [1-3]. Despite of considerable efforts during the last decade, superhydrophobic surfaces are still expensive and usually involved microfabrication processes, such as photolithography technique. In this study, we propose an original and simple method to create superhydrophobic surfaces by controling elastic instabilities [4-8]. Indeed, we demonstrate that the self-organization of wrinkles on top of non-wettable polymer surfaces leads to surperhydrophobic surfaces.

  7. A Passion for Discovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freund, Peter

    The human side of doing theoretical physics is explored through stories about the interactions between physicists and about the way world events can affect not only the scientists' behavior, but even their scientific interests and style.  These stories cluster nicely around certain bigger themes to create an overarching whole.  This happens both on account of some interesting narrative structures intrinsic to the science of Physics itself and on account of the way Physics integrates into the general culture. The stories concern Einstein, Schrödinger, Pauli, Heisenberg, Stueckelberg, Jordan and Fock and also involve some mathematicians like Emmy Noether, Teichmüller and Bersmore » and even the psychologist C.G. Jung.« less

  8. A Passion for Discovery

    ScienceCinema

    Freund, Peter

    2017-12-11

    The human side of doing theoretical physics is explored through stories about the interactions between physicists and about the way world events can affect not only the scientists' behavior, but even their scientific interests and style.  These stories cluster nicely around certain bigger themes to create an overarching whole.  This happens both on account of some interesting narrative structures intrinsic to the science of Physics itself and on account of the way Physics integrates into the general culture. The stories concern Einstein, Schrödinger, Pauli, Heisenberg, Stueckelberg, Jordan and Fock and also involve some mathematicians like Emmy Noether, Teichmüller and Bers and even the psychologist C.G. Jung.

  9. SU-F-T-250: What Does It Take to Correctly Assess the High Failure Modes of an Advanced Radiotherapy Procedure Such as Stereotactic Body Radiation Therapy?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, D; Vile, D; Rosu, M

    Purpose: Assess the correct implementation of risk-based methodology of TG 100 to optimize quality management and patient safety procedures for Stereotactic Body Radiation Therapy. Methods: A detailed process map of SBRT treatment procedure was generated by a team of three physicists with varying clinical experience at our institution to assess the potential high-risk failure modes. The probabilities of occurrence (O), severity (S) and detectability (D) for potential failure mode in each step of the process map were assigned by these individuals independently on the scale from1 to 10. The risk priority numbers (RPN) were computed and analyzed. The highest 30more » potential modes from each physicist’s analysis were then compared. Results: The RPN values assessed by the three physicists ranged from 30 to 300. The magnitudes of the RPN values from each physicist were different, and there was no concordance in the highest RPN values recorded by three physicists independently. The 10 highest RPN values belonged to sub steps of CT simulation, contouring and delivery in the SBRT process map. For these 10 highest RPN values, at least two physicists, irrespective of their length of experience had concordance but no general conclusions emerged. Conclusion: This study clearly shows that the risk-based assessment of a clinical process map requires great deal of preparation, group discussions, and participation by all stakeholders. One group albeit physicists cannot effectively implement risk-based methodology proposed by TG100. It should be a team effort in which the physicists can certainly play the leading role. This also corroborates TG100 recommendation that risk-based assessment of clinical processes is a multidisciplinary team effort.« less

  10. Challenges and dreams: physics of weak interactions essential to life

    PubMed Central

    Chien, Peter; Gierasch, Lila M.

    2014-01-01

    Biological systems display stunning capacities to self-organize. Moreover, their subcellular architectures are dynamic and responsive to changing needs and conditions. Key to these properties are manifold weak “quinary” interactions that have evolved to create specific spatial networks of macromolecules. These specific arrangements of molecules enable signals to be propagated over distances much greater than molecular dimensions, create phase separations that define functional regions in cells, and amplify cellular responses to changes in their environments. A major challenge is to develop biochemical tools and physical models to describe the panoply of weak interactions operating in cells. We also need better approaches to measure the biases in the spatial distributions of cellular macromolecules that result from the integrated action of multiple weak interactions. Partnerships between cell biologists, biochemists, and physicists are required to deploy these methods. Together these approaches will help us realize the dream of understanding the biological “glue” that sustains life at a molecular and cellular level. PMID:25368424

  11. Book Review: The genius of science: a portrait gallery of twentieth-century physicists. Abraham Pais, Oxford University Press, New York, 2000, 365 pp., UK £26.50, ISBN 0-19-850614-7

    NASA Astrophysics Data System (ADS)

    Kragh, Helge

    Abraham Pais made important contributions to the physics of elementary particles and other areas of theoretical physics before he turned, in the 1970s, to the history of modern physics, a field he cultivated energetically and successfully until his death in 2000. Among the best works of the prolific physicist-historian (a better term, in this case, than historian of physics) is the acclaimed Einstein biography Subtle is the Lord (1982) and Inward Bound (1986), a comprehensive chronicle of elementary particle physics. More recently his autobiography, A Tale of Two Continents (1997), appeared, a book to a large extent based on Pais's friendship and acquaintance with many of the greatest physicists of the twentieth century. In the present book, the physicists who appeared as supporting cast in his autobiography are presented in their own right, chapter by chapter. Yet Pais himself is present throughout the book and the reader is constantly reminded of his friendship with the physicists portrayed.

  12. Converting Radiology Operations in a Six-Hospital Healthcare System from Film-Based to Digital: Another Leadership Role for the Diagnostic Medical Physicist

    NASA Astrophysics Data System (ADS)

    Arreola, Manuel M.; Rill, Lynn N.

    2004-09-01

    As medical facilities across the United States continue to convert their radiology operations from film-based to digital environments, partially accomplished and failed endeavors are frequent because of the lack of competent and knowledgeable leadership. The diagnostic medical physicist is, without a doubt, in a privileged position to take such a leadership role, not only because of her/his understanding of the basics principles of new imaging modalities, but also because of her/his inherent participation in workflow design and educational/training activities. A well-structured approach by the physicist will certainly lead the project to a successful completion, opening, in turn, new opportunities for the medical physicist to become an active participant in the decision-making process for an institution.

  13. A survey of Canadian medical physicists: software quality assurance of in-house software.

    PubMed

    Salomons, Greg J; Kelly, Diane

    2015-01-05

    This paper reports on a survey of medical physicists who write and use in-house written software as part of their professional work. The goal of the survey was to assess the extent of in-house software usage and the desire or need for related software quality guidelines. The survey contained eight multiple-choice questions, a ranking question, and seven free text questions. The survey was sent to medical physicists associated with cancer centers across Canada. The respondents to the survey expressed interest in having guidelines to help them in their software-related work, but also demonstrated extensive skills in the area of testing, safety, and communication. These existing skills form a basis for medical physicists to establish a set of software quality guidelines.

  14. Careers and people

    NASA Astrophysics Data System (ADS)

    2009-02-01

    Early-career scientists honoured Nine physicists were among 67 US-based researchers to be awarded a Presidential Early Career Award for Scientists and Engineers at a White House ceremony in late December 2008. The award comes with up to five years' funding for research deemed critical to government missions. This year's winners include nuclear physicist Mickey Chiu and particle physicist Hooman Davoudiasl, both of the Brookhaven National Laboratory; biophysicist Michael Elowitz of the California Institute of Technology; Chad Fertig, an atomic physicist at the University of Georgia; astronomer Charles Kankelborg of Montana State University; astrophysicist Merav Opher of George Mason University; theorist Robin Santra of the Argonne National Laboratory; quantum-computing researcher Raymond Simmons of the National Institute of Standards and Technologies in Boulder, Colorado; and string theorist Anastasia Volovich of Brown University.

  15. Women Physicists Speak Again

    NASA Astrophysics Data System (ADS)

    Ivie, Rachel; Guo, Stacy

    2005-10-01

    More than 1350 women physicists from more than 70 countries responded to a survey designed to identify issues important to women in physics. Women physicists had many areas of concern, notably discrimination and career/family balance. However, they also had many successes in physics. The majority would choose physics again and felt that they had progressed in their careers at least as quickly as their colleagues. Many spoke eloquently about their love of physics, the support they had received from others, and about their own determination and hard work.

  16. Belarusian female physicists: Statistics and perspectives

    NASA Astrophysics Data System (ADS)

    Fedotova, Julia; Tashlykova-Bushkevich, Iya

    2013-03-01

    The experience for women in physics remains challenging in Belarus. The proportion of female physics master's degree recipients is approximately 30%, while the percentage of female physics PhD recipients is 50%. Still, only a few female physicists occupy top positions in research laboratories, institutes, or universities. The basic problem for career-oriented female physicists in Belarus is public opinion, which cultivates a passive and dependent life philosophy for women. The Belarusian Women in Physics group was formed in 2003 as part of the Belarusian Physical Society.

  17. Fireworks on the 4th of July

    NASA Astrophysics Data System (ADS)

    Barnett, R. Michael

    2013-02-01

    After half a century of waiting, the drama was intense. Physicists slept overnight outside the auditorium to get seats for the seminar at the CERN lab in Geneva, Switzerland. Ten thousand miles away on the other side of the planet, at the world's most prestigious international particle physics conference, hundreds of physicists from every corner of the globe lined up to hear the seminar streamed live from Geneva (see Fig. 1). And in universities from North America to Asia, physicists and students gathered to watch the streaming talks.

  18. Early Jet Engines and the Transition from Centrifugal to Axial Compressors: A Case Study in Technological Change

    DTIC Science & Technology

    1988-01-01

    report, prepared by physicist Edgar Buckingham in 1922, did not encourage further development of the concept. 3 1 But Buckingham did not actually...because Buckingham , an able physicist, treated the problem as well-defined, as is usual in solving a scientific problem. Buckingham was not a...But Buckingham did not have the same purpose in mind as those later inventors. Buckingham the physicist did not ask the same questions as Whittle

  19. Fear rises among Iranian physicists

    NASA Astrophysics Data System (ADS)

    Dacey, James

    2011-01-01

    Academics in Iran have been left in a state of fear following the murder in Tehran last November of nuclear physicist Majid Shahriari and the attempted assassination of another nuclear researcher, Fereydoon Abbasi.

  20. Limitations in learning: How treatment verifications fail and what to do about it?

    PubMed

    Richardson, Susan; Thomadsen, Bruce

    The purposes of this study were: to provide dialog on why classic incident learning systems have been insufficient for patient safety improvements, discuss failures in treatment verification, and to provide context to the reasons and lessons that can be learned from these failures. Historically, incident learning in brachytherapy is performed via database mining which might include reading of event reports and incidents followed by incorporating verification procedures to prevent similar incidents. A description of both classic event reporting databases and current incident learning and reporting systems is given. Real examples of treatment failures based on firsthand knowledge are presented to evaluate the effectiveness of verification. These failures will be described and analyzed by outlining potential pitfalls and problems based on firsthand knowledge. Databases and incident learning systems can be limited in value and fail to provide enough detail for physicists seeking process improvement. Four examples of treatment verification failures experienced firsthand by experienced brachytherapy physicists are described. These include both underverification and oververification of various treatment processes. Database mining is an insufficient method to affect substantial improvements in the practice of brachytherapy. New incident learning systems are still immature and being tested. Instead, a new method of shared learning and implementation of changes must be created. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  1. From X-Rays to MRI: Physics in GE

    NASA Astrophysics Data System (ADS)

    Schmitt, Roland W.

    2004-03-01

    The GE Research Laboratory, founded in 1900, became the first laboratory of scientific research in U.S. industry. William Coolidge, a physicist, joined the laboratory in 1905 and produced two advances of immense importance. The first, ductile tungsten, is still the heart of every incandescent light bulb. The second, the "Coolidge" X-Ray tube, remains an essential tool of modern medicine. In the process, Coolidge explored two main approaches of physics in industry. One addresses a commercial problem or opportunity (better light bulbs) and finds interesting physics. The other explores interesting physics (X-rays) and creates a commercial opportunity. This paper addresses the mix of these approaches during GE's years as an "electric" (and therefore physics-based) company. Episodes include the following: the work of Irving Langmuir (1932 Nobel laureate in chemistry, but as much physicist as chemist); the post-World War II "golden age of industrial physics" when the endless frontier offered opportunities from nuclear power to diamond making to superconductivity; the Nobel-prize winning work of Ivar Giaever; and interdisciplinary efforts that enabled GE to become a world business leader in two medical diagnostic technologies it did not invent: computed tomography and magnetic resonance imaging. I will speculate on whether this mix of problem-driven and opportunity-driven effort is as relevant to the 21st century as it was to the 20th.

  2. The Context of Graduate Student Preparation in Physics: professional roles of research and teaching

    NASA Astrophysics Data System (ADS)

    Finkelstein, Noah

    2004-05-01

    This talk considers the role of graduate training from a broad perspective --- that of making professional physicists. Following Shulman's definition and characterization of 'professionals' [1], it may be observed that graduate student preparation in research follows a traditional and effective track of creating professionals. However, at the same time, other forms professional activity of physicists, notably teaching and educational practice, remain largely absent. This talk presents a model of the contextual nature of student learning that sheds light on why and how this division occurs. Given such attention to context, this talk then examines a graduate student program in physics that is designed to augment the traditional training of graduate students in order to more fully inform and prepare students for their future roles. Data are presented from a study of a local four-year implementation of the national Preparing Future Physics Faculty Program to document the structure, key features, and outcomes of the program. Results include a framework and general heuristics for successful implementation, and the impact of emphasizing education and physics education research. Among the findings, this graduate training program demonstrates one mechanism for infusing physics education research and its findings into the broader physics community. [1] Shulman. L.S., Professing the Liberal Arts, In Education and Democracy: Re-imagining Liberal Learning in America, edited by Robert Orrill. New York: College Board Publications, 1997

  3. Deep nets vs expert designed features in medical physics: An IMRT QA case study.

    PubMed

    Interian, Yannet; Rideout, Vincent; Kearney, Vasant P; Gennatas, Efstathios; Morin, Olivier; Cheung, Joey; Solberg, Timothy; Valdes, Gilmer

    2018-03-30

    The purpose of this study was to compare the performance of Deep Neural Networks against a technique designed by domain experts in the prediction of gamma passing rates for Intensity Modulated Radiation Therapy Quality Assurance (IMRT QA). A total of 498 IMRT plans across all treatment sites were planned in Eclipse version 11 and delivered using a dynamic sliding window technique on Clinac iX or TrueBeam Linacs. Measurements were performed using a commercial 2D diode array, and passing rates for 3%/3 mm local dose/distance-to-agreement (DTA) were recorded. Separately, fluence maps calculated for each plan were used as inputs to a convolution neural network (CNN). The CNNs were trained to predict IMRT QA gamma passing rates using TensorFlow and Keras. A set of model architectures, inspired by the convolutional blocks of the VGG-16 ImageNet model, were constructed and implemented. Synthetic data, created by rotating and translating the fluence maps during training, was created to boost the performance of the CNNs. Dropout, batch normalization, and data augmentation were utilized to help train the model. The performance of the CNNs was compared to a generalized Poisson regression model, previously developed for this application, which used 78 expert designed features. Deep Neural Networks without domain knowledge achieved comparable performance to a baseline system designed by domain experts in the prediction of 3%/3 mm Local gamma passing rates. An ensemble of neural nets resulted in a mean absolute error (MAE) of 0.70 ± 0.05 and the domain expert model resulted in a 0.74 ± 0.06. Convolutional neural networks (CNNs) with transfer learning can predict IMRT QA passing rates by automatically designing features from the fluence maps without human expert supervision. Predictions from CNNs are comparable to a system carefully designed by physicist experts. © 2018 American Association of Physicists in Medicine.

  4. What physicists should learn about finance (if they want to)

    NASA Astrophysics Data System (ADS)

    Schmidt, Anatoly

    2006-03-01

    There has been growing interest among physicists to Econophysics, i.e. analysis and modeling of financial and economic processes using the concepts of theoretical Physics. There has been also perception that the financial industry is a viable alternative for those physicists who are not able or are not willing to pursue career in their major field. However in our times, the Wall Street expects from applicants for quantitative positions not only the knowledge of the stochastic calculus and the methods of time series analysis but also of such concepts as option pricing, portfolio management, and risk measurement. Here I describe a synthetic course based on my book ``Quantitative Finance for Physicists'' (Elsevier, 2004) that outlines both worlds: Econophysics and Mathematical Finance. This course may be offered as elective for senior undergraduate or graduate Physics majors.

  5. A survey of Canadian medical physicists: software quality assurance of in‐house software

    PubMed Central

    Kelly, Diane

    2015-01-01

    This paper reports on a survey of medical physicists who write and use in‐house written software as part of their professional work. The goal of the survey was to assess the extent of in‐house software usage and the desire or need for related software quality guidelines. The survey contained eight multiple‐choice questions, a ranking question, and seven free text questions. The survey was sent to medical physicists associated with cancer centers across Canada. The respondents to the survey expressed interest in having guidelines to help them in their software‐related work, but also demonstrated extensive skills in the area of testing, safety, and communication. These existing skills form a basis for medical physicists to establish a set of software quality guidelines. PACS number: 87.55.Qr PMID:25679168

  6. SU-B-213-03: Evaluation of Graduate Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, B.

    2015-06-15

    The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less

  7. SU-B-213-04: Evaluation of Residency Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reft, C.

    2015-06-15

    The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less

  8. SU-B-213-06: Development of ABR Examination Questions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allison, J.

    2015-06-15

    The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less

  9. SU-B-213-02: Development of CAMPEP Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckham, W.

    2015-06-15

    The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less

  10. SU-B-213-01: Introduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starkschall, G.

    2015-06-15

    The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less

  11. SU-B-213-07: Panel Discussion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starkschall, G.

    2015-06-15

    The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less

  12. Physics, Physicists and Revolutionary Capabilities for the Intelligence Community

    NASA Astrophysics Data System (ADS)

    Porter, Lisa

    2009-05-01

    Over the past several decades, physicists have made seminal contributions to technological capabilities that have enabled the U.S. intelligence community to provide unexpected and unparalleled information to our nation's decision makers and help dispel the cloud of uncertainty they face in dealing with crises and challenges around the world. As we look to the future, we recognize that the ever-quickening pace of changes in the world and the threats we must confront demand continued innovation and improvement in the capabilities needed to provide the information on which our leaders depend. This talk will focus on some of the major technological challenges that the intelligence community faces in the coming years, and the many ways that physicists can help to overcome those challenges. The potential impact of physicists on the future capabilities of the US intelligence community is huge. In addition to the more obvious and direct impact through research in areas ranging from novel sensors to quantum information science, the unique approach physicists bring to a problem can also have an indirect but important effect by influencing how challenges in areas ranging from cybersecurity to advanced analytics are approached and solved. Several examples will be given.

  13. Medical physics is alive and well and growing in South East Asia.

    PubMed

    Ng, K; Pirabul, R; Peralta, A; Soejoko, D

    1997-03-01

    In recent years there has been a significant economic growth in South East Asia, along with it a concurrent development of medical physics. The status of four countries--Malaysia, Thailand, the Philippines and Indonesia are presented. Medical physicists in these countries have been experiencing the usual problems of lack of recognition, low salaries, and insufficient facilities for education and training opportunities. However the situation has improved recently through the initiative of local enthusiastic medical physicists who have started MS graduate programs in medical physics and begun organizing professional activities to raise the profile of medical physics. The tremendous support and catalytic roles of the American Association of Physicists in Medicine (AAPM) and international organizations such as International Organization for Medical Physics (IOMP), International Atomic Energy Agency (IAEA), World Health Organization (WHO), and International Center for Theoretical Physics (ICTP) have been instrumental in achieving progress. Contributions by these organizations include co-sponsorship of workshops and conferences, travel grants, medical physics libraries programs, and providing experts and educators. The demand for medical physicists is expected to rise in tandem with the increased emphasis on innovative technology for health care, stringent governmental regulation, and acceptance by the medical community of the important role of medical physicists.

  14. SU-B-213-05: Development of ABR Certification Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seibert, J.

    2015-06-15

    The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less

  15. Engaging Cuban Physicists Through the APS/CPS Partnership

    NASA Astrophysics Data System (ADS)

    Lerch, Irving A.; Lerch, Irving A.

    In his reflections on Cuban physics, Marcelo Alonso urges APS to take steps to promote interactions between Cuban and US physicists. As an introduction to Marcello's essay, this note will summarize past and current activities.

  16. Programming (Tips) for Physicists & Engineers

    ScienceCinema

    Ozcan, Erkcan

    2018-02-19

    Programming for today's physicists and engineers. Work environment: today's astroparticle, accelerator experiments and information industry rely on large collaborations. Need more than ever: code sharing/resuse, code building--framework integration, documentation and good visualization, working remotely, not reinventing the wheel.

  17. Will new gender policies stop the decrease of women physicists in Portugal?

    NASA Astrophysics Data System (ADS)

    Rosa, Carla Carmelo; Peña, Maria Teresa; Saavedra, Luisa; Providência, Constança

    2013-03-01

    The present context of women physicists in Portugal is discussed, updating our report for the 2002 IUPAP International Conference on Women in Physics, in which the 30 years prior to 2000 were analyzed.

  18. Programming (Tips) for Physicists & Engineers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ozcan, Erkcan

    2010-07-13

    Programming for today's physicists and engineers. Work environment: today's astroparticle, accelerator experiments and information industry rely on large collaborations. Need more than ever: code sharing/resuse, code building--framework integration, documentation and good visualization, working remotely, not reinventing the wheel.

  19. Analysis of recurrent patterns in toroidal magnetic fields.

    PubMed

    Sanderson, Allen R; Chen, Guoning; Tricoche, Xavier; Pugmire, David; Kruger, Scott; Breslau, Joshua

    2010-01-01

    In the development of magnetic confinement fusion which will potentially be a future source for low cost power, physicists must be able to analyze the magnetic field that confines the burning plasma. While the magnetic field can be described as a vector field, traditional techniques for analyzing the field's topology cannot be used because of its Hamiltonian nature. In this paper we describe a technique developed as a collaboration between physicists and computer scientists that determines the topology of a toroidal magnetic field using fieldlines with near minimal lengths. More specifically, we analyze the Poincaré map of the sampled fieldlines in a Poincaré section including identifying critical points and other topological features of interest to physicists. The technique has been deployed into an interactive parallel visualization tool which physicists are using to gain new insight into simulations of magnetically confined burning plasmas.

  20. Dr. Inside and Dr. Outside: Physicists Involved With National Security and Foreign Policy

    NASA Astrophysics Data System (ADS)

    Zimmerman, Peter D.

    2009-05-01

    Physicists have had a special interest in American national security and arms control since at least the Manhattan Project. They have served our country in uniform and in the career civil service. Some have left academic careers for brief periods to work as political appointees, consultants, or resident scholars and then returned to an academic life, but often with changed goals. Some have tried government life and left nearly immediately, while others dipped a toe in and decided to stay. I will look at real-life examples, mostly using real names, drawn from my career and circle of colleagues to try to explain why some physicists have been extremely successful, why others have not, and what happens to a physicist who moved to Washington and decides to stay. I will also discuss routes into public service for those interesting in giving it a try.

  1. The Mental Aftermath - The Mentality of German Physicists 1945-1949

    NASA Astrophysics Data System (ADS)

    Hentschel, Klaus

    2007-01-01

    Few scientific communities have been more thoroughly studied than 20th-century German physicists. Yet their behavior and patterns of thinking immediately after the war remains puzzling. During the first five postwar years they suspended their internecine battles and a strange solidarity emerged. Former enemies were suddenly willing to exonerate each other blindly and even morally upright physicists began to write tirades against the 'denazification mischief' or the 'export of scientists'. Personal idiosyncracies melded into a strangely uniform pattern of rejection or resistance to the Allied occupiers, with attendant repressed feelings and self-pity. Politics was once again perceived as remote, dirty business. It was feared that the least concession of guilt would bring down even more severe sanctions on their discipline. Using tools from the history of mentality, such as analysis of serial publications, these tendenciesare examined. The perspective of emigre physicists, as reflected in their private letters and reports, embellish this portrait.

  2. The UNAM M. Sc. program in Medical Physics enters its teen years

    NASA Astrophysics Data System (ADS)

    Brandan, María-Ester

    2010-12-01

    The M.Sc. (Medical Physics) program at the National Autonomous University of Mexico UNAM, created in 1997, has graduated a substantial number of medical physicists who constitute today about 30% of the medical physics clinical workforce in the country. Up to present date (May 2010) more than 60 students have graduated, 60% of them hold clinical jobs, 20% have completed or study a Ph.D., and 15% perform activities related to this specialization. In addition to strengthening the clinical practice of medical physics, the program has served as an incentive for medical physics research in UNAM and other centers. We report the circumstances of the program origin, the evolution of its curriculum, the main achievements, and the next challenges.

  3. Interactomes to Biological Phase Space: a call to begin thinking at a new level in computational biology.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, George S.; Brown, William Michael

    2007-09-01

    Techniques for high throughput determinations of interactomes, together with high resolution protein collocalizations maps within organelles and through membranes will soon create a vast resource. With these data, biological descriptions, akin to the high dimensional phase spaces familiar to physicists, will become possible. These descriptions will capture sufficient information to make possible realistic, system-level models of cells. The descriptions and the computational models they enable will require powerful computing techniques. This report is offered as a call to the computational biology community to begin thinking at this scale and as a challenge to develop the required algorithms and codes tomore » make use of the new data.3« less

  4. SU-E-T-635: Process Mapping of Eye Plaque Brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huynh, J; Kim, Y

    Purpose: To apply a risk-based assessment and analysis technique (AAPM TG 100) to eye plaque brachytherapy treatment of ocular melanoma. Methods: The role and responsibility of personnel involved in the eye plaque brachytherapy is defined for retinal specialist, radiation oncologist, nurse and medical physicist. The entire procedure was examined carefully. First, major processes were identified and then details for each major process were followed. Results: Seventy-one total potential modes were identified. Eight major processes (corresponding detailed number of modes) are patient consultation (2 modes), pretreatment tumor localization (11), treatment planning (13), seed ordering and calibration (10), eye plaque assembly (10),more » implantation (11), removal (11), and deconstruction (3), respectively. Half of the total modes (36 modes) are related to physicist while physicist is not involved in processes such as during the actual procedure of suturing and removing the plaque. Conclusion: Not only can failure modes arise from physicist-related procedures such as treatment planning and source activity calibration, but it can also exist in more clinical procedures by other medical staff. The improvement of the accurate communication for non-physicist-related clinical procedures could potentially be an approach to prevent human errors. More rigorous physics double check would reduce the error for physicist-related procedures. Eventually, based on this detailed process map, failure mode and effect analysis (FMEA) will identify top tiers of modes by ranking all possible modes with risk priority number (RPN). For those high risk modes, fault tree analysis (FTA) will provide possible preventive action plans.« less

  5. Dad's in the Garage: Santa Barbara Physicists in the Long 1970s

    NASA Astrophysics Data System (ADS)

    Mody, Cyrus

    2013-03-01

    American physicists faced many challenges in the 1970s: declining research budgets; public skepticism of scientific authority; declining student enrollments; and pressure to shift to topics such as biomedicine, environmental remediation, alternative energy, public housing and transport, and disability technologies. This paper examines the responses to these challenges of a small group of Santa Barbara physicists. While this group is not representative of the American physics profession, the success and failure of their responses to changed conditions tells us something about how American physicists got through the 1970s, and about the origins of some features of American physics today. The three physicists examined here are Philip Wyatt, David Phillips, and Virgil Elings. In the late `60s, Wyatt left a defense think tank to found an instrumentation firm. The Santa Barbara oil spill and other factors pushed that firm toward civilian markets in biomedicine and pollution measurement. Phillips joined Wyatt's firm from UCSB, while also founding his own company, largely to sell electronic devices for parapsychology. Phillips was also the junior partner in a master's of scientific instrumentation degree curriculum founded by Elings in order to save UCSB Physics' graduate program. Through the MSI program, Elings moved into biomedical research and became a serial entrepreneur. By the 1990s, Wyatt, Phillips, and Elings' turn toward academic entrepreneurship, dual military-civilian markets for physics start-ups, and interdisciplinary collaborations between physicists and life scientists were no longer unusual. Together, their journey through the `70s shows how varied the physics' profession's response to crisis was, and how much it pivoted on new interactions between university and industry.

  6. The American Board of Radiology Perspective on Maintenance of Certification: Part IV: Practice quality improvement in radiologic physics.

    PubMed

    Frey, G Donald; Ibbott, Geoffrey S; Morin, Richard L; Paliwal, Bhudatt R; Thomas, Stephen R; Bosma, Jennifer

    2007-11-01

    Recent initiatives of the American Board of Medical Specialties (ABMS) in the area of maintenance of certification (MOC) have been reflective of the response of the medical community to address public concerns regarding quality of care, medical error reduction, and patient safety. In March 2000, the 24 member boards of the ABMS representing all medical subspecialties in the USA agreed to initiate specialty-specific maintenance of certification (MOC) programs. The American Board of Radiology (ABR) MOC program for diagnostic radiology, radiation oncology, and radiologic physics has been developed, approved by the ABMS, and initiated with full implementation for all three disciplines beginning in 2007. The overriding objective of MOC is to improve the quality of health care through diplomate-initiated learning and quality improvement. The four component parts to the MOC process are: Part I: Professional standing, Part II: Evidence of life long learning and periodic self-assessment, Part III: Cognitive expertise, and Part IV: Evaluation of performance in practice (with the latter being the focus of this paper). The key components of Part IV require a physicist-based response to demonstrate commitment to practice quality improvement (PQI) and progress in continuing individual competence in practice. Diplomates of radiologic physics must select a project to be completed over the ten-year cycle that potentially can improve the quality of the diplomate's individual or systems practice and enhance the quality of care. Five categories have been created from which an individual radiologic physics diplomate can select one required PQI project: (1) Safety for patients, employees, and the public, (2) accuracy of analyses and calculations, (3) report turnaround time and communication issues, (4) practice guidelines and technical standards, and (5) surveys (including peer review of self-assessment reports). Each diplomate may select a project appropriate for an individual, participate in a project within a clinical department, participate in a peer review of a self-assessment report, or choose a qualified national project sponsored by a society. Once a project has been selected, the steps are: (1) Collect baseline data relevant to the chosen project, (2) review and analyze the data, (3) create and implement an improvement plan, (4) remeasure and track, and (5) report participation to the ABR, using the template provided by the ABR. These steps begin in Year 2, following training in Year 1. Specific examples of individual PQI projects for each of the three disciplines of radiologic physics are provided. Now, through the MOC programs, the relationship between the radiologic physicist and the ABR will be continuous through the diplomate's professional career. The ABR is committed to providing an effective infrastructure that will promote and assist the process of continuing professional development including the enhancement of practice quality improvement for radiologic physicists.

  7. New US philanthropy alliance picks physicist as boss

    NASA Astrophysics Data System (ADS)

    Kruesi, Liz

    2015-04-01

    Marc Kastner, a physicist at the Massachusetts Institute of Technology (MIT), has become the first president of the Science Philanthropy Alliance (SPA) - a new group of six organizations aiming to increase private funding for fundamental research in the US.

  8. WE-AB-213-01: AAPM Projects and Collaborations in Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shulman, A.

    AAPM projects and collaborations in Africa Adam Shulman (AA-SC Chair) The African Affairs Subcommittee (AA-SC) of the AAPM will present a multi-institutional approach to medical physics support in Africa. Current work to increase the quality of care and level of safety for the medical physics practice in Senegal, Ghana, and Zimbabwe will be presented, along with preliminary projects in Nigeria and Botswana. Because the task of addressing the needs of medical physics in countries across Africa is larger than one entity can accomplish on its own, the AA-SC has taken the approach of joining forces with multiple organizations such asmore » Radiating Hope and TreatSafely (NGO’s), the IAEA, companies like BrainLab, Varian and Elekta, medical volunteers and academic institutions such as NYU and Washington University. Elements of current projects include: 1) Distance training and evaluation of the quality of contouring and treatment planning, teaching treatment planning and other subjects, and troubleshooting using modern telecommunications technology in Senegal, Ghana, and Zimbabwe; 2) Assistance in the transition from 2D to 3D in Senegal and Zimbabwe; 3) Assistance in the transition from 3D to IMRT using in-house compensators in Senegal; 4) Modernizing the cancer center in Senegal and increasing safety and; 5) Training on on 3D techniques in Ghana; 6) Assisting a teaching and training radiation oncology center to be built in Zimbabwe; 7) Working with the ISEP Program in Sub-Saharan Africa; 8) Creating instructional videos on linac commissioning; 9) Working on a possible collaboration to train physicists in Nigeria. Building on past achievements, the subcommittee seeks to make a larger impact on the continent, as the number and size of projects increases and more human resources become available. The State of Medical Physics Collaborations and Projects in Latin America Sandra Guzman (Peru) The lack of Medical Physicists (MP) in many Latin American (LA) countries leads to recruitment of professionals with incomplete education. In most LA countries only one MP responsible for each Center is currently mandated. Currently there is a large disparity among MP training programs and there is significant debate about the standards of MP graduate education in many LA countries. There are no commonly recognized academic programs, not enough clinical training sites and clinical training is not typically considered as part of the MP work. Economic pressures and high workloads also impede the creation of more training centers. The increasing need of qualified MPs require establishing a coordinated system of national Education & Training Centers (ETC), to meet the international standards of education and training in Medical Physics. This shortfall calls for support of organizations such as the IOMP, AAPM, ALFIM, IAEA, etc. Examples from various LA countries, as well as some proposed solutions, will be presented. In particular, we will discuss the resources that the AAPM and its members can offer to support regional programs. The ‘Medical Imaging’ physicist in the emerging world: Challenges and opportunities - Caridad Borrás (WGNIMP Chair) While the role of radiation therapy physicists in the emerging world is reasonably well established, the role of medical imaging physicists is not. The only perceived needs in radiology departments are equipment quality control and radiation protection, tasks that can be done by a technologist or a service engineer. To change the situation, the International Basic Safety Standard, which is adopted/adapted world-wide as national radiation protection regulations, states: “For diagnostic radiological procedures and image guided interventional procedures, the requirements of these Standards for medical imaging, calibration, dosimetry and quality assurance, including the acceptance and commissioning of medical radiological equipment, are fulfilled by or under the oversight of, or with the documented advice of a medical physicist, whose degree of involvement is determined by the complexity of the radiological procedures and the associated radiation risks”. Details on how these requirements can be carried out in resource-limited settings will be described. IAEA support to medical physics in Africa and Latin America: achievements and challenges Ahmed Meghzifene (IAEA) Shortage of clinically qualified medical physicists in radiotherapy and imaging, insufficient and inadequate education and training programs, as well as a lack of professional recognition were identified as the main issues to be addressed by the IAEA. The IAEA developed a series of integrated projects aiming specifically at promoting the essential role of medical physicists in health care, developing harmonized guidelines on dosimetry and quality assurance, and supporting education and clinical training programs. The unique feature of the IAEA approach is support it provides for implementation of guidelines and education programs in Member States through its technical cooperation project. The presentation will summarize IAEA support to Latin America and Africa in the field of medical physics and will highlight how the new International Basic Safety Standards are expected to impact the medical physics practice in low and middle income countries. Learning Objectives: Learn about the shortage of qualified Medical Physicists in Africa and Latin America. Understand the reasons of this shortage. Learn about the ways to improve the situation and AAPM role in this process.« less

  9. WE-AB-213-00: Developments in International Medical Physics Collaborations in Africa and Latin America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The African Affairs Subcommittee (AA-SC) of the AAPM will present a multi-institutional approach to medical physics support in Africa. Current work to increase the quality of care and level of safety for the medical physics practice in Senegal, Ghana, and Zimbabwe will be presented, along with preliminary projects in Nigeria and Botswana. Because the task of addressing the needs of medical physics in countries across Africa is larger than one entity can accomplish on its own, the AA-SC has taken the approach of joining forces with multiple organizations such as Radiating Hope and TreatSafely (NGO’s), the IAEA, companies like BrainLab,more » Varian and Elekta, medical volunteers and academic institutions such as NYU and Washington University. Elements of current projects include: 1) Distance training and evaluation of the quality of contouring and treatment planning, teaching treatment planning and other subjects, and troubleshooting using modern telecommunications technology in Senegal, Ghana, and Zimbabwe; 2) Assistance in the transition from 2D to 3D in Senegal and Zimbabwe; 3) Assistance in the transition from 3D to IMRT using in-house compensators in Senegal; 4) Modernizing the cancer center in Senegal and increasing safety and; 5) Training on on 3D techniques in Ghana; 6) Assisting a teaching and training radiation oncology center to be built in Zimbabwe; 7) Working with the ISEP Program in Sub-Saharan Africa; 8) Creating instructional videos on linac commissioning; 9) Working on a possible collaboration to train physicists in Nigeria. Building on past achievements, the subcommittee seeks to make a larger impact on the continent, as the number and size of projects increases and more human resources become available. The State of Medical Physics Collaborations and Projects in Latin America Sandra Guzman (Peru) The lack of Medical Physicists (MP) in many Latin American (LA) countries leads to recruitment of professionals with incomplete education. In most LA countries only one MP responsible for each Center is currently mandated. Currently there is a large disparity among MP training programs and there is significant debate about the standards of MP graduate education in many LA countries. There are no commonly recognized academic programs, not enough clinical training sites and clinical training is not typically considered as part of the MP work. Economic pressures and high workloads also impede the creation of more training centers. The increasing need of qualified MPs require establishing a coordinated system of national Education & Training Centers (ETC), to meet the international standards of education and training in Medical Physics. This shortfall calls for support of organizations such as the IOMP, AAPM, ALFIM, IAEA, etc. Examples from various LA countries, as well as some proposed solutions, will be presented. In particular, we will discuss the resources that the AAPM and its members can offer to support regional programs. The ‘Medical Imaging’ physicist in the emerging world: Challenges and opportunities - Caridad Borrás (WGNIMP Chair) While the role of radiation therapy physicists in the emerging world is reasonably well established, the role of medical imaging physicists is not. The only perceived needs in radiology departments are equipment quality control and radiation protection, tasks that can be done by a technologist or a service engineer. To change the situation, the International Basic Safety Standard, which is adopted/adapted world-wide as national radiation protection regulations, states: “For diagnostic radiological procedures and image guided interventional procedures, the requirements of these Standards for medical imaging, calibration, dosimetry and quality assurance, including the acceptance and commissioning of medical radiological equipment, are fulfilled by or under the oversight of, or with the documented advice of a medical physicist, whose degree of involvement is determined by the complexity of the radiological procedures and the associated radiation risks”. Details on how these requirements can be carried out in resource-limited settings will be described. IAEA support to medical physics in Africa and Latin America: achievements and challenges Ahmed Meghzifene (IAEA) Shortage of clinically qualified medical physicists in radiotherapy and imaging, insufficient and inadequate education and training programs, as well as a lack of professional recognition were identified as the main issues to be addressed by the IAEA. The IAEA developed a series of integrated projects aiming specifically at promoting the essential role of medical physicists in health care, developing harmonized guidelines on dosimetry and quality assurance, and supporting education and clinical training programs. The unique feature of the IAEA approach is support it provides for implementation of guidelines and education programs in Member States through its technical cooperation project. The presentation will summarize IAEA support to Latin America and Africa in the field of medical physics and will highlight how the new International Basic Safety Standards are expected to impact the medical physics practice in low and middle income countries. Learning Objectives: Learn about the shortage of qualified Medical Physicists in Africa and Latin America. Understand the reasons of this shortage. Learn about the ways to improve the situation and AAPM role in this process.« less

  10. WE-AB-213-03: Challenges and Opportunities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borras, C.

    AAPM projects and collaborations in Africa Adam Shulman (AA-SC Chair) The African Affairs Subcommittee (AA-SC) of the AAPM will present a multi-institutional approach to medical physics support in Africa. Current work to increase the quality of care and level of safety for the medical physics practice in Senegal, Ghana, and Zimbabwe will be presented, along with preliminary projects in Nigeria and Botswana. Because the task of addressing the needs of medical physics in countries across Africa is larger than one entity can accomplish on its own, the AA-SC has taken the approach of joining forces with multiple organizations such asmore » Radiating Hope and TreatSafely (NGO’s), the IAEA, companies like BrainLab, Varian and Elekta, medical volunteers and academic institutions such as NYU and Washington University. Elements of current projects include: 1) Distance training and evaluation of the quality of contouring and treatment planning, teaching treatment planning and other subjects, and troubleshooting using modern telecommunications technology in Senegal, Ghana, and Zimbabwe; 2) Assistance in the transition from 2D to 3D in Senegal and Zimbabwe; 3) Assistance in the transition from 3D to IMRT using in-house compensators in Senegal; 4) Modernizing the cancer center in Senegal and increasing safety and; 5) Training on on 3D techniques in Ghana; 6) Assisting a teaching and training radiation oncology center to be built in Zimbabwe; 7) Working with the ISEP Program in Sub-Saharan Africa; 8) Creating instructional videos on linac commissioning; 9) Working on a possible collaboration to train physicists in Nigeria. Building on past achievements, the subcommittee seeks to make a larger impact on the continent, as the number and size of projects increases and more human resources become available. The State of Medical Physics Collaborations and Projects in Latin America Sandra Guzman (Peru) The lack of Medical Physicists (MP) in many Latin American (LA) countries leads to recruitment of professionals with incomplete education. In most LA countries only one MP responsible for each Center is currently mandated. Currently there is a large disparity among MP training programs and there is significant debate about the standards of MP graduate education in many LA countries. There are no commonly recognized academic programs, not enough clinical training sites and clinical training is not typically considered as part of the MP work. Economic pressures and high workloads also impede the creation of more training centers. The increasing need of qualified MPs require establishing a coordinated system of national Education & Training Centers (ETC), to meet the international standards of education and training in Medical Physics. This shortfall calls for support of organizations such as the IOMP, AAPM, ALFIM, IAEA, etc. Examples from various LA countries, as well as some proposed solutions, will be presented. In particular, we will discuss the resources that the AAPM and its members can offer to support regional programs. The ‘Medical Imaging’ physicist in the emerging world: Challenges and opportunities - Caridad Borrás (WGNIMP Chair) While the role of radiation therapy physicists in the emerging world is reasonably well established, the role of medical imaging physicists is not. The only perceived needs in radiology departments are equipment quality control and radiation protection, tasks that can be done by a technologist or a service engineer. To change the situation, the International Basic Safety Standard, which is adopted/adapted world-wide as national radiation protection regulations, states: “For diagnostic radiological procedures and image guided interventional procedures, the requirements of these Standards for medical imaging, calibration, dosimetry and quality assurance, including the acceptance and commissioning of medical radiological equipment, are fulfilled by or under the oversight of, or with the documented advice of a medical physicist, whose degree of involvement is determined by the complexity of the radiological procedures and the associated radiation risks”. Details on how these requirements can be carried out in resource-limited settings will be described. IAEA support to medical physics in Africa and Latin America: achievements and challenges Ahmed Meghzifene (IAEA) Shortage of clinically qualified medical physicists in radiotherapy and imaging, insufficient and inadequate education and training programs, as well as a lack of professional recognition were identified as the main issues to be addressed by the IAEA. The IAEA developed a series of integrated projects aiming specifically at promoting the essential role of medical physicists in health care, developing harmonized guidelines on dosimetry and quality assurance, and supporting education and clinical training programs. The unique feature of the IAEA approach is support it provides for implementation of guidelines and education programs in Member States through its technical cooperation project. The presentation will summarize IAEA support to Latin America and Africa in the field of medical physics and will highlight how the new International Basic Safety Standards are expected to impact the medical physics practice in low and middle income countries. Learning Objectives: Learn about the shortage of qualified Medical Physicists in Africa and Latin America. Understand the reasons of this shortage. Learn about the ways to improve the situation and AAPM role in this process.« less

  11. WE-AB-213-05: Closing Remarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipman, Y.

    AAPM projects and collaborations in Africa Adam Shulman (AA-SC Chair) The African Affairs Subcommittee (AA-SC) of the AAPM will present a multi-institutional approach to medical physics support in Africa. Current work to increase the quality of care and level of safety for the medical physics practice in Senegal, Ghana, and Zimbabwe will be presented, along with preliminary projects in Nigeria and Botswana. Because the task of addressing the needs of medical physics in countries across Africa is larger than one entity can accomplish on its own, the AA-SC has taken the approach of joining forces with multiple organizations such asmore » Radiating Hope and TreatSafely (NGO’s), the IAEA, companies like BrainLab, Varian and Elekta, medical volunteers and academic institutions such as NYU and Washington University. Elements of current projects include: 1) Distance training and evaluation of the quality of contouring and treatment planning, teaching treatment planning and other subjects, and troubleshooting using modern telecommunications technology in Senegal, Ghana, and Zimbabwe; 2) Assistance in the transition from 2D to 3D in Senegal and Zimbabwe; 3) Assistance in the transition from 3D to IMRT using in-house compensators in Senegal; 4) Modernizing the cancer center in Senegal and increasing safety and; 5) Training on on 3D techniques in Ghana; 6) Assisting a teaching and training radiation oncology center to be built in Zimbabwe; 7) Working with the ISEP Program in Sub-Saharan Africa; 8) Creating instructional videos on linac commissioning; 9) Working on a possible collaboration to train physicists in Nigeria. Building on past achievements, the subcommittee seeks to make a larger impact on the continent, as the number and size of projects increases and more human resources become available. The State of Medical Physics Collaborations and Projects in Latin America Sandra Guzman (Peru) The lack of Medical Physicists (MP) in many Latin American (LA) countries leads to recruitment of professionals with incomplete education. In most LA countries only one MP responsible for each Center is currently mandated. Currently there is a large disparity among MP training programs and there is significant debate about the standards of MP graduate education in many LA countries. There are no commonly recognized academic programs, not enough clinical training sites and clinical training is not typically considered as part of the MP work. Economic pressures and high workloads also impede the creation of more training centers. The increasing need of qualified MPs require establishing a coordinated system of national Education & Training Centers (ETC), to meet the international standards of education and training in Medical Physics. This shortfall calls for support of organizations such as the IOMP, AAPM, ALFIM, IAEA, etc. Examples from various LA countries, as well as some proposed solutions, will be presented. In particular, we will discuss the resources that the AAPM and its members can offer to support regional programs. The ‘Medical Imaging’ physicist in the emerging world: Challenges and opportunities - Caridad Borrás (WGNIMP Chair) While the role of radiation therapy physicists in the emerging world is reasonably well established, the role of medical imaging physicists is not. The only perceived needs in radiology departments are equipment quality control and radiation protection, tasks that can be done by a technologist or a service engineer. To change the situation, the International Basic Safety Standard, which is adopted/adapted world-wide as national radiation protection regulations, states: “For diagnostic radiological procedures and image guided interventional procedures, the requirements of these Standards for medical imaging, calibration, dosimetry and quality assurance, including the acceptance and commissioning of medical radiological equipment, are fulfilled by or under the oversight of, or with the documented advice of a medical physicist, whose degree of involvement is determined by the complexity of the radiological procedures and the associated radiation risks”. Details on how these requirements can be carried out in resource-limited settings will be described. IAEA support to medical physics in Africa and Latin America: achievements and challenges Ahmed Meghzifene (IAEA) Shortage of clinically qualified medical physicists in radiotherapy and imaging, insufficient and inadequate education and training programs, as well as a lack of professional recognition were identified as the main issues to be addressed by the IAEA. The IAEA developed a series of integrated projects aiming specifically at promoting the essential role of medical physicists in health care, developing harmonized guidelines on dosimetry and quality assurance, and supporting education and clinical training programs. The unique feature of the IAEA approach is support it provides for implementation of guidelines and education programs in Member States through its technical cooperation project. The presentation will summarize IAEA support to Latin America and Africa in the field of medical physics and will highlight how the new International Basic Safety Standards are expected to impact the medical physics practice in low and middle income countries. Learning Objectives: Learn about the shortage of qualified Medical Physicists in Africa and Latin America. Understand the reasons of this shortage. Learn about the ways to improve the situation and AAPM role in this process.« less

  12. Physicist scorns syllabus that 'ill-equips' students

    NASA Astrophysics Data System (ADS)

    Randall, Ian

    2017-03-01

    Quantum physicist Michelle Simmons from the University of New South Wales has criticized the Australian school physics curriculum for reducing maths-based teaching and over-emphasizing essay-based questions - a move she says has left students “ill-equipped” on reaching university.

