Sample records for physico chemical properties

  1. Physico-chemical properties and extrusion behaviour of selected common bean varieties.

    PubMed

    Natabirwa, Hedwig; Muyonga, John H; Nakimbugwe, Dorothy; Lungaho, Mercy

    2018-03-01

    Extrusion processing offers the possibility of processing common beans industrially into highly nutritious and functional products. However, there is limited information on properties of extrudates from different bean varieties and their association with raw material characteristics and extrusion conditions. In this study, physico-chemical properties of raw and extruded Bishaz, K131, NABE19, Roba1 and RWR2245 common beans were determined. The relationships between bean characteristics and extrusion conditions on the extrudate properties were analysed. Extrudate physico-chemical and pasting properties varied significantly (P < 0.05) among bean varieties. Expansion ratio and water solubility decreased, while bulk density, water absorption, peak and breakdown viscosities increased as feed moisture increased. Protein exhibited significant positive correlation (P < 0.05) with water solubility index, and negative correlations (P < 0.05) with water absorption, bulk density and pasting viscosities. Iron and dietary fibre showed positive correlation while total ash exhibited negative correlation with peak viscosity, final viscosity and setback. Similar trends were observed in principal component analysis. Extrudate physico-chemical properties were found to be associated with beans protein, starch, iron, zinc and fibre contents. Therefore, bean chemical composition may serve as an indicator for beans extrusion behaviour and could be useful in selection of beans for extrusion. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Physico-chemical properties and cytotoxic effects of sugar-based surfactants: Impact of structural variations.

    PubMed

    Lu, Biao; Vayssade, Muriel; Miao, Yong; Chagnault, Vincent; Grand, Eric; Wadouachi, Anne; Postel, Denis; Drelich, Audrey; Egles, Christophe; Pezron, Isabelle

    2016-09-01

    Surfactants derived from the biorefinery process can present interesting surface-active properties, low cytotoxicity, high biocompatibility and biodegradability. They are therefore considered as potential sustainable substitutes to currently used petroleum-based surfactants. To better understand and anticipate their performances, structure-property relationships need to be carefully investigated. For this reason, we applied a multidisciplinary approach to systematically explore the effect of subtle structural variations on both physico-chemical properties and biological effects. Four sugar-based surfactants, each with an eight carbon alkyl chain bound to a glucose or maltose head group by an amide linkage, were synthesized and evaluated together along with two commercially available standard surfactants. Physico-chemical properties including solubility, Krafft point, surface-tension lowering and critical micellar concentration (CMC) in water and biological medium were explored. Cytotoxicity evaluation by measuring proliferation index and metabolic activity against dermal fibroblasts showed that all surfactants studied may induce cell death at low concentrations (below their CMC). Results revealed significant differences in both physico-chemical properties and cytotoxic effects depending on molecule structural features, such as the position of the linkage on the sugar head-group, or the orientation of the amide linkage. Furthermore, the cytotoxic response increased with the reduction of surfactant CMC. This study underscores the relevance of a methodical and multidisciplinary approach that enables the consideration of surfactant solution properties when applied to biological materials. Overall, our results will contribute to a better understanding of the concomitant impact of surfactant structure at physico-chemical and biological levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Physico-chemical properties of manufactured nanomaterials - Characterisation and relevant methods. An outlook based on the OECD Testing Programme.

    PubMed

    Rasmussen, Kirsten; Rauscher, Hubert; Mech, Agnieszka; Riego Sintes, Juan; Gilliland, Douglas; González, Mar; Kearns, Peter; Moss, Kenneth; Visser, Maaike; Groenewold, Monique; Bleeker, Eric A J

    2018-02-01

    Identifying and characterising nanomaterials require additional information on physico-chemical properties and test methods, compared to chemicals in general. Furthermore, regulatory decisions for chemicals are usually based upon certain toxicological properties, and these effects may not be equivalent to those for nanomaterials. However, regulatory agencies lack an authoritative decision framework for nanomaterials that links the relevance of certain physico-chemical endpoints to toxicological effects. This paper investigates various physico-chemical endpoints and available test methods that could be used to produce such a decision framework for nanomaterials. It presents an overview of regulatory relevance and methods used for testing fifteen proposed physico-chemical properties of eleven nanomaterials in the OECD Working Party on Manufactured Nanomaterials' Testing Programme, complemented with methods from literature, and assesses the methods' adequacy and applications limits. Most endpoints are of regulatory relevance, though the specific parameters depend on the nanomaterial and type of assessment. Size (distribution) is the common characteristic of all nanomaterials and is decisive information for classifying a material as a nanomaterial. Shape is an important particle descriptor. The octanol-water partitioning coefficient is undefined for particulate nanomaterials. Methods, including sample preparation, need to be further standardised, and some new methods are needed. The current work of OECD's Test Guidelines Programme regarding physico-chemical properties is highlighted. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Prescribed fires effects on physico-chemical properties and quantity of runoff and soil erosion in a Mediterranean forest

    NASA Astrophysics Data System (ADS)

    Esteban Lucas-Borja, Manuel; Plaza Alvaréz, Pedro Antonio; Sagra, Javier; Alfaro Sánchez, Raquel; Moya, Daniel; Ferrandiz Gotor, Pablo; De las Heras Ibañez, Jorge

    2017-04-01

    Wildfires have an important influence in forest ecosystems. Contrary to high severity fire, which may have negative impacts on the ecosystems, low severity induce small changes on soil properties. Thus and in order to reduce fire risk, low-severity prescribed fires have been widely used as a fuel reduction tool and silvicultural treatment in Mediterranean forest ecosystems. However, fire may alter microsite conditions and little is known about the impact of prescribed burning on the physico-chemical properties of runoff. In this study, we compared the effects of prescribed burning on physico-chemical properties and quantity of runoff and soil erosion during twelve months after a low severity prescribed fire applied in twelve 16 m2 plot (6 burned plots and 6 control plots used for comparison) set up in the Lezuza forest (Albacete, central-eastern Spain). Physico-chemical properties and quantity of runoff and soil losses were monitored after each rainfall event (five rainfall events in total). Also, different forest stand characteristics (slope, tree density, basal area and shrub/herbal cover) affecting each plot were measured. Results showed that forest stand characteristics were very similar in all used plots. Also, physico-chemical runoff properties were highly modified after the prescribed fire, increasing water pH, carbonates, bicarbonates, total dissolved solids and organic matter content dissolved in water. Electrical conductivity, calcium, sodium, chloride and magnesium were not affected by prescribed fire. Soil losses were highly related to precipitation intensity and tree interception. Tree intercepted the rainfall and significantly reduced soil losses and also runoff quantity. In conclusion and after the first six-month experiment, the influence of prescribed fires on physico-chemical runoff properties should be taken into account for developing proper prescribed burnings guidelines.

  5. Relating physico-chemical properties of frozen green peas (Pisum sativum L.) to sensory quality.

    PubMed

    Nleya, Kathleen M; Minnaar, Amanda; de Kock, Henriëtte L

    2014-03-30

    The acceptability of frozen green peas depends on their sensory quality. There is a need to relate physico-chemical parameters to sensory quality. In this research, six brands of frozen green peas representing product sold for retail and caterer's markets were purchased and subjected to descriptive sensory evaluation and physico-chemical analyses (including dry matter content, alcohol insoluble solids content, starch content, °Brix, residual peroxidase activity, size sorting, hardness using texture analysis and colour measurements) to assess and explain product quality. The sensory quality of frozen green peas, particularly texture properties, were well explained using physico-chemical methods of analysis notably alcohol insoluble solids, starch content, hardness and °Brix. Generally, retail class peas were of superior sensory quality to caterer's class peas although one caterer's brand was comparable to the retail brands. Retail class peas were sweeter, smaller, greener, more moist and more tender than the caterer's peas. Retail class peas also had higher °Brix, a(*) , hue and chroma values; lower starch, alcohol insoluble solids, dry matter content and hardness measured. The sensory quality of frozen green peas can be partially predicted by measuring physico-chemical parameters particularly °Brix and to a lesser extent hardness by texture analyser, alcohol insoluble solids, dry matter and starch content. © 2013 Society of Chemical Industry.

  6. Exploratory multivariate modeling and prediction of the physico-chemical properties of surface water and groundwater

    NASA Astrophysics Data System (ADS)

    Ayoko, Godwin A.; Singh, Kirpal; Balerea, Steven; Kokot, Serge

    2007-03-01

    SummaryPhysico-chemical properties of surface water and groundwater samples from some developing countries have been subjected to multivariate analyses by the non-parametric multi-criteria decision-making methods, PROMETHEE and GAIA. Complete ranking information necessary to select one source of water in preference to all others was obtained, and this enabled relationships between the physico-chemical properties and water quality to be assessed. Thus, the ranking of the quality of the water bodies was found to be strongly dependent on the total dissolved solid, phosphate, sulfate, ammonia-nitrogen, calcium, iron, chloride, magnesium, zinc, nitrate and fluoride contents of the waters. However, potassium, manganese and zinc composition showed the least influence in differentiating the water bodies. To model and predict the water quality influencing parameters, partial least squares analyses were carried out on a matrix made up of the results of water quality assessment studies carried out in Nigeria, Papua New Guinea, Egypt, Thailand and India/Pakistan. The results showed that the total dissolved solid, calcium, sulfate, sodium and chloride contents can be used to predict a wide range of physico-chemical characteristics of water. The potential implications of these observations on the financial and opportunity costs associated with elaborate water quality monitoring are discussed.

  7. Physico-chemical and antioxidant properties of four mango (Mangifera indica L.) cultivars in China.

    PubMed

    Liu, Feng-Xia; Fu, Shu-Fang; Bi, Xiu-Fang; Chen, Fang; Liao, Xiao-Jun; Hu, Xiao-Song; Wu, Ji-Hong

    2013-05-01

    Four principal mango cultivars (Tainong No.1, Irwin, JinHwang and Keitt) grown in southern China were selected, and their physico-chemical and antioxidant properties were characterized and compared. Of all the four cultivars, Tainong No.1 had highest content of total phenols, ρ-coumaric acid, sinapic acid, quercetin, titratable acidity, citric acid, malic acid, fructose, higher antioxidant activities (DPPH, FRAP) and L(*), lower pH, PPO activity and individual weight. Keitt mangoes showed significantly (p<0.05) higher contents of β-carotene, ρ-hydroxybenzoic acid, sucrose, total sugar, total soluble solid, catechin, succinic acid and higher PPO activity. JinHwang mangoes exhibited significantly (p<0.05) higher individual weight and PPO activity, but had lower content of total phenols, β-carotene and lower antioxidant activity. Principal component analysis (PCA) allowed the four mango cultivars to be differentiated clearly based on all these physico-chemical and antioxidant properties determined in the study. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Antioxidant properties, physico-chemical characteristics and proximate composition of five wild fruits of Manipur, India.

    PubMed

    Sharma, Ph Baleshwor; Handique, Pratap Jyoti; Devi, Huidrom Sunitibala

    2015-02-01

    Antioxidant properties, physico-chemical characteristics and proximate composition of five wild fruits viz., Garcinia pedunculata, Garcinia xanthochymus, Docynia indica, Rhus semialata and Averrhoa carambola grown in Manipur, India were presented in the current study. The order of the antioxidant activity and reducing power of the fruit samples was found as R. semialata > D. indica > G. xanthochymus > A. carambola > G. pedunculata. Good correlation coefficient (R(2) > 0.99) was found among the three methods applied to determine antioxidant activity. Total phenolic content was positively correlated (R(2) = 0.960) with the antioxidant activity however, total flavonoid content was not positively correlated with the antioxidant activity. Physico-chemical and proximate composition of these fruits is documented for the first time.

  9. Computational and Statistical Analyses of Amino Acid Usage and Physico-Chemical Properties of the Twelve Late Embryogenesis Abundant Protein Classes

    PubMed Central

    Jaspard, Emmanuel; Macherel, David; Hunault, Gilles

    2012-01-01

    Late Embryogenesis Abundant Proteins (LEAPs) are ubiquitous proteins expected to play major roles in desiccation tolerance. Little is known about their structure - function relationships because of the scarcity of 3-D structures for LEAPs. The previous building of LEAPdb, a database dedicated to LEAPs from plants and other organisms, led to the classification of 710 LEAPs into 12 non-overlapping classes with distinct properties. Using this resource, numerous physico-chemical properties of LEAPs and amino acid usage by LEAPs have been computed and statistically analyzed, revealing distinctive features for each class. This unprecedented analysis allowed a rigorous characterization of the 12 LEAP classes, which differed also in multiple structural and physico-chemical features. Although most LEAPs can be predicted as intrinsically disordered proteins, the analysis indicates that LEAP class 7 (PF03168) and probably LEAP class 11 (PF04927) are natively folded proteins. This study thus provides a detailed description of the structural properties of this protein family opening the path toward further LEAP structure - function analysis. Finally, since each LEAP class can be clearly characterized by a unique set of physico-chemical properties, this will allow development of software to predict proteins as LEAPs. PMID:22615859

  10. Theoretical calculations of physico-chemical and spectroscopic properties of bioinorganic systems: current limits and perspectives.

    PubMed

    Rokob, Tibor András; Srnec, Martin; Rulíšek, Lubomír

    2012-05-21

    In the last decade, we have witnessed substantial progress in the development of quantum chemical methodologies. Simultaneously, robust solvation models and various combined quantum and molecular mechanical (QM/MM) approaches have become an integral part of quantum chemical programs. Along with the steady growth of computer power and, more importantly, the dramatic increase of the computer performance to price ratio, this has led to a situation where computational chemistry, when exercised with the proper amount of diligence and expertise, reproduces, predicts, and complements the experimental data. In this perspective, we review some of the latest achievements in the field of theoretical (quantum) bioinorganic chemistry, concentrating mostly on accurate calculations of the spectroscopic and physico-chemical properties of open-shell bioinorganic systems by wave-function (ab initio) and DFT methods. In our opinion, the one-to-one mapping between the calculated properties and individual molecular structures represents a major advantage of quantum chemical modelling since this type of information is very difficult to obtain experimentally. Once (and only once) the physico-chemical, thermodynamic and spectroscopic properties of complex bioinorganic systems are quantitatively reproduced by theoretical calculations may we consider the outcome of theoretical modelling, such as reaction profiles and the various decompositions of the calculated parameters into individual spatial or physical contributions, to be reliable. In an ideal situation, agreement between theory and experiment may imply that the practical problem at hand, such as the reaction mechanism of the studied metalloprotein, can be considered as essentially solved.

  11. Effect of ultrasound-assisted freezing on the physico-chemical properties and volatile compounds of red radish.

    PubMed

    Xu, Bao-Guo; Zhang, Min; Bhandari, Bhesh; Cheng, Xin-Feng; Islam, Md Nahidul

    2015-11-01

    Power ultrasound, which can enhance nucleation rate and crystal growth rate, can also affect the physico-chemical properties of immersion frozen products. In this study, the influence of slow freezing (SF), immersion freezing (IF) and ultrasound-assisted freezing (UAF) on physico-chemical properties and volatile compounds of red radish was investigated. Results showed that ultrasound application significantly improved the freezing rate; the freezing time of ultrasound application at 0.26 W/cm(2) was shorten by 14% and 90%, compared to IF and SF, respectively. UAF products showed significant (p<0.05) reduction in drip loss and phytonutrients (anthocyanins, vitamin C and phenolics) loss. Compared to SF products, IF and UAF products showed better textural preservation and higher calcium content. The radish tissues exhibited better cellular structures under ultrasonic power intensities of 0.17 and 0.26 W/cm(2) with less cell separation and disruption. Volatile compound data revealed that radish aromatic profile was also affected in the freezing process. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Some pungent arguments against the physico-chemical theories of the origin of the genetic code and corroborating the coevolution theory.

    PubMed

    Di Giulio, Massimo

    2017-02-07

    Whereas it is extremely easy to prove that "if the biosynthetic relationships between amino acids were fundamental in the structuring of the genetic code, then their physico-chemical properties might also be revealed in the genetic code table"; it is, on the contrary, impossible to prove that "if the physico-chemical properties of amino acids were fundamental in the structuring of the genetic code, then the presence of the biosynthetic relationships between amino acids should not be revealed in the genetic code". And, given that in the genetic code table are mirrored both the biosynthetic relationships between amino acids and their physico-chemical properties, all this would be a test that would falsify the physico-chemical theories of the origin of the genetic code. That is to say, if the physico-chemical properties of amino acids had a fundamental role in organizing the genetic code, then we would not have duly revealed the presence - in the genetic code - of the biosynthetic relationships between amino acids, and on the contrary this has been observed. Therefore, this falsifies the physico-chemical theories of genetic code origin. Whereas, the coevolution theory of the origin of the genetic code would be corroborated by this analysis, because it would be able to give a description of evolution of the genetic code more coherent with the indisputable empirical observations that link both the biosynthetic relationships of amino acids and their physico-chemical properties to the evolutionary organization of the genetic code. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Physico-chemical properties of ready to eat, shelf-stable pasta during storage.

    PubMed

    Carini, E; Curti, E; Cassotta, F; Najm, N E O; Vittadini, E

    2014-02-01

    The changes in physico-chemical properties of RTE shelf stable pasta were studied during storage with a multianalytical and multidimensional approach (with special focus on water status) to understand the ageing process in this product. Pasta hardness and amylopectin recrystallisation increased, macroscopic water status indicators and proton molecular translational mobility remained constant, and significant changes were measured in the proton rotational molecular mobility indicators ((1)H FID, (1)H T2) during storage. Since the main changes observed in RTE pasta during storage were similar to those observed in other cereal-based products, it would be interesting to verify the effect of the anti-staling methods commonly used in the cereal processing industry in improving RTE pasta shelf-stability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. [Effects of combined application of water retention agent and organic fertilizer on physico-chemical properties of iron tailings.

    PubMed

    Li, Xiang; Zhang, Bao Juan; Li, Ji Quan; Li, Yu Ling; Li, Chen Guang

    2017-02-01

    In order to analyze the effects of combined application of water retention agent and orga-nic fertilizer on physico-chemical properties of iron tailings and to find the optimal proportion of water retention agent and organic fertilizer for the improvement of iron tailings, the experimental plots of the combination trials with 2 factors in 4 levels were designed in the iron tailings of Qian'an Shougang through investigating some indexes of physico-chemical properties such as bulk density, moisture capacity, porosity, pH and the contents of organic matter, nitrogen, phosphorus and potas-sium. The biomasses of Medicago sativa and Amorpha fruticosa planted in the experimental plots were measured to verify the improvement effects. 4 levels of super absorbent polymers (L·m -3 ) used in treatments were 0 (B 0 ), 10 (B 1 ), 50 (B 2 ), 100 (B 3 ), and 4 levels of organic fertilizer (kg·m -2 ) were 0(N 0 ), 2.25 (N 1 ), 11.24 (N 2 ), 22.49 (N 3 ). The improving effects of different treatments on physico-chemical properties of iron tailings were mainly reflected in the surface layer of 0-20 cm. All the tested indexes were significantly different from control (CK) in the layer of 0-20 cm. The improvement effects of organic fertilizer on physical and chemical properties of iron tai-lings were better than that of water retention agent. In the 0-20 cm layer, the bulk density, non-capillary porosity, organic matter, rapidly available phosphorus, and available potassium under all treatments of adding water retention agent individually were not significantly different from the CK, while significant difference was observed when the organic fertilizer was solely applied in B 0 N 2 and B 0 N 3 treatments. The improvement synergy effect of organic fertilizer and water retention agent was better than that of organic fertilizer or water retention agent, respectively. In 0-20 cm layer, all the indexes obtained from treatment B 3 N 3 performed best and were significantly different from

  15. The physico-chemical properties of pangas catfish (Pangasius pangasius) skin gelatin

    NASA Astrophysics Data System (ADS)

    Pradarameswari, K. A.; Zaelani, K.; Waluyo, E.; Nurdiani, R.

    2018-04-01

    Gelatin can be used as emulsifier and stabilizer in food products. Until now, the most widely used raw materials for the production of gelatin industry are cow bone, cow skin and pig skin. Fish gelatin has been highlighted as a better alternative to replace mammals gelatin based on ethical and religious perspective. Fish gelatin was extracted from Pangas catfish skin to determine its physico-chemical properties. Different temperatures (45 °C, 50 °C, 55 °C) were employed during gelatin extraction. Higher temperature increased the yield and fat contents of Pangas catfish skin gelatin. In contrary, higher water, protein, ash contents were observed during lower temperature. Temperature significantly (p < 0.05) affected the gel strength, viscosity, melting point, and gelling point of fish skin gelatin. Based on the FTIR spectrum catfish skin gelatin functional groups can be identified as N-H, O-H, C = H, C-O and C-H.

  16. Synthesis and physico-chemical characterization of a polysialate-hydroxyapatite composite for potential biomedical application

    NASA Astrophysics Data System (ADS)

    Zoulgami, M.; Lucas-Girot, A.; Michaud, V.; Briard, P.; Gaudé, J.; Oudadesse, H.

    2002-09-01

    New composite materials based on aluminosilicate materials were developed to be used in orthopaedic or maxillo-facial surgery. They are called geopolymers or polysialate-siloxo (PSS) and were studied alone or mixed with hydroxyapatite (HAP). The properties of these materials were investigated for potential use in biological or surgery applications. In this work, the chemistry involved in materials preparation was described. Samples were characterized by some physico-chemical methods like X-ray diffraction (XRD), infrared spectrometry (IR) and electron dispersion X-ray spectrometry (EDX). Results indicate that the mixing hydroxyapatite-geopolymer (PSS) leads to a neutral porous composite material with interesting physico-chemical properties. A preliminary evaluation of its cytotoxicity reveals an harmlessness towards fibroblasts. These properties allow to envisage this association as a potential biomaterial.

  17. Spatial and vertical distribution of soil physico-chemical properties and the content of heavy metals in the pedosphere in Poland

    Treesearch

    Marek Degorski

    1998-01-01

    The lithological and petrographical characteristics of soil pedogenesis was determined, and the spatial and vertical distribution of some soil physico-chemical properties (including heavy metal content) were studied along two transects in Poland. The genetic horizon for 22 soil profiles were described for particle size and petrographic composition, quartz grain...

  18. Effect of added ingredients on water status and physico-chemical properties of tomato sauce.

    PubMed

    Diantom, Agoura; Curti, Elena; Carini, Eleonora; Vittadini, Elena

    2017-12-01

    Different ingredients (guar, xanthan, carboxy methyl cellulose, locust bean gums, potato fiber, milk, potato and soy proteins) were added to tomato sauce to investigate their effect on its physico-chemical properties. The products were characterized in terms of colour, rheological properties (Bostwick consistency, flow behavior and consistency coefficient), water status (water activity, moisture content) and molecular mobility by 1 H Nuclear Magnetic Resonance (NMR). Water activity was significantly decreased only by the addition of potato fiber. Xanthan, locust bean, guar and carboxy methyl cellulose significantly enhanced Bostwick consistency and consistency coefficient. Type of ingredient and concentration significantly affected 1 H NMR mobility indicators. Principal component analysis (PCA) indicated that only 1 H NMR mobility parameters were able to differentiate the effect of milk protein, xanthan and potato fiber on tomato sauce properties. The information collected in this work provides information to intelligently modulate tomato sauce attributes and tailor its properties for specific applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Effect of hydrocolloids on the physico-chemical and rheological properties of reconstituted sweetened yoghurt powder.

    PubMed

    Seth, Dibyakanta; Mishra, Hari Niwas; Deka, Sankar Chandra

    2018-03-01

    The consistency of sweetened yoghurt (misti dahi) is a desired characteristic which is attributed to the casein protein network formation during fermentation. Unfortunately, this property is lost in reconstituted sweetened yoghurt (RSY) due to the irreversible nature of protein denaturation during spray drying. Therefore, this study aimed to increase the consistency of RSY using different hydrocolloids. The effects addition of guar gum, pectin, κ-carrageenan and gelatin (0.1%w/v each) on the physico-chemical, microbial, rheological and sensory properties of RSY were investigated. RSY with 40% total solids demonstrated the rheological properties which are very similar to those of fresh sweetened yoghurt. RSY containing different hydrocolloids further increased the rheological properties. The dynamic rheological study revealed that the magnitude of storage modulus (G'), loss modulus (G″), and loss tangent (tan δ) were significantly influenced by the addition of hydrocolloids and gelatin exhibited highest dynamic moduli in RSY. However, κ-carrageenan added RSY was preferred sensorially as the rheological properties were very close to gelatin added RSY. Addition of hydrocolloids significantly increased the starter bacteria count and pH and reduced water expulsion rate (P < 0.05). Addition of hydrocolloids can improve the rheological properties of reconstituted yoghurt. The study concluded that the addition of κ-carrageenan showed better results in terms of rheological and sensory properties of RSY. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Mechanical, physico-chemical, and antimicrobial properties of gelatin-based film incorporated with catechin-lysozyme

    PubMed Central

    2012-01-01

    Background Microbial activity is a primary cause of deterioration in many foods and is often responsible for reduced quality and safety. Food-borne illnesses associated with E. coli O157:H7, S. aureus, S. enteritidis and L. monocytogenes are a major public health concern throughout the world. A number of methods have been employed to control or prevent the growth of these microorganisms in food. Antimicrobial packaging is one of the most promising active packaging systems for effectively retarding the growth of food spoilage and pathogenic microorganisms. The aim of this study was to determine the mechanical, physico-chemical properties and inhibitory effects of the fish gelatin films against selected food spoilage microorganisms when incorporated with catechin-lysozyme. Results The effect of the catechin-lysozyme combination addition (CLC: 0, 0.125, 0.25, and 0.5%, w/v) on fish gelatin film properties was monitored. At the level of 0.5% addition, the CLC showed the greatest elongation at break (EAB) at 143.17% with 0.039 mm thickness, and the lowest water vapor permeability (WVP) at 6.5 x 10−8 g·mm·h-1·cm-2·Pa-1, whereas the control showed high tensile strength (TS) and the highest WVP. Regarding color attributes, the gelatin film without CLC addition gave the highest lightness (L* 91.95) but lowest in redness (a*-1.29) and yellowness (b* 2.25) values. The light transmission of the film did not significantly decrease and nor did film transparency (p>0.05) with increased CLC. Incorporating CLC could not affect the film microstructure. The solubility of the gelatin based film incorporated with CLC was not affected, especially at a high level of addition (p>0.05). Inhibitory activity of the fish gelatin film against E.coli, S.aureus, L. innocua and S. cerevisiae was concentration dependent. Conclusions These findings suggested that CLC incorporation can improve mechanical, physico-chemical, and antimicrobial properties of the resulting films, thus allowing the

  1. Impact of Sulfuric Acid Treatment of Halloysite on Physico-Chemic Property Modification

    PubMed Central

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Kadhum, Abdul Amir H.; Nassir, Mohamed H.; Al-Amiery, Ahmed A.

    2016-01-01

    Halloysite (HNT) is treated with sulfuric acid and the physico-chemical properties of its morphology, surface activity, physical and chemical properties have been investigated when HNT is exposed to sulfuric acid with treatment periods of 1 h (H1), 3 h (H3), 8 h (H8), and 21 h (H21). The significance of this and similar work lies in the importance of using HNT as a functional material in nanocomposites. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR). The spectrum demonstrates that the hydroxyl groups were active for grafting modification using sulfuric acid, promoting a promising potential use for halloysite in ceramic applications as filler for novel clay-polymer nanocomposites. From the X-ray diffraction (XRD) spectrum, it can be seen that the sulfuric acid breaks down the HNT crystal structure and alters it into amorphous silica. In addition, the FESEM images reveal that the sulfuric acid treatment dissolves the AlO6 octahedral layers and induces the disintegration of SiO4 tetrahedral layers, resulting in porous nanorods. The Bruncher-Emmett-Teller (BET) surface area and total pore volume of HNTs showed an increase. The reaction of the acid with both the outer and inner surfaces of the nanotubes causes the AlO6 octahedral layers to dissolve, which leads to the breakdown and collapse of the tetrahedral layers of SiO4. The multi-fold results presented in this paper serve as a guide for further HNT functional treatment for producing new and advanced nanocomposites. PMID:28773741

  2. Impact of Sulfuric Acid Treatment of Halloysite on Physico-Chemic Property Modification.

    PubMed

    Gaaz, Tayser Sumer; Sulong, Abu Bakar; Kadhum, Abdul Amir H; Nassir, Mohamed H; Al-Amiery, Ahmed A

    2016-07-26

    Halloysite (HNT) is treated with sulfuric acid and the physico-chemical properties of its morphology, surface activity, physical and chemical properties have been investigated when HNT is exposed to sulfuric acid with treatment periods of 1 h (H1), 3 h (H3), 8 h (H8), and 21 h (H21). The significance of this and similar work lies in the importance of using HNT as a functional material in nanocomposites. The chemical structure was characterized by Fourier transform infrared spectroscopy (FTIR). The spectrum demonstrates that the hydroxyl groups were active for grafting modification using sulfuric acid, promoting a promising potential use for halloysite in ceramic applications as filler for novel clay-polymer nanocomposites. From the X-ray diffraction (XRD) spectrum, it can be seen that the sulfuric acid breaks down the HNT crystal structure and alters it into amorphous silica. In addition, the FESEM images reveal that the sulfuric acid treatment dissolves the AlO₆ octahedral layers and induces the disintegration of SiO₄ tetrahedral layers, resulting in porous nanorods. The Bruncher-Emmett-Teller (BET) surface area and total pore volume of HNTs showed an increase. The reaction of the acid with both the outer and inner surfaces of the nanotubes causes the AlO₆ octahedral layers to dissolve, which leads to the breakdown and collapse of the tetrahedral layers of SiO₄. The multi-fold results presented in this paper serve as a guide for further HNT functional treatment for producing new and advanced nanocomposites.

  3. Phospholipids fatty acids of drinking water reservoir sedimentary microbial community: Structure and function responses to hydrostatic pressure and other physico-chemical properties.

    PubMed

    Chai, Bei-Bei; Huang, Ting-Lin; Zhao, Xiao-Guang; Li, Ya-Jiao

    2015-07-01

    Microbial communities in three drinking water reservoirs, with different depth in Xi'an city, were quantified by phospholipids fatty acids analysis and multivariate statistical analysis was employed to interpret their response to different hydrostatic pressure and other physico-chemical properties of sediment and overlying water. Principle component analyses of sediment characteristics parameters showed that hydrostatic pressure was the most important effect factor to differentiate the overlying water quality from three drinking water reservoirs from each other. NH4+ content in overlying water was positive by related to hydrostatic pressure, while DO in water-sediment interface and sediment OC in sediment were negative by related with it. Three drinking water reservoir sediments were characterized by microbial communities dominated by common and facultative anaerobic Gram-positive bacteria, as well as, by sulfur oxidizing bacteria. Hydrostatic pressure and physico-chemical properties of sediments (such as sediment OC, sediment TN and sediment TP) were important effect factors to microbial community structure, especially hydrostatic pressure. It is also suggested that high hydrostatic pressure and low dissolved oxygen concentration stimulated Gram-positive and sulfate-reducing bacteria (SRB) bacterial population in drinking water reservoir sediment. This research supplied a successful application of phospholipids fatty acids and multivariate analysis to investigate microbial community composition response to different environmental factors. Thus, few physico-chemical factors can be used to estimate composition microbial of community as reflected by phospholipids fatty acids, which is difficult to detect.

  4. Chemical Retraction Agents - in vivo and in vitro Studies into their Physico-Chemical Properties, Biocompatibility with Gingival Margin Tissues and Compatibility with Elastomer Impression Materials.

    PubMed

    Nowakowska, Danuta; Saczko, Jolanta; Kulbacka, Julita; Wicckiewicz, Wlodzimierz

    2017-01-01

    Gingival margin retraction/displacement (GMR/D) is a commonly accepted procedure in restorative dentistry. Of the various retraction methods, the chemo-mechanical approach with retraction media and chemical retraction agents (ChRAs) is mostly used. Different local and/or systemic side effects were observed after "chemical attacks" from these retraction agents. Moreover, no consensus exists as to the compatibility of chemical agents with different impression materials. This paper reports the findings of in vivo and in vitro studies and we discuss the physico-chemical properties of chemical retraction agents, their undesirable clinical side effects, biological activity and compatibility with selected groups of elastomer impression materials. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Characterization of Olive Oil by Ultrasonic and Physico-chemical Methods

    NASA Astrophysics Data System (ADS)

    Alouache, B.; Khechena, F. K.; Lecheb, F.; Boutkedjirt, T.

    Olive oil excels by its nutritional and medicinal benefits. It can be consumed without any treatment. However, its quality can be altered by inadequate storage conditions or if it is mixed with other kinds of oils. The objective of this work is to demonstrate the ability of ultrasonic methods to characterize and control olive oil quality. By using of a transducer of 2.25 MHz nominal frequency, in pulse echo mode, ultrasonic parameters, such as propagation velocity and attenuation,have been measured for pure olive oil and for its mixtures with sunflower oil at different proportions. Mechanical properties, such as density and viscosity, have also been determined. The results of ultrasonic measurements are consistent with those obtained by physico-chemical methods, such as rancidity degree, acid index, UV specific extinction coefficient and viscosity. They show that the ultrasonic method allows to distinguish between mixtures at different proportions. The study allows concluding that ultrasound techniques can be considered as a useful complement to existing physico-chemical analysis techniques.

  6. Physico-chemical and microbiological properties of raw fermented sausages are not influenced by color differences of turkey breast meat.

    PubMed

    Popp, J; Krischek, C; Janisch, S; Wicke, M; Klein, G

    2013-05-01

    It has been suggested that the color of turkey breast meat influences both physico-chemical and microbiological properties of raw fermented sausages. In this study, raw fermented sausages were produced with turkey breast meat in 3 different colors (pale, normal, or dark), which were obtained from 2 fast-growing-genetic-line toms at 2 slaughterhouses. Prior to the sausage production, the breast muscles were sorted into color groups according to the lightness values determined at 24 h postmortem. This meat was subsequently processed to raw fermented sausages using 1.5 or 2.5% curing salt (CS). The pale meat had higher lightness, electrical conductivity, and drip loss, whereas the dark meat showed a darker color only. The physico-chemical (pH, water activity), visual (lightness, redness), and microbial (total plate count) properties of the sausages were not influenced by the color of the turkey breast meat. The sausage made with 2.5% CS had lower aw and higher ash and hardness values than the sausages produced with 1.5% CS. In conclusion, processing of differently colored turkey meat to raw fermented sausages does not influence the quality characteristics of the products. Based on these findings, there is no reason for the sausage producer to separate turkey breast muscles by color before producing raw fermented sausages.