  13. AFOMP Policy Statement No. 3: recommendations for the education and training of medical physicists in AFOMP countries.

    PubMed

    Round, W H; Ng, K H; Healy, B; Rodriguez, L; Thayalan, K; Tang, F; Fukuda, S; Srivastava, R; Krisanachinda, A; Shiau, A C; Deng, X; Han, Y

    2011-09-01

    AFOMP recognizes that clinical medical physicists should demonstrate that they are competent to practice their profession by obtaining appropriate education, training and supervised experience in the specialties of medical physics in which they practice, as well as having a basic knowledge of other specialties. To help its member countries to achieve this, AFOMP has developed this policy to provide guidance when developing medical physicist education and training programs. The policy is compatible with the standards being promoted by the International Organization for Medical Physics and the International Medical Physics Certification Board.

  14. Professional development

    NASA Astrophysics Data System (ADS)

    Yoon, Jin Hee; Hartline, Beverly Karplus; Milner-Bolotin, Marina

    2013-03-01

    The three sessions of the professional development workshop series were each designed for a different audience. The purpose of the first session was to help mid-career physicists aspire for and achieve leadership roles. The second session brought together students, postdoctoral fellows, and early-career physicists to help them plan their career goals and navigate the steps important to launching a successful career. The final session sought to increase awareness of the results of physics education research, and how to use them to help students-especially women-learn physics better. The presentations and discussions were valuable for both female and male physicists.

  15. The Role of Physicists in Policy Making

    NASA Astrophysics Data System (ADS)

    Handler, Thomas

    2011-10-01

    Since World War II, physicists have been involved in various aspects of national life. The roles played have included: 1) Pure or applied researcher, 2) Advisor to policy makers, and 3) Congressman. Today there are many challenges and questions that the United States faces and scientists, physicists included, are often asked on how these challenges should be addressed. In addressing these concerns what is the ``proper'' role that scientists should play? Do scientists even know what the possible roles are? This talk will briefly address the possible roles that scientists play and what other avenues of input go into the making of policy.

  16. Physics and the car business

    NASA Astrophysics Data System (ADS)

    Compton, W. Dale; Reitz, John R.

    1981-01-01

    Physicists have made important contributions to many areas of Ford Motor Company activity, particularly in areas of basic and applied research and product development. A number have assumed positions with management responsibility. Many of the technical problems facing the automotive industry today require a fundamental understanding, and the ability of physicists to contribute to the solution of these problems is greater now than it has been in the past. The present paper discusses some of these problems, and also traces a few case histories of physicists at Ford Motor Company; these illustrate the wide diversity of career paths for persons entering industry with a physics background.

  17. SU-B-213-00: Education Council Symposium: Accreditation and Certification: Establishing Educational Standards and Evaluating Candidates Based on these Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The North American medical physics community validates the education received by medical physicists and the clinical qualifications for medical physicists through accreditation of educational programs and certification of medical physicists. Medical physics educational programs (graduate education and residency education) are accredited by the Commission on Accreditation of Medical Physics Education Programs (CAMPEP), whereas medical physicists are certified by several organizations, the most familiar of which is the American Board of Radiology (ABR). In order for an educational program to become accredited or a medical physicist to become certified, the applicant must meet certain specified standards set by the appropriate organization.more » In this Symposium, representatives from both CAMPEP and the ABR will describe the process by which standards are established as well as the process by which qualifications of candidates for accreditation or certification are shown to be compliant with these standards. The Symposium will conclude with a panel discussion. Learning Objectives: Recognize the difference between accreditation of an educational program and certification of an individual Identify the two organizations primarily responsible for these tasks Describe the development of educational standards Describe the process by which examination questions are developed GS is Executive Secretary of CAMPEP.« less

  18. Ya.B. Zel''dovich (1914-1987). Chemist, Nuclear Physicist, Cosmologist

    NASA Astrophysics Data System (ADS)

    Sahni, Varun

    2011-06-01

    A scientific biography of the outstanding Soviet Chemist, Physicist and Cosmologist Yakov Borisovich Zeldovich (1914-1987) has been given by one of his pupils. A special concern has been given to cosmological works by Zel'dovich. Figures 4,Bibliography: 9.

  19. The Vector Calculus Gap: Mathematics (Does Not Equal) Physics.

    ERIC Educational Resources Information Center

    Dray, Tevian; Manogue, Corinne A.

    1999-01-01

    Discusses some of the differences between the ways mathematicians and physicists view vector calculus and the gap between the way this material is traditionally taught by mathematicians and the way physicists use it. Suggests some ways to narrow the gap. (Author/ASK)

  20. Hybrid materials science: a promised land for the integrative design of multifunctional materials

    NASA Astrophysics Data System (ADS)

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-05-01

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of ``hybrid organic-inorganic'' nanocomposites exploded in the second half of the 20th century with the expansion of the so-called ``chimie douce'' which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  1. On transferring the grid technology to the biomedical community.

    PubMed

    Mohammed, Yassene; Sax, Ulrich; Dickmann, Frank; Lippert, Joerg; Solodenko, Juri; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto

    2010-01-01

    Natural scientists such as physicists pioneered the sharing of computing resources, which resulted in the Grid. The inter domain transfer process of this technology has been an intuitive process. Some difficulties facing the life science community can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies that have achieved certain stability. Grid and Cloud solutions are technologies that are still in flux. We illustrate how Grid computing creates new difficulties for the technology transfer process that are not considered in Bozeman's model. We show why the success of health Grids should be measured by the qualified scientific human capital and opportunities created, and not primarily by the market impact. With two examples we show how the Grid technology transfer theory corresponds to the reality. We conclude with recommendations that can help improve the adoption of Grid solutions into the biomedical community. These results give a more concise explanation of the difficulties most life science IT projects are facing in the late funding periods, and show some leveraging steps which can help to overcome the "vale of tears".

  2. Hybrid materials science: a promised land for the integrative design of multifunctional materials.

    PubMed

    Nicole, Lionel; Laberty-Robert, Christel; Rozes, Laurence; Sanchez, Clément

    2014-06-21

    For more than 5000 years, organic-inorganic composite materials created by men via skill and serendipity have been part of human culture and customs. The concept of "hybrid organic-inorganic" nanocomposites exploded in the second half of the 20th century with the expansion of the so-called "chimie douce" which led to many collaborations between a large set of chemists, physicists and biologists. Consequently, the scientific melting pot of these very different scientific communities created a new pluridisciplinary school of thought. Today, the tremendous effort of basic research performed in the last twenty years allows tailor-made multifunctional hybrid materials with perfect control over composition, structure and shape. Some of these hybrid materials have already entered the industrial market. Many tailor-made multiscale hybrids are increasingly impacting numerous fields of applications: optics, catalysis, energy, environment, nanomedicine, etc. In the present feature article, we emphasize several fundamental and applied aspects of the hybrid materials field: bioreplication, mesostructured thin films, Lego-like chemistry designed hybrid nanocomposites, and advanced hybrid materials for energy. Finally, a few commercial applications of hybrid materials will be presented.

  3. Telementoring Physics: University-Community After-school Collaborations and the Mediation of the Formal/Informal Divide

    NASA Astrophysics Data System (ADS)

    Lecusay, Robert A.

    For several decades improvement of science education has been a major concern of policy makers concerned that the U.S. is a "nation at risk" owing to the dearth of students pursing careers in science. Recent policy proposals have argued that provision of broadband digital connectivity to organizations in the informal sector would increase the reach of the formal, academic sector to raise the overall level of science literacy in the country. This dissertation reports on a longitudinal study of a physics telementoring activity jointly run by a university-community collaborative at a community learning center. The activity implemented a digital infrastructure that exceeds the technical and social-institutional arrangements promoted by policy makers. In addition to broadband internet access (for tele-conferencing between students at the community center and physicists at a university), supplemented by digital software designed to promote physics education, the activity included the presence of a collaborating researcher/tutor at the community learning center to coordinate and document the instructional activities. The current research revealed a fundamental contradiction between the logic, goals, and practices of the physics instructors, and the corresponding logic, goals, and practices of the participants at the community learning center. This contradiction revolves around a contrast between the physicists' formal, logocentric ways of understanding expressed in the ability to explain the scientific rules underlying physical phenomena and the informal, pragmatic orientation of the youth and adults at the learning center. The observations in this dissertation should remind techno-enthusiasts, especially in the arena of public education policy, that there are no turnkey solutions in "distance" science education. Technically "connecting" people is not equivalent to creating conditions that expand opportunities to learn and a functioning socio-technical system that supports learning. Secondly, for designers and practitioners of informal learning in community-university collaborative settings, it is critically important to understand distance learning activities as developing "cross-cultural, " collaborative encounters, the results of which are more likely to be hybrids of different ways of learning and knowing than the conversion of informal learning into a tool for instruction that will allow youth to "think like physicists."

  4. Fish Tales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLerran, L.

    2010-07-06

    This talk is about fishing and the friendships that have resulted in its pursuit. It is also about theoretical physics, and the relationship of imagination and fantasy to the establishment of ideas about nature. Fishermen, like theoretical physicists, are well known for their inventive imaginations. Perhaps neither are as clever as sailors, who conceived of the mermaid. If one doubts the power of this fantasy, one should remember the ghosts of the many sailors who drowned pursuing these young nymphs. An extraordinary painting by J. Waterhouse is shown as Fig. 1. The enchantment of a mermaid must reflect an extraordinarymore » excess of imagination on the part of the sailor, perhaps together with an impractical turn of mind. A consummated relationship with a mermaid is after all, by its very nature a fantasy incapable of realization. To a theoretical physicist, she is symbolic of many ideas we develop. There are many truths known to fisherman in which one might also find parallels to the goals of scientists: (1) A fish is the only animal that keeps growing after its death; (2) Nothing makes a fish bigger than almost being caught; (3) ''...of all the liars among mankind, the fisherman is the most trustworthy.'' (William Sherwood Fox, in Silken Lines and Silver Hooks); and (4) Men and fish are alike. They both get into trouble when they open their mouths. These quotes may be interpreted as reflecting skepticism regarding the honesty of fisherman, and probably do not reflect adequate admiration for a creative imagination. Is it fair to criticize a person for believing a falsehood that he or she sincerely believes to be true? The fisherman simultaneously invents the lie, and believes in it himself. The parallel with theoretical physics is perhaps only approximate, although we physicists may invent stories that we come to believe, on some rare occasions our ideas actually correspond to a more or less true descriptions of nature. These minor philosophical differences are not really the central issue, however. It is more to the point that both fishermen and scientists enjoy creating a good story, and we also enjoy a story well told. The correct mixture of truth, lie, fantasy and excitement is a witches brew.« less

  5. Working (And Sparring) With Luis: Some Personal Recollections

    NASA Astrophysics Data System (ADS)

    Pripstein, Moishe

    2011-04-01

    Luis Alvarez was the most remarkable physicist I have ever worked with. As a member of his bubble chamber group at the Lawrence Radiation Laboratory in Berkeley and subsequently as a leader of that group for several years, I could appreciate his outstanding attributes as a physicist and his forceful and colorful personality. Each day at the lab seemed exciting. Although he created the largest research group in particle physics in the world at the time, Luis was an ardent foe of group-think, which he characterized as ``intellectual phase-lock''. He had an uncanny intuition about physics and technology, coupled with an insatiable curiosity about the world around him. He is justly renowned as a member of the Inventors Hall of Fame for his myriad inventions and as a Nobel Laureate in physics for his contributions to particle physics through his development of the hydrogen bubble chamber technique, leading to the discovery of a large number of resonance states. However, it was his wide-ranging curiosity which led him to one of his finest achievements, while working with his son Walter - developing the asteroid impact theory as the explanation of the extinction of the dinosaurs. I will offer some personal recollections of Luis and the group in this period, including some of his other intriguing efforts which illustrate the breadth of his interests, pertaining to the Kennedy assassination and x-raying the pyramids, among them. All in all, a brilliant and most unusual scientist and stimulating colleague.

  6. Taming the data wilderness with the VHO: Integrating heliospheric data sets

    NASA Astrophysics Data System (ADS)

    Schroeder, P.; Szabo, A.; Narock, T.

    Currently space physicists are faced with a bewildering array of heliospheric missions experiments and data sets available at archives distributed around the world Daunting even for those most familiar with the field physicists in other concentrations solar physics magnetospheric physics etc find locating the heliospheric data that they need extremely challenging if not impossible The Virtual Heliospheric Observatory VHO will help to solve this problem by creating an Application Programming Interface API and web portal that integrates these data sets to find the highest quality data for a given task The VHO will locate the best available data often found only at PI institutions rather than at national archives like the NSSDC The VHO will therefore facilitate a dynamic data environment where improved data products are made available immediately In order to accomplish this the VHO will enforce a metadata standard on participating data providers with sufficient depth to allow for meaningful scientific evaluation of similar data products The VHO will provide an automated way for secondary sites to keep mirrors of data archives up to date and encouraging the generation of secondary or added-value data products The VHO will interact seamlessly with the Virtual Solar Observatory VSO and other Virtual Observatories VxO s to allow for inter-disciplinary data searching Software tools for these data sets will also be available through the VHO Finally the VHO will provide linkages to the modeling community and will develop metadata standards for the

  7. AAPM Task Group 103 report on peer review in clinical radiation oncology physics

    PubMed Central

    Halvorsen, Per H.; Das, Indra J.; Fraser, Martin; Freedman, D. Jay; Rice, Robert E.; Ibbott, Geoffrey S.; Parsai, E. Ishmael; Robin, T. Tydings; Thomadsen, Bruce R.

    2005-01-01

    This report provides guidelines for a peer review process between two clinical radiation oncology physicists. While the Task Group's work was primarily focused on ensuring timely and productive independent reviews for physicists in solo practice, these guidelines may also be appropriate for physicists in a group setting, particularly when dispersed over multiple separate clinic locations. To ensure that such reviews enable a collegial exchange of professional ideas and productive critique of the entire clinical physics program, the reviews should not be used as an employee evaluation instrument by the employer. Such use is neither intended nor supported by this Task Group. Detailed guidelines are presented on the minimum content of such reviews, as well as a recommended format for reporting the findings of a review. In consideration of the full schedules faced by most clinical physicists, the process outlined herein was designed to be completed in one working day. PACS numbers: 87.53.Xd, 87.90.+y PMID:16421500

  8. Future forum, Hobart, October 29, 2017: examining the role of medical physics in cancer research.

    PubMed

    Ebert, Martin A; Hardcastle, Nicholas; Kron, Tomas

    2018-06-25

    This commentary reports on a forum held in October 2017 in Hobart, Tasmania, attended by 20 Australasian medical physicists, to consider the future role of medical physics, as well as non-medical physics and allied disciplines, in oncology research. Attendees identified important areas of oncology research which physicists can be contributing to, with these evaluated in the context of a set of "Provocative Questions" recently generated by the American Association of Physicists in Medicine. Primary perceived barriers to participation in research were identified, including a "lack of knowledge of cancer science", together with potential solutions. Mechanisms were considered for engagement with the broader scientific community, consumers, advocates and policy makers. In considering future opportunities in oncology research for medical physicists, it was noted that a professional need to focus on the safety and accuracy of current treatments applied to patients, encouraging risk-aversion, is somewhat in competition with the role of physical scientists in the exploration and discovery of new concepts and understandings.

  9. Radiation Oncology Physics and Medical Physics Education

    NASA Astrophysics Data System (ADS)

    Bourland, Dan

    2011-10-01

    Medical physics, an applied field of physics, is the applications of physics in medicine. Medical physicists are essential professionals in contemporary healthcare, contributing primarily to the diagnosis and treatment of diseases through numerous inventions, advances, and improvements in medical imaging and cancer treatment. Clinical service, research, and teaching by medical physicists benefits thousands of patients and other individuals every day. This talk will cover three main topics. First, exciting current research and development areas in the medical physics sub-specialty of radiation oncology physics will be described, including advanced oncology imaging for treatment simulation, image-guided radiation therapy, and biologically-optimized radiation treatment. Challenges in patient safety in high-technology radiation treatments will be briefly reviewed. Second, the educational path to becoming a medical physicist will be reviewed, including undergraduate foundations, graduate training, residency, board certification, and career opportunities. Third, I will introduce the American Association of Physicists in Medicine (AAPM), which is the professional society that represents, advocates, and advances the field of medical physics (www.aapm.org).

  10. SU-B-BRA-00: The Medical Physicist Value Proposition for Tomorrow and Today

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherouse, G.

    In the current rapidly changing Healthcare environment, many groups are competing for limited resources. How can medical physicists position themselves to be a relevant stakeholder in the discussion of how those resources are allocated Our value goes beyond what can be shown in a business plan and is heavily involved with safety and quality. Three areas will be explored: What is our value? Who needs to receive that message? How do we communicate that message? To help frame the discussion in terms of how other stakeholders may view the value of medical physicists, a physician and an administrator will presentmore » their perspective. Lastly, a multidisciplinary panel will present real life examples of strategies that can be utilized today to establish the value of medical physicists. The presentation of these examples will lead into an interactive question and answer time. V. Willcut, I work for Elekta. There was no research associated with this talk.« less

  11. Physicists in Primary Schools (PIPS) Project: Fun Presentations for Physicists to Take into Schools Worldwide (abstract)

    NASA Astrophysics Data System (ADS)

    Marks, Ann

    2009-04-01

    The Physicists in Primary Schools (PIPS) project is a joint venture initiated by the UK Women in Physics Group. A team from the University of Sheffield, with Engineering and Physical Sciences Research Council funding, has developed fun presentations and novel class activities using everyday articles for physicists to take into primary schools. The objectives are to instill enthusiasm in young children-including girls-through the enjoyment and excitement of physics, and support primary school teachers with a curriculum which includes many abstract concepts. All PIPS material is free to download from the Institute of Physics website (www.iop.org/pips), providing PowerPoint presentations and detailed explanations, as well as videos of the activities in classrooms. The topics are suitable for children age 4 to 11 years. There is interest in translating the presentations into other languages as there are few words on the slides and the material is likely valuable for older age groups. The presentations therefore have the potential to be useful worldwide.

  12. Germany-US Nuclear Theory Exchange Program for QCD Studies of Hadrons & Nuclei 'GAUSTEQ'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dudek, Jozef; Melnitchouk, Wally

    GAUSTEQ was a Germany-U.S. exchange program in nuclear theory whose purpose was to focus research efforts on QCD studies of hadrons and nuclei, centered around the current and future research programs of Jefferson Lab and the Gesellschaft fur Schwerionenforschung (GSI) in Germany. GAUSTEQ provided travel support for theoretical physicists at US institutions conducting collaborative research with physicists in Germany. GSI (with its Darmstadt and Helmholtz Institute Mainz braches) served as the German “hub” for visits of U.S. physicists, while Jefferson Lab served as the corresponding “hub” for visits of German physicists visiting U.S. institutions through the reciprocal GUSTEHP (German-US Theorymore » Exchange in Hadron Physics) program. GAUSTEQ was funded by the Office of Nuclear Physics of the U.S. Department of Energy, under Contract No.DE-SC0006758 and officially managed through Old Dominion University in Norfolk, Virginia. The program ran between 2011 and 2015.« less

  13. Nuclear and radiological emergencies: Building capacity in medical physics to support response.

    PubMed

    Berris, Theocharis; Nüsslin, Fridtjof; Meghzifene, Ahmed; Ansari, Armin; Herrera-Reyes, Eduardo; Dainiak, Nicholas; Akashi, Makoto; Gilley, Debbie; Ohtsuru, Akira

    2017-10-01

    Medical physicists represent a valuable asset at the disposal of a structured and planned response to nuclear or radiological emergencies (NREs), especially in the hospital environment. The recognition of this fact led the International Atomic Energy Agency (IAEA) and the International Organization for Medical Physics (IOMP) to start a fruitful collaboration aiming to improve education and training of medical physicists so that they may support response efforts in case of NREs. Existing shortcomings in specific technical areas were identified through international consultations supported by the IAEA and led to the development of a project aiming at preparing a specific and standardized training package for medical physicists in support to NREs. The Project was funded through extra-budgetary contribution from Japan within the IAEA Nuclear Safety Action Plan. This paper presents the work accomplished through that project and describes the current steps and future direction for enabling medical physicists to better support response to NREs. Copyright © 2017 Associazione Italiana di Fisica Medica. All rights reserved.

  14. After the War: Women in Physics in the United States

    NASA Astrophysics Data System (ADS)

    Howes, Ruth H.; Herzenberg, Caroline L.

    2015-12-01

    This book examines the lives and contributions of American women physicists who were active in the years following World War II, during the middle decades of the 20th century. It covers the strategies they used to survive and thrive in a time where their gender was against them. The percentage of woman taking PhDs in physics has risen from 6% in 1983 to 20% in 2012 (an all-time high for women). By understanding the history of women in physics, these gains can continue. It discusses two major classes of women physicists; those who worked on military projects, and those who worked in industrial laboratories and at universities largely in the late 1940s and 1950s. While it includes minimal discussion of physics and physicists in the 1960s and later, this book focuses on the challenges and successes of women physicists in the years immediately following World War II and before the eras of affirmative actions and the use of the personal computer.

  15. A Different Laboratory Tale: Fifty Years of Mössbauer Spectroscopy

    NASA Astrophysics Data System (ADS)

    Westfall, Catherine

    2006-05-01

    I explore the fifty-year development of Mössbauer spectroscopy by focusing on three episodes in its development at Argonne National Laboratory: work by nuclear physicists using radioactive sources in the early 1960s, work by solid-state physicists using radioactive resources from the mid- 1960s through the 1970s,and work by solid-state physicists using the Advanced Photon Source from the 1980s to 2005. These episodes show how knowledge about the properties of matter was produced in a national-laboratory context and highlights the web of connections that allow nationallaboratory scientists working at a variety of scales to produce both technological and scientific innovations.

  16. Herbert Fröhlich: A Physicist Ahead of His Time, by G.J. Hyland [Book Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devanathan, Ram

    This authoritative biography of Herbert Fröhlich (1905-1991), a well-known theoretical physicist, paints an intimate portrait of a pioneering scientist who made seminal contributions to condensed matter physics and left his mark on other domains such as biology over a 60-year career. From his vantage point as the last graduate student of this eminent physicist, Gerard Hyland has produced an account that weaves the personal experiences and travails of Fröhlich with detailed discussion of the theory of dielectrics. The political upheavals in Europe during the 20th century provide a dramatic backdrop for the narrative.

  17. Wars of the holographic world

    NASA Astrophysics Data System (ADS)

    Preskill, John

    2008-12-01

    In the popular imagination, the iconic American theoretical physicist is Richard Feynman, in all his safe-cracking, bongo-thumping, woman-chasing glory. I suspect that many physicists, if asked to name a living colleague who best captures the spirit of Feynman, would give the same answer as me: Leonard Susskind. As far as I know, Susskind does not crack safes, thump bongos, or chase women, yet he shares Feynman's brash cockiness (which in Susskind's case is leavened by occasional redeeming flashes of self-deprecation) and Feynman's gift for spinning fascinating anecdotes. If you are having a group of physicists over for dinner and want to be sure to have a good time, invite Susskind.

  18. From Newton to Einstein; Ask the physicist about mechanics and relativity

    NASA Astrophysics Data System (ADS)

    Baker, F. Todd

    2014-12-01

    Since 2006 the author has run a web site, WWW.AskThePhysicist.com, where he answers questions about physics. The site is not intended for answering highly technical questions; rather the purpose is to answer, with as little mathematics and formalism as possible, questions from intelligent and curious laypersons. This book is about classical mechanics. Usually `classical' calls to mind Newtonian mechanics and that is indeed where modern physics started. The bulk of the book is devoted to sections which will contain mainly categorized groups of Q&As from the web site, sort of a Best of Ask the Physicist.

  19. 77 FR 62538 - Advisory Committee on the Medical Uses of Isotopes: Call for Nominations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ...) nuclear medicine physicist; (d) therapy medical physicist; (e) radiation safety officer; (f) nuclear... NUCLEAR REGULATORY COMMISSION Advisory Committee on the Medical Uses of Isotopes: Call for Nominations AGENCY: U.S. Nuclear Regulatory Commission. ACTION: Call for nominations. SUMMARY: The U.S...

  20. ORNL Physicist Aims for the Stars with JENSA System

    ScienceCinema

    Chipps, Kelly

    2018-01-16

    Physicists studying stellar explosions, the origin of life and just about everything in between could gain light years in precision because of a system inspired by a team led by Kelly Chipps of the Department of Energy’s Oak Ridge National Laboratory.

  1. Good scientists and honest people

    NASA Astrophysics Data System (ADS)

    Robinson, Andrew

    2014-06-01

    In early 1948, less than three years after the end of the Second World War in Europe, Werner Heisenberg - the Nobel laureate and physicist leader of the failed German atomic bomb project - was invited to the UK as part of an attempt to repair relations between British and German physicists.

  2. "Shut up and calculate": the available discursive positions in quantum physics courses

    NASA Astrophysics Data System (ADS)

    Johansson, Anders; Andersson, Staffan; Salminen-Karlsson, Minna; Elmgren, Maja

    2018-03-01

    Educating new generations of physicists is often seen as a matter of attracting good students, teaching them physics and making sure that they stay at the university. Sometimes, questions are also raised about what could be done to increase diversity in recruitment. Using a discursive perspective, in this study of three introductory quantum physics courses at two Swedish universities, we instead ask what it means to become a physicist, and whether certain ways of becoming a physicist and doing physics is privileged in this process. Asking the question of what discursive positions are made accessible to students, we use observations of lectures and problem solving sessions together with interviews with students to characterize the discourse in the courses. Many students seem to have high expectations for the quantum physics course and generally express that they appreciate the course more than other courses. Nevertheless, our analysis shows that the ways of being a "good quantum physics student" are limited by the dominating focus on calculating quantum physics in the courses. We argue that this could have negative consequences both for the education of future physicists and the discipline of physics itself, in that it may reproduce an instrumental "shut up and calculate"-culture of physics, as well as an elitist physics education. Additionally, many students who take the courses are not future physicists, and the limitation of discursive positions may also affect these students significantly.

  3. TH-B-12A-01: TG124 “A Guide for Establishing a Credentialing and Privileging Program for Users of Fluoroscopic Equipment in Healthcare Organizations”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, M

    Fluoroscopy credentialing and privileging programs are being instituted because of recorded patient injuries and the widespread growth in fluoroscopy use by operators whose medical education did not include formal fluoroscopy training. This lack of training is recognized as a patient safety deficiency, and medical physicists and health physicists are finding themselves responsible for helping to establish fluoroscopy credentialing programs. While physicians are very knowledgeable about clinical credentials review and the privileging process, medical physicists and health physicists are not as familiar with the process and associated requirements. To assist the qualified medical physicist (QMP) and the radiation safety officer (RSO)more » with these new responsibilities, TG 124 provides an overview of the credentialing process, guidance for policy development and incorporating trained fluoroscopy users into a facility's established process, as well as recommendations for developing and maintaining a risk-based fluoroscopy safety training program. This lecture will review the major topics addressed in TG124 and relate them to practical situations. Learning Objectives: Understand the difference between credentialing and privileging. Understand the responsibilities, interaction and coordination among key individuals and committees. Understand options for integrating the QMP and/or RSO and Radiation Safety Committee into the credentialing and privileging process. Understand issues related to implementing the fluoroscopy safety training recommendations and with verifying and documenting successful completion.« less

  4. Fritz Zwicky: Novae Become Supernovae

    NASA Astrophysics Data System (ADS)

    Koenig, T.

    2005-12-01

    The Swiss physicist Fritz Zwicky (1898-1974) dabbled in a plethora of disciplines, including astronomy and astrophysics. His dabblings were with vested interest and he has left quite an impact. His first great success was his nova research. In the early 1930s, while supermarkets and Superman were flying, he labelled the distinctly brighter nova Supernova. It had been believed that novae were the collision of two stars, but Zwicky came to recognize supernovae as a phenomenon quite distinct from novae. He and Walter Baade explained supernova by melding astronomy and physics and in this aim they created neutron stars, explained the origin of cosmic rays, initiated the first sky survey, and confirmed that a number of historical novae were indeed supernovae. This was truly an important work in the history of astrophysics.

  5. Engineering Education in K-12 Schools

    NASA Astrophysics Data System (ADS)

    Spence, Anne

    2013-03-01

    Engineers rely on physicists as well as other scientists and mathematicians to explain the world in which we live. Engineers take this knowledge of the world and use it to create the world that never was. The teaching of physics and other sciences as well as mathematics is critical to maintaining our national workforce. Science and mathematics education are inherently different, however, from engineering education. Engineering educators seek to enable students to develop the habits of mind critical for innovation. Through understanding of the engineering design process and how it differs from the scientific method, students can apply problem and project based learning to solve the challenges facing society today. In this talk, I will discuss the elements critical to a solid K-12 engineering education that integrates science and mathematics to solve challenges throughout the world.

  6. The Jefferson Science Fellows (JSF) program at the US Department of State

    NASA Astrophysics Data System (ADS)

    Peterson, Roy

    2014-09-01

    In 2004 the US Department of State and the National Academies established the Jefferson Science Fellows program, to bring tenured faculty in sciences, engineering, and medicine to the Department of State or USAID for a year in residence, with continuing connections. Over twenty physical scientists have been Fellows, working in a wide variety of offices on a broad range of topics. The main advantage to Fellows is the opportunity to make an impact on important national and international issues, applying skills and judgments gained through their research, teaching, and service. The JSF experience can also create broader horizons for physicists, especially beyond the laboratory. The selection process and examples, including my own, will be described. Information can be found at //sites.nationalacademies.org/PGA/Jefferson/.

  7. From microscopic to astronomic, the legacy of Carl Zeiss.

    PubMed

    Louw, Deon F; Sutherland, Garnette R; Schulder, Michael

    2003-03-01

    IN 1846, CARL ZEISS established a workshop to make lenses for microscopes, cameras, binoculars, and astronomical observatories. He was a master craftsman and was intolerant of any flaw, destroying microscopes with only minor inaccuracies. His relentless pursuit of perfection brought him into contact with a brilliant physicist, Ernst Abbe. Zeiss combined Abbe's new optical laws with his own technical skills; together, they created a colossus. Their company came to be known not only for exquisite technical standards but also for labor relations that were and remain progressive. The development of microneurosurgery was aided by the active participation of Carl Zeiss, Inc. The history of this company provides a lesson in the power of entrepreneurship and the benefits to humanity that can accrue from a fruitful partnership between medical science and industry.

  8. Infrared Imaging; A casebook in clinical medicine

    NASA Astrophysics Data System (ADS)

    Ring, Francis

    2015-09-01

    Infrared thermal imaging is a rapid and non-invasive procedure for mapping skin temperature distribution of the human body. Advanced software and high-resolution infrared detectors has allowed for a renaissance in the use of infrared thermal imaging or thermography in medical research and practice. After a review of theory, technology and methodology of medical infrared imaging, the remainder of the book consists of a collection of clinical case studies demonstrating the wide variety of applications of thermography in modern medicine. The combined expertise from a number of centres is used to create this database of images and cases that will be invaluable for medical researchers and practitioners in making diagnoses and measuring treatment efficacy. This book is recommended reading for practising and training radiographers, medical physicists and clinicians.

  9. A remarkable legacy

    NASA Astrophysics Data System (ADS)

    Parkinson, Stuart

    2008-02-01

    Joseph Rotblat, who died in 2005 at the age of 96, was a rare combination of distinguished scientist and leading peace advocate. During the Second World War he was involved with the Manhattan Project - which created the world's first atomic bombs - but then decided to resign on ethical grounds. This life-changing decision set the scene for the dual role that he would play for the rest of his life. On the one hand, Rotblat was a key figure in setting up and leading the Pugwash Conferences on Science and World Affairs, which bring together scientists and public figures concerned with reducing the danger of armed conflict and seeking co-operative solutions for global problems. On the other, he was an accomplished nuclear and medical physicist, eventually becoming president of the British Institute of Radiology.

  10. Earthquake and failure forecasting in real-time: A Forecasting Model Testing Centre

    NASA Astrophysics Data System (ADS)

    Filgueira, Rosa; Atkinson, Malcolm; Bell, Andrew; Main, Ian; Boon, Steven; Meredith, Philip

    2013-04-01

    Across Europe there are a large number of rock deformation laboratories, each of which runs many experiments. Similarly there are a large number of theoretical rock physicists who develop constitutive and computational models both for rock deformation and changes in geophysical properties. Here we consider how to open up opportunities for sharing experimental data in a way that is integrated with multiple hypothesis testing. We present a prototype for a new forecasting model testing centre based on e-infrastructures for capturing and sharing data and models to accelerate the Rock Physicist (RP) research. This proposal is triggered by our work on data assimilation in the NERC EFFORT (Earthquake and Failure Forecasting in Real Time) project, using data provided by the NERC CREEP 2 experimental project as a test case. EFFORT is a multi-disciplinary collaboration between Geoscientists, Rock Physicists and Computer Scientist. Brittle failure of the crust is likely to play a key role in controlling the timing of a range of geophysical hazards, such as volcanic eruptions, yet the predictability of brittle failure is unknown. Our aim is to provide a facility for developing and testing models to forecast brittle failure in experimental and natural data. Model testing is performed in real-time, verifiably prospective mode, in order to avoid selection biases that are possible in retrospective analyses. The project will ultimately quantify the predictability of brittle failure, and how this predictability scales from simple, controlled laboratory conditions to the complex, uncontrolled real world. Experimental data are collected from controlled laboratory experiments which includes data from the UCL Laboratory and from Creep2 project which will undertake experiments in a deep-sea laboratory. We illustrate the properties of the prototype testing centre by streaming and analysing realistically noisy synthetic data, as an aid to generating and improving testing methodologies in imperfect conditions. The forecasting model testing centre uses a repository to hold all the data and models and a catalogue to hold all the corresponding metadata. It allows to: Data transfer: Upload experimental data: We have developed FAST (Flexible Automated Streaming Transfer) tool to upload data from RP laboratories to the repository. FAST sets up data transfer requirements and selects automatically the transfer protocol. Metadata are automatically created and stored. Web data access: Create synthetic data: Users can choose a generator and supply parameters. Synthetic data are automatically stored with corresponding metadata. Select data and models: Search the metadata using criteria design for RP. The metadata of each data (synthetic or from laboratory) and models are well-described through their respective catalogues accessible by the web portal. Upload models: Upload and store a model with associated metadata. This provide an opportunity to share models. The web portal solicits and creates metadata describing each model. Run model and visualise results: Selected data and a model to be submitted to a High Performance Computational resource hiding technical details. Results are displayed in accelerated time and stored allowing retrieval, inspection and aggregation. The forecasting model testing centre proposed could be integrated into EPOS. Its expected benefits are: Improved the understanding of brittle failure prediction and its scalability to natural phenomena. Accelerated and extensive testing and rapid sharing of insights. Increased impact and visibility of RP and GeoScience research. Resources for education and training. A key challenge is to agree the framework for sharing RP data and models. Our work is provocative first step.

  11. TU-EF-BRD-04: Summing It Up: The Future of Quality and Safety Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, E.

    Research related to quality and safety has been a staple of medical physics academic activities for a long time. From very early on, medical physicists have developed new radiation measurement equipment and analysis techniques, created ever increasingly accurate dose calculation models, and have vastly improved imaging, planning, and delivery techniques. These and other areas of interest have improved the quality and safety of radiotherapy for our patients. With the advent of TG-100, quality and safety is an area that will garner even more research interest in the future. As medical physicists pursue quality and safety research in greater numbers, itmore » is worthwhile to consider what actually constitutes research on quality and safety. For example, should the development of algorithms for real-time EPID-based in-vivo dosimetry be defined as “quality and safety” research? How about the clinical implementation of such as system? Surely the application of failure modes and effects analysis to a clinical process would be considered quality and safety research, but is this type of research that should be included in the medical physics peer-reviewed literature? The answers to such questions are of critical importance to set researchers in a direction that will provide the greatest benefit to our field and the patients we serve. The purpose of this symposium is to consider what constitutes research in the arena of quality and safety and differentiate it from other research directions. The key distinction here is developing the tool itself (e.g. algorithms for EPID dosimetry) vs. studying the impact of the tool with some quantitative metric. Only the latter would I call quality and safety research. Issues of ‘basic’ versus ‘applied’ quality and safety research will be covered as well as how the research results should be structured to provide increasing levels of support that a quality and safety intervention is effective and sustainable. Examples from existing peer-reviewed research will be used to highlight the main points. Historical, medical physicists have leveraged many areas of applied physics, engineering and biology to improve radiotherapy. Research on quality and safety is another area where physicists can have an impact. The key to further progress is to clearly define what constitutes quality and safety research for those interested in doing such research and the reviewers of that research. Learning Objectives: List several tools of quality and safety with references to peer-reviewed literature. Describe effects of mental workload on performance. Outline research in quality and safety indicators and technique analysis. Understand what quality and safety research needs to be going forward. Understand the links between cooperative group trials and quality and safety research.« less

  12. TU-EF-BRD-01: Topics in Quality and Safety Research and Level of Evidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pawlicki, T.

    Research related to quality and safety has been a staple of medical physics academic activities for a long time. From very early on, medical physicists have developed new radiation measurement equipment and analysis techniques, created ever increasingly accurate dose calculation models, and have vastly improved imaging, planning, and delivery techniques. These and other areas of interest have improved the quality and safety of radiotherapy for our patients. With the advent of TG-100, quality and safety is an area that will garner even more research interest in the future. As medical physicists pursue quality and safety research in greater numbers, itmore » is worthwhile to consider what actually constitutes research on quality and safety. For example, should the development of algorithms for real-time EPID-based in-vivo dosimetry be defined as “quality and safety” research? How about the clinical implementation of such as system? Surely the application of failure modes and effects analysis to a clinical process would be considered quality and safety research, but is this type of research that should be included in the medical physics peer-reviewed literature? The answers to such questions are of critical importance to set researchers in a direction that will provide the greatest benefit to our field and the patients we serve. The purpose of this symposium is to consider what constitutes research in the arena of quality and safety and differentiate it from other research directions. The key distinction here is developing the tool itself (e.g. algorithms for EPID dosimetry) vs. studying the impact of the tool with some quantitative metric. Only the latter would I call quality and safety research. Issues of ‘basic’ versus ‘applied’ quality and safety research will be covered as well as how the research results should be structured to provide increasing levels of support that a quality and safety intervention is effective and sustainable. Examples from existing peer-reviewed research will be used to highlight the main points. Historical, medical physicists have leveraged many areas of applied physics, engineering and biology to improve radiotherapy. Research on quality and safety is another area where physicists can have an impact. The key to further progress is to clearly define what constitutes quality and safety research for those interested in doing such research and the reviewers of that research. Learning Objectives: List several tools of quality and safety with references to peer-reviewed literature. Describe effects of mental workload on performance. Outline research in quality and safety indicators and technique analysis. Understand what quality and safety research needs to be going forward. Understand the links between cooperative group trials and quality and safety research.« less

  13. TU-EF-BRD-03: Mental Workload and Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mazur, L.

    Research related to quality and safety has been a staple of medical physics academic activities for a long time. From very early on, medical physicists have developed new radiation measurement equipment and analysis techniques, created ever increasingly accurate dose calculation models, and have vastly improved imaging, planning, and delivery techniques. These and other areas of interest have improved the quality and safety of radiotherapy for our patients. With the advent of TG-100, quality and safety is an area that will garner even more research interest in the future. As medical physicists pursue quality and safety research in greater numbers, itmore » is worthwhile to consider what actually constitutes research on quality and safety. For example, should the development of algorithms for real-time EPID-based in-vivo dosimetry be defined as “quality and safety” research? How about the clinical implementation of such as system? Surely the application of failure modes and effects analysis to a clinical process would be considered quality and safety research, but is this type of research that should be included in the medical physics peer-reviewed literature? The answers to such questions are of critical importance to set researchers in a direction that will provide the greatest benefit to our field and the patients we serve. The purpose of this symposium is to consider what constitutes research in the arena of quality and safety and differentiate it from other research directions. The key distinction here is developing the tool itself (e.g. algorithms for EPID dosimetry) vs. studying the impact of the tool with some quantitative metric. Only the latter would I call quality and safety research. Issues of ‘basic’ versus ‘applied’ quality and safety research will be covered as well as how the research results should be structured to provide increasing levels of support that a quality and safety intervention is effective and sustainable. Examples from existing peer-reviewed research will be used to highlight the main points. Historical, medical physicists have leveraged many areas of applied physics, engineering and biology to improve radiotherapy. Research on quality and safety is another area where physicists can have an impact. The key to further progress is to clearly define what constitutes quality and safety research for those interested in doing such research and the reviewers of that research. Learning Objectives: List several tools of quality and safety with references to peer-reviewed literature. Describe effects of mental workload on performance. Outline research in quality and safety indicators and technique analysis. Understand what quality and safety research needs to be going forward. Understand the links between cooperative group trials and quality and safety research.« less

  14. Fermilab Education: Physicists

    Science.gov Websites

    Search Education and Outreach: Resources and Opportunties for Fermilab employees and Users A variety of resources and opportunities are available for physicists interested in education and outreach (For general Data (6–12) Physical Science/Physics Instructional Resources (K–12) US Particle Physics Education and

  15. Matter and Interactions: A Particle Physics Perspective

    ERIC Educational Resources Information Center

    Organtini, Giovanni

    2011-01-01

    In classical mechanics, matter and fields are completely separated; matter interacts with fields. For particle physicists this is not the case; both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this article we explain why particle physicists believe in…

  16. Gendered Hegemony and Its Contradictions among Finnish University Physicists

    ERIC Educational Resources Information Center

    Sannino, Annalisa; Vainio, Jenny

    2015-01-01

    This article addresses the issue of gender imbalance in Finnish universities in the domain of physics as a historical and dialectical phenomenon. Drawing from the Gramscian notion of hegemony and the activity-theoretical notion of contradiction, this paper analyses gendered hegemonic and contradictory forces steering physicists' careers. This…

  17. History of Physicists in Industry. Final Report

    ERIC Educational Resources Information Center

    Anderson, R. Joseph; Butler, Orville R.

    2008-01-01

    This project is the first systematic study of the organizational structure, communications patterns, and archival records of industrial physicists in the U.S., and it provides general guidelines for understanding and documenting their work. The study confirms that the organization and management of industrial R&D is volatile, changing in response…

  18. Complementary Colours for a Physicist

    ERIC Educational Resources Information Center

    Babic, Vitomir; Cepic, Mojca

    2009-01-01

    This paper reports on a simple experiment which enables splitting incident light into two different modes, each having a colour exactly complementary to the other. A brief historical development of colour theories and differences in a physicist's point of view with respect to an artist's one is discussed. An experimental system for producing…

  19. Signing off

    NASA Astrophysics Data System (ADS)

    2001-11-01

    How much do we value our physicists? Some banknotes carry pictures of great physicists. It seems obvious to conduct an investigation using this data to find out how much we value them. Research can be carried out by finding what denomination a country uses for its physicists and using some simple currency conversions. All discussions of the relative merits of physicists have so far ignored this data. Newton, so often the baseline of physics greatness, was once represented on the English one-pound note. Although he has since been shredded and replaced by coins we will use the Newton as our base unit of currency, where one Newton is equal to one pound [those making a dimensional analysis should remember we are talking about currency]. The Danes value Bohr at 42 Newtons, whilst the Austrians consider Schrödinger to be worth 46 Newtons At this point the research becomes interesting because an (only slightly varying) constant emerges. The Danes value Bohr at 42 Newtons, whilst the Austrians consider Schrödinger to be worth 46 Newtons. Obviously, as with all quantum physics effects, those spending Schrödingers (as well as anyone who has retired) will find that when you have money to spend there is not time, and when you have the time there is no money to spend. These figures clearly show a trend that all physicists trade at about 45 Newtons. And they also seem to show how much the UK has undervalued Newton. However, this result may well be a feature of a newly suggested inverse square law of being famous, that the longer ago you lived the less important you seem. Physicists are working hard to reconcile this with the 'never famous before you are dead' postulate. More data is needed. With Marie Curie on the 500 French Franc note, one Curie is worth 48 Newtons, supporting the theory. However, Pierre Curie also appeared on this note so Marie can only really be valued at 24 Newtons. Quite how two physicists superpose in their currency valuations is unknown by theorists. Appearing on two notes also raises questions about the effect on value of working in several countries. The idea is yet to be fully formulated, but it would be nice if it were exponential. Certainly the fact that New Zealand's hero Rutherford has been represented on the one hundred dollar note, valuing him at 28 Newtons, adds to the idea of an attenuation coefficient. There also seem to be transient effects on value, resulting from the personality of the physicist involved. It seems entirely appropriate that the mercurial Tesla should be represented by the ten billion dollar Yugoslavian note, which was nevertheless worth almost nothing. But of course any discussions of great physicists always involve Einstein. Amazingly he has been seen represented on the Israeli five-pound note, valuing him at about 0.08 Newtons. Before rushing off, in support of the great man, to prove that this is clearly a relativistic aberration, just pause. Perhaps calculating your salary in Einsteins could be really rather good for morale... More about physicists on money can be found at www2.physics.umd.edu/~redish/Money/ Philip Britton Head of Physics, Leeds Grammar School, UK

  20. Christmas in Physics Land

    NASA Astrophysics Data System (ADS)

    1999-01-01

    A short story of everyday folk for the Yuletide season It was a beautiful scene. Children were sledging, or at least adults were sledging whilst the children waited for a go. Snow flakes were falling gently to the ground. The physicist was extremely content. All the snow flakes had a perfectly symmetric hexagonal crystal structure; the sledges were all reaching the bottom of the slope at just the correct velocity, neglecting heat loss due to friction. A skater went past. The physicist smiled. The change in melting point under the blades was just as it should have been, and angular momentum was completely conserved in the pirouette. A snowball hit the physicist squarely in the face, probably thrown by a geographer. But even this made the physicist laugh, as the trajectory was perfect, as long as you accounted for the changing mass. How different to last year when the physicist had spent Christmas in the real world. How glad he was that he had come to Physics Land for the festive season where everything was just as it ought to be. Someone in the crowd barged into him, but it didn't matter, he was a boson, so they just ignored each other. How horrid it had been last Christmas.... As a young man carrying a light ladder went past, whistling merrily and enjoying the experience of the Doppler effect, the physicist leant back against the perfectly smooth wall, revelling in the joy of resolving his forces on the rough ground... and began to think dark thoughts about the previous year. You see the problem with the real world was that it didn't understand physicists at all. Probably the worst place of all for a physicist was at a party. So often things would go wrong and he would leave early in disgrace. How well he remembered the evening when he had been curious whether it was a pnp or npn type semiconductor controlling the disco lights. It had taken barely three hours to reassemble the lights, and indeed improve on the flashing sequence by altering the reverse bias voltage, but no-one thanked him. Oh no, they were all just annoyed that he had dismantled the lights at all. That was the real world for you. Conversation had been difficult. People kept asking questions, but then didn't appear to be interested in the answer. One host had commented on the weather and then very rudely drifted off to another guest just as the physicist was making a clear distinction between rotating and inertial reference frames as the fundamental cause of the geostrophic wind. Another guest had made an equally bad impression by being clearly uninterested in a small digression on energy balance which seemed the obvious response to his comment about how warm the room had become as people began to dance. The physicist came out of his day dream. An old man was walking a dog on the end of a light inextensible string. A young girl on a swing was executing simple harmonic motion using a small-angle approximation in the park. Two older boys were investigating moments on a see-saw. A boisterous teenager was having a great time with the centripetal force on a roundabout. Yes, this was the life. In Physics Land, it would be a very merry Christmas. Philip Britton

  1. WE-H-201-00: Opportunities for Physicists to Support Low and Mid-Income Countries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The desperate need for radiotherapy in low and mid-income countries (LMICs) has been well documented. Roughly 60 % of the worldwide incidence of cancer occurs in these resource-limited settings and the international community alongside governmental and non-profit agencies have begun publishing reports and seeking help from qualified volunteers. However, the focus of several reports has been on how dire the situation is and the magnitude of the problem, leaving most to feel overwhelmed and unsure as to how to help and why to get involved. This session will help to explain the specific ways that Medical Physicists can uniquely assistmore » in this grand effort to help bring radiotherapy to grossly-underserved areas. Not only can these experts fulfill an important purpose, they also can benefit professionally, academically, emotionally and socially from the endeavor. By assisting others worldwide with their skillset, Medical Physicists can end up helping themselves. Learning Objectives: Understand the need for radiotherapy in LMICs. Understand which agencies are seeking Medical Physicists for help in LMICs. Understand the potential research funding mechanisms are available to establish academic collaborations with LMIC researchers/physicians. Understand the potential social and emotional benefits for both the physicist and the LMIC partners when collaborations are made. Understand the potential for collaboration with other high-income scientists that can develop as the physicist partners with other large institutions to assist LMICs. Wil Ngwa - A recent United Nations Study reports that in developing countries more people have access to cell phones than toilets. In Africa, only 63% of the population has access to piped water, yet, 93% of Africans have cell phone service. Today, these cell phones, Skype, WhatsApp and other information and communication technologies (ICTs) connect us in unprecedented ways and are increasingly recognized as powerful, indispensable to global health. Thanks to ICTs, there are growing opportunities for Medical Physicists to reach out beyond the bunker and impact the world far beyond, without even having to travel. These growing opportunities in global health for Medical Physicists, powered by ICTs, will be highlighted in this presentation, illustrated by high impact examples/models across the globe that are improving patient safety and healthcare outcomes, saving lives. Learning Objectives: Published definitions of global health and the emerging field of global radiation oncology Learn about the transformative potential of ICTs in global radiation oncology care, research and education with focus on Medical Physics Learn about high impact examples of ICT-powered global radiation oncology and the increasing opportunities for participation by Medical Physicists. Yakov Pipman - The number and scope of volunteer Medical Physics activities in support of low-to-middle income countries has been increasing gradually. This happens through a variety of formal channels and to some extent through less formal but personal initiatives. A good deal of effort is dedicated by many, but many more could be recruited through a structured framework to volunteer. We will look into typical volunteer activities and how they fit with organizations already involved in advancing Medical Physics in LMIC. We will identify the range of these organizational activities and their scope to reveal areas of further need. We will point to a few key features of MPWB ( http://www.mpwb.org ) as a volunteering and collaborating structure and how members can get involved and contribute to these efforts at the grass roots level. The goal is that scarce resources can thus be channeled to complement rather than compete with those already in place. Learning Objectives: Understand the strengths and limitations of various organizations that support Medical Physics efforts in LMIC. Learn about ways to volunteer and contribute to Global Health through a grass roots organization focused on Medical Physics in LMIC. Perry Sprawls - With the growing capability and complexity of medical imaging methods in all countries of the world, the expanding role of medical physicists includes optimizing imaging procedures with respect to image quality, radiation dose, and other conflicting factors. With access to appropriate educational resources local medical physicists in all countries can provide direct clinical support and educational for other medical professionals. This is being supported through the process of Collaborative Teaching that combines the capabilities and experience of medical physicists in countries spanning the spectrum of economic, technological, and clinical development. The supporting resources are on the web at: http://www.sprawls.org/resources . Learning Objectives: Identify the medical physics educational needs to support effective and optimized medical imaging procedures. Use collaborative teaching resources to enhance the role of medical physicists in all countries of the world.« less

  2. WE-H-201-02: Emerging Models and Opportunities in Global Health for Medical Physicists Powered by Information and Communication Technologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ngwa, W.

    The desperate need for radiotherapy in low and mid-income countries (LMICs) has been well documented. Roughly 60 % of the worldwide incidence of cancer occurs in these resource-limited settings and the international community alongside governmental and non-profit agencies have begun publishing reports and seeking help from qualified volunteers. However, the focus of several reports has been on how dire the situation is and the magnitude of the problem, leaving most to feel overwhelmed and unsure as to how to help and why to get involved. This session will help to explain the specific ways that Medical Physicists can uniquely assistmore » in this grand effort to help bring radiotherapy to grossly-underserved areas. Not only can these experts fulfill an important purpose, they also can benefit professionally, academically, emotionally and socially from the endeavor. By assisting others worldwide with their skillset, Medical Physicists can end up helping themselves. Learning Objectives: Understand the need for radiotherapy in LMICs. Understand which agencies are seeking Medical Physicists for help in LMICs. Understand the potential research funding mechanisms are available to establish academic collaborations with LMIC researchers/physicians. Understand the potential social and emotional benefits for both the physicist and the LMIC partners when collaborations are made. Understand the potential for collaboration with other high-income scientists that can develop as the physicist partners with other large institutions to assist LMICs. Wil Ngwa - A recent United Nations Study reports that in developing countries more people have access to cell phones than toilets. In Africa, only 63% of the population has access to piped water, yet, 93% of Africans have cell phone service. Today, these cell phones, Skype, WhatsApp and other information and communication technologies (ICTs) connect us in unprecedented ways and are increasingly recognized as powerful, indispensable to global health. Thanks to ICTs, there are growing opportunities for Medical Physicists to reach out beyond the bunker and impact the world far beyond, without even having to travel. These growing opportunities in global health for Medical Physicists, powered by ICTs, will be highlighted in this presentation, illustrated by high impact examples/models across the globe that are improving patient safety and healthcare outcomes, saving lives. Learning Objectives: Published definitions of global health and the emerging field of global radiation oncology Learn about the transformative potential of ICTs in global radiation oncology care, research and education with focus on Medical Physics Learn about high impact examples of ICT-powered global radiation oncology and the increasing opportunities for participation by Medical Physicists. Yakov Pipman - The number and scope of volunteer Medical Physics activities in support of low-to-middle income countries has been increasing gradually. This happens through a variety of formal channels and to some extent through less formal but personal initiatives. A good deal of effort is dedicated by many, but many more could be recruited through a structured framework to volunteer. We will look into typical volunteer activities and how they fit with organizations already involved in advancing Medical Physics in LMIC. We will identify the range of these organizational activities and their scope to reveal areas of further need. We will point to a few key features of MPWB ( http://www.mpwb.org ) as a volunteering and collaborating structure and how members can get involved and contribute to these efforts at the grass roots level. The goal is that scarce resources can thus be channeled to complement rather than compete with those already in place. Learning Objectives: Understand the strengths and limitations of various organizations that support Medical Physics efforts in LMIC. Learn about ways to volunteer and contribute to Global Health through a grass roots organization focused on Medical Physics in LMIC. Perry Sprawls - With the growing capability and complexity of medical imaging methods in all countries of the world, the expanding role of medical physicists includes optimizing imaging procedures with respect to image quality, radiation dose, and other conflicting factors. With access to appropriate educational resources local medical physicists in all countries can provide direct clinical support and educational for other medical professionals. This is being supported through the process of Collaborative Teaching that combines the capabilities and experience of medical physicists in countries spanning the spectrum of economic, technological, and clinical development. The supporting resources are on the web at: http://www.sprawls.org/resources . Learning Objectives: Identify the medical physics educational needs to support effective and optimized medical imaging procedures. Use collaborative teaching resources to enhance the role of medical physicists in all countries of the world.« less

  3. WE-H-201-04: Models for Developing Medical Physics Educators and Education Programs in the Developing Countries and the Potential Role of US Universities and Individual Medical Physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprawls, P.

    The desperate need for radiotherapy in low and mid-income countries (LMICs) has been well documented. Roughly 60 % of the worldwide incidence of cancer occurs in these resource-limited settings and the international community alongside governmental and non-profit agencies have begun publishing reports and seeking help from qualified volunteers. However, the focus of several reports has been on how dire the situation is and the magnitude of the problem, leaving most to feel overwhelmed and unsure as to how to help and why to get involved. This session will help to explain the specific ways that Medical Physicists can uniquely assistmore » in this grand effort to help bring radiotherapy to grossly-underserved areas. Not only can these experts fulfill an important purpose, they also can benefit professionally, academically, emotionally and socially from the endeavor. By assisting others worldwide with their skillset, Medical Physicists can end up helping themselves. Learning Objectives: Understand the need for radiotherapy in LMICs. Understand which agencies are seeking Medical Physicists for help in LMICs. Understand the potential research funding mechanisms are available to establish academic collaborations with LMIC researchers/physicians. Understand the potential social and emotional benefits for both the physicist and the LMIC partners when collaborations are made. Understand the potential for collaboration with other high-income scientists that can develop as the physicist partners with other large institutions to assist LMICs. Wil Ngwa - A recent United Nations Study reports that in developing countries more people have access to cell phones than toilets. In Africa, only 63% of the population has access to piped water, yet, 93% of Africans have cell phone service. Today, these cell phones, Skype, WhatsApp and other information and communication technologies (ICTs) connect us in unprecedented ways and are increasingly recognized as powerful, indispensable to global health. Thanks to ICTs, there are growing opportunities for Medical Physicists to reach out beyond the bunker and impact the world far beyond, without even having to travel. These growing opportunities in global health for Medical Physicists, powered by ICTs, will be highlighted in this presentation, illustrated by high impact examples/models across the globe that are improving patient safety and healthcare outcomes, saving lives. Learning Objectives: Published definitions of global health and the emerging field of global radiation oncology Learn about the transformative potential of ICTs in global radiation oncology care, research and education with focus on Medical Physics Learn about high impact examples of ICT-powered global radiation oncology and the increasing opportunities for participation by Medical Physicists. Yakov Pipman - The number and scope of volunteer Medical Physics activities in support of low-to-middle income countries has been increasing gradually. This happens through a variety of formal channels and to some extent through less formal but personal initiatives. A good deal of effort is dedicated by many, but many more could be recruited through a structured framework to volunteer. We will look into typical volunteer activities and how they fit with organizations already involved in advancing Medical Physics in LMIC. We will identify the range of these organizational activities and their scope to reveal areas of further need. We will point to a few key features of MPWB ( http://www.mpwb.org ) as a volunteering and collaborating structure and how members can get involved and contribute to these efforts at the grass roots level. The goal is that scarce resources can thus be channeled to complement rather than compete with those already in place. Learning Objectives: Understand the strengths and limitations of various organizations that support Medical Physics efforts in LMIC. Learn about ways to volunteer and contribute to Global Health through a grass roots organization focused on Medical Physics in LMIC. Perry Sprawls - With the growing capability and complexity of medical imaging methods in all countries of the world, the expanding role of medical physicists includes optimizing imaging procedures with respect to image quality, radiation dose, and other conflicting factors. With access to appropriate educational resources local medical physicists in all countries can provide direct clinical support and educational for other medical professionals. This is being supported through the process of Collaborative Teaching that combines the capabilities and experience of medical physicists in countries spanning the spectrum of economic, technological, and clinical development. The supporting resources are on the web at: http://www.sprawls.org/resources . Learning Objectives: Identify the medical physics educational needs to support effective and optimized medical imaging procedures. Use collaborative teaching resources to enhance the role of medical physicists in all countries of the world.« less

  4. Physicists' Forced Migrations under Hitler

    NASA Astrophysics Data System (ADS)

    Beyerchen, Alan

    2011-03-01

    When the Nazis came to power in early 1933 they initiated formal and informal measures that forced Jews and political opponents from public institutions such as universities. Some physicists retired and others went into industry, but most emigrated. International communication and contact made emigration a viable option despite the desperate economic times in the Great Depression. Another wave of emigrations followed the annexation of Austria in 1938. Individual cases as well as general patterns of migration and adaptation to new environments will be examined in this presentation. One important result of the forced migrations was that many of the physicists expelled under Hitler played important roles in strengthening physics elsewhere, often on the Allied side in World War II.

  5. Physicists in the Wild

    NASA Astrophysics Data System (ADS)

    Miller, Michael L.

    2017-09-01

    Startups and large corporations are full of physicists, many hiding in plain sight. Why? I will discuss the strong parallels between basic research in nuclear/particle physics, founding teams at great startups, and leaders at some of the world's largest corporations. How big are these opportunities (mission and capital), and what can we do to help prepare more physicists for such roles? I will provide lessons learned from my winding career that began at the NSCL as a philosophy undergrad, proceeded through a PhD, postdoc and brief stint as faculty, and continued through the founding of an early cloud computing startup, a sale to IBM, and the founding of one of Silicon Valley's most active venture capital firms.

  6. Rejoice in the hubris: useful things biologists could do for physicists

    NASA Astrophysics Data System (ADS)

    Austin, Robert H.

    2014-10-01

    Political correctness urges us to state how wonderful it is to work with biologists and how, just as the lion will someday lie down with the lamb, so will interdisciplinary work, where biologists and physicists are mixed together in light, airy buildings designed to force socialization, give rise to wonderful new science. But it has been said that the only drive in human nature stronger than the sex drive is the drive to censor and suppress, and so I claim that it is OK for physicists and biologists to maintain a wary distance from each other, so that neither one censors or suppresses the wild ideas of the other.

  7. The rationale behind Pierre Duhem's natural classification.

    PubMed

    Bhakthavatsalam, Sindhuja

    2015-06-01

    The central concern of this paper is the interpretation of Duhem's attitude towards physical theory. Based on his view that the classification of experimental laws yielded by theory progressively approaches a natural classification-a classification reflecting that of underlying realities-Duhem has been construed as a realist of sorts in recent literature. Here I argue that his positive attitude towards the theoretic classification of laws had rather to do with the pragmatic rationality of the physicist. Duhem's idea of natural classification was an intuitive idea in the mind of the physicist that had to be affirmed in order to justify the physicist's pursuit of theory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. AFOMP Policy No 5: career progression for clinical medical physicists in AFOMP countries.

    PubMed

    Round, W H; Stefanoyiannis, A P; Ng, K H; Rodriguez, L V; Thayalan, K; Han, Y; Tang, F; Fukuda, S; Srivastava, R; Krisanachinda, A; Shiau, A C; Deng, X

    2015-06-01

    This policy statement, which is the fifth of a series of documents being prepared by the Asia-Oceania Federation of Organizations for Medical Physics Professional Development Committee, gives guidance on how clinical medical physicists' careers should progress from their initial training to career end. It is not intended to be prescriptive as in some AFOMP countries career structures are already essentially defined by employment awards and because such matters will vary considerably from country to country depending on local culture, employment practices and legislation. It is intended to be advisory and set out options for member countries and employers of clinical medical physicists to develop suitable career structures.

  9. Mid-Career PhD Physicists: Academia & Beyond

    NASA Astrophysics Data System (ADS)

    White, Susan

    2017-01-01

    What jobs do mid-career PhD physicists hold? In a first-ever study, we collected data in 2011 from over 1,500 physics PhD recipients from the classes of 1996, 1997, 2000, and 2001. About 45% of the physics PhD recipients in these classes immediately took jobs that were not temporary, and over 40% accepted postdocs. How does taking a postdoc affect mid-career employment? What is the relationship between first job (after any postdocs) and mid-career employment? How do physicists' actual jobs compare with what they thought they would be doing when they graduated? Using our initial employment and mid-career data, I will answer these questions and more.

  10. Rejoice in the hubris: useful things biologists could do for physicists.

    PubMed

    Austin, Robert H

    2014-10-08

    Political correctness urges us to state how wonderful it is to work with biologists and how, just as the lion will someday lie down with the lamb, so will interdisciplinary work, where biologists and physicists are mixed together in light, airy buildings designed to force socialization, give rise to wonderful new science. But it has been said that the only drive in human nature stronger than the sex drive is the drive to censor and suppress, and so I claim that it is OK for physicists and biologists to maintain a wary distance from each other, so that neither one censors or suppresses the wild ideas of the other.

  11. Williams Holistic Approach Model (WHAM): Sustainable University Leadership from the Perspective of a Woman Physicist

    ERIC Educational Resources Information Center

    Williams, Elvira S.

    2010-01-01

    University leadership from career and organizational viewpoints are discussed from the perspective of a woman physicist. Laws of physics are used, through appropriate analogies, as templates for structuring useful life lessons on holistic WHAM leadership. Interactive university skill sets and program policies based on holistic WHAM approaches are…

  12. Why Aren’t Lightsabers Real Yet? Get the Lowdown from a Laser Physicist

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunsberger, Maren; Liao, Zhi

    The release of "Star Wars: The Force Awakens" begs the obvious question: Why aren't lightsabers real yet? LLNL science communicator Maren Hunsberger gets the lowdown from laser physicist Zhi Liao in this first installment of "Inside the Lab," a new YouTube series exploring crazy-cool science questions.

  13. My Collaboration with Cuban Physicists

    NASA Astrophysics Data System (ADS)

    Leccabue, Fabrizio

    My first meeting with the scientific Cuban community was in 1969 when the first of four young Cuban physicists, Joaquín Torres Orosco†, came to the Physics Department of Parma University through the `Andrea Levialdi Fellowship,' an Italian bursary promoted by Roberto Fieschi using a fund, subscribed to voluntarily by the Italian physics community.

  14. No Space for Girliness in Physics: Understanding and Overcoming the Masculinity of Physics

    ERIC Educational Resources Information Center

    Götschel, Helene

    2014-01-01

    Allison Gonsalves' article on "women doctoral students' positioning around discourses of gender and competence in physics" explores narratives of Canadian women physicists concerning their strategies to gain recognition as physicists. In my response to her rewarding and inspiring analysis I will reflect on her findings and arguments and…

  15. Mathematics for Physicists and Engineers.

    ERIC Educational Resources Information Center

    Organisation for Economic Cooperation and Development, Paris (France).

    The text is a report of the OEEC Seminar on "The Mathematical Knowledge Required by the Physicist and Engineer" held in Paris, 1961. There are twelve major papers presented: (1) An American Parallel (describes the work of the Panel on Physical Sciences and Engineering of the Committee on the Undergraduate Program in Mathematics of the Mathematical…

  16. You Don't Look Like a Physicist

    ERIC Educational Resources Information Center

    Santos, Antonio Carlos Fontes

    2017-01-01

    "You don't look like a physicist!" "Sorry, this bus only goes to the university, Sir." "Where are you going, sir?" "So, you are a university professor? But a substitute one, aren't you?" "OK, you're a professor, but do you do research?" As a person of color teaching physics in Brazil, those are…

  17. Thoughts of Modern Women in Physics

    ERIC Educational Resources Information Center

    Ainsbury, Liz; Heaney, Libby; Hodges, Vicki; Harkness, Laura; Russell, Laura

    2011-01-01

    In 2007, the Women in Physics Group of the Institute of Physics initiated the Very Early Career Woman Physicist of the Year Award. The award seeks to recognise the outstanding achievements of women physicists who are embarking on a career in physics and to promote the career opportunities open to people with physics qualifications. The prize is…

  18. Collaborative Lab Reports with Google Docs

    ERIC Educational Resources Information Center

    Wood, Michael

    2011-01-01

    Science is a collaborative endeavor. The solitary genius working on the next great scientific breakthrough is a myth not seen much today. Instead, most physicists have worked in a group at one point in their careers, whether as a graduate student, faculty member, staff scientist, or industrial researcher. As an experimental nuclear physicist with…

  19. "Angels & Demons" May Help Physicists Explain What Matters

    ERIC Educational Resources Information Center

    Basken, Paul

    2009-01-01

    It's not every day that scientific researchers need to defend themselves against charges of destroying humanity. And yet a group of several dozen physicists associated with the Large Hadron Collider may be getting pretty good at it--and, at the same time, actively engaging in public education and debate in ways that university scientists have…

  20. Factors Influencing International PhD Students to Study Physics in Australia

    ERIC Educational Resources Information Center

    Choi, Serene H.-J.; Nieminen, Timo A.; Townson, Peter

    2012-01-01

    Since physics research is an activity of an active international community, international visits are a common way for physicists to share scientific knowledge and skills. International mobility of physicists is also important for PhD physics study and research training. We investigated personal and social factors that influenced the decision for…

  1. Fireworks on the 4th of July

    ERIC Educational Resources Information Center

    Barnett, R. Michael

    2013-01-01

    After half a century of waiting, the drama was intense. Physicists slept overnight outside the auditorium to get seats for the seminar at the CERN lab in Geneva, Switzerland. Ten thousand miles away on the other side of the planet, at the world's most prestigious international particle physics conference, hundreds of physicists from every corner…

  2. Medical Physicists and AAPM

    NASA Astrophysics Data System (ADS)

    Amols, Howard

    2006-03-01

    The American Association of Physicists in Medicine (AAPM), a member society of the AIP is the largest professional society of medical physicists in the world with nearly 5700 members. Members operate in medical centers, university and community hospitals, research laboratories, industry, and private practice. Medical physics specialties include radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. The majority of AAPM members are based in hospital departments of radiation oncology or radiology and provide technical support for patient diagnosis and treatment in a clinical environment. Job functions include support of clinical care, calibration and quality assurance of medical devices such as linear accelerators for cancer therapy, CT, PET, MRI, and other diagnostic imaging devices, research, and teaching. Pathways into a career in medical physics require an advanced degree in medical physics, physics, engineering, or closely related field, plus clinical training in one or more medical physics specialties (radiation therapy physics, imaging physics, or radiation safety). Most clinically based medical physicists also obtain certification from the American Board of Radiology, and some states require licensure as well.

  3. Careers in Medical Physics and the American Association of Physicists in Medicine

    NASA Astrophysics Data System (ADS)

    Amols, Howard

    2006-03-01

    The American Association of Physicists in Medicine (AAPM), a member society of the AIP is the largest professional society of medical physicists in the world with nearly 5700 members. Members operate in medical centers, university and community hospitals, research laboratories, industry, and private practice. Medical physics specialties include radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. The majority of AAPM members is based in hospital departments of radiation oncology or radiology and provide technical support for patient diagnosis and treatment in a clinical environment. Job functions include support of clinical care, calibration and quality assurance of medical devices such as linear accelerators for cancer therapy, CT, PET, MRI, and other diagnostic imaging devices, research, and teaching. Pathways into a career in medical physics require an advanced degree in medical physics, physics, engineering, or closely related field, plus clinical training in one or more medical physics specialties (radiation therapy physics, imaging physics, or radiation safety). Most clinically based medical physicists also obtain certification from the American Board of Radiology, and some states require licensure as well.

  4. Physics is …; The Physicist explores attributes of physics

    NASA Astrophysics Data System (ADS)

    Baker, F. Todd

    2016-12-01

    He's back! 'The physicist'returns with an entirely new compilation of questions and answers from his long-lived website where laypeople can ask questions about anything physics related. This book focuses on adjectives (practical, beautiful, surprising, cool, frivolous) instead of nouns like the first two books (atoms, photons, quanta, mechanics, relativity). The answers within 'Physics Is' are responses to people looking for answers to fascinating (and often uninformed) questions. It covers topics such as sports, electromagnetism, gravitational theory, special relativity, superheroes, videogames, and science fiction. These books are designed for laypeople and rely heavily on concepts rather than formalism. That said, they keep the physics correct and don't water down, so expert physicists will find this book and its two companion titles fun reads. They may actually recognize similar questions posed to them by friends and family. As with the first two books, 'Physics Is' ends with a chapter with questions from people who think that 'The physicist' is a psychic and from people who think they have the answers to life, the universe and everything.

  5. The role of medical physics in prostate cancer radiation therapy.

    PubMed

    Fiorino, Claudio; Seuntjens, Jan

    2016-03-01

    Medical physics, both as a scientific discipline and clinical service, hugely contributed and still contributes to the advances in the radiotherapy of prostate cancer. The traditional translational role in developing and safely implementing new technology and methods for better optimizing, delivering and monitoring the treatment is rapidly expanding to include new fields such as quantitative morphological and functional imaging and the possibility of individually predicting outcome and toxicity. The pivotal position of medical physicists in treatment personalization probably represents the main challenge of current and next years and needs a gradual change of vision and training, without losing the traditional and fundamental role of physicists to guarantee a high quality of the treatment. The current focus issue is intended to cover traditional and new fields of investigation in prostate cancer radiation therapy with the aim to provide up-to-date reference material to medical physicists daily working to cure prostate cancer patients. The papers presented in this focus issue touch upon present and upcoming challenges that need to be met in order to further advance prostate cancer radiation therapy. We suggest that there is a smart future for medical physicists willing to perform research and innovate, while they continue to provide high-quality clinical service. However, physicists are increasingly expected to actively integrate their implicitly translational, flexible and high-level skills within multi-disciplinary teams including many clinical figures (first of all radiation oncologists) as well as scientists from other disciplines. Copyright © 2016. Published by Elsevier Ltd.

  6. Using non-specialist observers in 4AFC human observer studies

    NASA Astrophysics Data System (ADS)

    Elangovan, Premkumar; Mackenzie, Alistair; Dance, David R.; Young, Kenneth C.; Wells, Kevin

    2017-03-01

    Virtual clinical trials (VCTs) are an emergent approach for rapid evaluation and comparison of various breast imaging technologies and techniques using computer-based modeling tools. Increasingly 4AFC (Four alternative forced choice) virtual clinical trials are used to compare detection performances of different breast imaging modalities. Most prior studies have used physicists and/or radiologists and physicists interchangeably. However, large scale use of statistically significant 4AFC observer studies is challenged by the individual time commitment and cost of such observers, often drawn from a limited local pool of specialists. This work aims to investigate whether non-specialist observers can be used to supplement such studies. A team of five specialist observers (medical physicists) and five non-specialists participated in a 4AFC study containing simulated 2D-mammography and DBT (digital breast tomosynthesis) images, produced using the OPTIMAM toolbox for VCTs. The images contained 4mm irregular solid masses and 4mm spherical targets at a range of contrast levels embedded in a realistic breast phantom background. There was no statistically significant difference between the detection performance of medical physicists and non-specialists (p>0.05). However, non-specialists took longer to complete the study than their physicist counterparts, which was statistically significant (p<0.05). Overall, the results from both observer groups indicate that DBT has a lower detectable threshold contrast than 2D-mammography for both masses and spheres, and both groups found spheres easier to detect than irregular solid masses.

  7. The Smallest Drops of the Hottest Matter? New Investigations at the Relativistic Heavy Ion Collider (493rd Brookhaven Lecture)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sickles, Anne

    2014-03-19

    Pool sharks at the billiards hall know that sometimes you aim to rocket the cue ball for a head-on collision, and other times, a mere glance will do. Physicists need to know more than a thing or two about collision geometry too, as they sift through data from the billions of ions that smash together at the Relativistic Heavy Ion Collider (RHIC). Determining whether ions crash head-on or just glance is crucial for the physicists analyzing data to study quark-gluon plasma—the ultra-hot, "perfect" liquid of quarks and gluons that existed more than 13 billion years ago, before the first protonsmore » and neutrons formed. For these physicists, collision geometry data provides insights about quark-gluon plasma's extremely low viscosity and other unusual properties, which are essential for understanding more about the "strong force" that holds together the nucleus, protons, and neutrons of every atom in the universe. Dr. Sickles explains how physicists use data collected at house-sized detectors like PHENIX and STAR to determine what happens before, during, and after individual particle collisions among billions at RHIC. She also explains how the ability to collide different "species" of nuclei at RHIC—including protons and gold ions today and possibly more with a proposed future electron-ion collider upgrade (eRHIC)—enables physicists to probe deeper into the mysteries of quark-gluon plasma and the strong force.« less

  8. The medical physics specialization system in Poland.

    PubMed

    Bulski, Wojciech; Kukołowicz, Paweł; Skrzyński, Witold

    2016-07-01

    This paper presents the situation of the profession of medical physicists in Poland. The official recognition of the profession of medical physicist in Polish legislation was in 2002. In recent years, more and more Universities which have Physics Faculties introduce a medical physics specialty. At present, there are about 15 Universities which offer such programmes. These Universities are able to graduate about 150 medical physicists per year. In 2002, the Ministry of Health introduced a programme of postgraduate specialization in medical physics along the same rules employed in the specialization of physicians in various branches of medicine. Five institutions, mostly large oncology centres, were selected as teaching institutions, based on their experience, the quality of the medical physics professionals, staffing levels, equipment availability, lecture halls, etc. The first cycle of the specialization programme started in 2006, and the first candidates completed their training at the end of 2008, and passed their official state exams in May 2009. As of January 2016, there are 196 specialized medical physicists in Poland. Another about 120 medical physicists are undergoing specialization. The system of training of medical physics professionals in Poland is well established. The principles of postgraduate training and specialization are well defined and the curriculum of the training is very demanding. The programme of specialization was revised in 2011 and is in accordance with EC and EFOMP recommendations. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. The Rhetoric of Physics: AN Ethnography of the Research and Writing Processes in a Physics Laboratory.

    NASA Astrophysics Data System (ADS)

    Graves, Heather Ann Brodie

    1992-01-01

    This dissertation explores the extent to which rhetoric plays a role in the research and writing processes of physicists. It seeks to join the on-going conversation in the rhetoric of inquiry about the ways in which rhetorical forces shape all knowledge systems. Based on data collected during a six-month ethnography in a thin films laboratory, this study argues that these physicists use rhetoric in all stages of the knowledge creation process. After following the experimental process through all its stages from the inception of an experiment through to publication, this study maps out the types of heuristic devices employed by the physicists as they analyzed, interpreted, and presented their research data in a persuasive scientific article. In light of the insights gained from studying the dynamic interactions between physicists, this dissertation also comments on the theoretical and philosophical debates under discussion in the rhetoric of inquiry and the rhetoric of science. It examines current theories of language (as expressed by rhetoricians, critical theorists, and the physicists in this laboratory) to explore the relationship between reality and language, the role that rhetoric plays in knowledge creation in physics, and the ways in which reality and knowledge may be socially constructed. It concludes that these physicists use rhetorical invention strategies to interpret and present their data. It also argues that scientific knowledge is subject to rhetorical forces because it deals with contingent affairs--phenomena about which scientists advance propositions which appear to be true but about which there is no way to gain absolute certainty or truth. Finally, it concludes that rhetoric both is and is not epistemic in the physics research studied here, and it argues that instead of asking "Is rhetoric epistemic?" perhaps we might shift our attention to inquiring "When is rhetoric epistemic?".

  10. SU-F-E-16: A Specific Training Package for Medical Physicists in Support to Nuclear and Radiological Emergency Situations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meghzifene, A; Berris, T

    Purpose: To provide the professional medical physicists with adequate competencies and skills in order to help them get prepared to support Nuclear or Radiological Emergency (NRE) situations. Methods: Although clinical medical physicists working have in-depth knowledge in radiation dosimetry, including dose reconstruction and dose measurements, they are usually not involved in NRE situations. However, in a few instances where medical physicists were involved in NREs, it appeared that many lacked specific knowledge and skills that are required in such situations. This lack of specific knowledge and skills is probably due to the fact that most current medical physics curricula domore » not include a specific module on this topic. As a response to this finding, the IAEA decided to initiate a project to develop a specific training package to help prepare medical physicists to support NRE situations. The training package was developed with the kind support of the Government of Japan and in collaboration with Fukushima Medical University (FMU) and the National Institute of Radiological Sciences (NIRS). Results: The first International Workshop to test the training package was held in Fukushima, Japan in June 2015. It consisted of lectures, demonstrations, simulation, role play, and practical sessions followed by discussions. The training was delivered through 14 modules which were prepared with the support of 12 lecturers. A knowledge assessment test was done before the workshop, followed by the same test done at the end of the Workshop, to assess the knowledge acquired during the training. Conclusion: The Workshop was successfully implemented. The overall rating of the workshop by the participants was excellent and all participants reported that they acquired a good understanding of the main issues that are relevant to medical physics support in case of NRE situations. They are expected to disseminate the knowledge to other medical physicists in their countries.« less

  11. TU-F-213AB-01: Diagnostic Workforce and Manpower Survey.

    PubMed

    Mills, M; Nickoloff, E

    2012-06-01

    Since AAPM Report No. 33 on Diagnostic Radiology Physics staffing is more than 20 years old, the Diagnostic Work and Workforce Study Subcommittee (DWWSS) of the Professional Council was formed to conduct a new study and update the data. The intent of the DWWSS study has two goals. First, it wanted to assess the number of FTE diagnostic physicists needed to support the QC, acceptance tests, radiation safety and other clinical functions for various imaging modalities, such as: CT scanners, MRI units, angiography rooms, ultrasound units, nuclear medicine imagers and other equipment. For example, the preliminary results indicate that the median annual physics support for one CT scanner is 0.007 FTE or 12.6 hours per unit. Second, the study wanted to provide an estimate of the cost of these physics services in terms of a fraction of a dollar per patient examination performed. For example, the cost for physics support of CT would be $0.27 for each CT procedure. This information would be similar to the Abt study conducted in Radiation Oncology. Radiation therapy physicists have utilized the Abt studies to generate re-imbursement for physics services and to justify financially the cost of their work efforts. Appropriate recognition for physics efforts in Diagnostic Radiology has never been properly quantified nor appreciated. With all the current and future changes occurring in healthcare, the information from the DWWSS survey could be important to the future of diagnostic physicists. Although diagnostic physicists are involved with many other activities such as teaching of residents and research, information about the clinical equipment support effort could be used to assess diagnostic physics staffing needs. The goals of the DWWSS study and the preliminary findings will be presented. 1. Present the goals of the DWWSS Diagnostic Physicist Survey.2. Present potential benefits to the AAPM members from this survey.3. Present findings from the preliminary analysis of the survey. © 2012 American Association of Physicists in Medicine.

  12. The role of the health physicist in nuclear security.

    PubMed

    Waller, Edward J; van Maanen, Jim

    2015-04-01

    Health physics is a recognized safety function in the holistic context of the protection of workers, members of the public, and the environment against the hazardous effects of ionizing radiation, often generically designated as radiation protection. The role of the health physicist as protector dates back to the Manhattan Project. Nuclear security is the prevention and detection of, and response to, criminal or intentional unauthorized acts involving or directed at nuclear material, other radioactive material, associated facilities, or associated activities. Its importance has become more visible and pronounced in the post 9/11 environment, and it has a shared purpose with health physics in the context of protection of workers, members of the public, and the environment. However, the duties and responsibilities of the health physicist in the nuclear security domain are neither clearly defined nor recognized, while a fundamental understanding of nuclear phenomena in general, nuclear or other radioactive material specifically, and the potential hazards related to them is required for threat assessment, protection, and risk management. Furthermore, given the unique skills and attributes of professional health physicists, it is argued that the role of the health physicist should encompass all aspects of nuclear security, ranging from input in the development to implementation and execution of an efficient and effective nuclear security regime. As such, health physicists should transcend their current typical role as consultants in nuclear security issues and become fully integrated and recognized experts in the nuclear security domain and decision making process. Issues regarding the security clearances of health physics personnel and the possibility of insider threats must be addressed in the same manner as for other trusted individuals; however, the net gain from recognizing and integrating health physics expertise in all levels of a nuclear security regime far outweighs any negative aspects. In fact, it can be argued that health physics is essential in achieving an integrated approach toward nuclear safety, security, and safeguards.

  13. The Role of the Health Physicist in Nuclear Security

    PubMed Central

    Waller, Edward J.; van Maanen, Jim

    2015-01-01

    Abstract Health physics is a recognized safety function in the holistic context of the protection of workers, members of the public, and the environment against the hazardous effects of ionizing radiation, often generically designated as radiation protection. The role of the health physicist as protector dates back to the Manhattan Project. Nuclear security is the prevention and detection of, and response to, criminal or intentional unauthorized acts involving or directed at nuclear material, other radioactive material, associated facilities, or associated activities. Its importance has become more visible and pronounced in the post 9/11 environment, and it has a shared purpose with health physics in the context of protection of workers, members of the public, and the environment. However, the duties and responsibilities of the health physicist in the nuclear security domain are neither clearly defined nor recognized, while a fundamental understanding of nuclear phenomena in general, nuclear or other radioactive material specifically, and the potential hazards related to them is required for threat assessment, protection, and risk management. Furthermore, given the unique skills and attributes of professional health physicists, it is argued that the role of the health physicist should encompass all aspects of nuclear security, ranging from input in the development to implementation and execution of an efficient and effective nuclear security regime. As such, health physicists should transcend their current typical role as consultants in nuclear security issues and become fully integrated and recognized experts in the nuclear security domain and decision making process. Issues regarding the security clearances of health physics personnel and the possibility of insider threats must be addressed in the same manner as for other trusted individuals; however, the net gain from recognizing and integrating health physics expertise in all levels of a nuclear security regime far outweighs any negative aspects. In fact, it can be argued that health physics is essential in achieving an integrated approach toward nuclear safety, security, and safeguards. PMID:25706142

  14. WE-AB-213-02: Status of Medical Physics Collaborations, and Projects in Latin America

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guzman, S.

    AAPM projects and collaborations in Africa Adam Shulman (AA-SC Chair) The African Affairs Subcommittee (AA-SC) of the AAPM will present a multi-institutional approach to medical physics support in Africa. Current work to increase the quality of care and level of safety for the medical physics practice in Senegal, Ghana, and Zimbabwe will be presented, along with preliminary projects in Nigeria and Botswana. Because the task of addressing the needs of medical physics in countries across Africa is larger than one entity can accomplish on its own, the AA-SC has taken the approach of joining forces with multiple organizations such asmore » Radiating Hope and TreatSafely (NGO’s), the IAEA, companies like BrainLab, Varian and Elekta, medical volunteers and academic institutions such as NYU and Washington University. Elements of current projects include: 1) Distance training and evaluation of the quality of contouring and treatment planning, teaching treatment planning and other subjects, and troubleshooting using modern telecommunications technology in Senegal, Ghana, and Zimbabwe; 2) Assistance in the transition from 2D to 3D in Senegal and Zimbabwe; 3) Assistance in the transition from 3D to IMRT using in-house compensators in Senegal; 4) Modernizing the cancer center in Senegal and increasing safety and; 5) Training on on 3D techniques in Ghana; 6) Assisting a teaching and training radiation oncology center to be built in Zimbabwe; 7) Working with the ISEP Program in Sub-Saharan Africa; 8) Creating instructional videos on linac commissioning; 9) Working on a possible collaboration to train physicists in Nigeria. Building on past achievements, the subcommittee seeks to make a larger impact on the continent, as the number and size of projects increases and more human resources become available. The State of Medical Physics Collaborations and Projects in Latin America Sandra Guzman (Peru) The lack of Medical Physicists (MP) in many Latin American (LA) countries leads to recruitment of professionals with incomplete education. In most LA countries only one MP responsible for each Center is currently mandated. Currently there is a large disparity among MP training programs and there is significant debate about the standards of MP graduate education in many LA countries. There are no commonly recognized academic programs, not enough clinical training sites and clinical training is not typically considered as part of the MP work. Economic pressures and high workloads also impede the creation of more training centers. The increasing need of qualified MPs require establishing a coordinated system of national Education & Training Centers (ETC), to meet the international standards of education and training in Medical Physics. This shortfall calls for support of organizations such as the IOMP, AAPM, ALFIM, IAEA, etc. Examples from various LA countries, as well as some proposed solutions, will be presented. In particular, we will discuss the resources that the AAPM and its members can offer to support regional programs. The ‘Medical Imaging’ physicist in the emerging world: Challenges and opportunities - Caridad Borrás (WGNIMP Chair) While the role of radiation therapy physicists in the emerging world is reasonably well established, the role of medical imaging physicists is not. The only perceived needs in radiology departments are equipment quality control and radiation protection, tasks that can be done by a technologist or a service engineer. To change the situation, the International Basic Safety Standard, which is adopted/adapted world-wide as national radiation protection regulations, states: “For diagnostic radiological procedures and image guided interventional procedures, the requirements of these Standards for medical imaging, calibration, dosimetry and quality assurance, including the acceptance and commissioning of medical radiological equipment, are fulfilled by or under the oversight of, or with the documented advice of a medical physicist, whose degree of involvement is determined by the complexity of the radiological procedures and the associated radiation risks”. Details on how these requirements can be carried out in resource-limited settings will be described. IAEA support to medical physics in Africa and Latin America: achievements and challenges Ahmed Meghzifene (IAEA) Shortage of clinically qualified medical physicists in radiotherapy and imaging, insufficient and inadequate education and training programs, as well as a lack of professional recognition were identified as the main issues to be addressed by the IAEA. The IAEA developed a series of integrated projects aiming specifically at promoting the essential role of medical physicists in health care, developing harmonized guidelines on dosimetry and quality assurance, and supporting education and clinical training programs. The unique feature of the IAEA approach is support it provides for implementation of guidelines and education programs in Member States through its technical cooperation project. The presentation will summarize IAEA support to Latin America and Africa in the field of medical physics and will highlight how the new International Basic Safety Standards are expected to impact the medical physics practice in low and middle income countries. Learning Objectives: Learn about the shortage of qualified Medical Physicists in Africa and Latin America. Understand the reasons of this shortage. Learn about the ways to improve the situation and AAPM role in this process.« less

  15. WE-AB-213-04: IAEA Support to Medical Physics in Africa and Latin America: Achievements and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meghzifene, A.