  7. An investigation of Turkish honeys: their physico-chemical properties, antioxidant capacities and phenolic profiles.

    PubMed

    Can, Zehra; Yildiz, Oktay; Sahin, Huseyin; Akyuz Turumtay, Emine; Silici, Sibel; Kolayli, Sevgi

    2015-08-01

    This study investigated some physico-chemical and biochemical characteristics of different honey types belonging to Turkish flora. Sixty-two honey samples were examined on the basis of pollen analyses, including 11 unifloral honeys (chestnut, heather, chaste tree, rhododendron, common eryngo, lavender, Jerusalem tea, astragalus, clover and acacia), two different honeydew honeys (lime and oak), and 7 different multifloral honeys. Electrical conductivity, moisture, Hunter color values, HMF, proline, diastase number, and sugar analyses of the honey samples were assessed for chemical characterization. Some phenolic components were analyzed by reverse phase high performance liquid chromatography (RP-HPLC) to determine honeys' phenolic profiles. Total phenolic compounds, total flavonoids, ferric reducing antioxidant capacity (FRAP) and 2,2-diphenyl-1-picryhydrazyl (DPPH) free radical scavenging activity were measured as antioxidant determinants. The study results confirm that physico-chemical and biological characteristics of honeys are closely related to their floral sources, and that dark-colored honeys such as oak, chestnut and heather, have a high therapeutic potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Visualization of physico-chemical properties and microbial distribution in soil and root microenvironments

    NASA Astrophysics Data System (ADS)

    Eickhorst, Thilo; Schmidt, Hannes

    2016-04-01

    Plant root development is influenced by soil properties and environmental factors. In turn plant roots can also change the physico-chemical conditions in soil resulting in gradients between roots and the root-free bulk soil. By releasing a variety of substances roots facilitate microbial activities in their direct vicinity, the rhizosphere. The related microorganisms are relevant for various ecosystem functions in the root-soil interface such as nutrient cycling. It is therefore important to study the impact and dynamics of microorganisms associated to different compartments in root-soil interfaces on a biologically meaningful micro-scale. The analysis of microorganisms in their habitats requires microscopic observations of the respective microenvironment. This can be obtained by preserving the complex soil structure including the root system by resin impregnation resulting in high quality thin sections. The observation of such sections via fluorescence microscopy, SEM-EDS, and Nano-SIMS will be highlighted in this presentation. In addition, we will discuss the combination of this methodological approach with other imaging techniques such as planar optodes or non-invasive 3D X-ray CT to reveal the entire spatial structure and arrangement of soil particles and roots. When combining the preservation of soil structure via resin impregnation with 16S rRNA targeted fluorescence in situ hybridization (FISH) single microbial cells can be visualized, localized, and quantified in the undisturbed soil matrix including the root-soil interfaces. The simultaneous use of multiple oligonucleotide probes thereby provides information on the spatial distribution of microorganisms belonging to different phylogenetic groups. Results will be shown for paddy soils, where management induced physico-chemical dynamics (flooding and drying) as well as resulting microbial dynamics were visualized via correlative microscopy in resin impregnated samples.

  9. Aerosol-halogen interaction: Change of physico-chemical properties of SOA by naturally released halogen species

    NASA Astrophysics Data System (ADS)

    Ofner, J.; Balzer, N.; Buxmann, J.; Grothe, H.; Krüger, H.; Platt, U.; Schmitt-Kopplin, P.; Zetzsch, C.

    2011-12-01

    Reactive halogen species are released by various sources like photo-activated sea-salt aerosol or salt pans and salt lakes. These heterogeneous release mechanisms have been overlooked so far, although their potential of interaction with organic aerosols like Secondary Organic Aerosol (SOA), Biomass Burning Organic Aerosol (BBOA) or Atmospheric Humic LIke Substances (HULIS) is completely unknown. Such reactions can constitute sources of gaseous organo-halogen compounds or halogenated organic particles in the atmospheric boundary layer. To study the interaction of organic aerosols with reactive halogen species (RHS), SOA was produced from α-pinene, catechol and guaiacol using an aerosol smog-chamber. The model SOAs were characterized in detail using a variety of physico-chemical methods (Ofner et al., 2011). Those aerosols were exposed to molecular halogens in the presence of UV/VIS irradiation and to halogens, released from simulated natural halogen sources like salt pans, in order to study the complex aerosol-halogen interaction. The heterogeneous reaction of RHS with those model aerosols leads to different gaseous species like CO2, CO and small reactive/toxic molecules like phosgene (COCl2). Hydrogen containing groups on the aerosol particles are destroyed to form HCl or HBr, and a significant formation of C-Br bonds could be verified in the particle phase. Carbonyl containing functional groups of the aerosol are strongly affected by the halogenation process. While changes of functional groups and gaseous species were visible using FTIR spectroscopy, optical properties were studied using Diffuse Reflectance UV/VIS spectroscopy. Overall, the optical properties of the processed organic aerosols are significantly changed. While chlorine causes a "bleaching" of the aerosol particles, bromine shifts the maximum of UV/VIS absorption to the red end of the UV/VIS spectrum. Further physico-chemical changes were recognized according to the aerosol size-distributions or the

  10. Proximate analysis and physico-chemical properties of flour from the seeds of the China chestnut, Sterculia monosperma Ventenat.

    PubMed

    Noitang, S; Sooksai, S A; Foophow, T; Petsom, A

    2009-10-01

    The aim of this study was to evaluate nutritional composition of China chestnut seeds, Sterculia monosperma Vent. and analyze the physico-chemical properties of flour from the seeds. The results obtained on proximate analysis of China chestnut seeds, S. monosperma, revealed that they contained mostly carbohydrate (73.7% dm), followed by fat (12.0% dm), protein (7.8% dm), fiber (5.5% dm) and ash (1.0% dm). They have a relatively high content of potassium (12.3 mg g(-1) dm) following by phosphorus (2.30 mg g(-1) dm), magnesium (1.87 mg g(-1) dm), sulfur (0.88 mg g(-1) dm) and calcium (0.14 mg g(-1) dm). The fatty acids profile was found to be composed of mainly palmitic (42%) and oleic acids (34%), with general long-chain fatty acids the other significant component by mass (13%). Glutamic acid (17.4%), aspartic acid (12.5%) and arginine (12.5%) were the three major amino acid constituents. The purified seed starch was investigated for its morphological, starch content and physico-chemical properties, such as amylose content, swelling power, solubility and pasting properties. The starch granules were quite round, about 10-15 micron diameter and composed of more than 35% (w/w) of amylose. The pasting properties of flour from the seeds of S. monosperma revealed that gelatinization began at 72.6-73.2 degrees C and the maximum viscosity in the holding period at 95 degrees C was 633 BU. Interestingly and potentially of use, was that the viscosity at the cooling period was more than two-fold higher than that in the holding period.

  11. Physico-chemical properties and fatty acid composition of pomegranate, cherry and pumpkin seed oils.

    PubMed

    Siano, Francesco; Straccia, Maria C; Paolucci, Marina; Fasulo, Gabriella; Boscaino, Floriana; Volpe, Maria G

    2016-03-30

    Nut and seed oils are often considered waste products but in recent years they have been receiving growing interest due to their high concentration of hydrophilic and lipophilic bioactive components, which have important pharmacological properties on human health. The aim of this work was to compare the physico-chemical and biochemical properties of pomegranate (Punicagranatum), sweet cherry (Prunusavium) and pumpkin (Cucurbita maxima) seed oils obtained by solvent extraction. High amount of linoleic acid was found in the cherry and pumpkin seed oils, while pomegranate seed oil showed relevant content of polyunsaturated fatty acids (PUFAs) and monounsaturated fatty acids (MUFAs) along to eicosapentaenoic acid (EPA) and nervonic acid. Pumpkin seed oil had high concentration of carotenoids, while pomegranate oil was the best absorber in the UV-A and UV-B ranges. Pomegranate, cherry and pumpkin seed oils can be an excellent source of bioactive molecules and antioxidant compounds such as polyphenols, carotenoids and unsaturated fatty acids. These seed oils can be included both as preservatives and functional ingredients in the food, pharmaceutical and cosmetic fields and can contribute to disease prevention and health promotion. Moreover, high absorbance of UV light indicates a potential use of these oils as filters from radiations in the food, pharmaceutical, and cosmetic fields. © 2015 Society of Chemical Industry.

  12. Evaluation of different drying temperatures on physico-chemical and antioxidant properties of water-soluble tomato powders and on their use in pork patties.

    PubMed

    Kim, Hyeong Sang; Chin, Koo Bok

    2016-02-01

    Tomato and tomato products provide various antioxidant activities, which could be changed by the processing method. This study was performed to evaluate the antioxidant activity of water-soluble tomato powder (WSTP) as affected by different oven temperatures (60, 80 and 100°C), and to evaluate the physico-chemical properties and antioxidative activities of pork patties containing these powders. The contents of total phenolic compounds of WSTP ranged from 22.2 to 69.6 g kg(-1) dry matter. The antioxidant activities increased significantly with increasing drying temperatures (P < 0.05). The physico-chemical properties of pork patties containing tomato powders were also evaluated. WSTP at 100°C showed the highest redness value compared to those dried at 60 and 80°C. Lipid oxidation of pork patties was retarded by 7 days with the addition of WSTP. In particular, pork patties containing WSTP showed antimicrobial activity at 14 days of refrigerated storage, regardless of drying temperatures. WSTP, especially prepared at 100°C, could be used as a natural antioxidant and antimicrobial agent in meat products. © 2015 Society of Chemical Industry.

  13. Physico-chemical properties and biological effects of diesel and biomass particles.

    PubMed

    Longhin, Eleonora; Gualtieri, Maurizio; Capasso, Laura; Bengalli, Rossella; Mollerup, Steen; Holme, Jørn A; Øvrevik, Johan; Casadei, Simone; Di Benedetto, Cristiano; Parenti, Paolo; Camatini, Marina

    2016-08-01

    Diesel combustion and solid biomass burning are the major sources of ultrafine particles (UFP) in urbanized areas. Cardiovascular and pulmonary diseases, including lung cancer, are possible outcomes of combustion particles exposure, but differences in particles properties seem to influence their biological effects. Here the physico-chemical properties and biological effects of diesel and biomass particles, produced under controlled laboratory conditions, have been characterized. Diesel UFP were sampled from a Euro 4 light duty vehicle without DPF fuelled by commercial diesel and run over a chassis dyno. Biomass UFP were collected from a modern automatic 25 kW boiler propelled by prime quality spruce pellet. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images of both diesel and biomass samples showed aggregates of soot particles, but in biomass samples ash particles were also present. Chemical characterization showed that metals and PAHs total content was higher in diesel samples compared to biomass ones. Human bronchial epithelial (HBEC3) cells were exposed to particles for up to 2 weeks. Changes in the expression of genes involved in xenobiotic metabolism were observed after exposure to both UFP already after 24 h. However, only diesel particles modulated the expression of genes involved in inflammation, oxidative stress and epithelial-to-mesenchymal transition (EMT), increased the release of inflammatory mediators and caused phenotypical alterations, mostly after two weeks of exposure. These results show that diesel UFP affected cellular processes involved in lung and cardiovascular diseases and cancer. Biomass particles exerted low biological activity compared to diesel UFP. This evidence emphasizes that the study of different emission sources contribution to ambient PM toxicity may have a fundamental role in the development of more effective strategies for air quality improvement. Copyright © 2016 Elsevier Ltd. All rights

  14. Synthesis, physico-chemical properties and complexing abilities of new amphiphilic ligands from D-galacturonic acid.

    PubMed

    Allam, Anas; Behr, Jean-Bernard; Dupont, Laurent; Nardello-Rataj, Véronique; Plantier-Royon, Richard

    2010-04-19

    This paper describes a convenient and efficient synthesis of new complexing surfactants from d-galacturonic acid and n-octanol as renewable raw materials in a two-step sequence. In the first step, simultaneous O-glycosidation-esterification under Fischer conditions was achieved. The anomeric ratio of the products was studied based on the main experimental parameters and the activation mode (thermal or microwave). In the second step, aminolysis of the n-octyl ester was achieved with various functionalized primary amines under standard thermal or microwave activation. The physico-chemical properties of these new amphiphilic ligands were measured and these compounds were found to exhibit interesting surface properties. Complexing abilities of one uronamide ligand functionalized with a pyridine moiety toward Cu(II) ions was investigated in solution by EPR titrations. A solid compound was also synthesized and characterized, its relative structure was deduced from spectroscopic data. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  15. Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3.

    PubMed

    Kabri, Tin-Hinan; Arab-Tehrany, Elmira; Belhaj, Nabila; Linder, Michel

    2011-09-21

    Nano-emulsions, as non-equilibrium systems, present characteristics and properties which depend not only on composition but also on their method of preparation. To obtain better penetration, nanocosmeceuticals use nano-sized systems for the delivery of active ingredients to targeted cells. In this work, nano-emulsions composed of miglyol, rapeseed oil and salmon oil were developed as a cosmetic matrix. Measurements of different physico-chemical properties of nano-emulsions were taken according to size, electrophoretic mobility, conductivity, viscosity, turbidity, cristallization and melting point. The RHLB was calculated for each formulation in order to achieve maximum stability. Both tween 80 and soya lecithin were found to stabilize formulations. The results showed that rapeseed oil and miglyol are the predominant parameters for determining the expression of results concerning the characterization of emulsion. Based on the mixture design, we achieved the optimal point using the following formulation: 56.5% rapessed oil, 35.5% miglyol, and 8% salmon oil. We considered this formulation to be the best as a nanocosmeceutical product due to the small size, good turbidity, and average HLB. This study demonstrates the influence of formulation on the physico-chemical properties of each nano-emulsion obtained by the mixture design.

  16. Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants.

    PubMed

    Abad, Manuel; Noguera, Patricia; Puchades, Rosa; Maquieira, Angel; Noguera, Vicente

    2002-05-01

    Selected physico-chemical and chemical characteristics of 13 coconut coir dust (mesocarp pithy tissue plus short-length fibres) samples from Asia, America and Africa were evaluated as peat alternatives. All properties studied differed significantly between and within sources, and from the control Sphagnum peat. pH of coir dust was slightly acidic, whereas salinity varied dramatically between 39 and 597 mS m(-1) in the saturated media extract. The cation exchange capacity and carbon/nitrogen (C/N) ratio ranged from 31.7 to 95.4 cmol(c) kg(-1) and from 75 to 186, respectively. Most carbon was found as lignin and cellulose. The concentrations of available nitrogen, calcium, magnesium and micro-elements were low, while those of phosphorus and potassium were remarkably high (0.28-2.81 mol m(-3) and 2.97-52.66 mol m(-3) for P and K, respectively). Saline ion concentrations, especially chloride and sodium, were also high.

  17. Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? A review.

    PubMed

    Pareek, Vikram; Gupta, Rinki; Panwar, Jitendra

    2018-09-01

    The unprecedented increase in antibiotic resistance in this era has resuscitated the attention of scientific community to exploit silver and its various species as antimicrobial agents. Plenty of studies have been done to measure the antimicrobial potential of silver species (cationic silver, metallic Ag 0 or silver nanoparticles, silver oxide particulates etc.) and indicated that membrane damage, oxidative stress, protein dysfunction and DNA damage to be the possible cause of injury to the microbial cell. However, the precise molecular mechanism of their mode of action has remained unclear, which makes an obstacle towards the generation of potential antibacterial agent against various pathogenic and multidrug resistant (MDR) bacteria. In order to endeavor this issue, one should first have the complete understanding about the resistance mechanisms present in bacteria that can be a therapeutic target for the silver-based drug formulations. Apart from this, in-depth understanding of the interactions of various silver species (with the biological media) is a probable deciding factor for the synthesis of silver-based drug formulations because the particular form and physico-chemical properties of silver can ultimately decide their antimicrobial action. In context to above mentioned serious concerns, the present article aims to discuss the mechanisms behind the confrontation of bacteria against various drugs and the effect of physico-chemical properties of silver species on their bactericidal action as well as critically evaluates the available reports on bacterial transcriptomic and proteomic profiles upon the exposure of various silver species. Further, this review state the mechanism of action that needs to be followed for the complete understanding of toxic potential of silver nanoparticles, which will open a possibility to synthesize new silver nanoparticle based antimicrobial systems with desired properties to ensure their safe use, exposure over extended period

  18. EXTRACTION AND PHYSICO-CHEMICAL STUDIES OF DIASTASE-LIKE ENZYME FROM PIPER BETLE PETIOLES: PART 1

    PubMed Central

    Ramasarma, G.V.S; Dutta, Sadhan Kumar

    1995-01-01

    Petioles of the plant piper betle-bengal variety have been subjected for extraction employing standard procedure and the crude extract obtained has been evaluated for its diastase like activity and other physico-chemical properties to investigate further its possible biological and pharmacological activities. PMID:22556729

  19. Influence of vacuum drying temperature on: physico-chemical composition and antioxidant properties of murta berries

    USDA-ARS?s Scientific Manuscript database

    Murta (Ugni molinae T.) berries were vacuum dried at a constant pressure of 15 kPa. The effects of processing temperatures (50, 60, 70, 80 and 90 °C) on the physico-chemical characteristics, the phenolic and flavonoid compounds, the antioxidant activity (measured by DPPH and ORAC) and the sugar and ...

  20. Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3

    PubMed Central

    2011-01-01

    Background Nano-emulsions, as non-equilibrium systems, present characteristics and properties which depend not only on composition but also on their method of preparation. To obtain better penetration, nanocosmeceuticals use nano-sized systems for the delivery of active ingredients to targeted cells. In this work, nano-emulsions composed of miglyol, rapeseed oil and salmon oil were developed as a cosmetic matrix. Measurements of different physico-chemical properties of nano-emulsions were taken according to size, electrophoretic mobility, conductivity, viscosity, turbidity, cristallization and melting point. The RHLB was calculated for each formulation in order to achieve maximum stability. Results Both tween 80 and soya lecithin were found to stabilize formulations. The results showed that rapeseed oil and miglyol are the predominant parameters for determining the expression of results concerning the characterization of emulsion. Based on the mixture design, we achieved the optimal point using the following formulation: 56.5% rapessed oil, 35.5% miglyol, and 8% salmon oil. We considered this formulation to be the best as a nanocosmeceutical product due to the small size, good turbidity, and average HLB. Conclusions This study demonstrates the influence of formulation on the physico-chemical properties of each nano-emulsion obtained by the mixture design. PMID:21936893

  1. The hemolymph of caterpillars Spodoptera littoralis: physico-chemical properties and ionic composition compared to culture media.

    PubMed

    Smagghe, G; Van Leeuwen, T

    2004-01-01

    In this paper, we determined some physico-chemical properties like osmotic pressure, pH and electrical conductivity of the hemolymph from caterpillars of Spodoptera littoralis (Lepidoptera: Noctuidae) during the last larval instar. It was of interest that we observed an increase in osmotic pressure with the increase in age in the last instar that may concur with the start of histolysis at metamorphosis. These physicochemical properties were then compared to those of Grace's and modified Grace's tissue culture medium. In addition, concentrations of the cations Na, K, Ca and Mg, and the anions Cl, NO3, PO4 and SO4 were determined in the insect hemolymph of S. littoralis. The cations K and Mg reached high values with a percent of about 52% of the total amount of cations. The concentration of sodium was low. The total sum of the anions consisted about 56 meq/1, and this allows to neutralise about 45 % of the total cations.

  2. Physico-chemical properties, rheology and degree of esterification of passion fruit (Passiflora edulis f. flavicarpa) peel flour.

    PubMed

    Coelho, Emanuela M; de Azevêdo, Luciana C; Viana, Arão C; Ramos, Ingrid G; Gomes, Raquel G; Lima, Marcos Dos S; Umsza-Guez, Marcelo A

    2018-01-01

    The peel of yellow passion fruit is as an agro-industrial waste of great environmental impact, representing more than 50% of the total weight of the fruit. For this reason, and also considering its importance as a source of functional components such as pectin, this organic waste is increasingly attracting the attention of researchers. The aim of this study was to investigate the physico-chemical composition and physical properties of this material, which may be of interest to the food industry. We obtained two samples of passion fruit peel flour applying different processes: flour without treatment (FWOT) and flour with treatment by maceration (FWT). It was found that the flour samples contain, respectively, 372.4 g kg -1 and 246.7 kg -1 of soluble fiber and, according to the FTIR analysis, this material corresponds to high and low methoxyl pectins, respectively. The flour obtained by maceration (FWT) offers greater benefits for industrial use, with 60% fewer tannins and greater thermal stability. In addition, this sample does not reabsorb moisture as easily, although FWOT also shows potential for use in dietary products. Considering the pseudoplastic properties of the flours, the application of both samples could be expanded to many industrial sectors. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Suitability of E-tongue Sensors to Assess Taste-Masking of Pediatric Liquids by Different Beverages Considering Their Physico-chemical Properties.

    PubMed

    Immohr, Laura Isabell; Hedfeld, Claas; Lang, Artur; Pein-Hackelbusch, Miriam

    2017-02-01

    Manipulation of liquid oral drugs by mixing them into foodstuff is a common procedure for taste-masking of OTC pharmaceuticals when administered to children. However, the taste-masking capability of such application media is not systematically evaluated, and recommendations for suitable media are hardly published. In this study, a sensor array of commercially available and self-developed electronic tongue sensors was employed to assess the taste-masking efficiency of eight different beverages (tap water, apple juice, carrot juice, fennel tea, fruit tea, milk, cocoa, and Alete meal to drink) on the OTC pharmaceuticals Ambroxol-ratiopharm®, Cetirizin AL, and Laxoberal® by multivariate data analysis. The Euclidean distances between each pure application medium and its corresponding drug mixture were used as an indicator for the taste-masking efficiency and correlated to the physico-chemical properties of the beverages. Thus, the pH value, the viscosity, as well as the fat and sugar content of the beverages were included, whereas only the viscosity appeared to be insignificant in all cases. The sugar content as well as the fat content and pH value emerged to be a significant variable in taste-masking efficiency for some of the tested drug products. It was shown that the applied electronic tongue sensors were capable to demonstrate the impact of the physico-chemical properties of the application media on their taste-masking capacity regardless of their non-selectivity towards these characteristics.

  4. Physico-chemical properties of late-incubation egg amniotic fluid and a potential in ovo feed supplement

    PubMed Central

    Omede, A. A.; Bhuiyan, M. M.; lslam, A. F.; Iji, P. A.

    2017-01-01

    Objective This study explored the physico-chemical properties of late-incubation egg amniotic fluid and a potential in ovo feed (IOF) supplement. Methods Amniotic fluid was collected from broiler breeders (Ross 308, 51 weeks and Cobb 500, 35 weeks) on day 17 after incubation. A mixture of high-quality soy protein supplement – Hamlet Protein AviStart (HPA) was serially diluted in MilliQ water to obtain solutions ranging from 150 to 9.375 mg/mL. The mixtures were heat-treated (0, 30, 60 minutes) in a waterbath (80°C) and then centrifuged to obtain supernatants. The amniotic fluid and HPA supernatants were analysed for their physico-chemical properties. Results Only viscosity and K+ were significantly (p<0.05) different in both strains. Of all essential amino acids, leucine and lysine were in the highest concentration in both strains. The osmolality, viscosity and pCO2 of the supernatants decreased (p<0.05) with decreasing HPA concentration. Heat treatment significantly (p<0.05) affected osmolality, pH, and pCO2, of the supernatants. The interactions between HPA concentration and heat treatment were significant with regards to osmolality (p<0.01), pH (p<0.01), pCO2 (p<0.05), glucose (p<0.05), lactate (p<0.01) and acid-base status (p<0.01) of HPA solutions. The Ca2+, K+, glucose, and lactate increased with increasing concentration of HPA solution. The protein content of HPA solutions decreased (p<0.05) with reduced HPA solution concentrations. The supernatant from 150 mg/mL HPA solution was richest in glutamic acid, aspartic acid, arginine and lysine. Amino acids concentrations were reduced (p<0.05) with each serial dilution but increased with longer heating. Conclusion The values obtained in the primary solution (highest concentration) are close to the profiles of high-protein ingredients. This supplement, as a solution, hence, may be suitable for use as an IOF supplement and should be tested for this potential. PMID:28183170

  5. [Resistant starches. Part II. Physico-chemical and technological aspects solution medico-biological problems].

    PubMed

    Iur'ev, V P; Gapparov, M M; Vasserman, L A; Genkina, N K

    2006-01-01

    This paper is a review of the recent literature data related to structure, composition and physico-chemical properties of starches as well as the special methods of processing of the starch containing raw sources producing the food products with increasing content of resistant starches. The prognosis is made about usefulness of such resistant starches for control of some metabolic disorder in human organism and for prophylactic aims.

  6. In vitro oral drug permeation models: the importance of taking physiological and physico-chemical factors into consideration.

    PubMed

    Joubert, Ruan; Steyn, Johan Dewald; Heystek, Hendrik Jacobus; Steenekamp, Jan Harm; Du Preez, Jan Lourens; Hamman, Josias Hendrik

    2017-02-01

    The assessment of intestinal membrane permeability properties of new chemical entities is a crucial step in the drug discovery and development process and a variety of in vitro models, methods and techniques are available to estimate the extent of oral drug absorption in humans. However, variations in certain physiological and physico-chemical factors are often not reflected in the results and the complex dynamic interplay between these factors is sometimes oversimplified with in vitro models. Areas covered: In vitro models to evaluate drug pharmacokinetics are briefly outlined, while both physiological and physico-chemical factors that may have an influence on these techniques are critically reviewed. The shortcomings identified for some of the in vitro techniques are discussed in conjunction with novel ways to improve and thereby overcome some challenges. Expert opinion: Although conventional in vitro methods and theories are used as basic guidelines to predict drug absorption, critical evaluations have identified some shortcomings. Advancements in technology have made it possible to investigate and understand the role of physiological and physico-chemical factors in drug delivery more clearly, which can be used to improve and refine the techniques to more closely mimic the in vivo environment.

  7. Physico-chemical and optical properties of combustion-generated particles from coal-fired power plant, automobile and ship engine and charcoal kiln.

    NASA Astrophysics Data System (ADS)

    Kim, Hwajin

    2015-04-01

    Similarities and differences in physico-chemical and optical properties of combustion generated particles from various sources were investigated. Coal-fired power plant, charcoal kiln, automobile and ship engine were major sources, representing combustions of coal, biomass and two different types of diesel, respectively. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) equipped with both SEM and HRTEM were used for physico-chemical analysis. Light absorbing properties were assessed using a spectrometer equipped with an integrating sphere. Particles generated from different combustion sources and conditions demonstrate great variability in their morphology, structure and composition. From coal-fired power plant, both fly ash and flue gas were mostly composed of heterogeneously mixed mineral ash spheres, suggesting that the complete combustion was occurred releasing carbonaceous species out at high temperature (1200-1300 °C). Both automobile and ship exhausts from diesel combustions show typical features of soot: concentric circles comprised of closely-packed graphene layers. However, heavy fuel oil (HFO) combusted particles from ship exhaust demonstrate more complex compositions containing different morphology of particles other than soot, e.g., spherical shape of char particles composed of minerals and carbon. Even for the soot aggregates, particles from HFO burning have different chemical compositions; carbon is dominated but Ca (29.8%), S (28.7%), Na(1%), and Mg(1%) are contained, respectively which were not found from particles of automobile emission. This indicates that chemical compositions and burning conditions are significant to determine the fate of particles. Finally, from biomass burning, amorphous and droplet-like carbonaceous particles with no crystallite structure are observed and they are generally formed by the condensation of low volatile species at low

  8. Effect of casein and inulin addition on physico-chemical characteristics of low fat camel dairy cream.

    PubMed

    Ziaeifar, Leila; Labbafi Mazrae Shahi, Mohsen; Salami, Maryam; Askari, Gholam R

    2018-05-21

    The effect of the addition of the camel casein fraction on some physico-chemical properties of low fat camel milk cream was studied. Oil-in-water emulsions, 25, 30, and 35 (w/w) fat, were prepared using inulin, camel skim milk, milk fat and variable percentages of casein (1, 2, and 3% w/w). The droplet size, ζ-potential, surface protein concentration, viscosity and surface tension of low fat dairy creams was measured. Cream containing 2% (w/w) casein had better stability. The modifications in physico-chemical properties appeared to be driven by changes in particle size distribution caused by droplet aggregation. The cream containing 2% casein leads to a gradual decrease in droplet size, as the particle size decreased, apparent viscosity increased. When casein concentration increased, ζ-potential decreased due to combination of c terminal (negative charge) with the surface of fat particles but steric repulsion improved textural properties. Cream with 30% fat and 2% casein had the best result. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Permanent physico-chemical properties of extremely diluted aqueous solutions of homeopathic medicines.

    PubMed

    Elia, V; Baiano, S; Duro, I; Napoli, E; Niccoli, M; Nonatelli, L

    2004-07-01

    The purpose of this study was to obtain information about the influence of successive dilutions and succussions on the water structure. 'Extremely diluted solutions' (EDS) are solutions obtained through the iteration of two processes: dilution in stages of 1:100 and succussion, typically used in homeopathic medicine. The iteration is repeated until extreme dilutions are reached, so that the chemical composition of the solution is identical to that of the solvent. Nine different preparations, were studied from the 3cH to 30cH (Hahnemannian Centesimal Dilution). Four of those were without the active principle (potentized water). Two different active principles were used: Arsenicum sulphuratum rubrum (ASR), As4S4, 2,4-dichlorophenoxyacetic acid (2,4D). The solvents were: a solution of sodium bicarbonate and of silicic acid at 5 x 10(-5) M (mol/l) each, and solutions of sodium bicarbonate 5 x 10(-5), 7.5 x 10(-5) and 10 x 10(-5) M (mol/l) in double-distilled water. The containers were Pyrex glass to avoid the release of alkaline oxide and silica from the walls. Conductivity measurements of the solutions were carried out as a function of the age of the potencies. We found increases of electrical conductivity compared to untreated solvent. Successive dilution and succussion can permanently alter the physico-chemical properties of the aqueous solvent. But we also detected changes in physio-chemical parameters with time. This has not previously been reported. The modification of the solvent could provide an important support to the validity of homeopathic medicine, that employs 'medicines without molecules'. The nature of the phenomena here described remains still unexplained, nevertheless some significant experimental results were obtained.

  10. PHYSICO-CHEMICAL CHARACTERISATION OF DIFFERENT CLINDAMYCIN PHOSPHATE SAMPLES

    PubMed Central

    Vranić, Edina; Planinšek, Odon; Tivadar, Andrijana; Hadžović, Sabira; Srčič, Stanko

    2007-01-01

    For the majority of the pharmaceutical dosage forms, the substances that are used maintain solid state under the standard storage conditions, i.e. powders. The interactions of pharmaceutical powders (active ingredient(s) and excipients) with liquids and vapors (particularly aqueous solutions and their vapors) occur almost always during the production process. From the physical point of view, the interactions among individual components may differ from the expected because chemically identical substances obtained from different producers vary very much. These differences influence either the production process and/or the pharmaceutical form properties. In order to overcome these problems it is necessary to establish a control over the physico-chemical properties of the used materials. The aim of this work was to determine physico-chemical properties of three powder clindamycin phosphate samples (labeled as sample S1, S2 and S3) acquired through different suppliers. All the analysis were made for the purpose of establishing possible differences among the tested samples that showed variable physical stability in the solution: recrystallization of the S3 sample in the aqueous solution has been established during storage under standard conditions. On the basis of the obtained data it was possible to recognize the differences among the tested clindamycin phosphate samples and to explain the anomalous behavior of one sample. The surface free energy components for the investigated clindamycin phosphate samples were determined using Wu and Goodvan Oss method. The investigated clindamycin phosphate samples exhibit certain differences in surface free energy values as well as in surface morphology and thermal behavior. Comparison of γ+ and γ- values leads to the conclusion that all three clindamycin phosphate samples perform as monopolar, more electron acceptors, i.e. Lewis acids. However, an important difference exists between samples S1 and S2 on one and S3 on the other

  11. Physico-chemical characterisation of different clindamycin phosphate samples.

    PubMed

    Vranić, Edina; Planinsek, Odon; Tivadar, Andrijana; Hadzović, Sabira; Srcic, Stanko

    2007-05-01

    For the majority of the pharmaceutical dosage forms, the substances that are used maintain solid state under the standard storage conditions, i.e. powders. The interactions of pharmaceutical powders (active ingredient(s) and excipients) with liquids and vapors (particularly aqueous solutions and their vapors) occur almost always during the production process. From the physical point of view, the interactions among individual components may differ from the expected because chemically identical substances obtained from different producers vary very much. These differences influence either the production process and/or the pharmaceutical form properties. In order to overcome these problems it is necessary to establish a control over the physico-chemical properties of the used materials. The aim of this work was to determine physico-chemical properties of three powder clindamycin phosphate samples (labeled as sample S(1), S(2) and S(3)) acquired through different suppliers. All the analysis were made for the purpose of establishing possible differences among the tested samples that showed variable physical stability in the solution: recrystallization of the S(3) sample in the aqueous solution has been established during storage under standard conditions. On the basis of the obtained data it was possible to recognize the differences among the tested clindamycin phosphate samples and to explain the anomalous behavior of one sample. The surface free energy components for the investigated clindamycin phosphate samples were determined using Wu and Good- van Oss method. The investigated clindamycin phosphate samples exhibit certain differences in surface free energy values as well as in surface morphology and thermal behavior. Comparison of alpha + and alpha - values leads to the conclusion that all three clindamycin phosphate samples perform as monopolar, more electron acceptors, i.e. Lewis acids. However, an important difference exists between samples S(1) and S(2) on one

  12. A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jambure, S.B.; Patil, S.J.; Deshpande, A.R.

    2014-01-01

    Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z{sub 1}) and nanograins by SILAR (Z{sub 2}). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. Themore » X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10{sup 2} Ω cm) is lower than that of SILAR deposited films (10{sup 5} Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method.« less

  13. Investigation of Physico-Chemical Properties of Sand-Lime Products Modified of Diabase Aggregate and Chalcedonite Meal

    NASA Astrophysics Data System (ADS)

    Dachowski, Ryszard; Komisarczyk, Katarzyna

    2017-10-01

    In the era of rapid development in the construction industry, particular attention is focused on harmless and natural materials. Some of the best materials for building masonry walls are sand-lime products. Silicates are obtained from a mixture of quartz, sand and a small amount of water. They emerge as a result of the hydrothermal treatment conducted under high pressure and at a temperature of app. 203 °C. Silicates were modified of different kinds of aggregates, glass or plastics, and the content of dry ingredients was changed because of this fact. The paper describes the studies where the combination of diabase aggregate and chalcedonite meal was used. Microstructure of the products was analyzed with the use of mercury intrusion porosimetry, SEM and XRD methods. Variable content of chalcedonite meal changes the internal structure and the physico-chemical properties.