    AAPM projects and collaborations in Africa Adam Shulman (AA-SC Chair) The African Affairs Subcommittee (AA-SC) of the AAPM will present a multi-institutional approach to medical physics support in Africa. Current work to increase the quality of care and level of safety for the medical physics practice in Senegal, Ghana, and Zimbabwe will be presented, along with preliminary projects in Nigeria and Botswana. Because the task of addressing the needs of medical physics in countries across Africa is larger than one entity can accomplish on its own, the AA-SC has taken the approach of joining forces with multiple organizations such asmore » Radiating Hope and TreatSafely (NGO’s), the IAEA, companies like BrainLab, Varian and Elekta, medical volunteers and academic institutions such as NYU and Washington University. Elements of current projects include: 1) Distance training and evaluation of the quality of contouring and treatment planning, teaching treatment planning and other subjects, and troubleshooting using modern telecommunications technology in Senegal, Ghana, and Zimbabwe; 2) Assistance in the transition from 2D to 3D in Senegal and Zimbabwe; 3) Assistance in the transition from 3D to IMRT using in-house compensators in Senegal; 4) Modernizing the cancer center in Senegal and increasing safety and; 5) Training on on 3D techniques in Ghana; 6) Assisting a teaching and training radiation oncology center to be built in Zimbabwe; 7) Working with the ISEP Program in Sub-Saharan Africa; 8) Creating instructional videos on linac commissioning; 9) Working on a possible collaboration to train physicists in Nigeria. Building on past achievements, the subcommittee seeks to make a larger impact on the continent, as the number and size of projects increases and more human resources become available. The State of Medical Physics Collaborations and Projects in Latin America Sandra Guzman (Peru) The lack of Medical Physicists (MP) in many Latin American (LA) countries leads to recruitment of professionals with incomplete education. In most LA countries only one MP responsible for each Center is currently mandated. Currently there is a large disparity among MP training programs and there is significant debate about the standards of MP graduate education in many LA countries. There are no commonly recognized academic programs, not enough clinical training sites and clinical training is not typically considered as part of the MP work. Economic pressures and high workloads also impede the creation of more training centers. The increasing need of qualified MPs require establishing a coordinated system of national Education & Training Centers (ETC), to meet the international standards of education and training in Medical Physics. This shortfall calls for support of organizations such as the IOMP, AAPM, ALFIM, IAEA, etc. Examples from various LA countries, as well as some proposed solutions, will be presented. In particular, we will discuss the resources that the AAPM and its members can offer to support regional programs. The ‘Medical Imaging’ physicist in the emerging world: Challenges and opportunities - Caridad Borrás (WGNIMP Chair) While the role of radiation therapy physicists in the emerging world is reasonably well established, the role of medical imaging physicists is not. The only perceived needs in radiology departments are equipment quality control and radiation protection, tasks that can be done by a technologist or a service engineer. To change the situation, the International Basic Safety Standard, which is adopted/adapted world-wide as national radiation protection regulations, states: “For diagnostic radiological procedures and image guided interventional procedures, the requirements of these Standards for medical imaging, calibration, dosimetry and quality assurance, including the acceptance and commissioning of medical radiological equipment, are fulfilled by or under the oversight of, or with the documented advice of a medical physicist, whose degree of involvement is determined by the complexity of the radiological procedures and the associated radiation risks”. Details on how these requirements can be carried out in resource-limited settings will be described. IAEA support to medical physics in Africa and Latin America: achievements and challenges Ahmed Meghzifene (IAEA) Shortage of clinically qualified medical physicists in radiotherapy and imaging, insufficient and inadequate education and training programs, as well as a lack of professional recognition were identified as the main issues to be addressed by the IAEA. The IAEA developed a series of integrated projects aiming specifically at promoting the essential role of medical physicists in health care, developing harmonized guidelines on dosimetry and quality assurance, and supporting education and clinical training programs. The unique feature of the IAEA approach is support it provides for implementation of guidelines and education programs in Member States through its technical cooperation project. The presentation will summarize IAEA support to Latin America and Africa in the field of medical physics and will highlight how the new International Basic Safety Standards are expected to impact the medical physics practice in low and middle income countries. Learning Objectives: Learn about the shortage of qualified Medical Physicists in Africa and Latin America. Understand the reasons of this shortage. Learn about the ways to improve the situation and AAPM role in this process.« less

  16. Medical physics in 2020: will we still be relevant?

    PubMed

    Ng, K H

    2008-06-01

    From the time when Roentgen and other physicists made the discoveries which led to the development of radiology, radiotherapy and nuclear medicine, medical physicists have played a pivotal role in the development of new technologies that have revolutionized the way medicine is practiced today. Medical physicists have been transforming scientific advances in the research laboratories to improving the quality of life for patients; indeed innovations such as computed tomography, positron emission tomography and linear accelerators which collectively have improved the medical outcomes for millions of people. In order for radiation-delivery techniques to improve in targeting accuracy, optimal dose distribution and clinical outcome, convergence of imaging and therapy is the key. It is timely for these two specialties to work closer again. This can be achieved by means of cross-disciplinary research, common conferences and workshops, and collaboration in education and training for all. The current emphasis is on enhancing the specific skill development and competency of a medical physicist at the expense of their future roles and opportunities. This emphasis is largely driven by financial and political pressures for optimizing limited resources in health care. This has raised serious concern on the ability of the next generation of medical physicists to respond to new technologies. In addition in the background loom changes of tsunami proportion. The clearly defined boundaries between the different disciplines in medicine are increasingly blurred and those between diagnosis, therapy and management are also following suit. The use of radioactive particles to treat tumours using catheters, high-intensity focused ultrasound, electromagnetic wave ablation and photodynamic therapy are just some areas challenging the old paradigm. The uncertainty and turf battles will only explode further and medical physicists will not be spared. How would medical physicists fit into this changing scenario? We are in the midst of molecular revolution. Are we prepared to explore the newer technologies such as nanotechnology, drug discovery, pre-clinical imaging, optical imaging and biomedical informatics? How are our curricula adapting to the changing needs? We should remember the late Professor John Cameron who advocated imagination and creativity - these important attributes will make us still relevant in 2020 and beyond. To me the future is clear: "To achieve more, we should imagine together."

  17. WE-G-204-01: Building a Career in Academic Medical Physics: The Hardest and Best Job You Will Ever Have!

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazle, J.

    While many indicators for academic medical physics are distressing – jobs are tight, demands on clinical time are high (and getting worse) and national funding has been flat for several years (meaning less money in reality) the present is perhaps one of the most exciting times in cancer research history, and medical physicists have an opportunity to make a difference. Many of us predict the impact of medical physics on cancer research over the next decade to be more significant than ever. Why is that? First, medical imaging is used for every cancer patient in developed countries. Every improvement inmore » the acquisition, processing or analysis of radiological images has the potential to impact patients. The use of radiation therapy is at an all-time high – and virtually cannot be performed without medical physics. Many of the advances in both biomedical imaging and radiation oncology are the result of the hard work of academic medical physicists who are thinking of the next generation of technologies that will be used against cancer or an even broader spectrum of diseases. A career in academic medical physics is demanding, particularly for those with clinical responsibilities. As the demands for justification of their clinical effort become increasingly metricized, the ability to do “unfunded research” will become even more difficult. This means that many will have to generate external salary support to justify their efforts in research and development. This comes at a time when funding for research is compressed and harder to obtain. Generally speaking, if you are not contributing 50% or more of your effort to research, you are competing at a disadvantage and it is very unlikely you will get an NIH/NCI/NIBIB grant. Furthermore, in the ongoing effort to improve patient care and safety, we have developed credentialing pathways that now require at least two-years of residency training. This full-time clinical training creates a gap in the research trajectory of graduate students who aspire to academic positions with an expectation for extramural funding. To address this, several residency programs have created hybrid programs where the two-years of clinical training is combined with one or two years of research effort to allow candidates to further establish an academic identity and to ensure adequate academic productivity to compete for a beginning faculty position. In conclusion, while the path to a successful career in academic medical physics is steep and sometimes hard to follow, reaching the apex is worth the journey. Different paths to a career in medical physics are available, you just have to decide which one is right for you. If improving cancer care is your goal as a physicist, then academic medical physics is the job for you!.« less

  18. WE-G-204-02: So You Want to Do Research: Two Approaches to Beginning a Career in Medical Physics Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deasy, J.

    While many indicators for academic medical physics are distressing – jobs are tight, demands on clinical time are high (and getting worse) and national funding has been flat for several years (meaning less money in reality) the present is perhaps one of the most exciting times in cancer research history, and medical physicists have an opportunity to make a difference. Many of us predict the impact of medical physics on cancer research over the next decade to be more significant than ever. Why is that? First, medical imaging is used for every cancer patient in developed countries. Every improvement inmore » the acquisition, processing or analysis of radiological images has the potential to impact patients. The use of radiation therapy is at an all-time high – and virtually cannot be performed without medical physics. Many of the advances in both biomedical imaging and radiation oncology are the result of the hard work of academic medical physicists who are thinking of the next generation of technologies that will be used against cancer or an even broader spectrum of diseases. A career in academic medical physics is demanding, particularly for those with clinical responsibilities. As the demands for justification of their clinical effort become increasingly metricized, the ability to do “unfunded research” will become even more difficult. This means that many will have to generate external salary support to justify their efforts in research and development. This comes at a time when funding for research is compressed and harder to obtain. Generally speaking, if you are not contributing 50% or more of your effort to research, you are competing at a disadvantage and it is very unlikely you will get an NIH/NCI/NIBIB grant. Furthermore, in the ongoing effort to improve patient care and safety, we have developed credentialing pathways that now require at least two-years of residency training. This full-time clinical training creates a gap in the research trajectory of graduate students who aspire to academic positions with an expectation for extramural funding. To address this, several residency programs have created hybrid programs where the two-years of clinical training is combined with one or two years of research effort to allow candidates to further establish an academic identity and to ensure adequate academic productivity to compete for a beginning faculty position. In conclusion, while the path to a successful career in academic medical physics is steep and sometimes hard to follow, reaching the apex is worth the journey. Different paths to a career in medical physics are available, you just have to decide which one is right for you. If improving cancer care is your goal as a physicist, then academic medical physics is the job for you!.« less

  19. Scientific Productivity and Academic Promotion: A Study on French and Italian Physicists. NBER Working Paper No. 16341

    ERIC Educational Resources Information Center

    Lissoni, Francesco; Mairesse, Jacques; Montobbio, Fabio; Pezzoni, Michele

    2010-01-01

    The paper examines the determinants of scientific productivity (number of articles and journals' impact factor) for a panel of about 3600 French and Italian academic physicists active in 2004-05. Endogeneity problems concerning promotion and productivity are addressed by specifying a generalized Tobit model, in which a selection probit equation…

  20. A proposal to study the experience of female scientists in Mexico: Physicists as a case study

    NASA Astrophysics Data System (ADS)

    Martínez, Amalia; Blázquez, Norma; Gómez, Yolanda; Vales, Caridad; Meza-Montes, Lilia

    2013-03-01

    Although the design of public policies to support and improve the status and opportunities for female scientists requires reliable data, studies of this type have not been done in Mexico. We present a proposal to conduct such a study at the national level, with physicists as a test group.

  1. SPIRES (STANFORD PHYSICS INFORMATION RETRIEVAL SYSTEM). ANNUAL REPORT.

    ERIC Educational Resources Information Center

    PARKER, EDWIN B.

    SPIRES WAS PLANNED AS A FIVE-YEAR EFFORT TO DEVELOP AND STUDY AN EXPERIMENTAL SYSTEM FOR PROVIDING FOR THE SCIENTIFIC INFORMATION NEEDS OF PHYSICISTS AT STANFORD. THERE ARE TWO COMPONENTS TO THE SPIRES PROJECT. ONE IS TO STUDY THE INFORMATION NEEDS AND INFORMATION-SEEKING BEHAVIOR OF A USER POPULATION OF ABOUT 100 HIGH- ENERGY PHYSICISTS. DETAILS…

  2. Women and Men of the Manhattan Project

    ERIC Educational Resources Information Center

    Marshall, Jill; Herzenber, Caroline; Howes, Ruth; Weaver, Ellen; Gans, Dorothy

    2010-01-01

    In the early 1990s Ruth Howes, a nuclear physicist on the faculty at Ball State University, and Caroline Herzenberg, a nuclear physicist at Argonne National Laboratory, were asked to write a chapter on the Manhattan Project for a volume on women working on weapons development for the military. Realizing that they knew very little about the women…

  3. Women Physicists Speak Again. AIP Report, Number R-441

    ERIC Educational Resources Information Center

    Ivie, Rachel; Guo, Stacy

    2006-01-01

    Across the world, women in physics have much in common. In almost all countries, women are largely under represented in physics. In the majority of countries for which data was obtainable for this report from reliable statistical agencies, women earned no more than one-fifth of the PhDs in physics. Many women physicists across the world also…

  4. Why Aren’t Lightsabers Real Yet? Get the Lowdown from a Laser Physicist

    ScienceCinema

    Hunsberger, Maren; Liao, Zhi

    2018-06-22

    The release of "Star Wars: The Force Awakens" begs the obvious question: Why aren't lightsabers real yet? LLNL science communicator Maren Hunsberger gets the lowdown from laser physicist Zhi Liao in this first installment of "Inside the Lab," a new YouTube series exploring crazy-cool science questions.

  5. Educational Pathways of Black Women Physicists: Stories of Experiencing and Overcoming Obstacles in Life

    ERIC Educational Resources Information Center

    Rosa, Katemari; Mensah, Felicia Moore

    2016-01-01

    This is an empirical study on the underrepresentation of people of color in scientific careers. Grounded in critical race theory, the paper examines the lived experiences of six Black women physicists and addresses obstacles faced in their career paths and strategies used to overcome these obstacles. Data for this study were collected through…

  6. Learning from Mistakes: The Effect of Students' Written Self-Diagnoses on Subsequent Problem Solving

    ERIC Educational Resources Information Center

    Mason, Andrew; Yerushalmi, Edit; Cohen, Elisheva; Singh, Chandralekha

    2016-01-01

    Helping students learn to think like a physicist is an important goal of many introductory physics courses. One characteristic distinguishing more experienced physicists from novice students is that they make better use of problem solving as a learning opportunity. Experts were found to spend more time than novices in monitoring their work,…

  7. Critique and Fiction: Doing Science Right in Rural Education Research

    ERIC Educational Resources Information Center

    Howley, Craig B.

    2006-01-01

    This essay explains the relevance of critique in rural education to novels about rural places. The most important quoted passage in the essay is from the noted physicist Richard Feynman: "Science is the belief in the ignorance of experts." Novelist-physicist C. P. Snow, historian Henry Adams, and poet and student-of-mathematics Kelly Cherry also…

  8. Higgs Boson: god particle or divine comedy?

    NASA Astrophysics Data System (ADS)

    Rangacharyulu, Chary

    2013-10-01

    While particle physicists around the world rejoice the announcement of discovery of Higgs particle as a momentous event, it is also an opportune moment to assess the physicists' conception of nature. Particle theorists, in their ingenious efforts to unravel mysteries of the physical universe at a very fundamental level, resort to macroscopic many body theoretical methods of solid state physicists. Their efforts render the universe a superconductor of correlated quasi-particle pairs. Experimentalists, devoted to ascertain the elementary constituents and symmetries, depend heavily on numerical simulations based on those models and conform to theoretical slang in planning and interpretation of measurements . It is to the extent that the boundaries between theory/modeling and experiment are blurred. Is it possible that they are meandering in Dante's Inferno?

  9. Half Century of Black-Hole Theory: From Physicists' Purgatory to Mathematicians' Paradise

    NASA Astrophysics Data System (ADS)

    Carter, Brandon

    2006-06-01

    Although implicit in the discovery of the Schwarzschild solution 40 years earlier, the issues raised by the theory of what are now known as black holes were so unsettling to physicists of Einstein's generation that the subject remained in a state of semiclandestine gestation until his demise. That turning point — just half a century after Einstein's original foundation of relativity theory, and just half a century ago today — can be considered to mark the birth of black hole theory as a subject of systematic development by physicists of a new and less inhibited generation, whose enthusastic investigations have revealed structures of unforeseen mathematical beauty, even though questions about the physical significance of the concomitant singularities remain controversial.

  10. Device physics vis-à-vis fundamental physics in Cold War America: the case of quantum optics.

    PubMed

    Bromberg, Joan Lisa

    2006-06-01

    Historians have convincingly shown the close ties U.S. physicists had with the military during the Cold War and have raised the question of whether this alliance affected the content of physics. Some have asserted that it distorted physics, shifting attention from fundamental problems to devices. Yet the papers of physicists in quantum electronics and quantum optics, fields that have been exemplary for those who hold the distortion thesis, show that the same scientists who worked on military devices simultaneously pursued fundamental and foundational topics. This essay examines one such physicist, Marlan O. Scully, with attention to both his extensive foundational studies and the way in which his applied and basic researches played off each other.

  11. Evidencing `Tight Bound States' in the Hydrogen Atom:. Empirical Manipulation of Large-Scale XD in Violation of QED

    NASA Astrophysics Data System (ADS)

    Amoroso, Richard L.; Vigier, Jean-Pierre

    2013-09-01

    In this work we extend Vigier's recent theory of `tight bound state' (TBS) physics and propose empirical protocols to test not only for their putative existence, but also that their existence if demonstrated provides the 1st empirical evidence of string theory because it occurs in the context of large-scale extra dimensionality (LSXD) cast in a unique M-Theoretic vacuum corresponding to the new Holographic Anthropic Multiverse (HAM) cosmological paradigm. Physicists generally consider spacetime as a stochastic foam containing a zero-point field (ZPF) from which virtual particles restricted by the quantum uncertainty principle (to the Planck time) wink in and out of existence. According to the extended de Broglie-Bohm-Vigier causal stochastic interpretation of quantum theory spacetime and the matter embedded within it is created annihilated and recreated as a virtual locus of reality with a continuous quantum evolution (de Broglie matter waves) governed by a pilot wave - a `super quantum potential' extended in HAM cosmology to be synonymous with the a `force of coherence' inherent in the Unified Field, UF. We consider this backcloth to be a covariant polarized vacuum of the (generally ignored by contemporary physicists) Dirac type. We discuss open questions of the physics of point particles (fermionic nilpotent singularities). We propose a new set of experiments to test for TBS in a Dirac covariant polarized vacuum LSXD hyperspace suggestive of a recently tested special case of the Lorentz Transformation put forth by Kowalski and Vigier. These protocols reach far beyond the recent battery of atomic spectral violations of QED performed through NIST.

  12. Coherent excitations revealed and calculated

    NASA Astrophysics Data System (ADS)

    Georges, Antoine

    2018-01-01

    Quantum entities manifest themselves as either particles or waves. In a physical system containing a very large number of identical particles, such as electrons in a material, individualistic (particle-like) behavior prevails at high temperatures. At low temperatures, collective behavior emerges, and excitations of the system in this regime are best described as waves—long-lived phenomena that are periodic in both space and time and often dubbed “coherent excitations” by physicists. On page 186 of this issue, Goremychkin et al. (1) used experiment and theory to describe the emergence of coherent excitations in a complex quantum system with strong interactions. They studied a cerium-palladium compound, CePd3, in which the very localized electrons of 4f orbitals of Ce interact with the much more itinerant conduction electrons of the extended d orbitals of Pd at low temperatures to create a wavelike state.

  13. Computational physics of the mind

    NASA Astrophysics Data System (ADS)

    Duch, Włodzisław

    1996-08-01

    In the XIX century and earlier physicists such as Newton, Mayer, Hooke, Helmholtz and Mach were actively engaged in the research on psychophysics, trying to relate psychological sensations to intensities of physical stimuli. Computational physics allows to simulate complex neural processes giving a chance to answer not only the original psychophysical questions but also to create models of the mind. In this paper several approaches relevant to modeling of the mind are outlined. Since direct modeling of the brain functions is rather limited due to the complexity of such models a number of approximations is introduced. The path from the brain, or computational neurosciences, to the mind, or cognitive sciences, is sketched, with emphasis on higher cognitive functions such as memory and consciousness. No fundamental problems in understanding of the mind seem to arise. From a computational point of view realistic models require massively parallel architectures.

  14. Reaching for the cloud: on the lessons learned from grid computing technology transfer process to the biomedical community.

    PubMed

    Mohammed, Yassene; Dickmann, Frank; Sax, Ulrich; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto

    2010-01-01

    Natural scientists such as physicists pioneered the sharing of computing resources, which led to the creation of the Grid. The inter domain transfer process of this technology has hitherto been an intuitive process without in depth analysis. Some difficulties facing the life science community in this transfer can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies which have achieved certain stability. Grid and Cloud solutions are technologies, which are still in flux. We show how Grid computing creates new difficulties in the transfer process that are not considered in Bozeman's model. We show why the success of healthgrids should be measured by the qualified scientific human capital and the opportunities created, and not primarily by the market impact. We conclude with recommendations that can help improve the adoption of Grid and Cloud solutions into the biomedical community. These results give a more concise explanation of the difficulties many life science IT projects are facing in the late funding periods, and show leveraging steps that can help overcoming the "vale of tears".

  15. TU-G-213-00: The International Electrotechnical Commission (IEC): What Is It and Why Should Medical Physicists Care?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The International Electrotechnical Commission (IEC) writes standards that manufacturers of electrical equipment must comply with. Medical electrical equipment, such as medical imaging, radiation therapy, and radiation dosimetry devices, fall under Technical Committee 62. Of particular interest to medical physicists are the standards developed within Subcommittees (SC) 62B, which addresses diagnostic radiological imaging equipment, and 62C, which addresses equipment for radiation therapy, nuclear medicine and dosimetry. For example, a Working Group of SC 62B is responsible for safety and quality assurance standards for CT scanners and a Working Group of SC 62C is responsible for standards that set requirements for dosimetricmore » safety and accuracy of linacs and proton accelerators. IEC standards thus have an impact on every aspect of a medical physicist’s job, including equipment testing, shielding design, room layout, and workflow. Consequently, it is imperative that US medical physicists know about existing standards, as well as have input on those under development or undergoing revision. The structure of the IEC and current standards development work will be described in detail. The presentation will explain how US medical physicists can learn about IEC standards and contribute to their development. Learning Objectives: Learn about the structure of the IEC and the influence that IEC standards have on the design of equipment for radiology and radiation therapy. Learn about the mechanisms by which the US participates in the development and revision of standards. Understand the specific requirements of several standards having direct relevance to diagnostic and radiation therapy physicists.« less

  16. Curriculum for education and training of medical physicists in nuclear medicine: recommendations from the EANM Physics Committee, the EANM Dosimetry Committee and EFOMP.

    PubMed

    Del Guerra, Alberto; Bardies, Manuel; Belcari, Nicola; Caruana, Carmel J; Christofides, Stelios; Erba, Paola; Gori, Cesare; Lassmann, Michael; Lonsdale, Markus Nowak; Sattler, Bernhard; Waddington, Wendy

    2013-03-01

    To provide a guideline curriculum covering theoretical and practical aspects of education and training for Medical Physicists in Nuclear Medicine within Europe. National training programmes of Medical Physics, Radiation Physics and Nuclear Medicine physics from a range of European countries and from North America were reviewed and elements of best practice identified. An independent panel of experts was used to achieve consensus regarding the content of the curriculum. Guidelines have been developed for the specialist theoretical knowledge and practical experience required to practice as a Medical Physicist in Nuclear Medicine in Europe. It is assumed that the precondition for the beginning of the training is a good initial degree in Medical Physics at master level (or equivalent). The Learning Outcomes are categorised using the Knowledge, Skill and Competence approach along the lines recommended by the European Qualifications Framework. The minimum level expected in each topic in the theoretical knowledge and practical experience sections is intended to bring trainees up to the requirements expected of a Medical Physicist entering the field of Nuclear Medicine. This new joint EANM/EFOMP European guideline curriculum is a further step to harmonise specialist training of Medical Physicists in Nuclear Medicine within Europe. It provides a common framework for national Medical Physics societies to develop or benchmark their own curricula. The responsibility for the implementation and accreditation of these standards and guidelines resides within national training and regulatory bodies. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  17. Physicists' views on hadrontherapy: a survey of members of the Italian Association of Medical Physics (AIFM).

    PubMed

    Giandini, Tommaso; Tenconi, Chiara; Carrara, Mauro; Ciocca, Mario; Russo, Stefania; Panaino, Costanza M V; Cattani, Federica; Ciardo, Delia; Morlino, Sara; Avuzzi, Barbara; Bedini, Nice; Villa, Sergio; Marvaso, Giulia; Romanelli, Paola; Hasegawa, Azusa; Vischioni, Barbara; Valvo, Francesca; Jereczek-Fossa, Barbara A; Orecchia, Roberto; Valdagni, Riccardo; Pignoli, Emanuele

    2017-09-18

    This study was based on a survey to investigate perceptions of hadrontherapy of the members of the Italian Association of Medical Physics (AIFM). The survey was digitally submitted to the 991 members between the end of January and the beginning of April 2016. A 19-item questionnaire was designed focusing on advantages and disadvantages of hadrontherapy, current status and possible future improvements, and need and opportunities for future investments in Italy and abroad. Information about professional qualifications, main fields of clinical involvement and specific competencies of the respondents was also collected. The survey was completed by 121 AIFM members (response rate 12.2%). In the answers collected, it was shown that medical physicists expressed interest in hadrontherapy mainly for reasons of personal interest rather than for professional needs (90% ± 2.5% vs. 52% ± 4.3% of the respondents, respectively), with a good knowledge of the related basic aspects as well as of the pros and cons of its application. However, poor knowledge of the current status of hadrontherapy was observed among the medical physicists not directly involved at a professional level, who were less than 3% of the physicists working in radiotherapy. In light of these results, the implementation of new training and education initiatives should be devised to promote a deeper and global knowledge of hadrontherapy-related issues, not only from a theoretical point of view but also in practical terms. Moreover, a close collaboration between highly specialized medical physicists employed in hadrontherapy centers and others in oncology hospitals should be -encouraged.

  18. France's grandes écoles accused of elitism

    NASA Astrophysics Data System (ADS)

    Hellemans, Alexander

    2010-02-01

    Physicists in France have backed government plans to open up the country's elite grandes écoles to more students from poorer backgrounds. The government wants to allow up to 30% of students to be given free scholarships in an attempt to broaden the social mix of the student body. The physicists say this would not lead to a lowering of standards.

  19. Using Conceptual Metaphor and Functional Grammar to Explore How Language Used in Physics Affects Student Learning

    ERIC Educational Resources Information Center

    Brookes, David T.; Etkina, Eugenia

    2007-01-01

    This paper introduces a theory about the role of language in learning physics. The theory is developed in the context of physics students and physicists talking and writing about the subject of quantum mechanics. We found that physicists' language encodes different varieties of analogical models through the use of grammar and conceptual metaphor.…

  20. Students Know What Physicists Believe, but They Don't Agree: A Study Using the CLASS Survey

    ERIC Educational Resources Information Center

    Gray, Kara E.; Adams, Wendy K.; Wieman, Carl E.; Perkins, Katherine K.

    2008-01-01

    We measured what students perceive physicists to believe about physics and solving physics problems and how those perceptions differ from the students' personal beliefs. In this study, we used a modified version of the Colorado Learning Attitudes about Science Survey which asked students to respond to each statement with both their personal belief…

  1. How the wave mechanics of Schrodinger was met in the USSR?

    NASA Astrophysics Data System (ADS)

    Vizgin, Vl. P.

    1990-12-01

    The author is giving an almost complete review of the era of quantum mechanics in the USSR during 20-th of XX-th century. The author is making accent on the vision of Soviet physicists visavi the new area of science. The most important European and Soviet physicists with major and notable contributions in quantum mechanics are cited.

  2. A Superannuated Physicist's Attempts to Master Music Theory: Resolving Cognitive Conflicts and a Paradigm Clash

    ERIC Educational Resources Information Center

    Page-Shipp, Roy; van Niekerk, Caroline

    2014-01-01

    A sexagenarian retired physicist (the first author) set out, with the assistance of members of a university music department, to acquire some insight into Western music theory. For a lifelong singer and seasoned autodidact, this appeared to be a not too formidable challenge, yet he experienced significant difficulty in penetrating the music theory…

  3. T$sup 2$WR (think, talk, write, and reason)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Unruh, C.M.; Willis, C.A.

    1972-01-01

    From third Health Physics Society midyear topical symposium; Los Angeles, California, USA (29 Jan 1969). See CONF-690103P3. The health physicist, if he is to be effective in his profession, needs to develop his communication capabilities with craftsmen, management, and the public. His communications should meet the needs of and be understood by those receiving them. Second only to a thorough knowledge of the principles of health physics, persuasion is the health physicist' s biggest and best tool. By effective persuasion the health physicist should be able to accomplish his necessary work but he should always be ready to insist andmore » to stand firm to assure a safe course of action should his persuasive efforts prove to be ineffective. Public communications in the health physics field should be frequent. The organizational location of a health physics program in a corporate structure is optional. Good people will lead to a good program. In most situations an organizational position high in the corporate structure will help to assure proper importance and emphasis to the health physics program. In all cases clear lines of authority should be established and mutually understood by the health physicist, the craftsmen, and management. (auth)« less

  4. Anniversary paper: evolution of ultrasound physics and the role of medical physicists and the AAPM and its journal in that evolution.

    PubMed

    Carson, Paul L; Fenster, Aaron

    2009-02-01

    Ultrasound has been the greatest imaging modality worldwide for many years by equipment purchase value and by number of machines and examinations. It is becoming increasingly the front end imaging modality; serving often as an extension of the physician's fingers. We believe that at the other extreme, high-end systems will continue to compete with all other imaging modalities in imaging departments to be the method of choice for various applications, particularly where safety and cost are paramount. Therapeutic ultrasound, in addition to the physiotherapy practiced for many decades, is just coming into its own as a major tool in the long progression to less invasive interventional treatment. The physics of medical ultrasound has evolved over many fronts throughout its history. For this reason, a topical review, rather than a primarily chronological one is presented. A brief review of medical ultrasound imaging and therapy is presented, with an emphasis on the contributions of medical physicists, the American Association of Physicists in Medicine (AAPM) and its publications, particularly its journal Medical Physics. The AAPM and Medical Physics have contributed substantially to training of physicists and engineers, medical practitioners, technologists, and the public.

  5. The Importance of Science Policy and its Challenges

    NASA Astrophysics Data System (ADS)

    Preis, Benjamin

    2015-03-01

    I worked for physicist and Congressman Bill Foster (D-IL) as the Mather Public Policy Intern through the American Institute of Physics and the Society of Physics Students during the summer of 2014. This internship is meant to connect undergraduate physics students with the policy process in Washington DC. As a Mather Public Policy Intern, I worked for Congressman Foster researching policy initiatives such as science funding, STEM education, and environmental regulations. This talk will discuss my experience and many of the things that I learned as an undergraduate physicist working on Capitol Hill. For example, through my experience with the internship, I attended lectures and hearings that illuminated for me how members of Congress conceive of scientific research. I also met with many physicists on Capitol Hill working to improve government interest in physics research -- AAAS Fellows, Members of Congress, and Government Relations Specialists -- and I will talk about how I saw physicists impacting governmental policies relating to scientific research and development. This internship is part of the Society of Physics Students internship program and was funded by the John and Jane Mather Foundation for Science and the Arts. This work was part of the Society of Physics Students internship Program.

  6. M. Hildred Blewett and the Blewett Scholarship

    NASA Astrophysics Data System (ADS)

    Whitten, Barbara

    2011-03-01

    M. Hildred Blewett became a physicist at a time when few women were physicists. After beginning her career at General Electric, she became a respected accelerator physicist, working at Brookhaven, Argonne, and eventually CERN. Blewett was married for a time to John Blewett, another accelerator physicist, but the couple divorced without children and she never remarried. She felt that her career in physics was hampered by her gender, and when she died in 2004 at the age of 93, she left the bulk of her estate to the American Physical Society, to found a Scholarship for women in physics. Since 2005 the Blewett Scholarship has been awarded to women in physics who are returning to physics after a career break, usually for family reasons. Family/career conflicts are one of the most important reasons why young women in early careers leave physics---a loss for them as well as the physics community, which has invested time and money in their training. The Blewett Scholarship is one way for the physics community, under the leadership of CSWP, to help these young women resume their careers. I will discuss the life and work of Hildred Blewett, the Blewett Scholarship, and its benefits to the physics community.

  7. WE-H-201-03: Enthusiasm and Generosity of Spirit Necessitate a Volunteering Structure to Make Them More Meaningful

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pipman, Y.

    The desperate need for radiotherapy in low and mid-income countries (LMICs) has been well documented. Roughly 60 % of the worldwide incidence of cancer occurs in these resource-limited settings and the international community alongside governmental and non-profit agencies have begun publishing reports and seeking help from qualified volunteers. However, the focus of several reports has been on how dire the situation is and the magnitude of the problem, leaving most to feel overwhelmed and unsure as to how to help and why to get involved. This session will help to explain the specific ways that Medical Physicists can uniquely assistmore » in this grand effort to help bring radiotherapy to grossly-underserved areas. Not only can these experts fulfill an important purpose, they also can benefit professionally, academically, emotionally and socially from the endeavor. By assisting others worldwide with their skillset, Medical Physicists can end up helping themselves. Learning Objectives: Understand the need for radiotherapy in LMICs. Understand which agencies are seeking Medical Physicists for help in LMICs. Understand the potential research funding mechanisms are available to establish academic collaborations with LMIC researchers/physicians. Understand the potential social and emotional benefits for both the physicist and the LMIC partners when collaborations are made. Understand the potential for collaboration with other high-income scientists that can develop as the physicist partners with other large institutions to assist LMICs. Wil Ngwa - A recent United Nations Study reports that in developing countries more people have access to cell phones than toilets. In Africa, only 63% of the population has access to piped water, yet, 93% of Africans have cell phone service. Today, these cell phones, Skype, WhatsApp and other information and communication technologies (ICTs) connect us in unprecedented ways and are increasingly recognized as powerful, indispensable to global health. Thanks to ICTs, there are growing opportunities for Medical Physicists to reach out beyond the bunker and impact the world far beyond, without even having to travel. These growing opportunities in global health for Medical Physicists, powered by ICTs, will be highlighted in this presentation, illustrated by high impact examples/models across the globe that are improving patient safety and healthcare outcomes, saving lives. Learning Objectives: Published definitions of global health and the emerging field of global radiation oncology Learn about the transformative potential of ICTs in global radiation oncology care, research and education with focus on Medical Physics Learn about high impact examples of ICT-powered global radiation oncology and the increasing opportunities for participation by Medical Physicists. Yakov Pipman - The number and scope of volunteer Medical Physics activities in support of low-to-middle income countries has been increasing gradually. This happens through a variety of formal channels and to some extent through less formal but personal initiatives. A good deal of effort is dedicated by many, but many more could be recruited through a structured framework to volunteer. We will look into typical volunteer activities and how they fit with organizations already involved in advancing Medical Physics in LMIC. We will identify the range of these organizational activities and their scope to reveal areas of further need. We will point to a few key features of MPWB ( http://www.mpwb.org ) as a volunteering and collaborating structure and how members can get involved and contribute to these efforts at the grass roots level. The goal is that scarce resources can thus be channeled to complement rather than compete with those already in place. Learning Objectives: Understand the strengths and limitations of various organizations that support Medical Physics efforts in LMIC. Learn about ways to volunteer and contribute to Global Health through a grass roots organization focused on Medical Physics in LMIC. Perry Sprawls - With the growing capability and complexity of medical imaging methods in all countries of the world, the expanding role of medical physicists includes optimizing imaging procedures with respect to image quality, radiation dose, and other conflicting factors. With access to appropriate educational resources local medical physicists in all countries can provide direct clinical support and educational for other medical professionals. This is being supported through the process of Collaborative Teaching that combines the capabilities and experience of medical physicists in countries spanning the spectrum of economic, technological, and clinical development. The supporting resources are on the web at: http://www.sprawls.org/resources . Learning Objectives: Identify the medical physics educational needs to support effective and optimized medical imaging procedures. Use collaborative teaching resources to enhance the role of medical physicists in all countries of the world.« less

  8. WE-H-201-01: The Opportunities and Benefits of Helping LMICs: How Helping Them Can Help You

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollard, J.

    The desperate need for radiotherapy in low and mid-income countries (LMICs) has been well documented. Roughly 60 % of the worldwide incidence of cancer occurs in these resource-limited settings and the international community alongside governmental and non-profit agencies have begun publishing reports and seeking help from qualified volunteers. However, the focus of several reports has been on how dire the situation is and the magnitude of the problem, leaving most to feel overwhelmed and unsure as to how to help and why to get involved. This session will help to explain the specific ways that Medical Physicists can uniquely assistmore » in this grand effort to help bring radiotherapy to grossly-underserved areas. Not only can these experts fulfill an important purpose, they also can benefit professionally, academically, emotionally and socially from the endeavor. By assisting others worldwide with their skillset, Medical Physicists can end up helping themselves. Learning Objectives: Understand the need for radiotherapy in LMICs. Understand which agencies are seeking Medical Physicists for help in LMICs. Understand the potential research funding mechanisms are available to establish academic collaborations with LMIC researchers/physicians. Understand the potential social and emotional benefits for both the physicist and the LMIC partners when collaborations are made. Understand the potential for collaboration with other high-income scientists that can develop as the physicist partners with other large institutions to assist LMICs. Wil Ngwa - A recent United Nations Study reports that in developing countries more people have access to cell phones than toilets. In Africa, only 63% of the population has access to piped water, yet, 93% of Africans have cell phone service. Today, these cell phones, Skype, WhatsApp and other information and communication technologies (ICTs) connect us in unprecedented ways and are increasingly recognized as powerful, indispensable to global health. Thanks to ICTs, there are growing opportunities for Medical Physicists to reach out beyond the bunker and impact the world far beyond, without even having to travel. These growing opportunities in global health for Medical Physicists, powered by ICTs, will be highlighted in this presentation, illustrated by high impact examples/models across the globe that are improving patient safety and healthcare outcomes, saving lives. Learning Objectives: Published definitions of global health and the emerging field of global radiation oncology Learn about the transformative potential of ICTs in global radiation oncology care, research and education with focus on Medical Physics Learn about high impact examples of ICT-powered global radiation oncology and the increasing opportunities for participation by Medical Physicists. Yakov Pipman - The number and scope of volunteer Medical Physics activities in support of low-to-middle income countries has been increasing gradually. This happens through a variety of formal channels and to some extent through less formal but personal initiatives. A good deal of effort is dedicated by many, but many more could be recruited through a structured framework to volunteer. We will look into typical volunteer activities and how they fit with organizations already involved in advancing Medical Physics in LMIC. We will identify the range of these organizational activities and their scope to reveal areas of further need. We will point to a few key features of MPWB ( http://www.mpwb.org ) as a volunteering and collaborating structure and how members can get involved and contribute to these efforts at the grass roots level. The goal is that scarce resources can thus be channeled to complement rather than compete with those already in place. Learning Objectives: Understand the strengths and limitations of various organizations that support Medical Physics efforts in LMIC. Learn about ways to volunteer and contribute to Global Health through a grass roots organization focused on Medical Physics in LMIC. Perry Sprawls - With the growing capability and complexity of medical imaging methods in all countries of the world, the expanding role of medical physicists includes optimizing imaging procedures with respect to image quality, radiation dose, and other conflicting factors. With access to appropriate educational resources local medical physicists in all countries can provide direct clinical support and educational for other medical professionals. This is being supported through the process of Collaborative Teaching that combines the capabilities and experience of medical physicists in countries spanning the spectrum of economic, technological, and clinical development. The supporting resources are on the web at: http://www.sprawls.org/resources . Learning Objectives: Identify the medical physics educational needs to support effective and optimized medical imaging procedures. Use collaborative teaching resources to enhance the role of medical physicists in all countries of the world.« less

  9. Women physicists in Russia: Problems and solutions at a time of fiscal crisis

    NASA Astrophysics Data System (ADS)

    Didenko, Nelli; Ermolaeva, Elena; Kunitsyna, Ekaterina; Kratasyuk, Valentina; Vitman, Renata

    2013-03-01

    Recently Russia has been affected by the global financial crisis, which has had both positive and negative effects on women physicists. The feminization of science and the stratification that characterize the Russian scientific community in general also affect the field of physics. This paper discusses the proportion of women in leadership and managerial positions in different areas of science and education and highlights the differences between women and men in their careers in physics and defense of their theses. Lomonosov Moscow State University is used to demonstrate the dynamics of gender in different academic positions. The professional activity of young women physicists is illustrated by their participation in all-Russian scientific forums, demonstrating their commitment to remain active in their careers despite the challenges of the current economic conditions.

  10. How can laboratory plasma experiments contribute to space and &astrophysics?

    NASA Astrophysics Data System (ADS)

    Yamada, M.

    Plasma physics plays key role in a wide range of phenomena in the universe, from laboratory plasmas to the magnetosphere, the solar corona, and to the tenuous interstellar and intergalactic gas. Despite the huge difference in physical scales, there are striking similarities in plasma behavior of laboratory and space plasmas. Similar plasma physics problems have been investigated independently by both laboratory plasma physicists and astrophysicists. Since 1991, cross fertilization has been increased among laboratory plasma physicists and space physicists through meeting such as IPELS [Interrelationship between Plasma Experiments in the Laboratory and Space] meeting. The advances in laboratory plasma physics, along with the recent surge of astronomical data from satellites, make this moment ripe for research collaboration to further advance plasma physics and to obtain new understanding of key space and astrophysical phenomena. The recent NRC review of astronomy and astrophysics notes the benefit that can accrue from stronger connection to plasma physics. The present talk discusses how laboratory plasma studies can contribute to the fundamental understandings of the space and astrophysical phenomena by covering common key physics topics such as magnetic reconnection, dynamos, angular momentum transport, ion heating, and magnetic self-organization. In particular, it has recently been recognized that "physics -issue- dedicated" laboratory experiments can contribute significantly to the understanding of the fundamental physics for space-astrophysical phenomena since they can create fundamental physics processes in controlled manner and provide well-correlated plasma parameters at multiple plasma locations simultaneously. Such dedicated experiments not only can bring about better understanding of the fundamental physics processes but also can lead to findings of new physics principles as well as new ideas for fusion plasma confinement. Several dedicated experiments have provided the fundamental physics data for magnetic reconnection [1]. Linear plasma devices have been utilized to investigate Whistler waves and Alfven wave phenomena [2,3]. A rotating gallium disk experiment has been initiated to study magneto-rotational instability [4]. This talk also presents the most recent progress of these dedicated laboratory plasma research. 1. M. Yamada et al., Phys. Plasmas 4, 1936, (1997) 2. R. Stenzel, Phys. Rev. Lett. 65, 3001 (1991) 3. W. Gekelman et al, Plasma Phys. Contr. Fusion, v42, B15-B26, Suppl.12B (2000) 4. H. Ji, J. Goodman, A. Kageyama Mon. Not. R. Astron. Soc. 325, L1- (2001)

  11. BOOK REVIEW: Great Physicists - The Life and Times of Leading Physicists from Galileo to Hawking

    NASA Astrophysics Data System (ADS)

    Cropper, William H.

    2002-11-01

    The author, a former American chemistry professor, has organized his book into nine parts with 29 chapters, covering, in a fairly historical sequence and systemtic conceptual progression, all fundamentals of today's physics: i.e., mechanics, thermodynamics, electromagnetism, statistical mechanics, relativity, quantum mechanics, nuclear physics, particle physics, astronomy-astrophysics-cosmology. Obviously, the 20th century (when about 90% of professional physicists of all time worked) assumes with five topics the dominant role in this enterprise. For each topic, a small number (ranging from one to eight) of leading personalities is selected and the biographies of these 29 physicists, including two women (Marie Curie and Lise Meitner), are presented in some detail together with their achievements in the particular topic. Important relevant contributions of other scholars to each topic are also discussed. In addition, Cropper provides each of the topics with a short 'historical synopsis' justifying his selection of key persons. One may argue that concentrating on leading physicists constitutes an old-fashioned approach to displaying the history and contents of fundamental topics in physics. However, the mixture of biographies and explanation of leading contributions given here will certainly serve for a larger public, not just professional physicists and scientists, as a guide through the exciting development of physical ideas and discoveries. In general, the presentation of the material is quite satisfactory (with only few slips, e.g., in the Meitner story, where the author follows too closely a new biography) and gives the essence of the great advances in physics since the 15th century. One notices perhaps the limitation of the author in cases where no biography in English is available - this would also explain the omission of some of the main contributors to atomic and particle physics, such as Arnold Sommerfeld and Hideki Yukawa, or that French or Russian readers might occasionally miss a proper mention of their scientific heroes. These slightly critical observations should not obscure the impression that the chemist Cropper has succeeded with his goal of writing a very useful and informative book, displaying great understanding of the life of the physicists, their ingenious theoretical ideas and experimental discoveries. Simultaneously he has provided a pleasantly readable account of the great success story of physics extending over the past three hundred years. Both laymen and professionals may like to have the book in their public or private libraries. Helmut Rechenberg

  12. Physicists and Physics in Munich

    NASA Astrophysics Data System (ADS)

    Teichmann, Jürgen; Eckert, Michael; Wolff, Stefan

    We give a tour of Munich and some outlying sites that focuses on the lives and work of the most prominent physicists who lived in the city, Count Rumford, Joseph Fraunhofer, Georg Simon Ohm, Max Planck, Ludwig Boltzmann, Albert Einstein, Wilhelm Conrad Röntgen, Wilhelm Wien, Arnold Sommerfeld, Max von Laue, and Werner Heisenberg. We close with a self-guided tour that describes how to reach these sites in Munich.

  13. Epistemic Views of the Relationship between Physics and Mathematics: Its Influence on the Approach of Undergraduate Students to Problem Solving

    ERIC Educational Resources Information Center

    Pereira de Ataide, Ana Raquel; Greca, Ileana Maria

    2013-01-01

    The relationship between physics and mathematics is hardly ever presented with sufficient clarity to satisfy either physicists or mathematicians. It is a situation that often leads to misunderstandings that may spread quickly from teacher to student, such as the idea that mathematics is a mere instrument for the physicist. In this paper, we…

  14. The "Hard Problem" and the Quantum Physicists. Part 2: Modern Times

    ERIC Educational Resources Information Center

    Smith, C. U. M.

    2009-01-01

    This is the second part of a review of the work of quantum physicists on the "hard part" of the problem of mind. After an introduction which sets the scene and a brief review of contemporary work on the neural correlates of consciousness (NCC) the work of four prominent modern investigators is examined: J.C. Eccles/Friedrich Beck; Henry Stapp;…

  15. Young physicists' forum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T. Adams et al.

    2001-11-02

    The Young Physicists' Forum was an opportunity for the younger members of the particle-physics community to gather at Snowmass 2001 and to study and debate major issues that face the field over the next twenty years. Discussions were organized around three major topics: outreach and education, the impact of globalization, and building a robust and balanced field. We report on the results of these discussions, as presented on July 17, 2001.

  16. A perspective on slow-relaxing molecular magnets built from rare-earths and nitronyl-nitroxide building blocks (invited)

    NASA Astrophysics Data System (ADS)

    Bogani, Lapo

    2011-04-01

    We offer a perspective, accessible to both chemists and physicists, of recent developments in the synthesis and characterization of molecular magnetic materials based on rare-earths and nitronyl-nitroxide radicals. We show both the rationale of the synthetic strategies and the observed behaviors. We highlight the relevance of these findings for synthetic chemists, material scientists, and physicists.

  17. Weapons Storage Area Survey of Munitions Storage Igloos at Medina Annex, San Antonio, Texas

    DTIC Science & Technology

    2013-11-13

    School of Aerospace Medicine Occupational and Environmental Health Department Consultative Services Division/OEC 2510 Fifth St. Wright-Patterson AFB...a. Purpose: The United States Air Force School of Aerospace Medicine, Occupational and Environmental Health Department, Radiation Health ...Attachment 3 with other pertinent regulatory issues. c. Survey Personnel: (1) Health Physicist, Air Force Safety Center (2) Health Physicist, USAFSAM

  18. SU-A-210-04: Panel Discussion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stanford, J.

    The purpose of this student annual meeting is to address topics that are becoming more relevant to medical physicists, but are not frequently addressed, especially for students and trainees just entering the field. The talk is divided into two parts: medical billing and regulations. Hsinshun Wu – Why should we learn radiation oncology billing? Many medical physicists do not like to be involved with medical billing or coding during their career. They believe billing is not their responsibility and sometimes they even refuse to participate in the billing process if given the chance. This presentation will talk about a physicist’smore » long career and share his own experience that knowing medical billing is not only important and necessary for every young medical physicist, but that good billing knowledge could provide a valuable contribution to his/her medical physics development. Learning Objectives: The audience will learn the basic definition of Current Procedural Terminology (CPT) codes performed in a Radiation Oncology Department. Understand the differences between hospital coding and physician-based or freestanding coding. Apply proper CPT coding for each Radiation Oncology procedure. Each procedure with its specific CPT code will be discussed in detail. The talk will focus on the process of care and use of actual workflow to understand each CPT code. Example coding of a typical Radiation Oncology procedure. Special procedure coding such as brachytherapy, proton therapy, radiosurgery, and SBRT. Maryann Abogunde – Medical physics opportunities at the Nuclear Regulatory Commission (NRC) The NRC’s responsibilities include the regulation of medical uses of byproduct (radioactive) materials and oversight of medical use end-users (licensees) through a combination of regulatory requirements, licensing, safety oversight including inspection and enforcement, operational experience evaluation, and regulatory support activities. This presentation will explore the career options for medical physicists in the NRC, how the NRC interacts with clinical medical physicists, and a physicist’s experience as a regulator. Learning Objectives: Explore non-clinical career pathways for medical physics students and trainees at the Nuclear Regulatory Commission. Overview of NRC medical applications and medical use regulations. Understand the skills needed for physicists as regulators. Abogunde is funded to attend the meeting by her employer, the NRC.« less

  19. SU-A-210-03: Panel Discussion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodrigues, A.

    The purpose of this student annual meeting is to address topics that are becoming more relevant to medical physicists, but are not frequently addressed, especially for students and trainees just entering the field. The talk is divided into two parts: medical billing and regulations. Hsinshun Wu – Why should we learn radiation oncology billing? Many medical physicists do not like to be involved with medical billing or coding during their career. They believe billing is not their responsibility and sometimes they even refuse to participate in the billing process if given the chance. This presentation will talk about a physicist’smore » long career and share his own experience that knowing medical billing is not only important and necessary for every young medical physicist, but that good billing knowledge could provide a valuable contribution to his/her medical physics development. Learning Objectives: The audience will learn the basic definition of Current Procedural Terminology (CPT) codes performed in a Radiation Oncology Department. Understand the differences between hospital coding and physician-based or freestanding coding. Apply proper CPT coding for each Radiation Oncology procedure. Each procedure with its specific CPT code will be discussed in detail. The talk will focus on the process of care and use of actual workflow to understand each CPT code. Example coding of a typical Radiation Oncology procedure. Special procedure coding such as brachytherapy, proton therapy, radiosurgery, and SBRT. Maryann Abogunde – Medical physics opportunities at the Nuclear Regulatory Commission (NRC) The NRC’s responsibilities include the regulation of medical uses of byproduct (radioactive) materials and oversight of medical use end-users (licensees) through a combination of regulatory requirements, licensing, safety oversight including inspection and enforcement, operational experience evaluation, and regulatory support activities. This presentation will explore the career options for medical physicists in the NRC, how the NRC interacts with clinical medical physicists, and a physicist’s experience as a regulator. Learning Objectives: Explore non-clinical career pathways for medical physics students and trainees at the Nuclear Regulatory Commission. Overview of NRC medical applications and medical use regulations. Understand the skills needed for physicists as regulators. Abogunde is funded to attend the meeting by her employer, the NRC.« less

  20. Biophysics at the Boundaries: The Next Problem Sets

    NASA Astrophysics Data System (ADS)

    Skolnick, Malcolm

    2009-03-01

    The interface between physics and biology is one of the fastest growing subfields of physics. As knowledge of such topics as cellular processes and complex ecological systems advances, researchers have found that progress in understanding these and other systems requires application of more quantitative approaches. Today, there is a growing demand for quantitative and computational skills in biological research and the commercialization of that research. The fragmented teaching of science in our universities still leaves biology outside the quantitative and mathematical culture that is the foundation of physics. This is particularly inopportune at a time when the needs for quantitative thinking about biological systems are exploding. More physicists should be encouraged to become active in research and development in the growing application fields of biophysics including molecular genetics, biomedical imaging, tissue generation and regeneration, drug development, prosthetics, neural and brain function, kinetics of nonequilibrium open biological systems, metabolic networks, biological transport processes, large-scale biochemical networks and stochastic processes in biochemical systems to name a few. In addition to moving into basic research in these areas, there is increasing opportunity for physicists in industry beginning with entrepreneurial roles in taking research results out of the laboratory and in the industries who perfect and market the inventions and developments that physicists produce. In this talk we will identify and discuss emerging opportunities for physicists in biophysical and biotechnological pursuits ranging from basic research through development of applications and commercialization of results. This will include discussion of the roles of physicists in non-traditional areas apart from academia such as patent law, financial analysis and regulatory science and the problem sets assigned in education and training that will enable future biophysicists to fill these roles.

  1. Physicists and Economic Growth: Preparing the Next Generation

    NASA Astrophysics Data System (ADS)

    Arion, Douglas

    2012-02-01

    For many years it has been recognized that many physicists are ``hidden'' -- deep in the industrial world or holding positions not named ``physicist.'' In parallel with this phenomenon is the recognition that many new and innovative product ideas are, in fact, generated by physicists. There are many more ideas that could be brought to market to the benefit of both society and the inventor, but physicists don't often see themselves as the innovators and inventors that they actually are. A number of education programs have arisen to try to address this issue and to engender a greater entrepreneurial spirit in the scientific community. The ScienceWorks program at Carthage College was one of the first to do so, and has for nearly twenty years prepared undergraduate science majors to understand and practice innovation and value creation. Other programs, such as professional masters degrees, also serve to bridge the technical and business universes. As it is no doubt easier to teach a scientist the world of business than it is to teach a businessperson the world of physics, providing educational experiences in innovation and commercialization to physics students can have tremendous economic impact, and will also better prepare them for whatever career direction they may ultimately pursue, even if it is the traditional tenure-track university position. This talk will discuss education programs that have been effective at preparing physics students for the professional work environment, and some of the positive outcomes that have resulted. Also discussed will be the variety of opportunities and resources that exist for faculty and students to develop the skills, knowledge and abilities to recognize and successfully commercialize innovations.

  2. Medical physics aspects of cancer care in the Asia Pacific region: 2011 survey results

    PubMed Central

    Kron, T; Azhari, HA; Voon, EO; Cheung, KY; Ravindran, P; Soejoko, D; Inamura, K; Han, Y; Ung, NM; Bold, L; Win, UM; Srivastava, R; Meyer, J; Farrukh, S; Rodriguez, L; Kuo, M; Lee, JCL; Kumara, A; Lee, CC; Krisanachinda, A; Nguyen, XC; Ng, KH

    2012-01-01

    Background: Medical physicists are essential members of the radiation oncology team. Given the increasing complexity of radiotherapy delivery, it is important to ensure adequate training and staffing. The aim of the present study was to update a similar survey from 2008 and assess the situation of medical physicists in the large and diverse Asia Pacific region. Methods: Between March and July 2011, a survey on profession and practice of radiation oncology medical physicists (ROMPs) in the Asia Pacific region was performed. The survey was sent to senior physicists in 22 countries. Replies were received from countries that collectively represent more than half of the world’s population. The survey questions explored five areas: education, staffing, work patterns including research and teaching, resources available, and job satisfaction. Results and discussion: Compared to a data from a similar survey conducted three years ago, the number of medical physicists in participating countries increased by 29% on average. This increase is similar to the increase in the number of linear accelerators, showing that previously identified staff shortages have yet to be substantially addressed. This is also highlighted by the fact that most ROMPs are expected to work overtime often and without adequate compensation. While job satisfaction has stayed similar compared to the previous survey, expectations for education and training have increased somewhat. This is in line with a trend towards certification of ROMPs. Conclusion: As organisations such as the International Labour Organization (ILO) start to recognise medical physics as a profession, it is evident that despite some encouraging signs there is still a lot of work required towards establishing an adequately trained and resourced medical physics workforce in the Asia Pacific region. PMID:22970066

  3. Radiation risk perception and public information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boggs-Mayes, C.J.

    1988-01-01

    We as Health Physicists face what, at many times, appears to be a hopeless task. The task simply stated is informing the public about the risks (or lack thereof) of radiation. Unfortunately, the public has perceived radiation risks to be much greater than they actually are. An example of this problem is shown in a paper by Arthur C. Upton. Three groups of people -- the League of Women Voters, students, and Business and Professional Club members -- were asked to rank 30 sources of risk according to their contribution to the number of deaths in the United States. Notmore » surprisingly, they ranked nuclear power much higher and medical x-rays much lower than the actual values. In addition to the perception problem, we are faced with another hurdle: health physicists as communicators. Members of the Health Physics Society (HPS) found that the communication styles of most health physicists appear to be dissimilar to those of the general public. These authors administered the Myers-Briggs Type Indicator to the HPS Baltimore-Washington Chapter. This test, a standardized test for psychological type developed by Isabel Myers, ask questions that provide a quantitative measure of our natural preferences in four areas. Assume that you as a health physicist have the necessary skills to communicate information about radiation to the public. Health physicists do nothing with these tools. Most people involved in radiation protection do not get involved with public information activies. What I will attempt to do is heighten your interest in such activities. I will share information about public information activities in which I have been involved and give you suggestions for sources of information and materials. 2 refs., 1 tab.« less

  4. WE-D-16A-01: ACR Radiology Leadership Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, G

    The Radiology Leadership Institute (RLI) was established in 2011 by the American College of Radiology with a mission to prepare leaders who will shape the future of radiology to ensure quality, elevate service and deliver extraordinary patient care. Leadership skills are critical to medical physicists in order for them to assure that imaging and therapy are safe and of the highest quality possible. This session will provide an introduction to the RLI and its programs with an emphasis on how medical physicists can get involved and what they might expect to gain through their engagement with the RLI. The sessionmore » will also provide a framework for leadership in healthcare with an emphasis on roles and opportunities for medical physicists to enhance their effectiveness as members of the healthcare, medical education, and research communities.« less

  5. Ask not what physics can do for biology--ask what biology can do for physics.

    PubMed

    Frauenfelder, Hans

    2014-10-08

    Stan Ulam, the famous mathematician, said once to Hans Frauenfelder: 'Ask not what Physics can do for biology, ask what biology can do for physics'. The interaction between biologists and physicists is a two-way street. Biology reveals the secrets of complex systems, physics provides the physical tools and the theoretical concepts to understand the complexity. The perspective gives a personal view of the path to some of the physical concepts that are relevant for biology and physics (Frauenfelder et al 1999 Rev. Mod. Phys. 71 S419-S442). Schrödinger's book (Schrödinger 1944 What is Life? (Cambridge: Cambridge University Press)), loved by physicists and hated by eminent biologists (Dronamraju 1999 Genetics 153 1071-6), still shows how a great physicist looked at biology well before the first protein structure was known.

  6. The Role of Physicists in Anti-Terrorism: Transportation

    NASA Astrophysics Data System (ADS)

    Fainberg, Anthony

    2002-04-01

    Physicists, along with many other categories of scientists, participate in efforts against terrorism in a multitude of ways, including developing explosive detectors, sensors, security procedures, technical analyses, and decision tools. Transportation, especially civil aviation, is a field of focus within the anti- and counterterrorism arenas. The most spectacular terrorist acts have generally aimed at this sector and this trend is likely to continue. Physicists play their roles in all sectors: government, private industry, and even academia. Defense against terrorism has become a national priority in the United States, and one may expect the roles of scientific experts to become more important. The tactics of terrorists will change and develop, so it will become necessary to develop ever more sophisticated measures to fight them. Technology is part of the answer, but human factors, vulnerability analyses, threat assessment, and security procedures are equally important.

  7. Off the Beat. An Appreciation of Werner Heisenberg and Some Talk About How Physics Was in the Good Old Days

    ERIC Educational Resources Information Center

    Thomsen, Dietrick E.

    1976-01-01

    Presented is an insight into man's idea about physics and being a physicist in the days when Heisenberg, P. A. M. Dirac, Louis de Broglic and other famous physicists were young men. Heisenberg is compared to Newton, inventing new math as he needed it. Emphasis is placed on the fact that he was not a Nazi sympathizer. (EB)

  8. Kristian Camilleri: Heisenberg and the Interpretation of Quantum Mechanics—The Physicist as Philosopher. Cambridge University Press, 2009, ISBN-13:9780521884846, 211 pp.

    NASA Astrophysics Data System (ADS)

    Kleemans, Machiel

    2010-11-01

    The book Heisenberg and the Interpretation of Quantum Mechanics—The Physicist as Philosopher, by Kristian Camilleri is critically reviewed. The work details Heisenberg’s philosophical development from an early positivist commitment towards a later philosophy of language. It is of interest to researchers and graduate students in the history and philosophy of quantum mechanics.

  9. The Bohr paradox

    NASA Astrophysics Data System (ADS)

    Crease, Robert P.

    2008-05-01

    In his book Niels Bohr's Times, the physicist Abraham Pais captures a paradox in his subject's legacy by quoting three conflicting assessments. Pais cites Max Born, of the first generation of quantum physics, and Werner Heisenberg, of the second, as saying that Bohr had a greater influence on physics and physicists than any other scientist. Yet Pais also reports a distinguished younger colleague asking with puzzlement and scepticism "What did Bohr really do?".

  10. Intuitive Space Weather Displays to Improve Space Situational Awareness (SSA)

    DTIC Science & Technology

    2011-09-01

    parsimonious offering. After engaging several mathematicians and space physicists to devise valid computational formulas for aggregating the four hazard... PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Aptima, Inc.,12 Gill Street Ste 200,Woburn,MA... physicists , the operational users find little use in receiving particle fluxes or magnetometer readings collected by the scientific community. Fortunately

  11. Dmitry Ivanenko-a superstar of Soviet Physics

    NASA Astrophysics Data System (ADS)

    Sardanashvily, Gennady

    A detailed biography and bibliography (about 300 articles and a number of books available in Libraries) of professor Dmitry Dmitryevich Ivanenko (Iwanenko) (1904-1994) has beeen given by one of his disciples. The book includes also references of some widely known physicists about one of the lieding theoretical physicists of the Physics Department of the Moscow State University. Some documents from the personal archive of Ivanenko(Iwanenko) are included in the book.

  12. Physicist falls foul of US export law

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2008-10-01

    A retired US plasma physicist is seeking to overturn his conviction last month of offences under the American Arms Export Control Act, which prohibits the export, without a government licence, of technology and data to foreign nationals or nations. A jury in Knoxville, Tennessee, found JReece Roth, 70, guilty of illegally exporting technical information about a military project to develop plasma technology for guiding spyplanes that operate as weapons or surveillance devices.

  13. Post-modern physics, bathtub style

    NASA Astrophysics Data System (ADS)

    Robinson, Andrew

    2008-01-01

    We recently renovated our bathroom. One of the things that my wife - also a physicist - and I both agreed on was the absolute necessity for a large bathtub in which to stretch out, read a book and think. I find that most of my best ideas occur to me in the bath, and apparently I am not alone - the distinguished nuclear physicist Leo Szilárd is also reputed to have used bathtub meditation.

  14. The Status of Women Physicists in Pakistan

    NASA Astrophysics Data System (ADS)

    Hasnain, Aziz Fatima; Islam, Jabeen

    2009-04-01

    A significant number of women physicists work in high-ranking positions in the universities and research institutes of Pakistan; however, the number of women is much lower compared with men. We surveyed these women about the challenges they faced in the workplace and the pace of their progress and scientific work in a male-dominant society. We also surveyed girls' attitudes toward studying physics at the graduate and undergraduate levels.

  15. A proposed protocol for acceptance and constancy control of computed tomography systems: a Nordic Association for Clinical Physics (NACP) work group report.

    PubMed

    Kuttner, Samuel; Bujila, Robert; Kortesniemi, Mika; Andersson, Henrik; Kull, Love; Østerås, Bjørn Helge; Thygesen, Jesper; Tarp, Ivanka Sojat

    2013-03-01

    Quality assurance (QA) of computed tomography (CT) systems is one of the routine tasks for medical physicists in the Nordic countries. However, standardized QA protocols do not yet exist and the QA methods, as well as the applied tolerance levels, vary in scope and extent at different hospitals. To propose a standardized protocol for acceptance and constancy testing of CT scanners in the Nordic Region. Following a Nordic Association for Clinical Physics (NACP) initiative, a group of medical physicists, with representatives from four Nordic countries, was formed. Based on international literature and practical experience within the group, a comprehensive standardized test protocol was developed. The proposed protocol includes tests related to the mechanical functionality, X-ray tube, detector, and image quality for CT scanners. For each test, recommendations regarding the purpose, equipment needed, an outline of the test method, the measured parameter, tolerance levels, and the testing frequency are stated. In addition, a number of optional tests are briefly discussed that may provide further information about the CT system. Based on international references and medical physicists' practical experiences, a comprehensive QA protocol for CT systems is proposed, including both acceptance and constancy tests. The protocol may serve as a reference for medical physicists in the Nordic countries.

  16. TH-A-16A-01: Image Quality for the Radiation Oncology Physicist: Review of the Fundamentals and Implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seibert, J; Imbergamo, P

    The expansion and integration of diagnostic imaging technologies such as On Board Imaging (OBI) and Cone Beam Computed Tomography (CBCT) into radiation oncology has required radiation oncology physicists to be responsible for and become familiar with assessing image quality. Unfortunately many radiation oncology physicists have had little or no training or experience in measuring and assessing image quality. Many physicists have turned to automated QA analysis software without having a fundamental understanding of image quality measures. This session will review the basic image quality measures of imaging technologies used in the radiation oncology clinic, such as low contrast resolution, highmore » contrast resolution, uniformity, noise, and contrast scale, and how to measure and assess them in a meaningful way. Additionally a discussion of the implementation of an image quality assurance program in compliance with Task Group recommendations will be presented along with the advantages and disadvantages of automated analysis methods. Learning Objectives: Review and understanding of the fundamentals of image quality. Review and understanding of the basic image quality measures of imaging modalities used in the radiation oncology clinic. Understand how to implement an image quality assurance program and to assess basic image quality measures in a meaningful way.« less

  17. [Development of a Software for Automatically Generated Contours in Eclipse TPS].

    PubMed

    Xie, Zhao; Hu, Jinyou; Zou, Lian; Zhang, Weisha; Zou, Yuxin; Luo, Kelin; Liu, Xiangxiang; Yu, Luxin

    2015-03-01

    The automatic generation of planning targets and auxiliary contours have achieved in Eclipse TPS 11.0. The scripting language autohotkey was used to develop a software for automatically generated contours in Eclipse TPS. This software is named Contour Auto Margin (CAM), which is composed of operational functions of contours, script generated visualization and script file operations. RESULTS Ten cases in different cancers have separately selected, in Eclipse TPS 11.0 scripts generated by the software could not only automatically generate contours but also do contour post-processing. For different cancers, there was no difference between automatically generated contours and manually created contours. The CAM is a user-friendly and powerful software, and can automatically generated contours fast in Eclipse TPS 11.0. With the help of CAM, it greatly save plan preparation time and improve working efficiency of radiation therapy physicists.

  18. Passeport pour les deux infinis: an educational project in French

    NASA Astrophysics Data System (ADS)

    Arnaud, Nicolas; Descotes-Genon, Sébastien; Kerhoas-Cavata, Sophie; Paul, Jacques; Robert-Esil, Jean-Luc; Royole-Degieux, Perrine

    2016-04-01

    Passeport pour les deux infinis (;Passport for the two infinities;, in short Pass2i) is a French educational project aiming at promoting the physics of the infinitely small (particle physics) and of the infinitely big (cosmology & astrophysics) to high-school teachers and students. It is managed since 2009 by a small team of outreach experts (physicists and engineers) from the CNRS and the CEA. The Pass2i cornerstone is a reversible book - where each side explores one of the two infinities - and which is given for free to science high school teachers who request it, thanks to the support of French funding agencies. The Pass2i non-profit association wants to be a bridge between science and education: training sessions are organized for teachers, educational resources created and made available for download on the Pass2i website (http://www.passeport2i.fr).

  19. Big questions about the universe

    NASA Astrophysics Data System (ADS)

    Stavinschi, Magda

    2011-06-01

    Astronomy is not only a branch of science but also an important part of the culture and civilisations of peoples. Starting with archeoastronomy to the present day, it has always contributed to a better understanding of life, of humanity. After 400 years of modern astronomy, it still addresses major problems such as: Why there is something rather than nothing? Why is nature comprehensible to humans? How is cosmos related to humanity? Do multiverses exist? Is there life on other planets? Are we alone in the universe? Does the universe have a beginning? If so, what does it mean? How did the universe originate? All these questions are a challenge for interdisciplinary and transdisciplinary investigations, for philosophers, physicists, cosmologists, mathematicians, theologians. The new insights gained by pursuing in depth these common investigations will shape the society we live in and have important consequences on the future we are creating.

  20. Enrico Fermi - And the Revolutions of Modern Physics

    NASA Astrophysics Data System (ADS)

    Cooper, Dan

    1999-02-01

    In 1938, at the age of 37, Enrico Fermi was awarded the Nobel Prize in Physics. That same year he emigrated from Italy to the United States and, in the course of his experiments, discovered nuclear fission--a process which forms the basis of nuclear power and atomic bombs. Soon the brilliant physicist was involved in the top secret race to produce the deadliest weapon on Earth. He created the first self-sustaining chain reaction, devised new methods for purifying plutonium, and eventually participated in the first atomic test. This compelling biography traces Fermis education in Italy, his meteoric career in the scientific world, his escape from fascism to America, and the ingenious experiments he devised and conducted at the University of Rome, Columbia University, and the Los Alamos laboratory. The book also presents a mini-course in quantum and nuclear physics in an accessible, fast-paced narrative that invokes all the dizzying passion of Fermis brilliant discoveries.

  1. The Physics Entrepreneurship Program - 11 Years of Teaching and Practicing Innovation and Entrepreneurship to Graduate Students and Beyond

    NASA Astrophysics Data System (ADS)

    Caner, Edward

    2012-02-01

    The Physics Entrepreneurship Program (PEP) at Case Western Reserve University is a MS in Physics, Entrepreneurship Track that teaches physics, business, and innovation. PEP admitted its first class in 2000 with the original goal of empowering physicists to be successful entrepreneurs. Since Y2K, much has happened in the world's economies and markets, and we have shifted our goals to include a strong innovation component. For instance, our metrics have changed from ``companies created'' to ``capital raised by our students'' (i.e., grants and investment in innovation), which allows our students to participate in an apprentice-type relationship with a more experienced entrepreneur before venturing out on their own (which could take many years before they are ready). We will describe the program, how we teach innovation, student and alumni activities and how difficult it is to operate a sustainable graduate program in this arena.

  2. Monitoring activities of satellite data processing services in real-time with SDDS Live Monitor

    NASA Astrophysics Data System (ADS)

    Duc Nguyen, Minh

    2017-10-01

    This work describes Live Monitor, the monitoring subsystem of SDDS - an automated system for space experiment data processing, storage, and distribution created at SINP MSU. Live Monitor allows operators and developers of satellite data centers to identify errors occurred in data processing quickly and to prevent further consequences caused by the errors. All activities of the whole data processing cycle are illustrated via a web interface in real-time. Notification messages are delivered to responsible people via emails and Telegram messenger service. The flexible monitoring mechanism implemented in Live Monitor allows us to dynamically change and control events being shown on the web interface on our demands. Physicists, whose space weather analysis models are functioning upon satellite data provided by SDDS, can use the developed RESTful API to monitor their own events and deliver customized notification messages by their needs.

  3. LTSS compendium: an introduction to the CDC 7600 and the Livermore Timesharing System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, K. W.

    1977-08-15

    This report is an introduction to the CDC 7600 computer and to the Livermore Timesharing System (LTSS) used by the National Magnetic Fusion Energy Computer Center (NMFECC) and the Lawrence Livermore Laboratory Computer Center (LLLCC or Octopus network) on their 7600's. This report is based on a document originally written specifically about the system as it is implemented at NMFECC but has been broadened to point out differences in implementation at LLLCC. It also contains information about LLLCC not relevant to NMFECC. This report is written for computational physicists who want to prepare large production codes to run under LTSSmore » on the 7600's. The generalized discussion of the operating system focuses on creating and executing controllees. This document and its companion, UCID-17557, CDC 7600 LTSS Programming Stratagems, provide a basis for understanding more specialized documents about individual parts of the system.« less

  4. The Birth of Lepton Colliders in Italy and the United States

    NASA Astrophysics Data System (ADS)

    Paris, Elizabeth

    2003-04-01

    In 1960 the highest center-of-mass energies in particle physics were being achieved via proton synchrotrons utilizing stationary targets. However, efforts were already underway to challenge this hegemony. In addition to Soviet work in Novosibirsk, groups at Stanford University in California and at the Frascati National Laboratories near Rome each had begun original investigation towards one particular type of challenger: colliding beam storage rings. For the group in California, the accomplishment involved creating the potential for feasible experiments. The energetic advantages of the colliding beam configuration had long been accepted - together with its impossibility for realization. The builders of the Princeton-Stanford machine feel that creating usable beams and a reasonable reaction rate is what stood between this concept and its glorious future. For the European builders of AdA, however, the beauty emerges from recognizing the enormous potential inherent in electron-positron annihilations. At least as important for the rise of electron-positron colliders, though, is the role of both of these projects as cultural firsts -- as places where particular sets of physicists got their feet wet associating with beams and beam problems and with the many individuals who were addressing beam problems. The Princeton-Stanford Collider provided experience which its builders would use to move on, functioning as both a technological and political platform for creating what would eventually become SPEAR. For the Roman group, the pursuit of AdA encouraged investigation which applied equally well to their next machine, Adone.

  5. Using 3D printing techniques to create an anthropomorphic thorax phantom for medical imaging purposes.

    PubMed

    Hazelaar, Colien; van Eijnatten, Maureen; Dahele, Max; Wolff, Jan; Forouzanfar, Tymour; Slotman, Ben; Verbakel, Wilko F A R

    2018-01-01

    Imaging phantoms are widely used for testing and optimization of imaging devices without the need to expose humans to irradiation. However, commercially available phantoms are commonly manufactured in simple, generic forms and sizes and therefore do not resemble the clinical situation for many patients. Using 3D printing techniques, we created a life-size phantom based on a clinical CT scan of the thorax from a patient with lung cancer. It was assembled from bony structures printed in gypsum, lung structures consisting of airways, blood vessels >1 mm, and outer lung surface, three lung tumors printed in nylon, and soft tissues represented by silicone (poured into a 3D-printed mold). Kilovoltage x-ray and CT images of the phantom closely resemble those of the real patient in terms of size, shapes, and structures. Surface comparison using 3D models obtained from the phantom and the 3D models used for printing showed mean differences <1 mm for all structures. Tensile tests of the materials used for the phantom show that the phantom is able to endure radiation doses over 24,000 Gy. It is feasible to create an anthropomorphic thorax phantom using 3D printing and molding techniques. The phantom closely resembles a real patient in terms of spatial accuracy and is currently being used to evaluate x-ray-based imaging quality and positional verification techniques for radiotherapy. © 2017 American Association of Physicists in Medicine.

  6. What One Physicist Has to Offer

    NASA Astrophysics Data System (ADS)

    Ross, Marc

    2004-05-01

    I was a particle theorist. In the early 1970s I began to analyze energy and its use in society. My theme is: What can physicists offer on a societal issue like energy? I have four topics: 1) Traffic safety and vehicle mass. The measurements are the record of some 40,000 deaths per year, vehicle characterizations and registrations. The statistical record is good, but information is lacking on physical processes in serious crashes. Our insight: while driver behavior is critical to safety, so is vehicle quality and design. Although one cannot definitively separate the injury impacts associated with momentum transfer from those due to intrusion, mass as such is not critical to safety. 2) Prospects for improving the energy efficiency of industrial processes. Our "measurements" were planning documents and interviews enabling us to analyze which "energy projects" were undertaken and which not. Insight: capital for projects was not allocated according to textbook economics; instead it was rationed. 3) Energy use by cars. Based on dynamometer studies motivated by the 1990 Clean Air Act Amendments, we created models of energy consumption that enable evaluation of modifications such as adopting a small engine while supplementing its capability for power. Insight: Vehicles could be designed to use much less fuel; but the gain for society is offset by low interest by new-car-buyers and manufacturers. 4) The effectiveness of automotive emissions controls. In addition to laboratory studies, we had surveys in "non-attainment" areas. Insight: Controls installed by original manufacturers are more robust and effective than repairs. Of the four, this is the one success for society. Conclusions: There are fascinating and solvable analytical challenges everywhere you look. But applications are hampered by the lack of a heritage and the close coupling between theorists and experimenters we know in physics.

  7. Neural Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Patrick I.

    2003-09-23

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neuralmore » networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing information [2]. Each one of these cells acts as a simple processor. When individual cells interact with one another, the complex abilities of the brain are made possible. In neural networks, the input or data are processed by a propagation function that adds up the values of all the incoming data. The ending value is then compared with a threshold or specific value. The resulting value must exceed the activation function value in order to become output. The activation function is a mathematical function that a neuron uses to produce an output referring to its input value. [8] Figure 1 depicts this process. Neural networks usually have three components an input, a hidden, and an output. These layers create the end result of the neural network. A real world example is a child associating the word dog with a picture. The child says dog and simultaneously looks a picture of a dog. The input is the spoken word ''dog'', the hidden is the brain processing, and the output will be the category of the word dog based on the picture. This illustration describes how a neural network functions.« less

  8. Gender studies and the role of women in physics

    NASA Astrophysics Data System (ADS)

    Horton, K. Renee; Holbrook, J. C.

    2013-03-01

    While many physicists care about improving the success of women in physics, research on effective intervention strategies has been meager. What research that does exist focuses largely on the dynamics of under-representation: the factors that discourage women from choosing and remaining committed to the physics community. Rather than focusing on these deficits, this workshop set out to provide tools physicists can use to produce, analyze, and apply evidence about what works for women.

  9. Beyond the Standard Models

    NASA Astrophysics Data System (ADS)

    Weinberg, Steven

    2014-03-01

    I am grateful for this chance to return to Stockholm and speak in honor of a great theoretical physicist, Oskar Klein. All physicists know of Klein's famous contributions to quantum mechanics, recalled to us when we speak of the Klein-Nishina formula, the Klein paradox, and the Klein-Gordon equation. More than that, Klein seems to have had the gift of prophecy -- he could see farther into the future of physics than is given to most of us...

  10. Theory of Anion-Substituted Nitrogen-Bearing III-V Alloys

    DTIC Science & Technology

    1998-07-20

    was found by Zunger group). When more than 4% arsenic is incorporated into GaN in an ordered array, the band gap closes . Calculations of the...arsenic is incorporated into GaN in an ordered array, the band gap closes . Calculations of the properties of random alloys predict smaller bowing...BEARING lll-V ALLOYS Prepared by: M. A. Berding, Senior Research Physicist M. van Schilfgaarde, Senior Research Physicist A. Sher, Associate Director

  11. PARTICLE PHYSICS: CERN Collider Glimpses Supersymmetry--Maybe.

    PubMed

    Seife, C

    2000-07-14

    Last week, particle physicists at the CERN laboratory in Switzerland announced that by smashing together matter and antimatter in four experiments, they detected an unexpected effect in the sprays of particles that ensued. The anomaly is subtle, and physicists caution that it might still be a statistical fluke. If confirmed, however, it could mark the long-sought discovery of a whole zoo of new particles--and the end of a long-standing model of particle physics.

  12. Guide of good practices for occupational radiological protection in plutonium facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-06-01

    This Technical Standard (TS) does not contain any new requirements. Its purpose is to provide guides to good practice, update existing reference material, and discuss practical lessons learned relevant to the safe handling of plutonium. the technical rationale is given to allow US Department of Energy (DOE) health physicists to adapt the recommendations to similar situations throughout the DOE complex. Generally, DOE contractor health physicists will be responsible to implement radiation protection activities at DOE facilities and DOE health physicists will be responsible for oversight of those activities. This guidance is meant to be useful for both efforts. This TSmore » replaces PNL-6534, Health Physics Manual of Good Practices for Plutonium Facilities, by providing more complete and current information and by emphasizing the situations that are typical of DOE`s current plutonium operations; safe storage, decontamination, and decommissioning (environmental restoration); and weapons disassembly.« less

  13. Physics and Diplomacy: A True Story

    NASA Astrophysics Data System (ADS)

    Sessoms, Allen

    2017-01-01

    Physics has played a prominent role in U.S. diplomacy since the development of nuclear weapons during World War II. The discipline expanded its reach during the Atoms for Peace initiative of president Eisenhower and continued through the Cold War with the Soviet Union. Physics maintains a prominent role in the diplomatic dialogue through efforts in the nuclear non-proliferation arena and in major international science collaborations such as in experiments at CERN, ITER and the International Space Station. Physics has also served as the template for the much broader impact of science on diplomacy. For example, climate change, energy efficiency and ocean science have all benefitted from the path blazed by physicists. But how effective have physicists been in steering clear of political dynamics while trying to infuse scientific facts into policy debates? This talk will consider this through the eyes of a physicist who has spent many years providing advice to policy makers, both inside and outside of government.

  14. Woman in Physics in Slovenia

    NASA Astrophysics Data System (ADS)

    Zeleznik, Nadja; Conradi, Marjetka; Remskar, Maja

    2009-04-01

    Slovenian female physicists are organized in an informal network that incorporates more than 100 women working in research, academia, government, and industry. In the past three years we have accomplished several actions in order to motivate young girls and students to pursue physics. Our main achievement was publishing the monograph Physics—My Education in September 2007. The book includes 79 autobiographic contributions of female physicists presenting their life and work in different areas: science (institutes and universities), teaching, industry, and government. We have also organized an exhibition about Slovene women in physics, presenting the very first female physicists and all the next generations. A very popular item among women and men was also a T-shirt with our logo. By selling the books and T-shirts we have collected money for scholarships for female students of physics. The first four scholarships were awarded on March 8, 2008, in the spirit of the International Women's Day.

  15. Ask not what physics can do for biology—ask what biology can do for physics

    NASA Astrophysics Data System (ADS)

    Frauenfelder, Hans

    2014-10-01

    Stan Ulam, the famous mathematician, said once to Hans Frauenfelder: ‘Ask not what Physics can do for biology, ask what biology can do for physics’. The interaction between biologists and physicists is a two-way street. Biology reveals the secrets of complex systems, physics provides the physical tools and the theoretical concepts to understand the complexity. The perspective gives a personal view of the path to some of the physical concepts that are relevant for biology and physics (Frauenfelder et al 1999 Rev. Mod. Phys. 71 S419-S442). Schrödinger’s book (Schrödinger 1944 What is Life? (Cambridge: Cambridge University Press)), loved by physicists and hated by eminent biologists (Dronamraju 1999 Genetics 153 1071-6), still shows how a great physicist looked at biology well before the first protein structure was known.

  16. Workshop on Models for Plasma Spectroscopy

    NASA Astrophysics Data System (ADS)

    1993-09-01

    A meeting was held at St. Johns College, Oxford from Monday 27th to Thursday 30th of September 1993 to bring together a group of physicists working on computational modelling of plasma spectroscopy. The group came from the UK, France, Israel and the USA. The meeting was organized by myself, Dr. Steven Rose of RAL and Dr. R.W. Lee of LLNL. It was funded by the U.S. European Office of Aerospace Research and Development and by LLNL. The meeting grew out of a wish by a group of core participants to make available to practicing plasma physicists (particularly those engaged in the design and analysis of experiments) sophisticated numerical models of plasma physics. Additional plasma physicists attended the meeting in Oxford by invitation. These were experimentalists and users of plasma physics simulation codes whose input to the meeting was to advise the core group as to what was really needed.

  17. MO-DE-201-03: This course presents a review of radiologic anatomy and physiology as it applies to projection radiography, fluoroscopy, CT, MRI, U/S, and nuclear medicine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fahey, F.

    Fundamental knowledge of radiologic anatomy and physiology is critical for medical physicists. Many physicists are exposed to this topic only in graduate school, and knowledge is seldom formally evaluated or assessed after Part I of the ABR exam. Successful interactions with clinicians, including surgeons, radiologists, and oncologists requires that the medical physicist possess this knowledge. This course presents a review of radiologic anatomy and physiology as it applies to projection radiography, fluoroscopy, CT, MRI, U/S, and nuclear medicine. We will review structural anatomy, manipulation of tissue contrast, the marriage between anatomy and physiology, and explore how medical imaging exploits normalmore » and pathological processes in the body to generate contrast. Learning Objectives: Review radiologic anatomy. Examine techniques to manipulate tissue contrast in radiology. Integrate anatomy and physiology in molecular imaging.« less

  18. Heinrich Hertz and Philipp Lenard: Two Distinguished Physicists, Two Disparate Men

    NASA Astrophysics Data System (ADS)

    Mulligan, Joseph F.

    1999-12-01

    Heinrich Hertz (1857-1894) and Philipp Lenard (1862-1947) both had distinguished careers as physicists. They were together in Bonn from April 1891 to January 1894, Hertz as Director of the Bonn Physics Institute, and Lenard as his assistant. Each did important experimental work on cathode rays and the photoelectric effect, and in 1905 Lenard received the Nobel Prize for his work in these fields. Lenard had great respect and admiration for Hertz before going to Bonn and while there, but gradually allowed his esteem for his mentor (who died in 1894) to diminish as Lenard became increasingly anti-Semitic and involved in National Socialism and the Nazi movement. This article illustrates how differences in their characters and personalities, together with the tragic events of the Great War and its aftermath, resulted in Hertz deservedly being much more highly regarded today both as a physicist and as a man than is Lenard.

  19. Thirty years from now: future physics contributions in nuclear medicine.

    PubMed

    Bailey, Dale L

    2014-12-01

    This paper is the first in a series of invited perspectives by pioneers of nuclear medicine imaging and physics. A medical physicist and a nuclear medicine physician each take a backward and a forward look at the contributions of physics to nuclear medicine. Here, we provide a forward look from the medical physicist's perspective. The author examines a number of developments in nuclear medicine and discusses the ways in which physics has contributed to these. Future developments are postulated in the context of an increasingly personalised approach to medical diagnostics and therapies. A skill set for the next generation of medical physicists in nuclear medicine is proposed in the context of the increasing complexity of 'Molecular Imaging' in the next three decades. The author sees a shift away from 'traditional' roles in instrumentation QA to more innovative approaches in understanding radiobiology and human disease.

  20. A special report of current state of the medical physicist workforce — results of the 2012 ASTRO Comprehensive Workforce Study

    PubMed Central

    Arnone, Anna; Sillanpaa, Jussi K; Yu, Yan; Mills, Michael D.

    2015-01-01

    The medical physics profession is undergoing significant changes. Starting in 2014, candidates registering for certification exams by the American Board of Radiology must have completed a CAMPEP‐accredited residency. This requirement, along with tightened state regulations, uncertainty in future reimbursement, and a stronger emphasis on board certification, have raised questions concerning the state of the medical physics workforce and its ability to adapt to changing requirements. In 2012, ASTRO conducted a workforce study of the comprehensive field of radiation oncology. This article reviews the findings of the medical physics section of the study, including age and gender distribution, educational background, workload, and primary work setting. We also report on job satisfaction, the perceived supply and demand of medical physicists, and the medical physicists' main concerns pertaining to patient safety and quality assurance. PACS number: 87.90 PMID:26103483

  1. SU-B-BRA-07: Panel Member

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halvorsen, P.

    2016-06-15

    In the current rapidly changing Healthcare environment, many groups are competing for limited resources. How can medical physicists position themselves to be a relevant stakeholder in the discussion of how those resources are allocated Our value goes beyond what can be shown in a business plan and is heavily involved with safety and quality. Three areas will be explored: What is our value? Who needs to receive that message? How do we communicate that message? To help frame the discussion in terms of how other stakeholders may view the value of medical physicists, a physician and an administrator will presentmore » their perspective. Lastly, a multidisciplinary panel will present real life examples of strategies that can be utilized today to establish the value of medical physicists. The presentation of these examples will lead into an interactive question and answer time. V. Willcut, I work for Elekta. There was no research associated with this talk.« less

  2. SU-B-BRA-09: Panel Member

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willcut, V.

    2016-06-15

    In the current rapidly changing Healthcare environment, many groups are competing for limited resources. How can medical physicists position themselves to be a relevant stakeholder in the discussion of how those resources are allocated Our value goes beyond what can be shown in a business plan and is heavily involved with safety and quality. Three areas will be explored: What is our value? Who needs to receive that message? How do we communicate that message? To help frame the discussion in terms of how other stakeholders may view the value of medical physicists, a physician and an administrator will presentmore » their perspective. Lastly, a multidisciplinary panel will present real life examples of strategies that can be utilized today to establish the value of medical physicists. The presentation of these examples will lead into an interactive question and answer time. V. Willcut, I work for Elekta. There was no research associated with this talk.« less

  3. SU-B-BRA-08: Panel Member

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hazle, J.

    2016-06-15

    In the current rapidly changing Healthcare environment, many groups are competing for limited resources. How can medical physicists position themselves to be a relevant stakeholder in the discussion of how those resources are allocated Our value goes beyond what can be shown in a business plan and is heavily involved with safety and quality. Three areas will be explored: What is our value? Who needs to receive that message? How do we communicate that message? To help frame the discussion in terms of how other stakeholders may view the value of medical physicists, a physician and an administrator will presentmore » their perspective. Lastly, a multidisciplinary panel will present real life examples of strategies that can be utilized today to establish the value of medical physicists. The presentation of these examples will lead into an interactive question and answer time. V. Willcut, I work for Elekta. There was no research associated with this talk.« less

  4. SU-B-BRA-05: Panel Member

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavord, D.

    2016-06-15

    In the current rapidly changing Healthcare environment, many groups are competing for limited resources. How can medical physicists position themselves to be a relevant stakeholder in the discussion of how those resources are allocated Our value goes beyond what can be shown in a business plan and is heavily involved with safety and quality. Three areas will be explored: What is our value? Who needs to receive that message? How do we communicate that message? To help frame the discussion in terms of how other stakeholders may view the value of medical physicists, a physician and an administrator will presentmore » their perspective. Lastly, a multidisciplinary panel will present real life examples of strategies that can be utilized today to establish the value of medical physicists. The presentation of these examples will lead into an interactive question and answer time. V. Willcut, I work for Elekta. There was no research associated with this talk.« less

  5. SU-B-BRA-06: Panel Member

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clements, J.

    2016-06-15

    In the current rapidly changing Healthcare environment, many groups are competing for limited resources. How can medical physicists position themselves to be a relevant stakeholder in the discussion of how those resources are allocated Our value goes beyond what can be shown in a business plan and is heavily involved with safety and quality. Three areas will be explored: What is our value? Who needs to receive that message? How do we communicate that message? To help frame the discussion in terms of how other stakeholders may view the value of medical physicists, a physician and an administrator will presentmore » their perspective. Lastly, a multidisciplinary panel will present real life examples of strategies that can be utilized today to establish the value of medical physicists. The presentation of these examples will lead into an interactive question and answer time. V. Willcut, I work for Elekta. There was no research associated with this talk.« less

  6. SU-A-210-01: Why Should We Learn Radiation Oncology Billing?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, H.

    The purpose of this student annual meeting is to address topics that are becoming more relevant to medical physicists, but are not frequently addressed, especially for students and trainees just entering the field. The talk is divided into two parts: medical billing and regulations. Hsinshun Wu – Why should we learn radiation oncology billing? Many medical physicists do not like to be involved with medical billing or coding during their career. They believe billing is not their responsibility and sometimes they even refuse to participate in the billing process if given the chance. This presentation will talk about a physicist’smore » long career and share his own experience that knowing medical billing is not only important and necessary for every young medical physicist, but that good billing knowledge could provide a valuable contribution to his/her medical physics development. Learning Objectives: The audience will learn the basic definition of Current Procedural Terminology (CPT) codes performed in a Radiation Oncology Department. Understand the differences between hospital coding and physician-based or freestanding coding. Apply proper CPT coding for each Radiation Oncology procedure. Each procedure with its specific CPT code will be discussed in detail. The talk will focus on the process of care and use of actual workflow to understand each CPT code. Example coding of a typical Radiation Oncology procedure. Special procedure coding such as brachytherapy, proton therapy, radiosurgery, and SBRT. Maryann Abogunde – Medical physics opportunities at the Nuclear Regulatory Commission (NRC) The NRC’s responsibilities include the regulation of medical uses of byproduct (radioactive) materials and oversight of medical use end-users (licensees) through a combination of regulatory requirements, licensing, safety oversight including inspection and enforcement, operational experience evaluation, and regulatory support activities. This presentation will explore the career options for medical physicists in the NRC, how the NRC interacts with clinical medical physicists, and a physicist’s experience as a regulator. Learning Objectives: Explore non-clinical career pathways for medical physics students and trainees at the Nuclear Regulatory Commission. Overview of NRC medical applications and medical use regulations. Understand the skills needed for physicists as regulators. Abogunde is funded to attend the meeting by her employer, the NRC.« less

  7. SU-A-210-02: Medical Physics Opportunities at the NRC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abogunde, M.