  14. Influence of lecithin-lipid composition on physico-chemical properties of nanoliposomes loaded with a hydrophobic molecule.

    PubMed

    Bouarab, Lynda; Maherani, Behnoush; Kheirolomoom, Azadeh; Hasan, Mahmoud; Aliakbarian, Bahar; Linder, Michel; Arab-Tehrany, Elmira

    2014-03-01

    In this work, we studied the effect of nanoliposome composition based on phospholipids of docosahexaenoic acid (PL-DHA), salmon and soya lecithin, on physico-chemical characterization of vector. Cinnamic acid was encapsulated as a hydrophobic molecule in nanoliposomes made of three different lipid sources. The aim was to evaluate the influence of membrane lipid structure and composition on entrapment efficiency and membrane permeability of cinnamic acid. These properties are important for active molecule delivery. In addition, size, electrophoretic mobility, phase transition temperature, elasticity and membrane fluidity were measured before and after encapsulation. The results showed a correlation between the size of the nanoliposome and the entrapment. The entrapment efficiency of cinnamic acid was found to be the highest in liposomes prepared from salmon lecithin. The nanoliposomes composed of salmon lecithin presented higher capabilities as a carrier for cinnamic acid encapsulation. These vesicles also showed a high stability which in turn increases the membrane rigidity of nanoliposome as evaluated by their elastic properties, membrane fluidity and phase transition temperature. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. In vitro Starch Hydrolysis Rate, Physico-chemical Properties and Sensory Evaluation of Butter Cake Prepared Using Resistant Starch Type III Substituted for Wheat Flour.

    PubMed

    Pongjanta, J; Utaipattanaceep, A; Naivikul, O; Piyachomkwan, K

    2008-09-01

    Resistant starch type III (RS III) derived from enzymatically debranched high amylose rice starch was prepared and used to make butter cake at different levels (0, 5, 10, 15 and 20%) in place of wheat flour. Physico-chemical properties, sensory evaluation, and in vitro starch hydrolysis rate of the developed butter cake were investigated. This study showed that the content of resistant starch in butter cake increased significantly (P<0.05) as the level of substitution with RS III increased from 2.1 to 4.4% of resistant starch content. The butter cake with RS III replacement had a significantly lower in vitro starch hydrolysis rate compared to the control cake (0% RS III). The rates of starch hydrolysis from 0 to 180 min digestion time for 0, 5, 10 15, and 20% RS III in place of wheat flour in butter cakes were 3.70 to 67.65%, 2.97 to 64.86%, 2.86 to 59.99%, 2.79 to 55.96 and 2.78 to 53.04% respectively. The physico-chemical properties of 5 to 10% RS III substituted with wheat flour in the butter cake were not significantly different from the control cake and were moderately accepted by panellists in the sensory evaluation test.

  16. Physico-chemical properties and performance of high oleic and palm-based shortenings.

    PubMed

    Ramli, Muhamad Roddy; Lin, Siew Wai; Yoo, Cheah Kien; Idris, Nor Aini; Sahri, Miskandar Mat

    2008-01-01

    Solid fat from fractionation of palm-based products was converted into cake shortening at different processing conditions. High oleic palm stearin with an oleic content of 48.2 % was obtained from fractionation of high oleic palm oil which was produced locally. Palm product was blended with different soft oils at pre-determined ratio and further fractionated to obtain the solid fractions. These fractions were then converted into cake shortenings named as high oleic, N1 and N2 blends. The physico-chemical properties of the experimental shortenings were compared with those of control shortenings in terms of fatty acid composition (FAC), iodine value (IV), slip melting point (SMP), solid fat content (SFC) and polymorphic forms. Unlike the imported commercial shortenings as reported by other studies and the control, experimental shortenings were trans-free. The SMP and SFC of experimental samples, except for the N2 sample, fell within the ranges of commercial and control shortenings. The IV was higher than those of domestic shortenings but lower when compared to imported and control shortenings. They were also observed to be beta tending even though a mixture of beta and beta' was observed in the samples after 3 months of storage. The shortenings were also used in the making of pound cake and sensory evaluation showed the good performance of high oleic sample as compared to the other shortenings.

  17. Layer-by-layer buildup of polysaccharide-containing films: Physico-chemical properties and mesenchymal stem cells adhesion.

    PubMed

    Kulikouskaya, Viktoryia I; Pinchuk, Sergei V; Hileuskaya, Kseniya S; Kraskouski, Aliaksandr N; Vasilevich, Irina B; Matievski, Kirill A; Agabekov, Vladimir E; Volotovski, Igor D

    2018-03-22

    Layer-by-Layer assembled polyelectrolyte films offer the opportunity to control cell attachment and behavior on solid surfaces. In the present study, multilayer films based on negatively charged biopolymers (pectin, dextran sulfate, carboxymethylcellulose) and positively charged polysaccharide chitosan or synthetic polyelectrolyte polyethyleneimine has been prepared and evaluated. Physico-chemical properties of the formed multilayer films, including their growth, morphology, wettability, stability, and mechanical properties, have been studied. We demonstrated that chitosan-containing films are characterized by the linear growth, the defect-free surface, and predominantly viscoelastic properties. When chitosan is substituted for the polyethyleneimine in the multilayer system, the properties of the formed films are significantly altered: the rigidity and surface roughness increases, the film growth acquires the exponential character. The multilayer films were subsequently used for culturing mesenchymal stem cells. It has been determined that stem cells effectively adhered to chitosan-containing films and formed on them the monolayer culture of fibroblast-like cells with high viability. Our results show that cell attachment is a complex process which is not only governed by the surface functionality because one of the key parameter effects on cell adhesion is the stiffness of polyelectrolyte multilayer films. We therefore propose our Layer-by-Layer films for applications in tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2018. © 2018 Wiley Periodicals, Inc.

  18. Characterizing a Full Spectrum of Physico-Chemical Properties of Ginsenosides Rb1 and Rg1 to Be Proposed as Standard Reference Materials

    PubMed Central

    Kim, Il-Woung; Hong, Hee-Do; Choi, Sang Yoon; Hwang, Da-Hye; Her, Youl; Kim, Si-Kwan

    2011-01-01

    Good manufacturing practice (GMP)-based quality control is an integral component of the common technical document, a formal documentation process for applying a marketing authorization holder to those countries where ginseng is classified as a medicine. In addition, authentication of the physico-chemical properties of ginsenoside reference materials, and qualitative and quantitative batch analytical data based on validated analytical procedures are prerequisites for certifying GMP. Therefore, the aim of this study was to propose an authentication process for isolated ginsenosides Rb1 and Rg1 as reference materials (RM) and for these compounds to be designated as RMs for ginseng preparations throughout the world. Ginsenoside Rb1 and Rg1 were isolated by Diaion HP-20 adsorption chromatography, silica gel flash chromatography, recrystallization, and preparative HPLC. HPLC fractions corresponding to those two ginsenosides were recrystallized in appropriate solvents for the analysis of physico-chemical properties. Documentation of the isolated ginsenosides was made according to the method proposed by Gaedcke and Steinhoff. The ginsenosides were subjected to analyses of their general characteristics, identification, purity, content quantitation, and mass balance tests. The isolated ginsenosides were proven to be a single compound when analyzed by three different HPLC systems. Also, the water content was found to be 0.940% for Rb1 and 0.485% for Rg1, meaning that the net mass balance for ginsenoside Rb1 and Rg1 were 99.060% and 99.515%, respectively. From these results, we could assess and propose a full spectrum of physicochemical properties for the ginsenosides Rb1 and Rg1 as standard reference materials for GMP-based quality control. PMID:23717096

  19. Physico-chemical properties, antioxidant activity and mineral contents of pineapple genotypes grown in china.

    PubMed

    Lu, Xin-Hua; Sun, De-Quan; Wu, Qing-Song; Liu, Sheng-Hui; Sun, Guang-Ming

    2014-06-23

    The fruit physico-chemical properties, antioxidant activity and mineral contents of 26 pineapple [Ananas comosus (L.) Merr.] genotypes grown in China were measured. The results showed great quantitative differences in the composition of these pineapple genotypes. Sucrose was the dominant sugar in all 26 genotypes, while citric acid was the principal organic acid. Potassium, calcium and magnesium were the major mineral constituents. The ascorbic acid (AsA) content ranged from 5.08 to 33.57 mg/100 g fresh weight (FW), while the total phenolic (TP) content varied from 31.48 to 77.55 mg gallic acid equivalents (GAE)/100 g FW. The two parameters in the predominant cultivars Comte de Paris and Smooth Cayenne were relative low. However, MD-2 indicated the highest AsA and TP contents (33.57 mg/100 g and 77.55 mg GAE/100 g FM, respectively), and it also showed the strongest antioxidant capacity 22.85 and 17.30 μmol TE/g FW using DPPH and TEAC methods, respectively. The antioxidant capacity of pineapple was correlated with the contents of phenolics, flavonoids and AsA. The present study provided important information for the further application of those pineapple genotypes.

  20. Complete physico-chemical treatment for coke plant effluents.

    PubMed

    Ghose, M K

    2002-03-01

    Naturally found coal is converted to coke which is suitable for metallurgical industries. Large quantities of liquid effluents produced contain a large amount of suspended solids, high COD, BOD, phenols, ammonia and other toxic substances which are causing serious pollution problem in the receiving water to which they are discharged. There are a large number of coke plants in the vicinity of Jharia Coal Field (JCF). Characteristics of the effluents have been evaluated. The present effluent treatment systems were found to be inadequate. Physico-chemical treatment has been considered as a suitable option for the treatment of coke plant effluents. Ammonia removal by synthetic zeolite, activated carbon for the removal of bacteria, viruses, refractory organics, etc. were utilized and the results are discussed. A scheme has been proposed for the complete physico-chemical treatment, which can be suitably adopted for the recycling, reuse and safe disposal of the treated effluent. Various unit process and unit operations involved in the treatment system have been discussed. The process may be useful on industrial scale at various sites.

  1. Physico-chemical analysis and antimicrobial potential of Apis dorsata, Apis mellifera and Ziziphus jujube honey samples from Pakistan

    PubMed Central

    Fahim, Hira; Dasti, Javid Iqbal; Ali, Ihsan; Ahmed, Safia; Nadeem, Muhammad

    2014-01-01

    Objective To evaluate physico-chemical properties and antimicrobial potential of indigenous honey samples against different reference strains including Escherichia coli ATCC 8739, Enterobacter aerogenes ATCC 13048, Pseudomonas aeroginosa ATCC 9027, Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 25923, Salmonella typhi ATCC 14028, Klebsiella pneumonia ATCC 13883, Aspergillus niger ATCC 16404, Rhizopus oligosporus PCSIR1, Candida albicans ATCC 14053 and Candida utilis ATCC 9950. Methods By using standard methods samples were evaluated for their antimicrobial properties including additive effect of starch and non-peroxidase activity, antioxidative properties (phenol contents, flavonoid contents, 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity). Prior to this evaluation, complete physico-chemical properties including pH, color, ash contents, protein contents, moisture contents, hydroxymethyl furfural contents, total sugar contents, reducing sugar and non-reducing sugar contents were analyzed. Results Relatively higher ash contents were found in the Siddar honey i.e. (0.590 0±0.033 6)% and small honey showed relatively higher protein contents i.e. (777.598±9.880) mg/kg. The moisture contents of tested honey samples ranged between 13.8%-16.6%, total sugar contents from 61.672%-72.420% and non-reducing sugar contents from 1.95%-3.93%. Presences of phenolic contents indicate higher antioxidant potential of these honey samples. All bacteria showed clear inhibition zones in response to tested honey samples whereas fungi and yeast showed inhibition at higher concentrations of these honey samples. For Escherichia coli, Bacillus subtilis, Salmonella typhi, Pseudomonas aeroginosa and Aspergillus niger, overall the small honey showed the higher activity than other honey samples. Conclusion Physico-chemical analysis of honey samples confirmed good quality of honey according to the standards set by European Union Commission and Codex Alimentarius Commission

  2. Assessing electronic cigarette emissions: linking physico-chemical properties to product brand, e-liquid flavoring additives, operational voltage and user puffing patterns.

    PubMed

    Zhao, Jiayuan; Nelson, Jordan; Dada, Oluwabunmi; Pyrgiotakis, Georgios; Kavouras, Ilias G; Demokritou, Philip

    2018-02-01

    Users of electronic cigarettes (e-cigs) are exposed to particles and other gaseous pollutants. However, major knowledge gaps on the physico-chemical properties of such exposures and contradictory data in published literature prohibit health risk assessment. Here, the effects of product brand, type, e-liquid flavoring additives, operational voltage, and user puffing patterns on emissions were systematically assessed using a recently developed, versatile, e-cig exposure generation platform and state-of-the-art analytical methods. Parameters of interest in this systematic evaluation included two brands (A and B), three flavors (tobacco, menthol, and fruit), three types of e-cigs (disposable, pre-filled, and refillable tanks), two puffing protocols (4 and 2 s/puff), and four operational voltages (2.2-5.7 V). Particles were generated at a high number concentration (10 6 -10 7 particles/cm 3 ). The particle size distribution was bi-modal (∼200 nm and 1 µm). Furthermore, organic species (humectants propylene glycol and glycerin, nicotine) that were present in e-liquid and trace metals (potassium and sodium) that were present on e-cig heating coil were also released into the emission. In addition, combustion-related byproducts, such as benzene and toluene, were also detected in the range of 100-38,000 ppbv/puff. Parametric analyzes performed in this study show the importance of e-cig brand, type, flavor additives, user puffing pattern (duration and frequency), and voltage on physico-chemical properties of emissions. This observed influence is indicative of the complexity associated with the toxicological screening of emissions from e-cigs and needs to be taken into consideration.

  3. Effects of the addition of blood plasma proteins on physico-chemical properties of emulsion-type pork sausage during cold storage.

    PubMed

    Kim, Sungho; Jin, Sangkeun; Choi, Jungseok

    2017-10-01

    Most slaughter blood is discarded, resulting in problems related to costs for wastewater disposal and environmental pollution. However, animal blood contains various proteins such as albumin, globulin and globin and can be used as a natural emulsifier, stabiliser and colour additive. Thus, this study was carried out to investigate the effect of blood plasma proteins on the physico-chemical properties of emulsion-type pork sausages stored at 4°C over 5 weeks. The emulsion-type pork sausages with plasma powders had higher pH than the other treatments during week 5, and higher shear force than the control (P < 0.05). The lightness values of the sausages with plasma powders were lower than the other treatments, whereas the redness and yellowness values were similar with those of the others. The sausages with plasma powders (cattle plasma powder and commercial pig plasma powder) had respectively increased texture properties. In the sensory evaluation, all proteins did not have significant impact on sensory of pork sausages. The results confirmed that plasma protein powders can be considered as a binder for the production of excellent meat products compared to other binders. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Formulation design of oral pediatric Acetazolamide suspension: dose uniformity and physico-chemical stability study.

    PubMed

    Santoveña, Ana; Suárez-González, Javier; Martín-Rodríguez, Cristina; Fariña, José B

    2017-03-01

    The formulation of an active pharmaceutical ingredient (API) as oral solution or suspension in pediatrics is a habitual practice, due to the non-existence of many commercialized medicines in pediatric doses. It is also the simplest way to prepare and administer them to this vulnerable population. The design of a formulation that assures the dose and the system stability depends on the physico-chemical properties of the API. In this study, we formulate a class IV API, Acetazolamide (AZM) as suspension for oral administration to pediatric population. The suspension must comply attributes of quality, safety and efficacy for this route of administration. We use simple compounding procedures, as well as fewer pure excipients, as recommended for children. Mass and uniformity content assays and physical and chemical stability studies were performed. To quantify the API an UPLC method was used. We verified the physico-chemical stability of the suspensions and that they passed the mass test of the European Pharmacopeia (EP), but not the dose uniformity test. This reveals that AZM must be formulated as liquid forms with a more complex system of excipients (not usually indicated in pediatrics), or otherwise solid forms capable of assuring uniformity of mass and dose for every dosage unit.

  5. Effect of Caesalpinia sappan L. extract on physico-chemical properties of emulsion-type pork sausage during cold storage.

    PubMed

    Jin, Sang-Keun; Ha, So-Ra; Choi, Jung-Seok

    2015-12-01

    This study was performed to investigate the effect of extract from heart wood of Caesalpinia sappan on the physico-chemical properties and to find the appropriate addition level in the emulsion-type pork sausage during cold storage. The pH of treatments with C. sappan extract was significantly lower than control and T1 during cold storage periods (P<0.05). Also, the reduction of moisture content, and the increase of cooking loss significantly occurred by the addition of 0.2% C. sappan extract. Also, the texture properties and sensory of sausages containing C. sappan extract were decreased compared to control. Inclusion of the C. sappan extract in sausages resulted in lower lightness and higher yellowness, chroma and hue values. However, the antioxidant, antimicrobial activity, and volatile basic nitrogen in the emulsion-type pork sausages with C. sappan extract showed increased quality characteristics during cold storage. In conclusion, the proper addition level of C. sappan extract was 0.1% on the processing of emulsion-type pork sausage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Physico-chemical characterisation of material fractions in residual and source-segregated household waste in Denmark.

    PubMed

    Götze, R; Pivnenko, K; Boldrin, A; Scheutz, C; Astrup, T Fruergaard

    2016-08-01

    Physico-chemical waste composition data are paramount for the assessment and planning of waste management systems. However, the applicability of data is limited by the regional, temporal and technical scope of waste characterisation studies. As Danish and European legislation aims for higher recycling rates evaluation of source-segregation and recycling chains gain importance. This paper provides a consistent up-to-date dataset for 74 physico-chemical parameters in 49 material fractions from residual and 24 material fractions from source-segregated Danish household waste. Significant differences in the physico-chemical properties of residual and source-segregated waste fractions were found for many parameters related to organic matter, but also for elements of environmental concern. Considerable differences in potentially toxic metal concentrations between the individual recyclable fractions within one material type were observed. This indicates that careful planning and performance evaluation of recycling schemes are important to ensure a high quality of collected recyclables. Rare earth elements (REE) were quantified in all waste fractions analysed, with the highest concentrations of REE found in fractions with high content of mineral raw materials, soil materials and dust. The observed REE concentrations represent the background concentration level in non-hazardous waste materials that may serve as a reference point for future investigations related to hazardous waste management. The detailed dataset provided here can be used for assessments of waste management solutions in Denmark and for the evaluation of the quality of recyclable materials in waste. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Botanical discrimination of Greek unifloral honeys with physico-chemical and chemometric analyses.

    PubMed

    Karabagias, Ioannis K; Badeka, Anastasia V; Kontakos, Stavros; Karabournioti, Sofia; Kontominas, Michael G

    2014-12-15

    The aim of the present study was to investigate the possibility of characterisation and classification of Greek unifloral honeys (pine, thyme, fir and orange blossom) according to botanical origin using volatile compounds, conventional physico-chemical parameters and chemometric analyses (MANOVA and Linear Discriminant Analysis). For this purpose, 119 honey samples were collected during the harvesting period 2011 from 14 different regions in Greece known to produce unifloral honey of good quality. Physico-chemical analysis included the identification and semi quantification of fifty five volatile compounds performed by Headspace Solid Phase Microextraction coupled to gas chromatography/mass spectroscopy and the determination of conventional quality parameters such as pH, free, lactonic, total acidity, electrical conductivity, moisture, ash, lactonic/free acidity ratio and colour parameters L, a, b. Results showed that using 40 diverse variables (30 volatile compounds of different classes and 10 physico-chemical parameters) the honey samples were satisfactorily classified according to botanical origin using volatile compounds (84.0% correct prediction), physicochemical parameters (97.5% correct prediction), and the combination of both (95.8% correct prediction) indicating that multi element analysis comprises a powerful tool for honey discrimination purposes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Effects of rice bran on sensory and physico-chemical properties of emulsified pork meatballs.

    PubMed

    Huang, S C; Shiau, C Y; Liu, T E; Chu, C L; Hwang, D F

    2005-08-01

    Four kinds of bran, which are milled from important rice cultivators in Taiwan, have high contents of dietary fiber, fat and protein. The use of rice bran in Kung-wan, an emulsified pork meatball, was investigated. It was found that protein and fat contents, and white index of meatballs decreased as the amount of bran increased. A texture profile analysis (TPA) also indicated the hardness, gumminess and chewiness of the Kung-wan decreased. The sensory scores of taste, texture and overall acceptability of meatballs with less than 10% added bran showed no significant difference from those for meatballs without bran. However, the added amount of 15% enriched meatballs resulted in inferior sensory scores. The bran's particle size profoundly affected the sensory and physico-chemical properties of the meat products. Meatballs enriched with smaller bran particles possessed higher TPA indices and sensory scores than those added with larger ones. No significant differences in proximate composition, cooking yield, color and sensory quality were found among emulsified meatballs enriched with four different kinds of bran. Conclusively, the suitable amount of rice bran that should be added to emulsified pork meatballs was less than 10% and a smaller particle size would result in better quality.

  9. A photochemical crosslinking technology for tissue engineering: enhancement of the physico-chemical properties of collagen-based scaffolds

    NASA Astrophysics Data System (ADS)

    Chan, Barbara P.

    2005-04-01

    Collagen gel is a natural biomaterial commonly used in tissue engineering because of its close resemblance to nature, negligible immunogenecity and excellent biocompatibility. However, unprocessed collagen gel is mechanically weak, highly water binding and vulnerable to chemical and enzymatic attacks that limits its use in tissue engineering in particular tissues for weight-bearing purposes. The current project aimed to strengthen and stabilize collagen scaffolds using a photochemical crosslinking technique. Photochemical crosslinking is rapid, efficient, non-thermal and does not involve toxic chemicals, comparing with other crosslinking methods such as glutaraldehyde and gamma irradiation. Collagen scaffolds were fabricated using rat-tail tendon collagen. An argon laser was used to process the collagen gel after equilibrating with a photosensitizing reagent. Scanning electronic microscope was used to characterize the surface and cross-sectional morphology of the membranes. Physico-chemical properties of the collagen scaffolds such as water-binding capacity, mechanical properties and thermostability were studied. Photochemical crosslinking significantly reduced the water-binding capacity, a parameter inversely proportional to the extent of crosslinking, of collagen scaffolds. Photochemical crosslinking also significantly increased the ultimate stress and tangent modulus at 90% of the rupture strain of the collagen scaffolds. Differential scanning calorimetry analysis showed a significantly higher shrinkage temperature and absence of the denaturation peak during the thermoscan comparing with the controls. This means greater thermostability in the photochemically crosslinked collagen scaffolds. This study demonstrates that the photochemical crosslinking technology is able to enhance the physicochemical propterties of collagen scaffolds by strengthening, stabilizing and controlling the swelling ratio of the collagen scaffolds so as to enable their use for tissue

  10. Application of new insoluble dietary fibres from triticale as supplement in yoghurt - effects on physico-chemical, rheological and quality properties.

    PubMed

    Miocinovic, Jelena; Tomic, Nikola; Dojnov, Biljana; Tomasevic, Igor; Stojanovic, Sanja; Djekic, Ilija; Vujcic, Zoran

    2018-03-01

    The need to increase the daily intake of dietary fibres opens a new chapter in the research of functional foods enriched with fibres. The potential application of an innovative product - insoluble dietary fibres from triticale in yoghurts - was deployed by characterising their food application and evaluating physico-chemical, rheological and sensory properties and was the aim of this research. Detailed characterisations of these fibres are presented for the first time and showed very good hydration properties, optimal pH (slightly acidic), optimal chemical composition, high antioxidant capacity which was proven by phenolics contents. Besides, these fibres showed negligible calorific value, with no phytates and high antioxidant capacity, mainly from ferulic acid. Therefore they could be successfully added to yoghurt. Enrichment of yoghurt having different milk fat content (1.5 and 2.8% w/w) with triticale insoluble fibre (1.5% and 3.0% w/w) significantly influenced the syneresis level, its apparent viscosity, yield stress and thixotropic behaviour. The overall sensory quality scores indicated that yoghurt enriched with 1.5% triticale insoluble fibres was recognised as 'excellent' and had enhanced antioxidant activity. Insoluble triticale fibre could therefore be used as a supplement to produce functional yoghurt. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. Improved ADM1 model for anaerobic digestion process considering physico-chemical reactions.

    PubMed

    Zhang, Yang; Piccard, Sarah; Zhou, Wen

    2015-11-01

    The "Anaerobic Digestion Model No. 1" (ADM1) was modified in the study by improving the bio-chemical framework and integrating a more detailed physico-chemical framework. Inorganic carbon and nitrogen balance terms were introduced to resolve the discrepancies in the original bio-chemical framework between the carbon and nitrogen contents in the degraders and substrates. More inorganic components and solids precipitation processes were included in the physico-chemical framework of ADM1. The modified ADM1 was validated with the experimental data and used to investigate the effects of calcium ions, magnesium ions, inorganic phosphorus and inorganic nitrogen on anaerobic digestion in batch reactor. It was found that the entire anaerobic digestion process might exist an optimal initial concentration of inorganic nitrogen for methane gas production in the presence of calcium ions, magnesium ions and inorganic phosphorus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Physiological and physico-chemical characterization of dietary fibre from the green seaweed Ulva fasciata Delile.

    PubMed

    Carvalho, A F U; Portela, M C C; Sousa, M B; Martins, F S; Rocha, F C; Farias, D F; Feitosa, J P A

    2009-08-01

    This work aims to assess the potential of the green seaweed Ulva fasciata Delile as an alternative source of dietary fibre (DF). Total DF content was determined, some of its physico-chemical properties described and the physiological effects of U. fasciata meal on rats fed a hypercholesterolemic diet were investigated. U. fasciata may be considered a potential alternative source of DF with a total content of about 400 g.kg-1 (dry basis) and interesting physico-chemical properties: water retention capacity of 8.74 g/water.g-1 dry sample (seaweed meal) and 0.90 (seaweed carbohydrate extract), lipid adsorption capacity of 4.52 g/oil.g-1 dry sample (seaweed meal) and 5.70 (seaweed carbohydrate extract), intrinsic viscosity of 2.4 dl.g-1 (seaweed carbohydrate extract) and cation exchange capacity of 3.51 Eq.kg-1 (seaweed carbohydrate extract). The diet containing seaweed meal was able to keep rats' total cholesterol (TC) down without causing any undesirable increase in LDL-C fraction. No evidence of toxic and/or antinutritional components in the seaweed meal was detected. Rats showed a fecal volume much greater (13 g) than that fed on cellulose diet (7 g) (p < 0.05). These properties confer on the seaweed the potential to be used in food technology for the acquisition of low-calorie food and might be important in body weight control, reduction of blood TC and LDL-C as well as in prevention of gastrointestinal diseases.

  13. Statistical Analysis of Crystallization Database Links Protein Physico-Chemical Features with Crystallization Mechanisms

    PubMed Central

    Fusco, Diana; Barnum, Timothy J.; Bruno, Andrew E.; Luft, Joseph R.; Snell, Edward H.; Mukherjee, Sayan; Charbonneau, Patrick

    2014-01-01

    X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical understanding remains elusive because of the large number of variables involved, hence little guidance is available to systematically identify solution conditions that promote crystallization. To help determine relationships between macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182 proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization, the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide macromolecular crystallization toward a more rational basis. PMID:24988076

  14. Statistical analysis of crystallization database links protein physico-chemical features with crystallization mechanisms.

    PubMed

    Fusco, Diana; Barnum, Timothy J; Bruno, Andrew E; Luft, Joseph R; Snell, Edward H; Mukherjee, Sayan; Charbonneau, Patrick

    2014-01-01

    X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better physico-chemical understanding remains elusive because of the large number of variables involved, hence little guidance is available to systematically identify solution conditions that promote crystallization. To help determine relationships between macromolecular properties and their crystallization propensity, we have trained statistical models on samples for 182 proteins supplied by the Northeast Structural Genomics consortium. Gaussian processes, which capture trends beyond the reach of linear statistical models, distinguish between two main physico-chemical mechanisms driving crystallization. One is characterized by low levels of side chain entropy and has been extensively reported in the literature. The other identifies specific electrostatic interactions not previously described in the crystallization context. Because evidence for two distinct mechanisms can be gleaned both from crystal contacts and from solution conditions leading to successful crystallization, the model offers future avenues for optimizing crystallization screens based on partial structural information. The availability of crystallization data coupled with structural outcomes analyzed through state-of-the-art statistical models may thus guide macromolecular crystallization toward a more rational basis.

  15. Correlating P-wave Velocity with the Physico-Mechanical Properties of Different Rocks

    NASA Astrophysics Data System (ADS)

    Khandelwal, Manoj

    2013-04-01

    In mining and civil engineering projects, physico-mechanical properties of the rock affect both the project design and the construction operation. Determination of various physico-mechanical properties of rocks is expensive and time consuming, and sometimes it is very difficult to get cores to perform direct tests to evaluate the rock mass. The purpose of this work is to investigate the relationships between the different physico-mechanical properties of the various rock types with the P-wave velocity. Measurement of P-wave velocity is relatively cheap, non-destructive and easy to carry out. In this study, representative rock mass samples of igneous, sedimentary, and metamorphic rocks were collected from the different locations of India to obtain an empirical relation between P-wave velocity and uniaxial compressive strength, tensile strength, punch shear, density, slake durability index, Young's modulus, Poisson's ratio, impact strength index and Schmidt hammer rebound number. A very strong correlation was found between the P-wave velocity and different physico-mechanical properties of various rock types with very high coefficients of determination. To check the sensitivity of the empirical equations, Students t test was also performed, which confirmed the validity of the proposed correlations.

  16. Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles

    PubMed Central

    Pfeiffer, Christian; Rehbock, Christoph; Hühn, Dominik; Carrillo-Carrion, Carolina; de Aberasturi, Dorleta Jimenez; Merk, Vivian; Barcikowski, Stephan; Parak, Wolfgang J.

    2014-01-01

    The physico-chemical properties of colloidal nanoparticles (NPs) are influenced by their local environment, as, in turn, the local environment influences the physico-chemical properties of the NPs. In other words, the local environment around NPs has a profound impact on the NPs, and it is different from bulk due to interaction with the NP surface. So far, this important effect has not been addressed in a comprehensive way in the literature. The vicinity of NPs can be sensitively influenced by local ions and ligands, with effects already occurring at extremely low concentrations. NPs in the Hückel regime are more sensitive to fluctuations in the ionic environment, because of a larger Debye length. The local ion concentration hereby affects the colloidal stability of the NPs, as it is different from bulk owing to Debye Hückel screening caused by the charge of the NPs. This can have subtle effects, now caused by the environment to the performance of the NP, such as for example a buffering effect caused by surface reaction on ultrapure ligand-free nanogold, a size quenching effect in the presence of specific ions and a significant impact on fluorophore-labelled NPs acting as ion sensors. Thus, the aim of this review is to clarify and give an unifying view of the complex interplay between the NP's surface with their nanoenvironment. PMID:24759541

  17. Xanthine oxidase inhibitors beyond allopurinol and febuxostat; an overview and selection of potential leads based on in silico calculated physico-chemical properties, predicted pharmacokinetics and toxicity.

    PubMed

    Šmelcerović, Andrija; Tomović, Katarina; Šmelcerović, Žaklina; Petronijević, Živomir; Kocić, Gordana; Tomašič, Tihomir; Jakopin, Žiga; Anderluh, Marko

    2017-07-28

    Xanthine oxidase (XO), a versatile metalloflavoprotein enzyme, catalyzes the oxidative hydroxylation of hypoxanthine and xanthine to uric acid in purine catabolism while simultaneously producing reactive oxygen species. Both lead to the gout-causing hyperuricemia and oxidative damage of the tissues where overactivity of XO is present. Over the past years, significant progress and efforts towards the discovery and development of new XO inhibitors have been made and we believe that not only experts in the field, but also general readership would benefit from a review that addresses this topic. Accordingly, the aim of this article was to overview and select the most potent recently reported XO inhibitors and to compare their structures, mechanisms of action, potency and effectiveness of their inhibitory activity, in silico calculated physico-chemical properties as well as predicted pharmacokinetics and toxicity. Derivatives of imidazole, 1,3-thiazole and pyrimidine proved to be more potent than febuxostat while also displaying/possessing favorable predicted physico-chemical, pharmacokinetic and toxicological properties. Although being structurally similar to febuxostat, these optimized inhibitors bear some structural freshness and could be adopted as hits for hit-to-lead development and further evaluation by in vivo studies towards novel drug candidates, and represent valuable model structures for design of novel XO inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Alteration of Asian lacquer: in-depth insight using a physico-chemical multiscale approach.

    PubMed

    Le Hô, Anne-Solenn; Duhamel, Chloé; Daher, Céline; Bellot-Gurlet, Ludovic; Paris, Céline; Regert, Martine; Sablier, Michel; André, Guilhem; Desroches, Jean-Paul; Dumas, Paul

    2013-10-07

    Oriental lacquer has been used in Asian countries for thousands of years as a durable and aesthetic coating material for its adhesive, consolidating, protective and decorative properties. Although these objects are made from an unusual material in Occident, Western museum collections host many lacquerwares. Curators, restorers and scientists are daily confronted with questions of their conservation and their alteration. The characterization of their conservation state is usually assessed through visual observations. However deterioration often starts at the microscopic level and cannot be detected by a simple visual inspection. Often, ageing and deterioration of artworks are connected to physical, mechanical and chemical transformations. Thus new insight into alteration of lacquer involves the monitoring of macro-, microscopic and molecular modifications, and this can be assessed from physico-chemical measurements. Non-invasive (microtopography and Scanning Electron Microscopy - SEM) and micro-invasive (infrared micro-spectroscopy using a synchrotron source - SR-μFTIR) investigations were performed to study the degradation processes of lacquers and evaluate their level of alteration. In particular, spectral decomposition and fitting procedure were performed in the 1820-1520 cm(-1) region to follow the shift of the C=O and C=C band positions during lacquer ageing. The present work proves the potential of this physico-chemical approach in conservation studies of lacquers and in the quantification of the state of alteration. It evidences chemical phenomena of alteration such as oxidation and decomposition of a lacquer polymeric network. It also demonstrates for the first time the degradation front of artificially aged lacquer and the chemical imaging of a more than 2000 years old archaeological lacquer by using SR-μFTIR.