    The purpose of this student annual meeting is to address topics that are becoming more relevant to medical physicists, but are not frequently addressed, especially for students and trainees just entering the field. The talk is divided into two parts: medical billing and regulations. Hsinshun Wu – Why should we learn radiation oncology billing? Many medical physicists do not like to be involved with medical billing or coding during their career. They believe billing is not their responsibility and sometimes they even refuse to participate in the billing process if given the chance. This presentation will talk about a physicist’smore » long career and share his own experience that knowing medical billing is not only important and necessary for every young medical physicist, but that good billing knowledge could provide a valuable contribution to his/her medical physics development. Learning Objectives: The audience will learn the basic definition of Current Procedural Terminology (CPT) codes performed in a Radiation Oncology Department. Understand the differences between hospital coding and physician-based or freestanding coding. Apply proper CPT coding for each Radiation Oncology procedure. Each procedure with its specific CPT code will be discussed in detail. The talk will focus on the process of care and use of actual workflow to understand each CPT code. Example coding of a typical Radiation Oncology procedure. Special procedure coding such as brachytherapy, proton therapy, radiosurgery, and SBRT. Maryann Abogunde – Medical physics opportunities at the Nuclear Regulatory Commission (NRC) The NRC’s responsibilities include the regulation of medical uses of byproduct (radioactive) materials and oversight of medical use end-users (licensees) through a combination of regulatory requirements, licensing, safety oversight including inspection and enforcement, operational experience evaluation, and regulatory support activities. This presentation will explore the career options for medical physicists in the NRC, how the NRC interacts with clinical medical physicists, and a physicist’s experience as a regulator. Learning Objectives: Explore non-clinical career pathways for medical physics students and trainees at the Nuclear Regulatory Commission. Overview of NRC medical applications and medical use regulations. Understand the skills needed for physicists as regulators. Abogunde is funded to attend the meeting by her employer, the NRC.« less

  8. SU-A-210-00: AAPM Medical Physics Student Meeting: Medical Billing and Regulations: Everything You Always Wanted To Know, But Were Too Afraid To Ask

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The purpose of this student annual meeting is to address topics that are becoming more relevant to medical physicists, but are not frequently addressed, especially for students and trainees just entering the field. The talk is divided into two parts: medical billing and regulations. Hsinshun Wu – Why should we learn radiation oncology billing? Many medical physicists do not like to be involved with medical billing or coding during their career. They believe billing is not their responsibility and sometimes they even refuse to participate in the billing process if given the chance. This presentation will talk about a physicist’smore » long career and share his own experience that knowing medical billing is not only important and necessary for every young medical physicist, but that good billing knowledge could provide a valuable contribution to his/her medical physics development. Learning Objectives: The audience will learn the basic definition of Current Procedural Terminology (CPT) codes performed in a Radiation Oncology Department. Understand the differences between hospital coding and physician-based or freestanding coding. Apply proper CPT coding for each Radiation Oncology procedure. Each procedure with its specific CPT code will be discussed in detail. The talk will focus on the process of care and use of actual workflow to understand each CPT code. Example coding of a typical Radiation Oncology procedure. Special procedure coding such as brachytherapy, proton therapy, radiosurgery, and SBRT. Maryann Abogunde – Medical physics opportunities at the Nuclear Regulatory Commission (NRC) The NRC’s responsibilities include the regulation of medical uses of byproduct (radioactive) materials and oversight of medical use end-users (licensees) through a combination of regulatory requirements, licensing, safety oversight including inspection and enforcement, operational experience evaluation, and regulatory support activities. This presentation will explore the career options for medical physicists in the NRC, how the NRC interacts with clinical medical physicists, and a physicist’s experience as a regulator. Learning Objectives: Explore non-clinical career pathways for medical physics students and trainees at the Nuclear Regulatory Commission. Overview of NRC medical applications and medical use regulations. Understand the skills needed for physicists as regulators. Abogunde is funded to attend the meeting by her employer, the NRC.« less

  9. Thomas Jefferson National Accelerator Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grames, Joseph; Higinbotham, Douglas; Montgomery, Hugh

    The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. Themore » technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.« less

  10. Challenges and dreams: physics of weak interactions essential to life.

    PubMed

    Chien, Peter; Gierasch, Lila M

    2014-11-05

    Biological systems display stunning capacities to self-organize. Moreover, their subcellular architectures are dynamic and responsive to changing needs and conditions. Key to these properties are manifold weak "quinary" interactions that have evolved to create specific spatial networks of macromolecules. These specific arrangements of molecules enable signals to be propagated over distances much greater than molecular dimensions, create phase separations that define functional regions in cells, and amplify cellular responses to changes in their environments. A major challenge is to develop biochemical tools and physical models to describe the panoply of weak interactions operating in cells. We also need better approaches to measure the biases in the spatial distributions of cellular macromolecules that result from the integrated action of multiple weak interactions. Partnerships between cell biologists, biochemists, and physicists are required to deploy these methods. Together these approaches will help us realize the dream of understanding the biological "glue" that sustains life at a molecular and cellular level. © 2014 Chien and Gierasch. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Creating a Community to Strengthen the Broader Impacts of Condensed Matter Physics Research

    NASA Astrophysics Data System (ADS)

    Adenwalla, Shireen; Bosley, Jocelyn; Voth, Gregory; Smith, Leigh

    The Broader Impacts (BI) merit criteria set out by the National Science Foundation are essential for building the public support necessary for science to flourish. Condensed matter physicists (CMP) have made transformative impacts on our society, but these are often invisible to the public. Communicating the societal benefits of our research can be challenging, because CMP consists of many independent research groups for whom effective engagement in the public arena is not necessarily a forte. Other BI activities, such as engaging K-12 students and teachers to increase scientific literacy and strengthen the STEM workforce, may be very effective, but these are often isolated and short in duration. To increase the visibility of CMP and to make the implementation of BI activities more efficient, we have created a website with two sides: a public side to communicate to a broad audience exciting scientific discoveries in CMP and the technologies they enable, and a private side for condensed matter researchers to communicate with one another about effective broader impact activities. Here we discuss the content of the new website, and the best practices we have identified for communicating the excitement of CMP research to the broadest possible audience. Nsf-DMR 1550737, 1550724 and 1550681.

  12. SU-E-T-97: An Analysis of Knowledge Based Planning for Stereotactic Body Radiation Therapy of the Spine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foy, J; Marsh, R; Owen, D

    2015-06-15

    Purpose: Creating high quality SBRT treatment plans for the spine is often tedious and time consuming. In addition, the quality of treatment plans can vary greatly between treatment facilities due to inconsistencies in planning methods. This study investigates the performance of knowledge-based planning (KBP) for spine SBRT. Methods: Treatment plans were created for 28 spine SBRT patients. Each case was planned to meet strict dose objectives and guidelines. After physician and physicist approval, the plans were added to a custom model in a KBP system (RapidPlan, Varian Eclipse v13.5). The model was then trained to be able to predict estimatedmore » DVHs and provide starting objective functions for future patients based on both generated and manual objectives. To validate the model, ten additional spine SBRT cases were planned manually as well as using the model objectives. Plans were compared based on planning time and quality (ability to meet the plan objectives, including dose metrics and conformity). Results: The average dose to the spinal cord and the cord PRV differed between the validation and control plans by <0.25% demonstrating iso-toxicity. Six out of 10 validation plans met all dose objectives without the need for modifications, and overall, target dose coverage was increased by about 4.8%. If the validation plans did not meet the dose requirements initially, only 1–2 iterations of modifying the planning parameters were required before an acceptable plan was achieved. While manually created plans usually required 30 minutes to 3 hours to create, KBP can be used to create similar quality plans in 15–20 minutes. Conclusion: KBP for spinal tumors has shown to greatly decrease the amount of time required to achieve high quality treatment plans with minimal human intervention and could feasibly be used to standardize plan quality between institutions. Supported by Varian Medical Systems.« less

  13. A comparison of medical physics training and education programs--Canada and Australia.

    PubMed

    McCurdy, B M C; Duggan, L; Howlett, S; Clark, B G

    2009-12-01

    An overview and comparison of medical physics clinical training, academic education, and national certification/accreditation of individual professionals in Canada and Australia is presented. Topics discussed include program organization, funding, fees, administration, time requirements, content, program accreditation, and levels of certification/accreditation of individual Medical Physicists. Differences in the training, education, and certification/accreditation approaches between the two countries are highlighted. The possibility of mutual recognition of certified/accredited Medical Physicists is examined.

  14. Comments from physicsworld.com

    NASA Astrophysics Data System (ADS)

    2009-02-01

    US President Barack Obama's decision to include several scientists in his cabinet-including two physicists, John Holdren and Steven Chu, who will serve as science advisor and energy secretary, respectively - is discussed in this month's news section (see pp8-9). Two articles posted on physicsworld.com when the announcements were first made ("Nobel laureate goes to Washington?" 11 December 2008 and "Obama nominates physicist as science advisor" 22 December 2008) sparked a number of comments, both sceptical and supportive, from readers.

  15. Educating and Training Accelerator Scientists and Technologists for Tomorrow

    NASA Astrophysics Data System (ADS)

    Barletta, William; Chattopadhyay, Swapan; Seryi, Andrei

    2012-01-01

    Accelerator science and technology is inherently an integrative discipline that combines aspects of physics, computational science, electrical and mechanical engineering. As few universities offer full academic programs, the education of accelerator physicists and engineers for the future has primarily relied on a combination of on-the-job training supplemented with intensive courses at regional accelerator schools. This article describes the approaches being used to satisfy the educational curiosity of a growing number of interested physicists and engineers.

  16. Distributed Interoperable Metadata Registry; How Do Physicists Use an E-Print Archive? Implications for Institutional E-Print Services; A Framework for Building Open Digital Libraries; Implementing Digital Sanborn Maps for Ohio: OhioLINK and OPLIN Collaborative Project.

    ERIC Educational Resources Information Center

    Blanchi, Christophe; Petrone, Jason; Pinfield, Stephen; Suleman, Hussein; Fox, Edward A.; Bauer, Charly; Roddy, Carol Lynn

    2001-01-01

    Includes four articles that discuss a distributed architecture for managing metadata that promotes interoperability between digital libraries; the use of electronic print (e-print) by physicists; the development of digital libraries; and a collaborative project between two library consortia in Ohio to provide digital versions of Sanborn Fire…

  17. Entrepreneurship for Physicists; A practical guide to move inventions from university to market

    NASA Astrophysics Data System (ADS)

    Iannuzzi, Davide

    2017-10-01

    This book offers a concise analysis of the key ingredients that enable physicists to successfully move their idea from university to market, bringing added value to their customers. It dives into a set of theories, models, and tools that play fundamental roles in technology transfer including topics often neglected by other books including trust, communication, and persuasion. It also explains how most of the topics discussed are applicable to careers in a broader sense.

  18. SNOWMASS (DPF Community Summer Study)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cronin-Hennessy, et al, Daniel

    2013-08-06

    The 2013 Community Summer Study, known as Snowmass," brought together nearly 700 physicists to identify the critical research directions for the United States particle physics program. Commissioned by the American Physical Society, this meeting was the culmination of intense work over the past year by more than 1000 physicists that defined the most important questions for this field and identified the most promising opportunities to address them. This Snowmass study report is a key resource for setting priorities in particle physics.

  19. Reality and the Physicist

    NASA Astrophysics Data System (ADS)

    D'Espagnat, Bernard; Whitehouse, Translated by J. C.

    1989-03-01

    Preface; Introduction; Part I. Instrumentalism and Science: 1. The positivism of the physicists; 2. Positivism and fallibilism: philosophical controversies; 3. Border areas of instrumentalism; Part II. Physical Realism and Contemporary Physics: 4. Physical realism and fallibilism; 5. Microrealism and non-separability; 6. Physical realism in trouble; Part III. Causality, Reality and Time: 7. Irreversibility; 8. Sensible reality; 9. Independent reality; 10. The dilemma of modern physics: reality or meaning?; 11. Questions and answers; 12. Summary and perspectives; Appendixes; Addendum; Notes; References; Index.

  20. Laser-Based Identification of Pathogenic Bacteria

    NASA Astrophysics Data System (ADS)

    Rehse, Steven J.

    2009-03-01

    Bacteria are ubiquitous in our world. From our homes, to our work environment, to our own bodies, bacteria are the omnipresent although often unobserved companions to human life. Physicists are typically untroubled professionally by the presence of these bacteria, as their study usually falls safely outside the realm of our typical domain. In the last 10 years, however, several events have occurred that demand the attention of the general populace — including the ranks of physicists among them.

  1. Educating and Training Accelerator Scientists and Technologists for Tomorrow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barletta, William A.; Chattopadhyay, Swapan; Seryi, Andrei

    2012-07-01

    Accelerator science and technology is inherently an integrative discipline that combines aspects of physics, computational science, electrical and mechanical engineering. As few universities offer full academic programs, the education of accelerator physicists and engineers for the future has primarily relied on a combination of on-the-job training supplemented with intense courses at regional accelerator schools. This paper describes the approaches being used to satisfy the educational interests of a growing number of interested physicists and engineers.

  2. Physics Careers in the Semiconductor Industry: OK, I'm in, now what?

    NASA Astrophysics Data System (ADS)

    Larson, Larry

    2003-03-01

    The role of the physicist working in the Semiconductor Industry differs significantly from those working in a purely academic setting. This talk will give a perspective on these differences by examining these roles in some detail. The first detail is simply ``Why are you employed by your institution?" Physicists in the Semiconductor industry are, in the most basic sense, employed to develop or sustain processes, equipment or devices in order to produce chips for sale. This very basic point colors the goals, objectives and the reward structure for the industrial physicist. I will use examples of mundane and complex physics applications from development work at SEMATECH to compare the industrial approach to my perception of an academic approach. Another important attribute of the industrial career is the strong influence of timeliness on the usefulness of our results. This leads to an emphasis of the working approach on attacking problems as a team, to the strong availability of resources, but also to the aspect that a project can fall away from the critical path and be cancelled. Some of these effects will be described with examples from the International Technology Roadmap for Semiconductors and also from SEMATECH. All in all, working as a physicist in the semiconductor industry is an exciting and rewarding career. Be aware though, that the industry is dynamic and intensive be ready for a ride!

  3. A strategic development model for the role of the biomedical physicist in the education of healthcare professionals in Europe.

    PubMed

    Caruana, C J; Wasilewska-Radwanska, M; Aurengo, A; Dendy, P P; Karenauskaite, V; Malisan, M R; Mattson, S; Meijer, J H; Mihov, D; Mornstein, V; Rokita, E; Vano, E; Weckstrom, M; Wucherer, M

    2012-10-01

    This is the third of a series of articles targeted at biomedical physicists providing educational services to other healthcare professions, whether in a university faculty of medicine/health sciences or otherwise (e.g., faculty of science, hospital-based medical physics department). The first paper identified the past and present role of the biomedical physicist in the education of the healthcare professions and highlighted issues of concern. The second paper reported the results of a comprehensive SWOT (strengths, weaknesses, opportunities, threats) audit of that role. In this paper we present a strategy for the development of the role based on the outcomes of the SWOT audit. The research methods adopted focus on the importance of strategic planning at all levels in the provision of educational services. The analytical process used in the study was a pragmatic blend of the various theoretical frameworks described in the literature on strategic planning research as adapted for use in academic role development. Important results included identification of the core competences of the biomedical physicist in this context; specification of benchmarking schemes based on experiences of other biomedical disciplines; formulation of detailed mission and vision statements; gap analysis for the role. The paper concludes with a set of strategies and specific actions for gap reduction. Copyright © 2011 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  4. Ongoing quality control in digital radiography: Report of AAPM Imaging Physics Committee Task Group 151.

    PubMed

    Jones, A Kyle; Heintz, Philip; Geiser, William; Goldman, Lee; Jerjian, Khachig; Martin, Melissa; Peck, Donald; Pfeiffer, Douglas; Ranger, Nicole; Yorkston, John

    2015-11-01

    Quality control (QC) in medical imaging is an ongoing process and not just a series of infrequent evaluations of medical imaging equipment. The QC process involves designing and implementing a QC program, collecting and analyzing data, investigating results that are outside the acceptance levels for the QC program, and taking corrective action to bring these results back to an acceptable level. The QC process involves key personnel in the imaging department, including the radiologist, radiologic technologist, and the qualified medical physicist (QMP). The QMP performs detailed equipment evaluations and helps with oversight of the QC program, the radiologic technologist is responsible for the day-to-day operation of the QC program. The continued need for ongoing QC in digital radiography has been highlighted in the scientific literature. The charge of this task group was to recommend consistency tests designed to be performed by a medical physicist or a radiologic technologist under the direction of a medical physicist to identify problems with an imaging system that need further evaluation by a medical physicist, including a fault tree to define actions that need to be taken when certain fault conditions are identified. The focus of this final report is the ongoing QC process, including rejected image analysis, exposure analysis, and artifact identification. These QC tasks are vital for the optimal operation of a department performing digital radiography.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Labby, Z.

    Physicists are often expected to have a solid grounding in experimental design and statistical analysis, sometimes filling in when biostatisticians or other experts are not available for consultation. Unfortunately, graduate education on these topics is seldom emphasized and few opportunities for continuing education exist. Clinical physicists incorporate new technology and methods into their practice based on published literature. A poor understanding of experimental design and analysis could Result in inappropriate use of new techniques. Clinical physicists also improve current practice through quality initiatives that require sound experimental design and analysis. Academic physicists with a poor understanding of design and analysismore » may produce ambiguous (or misleading) results. This can Result in unnecessary rewrites, publication rejection, and experimental redesign (wasting time, money, and effort). This symposium will provide a practical review of error and uncertainty, common study designs, and statistical tests. Instruction will primarily focus on practical implementation through examples and answer questions such as: where would you typically apply the test/design and where is the test/design typically misapplied (i.e., common pitfalls)? An analysis of error and uncertainty will also be explored using biological studies and associated modeling as a specific use case. Learning Objectives: Understand common experimental testing and clinical trial designs, what questions they can answer, and how to interpret the results Determine where specific statistical tests are appropriate and identify common pitfalls Understand the how uncertainty and error are addressed in biological testing and associated biological modeling.« less

  6. Ongoing quality control in digital radiography: Report of AAPM Imaging Physics Committee Task Group 151

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, A. Kyle, E-mail: kyle.jones@mdanderson.org; Geiser, William; Heintz, Philip

    Quality control (QC) in medical imaging is an ongoing process and not just a series of infrequent evaluations of medical imaging equipment. The QC process involves designing and implementing a QC program, collecting and analyzing data, investigating results that are outside the acceptance levels for the QC program, and taking corrective action to bring these results back to an acceptable level. The QC process involves key personnel in the imaging department, including the radiologist, radiologic technologist, and the qualified medical physicist (QMP). The QMP performs detailed equipment evaluations and helps with oversight of the QC program, the radiologic technologist ismore » responsible for the day-to-day operation of the QC program. The continued need for ongoing QC in digital radiography has been highlighted in the scientific literature. The charge of this task group was to recommend consistency tests designed to be performed by a medical physicist or a radiologic technologist under the direction of a medical physicist to identify problems with an imaging system that need further evaluation by a medical physicist, including a fault tree to define actions that need to be taken when certain fault conditions are identified. The focus of this final report is the ongoing QC process, including rejected image analysis, exposure analysis, and artifact identification. These QC tasks are vital for the optimal operation of a department performing digital radiography.« less

  7. Limited Resources, Limited Opportunities, and the Accumulation of Disadvantage: Evidence from the Global Survey of Physicists

    NASA Astrophysics Data System (ADS)

    Ivie, Rachel

    2012-03-01

    Using the results of the Global Survey of Physicists, which we conducted in collaboration with the International Union of Pure and Applied Physics Working Group on Women, we document the effect of limited resources and opportunities on women physicists' careers. We find that women respondents are less likely than men to report access to a variety of resources and opportunities that would be helpful in advancing a scientific career. These include access to funding, travel money, lab and office space, equipment, clerical support, and availability of employees or students to help with research. When asked about specific opportunities, women report fewer invited talks and overseas research opportunities. Women who responded are less likely to have been journal editors, acted as bosses or managers, advised graduate students, served on thesis or dissertation committees, and served on committees for grant agencies. We also show the disproportionate effects of children on women physicists' careers. Women who responded are more likely than men to have changed their work situations upon becoming parents. Mothers are more likely than men and women without children to report that their careers have progressed more slowly than colleagues who finished their degrees at the same time. Furthermore, women are more likely than men to report that their careers affected the decisions they made about marriage and children. The results of this survey draw attention to the need to focus on factors other than representation when discussing the situation of women in physics. 15,000 physicists in 130 countries answered this survey, and across all these countries, women have fewer resources and opportunities and are more affected by cultural expectations concerning child care. Cultural expectations about home and family are difficult to change. However, for women to have successful outcomes and advance in physics, they must have equal access to resources and opportunities.

  8. MO-B-19A-01: MOC: A How-To Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibbott, G; Seibert, J; Allison, J

    2014-06-15

    Medical physicists who were certified in 2002 or later, as well as those who become certified in the future, are enrolled in Maintenance of Certification. Many physicists with life-time certificates have voluntarily enrolled in MOC, as have physicists who volunteer their time to participate in the ABR exam development and administration processes. MOC consists of four components: Part 1, Professional standing; Part 2, Lifelong learning and self-assessment; Part 3, Cognitive expertise; and Part 4, Practice quality improvement. These four components together evaluate six competencies: Medical knowledge, patient care and procedural skills, interpersonal and communication skills, professionalism, practice-based learning and improvement,more » and systems-based practice. Parts 1, 2, and 3 of MOC are fairly straightforward, although many participants have questions about the process for attesting to professional standing, the opportunities for obtaining self-assessed continuing education, and the timing of the cognitive exam. MOC participants also have questions about Part 4, Practice Quality Improvement. PQI projects are powerful tools for improving the quality and safety of the environments in which we practice medical physics. In the current version of MOC known as “Continuous Certification” a medical physicist must have completed a PQI project within the previous three years, at the time of the ABR's annual look-back each March. For the first “full” annual look-back in March 2016, diplomates will be given an additional year, so that a PQI project completed in 2012, 2013, 2014, or 2015 will fulfill this requirement. Each component of MOC will be addressed, and the specifics of interest to medical physicists will be discussed. Learning Objectives: Understand the four components and six competencies evaluated by MOC. Become familiar with the annual requirements of Continuous Certification. Learn about opportunities for Practice Quality Improvement projects. Understand refinements occurring in the MOC program.« less

  9. PeoplePersonality: Chris Clarke - a physicist who studies ice cream Teaching Anecdotes: Annie Jump Cannon Obituary: György Marx 1927-2002 Starting Out: What Katie did next: part 3 Opinions: What is really important?

    NASA Astrophysics Data System (ADS)

    2003-03-01

    Featuring relationships, personalities, interactions, environments and reputations involved in physics and education PERSONALITY (156) Chris Clarke - a physicist who studies ice cream TEACHING ANECDOTES (157) Annie Jump Cannon OBITUARY (158) György Marx 1927-2002 Steven Chapman STARTING OUT (159) What Katie did next: part 3 Katie Pennicott OPINIONS (160) What is really important? Kerry Parker

  10. Martin J. Klein: From Physicist to Historian

    NASA Astrophysics Data System (ADS)

    Hu, Danian

    2012-12-01

    To his friends, colleagues, and students, Martin Klein was a gentle and modest man of extraordinary integrity whose stellar accomplishments garnered him many honors. I sketch his life and career, in which he transformed himself from a theoretical physicist at Columbia University, the Massachusetts Institute of Technology, and the Case Institute of Technology into a historian of physics while on leave at the Dublin Institute for Advanced Study and the University of Leiden and then pursued this field full time at Yale University.

  11. An overview of subatomic particles for non-physicists.

    PubMed

    Lederman, Leon M

    2007-08-01

    The particles used in radiation therapy are part of a larger universe of particles discovered by experimental physicists. May of these particles are themselves composed of particles. Understanding the way particles interact, and the forces underlying their interactions, is basic to the quest to understand the universe. High-energy physics studies in the past have identified the particles used in medicine; future studies may identify still others, but if not, may contribute to a better knowledge of the milieu in which medicine and other human endeavors exist.

  12. "Geniuses like this are very rare today..."

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Robert N.

    2011-11-01

    This paper gives insight into the context of how Lomonosov developed into a scientist and a physicist; reviews his major achievements in physics; discusses his epistemological method, and explores the major reasons for his tragedy as a physicist. The role of the poetically interpreted knowledge and science of nature in Lomonosov's popularization activities is emphasized. The paper traces Lomonosov's route from science and its popularization to the organization of higher and secondary education in Russia. How the perception of his genius changes with time is discussed.

  13. CSWP Networking Reception

    NASA Astrophysics Data System (ADS)

    Unwind after a long day of sessions by networking with women physicists from the APS Committee on the Status of Women in Physics and members of the APS Panel on Public Affairs (POPA). Cocktails and conversation will flow as we learn about the recently approved APS Statement on the Status of Women in Physics; a POPA study underway, designed to evaluate what top universities are doing to address gender disparity in undergraduate physics programs; and initiatives & programs designed to attract, retain, develop, and support the female physicists in our community.

  14. The Discovery of the Higgs Boson: America's Role

    ScienceCinema

    None

    2018-05-30

    The discovery of the Higgs boson was an international endeavor, involving thousands of physicists from across the world. While the accelerator at which the experimental work was done is located on Europe, the US supplied more physicists than any other single country. America had a very large role in the discovery of the Higgs particle and continues to have a leading role in the ongoing studies of the boson's properties. This video describes some of the contributions of U.S. universities and laboratories.

  15. What physicists should know about finance

    NASA Astrophysics Data System (ADS)

    Schmidt, Anatoly B.

    2005-05-01

    There has been growing interest in Econophysics, i.e. analysis and modeling of financial time series using the theoretical Physics concepts (scaling, fractals, chaos). Besides the scientific stimuli, this interest is backed by perception that the financial industry is a viable alternative for those physicists who are not able or are not willing to pursue an academic career. However, the times when any Ph.D. in Physics had a chance to find a job on the Wall Street are gone (if they ever existed). Indeed, not every physicist wields the stochastic calculus, non-normal statistical distributions, and the methods of time series analysis. Moreover, now that many universities offer courses in mathematical finance, the applicants for quantitative positions in finance are expected to know such concepts as option pricing, portfolio management, and risk measurement. Here I describe a synthetic course based on my book [1] that outlines both worlds: Econophysics and Mathematical Finance. The course may be offered as elective for senior undergraduate or graduate Physics majors.

  16. EFOMP project on the role of biomedical physics in the education of healthcare professionals

    NASA Astrophysics Data System (ADS)

    Caruana, Carmel J.; Wasilewska-Radwanska, M.; Aurengo, A.; Dendy, P. P.; Karenauskaite, V.; Malisan, M. R.; Meijer, J. H.; Mornstein, V.; Rokita, E.; Vano, E.; Wucherer, M.

    2009-01-01

    The policy statements describing the role of the medical physicist (and engineer) published by organizations representing medical physics (and engineering) in Europe include the responsibility of providing a contribution to the education of healthcare professionals (physicians and paramedical professions). As a consequence, medical physicists and engineers provide educational services in most Faculties of Medicine / Health Science in Europe. In 2005, the EFOMP council took the decision to set up a Special Interest Group to develop the role of the medical physics educator in such faculties and to work with other healthcare professional groups to produce updated European curricula for them. The effort of the group would provide a base for the progress of the role, its relevance to contemporary healthcare professional education and provide input for future EFOMP policy documents regarding this important aspect of the role of the medical physicist. The present communication will present the group, summarise its latest research and indicate future research directions.

  17. Autonomy, explanation, and theoretical values: physicists and chemists on molecular quantum mechanics.

    PubMed

    Hendry, Robin Findlay

    2003-05-01

    The emergence of quantum chemistry in the early twentieth century was an international as well as an interdisciplinary affair, involving dialogue between physicists and chemists in Germany, the United States, and Britain. Historians of science have recently documented both the causes and effects of this internationalism and interdisciplinarity. Chemists and physicists involved in the development of quantum chemistry in its first few decades tended to argue for opposing views on acceptable standards of explanation in their field, although the debate did not divide along disciplinary lines. The purpose of this paper is to investigate these different positions, through the methodological reflections of John Clarke Slater, Linus Pauling, and Charles Coulson. Slater tended to argue for quantum-mechanical rigor and the application of fundamental principles as the values guiding models of molecular bonding. Although they were on different sides of the debate between the valence-bond and molecular-orbital approaches, Pauling and Coulson both emphasized the recovery of traditional chemical explanations and systematic explanatory power within chemistry.

  18. SU-B-BRA-03: A Physician Perspective on the Value of Medical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burri, S.

    In the current rapidly changing Healthcare environment, many groups are competing for limited resources. How can medical physicists position themselves to be a relevant stakeholder in the discussion of how those resources are allocated Our value goes beyond what can be shown in a business plan and is heavily involved with safety and quality. Three areas will be explored: What is our value? Who needs to receive that message? How do we communicate that message? To help frame the discussion in terms of how other stakeholders may view the value of medical physicists, a physician and an administrator will presentmore » their perspective. Lastly, a multidisciplinary panel will present real life examples of strategies that can be utilized today to establish the value of medical physicists. The presentation of these examples will lead into an interactive question and answer time. V. Willcut, I work for Elekta. There was no research associated with this talk.« less

  19. SU-B-BRA-04: An Administrators Perspective on the Value of Medical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNary, D.

    In the current rapidly changing Healthcare environment, many groups are competing for limited resources. How can medical physicists position themselves to be a relevant stakeholder in the discussion of how those resources are allocated Our value goes beyond what can be shown in a business plan and is heavily involved with safety and quality. Three areas will be explored: What is our value? Who needs to receive that message? How do we communicate that message? To help frame the discussion in terms of how other stakeholders may view the value of medical physicists, a physician and an administrator will presentmore » their perspective. Lastly, a multidisciplinary panel will present real life examples of strategies that can be utilized today to establish the value of medical physicists. The presentation of these examples will lead into an interactive question and answer time. V. Willcut, I work for Elekta. There was no research associated with this talk.« less

  20. SU-B-BRA-02: The Medical Physics Value Proposition for Tomorrow and Today

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, G.

    In the current rapidly changing Healthcare environment, many groups are competing for limited resources. How can medical physicists position themselves to be a relevant stakeholder in the discussion of how those resources are allocated Our value goes beyond what can be shown in a business plan and is heavily involved with safety and quality. Three areas will be explored: What is our value? Who needs to receive that message? How do we communicate that message? To help frame the discussion in terms of how other stakeholders may view the value of medical physicists, a physician and an administrator will presentmore » their perspective. Lastly, a multidisciplinary panel will present real life examples of strategies that can be utilized today to establish the value of medical physicists. The presentation of these examples will lead into an interactive question and answer time. V. Willcut, I work for Elekta. There was no research associated with this talk.« less

  1. You Don't Look Like a Physicist

    NASA Astrophysics Data System (ADS)

    Santos, Antonio Carlos Fontes

    2017-12-01

    "You don't look like a physicist!" "Sorry, this bus only goes to the university, Sir." "Where are you going, sir?" "So, you are a university professor? But a substitute one, aren't you?" "OK, you're a professor, but do you do research?" As a person of color teaching physics in Brazil, those are some comments that I usually hear. They are consequences of stereotypes, prejudices, and discrimination, which are related but different ideas. Stereotypes indicate expectations and beliefs about an individual or a group, prejudice denotes feelings, and discrimination expresses behaviors. People are likely to be astonished whenever a Black person says that he or she is a physicist. This paper aims to raise awareness of the underrepresentation of Black physics professors and researchers in Brazil and how the lack of quality high school physics education impacts Black and poor students in Brazil. Finally, some considerations on how physics education can assist minority students in overcoming social barriers that contribute to their underrepresentation are presented.

  2. The role of the biomedical physicist in the education of the healthcare professions: an EFOMP project.

    PubMed

    Caruana, C J; Wasilewska-Radwanska, M; Aurengo, A; Dendy, P P; Karenauskaite, V; Malisan, M R; Meijer, J H; Mornstein, V; Rokita, E; Vano, E; Wucherer, M

    2009-09-01

    The role of the biomedical physicist in the education of the healthcare professions has not yet been studied in a systematic manner. This article presents the first results of an EFOMP project aimed at researching and developing this important component of the role of the biomedical physicist. A background to the study expands on the reasons that led to the need for the project. This is followed by an extensive review of the published literature regarding the role. This focuses mainly on the teaching contributions within programmes for physicians, diagnostic radiographers, radiation therapists, and the postgraduate medical specializations of radiology, radiotherapy, interventional radiology and cardiology. Finally a summary list of the specific research objectives that need to be immediately addressed is presented. These are the carrying out of a Europe-wide position audit for the role, the construction of a strategic role development model and the design of a curriculum development model suitable for modern healthcare professional education.

  3. Apparatus Named After Our Academic Ancestors — I

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B.

    2010-12-01

    Let us now praise famous physicists, and the apparatus named after them, with apologies to the writer of Ecclesiastes. I once compiled a list of about 300 pieces of apparatus known to us as X's Apparatus. Some of the values of X are familiar, like Wheatstone and Kelvin and Faraday, but have you heard of Pickering or Rhumkorff or Barlow? In an earlier article about Packard's apparatus,1 I paid homage to an early-20th-century high school teacher, and other articles have mentioned apparatus by a number of other physicists and physics teachers.2 In many cases the apparatus came directly out of research being done by the physicist, or from the need to show the phenomena of physics in the classroom and lecture hall. Here are more stories about apparatus and their makers, starting with three pieces of apparatus that are related to the development of electron physics in the latter half of the 19th century.

  4. Sam Goudsmit--His Physics and His Statesmanship

    NASA Astrophysics Data System (ADS)

    Bederson, Benjamin

    2010-03-01

    Sam Goudsmit was already a famous theoretical physicist in his thirties, mainly because of his co-discovery of electron spin with George Uhlenbeck while both were students of Paul Ehrenfest in Holland in 1925. He and Uhlenbeck continued their thriving careers at the University of Michigan. Goudsmit's style as a physicist was always to make as close a connection between theory and experiment as possible. Thus, for example, his development with his student Robert Bacher of the technique called ``fractional parentage'' used fruitfully in both atomic and nuclear physics to compute energy levels of unknown states in terms of know ones. He also delved deeply into problems related to determinations of nuclear spins and moments. Partly because of his service as scientific leader of the Alsos project at the end of WWII he became a leading statesman of science. I will describe some of his achievements both as a physicist and as a statesman, prior to his becoming Editor in Chief of the American Physical Society.

  5. Lee C. Bradley III (Phillips Exeter Class of 1943): Physicist, Officer, and Gentleman

    NASA Astrophysics Data System (ADS)

    Cardon, Bartley L.

    2004-03-01

    Lee Carrington Bradley's career as a physicist began as an accomplished student at Phillips Exeter Academy, where he was influenced by Professor John C. Hogg, chairman of the Science Department. He graduated in 1943 and entered the V-12 program for naval officers and completed his undergraduate degree in physics at Princeton University. After a brief tour as a Navy Ensign he joined the first group of American Rhodes Scholars to attend Oxford University, in 1947, following the conclusion of World War II. Under the guidance of H.G. Kuhn of Clarendon Laboratory, Lee completed his Ph.D. in physics in 1950. He then accepted an instructorship in physics at Princeton until he was called to MIT as an assistant professor in 1954 and later as a research associate in the Harrison Spectroscopy Laboratory. In 1966 he joined the technical staff of MIT Lincoln Laboratory, and became a senior staff member in 1978, a position he held until his retirement in 1992. From 1947 to 1966 Lee's interest was primarily in the field of optical spectroscopy, where his work brought him into contact with many of the outstanding physicists of his era. Upon joining Lincoln Laboratory, his physics interests shifted toward optics and laser propagation, the latter a field in which he made significant contributions. My illustrated tribute will discuss Lee's passage from Phillips Exeter to Lincoln Laboratory, describing his physics and some of the notable physicists with whom he worked.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supanich, M.

    The International Electrotechnical Commission (IEC) writes standards that manufacturers of electrical equipment must comply with. Medical electrical equipment, such as medical imaging, radiation therapy, and radiation dosimetry devices, fall under Technical Committee 62. Of particular interest to medical physicists are the standards developed within Subcommittees (SC) 62B, which addresses diagnostic radiological imaging equipment, and 62C, which addresses equipment for radiation therapy, nuclear medicine and dosimetry. For example, a Working Group of SC 62B is responsible for safety and quality assurance standards for CT scanners and a Working Group of SC 62C is responsible for standards that set requirements for dosimetricmore » safety and accuracy of linacs and proton accelerators. IEC standards thus have an impact on every aspect of a medical physicist’s job, including equipment testing, shielding design, room layout, and workflow. Consequently, it is imperative that US medical physicists know about existing standards, as well as have input on those under development or undergoing revision. The structure of the IEC and current standards development work will be described in detail. The presentation will explain how US medical physicists can learn about IEC standards and contribute to their development. Learning Objectives: Learn about the structure of the IEC and the influence that IEC standards have on the design of equipment for radiology and radiation therapy. Learn about the mechanisms by which the US participates in the development and revision of standards. Understand the specific requirements of several standards having direct relevance to diagnostic and radiation therapy physicists.« less

  7. [Working conditions, stress and burnout of Belgian professionals in radiotherapy: Comparative analysis and emotional labor exploration].

    PubMed

    Laurent, J; Bragard, I; Coucke, P; Hansez, I

    2015-05-01

    This national survey aims, on the one hand, to perform a comparative analysis of working conditions, job strain and burnout of Belgian nurses, physicists and radiation oncologists working in radiotherapy and, on the other hand, to explore the role of emotional labor in the development of stress and burnout. We used the Working Conditions and Control Questionnaire, the Positive and Negative Occupational States Inventory, the Maslach Burnout Inventory, the negative work-home interaction subscale of the Survey Work-Home Interaction Nijmegen (NEGWHI), Perceived Organizational Support Scale and Emotional Labor Scale. One open question asked about problematic job situations. Ninety-eight nurses and physicists participated (33 % response rate), in addition to 66 radiation oncologists from a previous study. Although global scores of working conditions, job strain and burnout corresponded to normal scores, comparative analysis identified physicists as focus group concerning job strain and burnout. Moreover, nurses and physicists surface acting was a good predictor of job strain (β=0.22, P=0.01), emotional exhaustion (β=0.32, P<0.001) and depersonalization (β=0.43, P<0.001). Nevertheless, perceived organizational support was a moderator in this relation. Radiotherapy employees were in the norms. The importance of organizational support was demonstrated to avoid potential health problems, for workers experiencing high levels of emotional demands. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  8. AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training.

    PubMed

    Harkness, Beth A; Allison, Jerry D; Clements, Jessica B; Coffey, Charles W; Fahey, Frederic H; Gress, Dustin A; Kinahan, Paul E; Nickoloff, Edward L; Mawlawi, Osama R; MacDougall, Robert D; Pizzutiello, Robert J

    2015-09-08

    The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear  medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics  Training. The mission of this task force was to assemble a representative group of stakeholders to:• Estimate the demand for board-certified nuclear medicine physicists in the next 5-10 years,• Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, and• Identify approaches that may be considered to facilitate the training of nuclear medicine physicists.As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face-to-face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission.

  9. Situation of young radiation oncologists, medical physicists and radiation biologists in German-speaking countries : Results from a web-based survey of the Young DEGRO working group.

    PubMed

    Krug, David; Baumann, Rene; Rieckmann, Thorsten; Fokas, Emmanouil; Gauer, Tobias; Niyazi, Maximilian

    2016-08-01

    The working group "Young DEGRO" (yDEGRO) was established in 2014 by the German Society of Radiation Oncology (DEGRO). We aimed to assess the current situation of young radiation oncologists, medical physicists and radiation biologists. An online survey that included 52 questions or statements was designed to evaluate topics related to training, clinical duties and research opportunities. Using the electronic mailing list of the DEGRO and contact persons at university hospitals in Germany as well as at four hospitals in Switzerland and Austria, young professionals employed in the field of radiation oncology were invited to participate in the survey. A total of 260 responses were eligible for analysis. Of the respondents 69 % had a professional background in medicine, 23 % in medical physics and 9 % in radiation biology. Median age was 33 years. There was a strong interest in research among the participants; however a clear separation between research, teaching and routine clinical duties was rarely present for radiation oncologists and medical physicists. Likewise, allocated time for research and teaching during regular working hours was often not available. For radiation biologists, a lack of training in clinical and translational research was stated. This survey details the current state of education and research opportunities in young radiation oncologists, medical physicists and radiation biologists. These results will form the basis for the future working program of the yDEGRO.

  10. Medical physics aspects of cancer care in the Asia Pacific region: 2014 survey results.

    PubMed

    Kron, Tomas; Azhari, H A; Voon, E O; Cheung, K Y; Ravindran, P; Soejoko, D; Inamura, K; Han, Y; Ung, N M; TsedenIsh, Bolortuya; Win, U M; Srivastava, R; Marsh, S; Farrukh, S; Rodriguez, L; Kuo, Men; Baggarley, S; DilipKumara, A H; Lee, C C; Krisanachinda, A; Nguyen, X C; Ng, K H

    2015-09-01

    It was the aim of this work to assess and track the workload, working conditions and professional recognition of radiation oncology medical physicists (ROMPs) in the Asia Pacific region over time. In this third survey since 2008, a structured questionnaire was mailed in 2014 to 22 senior medical physicists representing 23 countries. As in previous surveys the questionnaire covered seven themes: 1 education, training and professional certification, 2 staffing, 3 typical tasks, 4 professional organisations, 5 resources, 6 research and teaching, and 7 job satisfaction. The response rate of 100% is a result of performing a survey through a network, which allows easy follow-up. The replies cover 4841 ROMPs in 23 countries. Compared to 2008, the number of medical physicists in many countries has doubled. However, the number of experienced ROMPs compared to the overall workforce is still small, especially in low and middle income countries. The increase in staff is matched by a similar increase in the number of treatment units over the years. Furthermore, the number of countries using complex techniques (IMRT, IGRT) or installing high end equipment (tomotherapy, robotic linear accelerators) is increasing. Overall, ROMPs still feel generally overworked and the professional recognition, while varying widely, appears to be improving only slightly. Radiation oncology medical physics practice has not changed significantly over the last 6 years in the Asia Pacific Region even if the number of physicists and the number and complexity of treatment techniques and technologies have increased dramatically.

  11. AAPM/SNMMI Joint Task Force: report on the current state of nuclear medicine physics training

    PubMed Central

    Allison, Jerry D.; Clements, Jessica B.; Coffey, Charles W.; Fahey, Frederic H.; Gress, Dustin A.; Kinahan, Paul E.; Nickoloff, Edward L.; Mawlawi, Osama R.; MacDougall, Robert D.; Pizzuitello, Robert J.

    2015-01-01

    The American Association of Physicists in Medicine (AAPM) and the Society of Nuclear Medicine and Molecular Imaging (SNMMI) recognized the need for a review of the current state of nuclear medicine physics training and the need to explore pathways for improving nuclear medicine physics training opportunities. For these reasons, the two organizations formed a joint AAPM/SNMMI Ad Hoc Task Force on Nuclear Medicine Physics Training. The mission of this task force was to assemble a representative group of stakeholders to: Estimate the demand for board‐certified nuclear medicine physicists in the next 5–10 years,Identify the critical issues related to supplying an adequate number of physicists who have received the appropriate level of training in nuclear medicine physics, andIdentify approaches that may be considered to facilitate the training of nuclear medicine physicists. As a result, a task force was appointed and chaired by an active member of both organizations that included representation from the AAPM, SNMMI, the American Board of Radiology (ABR), the American Board of Science in Nuclear Medicine (ABSNM), and the Commission for the Accreditation of Medical Physics Educational Programs (CAMPEP). The Task Force first met at the AAPM Annual Meeting in Charlotte in July 2012 and has met regularly face‐to‐face, online, and by conference calls. This manuscript reports the findings of the Task Force, as well as recommendations to achieve the stated mission. PACS number: 01.40.G‐ PMID:26699325

  12. Women in medical physics: a preliminary analysis of workforce and research participation in Australia and New Zealand.

    PubMed

    Crowe, S B; Kairn, T

    2016-06-01

    Although the participation of women within the science, technology, engineering and mathematics workforces has been widely discussed over recent decades, the recording and analysis of data pertaining to the gender balance of medical physicists in Australia and New Zealand remains rare. This study aimed to provide a baseline for evaluating future changes in workforce demographics by quantifying the current level of representation of women in the Australasian medical physics workforce and providing an indication of the relative contribution made by those women to the local research environment. The 2015 Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) member directory and list of chief physicists at ACPSEM-accredited radiation oncology and diagnostic imaging training centres were interrogated to identify the gender balance of medical physicists working in Australia and New Zealand. A specific investigation of the employment levels of all medical physicists in Queensland was undertaken to provide an example of the gender balance at different levels of seniority in one large Australian state. Lists of authors of medical physics presentations at ACPSEM annual conferences and authors of publications in the ACPSEM's official journal, were used to provide an indication of the gender balance in published research within Australia and New Zealand. The results of this study showed that women currently constitute approximately 28 % of the medical physics workforce in Australia and New Zealand, distributed disproportionally in junior roles; there is a decrease in female participation in the field with increasing levels of seniority, which is particularly apparent in the stratified data obtained for the Queensland workforce. Comparisons with older data suggest that this situation has changed little since 2008. Examination of ACPSEM conference presentations suggested that there are similar disparities between the gender-balance of proffered and invited or keynote speakers (28 % and 13 % from female authors) and the gender balance of certified and chief physicists (28 % and 21 % female). The representation of women in the ACPSEM journal does not differ substantially between authorship of proffered versus invited work (22 % and 19 % from female authors). While this work was limited to evaluating the membership, annual conference and official journal of the ACPSEM (rather than evaluating the entire medical physics workforce and the contributions of male and female physicists to international conferences and publications), this study nonetheless led to the following recommendations: that a longitudinal study analysing correlations between age, period of service, seniority and gender should be undertaken and that future ACPSEM workforce surveys should include analyses of gender representation.

  13. John Bardeen: an extraordinary physicist

    NASA Astrophysics Data System (ADS)

    Hoddeson, Lillian

    2008-04-01

    On the morning of 1 November 1956 the US physicist John Bardeen dropped the frying-pan of eggs that he was cooking for breakfast, scattering its contents on the kitchen floor. He had just heard that he had won the Nobel Prize for Physics along with William Shockley and Walter Brattain for their invention of the transistor. That evening Bardeen was startled again, this time by a parade of his colleagues from the University of Illinois marching to the door of his home bearing champagne and singing "For He's a Jolly Good Fellow".

  14. On the Human Aspect of Nobel Prize

    NASA Astrophysics Data System (ADS)

    Durand, G.

    1990-10-01

    One night, Nico invited for dinner all his postdoc and graduate students, in a German restaurant close to Harvard Square. Just before we were to pay for our meal, he told us: "Tomorrow, we shall know the Nobel prize winner. Can you people make a guess on his name?" All my colleagues nominated great physicists. In my turn, I suggested naively (and perhaps nationalistically) the name of Alfred Kastler who had been my thesis adviser. "Come on," joked Nico, "I know a lot of physicists who would deserve it much better.."

  15. The contribution of Medical Physics to Nuclear Medicine: looking back - a physicist's perspective.

    PubMed

    Hutton, Brian F

    2014-12-01

    This paper is the first in a series of invited perspectives by four pioneers of Nuclear Medicine imaging and physics. A medical physicist and a Nuclear Medicine clinical specialist each take a backward look and a forward look at the contributions of Medical Physics to Nuclear Medicine. Contributions of Medical Physics are presented from the early discovery of radioactivity, development of first imaging devices, computers and emission tomography to recent development of hybrid imaging. There is evidence of significant contribution of Medical Physics throughout the development of Nuclear Medicine.

  16. Applying Physics: Opportunities in Semiconductor Technology Companies

    NASA Astrophysics Data System (ADS)

    Redinbo, Greg

    2011-03-01

    While many physicists practice in university settings, physics skills can also be applied outside the traditional academic track. ~Identifying these opportunities requires a clear understanding of how your physics training can be used in an industrial setting, understanding what challenges technology companies face, and identifying how your problem solving skills can be broadly applied in technology companies. ~In this talk I will highlight the common features of such companies, discuss what specific skills are useful for an industrial physicist, and explain roles (possibly unfamiliar) that may be available to you.

  17. New Challenges for Women Physicists in a Rapidly Changing China

    NASA Astrophysics Data System (ADS)

    Wu, Ling-An

    2005-10-01

    With the tremendous growth in China's economy, young people now enjoy a much wider choice of careers; but women are also beginning to face new challenges, such as discrimination in employment and retirement policies. The ratio of women in physics in universities has remained more or less constant, but that in research institutes has decreased in recent years, although the ratio of young women awarded research grants seems to be on the rise. More effort must be exerted to guarantee equal opportunity for women physicists, young and old, in a rapidly changing society.