  19. Improving the physico-chemical and sensory characteristics of camel meat burger patties using ginger extract and papain.

    PubMed

    Abdel-Naeem, Heba H S; Mohamed, Hussein M H

    2016-08-01

    The objective of the current study was to include tenderizing agents in the formulation of camel meat burger patties to improve the physico-chemical and sensory characteristics of the product. Camel meat burger patties were processed with addition of ginger extract (7%), papain (0.01%) and mixture of ginger extract (5%) and papain (0.005%) in addition to control. Addition of ginger, papain and their mixture resulted in significant (P<0.05) increase of the collagen solubility and sensory scores (juiciness, tenderness and overall acceptability) with significant (P<0.05) reduction of the shear force values. Ginger extract resulted in extensive fragmentation of myofibrils; however, papain extract caused noticeable destructive effect on connective tissue. Moreover, ginger and papain resulted in improvement of the lipid stability of treated burger patties during storage. Therefore, addition of ginger extract and papain powder during formulation of camel burger patties can improve their physico-chemical and sensory properties. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Stability, antimicrobial activity, and effect of nisin on the physico-chemical properties of fruit juices.

    PubMed

    de Oliveira Junior, Adelson Alves; de Araújo Couto, Hyrla Grazielle Silva; Barbosa, Ana Andréa Teixeira; Carnelossi, Marcelo Augusto Guitierrez; de Moura, Tatiana Rodrigues

    2015-10-15

    Heat processing is the most commonly used hurdle for inactivating microorganisms in fruit juices. However, this preservation method could interfere with the organoleptic characteristics of the product. Alternative methods have been proposed and bacteriocins such as nisin are potential candidates. However, the approval of bacteriocins as food additives is limited, especially in foods from vegetal origin. We aimed to verify the stability, the effect on physico-chemical properties, and the antimicrobial activity of nisin in different fruit juices. Nisin remained stable in fruit juices (cashew, soursop, peach, mango, passion fruit, orange, guava, and cupuassu) for at least 30 days at room or refrigerated temperature and did not cause any significant alterations in the physico-chemical characteristics of the juices. Besides, nisin favored the preservation of vitamin C content in juices. The antimicrobial activity of nisin was tested against Alicyclobacillus acidoterrestris, Bacillus cereus, Staphylococcus aureus and Listeria monocytogenes in cashew, soursop, peach, and mango juices. Nisin caused a 4-log reduction in viable cells of A. acidoterrestris in soursop, peach, and mango juices after 8h of incubation, and no viable cells were detected in cashew juices. After 24h of incubation in the presence of nisin, no viable cells were detected, independently of the juices. To S. aureus, at 24h of incubation in the presence of nisin, viable cells were only detected in mango juices, representing a 4-log decrease as compared with the control treatment. The number of viable cells of B. cereus at 24h of incubation in the presence of nisin represented at least a 4-log decrease compared to the control treatment. When the antimicrobial activity of nisin was tested against L. monocytogenes in cashew and soursop juices, no reduction in the viable cell number was observed compared to the control treatment after 24h of incubation. Viable cells were four and six times less than in the

  1. Physico-chemical, microstructural and rheological properties of camel-milk yogurt as enhanced by microbial transglutaminase.

    PubMed

    Abou-Soliman, Nagwa H I; Sakr, Sally S; Awad, Sameh

    2017-05-01

    Camel milk produces watery texture when it is processed to yogurt. Despite the extensive studies on microbial transglutaminase (MTGase) in dairy research, the effect of this enzyme on the properties of yogurt made from camel milk has not been studied. This study aims to investigate the impact of MTGase with and without bovine skimmed milk powder (SMP), whey protein concentrate (WPC),or β-lactoglobulin (β-lg) on physico-chemical, rheological, microstructural, and sensory properties of camel-milk yogurt during 15 days of storage period. MTGase treatment markedly reduced the fermentation time of unfortified and SMP-fortified camel milk. The fortification of camel milk without MTGase failed to give set-type yogurt. The treatment of unfortified milk with MTGase enormously improved the viscosity and the body of yogurt samples. Fortification of MTGase-treated milk impacted positively on the viscosity, the water holding capacity, and the density of the protein matrix in the gel microstructure, which were influenced by the type of dairy ingredients. All MTGase-treated yogurts differed from each other in hardness and adhesiveness values. Electrophoresis results showed that the susceptibility of the individual milk proteins to MTGase varied, and there were differences among the treatments toward the enzyme. SMP-fortified yogurt was the most accepted product. Generally, the addition of MTGase preparation at a concentration of 0.4%, simultaneously with starter culture, to fortified camel milk was considered an effective tool to solve the challenges of producing set-type yogurt from this milk.

  2. Evaluation of various physico-chemical properties of Hibiscus sabdariffa and L. casei incorporated probiotic yoghurt.

    PubMed

    Rasdhari, M; Parekh, T; Dave, N; Patel, V; Subhash, R

    2008-09-01

    The present investigation was carried out to examine the effect of Hibiscus sabdariffa Calyx extract on the physico-chemical properties, sensory attributes, texture and microbial analysis of L. casei incorporated in probiotic yoghurt after manufacture and during storage. Incorporation of Hibiscus sabdariffa Calyx extract into the probiotic yoghurt resulted into decrease in coagulation time by 25 min. The pH ranged from 4.39 to 4.59, TA 0.81 to 1.14%, moisture 3.05 to 3.37 g%, syneresis 18.85 to 24.90 mL/50 g of sample, % inhibition 12.32 to 59.43, TS 21.27 to 24.90 g% and beta-galactosidase activity 1.041 to 3.277. The protein content ranged between 4.11 and 4.14 g% while the fat content ranged between 3.43 and 3.49 g%. No major changes in sensory evaluation were observed on the day of manufacture and during storage for 7 days. Sabdariffa added yoghurt showed a higher score in almost all sensory attributes. Microbial analysis showed a total plate count ranging from 1.8 x 10(4) to 1.85 x 10(7) cfu mL(-1). Yeast and mold counts were negligible in the Sabdariffa yoghurts. Thus the study concludes that incorporation of Hibiscus sabdariffa extract in yoghurt improved the total antioxidant property, organoleptic qualities and decreased the exudation of whey proteins (Syneresis). Thus, Hibiscus sabdariffa Calyces has beneficial influence on the quality of L. casei incorporated probiotic yoghurt.

  3. Physico-chemical foundations underpinning microarray and next-generation sequencing experiments

    PubMed Central

    Harrison, Andrew; Binder, Hans; Buhot, Arnaud; Burden, Conrad J.; Carlon, Enrico; Gibas, Cynthia; Gamble, Lara J.; Halperin, Avraham; Hooyberghs, Jef; Kreil, David P.; Levicky, Rastislav; Noble, Peter A.; Ott, Albrecht; Pettitt, B. Montgomery; Tautz, Diethard; Pozhitkov, Alexander E.

    2013-01-01

    Hybridization of nucleic acids on solid surfaces is a key process involved in high-throughput technologies such as microarrays and, in some cases, next-generation sequencing (NGS). A physical understanding of the hybridization process helps to determine the accuracy of these technologies. The goal of a widespread research program is to develop reliable transformations between the raw signals reported by the technologies and individual molecular concentrations from an ensemble of nucleic acids. This research has inputs from many areas, from bioinformatics and biostatistics, to theoretical and experimental biochemistry and biophysics, to computer simulations. A group of leading researchers met in Ploen Germany in 2011 to discuss present knowledge and limitations of our physico-chemical understanding of high-throughput nucleic acid technologies. This meeting inspired us to write this summary, which provides an overview of the state-of-the-art approaches based on physico-chemical foundation to modeling of the nucleic acids hybridization process on solid surfaces. In addition, practical application of current knowledge is emphasized. PMID:23307556

  4. A survey of some regenerative physico-chemical life support technology

    NASA Technical Reports Server (NTRS)

    Wydeven, Theodore

    1988-01-01

    To date, manned spaceflight has used the relatively simple support methodology of bringing all the necessary water, oxygen, and food for the duration of the mission, and collecting and storing waste products for return to Earth. This is referred to as an open system. It was recognized early, as manned missions became longer and crew size increased, that the weight, volume, and transportation penalties of storing or routinely resupplying consumables would at some point become too expensive. Since the early 1960's regenerative ECLSS technology has been under development, and there now exists a foundation in both systems definition and subsystem technology to support long-duration manned missions. In many cases this development has reached the engineering prototype stage for physico-chemical subsystems and in this article some of these subsystems are described. Emphasis is placed on physico-chemical waste conversion and related processes which provide sustenance and not on environmental factors or subsystems, e.g., temperature and humidity control, spacecraft architecture, lighting, etc.

  5. Correlation between some thermo-mechanical and physico-chemical properties in multi-component glasses of Se-Te-Sn-Cd system

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Mehta, Neeraj

    2017-06-01

    The glass transition phenomenon is guided by the swift cooling of a melt (glass-forming liquid). Consequently, the glass as a final product consists of a considerable number of micro-voids having the size of the order of atomic and/or molecular sizes. The model of free volume fluctuation helps in describing the diverse physico-chemical properties of amorphous materials (like glasses and polymers). This theory is based on the fraction of fluctuation free frozen at the glass transition temperature and it forms a basis for determination of various significant thermo-mechanical properties. In the present work, Vickers hardness test method is employed that provides useful information concerning the mechanical behavior of brittle solids. The present work emphasizes the results of micro-indentation measurements on recently synthesized novel Se78- x Te20Sn2Cd x glassy system. Basic thermo-mechanical parameters such as micro-hardness, volume ( V h), formation energy ( E h) of micro-voids in the glassy network and modulus of elasticity ( E) have been determined and their variation with glass composition has been investigated.

  6. Optimization of physico-chemical properties of gelatin extracted from fish skin of rainbow trout (Onchorhynchus mykiss).

    PubMed

    Tabarestani, H Shahiri; Maghsoudlou, Y; Motamedzadegan, A; Mahoonak, A R Sadeghi

    2010-08-01

    Physico-chemical properties of gelatin extracted from rainbow trout (Onchorhynchus mykiss) skin were optimized using response surface methodology (RSM). Central rotatable composite design was applied to study the combined effects of NaOH concentration (0.01-0.21 N), acetic acid concentration (0.01-0.21 N) and pre-treatment time (1-3h) on yield, molecular weight distribution, gel strength, viscosity and melting point of gelatin. Regression models were developed to predict the variables. Predict values of multiple response at optimal condition were that yield=9.36%, alpha(1)/alpha(2) chain ratio=1.76, beta chain percent=32.81, gel strength=459 g, viscosity=3.2 mPa s and melting point=20.4 degrees C. The optimal condition was obtained using 0.19 N NaOH and 0.121 N acetic acid for 3h. The results showed that the concentration of H(+) during pre-treatment had significant effect on molecular weight distribution, melting point and gel strength. The concentration of OH(-) had significant effect on viscosity and for extraction yield, pretreatment time was the critical factor. (c) 2010 Elsevier Ltd. All rights reserved.

  7. Effect of cationic lipid composition on properties of oligonucleotide/emulsion complexes: Physico-chemical and release studies.

    PubMed

    Martini, Erico; Fattal, Elias; de Oliveira, Mônica Cristina; Teixeira, Helder

    2008-03-20

    This paper describes the influence of cationic lipid composition on physico-chemical properties of complexes formed between oligonucleotides (ON) and cationic emulsions. Formulations containing medium chain triglycerides, egg lecithin, increasing amounts of either oleylamine (OA) or 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP), and water were prepared by a spontaneous emulsification procedure. ON adsorption on emulsions was evidenced by the inversion of the zeta-potential, the increase in droplet size, and the morphology of the oil droplet examined through transmission electron microscopy. Adsorption isotherms showed a higher amount of ON adsorbed on emulsions containing DOTAP when compared to emulsions containing OA. In a final step, the role of the main parameters, which may in fact influence the ON release rate from emulsions, was investigated. ON were progressively released from emulsions with an increase in dilution ratio and remained quite similar for both OA and DOTAP emulsions over time. Conversely, the effect of the cationic lipid composition was observed upon increasing the charge ratio of complexes. ON release at a same charge ratio was lower from emulsions containing DOTAP (bearing dioleyl chains) than from those containing OA (bearing monoleyl chain).

  8. Geochemistry Of Lead In Contaminated Soils: Effects Of Soil Physico-Chemical Properties

    NASA Astrophysics Data System (ADS)

    Saminathan, S.; Sarkar, D.; Datta, R.; Andra, S. P.

    2006-05-01

    Lead (Pb) is an environmental contaminant with proven human health effects. When assessing human health risks associated with Pb, one of the most common exposure pathways typically evaluated is soil ingestion by children. However, bioaccessibility of Pb primarily depends on the solubility and hence, the geochemical form of Pb, which in turn is a function of site specific soil chemistry. Certain fractions of ingested soil-Pb may not dissociate during digestion in the gastro-intestinal tract, and hence, may not be available for transport across the intestinal membrane. Therefore, this study is being currently performed to assess the geochemical forms and bioaccessibility of Pb in soils with varying physico-chemical properties. In order to elucidate the level of Pb that can be ingested and assimilated by humans, an in-vitro model that simulates the physiological conditions of the human digestive system has been developed and is being used in this study. Four different types of soils from the Immokalee (an acid sandy soil with minimal Pb retention potential), Millhopper (a sandy loam with high Fe/Al content), Pahokee (a muck soil with more than 80% soil organic matter), and Tobosa series (an alkaline soil with high clay content) were artificially contaminated with Pb as lead nitrate at the rate equivalent to 0, 400, 800, and 1200 mg/kg dry soil. Analysis of soils by a sequential extraction method at time zero (immediately after spiking) showed that Immokalee and Millhopper soils had the highest amount of Pb in exchangeable form, whereas Pahokee and Tobosa soils had higher percentages of carbonate-bound and Fe/Al-bound Pb. The results of in-vitro experiment at time zero showed that majority of Pb was dissolved in the acidic stomach environment in Immokalee, Millhopper, and Tobosa, whereas it was in the intestinal phase in Pahokee soils. Because the soil system is not in equilibrium at time zero, the effect of soil properties on Pb geochemistry is not clear as yet. The

  9. Life cycle impact assessment modeling for particulate matter: A new approach based on physico-chemical particle properties.

    PubMed

    Notter, Dominic A

    2015-09-01

    Particulate matter (PM) causes severe damage to human health globally. Airborne PM is a mixture of solid and liquid droplets suspended in air. It consists of organic and inorganic components, and the particles of concern range in size from a few nanometers to approximately 10μm. The complexity of PM is considered to be the reason for the poor understanding of PM and may also be the reason why PM in environmental impact assessment is poorly defined. Currently, life cycle impact assessment is unable to differentiate highly toxic soot particles from relatively harmless sea salt. The aim of this article is to present a new impact assessment for PM where the impact of PM is modeled based on particle physico-chemical properties. With the new method, 2781 characterization factors that account for particle mass, particle number concentration, particle size, chemical composition and solubility were calculated. Because particle sizes vary over four orders of magnitudes, a sound assessment of PM requires that the exposure model includes deposition of particles in the lungs and that the fate model includes coagulation as a removal mechanism for ultrafine particles. The effects model combines effects from particle size, solubility and chemical composition. The first results from case studies suggest that PM that stems from emissions generally assumed to be highly toxic (e.g. biomass combustion and fossil fuel combustion) might lead to results that are similar compared with an assessment of PM using established methods. However, if harmless PM emissions are emitted, established methods enormously overestimate the damage. The new impact assessment allows a high resolution of the damage allocatable to different size fractions or chemical components. This feature supports a more efficient optimization of processes and products when combating air pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Comparison of selected physico-chemical properties of calcium alginate films prepared by two different methods.

    PubMed

    Crossingham, Yazmin J; Kerr, Philip G; Kennedy, Ross A

    2014-10-01

    Sodium alginate (SA) is a naturally occurring, non-toxic, polysaccharide that is able to form gels after exposure to calcium. These gels have been used in food and biomedical industries. This is the first direct comparison of two different methods of calcium alginate film production, namely interfacial gelation (IFG) and dry cast gelation (DCG). IFG films were significantly thicker than DCG films, and were more extensively rehydrated in water and 0.1M HCl than the DCG films. During rehydration in 0.1M HCl almost all calcium ions were lost. Under scanning electron microscopy, IFG films appeared less dense than DCG films. IFG films were mechanically weaker than DCG films, and both types of film were weaker after rehydration in 0.1M HCl compared with deionized water. Permeation of theophylline (TPL) was evaluated in-vitro; the diffusion coefficient (D) of the TPL was almost 90 times lower in DCG films than IFG films when both were rehydrated in water. Although the 0.1M HCl rendered both gels more permeable to TPL, D of TPL was still about five times lower in DCG compared to IFG films. The evaluation of selected physico-chemical properties of films is important, since this information may inform the choice of gelation technique used to produce calcium alginate coatings on pharmaceutical products. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Effect of water and gluten on physico-chemical properties and stability of ready to eat shelf-stable pasta.

    PubMed

    Diantom, Agoura; Carini, Eleonora; Curti, Elena; Cassotta, Fabrizio; D'Alessandro, Alessandro; Vittadini, Elena

    2016-03-15

    A multi-analytical and multi-dimensional approach was used to investigate the effect of moisture and gluten on physico-chemical properties of shelf-stable ready to eat (RTE) pasta. Moisture and frozen water contents were not affected by formulation nor storage time. Hardness and retrograded amylopectin significantly increased during storage in all samples, more markedly in pasta with the lowest moisture content. Higher amounts of water and gluten reduced pasta hardening and contributed to control RTE pasta quality. (1)H FID became steeper in all samples during storage, but no effect of high moisture and gluten levels was observed on the mobility of these protons. Three proton T2 populations were observed (population C, population D and population E). Population C and D were not resolved during all storage. (1)H T2 relaxation time of the most abundant population (population E) shifted to shorter times and the amount of protons increased during storage, more importantly in the samples with lower moisture and gluten content. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effects of different sterilization methods on the physico-chemical and bioresponsive properties of plasma-treated polycaprolactone films.

    PubMed

    Ghobeira, Rouba; Philips, Charlot; Declercq, Heidi; Cools, Pieter; De Geyter, Nathalie; Cornelissen, Ria; Morent, Rino

    2017-01-24

    For most tissue engineering applications, surface modification and sterilization of polymers are critical aspects determining the implant success. The first part of this study is thus dedicated to modifying polycaprolactone (PCL) surfaces via plasma treatment using a medium pressure dielectric barrier discharge, while the second part focuses on the sterilization of plasma-modified PCL. Chemical and physical surface changes are examined making use of water contact angle goniometry (WCA), x-ray photoelectron spectroscopy and atomic force microscopy. Bioresponsive properties are evaluated by performing cell culture tests. The results show that air and argon plasmas decrease the WCA significantly due to the incorporation of oxygen-containing functionalities onto the PCL surface, without modifying its morphology. Extended treatment times lead to PCL degradation, especially in the case of air plasma. In addition to surface modification, the plasma potential to sterilize PCL is studied with appropriate treatment times, but sterility has not been achieved so far. Therefore, plasma-modified films are subjected to UV, H 2 O 2 plasma (HP) and ethylene oxide (EtO) sterilizations. UV exposure of 3 h does not alter the PCL physico-chemical properties. A decreased wettability is observed after EtO sterilization, attributable to the modification of PCL chain ends reacting with EtO molecules. HP sterilization increases the WCA of the plasma-treated samples, presumably due to the scission of the hydrophilic bonds generated during the prior plasma treatments. Moreover, HP modifies the PCL surface morphology. For all the sterilizations, an improved cell adhesion and proliferation is observed on plasma-treated films compared to untreated ones. EtO shows the lowest proliferation rate compared to HP and UV. Overall, of the three sterilizations, UV is the most effective, since the physical alterations provoked by HP might interfere with the structural integrity when it comes to 3D

  13. Physico-chemical characterization of functionalized polypropylenic fibers for prosthetic applications

    NASA Astrophysics Data System (ADS)

    Nisticò, Roberto; Faga, Maria Giulia; Gautier, Giovanna; Magnacca, Giuliana; D'Angelo, Domenico; Ciancio, Emanuele; Piacenza, Giacomo; Lamberti, Roberta; Martorana, Selanna

    2012-08-01

    Polypropylene (PP) fibers can be manufactured to form nets which can find application as prosthesis in hernioplasty. One of the most important problem to deal with when nets are applied in vivo consists in the reproduction of bacteria within the net fibers intersections. This occurs right after the application of the prosthesis, and causes infections, thus it is fundamental to remove bacteria in the very early stage of the nets application. This paper deals with the physico-chemical characterization of such nets, pre-treated by atmospheric pressure plasma dielectric barrier discharge apparatus (APP-DBD) and functionalized with an antibiotic drug such as chitosan. The physico-chemical characterization of sterilized nets, before and after the functionalization with chitosan, was carried out by means of scanning electron microscopy (SEM) coupled with EDS spectroscopy, FTIR spectroscopy, drop shape analysis (DSA), X-ray diffraction and thermal analyses (TGA and DSC). The aim of the work is to individuate a good strategy to characterize this kind of materials, to understand the effects of polypropylene pre-treatment on functionalization efficiency, to follow the materials ageing in order to study the effects of the surface treatment for in vivo applications.

  14. Investigation of the physico-chemical and mechanical properties of hard brittle shales from the Shahejie Formation in the Nanpu Sag, northern China

    NASA Astrophysics Data System (ADS)

    Xiangjun, Liu; Jian, Xiong; Lixi, Liang; Yi, Ding

    2017-06-01

    With increasing demand for energy and advances in exploration and development technologies, more attention is being devoted to exploration and development of deep oil and gas reservoirs. The Nanpu Sag contains huge reserves in deep oil and gas reservoirs and is a promising area. In this paper, the physico-chemical and mechanical properties of hard brittle shales from the Shahejie Formation in the Nanpu Sag in the Bohai Bay Basin of northern China were investigated using a variety of methods, including x-ray diffraction analysis, cation exchange capacity (CEC) analysis, contact angle measurements, scanning electron microscope observations, immersion experiments, ultrasonic testing and mechanical testing. The effects of the physico-chemical properties of the shales on wellbore instability were observed, and the effects of hydration of the shales on wellbore instability were also examined. The results show that the major mineral constituents of the investigated shales are quartz and clay minerals. The clay mineral contents range from 25.33% to 52.03%, and the quartz contents range from 20.03% to 46.45%. The clay minerals do not include montmorillonite, but large amounts of mixed-layer illite/smectite were observed. The CEC values of the shales range from 90 to 210 mmol kg-1, indicating that the shales are partly hydrated. The wettability of the shales is strongly water-wetted, indicating that water would enter the shales due to the capillary effect. Hydration of hard brittle shales can generate cracks, leading to changes in microstructure and increases in the acoustic value, which could generate damage in the shales and reduce their strength. With increasing hydration time, the shale hydration effect gradually becomes stronger, causing an increase in the range of the acoustic travel time and decreases in the ranges of cohesion and internal friction angles. For the hard brittle shales of the Nanpu Sag, drilling fluid systems should aim to enhance sealing ability

  15. Physico-Chemical-Managed Killing of Penicillin-Resistant Static and Growing Gram-Positive and Gram-Negative Vegetative Bacteria

    NASA Technical Reports Server (NTRS)

    Schramm, Jr., Harry F. (Inventor); Farris, III, Alex F. (Inventor); Defalco, Francis G. (Inventor); Richmond, Robert Chaffee (Inventor)

    2012-01-01

    Systems and methods for the use of compounds from the Hofmeister series coupled with specific pH and temperature to provide rapid physico-chemical-managed killing of penicillin-resistant static and growing Gram-positive and Gram-negative vegetative bacteria. The systems and methods represent the more general physico-chemical enhancement of susceptibility for a wide range of pathological macromolecular targets to clinical management by establishing the reactivity of those targets to topically applied drugs or anti-toxins.

  16. Physico-chemical characterisation of material fractions in household waste: Overview of data in literature.

    PubMed

    Götze, Ramona; Boldrin, Alessio; Scheutz, Charlotte; Astrup, Thomas Fruergaard

    2016-03-01

    State-of-the-art environmental assessment of waste management systems rely on data for the physico-chemical composition of individual material fractions comprising the waste in question. To derive the necessary inventory data for different scopes and systems, literature data from different sources and backgrounds are consulted and combined. This study provides an overview of physico-chemical waste characterisation data for individual waste material fractions available in literature and thereby aims to support the selection of data fitting to a specific scope and the selection of uncertainty ranges related to the data selection from literature. Overall, 97 publications were reviewed with respect to employed characterisation method, regional origin of the waste, number of investigated parameters and material fractions and other qualitative aspects. Descriptive statistical analysis of the reported physico-chemical waste composition data was performed to derive value ranges and data distributions for element concentrations (e.g. Cd content) and physical parameters (e.g. heating value). Based on 11,886 individual data entries, median values and percentiles for 47 parameters in 11 individual waste fractions are presented. Exceptional values and publications are identified and discussed. Detailed datasets are attached to this study, allowing further analysis and new applications of the data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Physico-chemical and biological characterization of urban municipal landfill leachate.

    PubMed

    Naveen, B P; Mahapatra, Durga Madhab; Sitharam, T G; Sivapullaiah, P V; Ramachandra, T V

    2017-01-01

    Unscientific management and ad-hoc approaches in municipal solid waste management have led to a generation of voluminous leachate in urban conglomerates. Quantification, quality assessment, following treatment and management of leachate has become a serious problem worldwide. In this context, the present study investigates the physico-chemical and biological characterization of landfill leachate and nearby water sources and attempts to identify relationships between the key parameters together with understanding the various processes for chemical transformations. The analysis shows an intermediate leachate age (5-10 years) with higher nutrient levels of 10,000-12,000 mg/l and ∼2000-3000 mg/l of carbon (COD) and nitrogen (TKN) respectively. Elemental analysis and underlying mechanisms reveal chemical precipitation and co-precipitation as the vital processes in leachate pond systems resulting in accumulation of trace metals. Based on the above criteria the samples were clustered into major groups that showed a clear distinction between leachate and water bodies. The microbial analysis showed bacterial communities correlating with specific factors relevant to redox environments indicating a gradient in nature and abundance of biotic diversity with a change in leachate environment. Finally, the quality and the contamination potential of the samples were evaluated with the help of leachate pollution index (LPI) and water quality index (WQI) analysis. The study helps in understanding the contamination potential of landfill leachate and establishes linkages between microbial communities and physico-chemical parameters for effective management of landfill leachate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. A greenhouse study on arsenic remediation potential of Vetiver grass (Vetiveria Zizanioides) as a function of soil physico-chemical properties

    NASA Astrophysics Data System (ADS)

    Quispe, M. A.; Datta, R.; Sarkar, D.; Sharma, S.

    2006-05-01

    Arsenic is one of the most harmful and toxic metals, being a Group A human carcinogen. Mining activities as well as the use of arsenic-containing pesticides have resulted in the contamination of a wide variety of sites including mine tailings, cattle dip sites, wood treatment sites, pesticide treatment areas, golf courses, etc. Phytoremediation has emerged as a novel and promising technology, which uses plants to clean up contaminated soil and water taking advantage of plant's natural abilities to extract and accumulate various contaminants. This method has distinct advantages, since it maintains the biological properties and physical structure of the soil, is environment friendly, and above all, inexpensive. However, effective remediation of contaminated residential soils using a specific plant species is an immensely complex task whose success depends on a multitude of factors including the ability of the target plant to uptake, translocate, detoxify, and accumulate arsenic in its system. One of the major challenges in phytoremediation lies in identifying a fast- growing, high biomass plant that can accumulate the contaminant in its harvestable parts. vetiver grass (Vetiveria zizanioides) is a fast-growing perennial grass with strong ecological adaptability and large biomass. While this plant is not a hyperaccumulator of arsenic, it has been reported to be able to tolerate and accumulate considerable amounts of arsenic. Being a high biomass, fast-growing plant, vetiver has the potential to be used for arsenic remediation. The present study investigates the potential of vetiver grass to tolerate and accumulate arsenic in soils with varying physico-chemical properties. A greenhouse study is in progress to study the uptake, tolerance and stress response of vetiver grass to inorganic arsenical pesticide. A column study was set up using 5 soils (Eufaula, Millhopper, Orelia, Orla, and Pahokee Muck) contaminated with sodium arsenite at 4 different concentrations of

  19. An Investigation into the Physico-chemical Properties of Transformer Oil Blends with Antioxidants extracted from Turmeric Powder

    NASA Astrophysics Data System (ADS)

    Dukhi, Veresha; Bissessur, Ajay; Ngila, Catherine Jane; Ijumba, Nelson Mutatina

    2013-07-01

    The blending of transformer oil (used mainly as an insulating oil) with appropriate synthetic antioxidants, such as BHT (2,6-di-tert-butyl-4-methylphenol) and DBP (2,6-di-tert-butylphenol) have been previously reported. This article is focused on the use of antioxidant extracts from turmeric (Curcuma longa), a natural source. Turmeric is well known for its antimicrobial, antioxidant and anticarcinogenic properties owing to the active nature of its components. Extracts from powdered turmeric were subsequently blended into naphthenic-based uninhibited virgin transformer oil, hereinafter referred to as extract-oil blends (E-OB). Thin-layer chromatography (TLC) of the oil blends revealed that five components extracted from turmeric powder were successfully blended into the oil. Subsequent gas chromatography-mass spectrometry (GC-MS) analysis confirmed the presence of the compounds: curcumene, sesquiphellandrene, ar-turmerone, turmerone and curlone. Thermogravimetric analysis (TGA) of the extract-oil blends, containing various levels of extracts, revealed an average temperature shift of ˜8.21°C in the initial onset of degradation in comparison to virgin non-blended oil. The 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that an increase in the mass aliquot of turmeric extracts in the transformer oil increased the free radical scavenging activity of the oil. Electrical properties of the oil investigated showed that the dissipation factor in the blended oil was found to be lower than that of virgin transformer oil. Evidently, a lower dissipation value renders the oil blend as a superior insulator over normal virgin non-blended oil. This investigation elucidated improved physico-chemical properties of transformer oil blended with turmeric antioxidant extracts.

  20. Susceptibility patterns and the role of extracellular DNA in Staphylococcus epidermidis biofilm resistance to physico-chemical stress exposure.

    PubMed

    Olwal, Charles Ochieng'; Ang'ienda, Paul Oyieng'; Onyango, David Miruka; Ochiel, Daniel Otieno

    2018-05-02

    Over 65% of human infections are ascribed to bacterial biofilms that are often highly resistant to antibiotics and host immunity. Staphylococcus epidermidis is the predominant cause of recurrent nosocomial and biofilm-related infections. However, the susceptibility patterns of S. epidermidis biofilms to physico-chemical stress induced by commonly recommended disinfectants [(heat, sodium chloride (NaCl), sodium hypochlorite (NaOCl) and hydrogen peroxide (H 2 O 2 )] in domestic and human healthcare settings remains largely unknown. Further, the molecular mechanisms of bacterial biofilms resistance to the physico-chemical stresses remain unclear. Growing evidence demonstrates that extracellular DNA (eDNA) protects bacterial biofilms against antibiotics. However, the role of eDNA as a potential mechanism underlying S. epidermidis biofilms resistance to physico-chemical stress exposure is yet to be understood. Therefore, this study aimed to evaluate the susceptibility patterns of and eDNA release by S. epidermidis biofilm and planktonic cells to physico-chemical stress exposure. S. epidermidis biofilms exposed to physico-chemical stress conditions commonly recommended for disinfection [heat (60 °C), 1.72 M NaCl, solution containing 150 μL of waterguard (0.178 M NaOCl) in 1 L of water or 1.77 M H 2 O 2 ] for 30 and 60 min exhibited lower log reductions of CFU/mL than the corresponding planktonic cells (p < 0.0001). The eDNA released by sub-lethal heat (50 °C)-treated S. epidermidis biofilm and planktonic cells was not statistically different (p = 0.8501). However, 50 °C-treated S. epidermidis biofilm cells released significantly increased eDNA than the untreated controls (p = 0.0098). The eDNA released by 0.8 M NaCl-treated S. epidermidis biofilm and planktonic cells was not significantly different (p = 0.9697). Conversely, 5 mM NaOCl-treated S. epidermidis biofilms exhibited significantly increased eDNA release than the corresponding

  1. Tensile properties of cooked meat sausages and their correlation with texture profile analysis (TPA) parameters and physico-chemical characteristics.

    PubMed

    Herrero, A M; de la Hoz, L; Ordóñez, J A; Herranz, B; Romero de Ávila, M D; Cambero, M I

    2008-11-01

    The possibilities of using breaking strength (BS) and energy to fracture (EF) for monitoring textural properties of some cooked meat sausages (chopped, mortadella and galantines) were studied. Texture profile analysis (TPA), folding test and physico-chemical measurements were also performed. Principal component analysis enabled these meat products to be grouped into three textural profiles which showed significant (p<0.05) differences mainly for BS, hardness, adhesiveness and cohesiveness. Multivariate analysis indicated that BS, EF and TPA parameters were correlated (p<0.05) for every individual meat product (chopped, mortadella and galantines) and all products together. On the basis of these results, TPA parameters could be used for constructing regression models to predict BS. The resulting regression model for all cooked meat products was BS=-0.160+6.600∗cohesiveness-1.255∗adhesiveness+0.048∗hardness-506.31∗springiness (R(2)=0.745, p<0.00005). Simple linear regression analysis showed significant coefficients of determination between BS (R(2)=0.586, p<0.0001) versus folding test grade (FG) and EF versus FG (R(2)=0.564, p<0.0001).

  2. Applicability of vacuum impregnation to modify physico-chemical, sensory and nutritive characteristics of plant origin products--a review.

    PubMed

    Radziejewska-Kubzdela, Elżbieta; Biegańska-Marecik, Róża; Kidoń, Marcin

    2014-09-19

    Vacuum impregnation is a non-destructive method of introducing a solution with a specific composition to the porous matrices of fruit and vegetables. Mass transfer in this process is a result of mechanically induced differences in pressure. Vacuum impregnation makes it possible to fill large volumes of intercellular spaces in tissues of fruit and vegetables, thus modifying physico-chemical properties and sensory attributes of products. This method may be used, e.g., to reduce pH and water activity of the product, change its thermal properties, improve texture, color, taste and aroma. Additionally, bioactive compounds may be introduced together with impregnating solutions, thus improving health-promoting properties of the product or facilitating production of functional food.

  3. Applicability of Vacuum Impregnation to Modify Physico-Chemical, Sensory and Nutritive Characteristics of Plant Origin Products—A Review

    PubMed Central

    Radziejewska-Kubzdela, Elżbieta; Biegańska-Marecik, Róża; Kidoń, Marcin

    2014-01-01

    Vacuum impregnation is a non-destructive method of introducing a solution with a specific composition to the porous matrices of fruit and vegetables. Mass transfer in this process is a result of mechanically induced differences in pressure. Vacuum impregnation makes it possible to fill large volumes of intercellular spaces in tissues of fruit and vegetables, thus modifying physico-chemical properties and sensory attributes of products. This method may be used, e.g., to reduce pH and water activity of the product, change its thermal properties, improve texture, color, taste and aroma. Additionally, bioactive compounds may be introduced together with impregnating solutions, thus improving health-promoting properties of the product or facilitating production of functional food. PMID:25244012

  4. Effect of superfine grinding on the physico-chemical, morphological and thermogravimetric properties of Lentinus edodes mushroom powders.

    PubMed

    Ming, Jian; Chen, Long; Hong, Hui; Li, Jinlong

    2015-09-01

    Lentinus edodes is an edible mushroom commonly known as shiitake, which is the second most produced and consumed edible mushroom in the world and is an important nutrient source in the human diet. To fully use L. edodes, the mushrooms are occasionally ground into powder as a flavourful and functional food additive. This study produces powders from the cap and stipe of Lentinus edodes mushrooms through superfine grinding. These powders are composed of sub-micron range particles with various size distributions. The superfine grinding process is then compared with shear pulverisation to determine the different effects on both the cap and stipe powders in terms of particle size and physico-chemical, morphological and thermogravimetric properties. When average particle size was reduced to 0.54 and 0.46 µm, respectively, the moisture and protein content, angles of repose and slide, and water holding capacity of the powders decreased to varied extents. However, soluble dietary fibre, water solubility index, and swelling capacity increased. Scanning electron microscope images suggested that the superfine grinding process effectively changed the original surface structure of the L. edodes powders. The curves of thermogravimetric analysis and those of the derivatives of thermogravimetry indicated that superfine grinding can improve the thermostability of L. edodes powders. Furthermore, superfinely ground L. edodes powders may be used as pharmaceutical or food additives in various fields. The present study suggests that superfinely ground L. edodes powders may be applied in various fields as pharmaceutical or food additives. © 2014 Society of Chemical Industry.

  5. New encoded single-indicator sequences based on physico-chemical parameters for efficient exon identification.

    PubMed

    Meher, J K; Meher, P K; Dash, G N; Raval, M K

    2012-01-01

    The first step in gene identification problem based on genomic signal processing is to convert character strings into numerical sequences. These numerical sequences are then analysed spectrally or using digital filtering techniques for the period-3 peaks, which are present in exons (coding areas) and absent in introns (non-coding areas). In this paper, we have shown that single-indicator sequences can be generated by encoding schemes based on physico-chemical properties. Two new methods are proposed for generating single-indicator sequences based on hydration energy and dipole moments. The proposed methods produce high peak at exon locations and effectively suppress false exons (intron regions having greater peak than exon regions) resulting in high discriminating factor, sensitivity and specificity.

  6. In planta mechanism of action of leptospermone: impact of its physico-chemical properties on uptake, translocation, and metabolism.

    PubMed

    Owens, Daniel K; Nanayakkara, N P Dhammika; Dayan, Franck E

    2013-02-01

    Leptospermone is a natural β-triketone that specifically inhibits the enzyme p-hydrophyphenylpyruvate dioxygenase, the same molecular target site as that of the commercial herbicide mesotrione. The β-triketone-rich essential oil of Leptospermum scoparium has both preemergence and postemergence herbicidal activity, resulting in bleaching of treated plants and dramatic growth reduction. Radiolabeled leptospermone was synthesized to investigate the in planta mechanism of action of this natural herbicide. Approximately 50 % of the absorbed leptospermone was translocated to the foliage suggesting rapid acropetal movement of the molecule. On the other hand, very little leptospermone was translocated away from the point of application on the foliage, indicating poor phloem mobility. These observations are consistent with the physico-chemical properties of leptospermone, such as its experimentally measured logP and pK a values, and molecular mass, number of hydrogen donors and acceptors, and number of rotatable bonds. Consequently, leptospermone is taken up readily by roots and translocated to reach its molecular target site. This provides additional evidence that the anecdotal observation of allelopathic suppression of plant growth under β-triketone-producing species may be due to the release of these phytotoxins in soils.

  7. Changes in nutritional and physico-chemical properties of pearl millet (Pennisetum glaucum) Ex-Borno variety flour as a result of malting.

    PubMed

    Obadina, Adewale O; Arogbokun, Christianah A; Soares, Antonio O; de Carvalho, Carlos Wanderlei Piler; Barboza, Henriqueta Talita; Adekoya, Ifeoluwa O

    2017-12-01

    The effect of malting periods on the nutritional composition and physico-chemical properties of flour from pearl millet (Ex-Borno) variety was evaluated. Grains were steeped at 25 °C for 24 h and germinated for different durations (12, 24, 36, 48, 60, 72, 84 and 96 h) before kilning at 55 °C for 18 h. The kilned seeds were devegetated, milled, sieved and analysed for their proximate composition, amino acid composition, total phenolic content, functional and pasting properties. The carbohydrate, fat and total phenolic contents of the pearl millet flour samples decreased while protein content increased with increased malting periods. Leucine was the dominant amino acid in the flour and 48 h-malted flour had the highest total amino acid (6.72). Peak viscosity significantly decreased as the malting period increased. Solubility index, pasting temperature and phenolic content of the flours ranged from 5.13 to 17.24%, 69.05 to 89.5 °C and 130.20 to 169.90 mg/100 g, respectively. Malting offers a means of improving the nutritional profile of Ex-Borno pearl millet flour with an increased protein and fibre and reduced fat content. Malting also enhanced the functional and pasting properties of the flour.

  8. Sampling and physico-chemical analysis of precipitation: a review.

    PubMed

    Krupa, Sagar V

    2002-01-01

    Wet deposition is one of two processes governing the transfer of beneficial and toxic chemicals from the atmosphere on to surfaces. Since the early 1970s, numerous investigators have sampled and analyzed precipitation for their chemical constituents, in the context of "acidic rain" and related atmospheric processes. Since then, significant advances have been made in our understanding of how to sample rain, cloud and fog water to preserve their physico-chemical integrity prior to analyses. Since the 1970s large-scale precipitation sampling networks have been in operation to broadly address regional and multi-regional issues. However, in examining the results from such efforts at a site-specific level, concerns have been raised about the accuracy and precision of the information gathered. There is mounting evidence to demonstrate the instability of precipitation samples (e.g. with N species) that have been subjected to prolonged ambient or field conditions. At the present time precipitation sampling procedures allow unrefrigerated or refrigerated collection of wet deposition from individual events, sequential fractions within events, in situ continuous chemical analyses in the field and even sampling of single or individual rain, cloud and fog droplets. Similarly analytical procedures of precipitation composition have advanced from time-consuming methods to rapid and simultaneous analyses of major anions and cations, from bulk samples to single droplets. For example, analytical techniques have evolved from colorimetry to ion chromatography to capillary electrophoresis. Overall, these advances allow a better understanding of heterogeneous reactions and atmospheric pollutant scavenging processes by precipitation. In addition, from an environmental perspective, these advances allow better quantification of semi-labile (e.g. NH4+, frequently its deposition values are underestimated) or labile species [e.g. S (IV)] in precipitation and measurements of toxic chemicals such

  9. Microbiological, coliphages and physico-chemical assessments of the Umgeni River, South Africa.

    PubMed

    Singh, Atheesha; Lin, Johnson

    2015-01-01

    The water quality of Umgeni River in KwaZulu-Natal (South Africa) was investigated from April 2011 to January 2012. Indicator bacterial populations, physico-chemical properties, heavy metal contaminants and the presence of coliphages were determined according to standard protocols. The results showed that all sampling points failed to comply with the set guidelines for turbidity, total coliform, faecal coliform and total heterotrophic counts. Salmonella spp., Shigella spp. and Vibrio cholerae were also detected in all the water samples. The somatic coliphages and F-RNA coliphages were detected more frequently in the lower reaches of the river during summer. Temperature, electrical conductivity and pH were found to have positive relationships with the microbial communities especially in the lower catchment area during spring and summer indicating the impacts of various anthropogenic activities in the surrounding areas.

  10. Physico-chemical studies of hardened cement paste structure with micro-reinforcing fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steshenko, Aleksei, E-mail: steshenko.alexey@gmail.com; Kudyakov, Aleksander; Konusheva, Viktoriya

    The results of physico-chemical studies of modified hardened cement paste with micro-reinforcing fibers are given in this article. The goal was to study the reasons of the increase of strength properties of modified hardened cement paste by the method of X-ray diffraction and electron microscopy. It is shown that the use of mineral fibers in the production of cement based material has positive effect on its properties. The study found out that the increase in the strength of the hardened cement paste with micro-reinforcing fibers is due to the increase of the rate of hydration of cement without a significantmore » change in the phase composition in comparison with hardened cement paste without additive. The results of microstructure investigation (of control samples and samples of the reinforced hardened cement paste) have shown that introduction of mineral fibers in the amount of 0.1-2 % by weight of cement provides the structure of the homogeneous microporous material with uniform distribution of the crystalline phase provided by densely packed hydrates.« less

  11. Spectral Induced Polarization monitoring of the groundwater physico-chemical parameters daily variations for stream-groundwater interactions

    NASA Astrophysics Data System (ADS)

    Jougnot, Damien; Camerlynck, Christian; Robain, Henri; Tallec, Gaëlle; Ribolzi, Olivier; Gaillardet, Jérôme

    2017-04-01

    performed. Relating the daily fluctuations of the groundwater complex conductivity and the river physico-chemical parameters could therefore establish a new proxy to characterize stream-groundwater interactions. In parallel to the field measurements, laboratory experiments have been conducted on soil samples from the two sites. These measurements provide a better understanding of the complex conductivity signature of the samples submitted to saturation and pore water physico-chemical changes. This work is in progress but the first results already show that the method has a real interest for the monitoring of daily variations of the physico-chemistry properties of the groundwater and their relations to those of the stream.

  12. Fluid physico-chemical properties influence capture and diet in Nepenthes pitcher plants

    PubMed Central

    Bazile, Vincent; Le Moguédec, Gilles; Marshall, David J.; Gaume, Laurence

    2015-01-01

    Background and Aims Nepenthes pitcher plants have evolved modified leaves with slippery surfaces and enzymatic fluids that trap and digest prey, faeces and/or plant detritus. Although the fluid’s contribution to insect capture is recognized, the physico-chemical properties involved remain underexplored and may vary among species, influencing their diet type. This study investigates the contributions of acidity and viscoelasticity in the fluid’s capture efficiency of two ant and two fly species in four Nepenthes species with different nutrition strategies. Methods Four Nepenthes species were studied, namely N. rafflesiana, N. gracilis, N. hemsleyana and N. ampullaria. Fluid was collected from pitchers of varying ages from plants growing in the field and immediately transferred to glass vials, and individual ants (tribe Campotini, Fomicinae) and flies (Calliphora vomitoria and Drosophila melanogaster) were dropped in and observed for 5 min. Water-filled vials were used as controls. Survival and lifetime data were analysed using models applied to right-censored observations. Additional laboratory experiments were carried out in which C. vomitoria flies were immersed in pH-controlled aqueous solutions and observed for 5 min. Key Results Pitcher fluid differed among Nepenthes species as regards insect retention capacity and time-to-kill, with differences observed between prey types. Only the fluids of the reputedly insectivorous species were very acidic and/or viscoelastic and retained significantly more insects than the water controls. Viscoelastic fluids were fatal to flies and were able to trap the broadest diversity of insects. Younger viscoelastic fluids showed a better retention ability than older fluids, although with less rapid killing ability, suggesting that a chemical action follows a mechanical one. Insect retention increased exponentially with fluid viscoelasticity, and this happened more abruptly and at a lower threshold for flies compared with

  13. Effect of incorporation of calcium lactate on physico-chemical, textural, and sensory properties of restructured buffalo meat loaves

    PubMed Central

    Irshad, A.; Sharma, B. D.; Ahmed, S. R.; Talukder, S.; Malav, O. P.; Kumar, Ashish

    2016-01-01

    Aim: The present study was conducted to develop a functional meat product by fortifying calcium (in the form of calcium lactate) with restructured buffalo meat loaf (RBML). Materials and Methods: Deboned buffalo meat obtained from the carcass of adult female buffalo within 5-6 h of slaughter and stored under frozen condition. Calcium fortified RBML were prepared by replacing the lean buffalo meat with calcium lactate powder at 0%, 1%, 1.25%, and 1.5% level through the pre-standardized procedure. The developed products were evaluated for physico-chemical properties, proximate composition, calcium concentration (mg/100 g), water activity (aw), Lovibond® tintometer color units, texture profile analysis (TPA), and sensory qualities as per-standard procedures. Results: Of the various product quality parameters evaluated, cooking yield (%), product pH, moisture (%), protein (%), fat (%), and water activity (aw) decreases significantly with increasing level of calcium lactate. Calcium content of fortified functional RBMLs was 135.02, 165.73, and 203.85 mg/100 g as compared to 6.48 mg/100 g in control. Most of the sensory scores at 1% and 1.25% levels of calcium lactate in treatment products remained comparable among themselves and control product, with a gradual decline. Conclusions: The present study concluded that 1.25% calcium lactate was the optimum level for the fortification of calcium in RBML without affecting the textural and sensory properties which could meet out 15% of recommended dietary allowance for calcium. PMID:27051201

  14. Effect of incorporation of calcium lactate on physico-chemical, textural, and sensory properties of restructured buffalo meat loaves.

    PubMed

    Irshad, A; Sharma, B D; Ahmed, S R; Talukder, S; Malav, O P; Kumar, Ashish

    2016-02-01

    The present study was conducted to develop a functional meat product by fortifying calcium (in the form of calcium lactate) with restructured buffalo meat loaf (RBML). Deboned buffalo meat obtained from the carcass of adult female buffalo within 5-6 h of slaughter and stored under frozen condition. Calcium fortified RBML were prepared by replacing the lean buffalo meat with calcium lactate powder at 0%, 1%, 1.25%, and 1.5% level through the pre-standardized procedure. The developed products were evaluated for physico-chemical properties, proximate composition, calcium concentration (mg/100 g), water activity (aw), Lovibond(®) tintometer color units, texture profile analysis (TPA), and sensory qualities as per-standard procedures. Of the various product quality parameters evaluated, cooking yield (%), product pH, moisture (%), protein (%), fat (%), and water activity (aw) decreases significantly with increasing level of calcium lactate. Calcium content of fortified functional RBMLs was 135.02, 165.73, and 203.85 mg/100 g as compared to 6.48 mg/100 g in control. Most of the sensory scores at 1% and 1.25% levels of calcium lactate in treatment products remained comparable among themselves and control product, with a gradual decline. The present study concluded that 1.25% calcium lactate was the optimum level for the fortification of calcium in RBML without affecting the textural and sensory properties which could meet out 15% of recommended dietary allowance for calcium.

  15. Assessment of physico-chemical characteristics of water in Tamilnadu.

    PubMed

    Udhayakumar, R; Manivannan, P; Raghu, K; Vaideki, S

    2016-12-01

    Water is an important component to human life. The major aims of the present work are to assess the quality of the ground water and its impact in Villupuram District of Tamilnadu. The present study focus to bring an awareness among the people about the quality of ground water by taking water samples from various locations for Physico - Chemical analysis of the ground water. This analysis result was compared with the WHO, ICMR, USPH and European standards of drinking water quality parameters with the following water quality parameters namely pH, Electrical conductivity, Cl, , Na, K, Ca , Mg, Total dissolved solids, Total hardness, Dissolved oxygen, Fluoride etc. Various chemical methods have been employed to investigate the extent level of pollution in ground water. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Between and within-field variation in physico-chemical soil properties of vineyards: implications for terroir zoning and management in Heuvelland, Belgium

    NASA Astrophysics Data System (ADS)

    Tavernier, Emma; Verdoodt, Ann; Cornelis, Wim; Delbecque, Nele; Tiebergijn, Lynn; Seynnaeve, Marleen; Gabriels, Donald

    2015-04-01

    The 'Heuvelland' region with a surface area of 94 km² is situated in the Province of West Flanders, Belgium, bordering with France. The region comprises a number of hills ("heuvel") on which a fast growing 'wine culture' is developing. Both professional as well as non-professional wine makers together cultivate about 19 ha of vineyards, and are still expanding. Grapes cultivated include Chardonnay, Pinot gris and Pinot noir among others. The small-scale, strongly dispersed vineyards are located in different landscape positions of variable aspect. The objective of our preliminary study was to assess the between-field and within-field variation in physico-chemical soil properties of these vineyards with the aim to better characterise the terroir(s) in Heuvelland and provide guidelines for soil management. Fourteen vineyards from five different wineries were selected for detailed soil sampling. Twenty-five sampling sites were chosen according to the topography, soil map units and observed variability in grape growth. The soil was sampled using 15 cm depth increments up to a depth of 60 cm or a shallower lithic contact. Composite samples of 5 sampling locations along the contour lines were taken per within-field zone. Besides the texture, pH, organic carbon, total nitrogen, available phosphorous and exchangeable base cations (Ca, Mg, K), also some micronutrients (Fe, B, Cu, Mn) were determined using standard laboratory procedures. The soils developed on Quaternary niveo-eolian sandy loam and loamy sediments of variable thickness covering marine sandy and clayey sediments of the Tertiary. Where the Tertiary clayey sediments occur at shallow depth, they can strongly influence the internal drainage. At higher positions in the landscape, iron-rich sandstone layers are found at shallow depth. Fragments of this iron-rich sandstone can also be found at lower positions (colluvial material). This iron sandstone is claimed to contribute to the unique character of this wine

  17. Calibration sets selection strategy for the construction of robust PLS models for prediction of biodiesel/diesel blends physico-chemical properties using NIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Palou, Anna; Miró, Aira; Blanco, Marcelo; Larraz, Rafael; Gómez, José Francisco; Martínez, Teresa; González, Josep Maria; Alcalà, Manel

    2017-06-01

    Even when the feasibility of using near infrared (NIR) spectroscopy combined with partial least squares (PLS) regression for prediction of physico-chemical properties of biodiesel/diesel blends has been widely demonstrated, inclusion in the calibration sets of the whole variability of diesel samples from diverse production origins still remains as an important challenge when constructing the models. This work presents a useful strategy for the systematic selection of calibration sets of samples of biodiesel/diesel blends from diverse origins, based on a binary code, principal components analysis (PCA) and the Kennard-Stones algorithm. Results show that using this methodology the models can keep their robustness over time. PLS calculations have been done using a specialized chemometric software as well as the software of the NIR instrument installed in plant, and both produced RMSEP under reproducibility values of the reference methods. The models have been proved for on-line simultaneous determination of seven properties: density, cetane index, fatty acid methyl esters (FAME) content, cloud point, boiling point at 95% of recovery, flash point and sulphur.

  18. Cholesterol-based cationic lipids for gene delivery: contribution of molecular structure factors to physico-chemical and biological properties.

    PubMed

    Sheng, Ruilong; Luo, Ting; Li, Hui; Sun, Jingjing; Wang, Zhao; Cao, Amin

    2014-04-01

    In this work, we prepared a series of cholesterol-based cationic (Cho-cat) lipids bearing cholesterol hydrophobe, natural amino acid headgroups (lysine/histidine) and linkage (carbonate ester/ether) bonds. In which, the natural amino acid headgroups made dominant contribution to their physico-chemical and biological properties. Among the lipids, the l-lysine headgroup bearing lipids (Cho-es/et-Lys) showed higher pDNA binding affinity and were able to form larger sized and higher surface charged lipoplexes than that of l-histidine headgroup bearing lipids (Cho-es/et-His), they also demonstrated higher transfection efficacy and higher membrane disruption capacities than that of their l-histidine headgroup bearing counterparts. However, compared to the contributions of the headgroups, the (carbonate ester/ether) linkage bonds showed much less affects. Besides, it could be noted that, Cho-es/et-Lys lipids exhibited very high luciferase gene transfection efficiency that almost reached the transfection level of "gold standard" bPEI-25k, made them potential transfection reagents for practical application. Moreover, the results facilitated the understanding for the structure-activity relationship of the cholesterol-based cationic lipids, and also paved a simple and efficient way for achieving high transfection efficiency by modification of suitable headgroups on lipid gene carriers. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Polyethylene Films Containing Silver Nanoparticles for Applications in Food Packaging: Characterization of Physico-Chemical and Anti-Microbial Properties.

    PubMed

    Becaro, Aline A; Puti, Fernanda C; Correa, Daniel S; Paris, Elaine C; Marconcini, José M; Ferreira, Marcos D

    2015-03-01

    This paper reports the antibacterial effect and physico-chemical characterization of films containing silver nanoparticles for use as food packaging. Two masterbatches (named PEN and PEC) con- taining silver nanoparticles embedded in distinct carriers (silica and titanium dioxide) were mixed with low-density polyethylene (LDPE) in different compositions and extruded to produce plain films. These films were characterized by Scanning Electron Microscopy (SEM), X-ray diffraction (XRD), Differential Scanning Calorimetry (DSC), Thermogravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). The morphology of the films showed the formation of agglomerates of nanoparticles in both PEN and PEC composites. X-ray analyses confirmed the presence of SiO2 in PEN samples and TiO2 in PEC samples. Thermal analyses indicated an increase in thermal stability of the PEC compositions. The antimicrobial efficacy was determined by applying the test strain for Escherichia coli and Staphylococcus aureus, according to the Japanese Industrial Standard Method (JIS Z 2801:2000). The films analyzed showed antimicrobial properties against the tested microorganisms, presenting better activity against the S. aureus than E. Coli. These findings suggest that LDPE films with silver nanoparticles are promising to provide a significant contribution to the quality and safety of packaged food.

  20. In vitro cellular responses to silicon carbide nanoparticles: impact of physico-chemical features on pro-inflammatory and pro-oxidative effects

    NASA Astrophysics Data System (ADS)

    Pourchez, Jérémie; Forest, Valérie; Boumahdi, Najih; Boudard, Delphine; Tomatis, Maura; Fubini, Bice; Herlin-Boime, Nathalie; Leconte, Yann; Guilhot, Bernard; Cottier, Michèle; Grosseau, Philippe

    2012-10-01

    Silicon carbide is an extremely hard, wear resistant, and thermally stable material with particular photoluminescence and interesting biocompatibility properties. For this reason, it is largely employed for industrial applications such as ceramics. More recently, nano-sized SiC particles were expected to enlarge their use in several fields such as composite supports, power electronics, biomaterials, etc. However, their large-scaled development is restricted by the potential toxicity of nanoparticles related to their manipulation and inhalation. This study aimed at synthesizing (by laser pyrolysis or sol-gel methods), characterizing physico-chemical properties of six samples of SiC nanopowders, then determining their in vitro biological impact(s). Using a macrophage cell line, toxicity was assessed in terms of cell membrane damage (LDH release), inflammatory effect (TNF-α production), and oxidative stress (reactive oxygen species generation). None of the six samples showed cytotoxicity while remarkable pro-oxidative reactions and inflammatory response were recorded, whose intensity appears related to the physico-chemical features of nano-sized SiC particles. In vitro data clearly showed an impact of the extent of nanoparticle surface area and the nature of crystalline phases (α-SiC vs. β-SiC) on the TNF-α production, a role of surface iron on free radical release, and of the oxidation state of the surface on cellular H2O2 production.

  1. Characteristics of physico-chemical properties of bilberry (Vaccinium myrtillus L.) jams with added herbs.

    PubMed

    Korus, Anna; Jaworska, Grażyna; Bernaś, Emilia; Juszczak, Lesław

    2015-05-01

    Low-sugar bilberry jams without added herbs and those with added mentha (1 %) and lemon balm (1 %) were examined for levels of selected physico-chemical indicators, antioxidant activity, colour and texture. Jams were obtained by two methods: cooked in an open pan and cooked in a vacuum evaporator. 100 g fresh mass contained 0.076-0.481 mg HMF, 5.8-7.1 mg vitamin C, 176-232 mg total polyphenols, 122-156 mg total flavonoids, 73-96 mg total anthocyanins, with antioxidant activity per 1 g of 405-575 μM Trolox (ABTS), 71-89 μM Trolox (DPPH) and 120-176 μM Fe(2+) (FRAP). Jams cooked in a vacuum evaporator had higher levels of the indicators examined, better colour and worse texture. Jams with added herbs generally showed higher levels of all indicators, but their colour and texture were slightly worse. Storing jams for 8 months caused a reduction in antioxidant constituents of 7-20 % along with a deterioration of colour and texture.

  2. Effects of ultrasound treatment on physico-chemical, functional properties and antioxidant activity of whey protein isolate in the presence of calcium lactate.

    PubMed

    Jiang, Zhanmei; Yao, Kun; Yuan, Xiangying; Mu, Zhishen; Gao, Zengli; Hou, Juncai; Jiang, Lianzhou

    2018-03-01

    The aim of this study was to investigate the effects of ultrasound applied at various powers (0, 200, 400, 600 or 800 W) and for different times (20 or 40 min) on the physico-chemical, functional properties and antioxidant activities of whey protein isolate (WPI) dispersions in the presence of 1.20 mmol L -1 calcium lactate. Surface hydrophobicity and free sulfhydryl group of the WPI dispersions containing 1.2 mmol L -1 calcium lactate were significantly enhanced after sonication. Furthermore, particle size of WPI dispersions containing 1.20 mmol L -1 calcium lactate was minimised after sonication. Scanning electron microscopy of sonicated WPI suspensions containing 1.20 mmol L -1 calcium lactate showed that WPI microstructure had significantly changed. After WPI dispersions were treated by sonication assisted with calcium lactate, its gel strength enhanced and solubility decreased. Gel strength of sonicated WPI dispersions (600 W, 40 min) was the maximum among all the WPI treatments. Emulsification activity of sonicated WPI dispersions reduced while its emulsion stability increased. The DPPH radical scavenging activity and ferrous reducing power of sonicated WPI dispersions mostly increased. Ultrasound treatments induced structural changes in WPI molecules, leading to different microstructure and improved gel strength of WPI in the presence of calcium lactate. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. Production and physico-chemical characterisation of nanoparticles.

    PubMed

    Schulze Isfort, C; Rochnia, M

    2009-05-08

    Synthetic nanoscaled metal oxides are mainly produced by pyrogenic decomposition of precursors in the gas phase using a hot-wall or plasma reactor. Due to their low production rate and limited scalability, these processes are of minor technical relevance in manufacturing commercial quantities of nanoparticles. The most common and by far the most important industrial process is flame hydrolysis. In this process, a gaseous mixture of a metal chloride precursor, hydrogen and air is introduced in a closed and continuously operated flame reactor. The general mechanism of formation and growth of particles (e.g. silica) occurring in the flame is dominated by nucleation, coalescence (sintering) and coagulation (collision) of primary particles forming aggregated structures. The term 'aggregate' describes clusters of particles held together by strong chemical bonds. Agglomerates, however, are defined as loose accumulations of particles held together by hydrogen bonds for example. Although, a variety of physico-chemical methods exist to characterise pyrogenic oxides, the most important ones are analysis of the specific surface area by the so-called BET method, determination of the aggregate size by transmission electron microscopy (TEM) and characterisation of the phase composition by means of X-ray analysis.

  4. Poly(lactide-co-glycolide) nanocapsules containing benzocaine: influence of the composition of the oily nucleus on physico-chemical properties and anesthetic activity.

    PubMed

    de Melo, Nathalie Ferreira Silva; Grillo, Renato; Guilherme, Viviane Aparecida; de Araujo, Daniele Ribeiro; de Paula, Eneida; Rosa, André Henrique; Fraceto, Leonardo Fernandes

    2011-08-01

    The aim of this work was to investigate the influence of the oily nucleus composition on physico-chemical properties and anesthetic activity of poly (lactide-co-glycolide) nanocapsules with benzocaine. Nanocapsules containing benzocaine were prepared with three different oily nucleus composition and characterized by mean diameter, polydispersivity, zeta potential, pH and stability were investigated as a function of time. In vitro release kinetics were performed in a system with two compartments separated by a cellulose membrane. Intensity and duration of analgesia were evaluated in rats by sciatic nerve blockade. The greatest stability, slower release profile and improvement in the local anesthetic activity of BZC were obtained with the formulation using USP mineral oil as component. Results from our study provide useful perspectives on selection of the primary materials needed to produce suspensions of polymeric nanocapsules able to act as carriers of BZC, with potential future application in the treatment of pain.

  5. Physico-Chemical Conversion of Lignocellulose: Inhibitor Effects and Detoxification Strategies: A Mini Review.

    PubMed

    Kim, Daehwan

    2018-02-01

    A pretreatment of lignocellulosic biomass to produce biofuels, polymers, and other chemicals plays a vital role in the biochemical conversion process toward disrupting the closely associated structures of the cellulose-hemicellulose-lignin molecules. Various pretreatment steps alter the chemical/physical structure of lignocellulosic materials by solubilizing hemicellulose and/or lignin, decreasing the particle sizes of substrate and the crystalline portions of cellulose, and increasing the surface area of biomass. These modifications enhance the hydrolysis of cellulose by increasing accessibilities of acids or enzymes onto the surface of cellulose. However, lignocellulose-derived byproducts, which can inhibit and/or deactivate enzyme and microbial biocatalysts, are formed, including furan derivatives, lignin-derived phenolics, and carboxylic acids. These generation of compounds during pretreatment with inhibitory effects can lead to negative effects on subsequent steps in sugar flat-form processes. A number of physico-chemical pretreatment methods such as steam explosion, ammonia fiber explosion (AFEX), and liquid hot water (LHW) have been suggested and developed for minimizing formation of inhibitory compounds and alleviating their effects on ethanol production processes. This work reviews the physico-chemical pretreatment methods used for various biomass sources, formation of lignocellulose-derived inhibitors, and their contributions to enzymatic hydrolysis and microbial activities. Furthermore, we provide an overview of the current strategies to alleviate inhibitory compounds present in the hydrolysates or slurries.

  6. Fluid physico-chemical properties influence capture and diet in Nepenthes pitcher plants.

    PubMed

    Bazile, Vincent; Le Moguédec, Gilles; Marshall, David J; Gaume, Laurence

    2015-03-01

    Nepenthes pitcher plants have evolved modified leaves with slippery surfaces and enzymatic fluids that trap and digest prey, faeces and/or plant detritus. Although the fluid's contribution to insect capture is recognized, the physico-chemical properties involved remain underexplored and may vary among species, influencing their diet type. This study investigates the contributions of acidity and viscoelasticity in the fluid's capture efficiency of two ant and two fly species in four Nepenthes species with different nutrition strategies. Four Nepenthes species were studied, namely N. rafflesiana, N. gracilis, N. hemsleyana and N. ampullaria. Fluid was collected from pitchers of varying ages from plants growing in the field and immediately transferred to glass vials, and individual ants (tribe Campotini, Fomicinae) and flies (Calliphora vomitoria and Drosophila melanogaster) were dropped in and observed for 5 min. Water-filled vials were used as controls. Survival and lifetime data were analysed using models applied to right-censored observations. Additional laboratory experiments were carried out in which C. vomitoria flies were immersed in pH-controlled aqueous solutions and observed for 5 min. Pitcher fluid differed among Nepenthes species as regards insect retention capacity and time-to-kill, with differences observed between prey types. Only the fluids of the reputedly insectivorous species were very acidic and/or viscoelastic and retained significantly more insects than the water controls. Viscoelastic fluids were fatal to flies and were able to trap the broadest diversity of insects. Younger viscoelastic fluids showed a better retention ability than older fluids, although with less rapid killing ability, suggesting that a chemical action follows a mechanical one. Insect retention increased exponentially with fluid viscoelasticity, and this happened more abruptly and at a lower threshold for flies compared with ants. Flies were more often retained if they

  7. Tetrapyrrole-photosensitizers vectorization and plasma LDL: a physico-chemical approach.

    PubMed

    Bonneau, Stéphanie; Vever-Bizet, Christine; Mojzisova, Halina; Brault, Daniel

    2007-11-01

    A photosensitizer is defined as a chemical entity able to induce, under light-irradiation effect, a chemical or physical alteration of another chemical entity. Thanks to their preferential retention in proliferating tissues, some photosensitizers are therapeutically used such as in photodynamic therapy (PDT). Besides, this method has already been approved for several indications. The selectivity of photosenzitizers for cells in proliferation involves both their association with low density lipoproteins (LDLs) and their ability to cross membranes under various pH conditions. The photosensitizers used are in most cases based on the porphyrin structure, but other compounds, of which far-red-light absorption properties are most compatible with biological tissues irradiation, have been developed, such as phthalocyanines. This paper presents physico-chemical studies of the interaction of a disulfonated aluminium phthalocyanine (AlPcS2) with human LDLs. The data obtained are compared with the parameters of the interaction of these lipoproteins with deuteroporphyrin (DP) and chlorin e6 (Ce6). A close attention is paid to the dynamic aspects of these phenomena. The data obtained on these simple systems then allowed us to interpret the sub-cellular localization of the photosensitizers on a human line of fibroblasts, and to evaluate the influence of LDLs on the intracellular distribution of the compounds. This last point is of major importance because the localization of such photosensitizers (in particular AlPcS2) in endocytic vesicles and their subsequent ability to induce a release of the contents of these vesicles - including externally added macromolecules - into the cytosol is the basis for a recent method for macromolecule activation, named photochemical internalization (PCI). PCI has been shown to potentiate the biological activity of a large variety of macromolecules. The comprehension of the mechanisms governing this particular sub-cellular localization could allow

  8. Waterborne parasites and physico-chemical assessment of selected lakes in Malaysia.

    PubMed

    Onichandran, Subashini; Kumar, Thulasi; Lim, Yvonne A L; Sawangjaroen, Nongyao; Andiappan, Hemah; Salibay, Cristina C; Chye, Tan Tian; Ithoi, Init; Dungca, Julieta Z; Sulaiman, Wan Y W; Ling, Lau Yee; Nissapatorn, Veeranoot

    2013-12-01

    The objective of this study was to assess the physico-chemical parameters and waterborne parasites in selected recreational lakes from Malaysia. Samples were collected from seven stations of Recreational Lake A (RL-A) and six stations of Recreational Lake B (RL-B). The samples were processed to detect the presence of Giardia spp. and Cryptosporidium spp. using immunomagnetic separation kit, helminth eggs or ova by bright field microscopy and Acanthamoeba spp. by cultivation in non-nutrient agar. Chemical parameters such as ammonia, chlorine, fluoride, nitrate and nitrite and physical parameters such as dissolved oxygen, electrical conductivity, pH, salinity, temperature and total dissolved solid were also measured. Both lakes were freshwater with salinity ranging from 0.05 to 0.09 ppt. Most stations of these lakes were contaminated with Cryptosporidium spp., Giardia spp., Ascaris spp. and hookworm. Schistosoma spp. was found in RL-B only, while Acanthamoeba spp. was found in all stations. Of all sampling sites, station 5 of RL-B is the most contaminated. Linear regression and correlation analysis revealed that Giardia spp. and Schistosoma spp. showed a significant negative correlation with turbidity (p < 0.01). Based on the preliminary data obtained, it is clearly shown that there is a necessity to implement the detection of waterborne parasites and physico-chemical analysis in Malaysia. Future work on heavy metals (chromium, copper, mercury and zinc) is recommended to enhance the overall water quality monitoring and to take appropriate safety measures to ensure maintenance of good water standards.