  18. A course treating ethical issues in physics.

    PubMed

    Thomsen, Marshall

    2007-03-01

    A course focusing on ethical issues in physics has been taught to undergraduate students at Eastern Michigan University since 1988. The course covers both responsible conduct of research and ethical issues associated with how physicists interact with the rest of society. Since most undergraduate physics majors will not have a career in academia, it is important that a course such as this address issues that will be relevant to physicists in a wide range of job situations. There is a wealth of published work that can be drawn on for reading assignments.

  19. The LHCb Starterkit

    NASA Astrophysics Data System (ADS)

    Puig, Albert; LHCb Starterkit Team

    2017-10-01

    The vast majority of high-energy physicists use and produce software every day. Software skills are usually acquired “on the go” and dedicated training courses are rare. The LHCb Starterkit is a new training format for getting LHCb collaborators started in effectively using software to perform their research. The course focuses on teaching basic skills for research computing. Unlike traditional tutorials we focus on starting with basics, performing all the material live, with a high degree of interactivity, giving priority to understanding the tools as opposed to handing out recipes that work “as if by magic”. The LHCb Starterkit was started by two young members of the collaboration inspired by the principles of Software Carpentry, and the material is created in a collaborative fashion using the tools we teach. Three successful entry-level workshops, as well as an advance one, have taken place since the start of the initiative in 2015, and were taught largely by PhD students to other PhD students.

  20. Invisible Light: a global infotainment community based on augmented reality technologies

    NASA Astrophysics Data System (ADS)

    Israel, Kai; Wozniak, Peter; Vauderwange, Oliver; Curticapean, Dan

    2015-10-01

    Theoretical details about optics and photonics are not common knowledge nowadays. Physicists are keen to scientifically explain `light,' which has a huge impact on our lives. It is necessary to examine it from multiple perspectives and to make the knowledge accessible to the public in an interdisciplinary, scientifically well-grounded and appealing medial way. To allow an information exchange on a global scale, our project "Invisible Light" establishes a worldwide accessible platform. Its contents will not be created by a single instance, but user-generated, with the help of the global community. The article describes the infotainment portal "Invisible Light," which stores scientific articles about light and photonics and makes them accessible worldwide. All articles are tagged with geo-coordinates, so they can be clearly identified and localized. A smartphone application is used for visualization, transmitting the information to users in real time by means of an augmented reality application. Scientific information is made accessible for a broad audience and in an attractive manner.

  1. A two-dimensional algebraic quantum liquid produced by an atomic simulator of the quantum Lifshitz model

    NASA Astrophysics Data System (ADS)

    Po, Hoi Chun; Zhou, Qi

    2015-08-01

    Bosons have a natural instinct to condense at zero temperature. It is a long-standing challenge to create a high-dimensional quantum liquid that does not exhibit long-range order at the ground state, as either extreme experimental parameters or sophisticated designs of microscopic Hamiltonians are required for suppressing the condensation. Here we show that synthetic gauge fields for ultracold atoms, using either the Raman scheme or shaken lattices, provide physicists a simple and practical scheme to produce a two-dimensional algebraic quantum liquid at the ground state. This quantum liquid arises at a critical Lifshitz point, where a two-dimensional quartic dispersion emerges in the momentum space, and many fundamental properties of two-dimensional bosons are changed in its proximity. Such an ideal simulator of the quantum Lifshitz model allows experimentalists to directly visualize and explore the deconfinement transition of topological excitations, an intriguing phenomenon that is difficult to access in other systems.

  2. Special Colloquium : Looking at High Energy Physics from a gender studies perspective

    ScienceCinema

    Goetschel, Helene

    2018-01-23

    Human actors, workplace cultures and knowledge production: Gender studies analyse the social constructions and cultural representations of gender. Using methods and tools from the humanities and social science, we look at all areas, including the natural sciences and technology, science education and research labs. After a short introduction to gender studies, the main focus of my talk will be the presentation of selected research findings on gender and high energy physics. You will hear about an ongoing research project on women in neutrino physics and learn about a study on the world of high energy physicists characterised by "rites of passage" and "male tales" told during a life in physics. I will also present a study on how the HEP community communicates, and research findings on the naming culture in HEP. Getting to know findings from another field on your own might contribute to create a high energy physics culture that is fair and welcoming to all genders.

  3. Special Colloquium : Looking at High Energy Physics from a gender studies perspective

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetschel, Helene

    Human actors, workplace cultures and knowledge production: Gender studies analyse the social constructions and cultural representations of gender. Using methods and tools from the humanities and social science, we look at all areas, including the natural sciences and technology, science education and research labs. After a short introduction to gender studies, the main focus of my talk will be the presentation of selected research findings on gender and high energy physics. You will hear about an ongoing research project on women in neutrino physics and learn about a study on the world of high energy physicists characterised by "rites ofmore » passage" and "male tales" told during a life in physics. I will also present a study on how the HEP community communicates, and research findings on the naming culture in HEP. Getting to know findings from another field on your own might contribute to create a high energy physics culture that is fair and welcoming to all genders.« less

  4. The contribution of physics to Nuclear Medicine: physicians' perspective on future directions.

    PubMed

    Mankoff, David A; Pryma, Daniel A

    2014-12-01

    Advances in Nuclear Medicine physics enabled the specialty of Nuclear Medicine and directed research in other aspects of radiotracer imaging, ultimately leading to Nuclear Medicine's emergence as an important component of current medical practice. Nuclear Medicine's unique ability to characterize in vivo biology without perturbing it will assure its ongoing role in a practice of medicine increasingly driven by molecular biology. However, in the future, it is likely that advances in molecular biology and radiopharmaceutical chemistry will increasingly direct future developments in Nuclear Medicine physics, rather than relying on physics as the primary driver of advances in Nuclear Medicine. Working hand-in-hand with clinicians, chemists, and biologists, Nuclear Medicine physicists can greatly enhance the specialty by creating more sensitive and robust imaging devices, by enabling more facile and sophisticated image analysis to yield quantitative measures of regional in vivo biology, and by combining the strengths of radiotracer imaging with other imaging modalities in hybrid devices, with the overall goal to enhance Nuclear Medicine's ability to characterize regional in vivo biology.

  5. Beamline Insertions Manager at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Michael C.

    2015-09-01

    The beam viewer system at Jefferson Lab provides operators and beam physicists with qualitative and quantitative information on the transverse electron beam properties. There are over 140 beam viewers installed on the 12 GeV CEBAF accelerator. This paper describes an upgrade consisting of replacing the EPICS-based system tasked with managing all viewers with a mixed system utilizing EPICS and high-level software. Most devices, particularly the beam viewers, cannot be safely inserted into the beam line during high-current beam operations. Software is partly responsible for protecting the machine from untimely insertions. The multiplicity of beam-blocking and beam-vulnerable devices motivates us tomore » try a data-driven approach. The beamline insertions application components are centrally managed and configured through an object-oriented software framework created for this purpose. A rules-based engine tracks the configuration and status of every device, along with the beam status of the machine segment containing the device. The application uses this information to decide on which device actions are allowed at any given time.« less

  6. Let's Go Where the Kids Are: A Successful ICHEP Outreach Program

    NASA Astrophysics Data System (ADS)

    Bardeen, Marjorie

    2017-01-01

    The ICHEP Local Organizing Committee created a partnership with the Chicago Public Library to put on physics presentations at neighborhood libraries in conjunction with ICHEP 2016. Each engaging presentation was offered by two physicists or engineers with interest and experience in outreach from universities and labs around the world. Most were ICHEP attendees, but some were local presenters including a group of graduate students from the University of Chicago and the Illinois Institute of Technology. The conference was committed to community outreach, and we were delighted to ``pop-up'' in Chicago neighborhoods with a science program geared for children ages 6-18. We reached over 675 ``neighbors'' at 30 libraries citywide. The presentations were so successful that the libraries plan to host more presentations offered by Fermilab during the school year. We describe our experience as a model adaptable for other meetings and conferences or as part of a university outreach program and in partnership with other venues such park districts.

  7. The Madelung Picture as a Foundation of Geometric Quantum Theory

    NASA Astrophysics Data System (ADS)

    Reddiger, Maik

    2017-10-01

    Despite its age, quantum theory still suffers from serious conceptual difficulties. To create clarity, mathematical physicists have been attempting to formulate quantum theory geometrically and to find a rigorous method of quantization, but this has not resolved the problem. In this article we argue that a quantum theory recursing to quantization algorithms is necessarily incomplete. To provide an alternative approach, we show that the Schrödinger equation is a consequence of three partial differential equations governing the time evolution of a given probability density. These equations, discovered by Madelung, naturally ground the Schrödinger theory in Newtonian mechanics and Kolmogorovian probability theory. A variety of far-reaching consequences for the projection postulate, the correspondence principle, the measurement problem, the uncertainty principle, and the modeling of particle creation and annihilation are immediate. We also give a speculative interpretation of the equations following Bohm, Vigier and Tsekov, by claiming that quantum mechanical behavior is possibly caused by gravitational background noise.

  8. Creating Future Stem Leaders: The National Astronomy Consortium:

    NASA Astrophysics Data System (ADS)

    Sheth, Kartik; Mills, Elisabeth A. C.; Boyd, Patricia T.; Strolger, Louis-Gregory; Benjamin, Robert A.; Brisbin, Drew; Giles, Faye; National Astronomy Consortium

    2016-01-01

    The National Astronomy Consortium (NAC) is a program led by the National Radio Astronomy Observatory (NRAO) and Associated Universities Inc., (AUI) in partnership with the National Society of Black Physicists (NSBP), and a number of minority and majority universities to increase the numbers of students from underrepresented groups and those otherwise overlooked by the traditional academic pipeline into STEM or STEM-related careers. The seed for the NAC was a partnership between NRAO and Howard University which began with an exchange of a few summer students five years ago. Since then the NAC has grown tremendously. Today the NAC aims to host between 4 to 5 cohorts nationally in an innovative model in which the students are mentored throughout the year with multiple mentors and peer mentoring, continued engagement in research and professional development / career training throughout the academic year and throughout their careers. We will summarize the results from this innovative and highly succesful program and provide lessons learned.

  9. The role of language in learning physics

    NASA Astrophysics Data System (ADS)

    Brookes, David T.

    Many studies in PER suggest that language poses a serious difficulty for students learning physics. These difficulties are mostly attributed to misunderstanding of specialized terminology. This terminology often assigns new meanings to everyday terms used to describe physical models and phenomena. In this dissertation I present a novel approach to analyzing of the role of language in learning physics. This approach is based on the analysis of the historical development of physics ideas, the language of modern physicists, and students' difficulties in the areas of quantum mechanics, classical mechanics, and thermodynamics. These data are analyzed using linguistic tools borrowed from cognitive linguistics and systemic functional grammar. Specifically, I combine the idea of conceptual metaphor and grammar to build a theoretical framework that accounts for: (1) the role and function that language serves for physicists when they speak and reason about physical ideas and phenomena, (2) specific features of students' reasoning and difficulties that may be related to or derived from language that students read or hear. The theoretical framework is developed using the methodology of a grounded theoretical approach. The theoretical framework allows us to make predictions about the relationship between student discourse and their conceptual and problem solving difficulties. Tests of the theoretical framework are presented in the context of "heat" in thermodynamics and "force" in dynamics. In each case the language that students use to reason about the concepts of "heat" and "force" is analyzed using the theoretical framework. The results of this analysis show that language is very important in students' learning. In particular, students are (1) using features of physicists' conceptual metaphors to reason about physical phenomena, often overextending and misapplying these features, (2) drawing cues from the grammar of physicists' speech and writing to categorize physics concepts; this categorization of physics concepts plays a key role in students' ability to solve physics problems. In summary, I present a theoretical framework that provides a possible explanation of the role that language plays in learning physics. The framework also attempts to account for how and why physicists' language influences students in the way that it does.

  10. Women in Physics: An International Perspective

    NASA Astrophysics Data System (ADS)

    McNeil, Laurie

    1997-04-01

    This session organized by the APS Committee on the Status of Women in Physics will open with a brief memorial to Dr. Chien-Shung Wu, who died on February 16, 1997. It will continue with an exploration of the challenges faced by women in physics in various parts of the world. We will hear both personal and statistical pictures of the experiences of women in physics in Japan and Canada. The presentations from the two countries (approximately 20 min. each) will be followed by an open forum in which questions from the audience will be invited. "Chien-Shung Wu: In Memoriam" Speaker: Noemie Benczer-Koller. Dr. Chien-Shung Wu and her 1957 experiment on parity non-conservation shattered what was thought to be a fundamental law of physics. Her contributions to women in physics (including her election in 1975 to the APS Presidency) will be briefly recalled. The Japanese Perspective "A Female Physicist in Japan" Fumiko Yonezawa (President, Physical Society of Japan). Dr. Yonazawa will share her experiences as a female physicist in Japan, and describe the path she has taken to leadership in her professional society. The Canadian Perspective "Women in Physics in Canada: A Physics Graduate and Faculty Survey" Janis McKenna (Univ. of British Columbia). Dr. McKenna will present the results of a 1995 CAP-sponsored survey of women faculty and graduates in physics in Canada, which concluded that the situation for women in physics in Canada is very similar to that in the U.S. (only 5% of faculty members are women), and not as progressive as the situation in several European countries. "Physics on the Border: The 'Two-Body Problem' for Canadian Physicists" Ann McMillan (Atmospheric Environment Service). Dr. McMillan will describe how the geographic distribution of Canadian universities and research facilities poses unique problems for physicists balancing two careers in one family. She will discuss the particular challenges faced by female physicists, and the institutional responses to these challenges. Following the presentations, Drs. Yonazawa, McKenna, and McMillan will respond to questions from the audience.

  11. The analysis of senior high school students' physics HOTS in Bantul District measured using PhysReMChoTHOTS

    NASA Astrophysics Data System (ADS)

    Istiyono, Edi

    2017-08-01

    The purpose of this research is to describe the results of higher order thinking skills in physics (PhysHOTS) measurement including: (1) percentage of PhysHOTS level and (2) percentage of the domination of response in the category of students in each analyzing, evaluating, and creating skill. There were 404 10th grade students in Bantul District as the respondents of this research. The instrument used for measurement was PhysReMChoTHOTS. It was divided into two sets consisting of 44 items and including 8 anchor items stated valid by a Physicist, Physics Education Expert, and Physics Education Measurement Expert. The instrument was fit to PCM. The reliability coefficient of this test is 0.71, while the difficulty index of the items ranges from -0.61 to 0.51. The results of the measurement show that: (1) The percentage of each category of PhysHOTS for the 10th grade students in Bantul District for the very low, low, medium, high, and very high category is 4.75 %, 40.30 %, 33.45 %, 19.50 %, and 2.00 %, respectively; and (2) The order in analyzing skills, starts from the weakest, is attributing, differentiating and organizing. The order in evaluating skills, starts from the weakest, is critiquing and checking. Meanwhile, the order in creating skills, starts from the weakest, is producing, planning, and generating.

  12. FROM THE HISTORY OF PHYSICS: The nuclear shield in the 'thirty-year war' of physicists against ignorant criticism of modern physical theories

    NASA Astrophysics Data System (ADS)

    Vizgin, Vladimir P.

    1999-12-01

    This article deals with the almost 'thirty-year war' led by physicists against the authorities' incompetent philosophical and ideological interference with science. The 'war' is shown to have been related to the history of Soviet nuclear weapons. Theoretical milestones of 20th century physics, to wit, theory of relativity and quantum mechanics, suffered endless 'attacks on philosophical grounds'. The theories were proclaimed idealistic as well as unduly abstract and out of touch with practice; their authors and followers were labelled 'physical idealists', and later, in the 1940s and 1950s, even 'cosmopolitans without kith or kin'. Meanwhile, quantum and relativistic theories, as is widely known, had become the basis of nuclear physics and of the means of studying the atomic nucleus (charged particle accelerators, for instance). The two theories thus served, to a great extent, as a basis for both peaceful and military uses of nuclear energy, made possible by the discovery of uranium nuclear fission under the action of neutrons. In the first part, the article recounts how prominent physicists led the way to resisting philosophical and ideological pressure and standing up for relativity, quantum theories and nuclear physics, thus enabling the launch of the atomic project. The second part contains extensive material proving the point that physicists effectively used the 'nuclear shield' in the 1940s and 1950s against the 'philosophical-cosmopolitan' pressure, indeed saving physics from a tragic fate as that of biology at the Academy of Agricultural Sciences (VASKhNIL) session in 1948.

  13. Surveying trends in radiation oncology medical physics in the Asia Pacific Region.

    PubMed

    Kron, Tomas; Healy, Brendan; Ng, Kwan Hoong

    2016-07-01

    Our study aims to assess and track work load, working conditions and professional recognition of radiation oncology medical physicists (ROMPs) in the Asia Pacific Region over time. A structured questionnaire was mailed in 2008, 2011 and 2014 to senior medical physicists representing 23 countries. The questionnaire covers 7 themes: education and training including certification; staffing; typical tasks; professional organisations; resources; research and teaching; job satisfaction. Across all surveys the response rate was >85% with the replies representing practice affecting more than half of the world's population. The expectation of ROMP qualifications (MSc and between 1 and 3years of clinical experience) has not changed much over the years. However, compared to 2008, the number of medical physicists in many countries has doubled. Formal professional certification is only available in a small number of countries. The number of experienced ROMPs is small in particular in low and middle income countries. The increase in staff numbers from 2008 to 2014 is matched by a similar increase in the number of treatment units which is accompanied by an increase in treatment complexity. Many ROMPs are required to work overtime and not many find time for research. Resource availability has only improved marginally and ROMPs still feel generally overworked, but professional recognition, while varying widely, appears to be improving slowly. While number of physicists and complexity of treatment techniques and technologies have increased significantly, ROMP practice remains essentially unchanged over the last 6years in the Asia Pacific Region. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  14. TU-G-213-01: IEC and US Committee Activities and Organizational Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ibbott, G.

    2015-06-15

    The International Electrotechnical Commission (IEC) writes standards that manufacturers of electrical equipment must comply with. Medical electrical equipment, such as medical imaging, radiation therapy, and radiation dosimetry devices, fall under Technical Committee 62. Of particular interest to medical physicists are the standards developed within Subcommittees (SC) 62B, which addresses diagnostic radiological imaging equipment, and 62C, which addresses equipment for radiation therapy, nuclear medicine and dosimetry. For example, a Working Group of SC 62B is responsible for safety and quality assurance standards for CT scanners and a Working Group of SC 62C is responsible for standards that set requirements for dosimetricmore » safety and accuracy of linacs and proton accelerators. IEC standards thus have an impact on every aspect of a medical physicist’s job, including equipment testing, shielding design, room layout, and workflow. Consequently, it is imperative that US medical physicists know about existing standards, as well as have input on those under development or undergoing revision. The structure of the IEC and current standards development work will be described in detail. The presentation will explain how US medical physicists can learn about IEC standards and contribute to their development. Learning Objectives: Learn about the structure of the IEC and the influence that IEC standards have on the design of equipment for radiology and radiation therapy. Learn about the mechanisms by which the US participates in the development and revision of standards. Understand the specific requirements of several standards having direct relevance to diagnostic and radiation therapy physicists.« less

  15. TU-G-213-03: IEC Subcommittee 62C (Equipment for Radiotherapy, Nuclear Medicine and Radiation Dosimetry): Recent and Active Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Culberson, W.

    The International Electrotechnical Commission (IEC) writes standards that manufacturers of electrical equipment must comply with. Medical electrical equipment, such as medical imaging, radiation therapy, and radiation dosimetry devices, fall under Technical Committee 62. Of particular interest to medical physicists are the standards developed within Subcommittees (SC) 62B, which addresses diagnostic radiological imaging equipment, and 62C, which addresses equipment for radiation therapy, nuclear medicine and dosimetry. For example, a Working Group of SC 62B is responsible for safety and quality assurance standards for CT scanners and a Working Group of SC 62C is responsible for standards that set requirements for dosimetricmore » safety and accuracy of linacs and proton accelerators. IEC standards thus have an impact on every aspect of a medical physicist’s job, including equipment testing, shielding design, room layout, and workflow. Consequently, it is imperative that US medical physicists know about existing standards, as well as have input on those under development or undergoing revision. The structure of the IEC and current standards development work will be described in detail. The presentation will explain how US medical physicists can learn about IEC standards and contribute to their development. Learning Objectives: Learn about the structure of the IEC and the influence that IEC standards have on the design of equipment for radiology and radiation therapy. Learn about the mechanisms by which the US participates in the development and revision of standards. Understand the specific requirements of several standards having direct relevance to diagnostic and radiation therapy physicists.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedict, Stanley H.; Bova, Frank J.; Clark, Brenda

    This article is a tribute to the pioneering medical physicists over the last 50 years who have participated in the research, development, and commercialization of stereotactic radiosurgery (SRS) and stereotactic radiotherapy utilizing a wide range of technology. The authors have described the evolution of SRS through the eyes of physicists from its beginnings with the Gamma Knife in 1951 to proton and charged particle therapy; modification of commercial linacs to accommodate high precision SRS setups; the multitude of accessories that have enabled fine tuning patients for relocalization, immobilization, and repositioning with submillimeter accuracy; and finally the emerging technology of SBRT.more » A major theme of the article is the expanding role of the medical physicist from that of advisor to the neurosurgeon to the current role as a primary driver of new technology that has already led to an adaptation of cranial SRS to other sites in the body, including, spine, liver, and lung. SRS continues to be at the forefront of the impetus to provide technological precision for radiation therapy and has demonstrated a host of downstream benefits in improving delivery strategies for conventional therapy as well. While this is not intended to be a comprehensive history, and the authors could not delineate every contribution by all of those working in the pursuit of SRS development, including physicians, engineers, radiobiologists, and the rest of the therapy and dosimetry staff in this important and dynamic radiation therapy modality, it is clear that physicists have had a substantial role in the development of SRS and theyincreasingly play a leading role in furthering SRS technology.« less

  17. Radiomics in radiooncology - Challenging the medical physicist.

    PubMed

    Peeken, Jan C; Bernhofer, Michael; Wiestler, Benedikt; Goldberg, Tatyana; Cremers, Daniel; Rost, Burkhard; Wilkens, Jan J; Combs, Stephanie E; Nüsslin, Fridtjof

    2018-04-01

    Noticing the fast growing translation of artificial intelligence (AI) technologies to medical image analysis this paper emphasizes the future role of the medical physicist in this evolving field. Specific challenges are addressed when implementing big data concepts with high-throughput image data processing like radiomics and machine learning in a radiooncology environment to support clinical decisions. Based on the experience of our interdisciplinary radiomics working group, techniques for processing minable data, extracting radiomics features and associating this information with clinical, physical and biological data for the development of prediction models are described. A special emphasis was placed on the potential clinical significance of such an approach. Clinical studies demonstrate the role of radiomics analysis as an additional independent source of information with the potential to influence the radiooncology practice, i.e. to predict patient prognosis, treatment response and underlying genetic changes. Extending the radiomics approach to integrate imaging, clinical, genetic and dosimetric data ('panomics') challenges the medical physicist as member of the radiooncology team. The new field of big data processing in radiooncology offers opportunities to support clinical decisions, to improve predicting treatment outcome and to stimulate fundamental research on radiation response both of tumor and normal tissue. The integration of physical data (e.g. treatment planning, dosimetric, image guidance data) demands an involvement of the medical physicist in the radiomics approach of radiooncology. To cope with this challenge national and international organizations for medical physics should organize more training opportunities in artificial intelligence technologies in radiooncology. Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Dreams of a quantum pioneer

    NASA Astrophysics Data System (ADS)

    Segré, Gino

    2009-09-01

    Born in 1900, Wolfgang Pauli's debut as a physicist came in 1921 with the publication of a review paper on relativity so thorough and incisive that Einstein wrote of it "No-one studying this mature, grandly conceived work would believe the author is a man of twenty-one". Three years later, Pauli formulated the exclusion principle that bears his name, and that forms the basis of atomic and molecular structure; this work earned him the 1945 Nobel Prize for Physics. In 1930 he introduced the concept of the neutrino, which is central to modern elementary particle physics. By then, he had already become the key arbiter in the year-long discussions held in Copenhagen between Werner Heisenberg and Niels Bohr that had led to the modern formulation of quantum mechanics. He was also the holder of a prestigious professorship in Zurich, Switzerland, where young physicists from around the world - including Felix Bloch, Max Delbruck, Lev Landau, J Robert Oppenheimer, Rudolf Peierls and Victor Weisskopf - were flocking to work with him. Hence, by the age of just 30, Pauli had already established himself as one of the 20th century's great physicists.

  19. Session Introduction

    NASA Astrophysics Data System (ADS)

    Eliane Lessner, Co-Chair:

    2009-03-01

    A panel discussion session providing a worldwide assessment of the status and experiences of women in physics, paying attention to the different cultures and environments they work in and to how the age of the physicist affects their perspective. We will hear about women physicists in Korea in particular and Asia in general, in Egypt in particular and Africa in general, and in the Caribbean. Six invited speakers will present analyses of the progress being made in promoting women in physics from their personal experiences and as assessed from their participation in the Third International Conference on Women In Physics (ICWIP2008) convened in Seoul, Korea in October 2008. From Albania to Zimbabwe, with representation of all the continents, ICWIP2008 congregated 283 women and men physicists from 57 countries to share the participants' scientific accomplishments and evaluate international progress in improving the status of women in physics. This three-hour session is organized jointly by the Committee on the Status of Women in Physics of the APS (CSWP) and the Forum on International Physics of the APS (FIP). Audience participation in the panel discussion will be strongly encouraged.

  20. Female physicist doctoral experiences

    NASA Astrophysics Data System (ADS)

    Dabney, Katherine P.; Tai, Robert H.

    2013-06-01

    The underrepresentation of women in physics doctorate programs and in tenured academic positions indicates a need to evaluate what may influence their career choice and persistence. This qualitative paper examines eleven females in physics doctoral programs and professional science positions in order to provide a more thorough understanding of why and how women make career choices based on aspects both inside and outside of school and their subsequent interaction. Results indicate that female physicists experience conflict in achieving balance within their graduate school experiences and personal lives and that this then influences their view of their future careers and possible career choices. Female physicists report both early and long-term support outside of school by family, and later departmental support, as being essential to their persistence within the field. A greater focus on informal and out-of-school science activities for females, especially those that involve family members, early in life may help influence their entrance into a physics career later in life. Departmental support, through advisers, mentors, peers, and women’s support groups, with a focus on work-life balance can help females to complete graduate school and persist into an academic career.

  1. The global survey of physicists: A collaborative effort illuminates the situation of women in physics

    NASA Astrophysics Data System (ADS)

    Ivie, Rachel; Tesfaye, Casey Langer; Czujko, Roman; Chu, Raymond

    2013-03-01

    The results of the Global Survey of Physicists draw attention to the need to focus on factors other than representation when discussing the situation of women in physics. Previous studies of women in physics have mostly focused on the lack of women in the field. This study goes beyond the obvious shortage of women and shows that there are much deeper issues. For the first time, a multinational study was conducted with approximately 15,000 respondents from 130 countries, showing that problems for women in physics transcend national borders. Across all countries, women have fewer resources and opportunities and are more affected by cultural expectations concerning child care. We show that limited resources and opportunities hurt career progress, and because women have fewer opportunities and resources, their careers progress more slowly. We also show the disproportionate effects of children on women physicists' careers. Cultural expectations about home and family are difficult to change. However, for women to have successful outcomes and advance in physics, they must have equal access to resources and opportunities.

  2. Women Physicists Speak: The 2001 International Study of Women in Physics

    NASA Astrophysics Data System (ADS)

    Ivie, Rachel; Czujko, Roman; Stowe, Katie

    2002-09-01

    The Working Group on Women in Physics of the International Union of Pure and Applied Physics (IUPAP) subcontracted with the Statistical Research Center of the American Institute of Physics (AIP) to conduct an international study on women in physics. This study had two parts. First, we conducted a benchmarking study to identify reliable sources and collect data on the representation of women in physics in as many IUPAP member countries as possible. Second, we conducted an international survey of individual women physicists. The survey addressed issues related to both education and employment. On the education side, we asked about experiences and critical incidents from secondary school through the highest degree earned. On the employment side, we asked about how the respondents' careers had evolved and their self-assessment of how well their careers had progressed. In addition, the questionnaire also addressed issues that cut across education and employment, such as the impact of marriage and children, the factors that contributed the most toward the success they had achieved to date, and suggestions for what could be done to improve the situation of women physicists.

  3. Bright and Not-So-Bright Prospects for Women in Physics in China-Beijing

    NASA Astrophysics Data System (ADS)

    Wu, Ling-An; Yang, Zhongqin; Ma, Wanyun

    2009-04-01

    Science in China-Beijing is enjoying a healthy increase in funding year by year, so the prospects for physicists are also bright. However, employment discrimination against women, formerly unthinkable, is becoming more and more explicit as the country evolves toward a market economy. Some recruitment notices bluntly state that only men will be considered, or impose restrictions upon potential female candidates. Female associate professors in many institutions are forced to retire at age 55, compared with 60 for men. This double-pinching discrimination against both younger and older women threatens to lead to a "pincer" effect, more serious than the "scissors" effect. Indeed, the ratio of senior-level women physicists in general has dropped significantly in recent years in China. Ironically, the number of female students applying for graduate studies is on the rise, as it is becoming increasingly difficult for them to compete with men in the job market with just an undergraduate degree. The Chinese Physical Society has made certain efforts to promote the image of women physicists, but it will take time and effort to reverse the trend.

  4. A Physicist's Journey In The Nuclear Power World

    NASA Astrophysics Data System (ADS)

    Starr, Chauncey

    2000-03-01

    As a participant in the development of civilian nuclear power plants for the past half century, the author presents some of his insights to its history that may be of interest to today's applied physicists. Nuclear power development has involved a mixture of creative vision, science, engineering, and unusual technical, economic, and social obstacles. Nuclear power programs were initiated during the euphoric era of public support for new science immediately following World War II -- a support that lasted almost two decades. Subsequently, nuclear power has had to face a complex mix of public concerns and criticism. The author's involvment in some of these circumstances will be anecdotally described. Although the physics of fission and its byproducts remains at the heart of all nuclear reactor designs, its embodiment in practical energy sources has been shaped by the limitations of engineering primarily and economics secondarily. Very influential has been the continuing interplay with the military's weapons and propulsion programs, and the government's political policies. In this respect, nuclear power's history provides a learning experience that may be applicable to some of the large scale demonstration projects that physicists pursue today.

  5. TU-C-9A-01: IROC Organization and Clinical Trial Credentialing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Followill, D; Molineu, A; Xiao, Y

    2014-06-15

    As a response to recommendations from a report from the Institute of Medicine, NCI is reorganizing it clinical trial groups into a National Clinical Trial Network (NCTN) that consists of four adult groups (Alliance, ECOGACRIN, NRG, and SWOG) and one children’s group (COG). NRG will house CIRO, a center to promote innovative radiation therapy research and intergroup collaboration in radiation. The quality assurance groups that support clinical trials have also been restructured. ITC, OSU Imaging corelab, Philadelphia Imaging core-lab, QARC, RPC, and RTOGQA have joined together to create the Imaging and Radiation Oncology Core (IROC) Group. IROC’s mission is tomore » provide integrated radiation oncology and diagnostic imaging quality control programs in support of the NCI’s NCTN thereby assuring high quality data for clinical trials designed to improve the clinical outcomes for cancer patients worldwide. This will be accomplished through five core services: site qualification, trial design support, credentialing, data management, case review.These changes are important for physicist participating in NCI clinical trials to understand. We will describe in detail the IROC’s activities and five core services so that as a user, the medical physicist can learn how to efficiently utilize this group. We will describe common pitfalls encountered in credentialing for current protocols and present methods to avoid them. These may include the which benchmarks are required for NSABP B-51/RTOG 1304 and how to plan them as well as tips for phantom planning. We will explain how to submit patient and phantom cases in the TRIAD system used by IROC. Learning Objectives: To understand the basic organization of IROC, its mission and five core services To learn how to use TRIAD for patient and phantom data submission To learn how to avoid common pitfalls in credentialing for current trials.« less

  6. Destruction and recreation of black holes

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    Even though the existence of the gravitationally collapsed concentrations of matter in space known as ‘black holes’ is accepted at all educational levels in our society, the basis for the black hole concept is really only the result of approximate calculations done over 40 years ago. The concept of the black hole is an esoteric subject, and recently the mathematical and physical frailties of the concept have come to light in an interesting round of theoretical shuffling. The recent activity in theorizing about black holes began about 10 years ago, when Cambridge University mathematican Stephen Hawking calculated that black holes could become unstable by losing mass and thus ‘evaporate.’ Hawking's results were surprisingly well received, considering the lack of theoretical understanding of the relations between quantum mechanics and relativity. (There is no quantized theory of gravitation, even today.) Nonetheless, his semiclassical calculations implied that the rate of ‘evaporation’ of a black hole would be slower than the rate of degradation of the universe. In fact, based on these and other calculations, the British regard Hawking as ‘the nearest thing we have to a new Einstein’ [New Scientist, Oct. 9, 1980]. Within the last few months, Frank Tipler, provocative mathematical physicist at the University of Texas, has reexamined Hawking's calculations [Physical Review Letters, 45, 941, 1980], concluding, in simple terms, (1) that because of possible vital difficulties in the assumptions, the very concept of black holes could be wrong; (2) that Hawkings' evaporation hypothesis is so efficient that a black hole once created must disappear in less than a second; or (3) that he, Tipler, may be wrong. The latter possibility has been the conclusion of physicist James Bardeen of the University of Washington, who calculated that black hole masses do evaporate but they do so according to Hawking's predicted rate and that Tipler's findings cause only a second-order effect on the rate process [Physical Review Letters, 46, 382, 1981].

  7. SU-G-TeP4-13: Interfraction Treatment Monitoring Using Integrated Invivo EPID Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Defoor, D; Papanikolaou, N; Stathakis, S

    Purpose: To investigate inter-fraction differences of dose delivery by analyzing portal images acquired during treatment and implement an automated system to generate a report for each fraction. Large differences in images between fractions can alert the physicist of possible machine performance issues or patient set-up errors. Methods: A Varian Novalis Tx equipped with a HD120 MLC and aS1000 electronic portal imaging device (EPID) was used in our study. EPID images are acquired in continuous acquisition mode for 32 volumetric arc therapy (VMAT) patients. The images are summed to create an image for each arc and a single image for eachmore » fraction. The first fraction is designated as the reference unless a machine error prevented acquisition of all images. The images for each beam as well as the fraction image are compared using gamma analysis at 1%/1mm, 2%/2mm and 3%/3mm. A report is then generated using an in house MatLab program containing the comparison for the current fraction as well as a history of previous fractions. The reports are automatically sent via email to the physicist for review. Fractions in which the total number of images was not within 5% of the reference number of images were not included in the results. Results: 91 of the 182 fractions recorded an image count within 5% of the reference. Gamma averages over all fractions and patients were 96.2% ±0.8% at 3%/3mm, 92.9% ±1% at 2%/2mm and 80.6% ±1.8% at 1%/1mm. The SD between fractions for each patient ranged from .004% to 10.4%. Of the 91 fractions 3 flagged due to low gamma values. After further investigation no significant errors were found. Conclusion: This toolkit can be used for in-vivo monitoring of treatment plan delivery an alert the physics staff of any inter-fraction discrepancies that may require further investigation.« less

  8. WE-G-BRA-08: Failure Modes and Effects Analysis (FMEA) for Gamma Knife Radiosurgery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Y; Bhatnagar, J; Bednarz, G

    2015-06-15

    Purpose: To perform a failure modes and effects analysis (FMEA) study for Gamma Knife (GK) radiosurgery processes at our institution based on our experience with the treatment of more than 13,000 patients. Methods: A team consisting of medical physicists, nurses, radiation oncologists, neurosurgeons at the University of Pittsburgh Medical Center and an external physicist expert was formed for the FMEA study. A process tree and a failure mode table were created for the GK procedures using the Leksell GK Perfexion and 4C units. Three scores for the probability of occurrence (O), the severity (S), and the probability of no detectionmore » (D) for failure modes were assigned to each failure mode by each professional on a scale from 1 to 10. The risk priority number (RPN) for each failure mode was then calculated (RPN = OxSxD) as the average scores from all data sets collected. Results: The established process tree for GK radiosurgery consists of 10 sub-processes and 53 steps, including a sub-process for frame placement and 11 steps that are directly related to the frame-based nature of the GK radiosurgery. Out of the 86 failure modes identified, 40 failure modes are GK specific, caused by the potential for inappropriate use of the radiosurgery head frame, the imaging fiducial boxes, the GK helmets and plugs, and the GammaPlan treatment planning system. The other 46 failure modes are associated with the registration, imaging, image transfer, contouring processes that are common for all radiation therapy techniques. The failure modes with the highest hazard scores are related to imperfect frame adaptor attachment, bad fiducial box assembly, overlooked target areas, inaccurate previous treatment information and excessive patient movement during MRI scan. Conclusion: The implementation of the FMEA approach for Gamma Knife radiosurgery enabled deeper understanding of the overall process among all professionals involved in the care of the patient and helped identify potential weaknesses in the overall process.« less

  9. Use of image registration and fusion algorithms and techniques in radiotherapy: Report of the AAPM Radiation Therapy Committee Task Group No. 132.

    PubMed

    Brock, Kristy K; Mutic, Sasa; McNutt, Todd R; Li, Hua; Kessler, Marc L

    2017-07-01

    Image registration and fusion algorithms exist in almost every software system that creates or uses images in radiotherapy. Most treatment planning systems support some form of image registration and fusion to allow the use of multimodality and time-series image data and even anatomical atlases to assist in target volume and normal tissue delineation. Treatment delivery systems perform registration and fusion between the planning images and the in-room images acquired during the treatment to assist patient positioning. Advanced applications are beginning to support daily dose assessment and enable adaptive radiotherapy using image registration and fusion to propagate contours and accumulate dose between image data taken over the course of therapy to provide up-to-date estimates of anatomical changes and delivered dose. This information aids in the detection of anatomical and functional changes that might elicit changes in the treatment plan or prescription. As the output of the image registration process is always used as the input of another process for planning or delivery, it is important to understand and communicate the uncertainty associated with the software in general and the result of a specific registration. Unfortunately, there is no standard mathematical formalism to perform this for real-world situations where noise, distortion, and complex anatomical variations can occur. Validation of the software systems performance is also complicated by the lack of documentation available from commercial systems leading to use of these systems in undesirable 'black-box' fashion. In view of this situation and the central role that image registration and fusion play in treatment planning and delivery, the Therapy Physics Committee of the American Association of Physicists in Medicine commissioned Task Group 132 to review current approaches and solutions for image registration (both rigid and deformable) in radiotherapy and to provide recommendations for quality assurance and quality control of these clinical processes. © 2017 American Association of Physicists in Medicine.

  10. SU-G-TeP4-06: An Integrated Application for Radiation Therapy Treatment Plan Directives, Management, and Reporting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matuszak, M; Anderson, C; Lee, C

    Purpose: With electronic medical records, patient information for the treatment planning process has become disseminated across multiple applications with limited quality control and many associated failure modes. We present the development of a single application with a centralized database to manage the planning process. Methods: The system was designed to replace current functionalities of (i) static directives representing the physician intent for the prescription and planning goals, localization information for delivery, and other information, (ii) planning objective reports, (iii) localization and image guidance documents and (iv) the official radiation therapy prescription in the medical record. Using the Eclipse Scripting Applicationmore » Programming Interface, a plug-in script with an associated domain-specific SQL Server database was created to manage the information in (i)–(iv). The system’s user interface and database were designed by a team of physicians, clinical physicists, database experts, and software engineers to ensure usability and robustness for clinical use. Results: The resulting system has been fully integrated within the TPS via a custom script and database. Planning scenario templates, version control, approvals, and logic-based quality control allow this system to fully track and document the planning process as well as physician approval of tradeoffs while improving the consistency of the data. Multiple plans and prescriptions are supported along with non-traditional dose objectives and evaluation such as biologically corrected models, composite dose limits, and management of localization goals. User-specific custom views were developed for the attending physician review, physicist plan checks, treating therapists, and peer review in chart rounds. Conclusion: A method was developed to maintain cohesive information throughout the planning process within one integrated system by using a custom treatment planning management application that interfaces directly with the TPS. Future work includes quantifying the improvements in quality, safety and efficiency that are possible with the routine clinical use of this system. Supported in part by NIH-P01-CA-059827.« less

  11. [Handling the cases of school failure in an educational institute in Zaghouan].

    PubMed

    Abdelkafi Koubaa, Afifa; Bouslama, Samira; Bel Abed, Najet; Dahmen, Hayet; Mira Gabsi, Zvine; Gabsi, Abdallah; Ouerfelli, Nabil; Mabaouj, Mohamed Taher; Bachouche, Imen

    2011-10-01

    To assess the main reasons for the school failure in a school in Zaghouan, how to handle these issues, to evaluate the work of the school social office. A retrospective study included 86 failure cases in a school in Zaghouan, handled by the school social office for three years (2004 - 2007). He have detected the principals causes of school failure, detected by the educational staff or by the listening office. The causes of failure are mainly social (46%) as family problems and low income. These families received financial aids and free treatment cards. Discussions have been made with the parents in order to make them more conscious. The pedagogical reasons (28%) however are usually relationship' problems between the student and his teacher or the student and the administration, the three subjects were informed so that attitudes could be changed in the purpose of helping the student. Twelve students (14%) have a psychological case, depression and over worrying, led in some cases to addiction.These cases were diagnosed and transferred to specialized clinics.Sense and chronic diseases (12%), are considered as health reasons for school failure and caused several absences in the school. The school physicist took care of these cases by handling them medical guidance cards while observing the diagnose progress. As school results, 56 cases turned satisfaisant which is 65 % of all cases. The school failure became a priority of the "School Health" institute. That puss to create the school social program, his aim is protecting the students from all dangers, early school leaving and social disintegration, and delinquency. Thus, all parts must be responsible for the school failure, teachers, parents, students,psychiatrists and physicists, as well as introducing the social school work and listening offices and missions to the parents, students and teachers in order to guarantee the success of the operations.

  12. SU-C-BRD-02: A Team Focused Clinical Implementation and Failure Mode and Effects Analysis of HDR Skin Brachytherapy Using Valencia and Leipzig Surface Applicators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sayler, E; Harrison, A; Eldredge-Hindy, H

    Purpose: and Leipzig applicators (VLAs) are single-channel brachytherapy surface applicators used to treat skin lesions up to 2cm diameter. Source dwell times can be calculated and entered manually after clinical set-up or ultrasound. This procedure differs dramatically from CT-based planning; the novelty and unfamiliarity could lead to severe errors. To build layers of safety and ensure quality, a multidisciplinary team created a protocol and applied Failure Modes and Effects Analysis (FMEA) to the clinical procedure for HDR VLA skin treatments. Methods: team including physicists, physicians, nurses, therapists, residents, and administration developed a clinical procedure for VLA treatment. The procedure wasmore » evaluated using FMEA. Failure modes were identified and scored by severity, occurrence, and detection. The clinical procedure was revised to address high-scoring process nodes. Results: Several key components were added to the clinical procedure to minimize risk probability numbers (RPN): -Treatments are reviewed at weekly QA rounds, where physicians discuss diagnosis, prescription, applicator selection, and set-up. Peer review reduces the likelihood of an inappropriate treatment regime. -A template for HDR skin treatments was established in the clinical EMR system to standardize treatment instructions. This reduces the chances of miscommunication between the physician and planning physicist, and increases the detectability of an error during the physics second check. -A screen check was implemented during the second check to increase detectability of an error. -To reduce error probability, the treatment plan worksheet was designed to display plan parameters in a format visually similar to the treatment console display. This facilitates data entry and verification. -VLAs are color-coded and labeled to match the EMR prescriptions, which simplifies in-room selection and verification. Conclusion: Multidisciplinary planning and FMEA increased delectability and reduced error probability during VLA HDR Brachytherapy. This clinical model may be useful to institutions implementing similar procedures.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sprawls, P

    Purpose: To enhance the understanding of medical physics concepts and develop higher levels of learning relating to invisible physics phenomena such as radiation. To provide medical physics educators in all countries of the world with understanding of knowledge structures in the human brain, the different levels of learning, and the types of knowledge required for higher level functions such as problem solving, creative innovations, and applied clinical applications. To provide medical physics educators with an open access resource (tool) that they can use in their teaching activities to enrich and elevate the level of learning for their students, residents, etc.more » with respect to the invisible realm of medical physics. Methods: An experienced clinical medical physicist and educator has created and provided with open access three complementary web-based resources to achieve the purposes described above. One is a module focusing on the medical physics learning process with respect to mental knowledge structures, how they relate to outcomes and applications, and learning activities that are required to develop the required knowledge structures. The second is an extensive set of visuals that educators can use in their activities (classes, small group discussions, etc.) to visualize the invisible. The third is an interactive online simulation where learners can adjust factors and visually observe changes in x-radiation.These resources are available online at www.BLINDED FOR REVIEW . Results: Medical physics education, especially for non-physicists, is becoming much more interesting and useful especially with respect to invisible radiation. The global impact is that medical imaging professionals can be more effective in optimizing x-ray imaging procedures and risk management when they have knowledge levels that enhance problem solving, innovation, and creativity. Conclusion: Medical physics educators in all institutions can be much more effective and efficient in the sharing of their knowledge and experience when enhanced with high-quality visuals.« less

  14. A Physicist in Business: Opportunities, Pitfalls, and Lifestyle.

    NASA Astrophysics Data System (ADS)

    Woollam, John

    2007-03-01

    A traditional education in physics does not normally include business classes or dealing with opportunities to start a company, yet scientists often now start and run small companies. Physicists are mainly interested in technology. However, other factors quickly dominate chances for business success. These include finance, accounting, cash flow analysis, recruiting, interviewing, personnel issues, marketing, investments, retirement plans, patents and other not always so fun activities. Technical decisions are often strongly influenced by company finances and market-analysis. This talk discusses how to recognize opportunity, how to minimize chances for failure, and lifestyle changes one needs to be aware of before entrepreneurship involvement.