  9. Liposomes for Topical Use: A Physico-Chemical Comparison of Vesicles Prepared from Egg or Soy Lecithin

    PubMed Central

    Budai, Lívia; Kaszás, Nóra; Gróf, Pál; Lenti, Katalin; Maghami, Katayoon; Antal, István; Klebovich, Imre; Petrikovics, Ilona; Budai, Marianna

    2013-01-01

    Developments in nanotechnology and in the formulation of liposomal systems provide the opportunity for cosmetic dermatology to design novel delivery systems. Determination of their physico-chemical parameters has importance when developing a nano-delivery system. The present study highlights some technological aspects/characteristics of liposomes formulated from egg or soy lecithins for topical use. Alterations in the pH, viscosity, surface tension, and microscopic/macroscopic appearance of these vesicular systems were investigated. The chemical composition of the two types of lecithin was checked by mass spectrometry. Caffeine, as a model molecule, was encapsulated into multilamellar vesicles prepared from the two types of lecithin: then zeta potential, membrane fluidity, and encapsulation efficiency were compared. According to our observations, samples prepared from the two lecithins altered the pH in opposite directions: egg lecithin increased it while soy lecithin decreased it with increased lipid concentration. Our EPR spectroscopic results showed that the binding of caffeine did not change the membrane fluidity in the temperature range of possible topical use (measured between 2 and 50 °C). Combining our results on encapsulation efficiency for caffeine (about 30% for both lecithins) with those on membrane fluidity data, we concluded that the interaction of caffeine with the liposomal membrane does not change the rotational motion of the lipid molecules close to the head group region. In conclusion, topical use of egg lecithin for liposomal formulations can be preferred if there are no differences in the physico-chemical properties due to the encapsulated drugs, because the physiological effects of egg lecithin vesicles on skin are significantly better than that of soy lecithin liposomes. PMID:24482779

  10. The preparation of low electroendosmosis agarose and its physico-chemical property

    NASA Astrophysics Data System (ADS)

    Hu, Rugui; Liu, Xiaolei; Liu, Li; Zhang, Quanbin; Zhang, Hong; Niu, Xizhen

    2007-10-01

    Studies on Gelidium amansii agar fractionations were carried out in this paper. Gelidium amansii agar was fractionated on DEAE-Cellulose, and four fractions were obtained sequentially. The fractions were analyzed on physical and chemical properties, and IR and 13C-NMR spectroscopy applied for elucidating the chemical structure. Among the four fractions obtained, water fraction measured up to the standard of low EEO agarose. The sulfate content, ash content, electroendosmosis and gel strength (1%) of water fraction were 0.16%, 0.34%, 0.12 and 1 130g/cm2 respectively, similar to those of the Sigma products.

  11. Influence of wood-derived biochar on the physico-mechanical and chemical characteristics of agricultural soils

    NASA Astrophysics Data System (ADS)

    Ahmed, Ahmed S. F.; Raghavan, Vijaya

    2018-01-01

    Amendment of soil with biochar has been shown to enhance fertility and increase crop productivity, but the specific influence of biochar on soil workability remains unclear. Select physico-mechanical and chemical properties of clay loam and sandy loam soils were measured after amendment with wood-derived biochar of two particle size ranges (0.5-425 and 425-850 µm) at five dosages ranging from 0.5 to 10% dry weight. Whereas the clay loam soil workability decreased when the finer wood-derived biochar was applied at rates of 6 or 10%, soil fertility was not enhanced. The sandy loam soil, due to Proctor compaction, significantly decreased in bulk density with 6 and 10% wood-derived biochar amendments indicating higher soil resistance to compaction.

  12. Detailed physico-chemical characterization of microplastics from North Atlantic Gyre

    NASA Astrophysics Data System (ADS)

    ter Halle, A.; Ladirat, L.; Gendre, X.; Goudouneche, D.; Pusineri, C.; Routaboul, C.; Tenailleau, C.; Duployer, B.; Perez, E.

    2016-02-01

    More than 260 million tonnes of plastic are used each year. Based on population density and economic status of costal countries the mass of land based plastic waste entering the ocean was recently estimated between 4.8 to 12.7 million metric tons per year1. Most striking is the estimation for 2025 that this amount will increase by an order of magnitude if waste management infrastructures are not improved. Plastic debris is abundant and widespread in the marine habitat. Marine plastic pollution has been recently recognized as a global environmental threat2. There is still a need for detailed research in terms of estimating the global scale of plastic inputs, their fate in the environment as well as the biological responses to plastic exposure in a variety of marine organisms. In this context, the present study aimed at giving a detailed physico-chemical characterization of the microplastics collected at the surface of the North Atlantic accumulation zone. A detailed description of the plastics is given in terms of size, width, density and weight together with a microscopic and infrared spectroscopy characterization. In this study, also we introduce a new fragmentation mechanism of the microplastics based on the physico-chemical data collected. This approach will be helpful for oceanographic modelling. The results will be also very useful to better understand the biological response to the plastic in terms of transfer of chemical in case of ingestion or to better understand the formation and development of the plastisphere. 1 Jambeck, J. R.; Geyer, R.; Wilcox, C.; Siegler, T. R.; Perryman, M.; Andrady, A.; Narayan, R.; Lavender Law, K., Plastic waste inputs from land into the ocean 2 Moore, C. J., Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research 2008, 108, (2), 131-139.

  13. Exploration of interactions between bioactive solutes and vitamin B9 in aqueous medium by physico-chemical contrivances

    NASA Astrophysics Data System (ADS)

    Roy, Mahendra Nath; Chakraborti, Palash; Ekka, Deepak

    2014-09-01

    Molecular interaction prevailing in α-amino acids (glycine, L-alanine, L-valine) and aqueous solution of folic acid (FA) has been reported by physico-chemical properties as density (ρ), viscosity (η), refractive index (nD) and ultrasonic speed (u) at 298.15 K. The extent of interaction (solute-solvent interaction) is expressed in terms of the limiting apparent molar volume (φ0V), viscosity B-coefficient, molar refraction (RM) and limiting apparent molar adiabatic compressibility (φ0K). The trends in transfer volumes, Δφ0V, have been interpreted in terms of solute-cosolute interactions on the basis of a co-sphere overlap model. The role of the cosolute (FA), and the contribution of solute-solute and solute-solvent interactions to the solution complexes, has also been analysed through the derived properties.

  14. Synthesis of mouse centromere-targeted polyamides and physico-chemical studies of their interaction with the target double-stranded DNA.

    PubMed

    Nozeret, Karine; Bonan, Marc; Yarmoluk, Serguiy M; Novopashina, Darya S; Boutorine, Alexandre S

    2015-09-01

    Synthetic minor groove-binding pyrrole-imidazole polyamides labeled by fluorophores are promising candidates for fluorescence imaging of double-stranded DNA in isolated chromosomes or fixed and living cells. We synthesized nine hairpin and two head-to-head tandem polyamides targeting repeated sequences from mouse major satellites. Their interaction with synthetic target dsDNA has been studied by physico-chemical methods in vitro before and after coupling to various fluorophores. Great variability in affinities and fluorescence properties reveals a conclusion that these properties do not only rely on recognition rules, but also on other known and unknown structural factors. Individual testing of each probe is needed before cellular applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Effect of gamma and electron beam irradiation on the physico-chemical and nutritional properties of mushrooms: a review.

    PubMed

    Fernandes, Ângela; Antonio, Amilcar L; Oliveira, M Beatriz P P; Martins, Anabela; Ferreira, Isabel C F R

    2012-11-15

    The short shelf-life of mushrooms is an obstacle to the distribution and marketing of the fresh product. Thus, prolonging postharvest storage, while preserving their quality, would benefit the mushroom industry as well as consumers. There has been extensive research on finding the most appropriate technology for mushrooms preservation. Gamma, electron-beam and UV irradiation have been shown to be potential tools in extending the postharvest shelf-life of fresh mushrooms. Studies evaluating the effects of ionizing radiation are available mainly in cultivated species such as Agaricus bisporus, Lentinus edodes and Pleurotus ostreatus. This review comprises a comprehensive study of the effects of irradiation on physico-chemical parameters (weight, colour, texture and pH), chemical compounds including nutrients (proteins, sugars and vitamins) and non-nutrients (phenolics, flavonoids and flavour compounds), and on biochemical parameters such as enzymatic activity of mushrooms for different species and from different regions of the world. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Relationship between physico-chemical characteristics and potential toxicity of PM10.

    PubMed

    Megido, Laura; Suárez-Peña, Beatriz; Negral, Luis; Castrillón, Leonor; Suárez, Susana; Fernández-Nava, Yolanda; Marañón, Elena

    2016-11-01

    PM10 was sampled at a suburban location affected by traffic and industry in the north of Spain. The samples were analysed to determine the chemical components of PM10 (organic and elemental carbon, soluble chemical species and metals). The aim of this study was to assess the toxicity of PM10 in terms of the bulk analysis and the physico-chemical properties of the particles. Total carbon, sulphates, ammonium, chlorides and nitrates were found to be the major constituents of PM10. The contribution of the last of these was found to increase significantly with PM10 concentration (Pearson coefficient correlation of 0.7, p-value < 0.001). Individual airborne particles were characterised morphologically and chemically via a combination of Scanning Electron Microscopy and Energy-Dispersive X-ray spectroscopy (SEM-EDX). The subsequent image analysis revealed C-rich particles with shapes that pointed to combustion processes. Moreover, carbonaceous particles seemed to act as vehicles for sulphur compounds and metals (S, Na, Fe, Ca, Mg, K, Al, Mn, Zn and Cu). Coarse particles were found to be mainly constituted by crustal material and marine and carbonaceous particles. Although most of the studied individual particles in PM10 samples (86.0%) had a diameter within the 0.1-2.5 μm range, 1.8% of them had sizes lower than 0.1 μm 40.2% of the total studied particles were estimated to be inhaled and deposited in the human respiratory tract; 12.3% of these particles would reach the deepest zones, thereby posing a major risk to human health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The influence of physico-chemical properties of soils on the bioavailability of 65Zn

    NASA Astrophysics Data System (ADS)

    Kochetkov, Ilia; Anisimov, Vyacheslav

    2014-05-01

    Stability of soils to the effects of man-made origin pollutants is determined by their buffer capaci-ty (the ability to inactivate pollutants in a soil - soil solution - plant system). Soils are character-ized by the same types of stability as the ecosystem as a whole. Increased migration activity of pollutants is a symptom of ecological trouble, due to the soil transformation in an unstable state. Thus, the problem of the stability of soil is one of the fundamental problems of modern science. The aim of the study was to estimate the buffering capacity of soil as a key factor of their ecological and geochemical stability with respect to a relatively long-lived radionuclides 65Zn (T1/2 = 224 days), representing the radiological hazard in the location of nuclear facilities. There was proposed a method for scoring the buffering capacity of soils as for 65Zn contamination. It's based on dependence between the main physico-chemical soil properties and accumulation of the radionuclide in the aboveground plant parts (barley kind of "Zazersky-85"). The role of the considered indicators of soil health in the accumulation of radiozinc by plants was defined. The essence of this technique was to assess the contribution of individual characteristics of the soil condition, which play the most important role in the regulation of mobility (and bioavailability) of radionuclides, using the method of stepwise multiple regression analysis. For this aim representative sampling was compiled (from 20 soil types and varieties belonging to different climatic zones of the European part of the Russian Federation), thus providing a wide range of variation of the studied physical and chemical parameters, and also vegetation model experiments using 65Zn were held. On the basis of the conducted statistical analysis was revealed that the dominant contribution to the variation of the effective trait (accumulation coefficient of 65Zn) make: CaCO3 content, mobile iron (Tamm extract) and pH. As a

  18. Effect of residual water content on the physico-chemical properties of sucralfate dried gel obtained by microwave drying.

    PubMed

    Gainotti, Alessandro; Losi, Elena; Bettini, Ruggero; Colombo, Paolo; Sonvico, Fabio; Baroni, Daniela; Santi, Patrizia; Colombo, Gaia

    2005-08-01

    The purpose of this study was to investigate the physico-chemical characteristics of sucralfate humid gel dried by microwaves, in relation to the residual water content. Differential scanning calorimetry (DSC) allowed for the determination of the water state in sucralfate samples. Fourier-transform infrared (FT-IR) spectroscopy was used to monitor the changes in sucralfate gel structure induced by the microwave drying. A boundary value of total water content for sucralfate gel samples was found at 42% (w/w). Below this value only bound water was present, whereas above this value, the increase in total water was due to free water. In the physical form of gel, the strength of the coordination between sulfate anions and the positively charged aluminum hydroxide was dependent on the residual water content. The study of the sedimentation behavior of water suspensions prepared with dried sucralfate allowed for the evaluation of the retention of gel properties. We found that the microwave drying process affected the sedimentation of sucralfate dried gel suspensions independent of the residual water content: when suspensions were prepared from sucralfate dried gel powders containing more than 42% (w/w) of residual water, the sedimentation ratio was higher than 0.9. The non-gel powder suspension showed a sedimentation ratio of 0.68 +/- 0.02, whereas the sucralfate humid gel suspension did not sediment.

  19. Fabrication and physico-mechanical properties of thin magnetron sputter deposited silver-containing hydroxyapatite films

    NASA Astrophysics Data System (ADS)

    Ivanova, A. A.; Surmeneva, M. A.; Tyurin, A. I.; Pirozhkova, T. S.; Shuvarin, I. A.; Prymak, O.; Epple, M.; Chaikina, M. V.; Surmenev, R. A.

    2016-01-01

    As a measure of the prevention of implant associated infections, a number of strategies have been recently applied. Silver-containing materials possessing antibacterial activity as expected might have wide applications in orthopedics and dentistry. The present work focuses on the physico-chemical characterization of silver-containing hydroxyapatite (Ag-HA) coating obtained by radio frequency (RF) magnetron sputtering. Mechanochemically synthesized Ag-HA powder (Ca10⿿xAgx(PO4)6(OH)2⿿x, x = 1.5) was used as a precursor for sputtering target preparation. Morphology, composition, crystallinity, physico-mechanical features (Young's modulus and nanohardness) of the deposited Ag-HA coatings were investigated. The sputtering of the nanostructured multicomponent target at the applied process conditions allowed to deposit crystalline Ag-HA coating which was confirmed by XRD and FTIR data. The SEM results revealed the formation of the coating with the grain morphology and columnar cross-section structure. The EDX analysis confirmed that Ag-HA coating contained Ca, P, O and Ag with the Ca/P ratio of 1.6 ± 0.1. The evolution of the mechanical properties allowed to conclude that addition of silver to HA film caused increase of the coating nanohardness and elastic modulus compared with those of pure HA thin films deposited under the same deposition conditions.

  20. Cholinium-amino acid based ionic liquids: a new method of synthesis and physico-chemical characterization.

    PubMed

    De Santis, Serena; Masci, Giancarlo; Casciotta, Francesco; Caminiti, Ruggero; Scarpellini, Eleonora; Campetella, Marco; Gontrani, Lorenzo

    2015-08-28

    In the present work we report the synthesis and physico-chemical characterization in terms of the viscosity and density of a wide series of cholinium-amino acid based room temperature ionic liquids ([Ch][AA] RTILs). 18 different amino acids were used to obtain 14 room temperature ILs. Among the most common AAs, only valine did not form an RTIL but it is a liquid above 80 °C. With respect to the methods reported in the literature we propose a synthesis based on potentiometric titration which has several advantages such as shorter preparation time, stoichiometry within ±1%, very high yields (close to 100%), high reproducibility, and no use of organic solvents, thus being more environmentally friendly. We tried to prepare dianionic ILs with some AAs with two potentially ionisable groups but in all cases the salts were solids at room temperature. All the ILs were characterized by (1)H NMR to confirm the stoichiometry. Physico-chemical properties such as density, viscosity, refractive index and conductivity were measured as a function of temperature and correlated with empirical equations. The values were compared with the data already reported in the literature for some [Ch][AA] ILs. The thermal expansion coefficient αp and the molar volume Vm were also calculated from the experimental density values. Due to the high number of AAs explored and their structural heterogeneity we have been able to find some interesting correlations between the data obtained and the structural features of the AAs in terms of the alkyl chain length, hydrogen bonding ability, stacking and cyclization. Some parameters were also found to be in good agreement with those reported for other ILs. We think that these data can give an important contribution to the understanding of the structure-property relationship of ILs because they focused on the structural effect of the anions, while most data in the literature are focussed on the cations.

  1. Seasonal variations in physico-chemical characteristics of Tuticorin coastal waters, southeast coast of India

    NASA Astrophysics Data System (ADS)

    Balakrishnan, S.; Chelladurai, G.; Mohanraj, J.; Poongodi, J.

    2017-07-01

    Physico-chemical parameters were determined along the Vellapatti, Tharuvaikulam and Threspuram coastal waters, southeast coast of India. All the physico-chemical parameters such as sea surface temperature, salinity, pH, total alkalinity, total suspended solids, dissolved oxygen and nutrients like nitrate, nitrite, inorganic phosphate and reactive silicate were studied for a period of 12 months (June 2014-May 2015). Sea surface temperature varied from 26.4 to 29.7 °C. Salinity varied from 26.1 and 36.2 ‰, hydrogen ion concentration ranged between 8.0 and 8.5. Variation in dissolved oxygen content was from 4.125 to 4.963 mg l-1. Total alkalinity ranged from 64 to 99 mg/l. Total suspended solids ranged from 24 to 97 mg/l. Concentrations of nutrients, viz. nitrates (2.047-4.007 μM/l), nitrites (0.215-0.840 μM/l), phosphates (0.167-0.904 µM/l), total phosphorus (1.039-3.479 μM/l), reactive silicates (3.737-8.876 μM/l) ammonia (0.078-0.526 μM/l) and also varied independently.

  2. Influence of type of amphora on physico-chemical properties and antioxidant capacity of 'Falanghina' white wines.

    PubMed

    Baiano, Antonietta; Varva, Gabriella; De Gianni, Antonio; Viggiani, Ilaria; Terracone, Carmela; Del Nobile, Matteo Alessandro

    2014-03-01

    The present research was aimed to evaluate the effects of ageing and type of container on physico-chemical indices and on antioxidant compounds of 'Falanghina' wines. Wines were stored for 12months in raw, glazed, and engobe amphorae, and in stainless steel tanks. Lactic, acetic, citric, succinic, and hydroxycinnamoyl tartaric acids, and the antioxidant capacity (DPPH assay) were not affected by the type of container for the duration of the ageing. Flavonoids decreased by about 85% in all the containers. The concentrations of flavans reactive with vanilline were reduced by 100% in raw and glazed amphorae, 23% in engobe amphorae, and 59% in stainless steel tanks. The hydroxycinnamoyl tartaric acids decreased by about 11% in raw and engobe amphorae and by ∼22% in glazed amphorae and in stainless steel tanks. During the whole ageing time, the decrease of the antioxidant capacity ranged from 28% (raw amphorae) to 43% (stainless steel tanks). Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Development of corn starch based green composites reinforced with Saccharum spontaneum L fiber and graft copolymers--evaluation of thermal, physico-chemical and mechanical properties.

    PubMed

    Kaith, B S; Jindal, R; Jana, A K; Maiti, M

    2010-09-01

    In this paper, corn starch based green composites reinforced with graft copolymers of Saccharum spontaneum L. (Ss) fiber and methyl methacrylates (MMA) and its mixture with acrylamide (AAm), acrylonitrile (AN), acrylic acid (AA) were prepared. Resorcinol-formaldehyde (Rf) was used as the cross-linking agent in corn starch matrix and different physico-chemical, thermal and mechanical properties were evaluated. The matrix and composites were found to be thermally more stable than the natural corn starch backbone. Further the matrix and composites were subjected for biodegradation studies through soil composting method. Different stages of biodegradation were evaluated through FT-IR and scanning electron microscopic (SEM) techniques. S. spontaneum L fiber-reinforced composites were found to exhibit better tensile strength. On the other hand Ss-g-poly (MMA) reinforced composites showed maximum compressive strength and wear resistance than other graft copolymers reinforced composite and the basic matrix. (c) 2010 Elsevier Ltd. All rights reserved.

  4. Authentication of vegetable oils on the basis of their physico-chemical properties with the aid of chemometrics.

    PubMed

    Zhang, Guowen; Ni, Yongnian; Churchill, Jane; Kokot, Serge

    2006-09-15

    In food production, reliable analytical methods for confirmation of purity or degree of spoilage are required by growers, food quality assessors, processors, and consumers. Seven parameters of physico-chemical properties, such as acid number, colority, density, refractive index, moisture and volatility, saponification value and peroxide value, were measured for quality and adulterated soybean, as well as quality and rancid rapeseed oils. Chemometrics methods were then applied for qualitative and quantitative discrimination and prediction of the oils by methods such exploratory principal component analysis (PCA), partial least squares (PLS), radial basis function-artificial neural networks (RBF-ANN), and multi-criteria decision making methods (MCDM), PROMETHEE and GAIA. In general, the soybean and rapeseed oils were discriminated by PCA, and the two spoilt oils behaved differently with the rancid rapeseed samples exhibiting more object scatter on the PC-scores plot, than the adulterated soybean oil. For the PLS and RBF-ANN prediction methods, suitable training models were devised, which were able to predict satisfactorily the category of the four different oil samples in the verification set. Rank ordering with the use of MCDM models indicated that the oil types can be discriminated on the PROMETHEE II scale. For the first time, it was demonstrated how ranking of oil objects with the use of PROMETHEE and GAIA could be utilized as a versatile indicator of quality performance of products on the basis of a standard selected by the stakeholder. In principle, this approach provides a very flexible method for assessment of product quality directly from the measured data.

  5. Physico-chemical properties, wax composition, aroma profiles, and antioxidant activity of granulated non-centrifugal sugars from sugarcane cultivars of Thailand.

    PubMed

    Weerawatanakorn, Monthana; Asikin, Yonathan; Takahashi, Makoto; Tamaki, Hajime; Wada, Koji; Ho, Chi-Tang; Chuekittisak, Raweewan

    2016-11-01

    Non-centrifugal cane sugar (NCS) is globally consumed and has various health benefits. It is mostly produced in hardened block form, which is less convenient than in granulated form for food applications. In terms of the traditional processing of NCS, preparation of granulated products is difficult due to the impurities found in the cane juice extracted from the whole stalk. Therefore, the aim of this study was to characterize and determine the physico-chemical properties, wax composition (policosanols and long-chain aldehydes), volatile aroma profiles, and antioxidant activity of traditional NCS in granular form made from four different cane cultivars of Thailand. The total soluble solid, pH, color, and mineral content varied among the sugarcane cultivars, whereas there was no significant difference in the total sugar, phenolic and flavonoid content. The total policosanol, a cholesterol-lowering nutraceutical wax component, and long-chain aldehyde contents were similar in the NCS products amongst three cultivars, and ranged from 2.63 to 3.69 mg/100 g. The granulated NCS products, in which acetaldehyde and dimethyl sulfide were the main volatile compounds, gave less aroma components than traditional NCS. The use of different sugarcane cultivars thus influenced the quality attributes of granulated non-centrifugal sugar products.

  6. Preparation of mayonnaise from extracted plant protein isolates of chickpea, broad bean and lupin flour: chemical, physiochemical, nutritional and therapeutic properties.

    PubMed

    Alu'datt, Muhammad H; Rababah, Taha; Alhamad, Mohammad N; Ereifej, Khalil; Gammoh, Sana; Kubow, Stan; Tawalbeh, Deia

    2017-05-01

    This investigation was aimed to study the molecular, physico-chemical, and biofunctional health properties of mayonnaise prepared using proteins isolated from broad bean, lupin and chickpea flour. Proteins were isolated from chickpea (CPPI), broad bean (BBPI) and lupin (LPPI) flour and assessed for molecular, physico-chemical, biofunctional, and protein yield. The highest water holding capacity, foaming stability, emulsion stability as well as protein yield and protein content of 44.0, 70.8, 37.5, 81.2, and 36.4, respectively were observed for BBPI. Mayonnaise prepared from the isolated plant proteins was evaluated for chemical composition, molecular properties of the protein subunits, and potential nutraceutical properties. Preparation of mayonnaise using BBPI or a mixture of either BBPI and CPPI or BBPI and LPPI showed superior values for lightness and lowered values for redness. Mayonnaise prepared from either BBPI or the BBPI and CPPI mixture showed the best antioxidant, antihypertensive and antidiabetic properties. The present study results indicated that the use of the BBPI and CPPI mixture can be a novel technological approach for the development of a mayonnaise with improved health promoting properties.

  7. Urban stormwater treatment by a constructed wetland: Seasonality impacts on hydraulic efficiency, physico-chemical behavior and heavy metal occurrence.

    PubMed

    Walaszek, M; Bois, P; Laurent, J; Lenormand, E; Wanko, A

    2018-05-09

    Urban stormwater affects the general quality of water bodies because of their hydraulic and pollution impacts. Stormwater discharges modify stream water flow and are reported as major source of heavy metals (HMs) in urban streams. Stormwater Constructed Wetlands (SCWs) have been built worldwide to manage stormwater before it is released into hydrosystems. In SCWs, stormwater is stored, evaporated and sometimes infiltrated. Subsequently, the HMs in stormwater can be settled, filtered and bioassimilated by microorganisms. Hence, the efficiency of SCWs in managing stormwater depends on climatic conditions, which change with season. The aim of this study was to investigate the impacts of seasonality on the performance of a 6-year-old constructed wetland made with a pond followed by a vertical flow filter. Hydraulic performance of, physico-chemical behaviour of, and HM mitigation via the SCW were evaluated using over 3 years of monitoring (2015-2017) data. Only 35% of the rain events that occurred in the studied catchment caused a discharge into the pond and 17% into the filter. The SCW was mostly supplied with stormwater in spring and summer and provided peak flow attenuation from 97 to 100% in all seasons. Variations in physico-chemical parameters (temperature, dissolved oxygen, pH, and redox potential) were caused by seasonal and dry/wet weather changes. They were greater in the pond than in the filter, which buffers these variations. The high physico-chemical variations in the pond probably had a deleterious effect on HM storage in the pond sediments. Finally, hydrologic and physico-chemical conditions (antecedent dry period length, pH, redox potential) affected the HM concentrations along the SCW. However, HM removal efficiencies were >97% in all seasons. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Physico-chemical and sensory characteristics of steviolbioside synthesized from stevioside and its application in fruit drinks and food.

    PubMed

    Khattab, Sherine N; Massoud, Mona I; Abd El-Razek, Amal M; El-Faham, Ayman

    2017-01-01

    Steviolbioside (Sb) was synthesized from stevioside and characterized by infrared, nuclear magnetic resonance ( 1 H NMR and 13 C NMR) spectroscopy. The purity melting point, solubility, acute toxicity, heat stability and sensory properties of Sb were evaluated. Physico-chemical and sensory properties of low calorie fruit drinks and shortened cake prepared by replacing sugar with Sb were evaluated. Sb was stable in neutral or acidic aqueous solutions maintained at 100 °C for 2 h. The sweetness intensity rate of Sb was found to be about 44 and 18.51 times sweeter than 0.5% and 10% sucrose solution, respectively. Sb solutions had sweet taste without bitterness compared to stevioside. No significant differences between the organoleptic properties of cakes prepared using sugar and those prepared replacing sugar with 50% Sb were observed. All drinks replacing sugar with Sb at 66% level had the highest overall acceptability scores comparable to those prepared using sugar alone.

  9. Assessment of physico-chemical quality of borehole and spring water sources supplied to Robe Town, Oromia region, Ethiopia

    NASA Astrophysics Data System (ADS)

    Shigut, Dagim Abera; Liknew, Geremew; Irge, Dejene Disasa; Ahmad, Tanweer

    2017-03-01

    The study was carried out to find the physico-chemical water quality of borehole and spring water supplied to Robe Town. For this study, a total of six water samples were collected from three borehole and three spring water sources. The analyses for 14 physico-chemical parameters, pH, turbidity, electrical conductivity, total dissolved solids, total suspended solids total hardness cations (Ca2+, Mg2+), anions (NO2 -, NO3 -, SO4 2- and PO4 3-) and heavy metals (Fe and Mn), were done in the laboratory by adopting standard procedures suggested by the American Public Health Association (APHA). Descriptive statistics were used to describe data, while Pearson correlation was used to determine the influences of the physico-chemical variables. The single factor analysis of variance ( t test) was used to determine possible differences between the borehole and spring water, while means plots were used for further structure detection. From the total samples analyzed, most of the samples comply with the water quality guidelines of Ethiopian limit, WHO and U.SEPA. The pH of the water samples from borehole groundwater source was found to be slightly acidic and bove the maximum permissible limit (MPL). High concentration of Fe and Mn that exceeds the MPL set by WHO was found in the three boreholes. The spring water sources were found to be better for drinking than borehole water sources.

  10. Albumin-derived perfluorocarbon-based artificial oxygen carriers: A physico-chemical characterization and first in vivo evaluation of biocompatibility.

    PubMed

    Wrobeln, Anna; Laudien, Julia; Groß-Heitfeld, Christoph; Linders, Jürgen; Mayer, Christian; Wilde, Benjamin; Knoll, Tanja; Naglav, Dominik; Kirsch, Michael; Ferenz, Katja B

    2017-06-01

    Until today, artificial oxygen carriers have not been reached satisfactory quality for routine clinical treatments. To bridge this gap, we designed albumin-derived perfluorocarbon-based nanoparticles as novel artificial oxygen carriers and evaluated their physico-chemical and pharmacological performance. Our albumin-derived perfluorocarbon-based nanoparticles (capsules), composed of an albumin shell and a perfluorodecalin core, were synthesized using ultrasonics. Their subsequent analysis by physico-chemical methods such as scanning electron-, laser scanning- and dark field microscopy as well as dynamic light scattering revealed spherically-shaped, nano-sized particles, that were colloidally stable when dispersed in 5% human serum albumin solution. Furthermore, they provided a remarkable maximum oxygen capacity, determined with a respirometer, reflecting a higher oxygen transport capacity than the competitor Perftoran®. Intravenous administration to healthy rats was well tolerated. Undesirable effects on either mean arterial blood pressure, hepatic microcirculation (determined by in vivo microscopy) or any deposit of capsules in organs, except the spleen, were not observed. Some minor, dose-dependent effects on tissue damage (release of cellular enzymes, alterations of spleen's micro-architecture) were detected. As our promising albumin-derived perfluorocarbon-based nanoparticles fulfilled decisive physico-chemical demands of an artificial oxygen carrier while lacking severe side-effects after in vivo administration they should be advanced to functionally focused in vivo testing conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Physico-chemical characteristics of water samples of Bantwal Taluk, south-western Karnataka, India.

    PubMed

    Smitha, P G; Byrappa, K; Ramaswamy, S N

    2007-07-01

    Quality of water is an important criterion for evaluating the suitability of water for irrigation and drinking. In the present study the analysis of water samples from different sources like open wells, bore wells, farm ponds and streams/rivers of twenty villages of Bantwal taluk of Dakshina Kannada district, South-western Kamataka has been carried out. The physico-chemical characteristics of this water showed that it is suitable for irrigation and agricultural purposes.

  12. Establishing physico-chemical reference conditions in Mediterranean streams according to the European Water Framework Directive.

    PubMed

    Sánchez-Montoya, María del Mar; Arce, Maria Isabel; Vidal-Abarca, María Rosario; Suárez, María Luisa; Prat, Narcís; Gómez, Rosa

    2012-05-01

    Type-specific physico-chemical reference conditions are required for the assessment of ecological status in the Water Framework Directive context, similarly to the biological and hydro-morphological elements. This directive emphasises that natural variability of quality elements in high status (reference condition) needs to be quantified. Mediterranean streams often present a marked seasonal pattern in hydrological, biological and geochemical processes which could affect physico-chemical reference conditions. This study establishes general physico-chemical reference conditions (oxygenation, nutrient, salinity and acidification conditions) for different Mediterranean stream types. 116 potential reference sites located in 23 Mediterranean catchments in Spain were sampled in spring, summer and autumn in 2003. All sites were subjected to a screening method for the selection of reference sites in Mediterranean streams (Mediterranean Reference Criteria) and classified using a pre-established stream typology that establishes five different stream types (temporary streams, evaporite-calcareous at medium altitude, siliceous headwaters, calcareous headwaters and large watercourses). Reference conditions (reference value and reference threshold equivalents to high-good class boundary) were calculated using two different methods according to the availability of reference sites: the reference site 75th percentile approach of all reference sites and the 25th percentile of the population approach. The majority of the studied potential reference sites (76 out of 116) were selected as reference sites. Regarding type-specific reference conditions, only siliceous headwaters could be considered different from the rest of stream types because lower conductivity and pH. All reference stream types presented seasonal differences as regards some parameters, except for temporary streams due to the high natural variation of this stream type. For those parameters which presented seasonal

  13. Construction Costs and Physico-chemical Properties of the Assimilatory Organs of Nepenthes Species in Northern Borneo

    PubMed Central

    Osunkoya, Olusegun O.; Daud, Siti Dayanawati; Di-Giusto, Bruno; Wimmer, Franz L.; Holige, Thippeswamy M.