  15. Bridging the Vector Calculus Gap

    NASA Astrophysics Data System (ADS)

    Dray, Tevian; Manogue, Corinne

    2003-05-01

    As with Britain and America, mathematicians and physicists are separated from each other by a common language. In a nutshell, mathematics is about functions, but physics is about things. For the last several years, we have led an NSF-supported effort to "bridge the vector calculus gap" between mathematics and physics. The unifying theme we have discovered is to emphasize geometric reasoning, not (just) algebraic computation. In this talk, we will illustrate the language differences between mathematicians and physicists, and how we are trying reconcile them in the classroom. For further information about the project go to: http://www.physics.orst.edu/bridge

  16. FUSTIPEN—the France-U.S. Theory Institute for Physics with Exotic Nuclei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papenbrock, Thomas

    FUSTIPEN, the France-U.S. Theory Institute for Physics with Exotic Nuclei, was an international venue for theoretical research on the physics of nuclei during an era of particularly active experimental investigations of rare isotopes, see http://fustipen.ganil.fr/. It was dedicated to collaborative research between U.S.-based and French nuclear physicists, drawing on the complementary expertise in the two countries. The grant provided travel and local support for visits by U.S. nuclear physicists to GANIL, where the FUSTIPEN offices are located, and also supported collateral travel to other French research institutions.

  17. Lithuanian women physicists: Current situation and involvement in gender projects

    NASA Astrophysics Data System (ADS)

    Šatkovskienė, Dalia; Ruželė, Živilė; Rutkūnienė, Živilė; Kupliauskienė, Alicija

    2015-12-01

    The changes in the situation of women in physics since the last Lithuanian country report are discussed on the basis of available statistics. The overall percentage of women physicists in research is 28%. Results show that there is a noticeable increase in female scientists in most phases of the academic career progression except in the highest positions. The results also show a permanent change in the awareness of gender-related issues in research. We also discuss the initiatives taken by Lithuanian women scientists to change the situation during three last years and their outcomes.

  18. The Dürrenmatt's ``Physicists'' as a Tool in Understanding the Ethics of Science

    NASA Astrophysics Data System (ADS)

    Kapor, Darko

    2007-04-01

    Part of the course of the History of Physics taught by the author is dedicated to the ethics of science, in particular to moral responsibility of the scientist towards society. In order to make the subject more interesting to the students, the first step is reading the play ``Physicists'' by Friedrich Dürrenmatt (1962). The students are then asked to relate some of the events connected to the nuclear studies before and during the World War II and armaments race with some situations in the play or the author's theses related to it.

  19. My Career as a Theoretical Physicist - So Far

    NASA Astrophysics Data System (ADS)

    Langer, J. S.

    2017-03-01

    Theoretical physics and the institutions that support it have changed greatly during my career. In this article, I recount some of my most memorable experiences as a physicist, first as a graduate student with Rudolf Peierls at the University of Birmingham in England and later as a colleague of Walter Kohn at the Institute for Theoretical Physics in Santa Barbara, California. I use this account to illustrate some of the changes that have occurred in my field and also as a rationale for asserting that theoretical physics has an increasingly vital role to play in modern science.

  20. Snowmass 2013 Young Physicists Science and Career Survey Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, J.; Asaadi, J.; Carls, B.

    2013-07-30

    From April to July 2013 the Snowmass Young Physicists (SYP) administered an online survey collecting the opinions and concerns of the High Energy Physics (HEP) community. The aim of this survey is to provide input into the long term planning meeting known as the Community Summer Study (CSS), or Snowmass on the Mississippi. In total, 1112 respondents took part in the survey including 74 people who had received their training within HEP and have since left for non-academic jobs. This paper presents a summary of the survey results including demographic, career outlook, planned experiments and non-academic career path information collected.

  1. No space for girliness in physics: understanding and overcoming the masculinity of physics

    NASA Astrophysics Data System (ADS)

    Götschel, Helene

    2014-06-01

    Allison Gonsalves' article on "women doctoral students' positioning around discourses of gender and competence in physics" explores narratives of Canadian women physicists concerning their strategies to gain recognition as physicists. In my response to her rewarding and inspiring analysis I will reflect on her findings and arguments and put them into a broader context of research in gender and physics. In addition to her promising strategies to make physics attractive and welcoming to all genders I want to stress two more aspects of the tricky problem: diversity and contextuality of physics.

  2. Questions raised over future of UK research council

    NASA Astrophysics Data System (ADS)

    Banks, Michael

    2010-02-01

    Five senior physicists have written to the UK science minister, Lord Drayson, about the "dismal future" for researchers in the country in the wake of a £40m shortfall in the budget of the Science and Technology Facilities Council (STFC). The physicists, who chair the STFC's five advisory panels, have also called for structural reforms to be made to the council. They warn that unless the government takes action to reverse the situation, the UK will be "perceived as an untrustworthy partner in global projects" and predict that a brain drain of the best UK scientists to positions overseas will ensue.

  3. Prize for Industrial Applications of Physics Lecture: A physicist in Business

    NASA Astrophysics Data System (ADS)

    Woollam, John

    2013-03-01

    In the 1980s I inherited a famous ellipsometry laboratory. To speed up data acquisition and analysis I associated myself with creative scientists and engineers. We started a company which grew. Together we rapidly improved acquisition speed, accuracy, precision, spectral range, and types of applications. Yet, a business is much more than technology. In this talk I outline how a high-tech business functions, and illustrate the role of physicists and engineers in making a company successful. It is fast-paced, exciting, and enormously gratifying to provide quality instruments for researchers and industry.

  4. Darwin's legacy

    NASA Astrophysics Data System (ADS)

    Susskind, Leonard

    2009-07-01

    Charles Darwin was no theoretical physicist, and I am no biologist. Yet, as a theoretical physicist, I have found much to think about in Darwin's legacy - and in that of his fellow naturalist Alfred Russell Wallace. Darwin's style of science is not usually thought of as theoretical and certainly not mathematical: he was a careful observer of nature, kept copious notes, contributed to zoological collections; and eventually from his vast repertoire of observation deduced the idea of natural selection as the origin of species. The value of theorizing is often dismissed in the biological sciences as less important than observation; and Darwin was the master observer.

  5. Remembering Dick Crane

    NASA Astrophysics Data System (ADS)

    Jossem, E. Leonard

    2007-09-01

    Physicist, polymath, educator, leader, Horace Richard Crane died on April 19, 2007, a few months short of his 100th birthday. Those of us who were fortunate enough to have had him as a friend mourn his loss, but for all of us he leaves a rich and varied legacy of published works that invite reading and rereading. Dick's work as a physicist was recognized in 1966 by his election to the National Academy of Sciences and in 1986 by the award of the President's National Medal of Science: "For the first measurement of the magnetic moment and spin of free electrons and positrons."

  6. OBPR Product Lines, Human Research Initiative, and Physics Roadmap for Exploration

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf

    2004-01-01

    The pace of change has increased at NASA. OBPR s focus is now on the Human interface as it relates to the new Exploration vision. The fundamental physics community must demonstrate how we can contribute. Many opportunities exist for physicists to participate in addressing NASA's cross-disciplinary exploration challenges: a) Physicists can contribute to elucidating basic operating principles for complex biological systems; b) Physics technologies can contribute to developing miniature sensors and systems required for manned missions to Mars. NASA Codes other than OBPR may be viable sources of funding for physics research.

  7. Women in physics in El Salvador: Historical perspectives and current challenges

    NASA Astrophysics Data System (ADS)

    Jiménez, Telma; Jiménez, Diana; Larios, Gloria

    2015-12-01

    Physics as a discipline in El Salvador's higher education system has struggled historically; however, since 1991, it has enjoyed a growth-friendly environment. While there are few female physicists in El Salvador, they are employed in various organizations and educational institutions, demonstrating that physics is a viable career path. El Salvador currently offers a range of opportunities for women in physics. With the support of the 5th IUPAP International Conference on Women in Physics, we will both meet the challenges and take advantage of the opportunities that face female physicists in El Salvador.

  8. Book Review for Physics Today Ostriker and Mitton

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2013-01-01

    Can anyone explain to a general audience how astronomers converged on such an astonishing story as the Big Bang, with large doses of Dark Matter and Dark Energy that only astronomers can “see” and most astronomers didn’t want? Might the reader believe the answer? And can the story keep the attention of professional physicists? The answer is yes for “Unraveling the Mysteries of the Invisible Universe” by Jeremiah Ostriker and Simon Mitton (Princeton University Press, 2013). Ostriker, a theorist, is one of the modern pioneers of the subject, and Mitton, a physicist-journalist, is an excellent storyteller as well.

  9. Murdered physicist leaves Iran reeling

    NASA Astrophysics Data System (ADS)

    Dacey, James

    2010-02-01

    The murder of the Iranian physicist Masoud Alimohammadi last month has left the country's academic community in a state of shock. Alimohammadi, a 50-year-old physics professor at the University of Tehran, was killed on 12 January by a remote-controlled bomb attached to the side of a motorcycle outside his home. The bomb was detonated as he left for work, but the reason for the murder remained unclear as Physics World went to press. Reports by the Iranian state media blamed the US and Israel for the attack - a claim that the US later described as "absurd".

  10. Radiation research society 1952-2002. Physics as an element of radiation research.

    PubMed

    Inokuti, Mitio; Seltzer, Stephen M

    2002-07-01

    Since its inception in 1954, Radiation Research has published an estimated total of about 8700 scientific articles up to August 2001, about 520, or roughly 6%, of which are primarily related to physics. This average of about 11 articles per year indicates steadily continuing contributions by physicists, though there are appreciable fluctuations from year to year. These works of physicists concern radiation sources, dosimetry, instrumentation for measurements of radiation effects, fundamentals of radiation physics, mechanisms of radiation actions, and applications. In this review, we have selected some notable accomplishments for discussion and present an outlook for the future.

  11. A theoretical physicist's journey into biology: from quarks and strings to cells and whales.

    PubMed

    West, Geoffrey B

    2014-10-08

    Biology will almost certainly be the predominant science of the twenty-first century but, for it to become successfully so, it will need to embrace some of the quantitative, analytic, predictive culture that has made physics so successful. This includes the search for underlying principles, systemic thinking at all scales, the development of coarse-grained models, and closer ongoing collaboration between theorists and experimentalists. This article presents a personal, slightly provocative, perspective of a theoretical physicist working in close collaboration with biologists at the interface between the physical and biological sciences.

  12. Engaging the optics community in the development of informative, accessible resources focusing on careers

    NASA Astrophysics Data System (ADS)

    Poulin-Girard, Anne-Sophie; Gingras, F.; Zambon, V.; Thériault, G.

    2014-09-01

    Young people often have biased and pre-conceived ideas about scientists and engineers that can dissuade them from considering a career in optics. This situation is compounded by the fact that existing resources on careers in optics are not suitable since they mostly focus on more general occupations such as a physicist and an electrical engineer. In addition, the linguistic register is not adapted for students, and many of these resources are only available to guidance counselors. To create appropriate resources that will inform high school students on different career opportunities in optics and photonics, we sought the collaboration of our local optics community. We selected seven specific occupations: entrepreneur in optics, university professor, teacher, technician, research and development engineer, sales representative and graduate student in optics. For each career, a list of daily tasks was created from the existing documentation by a guidance counselor and was validated by an expert working in the field of optics. Following a process of validation, we built surveys in which professionals were asked to select the tasks that best represented their occupation. The surveys were also used to gather other information such as level of education and advice for young people wishing to pursue careers in optics. Over 175 professionals answered the surveys. With these results, we created a leaflet and career cards that are available online and depict the activities of people working in optics and photonics. We hope that these resources will help counter the negative bias against scientific careers and inform teenagers and young adults on making career choices that are better suited to their preferences and aspirations.

  13. Anniversary Paper: History and status of CAD and quantitative image analysis: The role of Medical Physics and AAPM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giger, Maryellen L.; Chan, Heang-Ping; Boone, John

    2008-12-15

    The roles of physicists in medical imaging have expanded over the years, from the study of imaging systems (sources and detectors) and dose to the assessment of image quality and perception, the development of image processing techniques, and the development of image analysis methods to assist in detection and diagnosis. The latter is a natural extension of medical physicists' goals in developing imaging techniques to help physicians acquire diagnostic information and improve clinical decisions. Studies indicate that radiologists do not detect all abnormalities on images that are visible on retrospective review, and they do not always correctly characterize abnormalities thatmore » are found. Since the 1950s, the potential use of computers had been considered for analysis of radiographic abnormalities. In the mid-1980s, however, medical physicists and radiologists began major research efforts for computer-aided detection or computer-aided diagnosis (CAD), that is, using the computer output as an aid to radiologists--as opposed to a completely automatic computer interpretation--focusing initially on methods for the detection of lesions on chest radiographs and mammograms. Since then, extensive investigations of computerized image analysis for detection or diagnosis of abnormalities in a variety of 2D and 3D medical images have been conducted. The growth of CAD over the past 20 years has been tremendous--from the early days of time-consuming film digitization and CPU-intensive computations on a limited number of cases to its current status in which developed CAD approaches are evaluated rigorously on large clinically relevant databases. CAD research by medical physicists includes many aspects--collecting relevant normal and pathological cases; developing computer algorithms appropriate for the medical interpretation task including those for segmentation, feature extraction, and classifier design; developing methodology for assessing CAD performance; validating the algorithms using appropriate cases to measure performance and robustness; conducting observer studies with which to evaluate radiologists in the diagnostic task without and with the use of the computer aid; and ultimately assessing performance with a clinical trial. Medical physicists also have an important role in quantitative imaging, by validating the quantitative integrity of scanners and developing imaging techniques, and image analysis tools that extract quantitative data in a more accurate and automated fashion. As imaging systems become more complex and the need for better quantitative information from images grows, the future includes the combined research efforts from physicists working in CAD with those working on quantitative imaging systems to readily yield information on morphology, function, molecular structure, and more--from animal imaging research to clinical patient care. A historical review of CAD and a discussion of challenges for the future are presented here, along with the extension to quantitative image analysis.« less

  14. BOOK REVIEW: Quantum Generations. A history of physics in the twentieth century

    NASA Astrophysics Data System (ADS)

    Brown, Neil

    2000-03-01

    Physics has a long history, but more physics has been discovered in the twentieth century than in all previous eras together. That in itself would be a sufficient justification for a history of physics in the twentieth century, but the end of the previous century also marked a discontinuity, from Newtonian classical physics to relativity and quantum mechanics. If any single event marks the start of the process it is the discovery of x-rays in 1895, and Kragh's century spans from about 1895 to about 1995. It is, of course, too much for a single volume, even a large one, and Kragh recognizes from the outset that he has to be selective and concentrate on those subjects that define twentieth-century physics. For the early part of the century the author relies on carefully chosen secondary sources, to avoid the near-impossible task of absorbing a multitude of original papers. The recent period is more difficult, and the sources are articles, reviews, and the recollections of physicists. The book is in three main sections, roughly to the end of World War I, to the end of World War II, and up to 1995, plus a retrospective summary. It deals with more than just discoveries in physics, looking also at physicists and institutions, and at their interactions with the rest of society. The broad outlines of many discoveries are often known to physicists who have no special interest in history, and Kragh is careful to point out where these conventional accounts are inadequate. The first chapters set the scene at the end of the nineteenth century, acknowledging that there was a belief that all the grand underlying principles had been established, but also pointing out that there was a ferment of attempts to reinterpret physics in terms of concepts like vortices and hyperspaces. The history begins with the mould-breaking discoveries of x-rays, radioactivity and the electron. The chapters that follow look at theories about atomic structure, and at quantum physics, relativity and superconductivity, plus a glance at some practical applications of physics such as the beginnings of electronics. The interwar and World War II themes are quantum mechanics, the physics of the nucleus, the discovery of more fundamental particles and atomic fission, including the Manhattan project and nuclear weapons. Post World War II themes include nuclear physics and nuclear energy, particle physics, fundamental theories, solid-state physics, and some engineering physics - transistors, lasers and fibre optics. To show that physics is not a linear and uninterrupted process some unsuccessful ideas are included such as the concept of electromagnetic mass. As fascinating as the physics is the development of the physics community. At the beginning of the century physics research was largely a European activity and Germany was the leading nation. Kragh, based at the University of Aarhus, in Denmark, is better placed than most historians writing in English to produce an even-handed account. He is also well placed to chronicle the role of the man who features so prominently in the middle period: Niels Bohr. It was not only Bohr's own work, but also the focus provided by his Copenhagen Institute for so many other contributions to atomic physics. At the beginning of the century scientists considered themselves a supranational group. That illusion was shattered by World War I, when scientists showed themselves to be no less nationalistic than other groups. The ostracism suffered by German scientists after the war is something we ought to be more aware of. In part because science became a substitute for the political and military power much good work was done in Germany, at least until the Nazi regime began to sack non-Aryan scientists. As is well known, the loss of talent was enormous, and much of it went to America, which became the world power in physics as in so much else. The major role played by physicists in World War II, most obviously in the atomic bomb project, the largest research project ever undertaken, is discussed. Since World War II support from governments for physics has increased enormously, but the fortunes of many physicists have remained entwined with the military establishment and many others now work within megaprojects such as CERN. At the end of the century the numbers of physicists and of papers published have grown a hundred-fold, and funding by an even larger factor. Other aspects have changed less. Physics is still male-dominated and largely a North American and European enterprise. Latterly there has been some reduction in support. Physics, along with the rest of science, has also been under attack for the problems it has created. The beginning of the twenty-first century promises to be as interesting for physics as recent decades have been. Comparison with the other recent work in this field, the three-volume Twentieth Century Physics edited by Laurie Brown, Abraham Pais and Brian Pippard (Institute of Physics Publishing and American Institute of Physics Press, 1995), is unavoidable. They fill different niches. Twentieth Century Physics is a massive and expensive work by some 30 leading physicists, destined mainly for the shelves of academic libraries. Quantum Generations is a book by a professional historian covering much of the same physics, albeit more briefly, but written with a broader sweep that takes in more of the political and cultural milieu within which the physicists worked. References are given sparingly so as not to break up the text, but there are suggestions for further reading for each chapter, and there is an extensive bibliography. It is not a book for those with no background at all in physics - there are too many equations of nuclear reactions for that, and in any case such a book would be a superficial thing. Even many physicists will find some of the more esoteric ideas, such as the grand unified theories and superstring theory, heavy going. It is, however, accessible to a wide readership, and a book that can be read for the broad story, not just dipped into for specific details. It is likely to become the standard historical introduction to the history of physics in the twentieth century for scientists and historians, not to be superseded until well into the twenty-first century when the consequences of work that is still recent can be seen more clearly.

  15. Report on student participants at the 2003 Annual Meeting of the National Society of Black Physicists

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julius Dollison, Michael Neuchatz

    The first meeting of African American physicists was held in 1973 at Fisk University in Nashville, Tennessee, with around 50 Black physicists in attendance. In 1977, this organization was formally established as the National Society of Black Physicists (NSBP) out of a need to address many concerns of African American physicists. During the ensuing years the Conference began to grow and was hosted by different institutions at various geographic locations. This year, the 2003 Annual Conference of the National Society of Black Physicists and Black Physics Students was hosted by Spelman College in Atlanta, Georgia during the weekend of Februarymore » 12th-15th, 2003. This Conference brought together over 500 African American physics students and working physicists. Also attending were corporate and graduate school recruiters, administrators, professional society representatives and others concerned with the small representation of minorities in the field of physics. The organizers of the Conference contracted with the Statistical Research Center of the American Institute of Physics to conduct a formal evaluative study of the meeting, resulting in this report. The evaluation questionnaire was designed by the organizers of the NSBP conference with input from the Statistical Research Center's staff. It included questions on the students' backgrounds and demographic characteristics, physics research experience, career goals, challenges faced in their academic pursuits, and ratings of various aspects of the conference. The questionnaire was distributed at the conference when the students signed in. Of the 330 students who were registered, roughly 304 attended and were given the four-page questionnaire to complete. Responses were collected on the last night of the conference, with 172 (approximately 57%) returning completed questionnaires. This low response rate could be attributed in part to the fact that respondents were asked to provide possibly sensitive personal information. Student participants at the conference were asked to provide data on various aspects of their backgrounds and demographic characteristics. We found that there were significantly more undergraduate participants than graduate participants present at the conference (65% versus 35%). More than two-thirds of the undergraduate student attendees were upperclassmen. On the other hand, close to half of the graduate student attendees were still in the early stages of their graduate career. The overall median age was 23 years. The median age for undergraduates was 21, while for graduate students it was 29 years. We found no age difference between undergraduate males and females. However, there was an age difference between graduate male and female students. While among females the median age was 27, for graduate males the median age was 30 years. As shown, we see that women were well represented at this year's conference. The overall proportion of female student respondents was 41%. Among undergraduates, the proportion of females was 48%. While comparable data on all Black physics students nationwide are not available, this number bachelors recipients going to women, as reported by Historically Black Colleges and Universities (HBCUs) on AIP's most recent ''Enrollments and Degrees Study''. HBCUs confer more than half of all physics degrees by African-Americans in the US. The proportion of females among graduate student participants at the NSBP conference was 29%.« less

  16. MO-D-16A-01: International Day of Medical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, K; Damilakis, J

    International Organization for Medical Physics (IOMP) which represents medical physicists in more than 80 countries decided to celebrate 7th November, birth date of the Polish and naturalized-French physicist Marie Sklodowska-Curie, as International Day of Medical Physics (IDMP). The main purpose of the initiative is to raise the visibility and awareness of medical physicist in the global community, to introduce ourselves to the general public, and bring a message to the community that a group of health professionals, the medical physicists are there to help the patients and other health professionals. First celebration was done in 2013 and now IDMP willmore » be celebrated every year. The theme of IDMP will be different each year. The theme for 2013 was ‘Radiation exposure from medical procedures, ask the Medical Physicist’. The inaugural event was celebrated in 23 countries and the amount of attention gained was remarkable. Main IDMP events were held in Poland, birthplace of Marie Curie, and France, workplace of Marie Curie. This year IOMP celebrates the 2nd IDMP and theme will be ‘Looking into the body-Advancement in Imaging through Medical Physics’ to draw attention to the profound contributions Medical Physics has made to the use of ionizing and non-ionizing radiation for the imaging of human body. A number of countries have informed about events that they are going to organize on IDMP. This gives wide attention to medical physics globally. AAPM is a major and important member of IOMP. It is hoped that AAPM will join in organizing activities. Learning Objectives: To learn about International Day of Medical Physics To become familiar with how first IDMP was celebrated in 2013 and learning achieved To understand on future plans for IDMPs.« less

  17. Computational methods in the pricing and risk management of modern financial derivatives

    NASA Astrophysics Data System (ADS)

    Deutsch, Hans-Peter

    1999-09-01

    In the last 20 years modern finance has developed into a complex mathematically challenging field. Very complicated risks exist in financial markets which need very advanced methods to measure and/or model them. The financial instruments invented by the market participants to trade these risk, the so called derivatives are usually even more complicated than the risks themselves and also sometimes generate new riks. Topics like random walks, stochastic differential equations, martingale measures, time series analysis, implied correlations, etc. are of common use in the field. This is why more and more people with a science background, such as physicists, mathematicians, or computer scientists, are entering the field of finance. The measurement and management of all theses risks is the key to the continuing success of banks. This talk gives insight into today's common methods of modern market risk management such as variance-covariance, historical simulation, Monte Carlo, “Greek” ratios, etc., including the statistical concepts on which they are based. Derivatives are at the same time the main reason for and the most effective means of conducting risk management. As such, they stand at the beginning and end of risk management. The valuation of derivatives and structured financial instruments is therefore the prerequisite, the condition sine qua non, for all risk management. This talk introduces some of the important valuation methods used in modern derivatives pricing such as present value, Black-Scholes, binomial trees, Monte Carlo, etc. In summary this talk highlights an area outside physics where there is a lot of interesting work to do, especially for physicists. Or as one of our consultants said: The fascinating thing about this job is that Arthur Andersen hired me not ALTHOUGH I am a physicist but BECAUSE I am a physicist.

  18. Failure modes and effects analysis (FMEA) for Gamma Knife radiosurgery.

    PubMed

    Xu, Andy Yuanguang; Bhatnagar, Jagdish; Bednarz, Greg; Flickinger, John; Arai, Yoshio; Vacsulka, Jonet; Feng, Wenzheng; Monaco, Edward; Niranjan, Ajay; Lunsford, L Dade; Huq, M Saiful

    2017-11-01

    Gamma Knife radiosurgery is a highly precise and accurate treatment technique for treating brain diseases with low risk of serious error that nevertheless could potentially be reduced. We applied the AAPM Task Group 100 recommended failure modes and effects analysis (FMEA) tool to develop a risk-based quality management program for Gamma Knife radiosurgery. A team consisting of medical physicists, radiation oncologists, neurosurgeons, radiation safety officers, nurses, operating room technologists, and schedulers at our institution and an external physicist expert on Gamma Knife was formed for the FMEA study. A process tree and a failure mode table were created for the Gamma Knife radiosurgery procedures using the Leksell Gamma Knife Perfexion and 4C units. Three scores for the probability of occurrence (O), the severity (S), and the probability of no detection for failure mode (D) were assigned to each failure mode by 8 professionals on a scale from 1 to 10. An overall risk priority number (RPN) for each failure mode was then calculated from the averaged O, S, and D scores. The coefficient of variation for each O, S, or D score was also calculated. The failure modes identified were prioritized in terms of both the RPN scores and the severity scores. The established process tree for Gamma Knife radiosurgery consists of 10 subprocesses and 53 steps, including a subprocess for frame placement and 11 steps that are directly related to the frame-based nature of the Gamma Knife radiosurgery. Out of the 86 failure modes identified, 40 Gamma Knife specific failure modes were caused by the potential for inappropriate use of the radiosurgery head frame, the imaging fiducial boxes, the Gamma Knife helmets and plugs, the skull definition tools as well as other features of the GammaPlan treatment planning system. The other 46 failure modes are associated with the registration, imaging, image transfer, contouring processes that are common for all external beam radiation therapy techniques. The failure modes with the highest hazard scores are related to imperfect frame adaptor attachment, bad fiducial box assembly, unsecured plugs/inserts, overlooked target areas, and undetected machine mechanical failure during the morning QA process. The implementation of the FMEA approach for Gamma Knife radiosurgery enabled deeper understanding of the overall process among all professionals involved in the care of the patient and helped identify potential weaknesses in the overall process. The results of the present study give us a basis for the development of a risk based quality management program for Gamma Knife radiosurgery. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  19. An Industrial Physics Toolkit

    NASA Astrophysics Data System (ADS)

    Cummings, Bill

    2004-03-01

    Physicists possess many skills highly valued in industrial companies. However, with the exception of a decreasing number of positions in long range research at large companies, job openings in industry rarely say "Physicist Required." One key to a successful industrial career is to know what subset of your physics skills is most highly valued by a given industry and to continue to build these skills while working. This combination of skills from both academic and industrial experience becomes your "Industrial Physics Toolkit" and is a transferable resource when you change positions or companies. This presentation will describe how one builds and sells your own "Industrial Physics Toolkit" using concrete examples from the speaker's industrial experience.

  20. Report on the solar physics-plasma physics workshop

    NASA Technical Reports Server (NTRS)

    Sturrock, P. A.; Baum, P. J.; Beckers, J. M.; Newman, C. E.; Priest, E. R.; Rosenberg, H.; Smith, D. F.; Wentzel, D. G.

    1976-01-01

    The paper summarizes discussions held between solar physicists and plasma physicists on the interface between solar and plasma physics, with emphasis placed on the question of what laboratory experiments, or computer experiments, could be pursued to test proposed mechanisms involved in solar phenomena. Major areas discussed include nonthermal plasma on the sun, spectroscopic data needed in solar plasma diagnostics, types of magnetic field structures in the sun's atmosphere, the possibility of MHD phenomena involved in solar eruptive phenomena, the role of non-MHD instabilities in energy release in solar flares, particle acceleration in solar flares, shock waves in the sun's atmosphere, and mechanisms of radio emission from the sun.

  1. Women physicists in Nepal

    NASA Astrophysics Data System (ADS)

    Shrestha, Nilam; Shrestha, Sanju

    2013-03-01

    Women constitute more than half of the total population of Nepal but are far behind men in all aspects of life. There is a wide gender gap socially, economically, and politically. Data for 1960 through 2001 show that the proportion of female students varied at the postgraduate level and there was no woman with a PhD degree. From 2002 through mid-2010 the number of female students increased gradually at both the MSc and in PhD levels, due to study opportunities abroad. We expect that this trend will continue, with significant improvement in furthering the education of women as a whole, and will lead to an increase in women physicists in the country.

  2. RHIC - Exploring the Universe Within

    ScienceCinema

    BNL

    2017-12-09

    A guided tour of Brookhaven's Relativistic Heavy Ion Collider (RHIC) conducted by past Laboratory Director John Marburger. RHIC is a world-class scientific research facility that began operation in 2000, following 10 years of development and construction. Hundreds of physicists from around the world use RHIC to study what the universe may have looked like in the first few moments after its creation. RHIC drives two intersecting beams of gold ions head-on, in a subatomic collision. What physicists learn from these collisions may help us understand more about why the physical world works the way it does, from the smallest subatomic particles, to the largest stars.

  3. Perspectives on Industrial Innovation from Agilent, HP, and Bell Labs

    NASA Astrophysics Data System (ADS)

    Hollenhorst, James

    2014-03-01

    Innovation is the life blood of technology companies. I will give perspectives gleaned from a career in research and development at Bell Labs, HP Labs, and Agilent Labs, from the point of view of an individual contributor and a manager. Physicists bring a unique set of skills to the corporate environment, including a desire to understand the fundamentals, a solid foundation in physical principles, expertise in applied mathematics, and most importantly, an attitude: namely, that hard problems can be solved by breaking them into manageable pieces. In my experience, hiring managers in industry seldom explicitly search for physicists, but they want people with those skills.

  4. Commercial Nuclear Power Industry: Assessing and Meeting the Radiation Protection Workforce Needs.

    PubMed

    Hiatt, Jerry W

    2017-02-01

    This paper will provide an overview of the process used by the commercial nuclear power industry in assessing the status of existing industry staffing and projecting future supply demand needs. The most recent Nuclear Energy Institute-developed "Pipeline Survey Results" will be reviewed with specific emphasis on the radiation protection specialty. Both radiation protection technician and health physicist specialties will be discussed. The industry-initiated Nuclear Uniform Curriculum Program will be reviewed as an example of how the industry has addressed the need for developing additional resources. Furthermore, the reality of challenges encountered in maintaining the needed number of health physicists will also be discussed.

  5. The Experiences of an Entrepreneurial Physicist

    NASA Astrophysics Data System (ADS)

    Kermani, Moe

    2012-10-01

    The majority of pre- and post-graduate training in physics is focused on the acquisition of hard skills necessary to pursue academic research within a specific discipline of the broader field. Often many physics graduates view a career transition from academia to the private sector with much consternation. In this presentation, Moe Kermani will share his experience in making the transition and discuss how elements of post graduate training in physics provide a good foundation for success as an entrepreneur. This presentation is primarily aimed at young physicists and graduate students that are considering a transition from the academic sector to the world of technology startups.

  6. Managing Inflections in Life and Career: Tale from a Physicist

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Santanu

    2010-03-01

    By training, a physicist possesses one of the rarest qualities ever imparted in an educational degree program, namely, the ability to take on complex problems, divide them into ``solvable'' parts, derive solutions and put them back as insightful outputs. Dr Bhattacharya, CEO of Salorix, a research, analytics and consulting firm, explains how he has used these skills learned at the graduate school to build a career as a scientist, management consultant and entrepreneur. He will also speak about how the real-life skillsets of understanding and dealing with ``Inflections'', self discovery and introspection can be a great tool for managing one's life and career progression.

  7. Healing the mental scars

    NASA Astrophysics Data System (ADS)

    Cassidy, David C.

    2008-01-01

    Few groups of scientists can have been studied more intensely than 20th-century German physicists, thanks to both their extraordinary successes and their involvement in the upheavals of the first half of the century. That attention has produced a number of first-rate accounts of these physicists and their community through the Third Reich (1933-1945), thus enabling us to gain a considerable grasp of their science and its broader cultural and political context. The same cannot be said, however, for the postwar period, especially the chaotic years following the defeat of Nazi Germany in 1945 through to the founding of East and West Germany - then under Allied occupation - in 1949.

  8. Book Review: Dolores Knipp’s Understanding Space Weather and the Physics Behind It

    NASA Astrophysics Data System (ADS)

    Moldwin, Mark

    2012-08-01

    Delores Knipp's textbook Understanding Space Weather and the Physics Behind It provides a comprehensive resource for space physicists teaching in a variety of academic departments to introduce space weather to advanced undergraduates. The book benefits from Knipp's extensive experience teaching introductory and advanced undergraduate physics courses at the U.S. Air Force Academy. The fundamental physics concepts are clearly explained and are connected directly to the space physics concepts being discussed. To expand upon the relevant basic physics, current research areas and new observations are highlighted, with many of the chapters including contributions from a number of leading space physicists.

  9. A physicists guide to The Los Alamos Primer

    NASA Astrophysics Data System (ADS)

    Reed, B. Cameron

    2016-11-01

    In April 1943, a group of scientists at the newly established Los Alamos Laboratory were given a series of lectures by Robert Serber on what was then known of the physics and engineering issues involved in developing fission bombs. Serber’s lectures were recorded in a 24 page report titled The Los Alamos Primer, which was subsequently declassified and published in book form. This paper describes the background to the Primer and analyzes the physics contained in its 22 sections. The motivation for this paper is to provide a firm foundation of the background and contents of the Primer for physicists interested in the Manhattan Project and nuclear weapons.

  10. Rad Toolbox User's Guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eckerman, Keith F.; Sjoreen, Andrea L.

    2013-05-01

    The Radiological Toolbox software developed by Oak Ridge National Laboratory (ORNL) for U. S. Nuclear Regulatory Commission (NRC) is designed to provide electronic access to the vast and varied data that underlies the field of radiation protection. These data represent physical, chemical, anatomical, physiological, and mathematical parameters detailed in various handbooks which a health physicist might consult while in his office. The initial motivation for the software was to serve the needs of the health physicist away from his office and without access to his handbooks; e.g., NRC inspectors. The earlier releases of the software were widely used and acceptedmore » around the world by not only practicing health physicist but also those within educational programs. This release updates the software to accommodate changes in Windows operating systems and, in some aspects, radiation protection. This release has been tested on Windows 7 and 8 and on 32- and 64-bit machines. The nuclear decay data has been updated and thermal neutron capture cross sections and cancer risk coefficients have been included. This document and the software’s user’s guide provide further details and documentation of the information captured within the Radiological Toolbox.« less

  11. Karl Popper's Quantum Ghost

    NASA Astrophysics Data System (ADS)

    Shields, William

    2004-05-01

    Karl Popper, though not trained as a physicist and embarrassed early in his career by a physics error pointed out by Einstein and Bohr, ultimately made substantial contributions to the interpretation of quantum mechanics. As was often the case, Popper initially formulated his position by criticizing the views of others - in this case Niels Bohr and Werner Heisenberg. Underlying Popper's criticism was his belief that, first, the "standard interpretation" of quantum mechanics, sometimes called the Copenhagen interpretation, abandoned scientific realism and second, the assertion that quantum theory was "complete" (an assertion rejected by Einstein among others) amounted to an unfalsifiable claim. Popper insisted that the most basic predictions of quantum mechanics should continue to be tested, with an eye towards falsification rather than mere adding of decimal places to confirmatory experiments. His persistent attacks on the Copenhagen interpretation were aimed not at the uncertainty principle itself and the formalism from which it was derived, but at the acceptance by physicists of an unclear epistemology and ontology that left critical questions unanswered. In 1999, physicists at the University of Maryland conducted a version of Popper's Experiment, re-igniting the debate over quantum predictions and the role of locality in physics.

  12. TGeoCad: an Interface between ROOT and CAD Systems

    NASA Astrophysics Data System (ADS)

    Luzzi, C.; Carminati, F.

    2014-06-01

    In the simulation of High Energy Physics experiment a very high precision in the description of the detector geometry is essential to achieve the required performances. The physicists in charge of Monte Carlo Simulation of the detector need to collaborate efficiently with the engineers working at the mechanical design of the detector. Often, this collaboration is made hard by the usage of different and incompatible software. ROOT is an object-oriented C++ framework used by physicists for storing, analyzing and simulating data produced by the high-energy physics experiments while CAD (Computer-Aided Design) software is used for mechanical design in the engineering field. The necessity to improve the level of communication between physicists and engineers led to the implementation of an interface between the ROOT geometrical modeler used by the virtual Monte Carlo simulation software and the CAD systems. In this paper we describe the design and implementation of the TGeoCad Interface that has been developed to enable the use of ROOT geometrical models in several CAD systems. To achieve this goal, the ROOT geometry description is converted into STEP file format (ISO 10303), which can be imported and used by many CAD systems.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahesh, M; Borras, C; Frey, G

    This workshop is jointly organized by the AAPM, the Spanish (SEFM) and the Russian (AMPR) Medical Physics Societies, as part of formal educational exchange agreements signed by the AAPM with each one of these two societies.With the rapid technological advances in radiation therapy both for treatment and imaging, it is challenging how physics is taught to medical physicists practicing in radiation therapy. The main Objectives: of this workshop is to bring forth current status, challenges and issues related to education of radiation therapy physicists here in the US, Spain and Russia. Medical physicists from each one of these countries willmore » present educational requirements of international recommendations and directives and analyze their impact on national legislations. Current and future educational models and plans for harmonization will be described. The role of universities, professional societies and examination boards, such as the American Board of Radiology, will be discussed. Minimum standards will be agreed upon. Learning Objectives: Review medical physics educational models supported by AAPM, SEFM, and AMPR. Discuss the role of governmental and non-governmental organizations in elaborating and adopting medical physics syllabi. Debate minimum educational standards for medical physics education based on country-specific resources.« less

  14. For the love of learning science: Connecting learning orientation and career productivity in physics and chemistry

    NASA Astrophysics Data System (ADS)

    Hazari, Zahra; Potvin, Geoff; Tai, Robert H.; Almarode, John

    2010-06-01

    An individual’s motivational orientation serves as a drive to action and can influence their career success. This study examines how goal orientation toward the pursuit of a graduate degree in physics and chemistry influences later success outcomes of practicing physicists and chemists. Two main categories of goal orientation are examined in this paper: performance orientation or motivation to demonstrate one’s ability or performance to others, and learning orientation or motivation through the desire to learn about a topic. The data were obtained as part of Project Crossover, a mixed-methods study which focused on studying the transition from graduate student to scientist in the physical sciences and included a survey of members of two national professional physical science organizations. Using regression analysis on data from 2353 physicists and chemists, results indicate that physicists and chemists who reported a learning orientation as their motivation for going to graduate school were more productive, in terms of total career primary and/or first-author publications and grant funding, than those reporting a performance orientation. Furthermore, given equal salary, learning-oriented individuals produced more primary and/or first-author publications than their nonlearning oriented counterparts.

  15. Great Physicists - The Life and Times of Leading Physicists from Galileo to Hawking

    NASA Astrophysics Data System (ADS)

    Cropper, William H.

    2004-09-01

    Here is a lively history of modern physics, as seen through the lives of thirty men and women from the pantheon of physics. William H. Cropper vividly portrays the life and accomplishments of such giants as Galileo and Isaac Newton, Marie Curie and Ernest Rutherford, Albert Einstein and Niels Bohr, right up to contemporary figures such as Richard Feynman, Murray Gell-Mann, and Stephen Hawking. We meet scientists--all geniuses--who could be gregarious, aloof, unpretentious, friendly, dogged, imperious, generous to colleagues or contentious rivals. As Cropper captures their personalities, he also offers vivid portraits of their great moments of discovery, their bitter feuds, their relations with family and friends, their religious beliefs and education. In addition, Cropper has grouped these biographies by discipline--mechanics, thermodynamics, particle physics, and others--each section beginning with a historical overview. Thus in the section on quantum mechanics, readers can see how the work of Max Planck influenced Niels Bohr, and how Bohr in turn influenced Werner Heisenberg. Our understanding of the physical world has increased dramatically in the last four centuries. With Great Physicists , readers can retrace the footsteps of the men and women who led the way.

  16. A Novel Method for Quick Assessment of Internal And External Radiation Exposure in the Aftermath of a Large Radiological Incident.

    PubMed

    Korir, Geoffrey; Karam, P Andrew

    2018-06-11

    In the event of a significant radiological release in a major urban area where a large number of people reside, it is inevitable that radiological screening and dose assessment must be conducted. Lives may be saved if an emergency response plan and radiological screening method are established for use in such cases. Thousands to tens of thousands of people might present themselves with some levels of external contamination and/or the potential for internal contamination. Each of these individuals will require varying degrees of radiological screening, and those with a high likelihood of internal and/or external contamination will require radiological assessment to determine the need for medical attention and decontamination. This sort of radiological assessment typically requires skilled health physicists, but there are insufficient numbers of health physicists in any city to perform this function for large populations, especially since many (e.g., those at medical facilities) are likely to be engaged at their designated institutions. The aim of this paper is therefore to develop and describe the technical basis for a novel, scoring-based methodology that can be used by non-health physicists for performing radiological assessment during such radiological events.

  17. Women and Men of the Manhattan Project

    NASA Astrophysics Data System (ADS)

    Marshall, Jill; Herzenberg, Caroline; Howes, Ruth; Weaver, Ellen; Gans, Dorothy

    2010-04-01

    In the early 1990s Ruth Howes, a nuclear physicist on the faculty at Ball State University, and Caroline Herzenberg, a nuclear physicist at Argonne National Laboratory, were asked to write a chapter on the Manhattan Project for a volume on women working on weapons development for the military. Realizing that they knew very little about the women who had been involved in that effort, they embarked on a mission to find out more. Howes and Herzenberg were able to document the wartime contributions of more than 1000 women in Their Day in the Sun,2 preserving this legacy for generations to come. At the 2009 AAPT Winter Meeting in Chicago, the AAPT Committee on Women in Physics celebrated the accomplishments of these women and the men who worked beside them in a session co-sponsored with the History and Philosophy of Physics and the Concerns of Senior Physicists committees. Howes presented an overview of the contributions of women to the development of the first nuclear weapon, and the session was honored with the presence of Manhattan Project veterans Ellen Cleminshaw Weaver, who worked at Oak Ridge, and Dorothy Marcus Gans, who worked as a technician in the Metallurgical Laboratory in Chicago.

  18. Remembrances of Maria Goeppert Mayer and the Nuclear Shell Model.

    NASA Astrophysics Data System (ADS)

    Baranger, Elizabeth

    2013-04-01

    Maria Goeppert Mayer received the Nobel Prize in Physics in 1963 for her work on the nuclear shell model. I knew her in my teens as a close ``friend of the family.'' The Mayers lived a few blocks away in Leonia, New Jersey from 1939 to 1945, across the street in Chicago from 1945 to 1958 and about one mile away in La Jolla, CA from 1960 till her death. Maria held primarily ``vol'' (voluntary) positions during this period, although in Chicago she was half time at Argonne National Laboratory as a Senior Physicist. She joined the University of California at San Diego as a professor in 1960, her first full-time academic position. I will discuss her positive impact on a teenager seriously considering becoming a physicist. I will also discuss briefly the impact of her work on our understanding of the structure of nuclei. Maria Mayer was creative, well educated, with a supportive father and husband, but she was foreign , received her Ph D at the time of the Great Depression, and was one of the few women trained in physics. Her unusual career and her great success is due to her love of physics and her ability as a theoretical physicist.

  19. MO-C-BRCD-03: The Role of Informatics in Medical Physics and Vice Versa.

    PubMed

    Andriole, K

    2012-06-01

    Like Medical Physics, Imaging Informatics encompasses concepts touching every aspect of the imaging chain from image creation, acquisition, management and archival, to image processing, analysis, display and interpretation. The two disciplines are in fact quite complementary, with similar goals to improve the quality of care provided to patients using an evidence-based approach, to assure safety in the clinical and research environments, to facilitate efficiency in the workplace, and to accelerate knowledge discovery. Use-cases describing several areas of informatics activity will be given to illustrate current limitations that would benefit from medical physicist participation, and conversely areas in which informaticists may contribute to the solution. Topics to be discussed include radiation dose monitoring, process management and quality control, display technologies, business analytics techniques, and quantitative imaging. Quantitative imaging is increasingly becoming an essential part of biomedicalresearch as well as being incorporated into clinical diagnostic activities. Referring clinicians are asking for more objective information to be gleaned from the imaging tests that they order so that they may make the best clinical management decisions for their patients. Medical Physicists may be called upon to identify existing issues as well as develop, validate and implement new approaches and technologies to help move the field further toward quantitative imaging methods for the future. Biomedical imaging informatics tools and techniques such as standards, integration, data mining, cloud computing and new systems architectures, ontologies and lexicons, data visualization and navigation tools, and business analytics applications can be used to overcome some of the existing limitations. 1. Describe what is meant by Medical Imaging Informatics and understand why the medical physicist should care. 2. Identify existing limitations in information technologies with respect to Medical Physics, and conversely see how Informatics may assist the medical physicist in filling some of the current gaps in their activities. 3. Understand general informatics concepts and areas of investigation including imaging and workflow standards, systems integration, computing architectures, ontologies, data mining and business analytics, data visualization and human-computer interface tools, and the importance of quantitative imaging for the future of Medical Physics and Imaging Informatics. 4. Become familiar with on-going efforts to address current challenges facing future research into and clinical implementation of quantitative imaging applications. © 2012 American Association of Physicists in Medicine.

  20. Electronic and optoelectronic materials and devices inspired by nature

    NASA Astrophysics Data System (ADS)

    Meredith, P.; Bettinger, C. J.; Irimia-Vladu, M.; Mostert, A. B.; Schwenn, P. E.

    2013-03-01

    Inorganic semiconductors permeate virtually every sphere of modern human existence. Micro-fabricated memory elements, processors, sensors, circuit elements, lasers, displays, detectors, etc are ubiquitous. However, the dawn of the 21st century has brought with it immense new challenges, and indeed opportunities—some of which require a paradigm shift in the way we think about resource use and disposal, which in turn directly impacts our ongoing relationship with inorganic semiconductors such as silicon and gallium arsenide. Furthermore, advances in fields such as nano-medicine and bioelectronics, and the impending revolution of the ‘ubiquitous sensor network’, all require new functional materials which are bio-compatible, cheap, have minimal embedded manufacturing energy plus extremely low power consumption, and are mechanically robust and flexible for integration with tissues, building structures, fabrics and all manner of hosts. In this short review article we summarize current progress in creating materials with such properties. We focus primarily on organic and bio-organic electronic and optoelectronic systems derived from or inspired by nature, and outline the complex charge transport and photo-physics which control their behaviour. We also introduce the concept of electrical devices based upon ion or proton flow (‘ionics and protonics’) and focus particularly on their role as a signal interface with biological systems. Finally, we highlight recent advances in creating working devices, some of which have bio-inspired architectures, and summarize the current issues, challenges and potential solutions. This is a rich new playground for the modern materials physicist.

Top