    2007-01-01

    Background and Aims Species of the Nepenthaceae family are under-represented in studies of leaf traits and the consequent view of mineral nutrition and limitation in carnivorous plants. This study is aimed to complement existing data on leaf traits of carnivorous plants. Methods Physico-chemical properties, including construction costs (CC), of the assimilatory organs (leaf and pitcher) of a guild of lowland Nepenthes species inhabiting heath and/or peat swamp forests of Brunei, Northern Borneo were determined. Key Results Stoichiometry analyses indicate that Nepenthes species are nitrogen limited. Most traits vary appreciably across species, but greater variations exist between the assimilatory organs. Organ mass per unit area, dry matter tissue concentration (density), nitrogen (N), phosphorus (P), carbon, heat of combustion (Hc) and CC values were higher in the leaf relative to the pitcher, while organ thickness, potassium (K) and ash showed the opposite trend. Cross-species correlations indicate that joint rather than individual consideration of the leaf and the pitcher give better predictive relationships between variables, signalling tight coupling and functional interdependence of the two assimilatory organs. Across species, mass-based CC did not vary with N or P, but increases significantly with tissue density, carbon and Hc, and decreases with K and ash contents. Area-based CC gave the same trends (though weaker in strength) in addition to a significant positive correlation with tissue mass per unit area. Conclusions The lower CC value for the pitcher is in agreement with the concept of low marginal cost for carnivory relative to conventional autotrophy. The poor explanatory power of N, P or N : P ratio with CC suggests that factors other than production of expensive photosynthetic machinery (which calls for a high N input), including concentrations of lignin, wax/lipids or osmoregulatory ions like K+, may give a better explanation of the CC variation

  14. A comprehensive study of the toxicity of natural multi-contaminated sediments: New insights brought by the use of a combined approach using the medaka embryo-larval assay and physico-chemical analyses.

    PubMed

    Barjhoux, Iris; Clérandeau, Christelle; Menach, Karyn Le; Anschutz, Pierre; Gonzalez, Patrice; Budzinski, Hélène; Morin, Bénédicte; Baudrimont, Magalie; Cachot, Jérôme

    2017-08-01

    Sediment compartment is a long term sink for pollutants and a secondary source of contamination for aquatic species. The abiotic factors controlling the bioavailability and thus the toxicity of complex mixtures of pollutants accumulated in sediments are poorly documented. To highlight the different factors influencing sediment toxicity, we identified and analyzed the physico-chemical properties, micro-pollutant contents, and toxicity level of six contrasted sediments in the Lot-Garonne continuum. Sediment toxicity was evaluated using the recently described Japanese medaka (Oryzias latipes) embryo-larval assay with direct exposure to whole sediment (MELAc). Multiple toxicity endpoints including embryotoxicity, developmental defects and DNA damage were analyzed in exposed embryos. Chemical analyses revealed significant variations in the nature and contamination profile of sediments, mainly impacted by metallic trace elements and, unexpectedly, polycyclic aromatic hydrocarbons. Exposure to sediments induced different toxic impacts on medaka early life stages when compared with the reference site. Principal component analysis showed that the toxic responses following exposure to sediments from the Lot River and its tributary were associated with micro-pollutant contamination: biometric measurements, hatching success, genotoxicity, craniofacial deformities and yolk sac malabsorption were specifically correlated to metallic and organic contaminants. Conversely, the main biological responses following exposure to the Garonne River sediments were more likely related to their physico-chemical properties than to their contamination level. Time to hatch, cardiovascular injuries and spinal deformities were correlated to organic matter content, fine particles and dissolved oxygen levels. These results emphasize the necessity of combining physico-chemical analysis of sediment with toxicity assessment to accurately evaluate the environmental risks associated with sediment

  15. Inclusion compound of vitamin B6 in β-CD. Physico-chemical and structural investigations

    NASA Astrophysics Data System (ADS)

    Borodi, Gheorghe; Kacso, Irina; Farcaş, Sorin I.; Bratu, Ioan

    2009-08-01

    Structural and physico-chemical characterization of supramolecular assembly of vitamin B6 with β-cyclodextrin (β-CD) prepared by different methods (kneading, co-precipitation and freeze-drying) has been performed by using several spectroscopic techniques (FTIR, 1H NMR, UV-Vis), powder X-ray diffraction and DSC in order to evidence the inclusion compound formation. An analysis of the chemical shifts observed in the 1H-NMR spectra and of the vibrational frequency shifts led to the tentative conclusion that the vitamin B6 probably enters the cyclodextrin torus when forming the β-CD-vitamin B6 inclusion complex.

  16. Toward a Reasoned Classification of Diseases Using Physico-Chemical Based Phenotypes

    PubMed Central

    Schwartz, Laurent; Lafitte, Olivier; da Veiga Moreira, Jorgelindo

    2018-01-01

    Background: Diseases and health conditions have been classified according to anatomical site, etiological, and clinical criteria. Physico-chemical mechanisms underlying the biology of diseases, such as the flow of energy through cells and tissues, have been often overlooked in classification systems. Objective: We propose a conceptual framework toward the development of an energy-oriented classification of diseases, based on the principles of physical chemistry. Methods: A review of literature on the physical chemistry of biological interactions in a number of diseases is traced from the point of view of the fluid and solid mechanics, electricity, and chemistry. Results: We found consistent evidence in literature of decreased and/or increased physical and chemical forces intertwined with biological processes of numerous diseases, which allowed the identification of mechanical, electric and chemical phenotypes of diseases. Discussion: Biological mechanisms of diseases need to be evaluated and integrated into more comprehensive theories that should account with principles of physics and chemistry. A hypothetical model is proposed relating the natural history of diseases to mechanical stress, electric field, and chemical equilibria (ATP) changes. The present perspective toward an innovative disease classification may improve drug-repurposing strategies in the future. PMID:29541031

  17. Description and comparative study of physico-chemical parameters of the teleost fish skin mucus.

    PubMed

    Guardiola, Francisco A; Cuartero, María; Del Mar Collado-González, María; Arizcún, Marta; Díaz Baños, F Guillermo; Meseguer, José; Cuesta, Alberto; Esteban, María A

    2015-01-01

    The study of mucosal surfaces, and in particular the fish skin and its secreted mucus, has been of great interest recently among immunologists. Measurement of the viscosity and other physico-chemical parameters (protein concentration, pH, conductivity, redox potential, osmolality and density) of the skin mucus can help to understand its biological functions. We have used five marine species of teleost: gilthead seabream (Sparus aurata L.), European sea bass (Dicentrarchus labrax L.), shi drum (Umbrina cirrosa L.), common dentex (Dentex dentex L.) and dusky grouper (Epinephelus marginatus L.), all of them with commercial interest in the aquaculture of the Mediterranean area. Mucus showed a direct shear- and temperature-dependent viscosity, with a non-Newtonian behavior, which differed however between two groups: one with higher viscosity (D. labrax, U. cirrosa, D. dentex) and the other with lower viscosity (S. aurata, E. marginatus). In addition, there was a clear interrelation between density and osmolality, as well as between density and temperature. Taking into account that high values of viscosity should improve the barrier effect against pathogens but low values of viscosity are needed for good locomotion characteristics, our results may help elucidate the relationship between physico-chemical and biological parameters of skin mucus, and disease susceptibility.

  18. Physico-chemical properties of hydrophilic and amphiphilic crosslinked systems that influence biological responses

    NASA Astrophysics Data System (ADS)

    Ejiasi, Angel

    The effect of physical, chemical, and biological cues on the behavior of smooth muscle cells (SMCs) and attachment of marine organisms was investigated. Both hydrophilic and amphiphilic crosslinked polymer networks with varying chemical and mechanical properties were used to direct biological responses. Poly(2-hydroxyethyl methacrylate) (PHEMA) hydrogels were fabricated with tunable mechanical properties by varying the di-functional monomer concentration in the feed composition. Amphiphilic hydrogels composed of 2-hydroxyethyl methacrylate (HEMA), 1,3-bis(3-methacryloxypropyl)tetrakis(trimethylsiloxy)disiloxane (MPTSDS), and tris(trimethylsiloxy)-3-methacryloxypropylsilane (TRIS) were copolymerized using ultraviolet (UV) light and a photo-initiator. Hydrogels prepared with varying concentration of di-functional monomer, MPTSDS, exhibited an order of magnitude difference in elastic moduli. Not only were the bulk material properties influenced by the crosslinking agent concentration in the feed composition, but the surface properties (i.e., contact angle and hysteresis) were influenced as well. Modulus (E) has been reported to be positively correlated with the settlement of marine organisms. However, this was not the case for the amphiphilic gels tested against biomolecules and marine organisms. Stiffer gels inhibited fouling of proteins and marine organism, Ulva linza, to a greater extent than the softer gels. Furthermore, the network structure, in regards to the molecular weight between crosslinks Mc, was found to have a greater influence on fouling. A strong correlation was observed between protein adsorption and Mc of the amphiphilic crosslinked networks compared to just the modulus and surface energy (Upsilon) alone. A higher correlation was also obtained between Mc and Ulva sporeling biomass than between sporeling biomass and elastic modulus E, exhibiting R² value of 0.98 and 0.38, respectively. The percent removal of sporeling biomass growth was shown to be

  19. Effect of starch type on the physico-chemical properties of edible films.

    PubMed

    Basiak, Ewelina; Lenart, Andrzej; Debeaufort, Frédéric

    2017-05-01

    Food preservation is mostly related to packaging in oil-based plastics, inducing environmental problems, but this drawback could be limited by using edible/biodegradable films and coatings. Physical and chemical properties were assessed and reflect the role of the starch type (wheat, corn or potato) and thus that of the amylose/amylopectin ratio, which influences thickness, colour, moisture, wettability, thermal, surface and mechanical properties. Higher amylose content in films induces higher moisture sensitivity, and thus affects the mechanical and barrier properties. Films made from potato starch constitute a greater barrier for oxygen and water vapour though they have weaker mechanical properties than wheat and corn starch films. Starch species with higher amylose content have lower wettability properties, and better mechanical resistance, which strongly depends on the water content due to the hydrophilic nature of starch films, so they could be used for products with higher water activity, such as cheese, fruits and vegetables. It especially concerns wheat starch systems, and the contact angle indicates less hydrophilic surfaces (above 90°) than those of corn and potato starch films (below 90°). The starch origin influences optical properties and thickness: with more amylose, films are opalescent and thicker; with less, they are transparent and thinner. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effect of ultrasound treatment on the wet heating Maillard reaction between mung bean [Vigna radiate (L.)] protein isolates and glucose and on structural and physico-chemical properties of conjugates.

    PubMed

    Wang, Zhongjiang; Han, Feifei; Sui, Xiaonan; Qi, Baokun; Yang, Yong; Zhang, Hui; Wang, Rui; Li, Yang; Jiang, Lianzhou

    2016-03-30

    The objective of this study was to determine the effect of ultrasound treatment on the wet heating Maillard reaction between mung bean protein isolates (MBPIs) and glucose, and on structural and physico-chemical properties of the conjugates. The degree of glycosylation of MBPI-glucose conjugates treated by ultrasound treatment and wet heating (MBPI-GUH) was higher than that of MBPI-glucose conjugates only treated by wet heating (MBPI-GH). Solubility, emulsification activity, emulsification stability and surface hydrophobicity of MBPI-GUH were higher than that of MBPI-GH. Grafted MBPIs had a lower content of α-helix and unordered coil, but a higher content of β-sheet and β-turn structure than MBPIs. No significant structural changes were observed in β-turn and random coil structure of MBPI-GUH, while α-helix content increased with ultrasonic time, and decreased at 300 W ultrasonic power with the increase of β-sheet. MBPI-GUH had a less compact tertiary structure compared to MBPI-GH and MBPI. Grafting MBPIs with glucose formed conjugates of higher molecular weight, while no significant changes were observed in electrophoresis profiles of MBPI-GUH. Ultrasound-assisted wet heating Maillard reaction between MBPIs and glucose could be a promising way to improve functional properties of MBPIs. © 2015 Society of Chemical Industry.

  1. Synaptic plasticity and gravity: Ultrastructural, biochemical and physico-chemical fundamentals

    NASA Astrophysics Data System (ADS)

    Rahmann, H.; Slenzka, K.; Körtje, K. H.; Hilbig, R.

    On the basis of quantitative disturbances of the swimming behaviour of aquatic vertebrates (``loop-swimming'' in fish and frog larvae) following long-term hyper-g-exposure the question was raised whether or not and to what extent changes in the gravitational vector might influence the CNS at the cellular level. Therefore, by means of histological, histochemical and biochemical analyses the effect of 2-4 x g for 9 days on the gross morphology of the fish brain, and on different neuronal enzymes was investigated. In order to enable a more precise analysis in future-μg-experiments of any gravity-related effects on the neuronal synapses within the gravity-perceptive integration centers differentiated electron-microscopical and electronspectroscopical techniques have been developed to accomplish an ultrastructural localization of calcium, a high-affinity Ca2+-ATPase, creatine kinase and cytochrome oxidase. In hyper-g animals vs. 1-g controls, a reduction of total brain volume (15 %), a decrease in creatine kinase activity (20 %), a local increase in cytochrome oxidase activity, but no differences in Ca2+/Mg2+-ATPase activities were observed. Ultrastructural peculiarities of synaptic contact formation in gravity-related integration centers (Nucleus magnocellularis) were found. These results are discussed on the basis of a direct effect of hyper-gravity not only on the gravity-sensitive neuronal integration centers but possibly also on the physico-chemical properties of the lipid bilayer of neuronal membranes in general.

  2. The effect of non-standard heat treatment of sheep's milk on physico-chemical properties, sensory characteristics, and the bacterial viability of classical and probiotic yogurt.

    PubMed

    Zamberlin, Šimun; Samaržija, Dubravka

    2017-06-15

    Classical and probiotic set yogurt were made using non-standard heat treatment of sheep's milk at 60°C/5min. Physico-chemical properties, sensory characteristics, and the viability of bacteria that originated from cultures in classical and probiotic yogurt were analysed during 21days of storage at 4°C. For the production of yogurt, a standard yogurt culture and a probiotic strain Lactobacillus rhamnosus GG were used. At the end of storage time of the classical and probiotic yogurt the totals of non-denatured whey proteins were 92.31 and 91.03%. The viability of yogurt culture bacteria and Lactobacillus rhamnosus GG were higher than 10 6 cfu/g. The total sensory score (maximum - 20) was 18.49 for the classical and 18.53 for the probiotic. In nutritional and functional terms it is possible to produce classical and probiotic sheep's milk yogurt by using a non-standard temperature of heat treatment with a shelf life of 21days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Physico-chemical characteristics of defatted rice bran and its utilization in a bakery product.

    PubMed

    Sairam, Sudha; Gopala Krishna, A G; Urooj, Asna

    2011-08-01

    Defatted rice bran (DRB), a byproduct of rice milling is a rich source of dietary fiber and minerals. In the present study, the physico-chemical characteristics, antioxidant potential of defatted rice bran (Laboratory-LDRB and Commercial -CDRB) and its utilization in preparation of bread were studied. The effect of incorporation of CDRB at varying levels (5, 10 & 15%) on the quality characteristics of bread including physical, rheological and sensory attributes were evaluated and the dietary fiber content and antioxidant activity were determined. The results indicated that LDRB had better nutrient profile, physical and antioxidant properties than CDRB. On the basis of physical characteristics, breads with 5% and 10% CDRB were found to be acceptable as such and those containing 15% were acceptable with addition of bread improvers. The dietary fiber content and total antioxidative activity of bread increased with increasing levels of CDRB, which also improved the shelf life. The results reveal that DRB can be incorporated in breads upto 10% and 15% as such or with bread improvers respectively, as source of fiber and natural antioxidant, as a functional ingredient.

  4. Physico-chemical parameters and Ichthyofauna diversity of Arasalar estuary in southeast coast of India

    NASA Astrophysics Data System (ADS)

    Raju, C.; Sridharan, G.; Mariappan, P.; Chelladurai, G.

    2017-03-01

    The physico-chemical changes may have the tendency to accumulate in the various organs of estuarine organisms, especially fish which may in turn enter into the human metabolism through consumption causing serious hazards. Hence, the present study was carried out to dete rmine the physico-chemical characteristics of water and Ichthyofauna in Arasalar estuary in southeast coast of India for the period of 1 year during September 2012-August 2013. The environmental parameters such as, temperature, pH, salinity, DO, silicate, nitrate and phosphate were observed from Department of Zoology, Rajah Serfoji Goverment College, Thanjavur, Tamil Nadu, India. During the period of study, air temperature varied from 28.8 to 35 °C. The surface water temperature also varied from 25 to 31.5 °C. The monthly mean values of hydrogen ion concentration of water varied from 7.1 to 8.2. The salinity of water varied from 5.5 ‰ to 34. Dissolved oxygen in Arasalar estuary was varied from 3.5 to 7.2 mg/l. The total phosphorus varied from 0.29 to 2.15 µg/1. The nitrate varied from 0.47 to 3.75 µg/l. The silicate content varied from 28.25 to 98.74 µg/l. Totally 866 fishes were collected belonging to 4 orders and 5 families. Mystus gulio was found to be the dominant species (25.40 %) in the study area.

  5. Sensory, Physico-Chemical and Water Sorption Properties of Corn Extrudates Enriched with Spirulina.

    PubMed

    Tańska, Małgorzata; Konopka, Iwona; Ruszkowska, Millena

    2017-09-01

    This study compares the quality of extrudates made from corn grits with the addition of up to 8% of spirulina powder. The sensory properties (shape, color, aroma, taste and crispness), chemicals (content of water, protein, fat, ash, fiber, carbohydrates, carotenoids, chlorophyll and phycocyanin) and physical properties (color, water absorption index, expansion indices, texture and water sorption properties) were determined. It has been found that spirulina-enriched extrudates had slightly lower sensory scores, but the addition of spirulina improved their nutritional value. The contents of protein, ash, fiber and β-carotene increased in extrudates with 8% of spirulina by 34, 36, 140 and 1,260%, respectively. The increasing addition of spirulina caused a decrease in extrudates lightness, an increase in their greenness and yellowness accompanied by a decrease of expansion indices and an increase of softness. Only small differences were found in water sorption properties, suggesting a similar behavior of spirulina-enriched extrudates during storage.

  6. Effects of Sterilization on the Physico-Chemical Properties of Natural Sediments From the Oak Ridge Reservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bank, T.L.; Kukkadapu, R.K.; Madden, A.S.

    2009-04-29

    Batch U(VI) sorption/reduction experiments were completed on sterilized and non-sterilized sediment samples to elucidate biological and geochemical reduction mechanisms. Results from X-ray absorption near-edge structure (XANES) spectroscopy revealed that {gamma}-sterilized sediments were actually better sorbents of U(VI), despite the absence of any measurable biological activity. These results indicate that {gamma}-irradiation induced significant physico-chemical changes in the sediment which is contrary to numerous other studies identifying {gamma}-sterilization as an effective and minimally invasive technique. To identify the extent and method of alteration of the soil as a result of {gamma}-sterilization, untreated soil samples, physically separated size fractions, and chemically extracted fractionsmore » of the soil were analyzed pre- and post-sterilization. The effects of sterilization on mineralogy, pH, natural organic matter (NOM), cation exchange capacity (CEC), and iron oxidation state were determined. Results indicated that major mineralogy of the clay and whole sediment samples was unchanged. Sediment pH decreased only slightly with {gamma}-irradiation; however, irradiation produced a significant decrease in CEC of the untreated sediments and affected both the organic and inorganic fractions. Moessbauer spectra of non-sterile and {gamma}-sterilized sediments measured more reduced iron present in {gamma}-sterilized sediments compared to non-sterile samples. Our results suggest that sterilization by {gamma}-irradiation induced iron reduction that may have increased the sorption and/or reduction of U(VI) onto these sediments. However, Moessbauer and batch sorption data are somewhat contradictory, the former indicates that the iron oxide or iron hydroxide minerals are more significantly reduced while the later indicates that reduced clay minerals account for greater sorption of U(VI).« less

  7. Crisamicin A, a new antibiotic from Micromonospora. I. Taxonomy of the producing strain, fermentation, isolation, physico-chemical characterization and antimicrobial properties.

    PubMed

    Nelson, R A; Pope, J A; Luedemann, G M; McDaniel, L E; Schaffner, C P

    1986-03-01

    A microorganism, designated as RV-79-9-101 and now identified as Micromonospora purpureochromogenes subsp. halotolerans, isolated from a mud sample in the Philippines, has been shown to produce a complex of antibiotics called crisamicins. Thin-layer chromatography and bioautography, employing solvent extracts of whole fermentation broths, revealed a minimum of five antimicrobial components. The major biologically-active component of the antibiotic complex, crisamicin A, was obtained in pure form after preparative silica gel column chromatography followed by crystallization. Based on physico-chemical data crisamicin A has been identified as a novel member of the isochromanequinone group of antibiotics. It exhibits excellent in vitro activity against Gram-positive bacteria but little or no activity towards Gram-negative bacteria or fungi.

  8. Effect of natural Bayah zeolite particle size reduction to physico-chemical properties and absortion against potassium permanganate (KMnO4)

    NASA Astrophysics Data System (ADS)

    Widayanti, Siti Mariana; Syamsu, Khaswar; Warsiki, Endang; Yuliani, Sri

    2016-02-01

    Recently, researches on nanotechnology have been developed very rapid, as well as the utilization of nano-zeolites. Nano-sized material has several advantages which are expanding absorptive surfaces so it will enhance the material absorption and shorten the absorption time. Zeolite as a KMnO4 binder, has been widely recognized for its ability to extend the shelf life of vegetables and fruits. This study was conducted to determine zeolites physico-chemical characters from different particle size and the effect on KMnO4 absorption. Potassium permanganate (KMnO4) is a strong oxidizer for reducing the quantity of ethylene in storage process of fresh horticultural products. The treatment consisted of (1) different length of milling time (10, 20, 30, 40, and 60 minutes) and (2) the duration of chemical activation with 1 N KOH solution. Physical and chemical characters of zeolite were analyzed using BET, PSA, XRD and SEM. The research design was randomized design. The result implied that milling time was significantly affecting the zeolite particle size, material surface area, and the size of pore diameter and volume. Milling treatment for 40 minutes produced higher zeolite surface area and pore volume than other treatments. While the duration of chemical activation using 1 N KOH solution gives different effect on zeolite absorption to KMnO4 solution. Milling time for 60 minutes and activated for 48 hours has higher initial adsorption than other treatments.

  9. Triacylglycerol composition, physico-chemical characteristics and oxidative stability of interesterified canola oil and fully hydrogenated cottonseed oil blends.

    PubMed

    Imran, Muhammad; Nadeem, Muhammad

    2015-10-29

    Partial hydrogenation process is used worldwide to produce shortening, baking, and pastry margarines for food applications. However, demand for such products is decreased during last decade due to their possible links to consumer health and disease. This has raised the need to replace hydrogenation with alternative acceptable interesterification process which has advantage in context of modifying the physico-chemical properties of edible fat-based products. Therefore, the main mandate of research was the development of functional fat through chemical interesterification of canola oil (CaO) and fully hydrogenated cottonseed oil (FHCSO) mixtures. Blends were prepared in the proportions of 75:25 (T1), 50:50 (T2) and 25:75 (T3) of CaO:FHCSO (w/w). Interesterification was performed using sodium methoxide (0.2 %) as catalyst at 120 °C, under reduced pressure and constant agitation for 60 minutes. The non-interesterified and interesterified CaO:FHCSO blends were evaluated for triacylglycerol (TAG) composition, physico-chemical characteristics, oxidative stability and consumer acceptability at 0, 30 and 60 days of storage interval. The oleic acid (58.3 ± 0.6 %) was predominantly present in CaO while the contents of stearic acid (72 ± 0.8 %) were significantly higher in FHCSO. Maximum trisaturated (S3) contents (63.9 ± 0.5 %) were found in T3 while monounsaturated (S2U), diunsaturated (U2S) and triunsaturated (U3) contents were quite low in T2 and T3 before interesterification. A marked reduction in S3 and U3 contents with concomitant increase in S2U and U2S contents was observed for all CaO:FHCSO blends on interesterification. During storage, the changes in S3, S2U and U2S contents were not found significant (p ≥ 0.05). However, maximum decrease 13 %, 7.5 and 5.6 % in U3 contents for T1, T2 and T3 was noted after 60-days of interesterification, respectively. The Lovibond color R, melting point, refractive index, specific gravity, peroxide and free

  10. Effect of modified atmospheric packaging on the shelf life of Kalakand and its influence on microbial, textural, sensory and physico-chemical properties.

    PubMed

    Jain, Vishal; Rasane, Prasad; Jha, Alok; Sharma, Nitya; Gautam, Anuj

    2015-07-01

    Kalakand, a popular traditional milk sweet of Indian sub-continent, was packaged under air and modified atmospheric packaging (MAP) conditions (98 % N2, 98 % CO2 and 50 % N2: 50 % CO2). The samples were stored at 10, 25 and 37 °C and evaluated for various physico-chemical, microbial, textural and sensory changes, in order to establish the applicability of MAP for storage of Kalakand. It could be established that the MAP conditions of 50 % N2: 50 % CO2and storage at 10 °C, were the most suitable conditions for preserving the Kalakand for upto 60 days.

  11. Integrated modeling systems to assess exposure and toxicity of chemicals in support of aquatic ecological risk assessment of methodologically challenging chemicals

    EPA Science Inventory

    From an exposure assessment perspective, persistent, bioaccumulative and toxic chemicals (PBTs) are some of the most challenging chemicals facing environmental decision makers today. Due to their general physico-chemical properties [e.g., high octanol-water partition coefficien...

  12. Wetlands in Changed Landscapes: The Influence of Habitat Transformation on the Physico-Chemistry of Temporary Depression Wetlands

    PubMed Central

    Bird, Matthew S.; Day, Jenny A.

    2014-01-01

    Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated) occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology) are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis) indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m); although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%), relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%). The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m) buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality. PMID:24533161

  13. Relation between physico-chemical limnology and crustacean community in Wular Lake of Kashmir Himalaya.

    PubMed

    Shah, Javaid Ahmad; Pandit, Ashok K

    2013-10-01

    The present study scrutinizes the seasonal variation in the distribution of crustacean zooplankton in relation to physico-chemical liminology of Wular lake. Water samples were collected from five study sites during September 2010-August 2011. Remarkable spatial and temporal variations were observed among the different study sites. Among the parameters recorded water temperature showed positive correlation with pH (p<0.01) and orthophosphate (p<0.05).Transparency showed a significant negative correlation with total alkalinity (p<0.01), free carbon dioxide (p<0.01) and ammonical nitrogen (p<0.01). Crustacean zooplankton were collected by filtering 100 L lake water through a 30 microm nytal mesh and preserved in 4% formalin. A total of 42 taxa of crustacean were recorded, among them 23 species belonged to Cladocera, 16 to Copepoda and only 3 to Ostracoda. Species diversity and density depicted an abrupt up surge on the advent of warmer period (extending from March). Among the various sites a maximum of 40 species were recorded from a single biotope (site III) against the minimum of only 17 species being recorded from site I. Bray-Curtis cluster analysis showed close similarity (0.928-0.944%) between summer and autumn in terms of species diversity. Pearson correlation coefficient of the various physico-chemical parameters of water with crustacean zooplankton depicted that not only a single but multiple factors govern over the distribution and diversity of crustacean in the lake.

  14. Analysis of physico-chemical and bacteriological quality of drinking water in Mafikeng, South Africa.

    PubMed

    Mulamattathil, Suma George; Bezuidenhout, Carlos; Mbewe, Moses

    2015-12-01

    Mafikeng, the capital of the North West Province, receives water from two sources, namely the Molopo eye and the Modimola dam. Once treated, the potable water is mixed and supplied to the city via distribution systems. This study was designed to assess the quality of drinking water in Mafikeng and also to determine whether the water from the two sources has an impact on the mixed water quality. Physico-chemical parameters and bacteriological quality (faecal coliforms (FCs), total coliforms (TCs), heterotrophic bacteria and Peudomonas spp.) was monitored at three drinking water sites weekly for 4 months. The results revealed that the physico-chemical quality of the water was generally acceptable. The pH ranged from 5.7 ± 0.18 to 8.6 ± 0.14, the temperature ranged from 18.3 ± 0.69 to 25.1 ± 0.69 °C and the total dissolved solids (TDS) ranged from 159.9 ± 22.44 to 364.4 ± 12.44 mg/l. These values are within the target water quality range for drinking water as prescribed by WHO, Department of Water Affairs and SANS 241. What is of concern was the microbial quality of the water. FCs, TCs, heterotrophic bacteria and Pseudomonas spp. were present in some of the treated water samples. The most significant finding of this study is that all drinking water samples were positive for Pseudomonas spp. (>100/100 ml).

  15. Physico-chemical strategies to enhance stability and drug retention of polymeric micelles for tumor-targeted drug delivery

    PubMed Central

    Shi, Yang; Lammers, Twan; Storm, Gert; Hennink, Wim E.

    2017-01-01

    Polymeric micelles (PM) have been extensively used for tumor-targeted delivery of hydrophobic anti-cancer drugs. The lipophilic core of PM is naturally suitable for loading hydrophobic drugs and the hydrophilic shell endows them with colloidal stability and stealth properties. Decades of research on PM have resulted in tremendous numbers of PM-forming amphiphilic polymers, and approximately a dozen micellar nanomedicines have entered the clinic. The first generation of PM can be considered solubilizers of hydrophobic drugs, with short circulation times resulting from poor micelle stability and unstable drug entrapment. To more optimally exploit the potential of PM for targeted drug delivery, several physical (e.g. π-π stacking, stereocomplexation, hydrogen bonding, host-guest complexation and coordination interaction) and chemical (e.g. free radical polymerization, click chemistry, disulfide and hydrazone bonding) strategies have been developed to improve micelle stability and drug retention. In this review, we describe the most promising physico-chemical approaches to enhance micelle stability and drug retention, and we summarize how these strategies have resulted in systems with promising therapeutic efficacy in animal models, paving the way for clinical translation. PMID:27413999

  16. Structure and physico-mechanical properties of low temperature plasma treated electrospun nanofibrous scaffolds examined with atomic force microscopy.

    PubMed

    Chlanda, Adrian; Kijeńska, Ewa; Rinoldi, Chiara; Tarnowski, Michał; Wierzchoń, Tadeusz; Swieszkowski, Wojciech

    2018-04-01

    Electrospun nanofibrous scaffolds are willingly used in tissue engineering applications due to their tunable mechanical, chemical and physical properties. Additionally, their complex openworked architecture is similar to the native extracellular matrix of living tissue. After implantation such scaffolds should provide sufficient mechanical support for cells. Moreover, it is of crucial importance to ensure sterility and hydrophilicity of the scaffold. For this purpose, a low temperature surface plasma treatment can be applied. In this paper, we report physico-mechanical evaluation of stiffness and adhesive properties of electrospun mats after their exposition to low temperature plasma. Complex morphological and mechanical studies performed with an atomic force microscope were followed by scanning electron microscope imaging and a wettability assessment. The results suggest that plasma treatment can be a useful method for the modification of the surface of polymeric scaffolds in a desirable manner. Plasma treatment improves wettability of the polymeric mats without changing their morphology. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Physico-chemical characteristics of groundwater in and around Surat City (India).

    PubMed

    Raval, Viral H; Malik, G M

    2010-10-01

    Groundwater samples were collected from different locations of Surat city, Gujarat (India). These samples from 32 locations of Surat city were analysed for their physico-chemical characteristics involving pH, colour, odour, hardness, chloride, alkalinity, COD, sulfate, TDS, SS, iron, Cu, boron, chromium, temperature and Langelier Saturation Index. On comparing the results against drinking water quality standards laid by Indian Council of Medical Research (ICMR) and World Health Organization (WHO), it is found that most of the water samples are non-potable. Most of the samples indicated Total Alkalinity, Hardness, Chloride and TDS values much higher than the permissible level stipulated by ICMR and WHO. Even at some places Langelier Saturation Index values found higher too. The high values of these parameters may have health implications and therefore these need attention.

  18. Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature

    PubMed Central

    2014-01-01

    Cobalt-Chromium (Co-Cr) alloys are classified as predominantly base-metal alloys and are widely known for their biomedical applications in the orthopedic and dental fields. In dentistry, Co-Cr alloys are commonly used for the fabrication of metallic frameworks of removable partial dentures and recently have been used as metallic substructures for the fabrication of porcelain-fused-to-metal restorations and implant frameworks. The increased worldwide interest in utilizing Co-Cr alloys for dental applications is related to their low cost and adequate physico-mechanical properties. Additionally, among base-metal alloys, Co-Cr alloys are used more frequently in many countries to replace Nickel-Chromium (Ni-Cr) alloys. This is mainly due to the increased concern regarding the toxic effects of Ni on the human body when alloys containing Ni are exposed to the oral cavity. This review article describes dental applications, metallurgical characterization, and physico-mechanical properties of Co-Cr alloys and also addresses their clinical and laboratory behavior in relation to those properties. PMID:24843400

  19. Physico-chemical, nutritional, and volatile composition and sensory profile of Spanish jujube (Ziziphus jujuba Mill.) fruits.

    PubMed

    Hernández, Francisca; Noguera-Artiaga, Luis; Burló, Francisco; Wojdyło, Aneta; Carbonell-Barrachina, Ángel A; Legua, Pilar

    2016-06-01

    Jujube fruit is eaten mostly fresh, but may be dried (Chinese dates and tea) or processed into confectionary recipes in bread, cakes, compotes, and candy. Given that the quality of jujube available on the market differs on account of various factors such as geographical environment, cultivar, processing conditions, and storage conditions, and that, for consumers, flavour and nutrition properties of jujube represent the major parameters in determining the quality of jujube, the main goal of this study were to determine the main physico-chemical properties of jujube fruits, sugars and organic acids profiles, protein, mineral constituents, volatile composition and sensory profile of jujube fruits. This would allow breeders to select cultivars with higher levels of nutrients and also enable increasing dietary intake by consumers. Investigations showed that jujube fruit weight ranged from 4.8 to 29.3 g fruit(-1) . Four sugars (glucose, fructose, sucrose and sorbitol) and four organic acids (citric, malic, ascorbic and succinic acids) were identified and quantified by high-performance liquid chromatography in jujube fruits. Potassium, calcium and magnesium were the major mineral constituents in jujube fruits. Fifteen volatiles compounds were found in the aroma profile of jujube fruits (nine were aldehydes, three terpenes, one ester, one ketone and one linear hydrocarbon). The results showed that Spanish jujube cultivars studied are a good source of vitamin C, and they have a low content of Na. The jujube cultivar with the most appreciated quality by consumers was GAL; the GAL fruits were sweet, crunchy, and had high intensities of jujube ID and apple flavour a long after-taste. Therefore, jujube grown in Spain has a great potential to be exploited for functional foods. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  20. Sol-gel route approach and improvisation in physico-chemical, structural, magnetic and electrical properties of BaCox/2Znx/2ZrxFe(12-2x)O19 ferrites

    NASA Astrophysics Data System (ADS)

    Kaur Jassal, Amanpreet; Mudsainiyan, R. K.; Chawla, S. K.; Anu; Bindra Narang, Sukhleen; Pubby, Kunal

    2018-02-01

    The structural and magnetic properties of Zn, Co and Zr cations doped barium hexaferrite [Ba(Znx/2Cox/2)xZrxFe(12-2x)O19] nanoparticles synthesized by sol-gel method have been investigated. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM) were employed to investigate the physico-chemical properties of the obtained ferrite samples. XRD studies reveal that the magnetoplumbite structure for all sample (up to x = 0.8) have been formed and the crystallite size of nanoparticles lies in the range of 34-46 nm. At higher dopant concentration, other impurities (α-Fe2O3 and BaFe2O4 etc.) have been observed. Magnetic studies indicate that site occupancy and nature of dopant ions greatly affect the behavior of magnetic properties. The results of VSM and LCR analysis show that magnetic and electrical parameters vary with an increase in dopant concentration. The results of BET surface area of samples indicate that these types of materials could be used for catalytic properties. Dielectric constant, dielectric loss tangent and A.C. conductivity weremeasured using impedance analyzer over wide frequency range 20 Hz-120 MHz. All the three parameters increase significantly with increase in doping. Increase in dielectric constant proposes these materials for fabrication of microwave devices, while increase in dielectric loss tangent proposes these for applications such as attenuator, absorber etc.

  1. Effect of the incorporation of chitosan on the physico-chemical, mechanical properties and biological activity on a mixture of polycaprolactone and polyurethanes obtained from castor oil.

    PubMed

    Arévalo, Fabian; Uscategui, Yomaira L; Diaz, Luis; Cobo, Martha; Valero, Manuel F

    2016-11-01

    In the present study, polyurethane materials were obtained from castor oil, polycaprolactone and isophorone diisocyanate by incorporating different concentrations of chitosan (0.5, 1.0 and 2.0% w/w) as an additive to improve the mechanical properties and the biological activity of polyurethanes. The polyurethanes were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, stress/strain fracture tests and swelling analysis, and the hydrophilic character of the surface was determined by contact angle trials. The objectives of the study were to evaluate the effect of the incorporation of chitosan on the changes of the physico-chemical and mechanical properties and the in vitro biological activity of the polyurethanes. It was found that the incorporation of chitosan enhances the ultimate tensile strength of the polyurethanes and does not affect the strain at fracture in polyurethanes with 5% w/w of polycaprolactone and concentrations of chitosan ranging from 0 to 2% w/w. In addition, PCL5-Q-PU formulations and their degradation products did not affect cell viability of L929 mouse fibroblast and 3T3, respectively. Polyurethane formulations showed antibacterial activities against Staphylococcus aureus and Escherichia coli bacteria. The results of this study have highlighted the potential biomedical application of this polyurethanes related to soft and cardiovascular tissues. © The Author(s) 2016.

  2. Pectin gelation with chlorhexidine: Physico-chemical studies in dilute solutions.

    PubMed

    Lascol, Manon; Bourgeois, Sandrine; Guillière, Florence; Hangouët, Marie; Raffin, Guy; Marote, Pedro; Lantéri, Pierre; Bordes, Claire

    2016-10-05

    Low methoxyl pectin is known to gel with divalent cations (e.g. Ca(2+), Zn(2+)). In this study, a new way of pectin gelation in the presence of an active pharmaceutical ingredient, chlorhexidine (CX), was highlighted. Thus chlorhexidine interactions with pectin were investigated and compared with the well-known pectin/Ca(2+) binding model. Gelation mechanisms were studied by several physico-chemical methods such as zeta potential, viscosity, size measurements and binding isotherm was determined by Proton Nuclear Magnetic Resonance Spectroscopy ((1)H NMR). The binding process exhibited similar first two steps for both divalent ions: a stoichiometric monocomplexation of the polymer followed by a dimerization step. However, stronger interactions were observed between pectin and chlorhexidine. Moreover, the dimerization step occurred under stoichiometric conditions with chlorhexidine whereas non-stoichiometric conditions were involved with calcium ions. In the case of chlorhexidine, an additional intermolecular binding occurred in a third step. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Do Nanoparticle Physico-Chemical Properties and Developmental Exposure Window Influence Nano ZnO Embryotoxicity in Xenopus laevis?

    PubMed

    Bonfanti, Patrizia; Moschini, Elisa; Saibene, Melissa; Bacchetta, Renato; Rettighieri, Leonardo; Calabri, Lorenzo; Colombo, Anita; Mantecca, Paride

    2015-07-28

    The growing global production of zinc oxide nanoparticles (ZnONPs) suggests a realistic increase in the environmental exposure to such a nanomaterial, making the knowledge of its biological reactivity and its safe-by-design synthesis mandatory. In this study, the embryotoxicity of ZnONPs (1-100 mg/L) specifically synthesized for industrial purposes with different sizes, shapes (round, rod) and surface coatings (PEG, PVP) was tested using the frog embryo teratogenesis assay-Xenopus (FETAX) to identify potential target tissues and the most sensitive developmental stages. The ZnONPs did not cause embryolethality, but induced a high incidence of malformations, in particular misfolded gut and abdominal edema. Smaller, round NPs were more effective than the bigger, rod ones, and PEGylation determined a reduction in embryotoxicity. Ingestion appeared to be the most relevant exposure route. Only the embryos exposed from the stomodeum opening showed anatomical and histological lesions to the intestine, mainly referable to a swelling of paracellular spaces among enterocytes. In conclusion, ZnONPs differing in shape and surface coating displayed similar toxicity in X. laevis embryos and shared the same target organ. Nevertheless, we cannot exclude that the physico-chemical characteristics may influence the severity of such effects. Further research efforts are mandatory to ensure the synthesis of safer nano-ZnO-containing products.

  4. Effect of extrusion conditions on the physico-chemical properties and in vitro protein digestibility of canola meal.

    PubMed

    Zhang, Bo; Liu, Guo; Ying, Danyang; Sanguansri, Luz; Augustin, Mary Ann

    2017-10-01

    Canola meal has potential as a high protein food ingredient. The extrusion-induced changes in color, pH, extractable protein and in vitro protein digestibility of canola meal under different extrusion conditions was assessed. The extrusion barrel moisture (24%, 30% or 36%) and screw kneading block length (0, 30 or 60mm) were used as independent process parameters. Extrusion at high barrel moisture (36%) favored protein aggregation resulting in lower extractable protein compared to extrusion at the lowest barrel moisture (24%). At lower barrel moisture contents (24% and 30%), a longer kneading block length increased extractable protein but this was not the case at 36% barrel moisture. Canola protein digestibility was improved upon extrusion at 30% barrel moisture but there was no significant change at lower (24%) or higher (36%) barrel moisture. The kneading block length of the screw had no significant effect on the canola protein digestibility within the same barrel moisture level. The relationship between the physico-chemical parameters and in vitro digestibility was examined. This study highlighted the complex interplay of extrusion processing variables that affect protein degradation and the interaction of components, with consequent effects on protein digestibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Physico-chemical characteristics and sensory evaluation of wheat bread partially substituted with banana (Musa acuminata X balbisiana cv. Awak) pseudo-stem flour.

    PubMed

    Ho, Lee-Hoon; Abdul Aziz, Noor Aziah; Azahari, Baharin

    2013-08-15

    The physico-chemical and sensorial properties of the control (BCtr), commercial wheat flour (CWF) bread substituted with 10% BPF (banana pseudo-stem flour) (B10BPF) and B10BPF with added 0.8% w/w (flour weight basis) xanthan gum (XG) or sodium carboxymethylcellulose (CMC) (B10BPFXG and B10BPFCMC, respectively) were examined. The proximate analyses revealed that the composite bread had significantly higher moisture, ash, crude fibre, soluble, insoluble and total dietary fibre contents but lower protein, fat and carbohydrate contents than the BCtr. Bread incorporated with BPF resulted in a lower volume, darker crumb and lighter crust colour than the BCtr. The addition of CMC improved the bread volume. All breads containing BPF had greater total phenolics, and antioxidant properties than the control bread. Sensory evaluation indicated that the B10BPFCMC bread had the highest acceptability. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Physico-chemical stability of eribulin mesylate containing concentrate and ready-to-administer solutions.

    PubMed

    Spindeldreier, Kirsten; Thiesen, Judith; Lipp, Hans-Peter; Krämer, Irene

    2014-06-01

    The aim of this study was to determine the stability of commercially available eribulin mesylate containing injection solution as well as diluted ready-to-administer solutions stored under refrigeration or at room temperature. Stability was studied by a novel developed stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) assay with ultraviolet detection (detection wavelength 200 nm). Triplicate test solutions of eribulin mesylate containing injection concentrate (0.5 mg/mL) and with 0.9% sodium chloride solution diluted ready-to-administer preparations (0.205 mg/mL eribulin mesylate in polypropylene (PP) syringes, 0.020 mg/mL eribulin mesylate in polypropylene/polyethylene (PE) bags) were stored protected from light either at room temperature (25) or under refrigeration (2-8). Samples were withdrawn on day 0 (initial), 1, 3, 5, 7, 14, 21 and 28 of storage and assayed. Physical stability was determined by measuring the pH value once a week and checking for visible precipitations or colour changes. The stability tests revealed that concentrations of eribulin mesylate remained unchanged over a period of 28 days irrespective of concentration, container material or storage temperature. Neither colour changes nor visible particles have been observed. The pH value varied slightly over time but remained in the stability favourable range of 5-9. Eribulin mesylate injection (0.5 mg/mL) is physico-chemically stable over a period of 28 days after first puncture of the vial. After dilution with 0.9% NaCl vehicle solution, ready-to-administer eribulin mesylate injection solutions (0.205 mg/mL in PP syringe) and infusion solutions (0.02 mg/mL in prefilled PP/PE bags) are physico-chemically stable for a period of at least four weeks either refrigerated or stored at room temperature. For microbiological reasons storage under refrigeration is recommended.

  7. The Usability of Noise Level from Rock Cutting for the Prediction of Physico-Mechanical Properties of Rocks

    NASA Astrophysics Data System (ADS)

    Delibalta, M. S.; Kahraman, S.; Comakli, R.

    2015-11-01

    Because the indirect tests are easier and cheaper than the direct tests, the prediction of rock properties from the indirect testing methods is important especially for the preliminary investigations. In this study, the predictability of the physico-mechanical rock properties from the noise level measured during cutting rock with diamond saw was investigated. Noise measurement test, uniaxial compressive strength (UCS) test, Brazilian tensile strength (BTS) test, point load strength (Is) test, density test, and porosity test were carried out on 54 different rock types in the laboratory. The results were statistically analyzed to derive estimation equations. Strong correlations between the noise level and the mechanical rock properties were found. The relations follow power functions. Increasing rock strength increases the noise level. Density and porosity also correlated strongly with the noise level. The relations follow linear functions. Increasing density increases the noise level while increasing porosity decreases the noise level. The developed equations are valid for the rocks with a compressive strength below 150 MPa. Concluding remark is that the physico-mechanical rock properties can reliably be estimated from the noise level measured during cutting the rock with diamond saw.

  8. [Physico-chemical and microbiological evaluation of UHT milk commercialized in three Mercosul countries (Brazil, Argentina and Paraguay)].

    PubMed

    Domareski, Jackson Luiz; Bandiera, Nataly Simões; Sato, Rafael Tamostu; Aragon-Alegro, Lina Casale; de Santana, Elsa Helena Walter

    2010-09-01

    With the aim to evaluate the physico-chemical and microbiological quality of UHT milk commercialized in three countries of Mercosul, samples of four different brands were acquired in each city (Foz do Iguaçu-Brazil, Puerto Iguazú-Argentina and Ciudad del Este-Paraguay) and submitted to the following analysis: fat content, titratable acidity, milk ethanol stability (with the following ethanol concentrations: 68, 72, 76 and 80%), total dry extract and no fat dry extract, pH, density and freezing point. Counts of mesophilic and psychrotrophic microorganisms were already done. In the physico-chemical evaluation of UHT milk, a significant number of samples were in disagree with the established patterns for fat content, no fat dry extract, density and freezing point. Except one brand from Brazil, milk samples showed stability to 68% ethanol. pH averages of Brazilian milk were in agree with the patterns and highest values were observed in samples acquired on Paraguay. Observing the microbiological analysis, 37.5%, 62.5% and 12.5% of samples acquired from Brazil, Argentina and Paraguay, respectively, showed counts above the established patterns for mesophilic microorganisms. Counts of psychrotrophic microorganisms were in disagree with the established patterns in 50%, 50% and 100% of samples from Brazil, Argentina and Paraguay, respectively.

  9. PHYSICO: An UNIX based Standalone Procedure for Computation of Individual and Group Properties of Protein Sequences.

    PubMed

    Gupta, Parth Sarthi Sen; Banerjee, Shyamashree; Islam, Rifat Nawaz Ul; Mondal, Sudipta; Mondal, Buddhadev; Bandyopadhyay, Amal K

    2014-01-01

    In the genomic and proteomic era, efficient and automated analyses of sequence properties of protein have become an important task in bioinformatics. There are general public licensed (GPL) software tools to perform a part of the job. However, computations of mean properties of large number of orthologous sequences are not possible from the above mentioned GPL sets. Further, there is no GPL software or server which can calculate window dependent sequence properties for a large number of sequences in a single run. With a view to overcome above limitations, we have developed a standalone procedure i.e. PHYSICO, which performs various stages of computation in a single run based on the type of input provided either in RAW-FASTA or BLOCK-FASTA format and makes excel output for: a) Composition, Class composition, Mean molecular weight, Isoelectic point, Aliphatic index and GRAVY, b) column based compositions, variability and difference matrix, c) 25 kinds of window dependent sequence properties. The program is fast, efficient, error free and user friendly. Calculation of mean and standard deviation of homologous sequences sets, for comparison purpose when relevant, is another attribute of the program; a property seldom seen in existing GPL softwares. PHYSICO is freely available for non-commercial/academic user in formal request to the corresponding author akbanerjee@biotech.buruniv.ac.in.

  10. PHYSICO: An UNIX based Standalone Procedure for Computation of Individual and Group Properties of Protein Sequences

    PubMed Central

    Gupta, Parth Sarthi Sen; Banerjee, Shyamashree; Islam, Rifat Nawaz Ul; Mondal, Sudipta; Mondal, Buddhadev; Bandyopadhyay, Amal K

    2014-01-01

    In the genomic and proteomic era, efficient and automated analyses of sequence properties of protein have become an important task in bioinformatics. There are general public licensed (GPL) software tools to perform a part of the job. However, computations of mean properties of large number of orthologous sequences are not possible from the above mentioned GPL sets. Further, there is no GPL software or server which can calculate window dependent sequence properties for a large number of sequences in a single run. With a view to overcome above limitations, we have developed a standalone procedure i.e. PHYSICO, which performs various stages of computation in a single run based on the type of input provided either in RAW-FASTA or BLOCK-FASTA format and makes excel output for: a) Composition, Class composition, Mean molecular weight, Isoelectic point, Aliphatic index and GRAVY, b) column based compositions, variability and difference matrix, c) 25 kinds of window dependent sequence properties. The program is fast, efficient, error free and user friendly. Calculation of mean and standard deviation of homologous sequences sets, for comparison purpose when relevant, is another attribute of the program; a property seldom seen in existing GPL softwares. Availability PHYSICO is freely available for non-commercial/academic user in formal request to the corresponding author akbanerjee@biotech.buruniv.ac.in PMID:24616564

  11. Comparative physico-chemical profiles of Tugaksheeree (Curcuma angustifolia Roxb. and Maranta arundinacea Linn.).

    PubMed

    Rajashekhara, N; Shukla, Vinay J; Ravishankar, B; Sharma, Parameshwar P

    2013-10-01

    Tugaksheeree is as an ingredient in many Ayurvedic formulations. The starch obtained from the rhizomes of two plants, is used as Tugaksheeree, Curcuma angustifolia (CA) Roxb. (Family: Zingiberaceae) and Maranta arundinacea (MA) Linn. (Family Marantaceae). In the present study, a comparative physico-analysis of both the drugs has been carried out. The results suggest that the starch from CA and MA has similar organoleptic characters. The percentage of starch content is higher in the rhizome of CA when compared with that of MA and the starch of MA is packed more densely than the starch in CA. The chemical constituents of both the starch and rhizomes are partially similar to each other. Hence, the therapeutic activities may be similar.

  12. Adhesion Potential of Intestinal Microbes Predicted by Physico-Chemical Characterization Methods

    PubMed Central

    Niederberger, Tobias; Fischer, Peter; Rühs, Patrick Alberto

    2015-01-01

    Bacterial adhesion to epithelial surfaces affects retention time in the human gastro-intestinal tract and therefore significantly contributes to interactions between bacteria and their hosts. Bacterial adhesion among other factors is strongly influenced by physico-chemical factors. The accurate quantification of these physico-chemical factors in adhesion is however limited by the available measuring techniques. We evaluated surface charge, interfacial rheology and tensiometry (interfacial tension) as novel approaches to quantify these interactions and evaluated their biological significance via an adhesion assay using intestinal epithelial surface molecules (IESM) for a set of model organisms present in the human gastrointestinal tract. Strain pairs of Lactobacillus plantarum WCFS1 with its sortase knockout mutant Lb. plantarum NZ7114 and Lb. rhamnosus GG with Lb. rhamnosus DSM 20021T were used with Enterococcus faecalis JH2-2 as control organism. Intra-species comparison revealed significantly higher abilities for Lb. plantarum WCSF1 and Lb. rhamnosus GG vs. Lb. plantarum NZ7114 and Lb. rhamnosus DSM 20021T to dynamically increase interfacial elasticity (10−2 vs. 10−3 Pa*m) and reduce interfacial tension (32 vs. 38 mN/m). This further correlated for Lb. plantarum WCSF1 and Lb. rhamnosus GG vs. Lb. plantarum NZ7114 and Lb. rhamnosus DSM 20021T with the decrease of relative hydrophobicity (80–85% vs. 57–63%), Zeta potential (-2.9 to -4.5 mV vs. -8.0 to -13.8 mV) and higher relative adhesion capacity to IESM (3.0–5.0 vs 1.5–2.2). Highest adhesion to the IESM collagen I and fibronectin was found for Lb. plantarum WCFS1 (5.0) and E. faecalis JH2-2 (4.2) whereas Lb. rhamnosus GG showed highest adhesion to type II mucus (3.8). Significantly reduced adhesion (2 fold) to the tested IESM was observed for Lb. plantarum NZ7114 and Lb. rhamnosus DSM 20021T corresponding with lower relative hydrophobicity, Zeta potential and abilities to modify interfacial

  13. Effect of physico-chemical regimes and tropical cyclones on seasonal distribution of chlorophyll-a in the Chilika Lagoon, east coast of India.

    PubMed

    Sahoo, Subhashree; Baliarsingh, S K; Lotliker, Aneesh A; Pradhan, Umesh K; Thomas, C S; Sahu, K C

    2017-04-01

    A comprehensive analysis on spatiotemporal variation in physico-chemical variables and their control on chlorophyll-a during 2013-14 was carried out in the Chilika Lagoon. Spatiotemporal variation in physico-chemical regimes significantly controlled the phytoplankton biomass of the lagoon. Further, precipitation-induced river/terrestrial freshwater influx and marine influence controlled the physico-chemical regimes of the Chilika Lagoon, such as nutrients (NH 4 + , NO 3 - , NO 2 - , PO 4 3- and Si(OH) 4 ), temperature, salinity, total suspended matter and dissolved oxygen. This study revealed significant effects of tropical cyclones Phailin (2013) and Hudhud (2014) on physico-chemical regimes and in turn the phytoplankton biomass of the lagoon. Although both cyclones Phailin (2013) and Hudhud (2014) were intense, Phailin (2013) had a greater impact on the Chilika Lagoon due to the proximity of its landfall. Heavy precipitation caused an influx of nutrient-rich freshwater, both during each cyclone's passage, through rainfall, and after, through increased river flow and terrestrial run-off. The increase in nutrients, carried by the run-off, promoted phytoplankton growth, albeit in lag phase. In general, phytoplankton growth was controlled by nitrogenous nutrients. However, the addition of SiO 4 through terrigenous run-off fuelled preferential growth of diatoms. The salinity pattern (which can be considered a proxy for fresh and marine water influx) indicated injection of freshwater nutrients into the northern, southern and central sectors of the lagoon through riverine/terrestrial freshwater run-off; marine influx was restricted to the mouth of the lagoon. Present and past magnitudes of salinity and chlorophyll-a were also compared to better understand the pattern of variability. A significant change in salinity pattern was noticed after the opening of an artificial inlet, because of the resulting higher influx of marine water. The overall phytoplankton biomass

  14. Assessing changes in the physico-chemical properties and fluoride adsorption capacity of activated alumina under varied conditions

    USGS Publications Warehouse

    Craig, Laura; Stillings, Lisa; Decker, David L.

    2017-01-01

    Adsorption using activated alumina is a simple method for removing fluoride from drinking water, but to be cost effective the adsorption capacity must be high and effective long-term. The intent of this study was to assess changes in its adsorption capacity under varied conditions. This was determined by evaluating the physico-chemical properties, surface charge, and fluoride (F−) adsorption capacity and rate of activated alumina under conditions such as hydration period, particle size, and slow vs. fast titrations. X-ray diffraction and scanning electron microscopy analyses show that the mineralogy of activated alumina transformed to boehmite, then bayerite with hydration period and a corresponding reduction in adsorption capacity was expected; while surface area analyses show no notable changes with hydration period or particle size. The pH dependent surface charge was three times higher using slow potentiometric titrations as compared to fast titrations (due largely to diffusion into pore space), with the surface acidity generally unaffected by hydration period. Results from batch adsorption experiments similarly show no change in fluoride adsorption capacity with hydration period. There was also no notable difference in fluoride adsorption capacity between the particle size ranges of 0.5–1.0 mm and 0.125–0.250 mm, or with hydration period. However, adsorption rate increased dramatically with the finer particle sizes: at an initial F− concentration of 0.53 mmol L−1 (10 mg L−1), 90% was adsorbed in the 0.125–0.250 mm range after 1 h, while the 0.5–1.0 mm range required 24 h to achieve 90% adsorption. Also, the pseudo-second-order adsorption rate constants for the finer vs. larger particle sizes were 3.7 and 0.5 g per mmol F− per min respectively (24 h); and the initial intraparticle diffusion rate of the former was 2.6 times faster than the latter. The results show that adsorption capacity of activated alumina remains consistent and

  15. Do Nanoparticle Physico-Chemical Properties and Developmental Exposure Window Influence Nano ZnO Embryotoxicity in Xenopus laevis?

    PubMed Central

    Bonfanti, Patrizia; Moschini, Elisa; Saibene, Melissa; Bacchetta, Renato; Rettighieri, Leonardo; Calabri, Lorenzo; Colombo, Anita; Mantecca, Paride

    2015-01-01

    The growing global production of zinc oxide nanoparticles (ZnONPs) suggests a realistic increase in the environmental exposure to such a nanomaterial, making the knowledge of its biological reactivity and its safe-by-design synthesis mandatory. In this study, the embryotoxicity of ZnONPs (1–100 mg/L) specifically synthesized for industrial purposes with different sizes, shapes (round, rod) and surface coatings (PEG, PVP) was tested using the frog embryo teratogenesis assay-Xenopus (FETAX) to identify potential target tissues and the most sensitive developmental stages. The ZnONPs did not cause embryolethality, but induced a high incidence of malformations, in particular misfolded gut and abdominal edema. Smaller, round NPs were more effective than the bigger, rod ones, and PEGylation determined a reduction in embryotoxicity. Ingestion appeared to be the most relevant exposure route. Only the embryos exposed from the stomodeum opening showed anatomical and histological lesions to the intestine, mainly referable to a swelling of paracellular spaces among enterocytes. In conclusion, ZnONPs differing in shape and surface coating displayed similar toxicity in X. laevis embryos and shared the same target organ. Nevertheless, we cannot exclude that the physico-chemical characteristics may influence the severity of such effects. Further research efforts are mandatory to ensure the synthesis of safer nano-ZnO-containing products. PMID:26225989

  16. Influence of the physico-chemical properties of CeO 2-ZrO 2 mixed oxides on the catalytic oxidation of NO to NO 2

    NASA Astrophysics Data System (ADS)

    Atribak, Idriss; Guillén-Hurtado, Noelia; Bueno-López, Agustín; García-García, Avelina

    2010-10-01

    Commercial and home-made Ce-Zr catalysts prepared by co-precipitation were characterised by XRD, Raman spectroscopy, N 2 adsorption at -196 °C and XPS, and were tested for NO oxidation to NO 2. Among the different physico-chemical properties characterised, the surface composition seems to be the most relevant one in order to explain the NO oxidation capacity of these Ce-Zr catalysts. As a general trend, Ce-Zr catalysts with a cerium-rich surface, that is, high XPS-measured Ce/Zr atomic surface ratios, are more active than those with a Zr-enriched surface. The decrease in catalytic activity of the Ce-Zr mixed oxided upon calcinations at 800 °C with regard to 500 °C is mainly attributed to the decrease in Ce/Zr surface ratio, that is, to the surface segregation of Zr. The phase composition (cubic or t'' for Ce-rich compositions) seems not to be a direct effect on the catalytic activity for NO oxidation in the range of compositions tested. However, the formation of a proper solid solution prevents important surface segregation of Zr upon calcinations at high temperature. The effect of the BET surface area in the catalytic activity for NO oxidation of Ce-Zr mixed oxides is minor in comparison with the effect of the Ce/Zr surface ratio.

  17. Physico-chemical characteristics and protein adsorption potential of hydroxyapatite particles: influence on in vitro biocompatibility of ceramics after sintering.

    PubMed

    Rouahi, M; Champion, E; Gallet, O; Jada, A; Anselme, K

    2006-01-15

    Through the example of two HA ceramics prepared from two HA powders (HAD and HAL), we explored the relation between the physico-chemical qualities of the initial HA powder and the final HA ceramic and their influence on the protein adsorption and cell response to the final HA ceramics. The powders were characterized by XRD, FT-IR, zeta potential, and specific surface area (SSA). Their protein adsorption potential was tested after immersion in culture medium +15% of fetal calf serum. These results were correlated with the protein adsorption potential of the two ceramics (cHAD and cHAL) prepared from the HAD and HAL powders respectively and to the cell attachment after 4, 24 and 72 h on the ceramics. From our results, it appears that a relation can be established between the physico-chemical characteristics of the initial HA powders and the final biological response to the sintered ceramics prepared from these powders. An inverse relation exists between the SSA and the protein adsorption capacity of HA powders and the protein adsorption and cell attachment on HA ceramics. This inverse relation is related to phenomenon occurring during the sintering phase and the formation of inter-granular micro-porosity.

  18. Filler characteristics of modern dental resin composites and their influence on physico-mechanical properties.

    PubMed

    Randolph, Luc D; Palin, William M; Leloup, Gaëtane; Leprince, Julian G

    2016-12-01

    The mechanical properties of dental resin-based composites (RBCs) are highly dependent on filler characteristics (size, content, geometry, composition). Most current commercial materials are marketed as "nanohybrids" (i.e. filler size <1μm). In the present study, filler characteristics of a selection of RBCs were described, aiming at identifying correlations with physico-mechanical properties and testing the relevance of the current classification. Micron/sub-micron particles (> or <500nm) were isolated from 17 commercial RBCs and analyzed by laser diffractrometry and/or electron microscopy. Filler and silane content were evaluated by thermogravimetric analysis and a sedimentation technique. The flexural modulus (E flex ) and strength (σ flex ) and micro-hardness were determined by three-point bending or with a Vickers indenter, respectively. Sorption was also determined. All experiments were carried out after one week of incubation in water or 75/25 ethanol/water. Average size for micron-sized fillers was almost always higher than 1μm. Ranges for mechanical properties were: 3.775wt%) were associated with the highest mechanical properties (E flex and σ flex >12GPa and 130MPa, respectively) and lowest solvent sorption (∼0.3%). Mechanical properties and filler characteristics significantly vary among modern RBCs and the current classification does not accurately illustrate either. Further, the chemical stability of RBCs differed, highlighting differences in resin and silane composition. Since E flex and sorption were well correlated to the filler content, a simple and unambiguous classification based on such characteristic is suggested, with three levels (ultra-low fill, low-fill and compact resin composites). Copyright © 2016 The Academy of Dental Materials. All

  19. Chemical composition and functional properties of native chestnut starch (Castanea sativa Mill).

    PubMed

    Cruz, Bruno R; Abraão, Ana S; Lemos, André M; Nunes, Fernando M

    2013-04-15

    Starch isolation methods can change their physico-chemical and functional characteristics hindering the establishment of a starch-food functionality relation. A simple high yield and soft isolation method was applied for chestnut (Castanea sativa Mill) starch consisting in steeping and fruit disintegration in a 25 mM sodium bisulfite solution and purification by sedimentation. Starch integrity, physico-chemical composition, morphology and functional properties were determined, being observed significant differences from previous described methods for chestnut starch isolation. The X-ray pattern was of B-type, with a degree of crystallinity ranging from 51% to 9%, dependent on the starch moisture content. The onset, peak, and conclusion gelatinization temperatures were 57.1°C, 61.9°C and 67.9°C, respectively. Total amylose content was 26.6%, and there was not found any evidence for lipid complexed amylose. Swelling power at 90°C was 19 g/g starch, and the amount of leached amylose was 78% of the total amylose content. Native chestnut starch presents a type B pasting profile similar to corn starch but with a lower gelatinization (56.1°C) and peak viscosity (79.5°C) temperatures, making native chestnut starch a potential technological alternative to corn starch, especially in application where lower processing temperatures are needed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Changes on physico-chemical, textural, lipolysis and volatile compounds during the manufacture of dry-cured foal "cecina".

    PubMed

    Lorenzo, José M

    2014-01-01

    The changes in the physico-chemical and textural properties, lipolysis and volatile compounds during the manufacture of dry-cured foal "cecina" were studied. The pH increased during the last stages of processing but gradually declined over the curing period. TBARS values, hardness and chewiness increased with processing time from 0.14, 2.74 and 0.83 to 3.49 mg malonaldehyde/kg, 20.33 kg and 5.05 kg∗mm, respectively. Ripening time also affected the colour parameters: lightness (L*), redness (a*) and yellowness (b*) (P<0.001). The total average content of free fatty acid (FFA) increased significantly from 433.7 mg/100 g of fat in the raw pieces to 2655.5 mg/100 g of fat at the end of the drying-ripening stage. The main FFA at the end of the manufacturing process was palmitic acid (C16:0), followed by oleic (C18:1cis9), stearic (C18:0) and linoleic (C18:2n-6). A total of fifty five volatile compounds were identified during the manufacture of dry-cured foal "cecina", including esters, aldehydes, aliphatic hydrocarbons, branched hydrocarbons, alcohols, aromatic hydrocarbons, furans, ketones. Aldehydes reached their maximum level at the end of the post-salting stage. In the final product, esters became the dominant chemical compounds. © 2013.

  1. Physico-chemical properties and sensory profile of durum wheat Dittaino PDO (Protected Designation of Origin) bread and quality of re-milled semolina used for its production.

    PubMed

    Giannone, Virgilio; Giarnetti, Mariagrazia; Spina, Alfio; Todaro, Aldo; Pecorino, Biagio; Summo, Carmine; Caponio, Francesco; Paradiso, Vito Michele; Pasqualone, Antonella

    2018-02-15

    To help future quality checks, we characterized the physico-chemical and sensory properties of Dittaino bread, a sourdough-based durum wheat bread recently awarded with Protected Designation of Origin mark, along with the quality features of re-milled semolina used for its production. Semolina was checked for Falling Number (533-644s), protein content (12.0-12.3g/100gd.m.), gluten content (9.7-10.5g/100gd.m.), yellow index (18.0-21.0), water absorption (59.3-62.3g/100g), farinograph dough stability (171-327s), softening index (46-66B.U.), alveograph W (193×10 -4 -223×10 -4 J) and P/L (2.2-2.7). Accordingly, bread crumb was yellow, moderately hard (16.4-27.1N) and chewy (88.2-109.2N×mm), with low specific volume (2.28-3.03mL/g). Bread aroma profile showed ethanol and acetic acid, followed by hexanol, 3-methyl-1-butanol, 2-phenylethanol, 3-methylbutanal, hexanal, benzaldehyde, and furfural. The sensory features were dominated by a thick brown crust, with marked toasted odor, coupled to yellow and consistent crumb, with coarse grain and well-perceivable sour taste and odor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Alzheimer's disease against peptides products of enzymatic cleavage APP protein: Biological, pathobiological and physico-chemical properties of fibrillating peptides.

    PubMed

    Marszałek, Małgorzata

    2017-05-17

    Various peptides products of enzymatic cleavage of key for Alzheimer's disease Amyloid Precursor Protein (APP) are well known, but still are matter of scientific debate. The Aβ type products are especially challenging for experimental and medical research. This paper outlines several, still poorly known, biological and medical processes such as peptides biology, i.e., formation, biodistribution, translocation, transport and finally removal from brain compartments and body fluids like Intracellular Fluid (ICF), Cerebrospinal Fluid (CSF), Interstitial Fluid (ISF), blood serum or urine. In addition, the following studies concerning AD patients might prove challenging and simultaneously promising: peptides translocation through Blood-Brain - Barrier (BBB) and Blood-Cerebrospinal Fluid Barrier (BCSFB) and their removal from the brain according to a new concept of glymphatic system; - diagnostic difficulties that stem from physico-chemical properties and the nature of proteins or fibrillating peptides itself like low concentration, short half-live and from experimental-technical problems as well like high adsorption or low solubility of Aβ, tau or amylin. The study of diagnostic parameters is very important, as it may better reflect early changes before the disease develops; one such parameter is the Aβ42/Aβ40 ratio, or the ratio with the total tau concentration combination and other new biomarkers like Aβ1-38; other factors include oxidative stress and inflammation process proteins, complement factor H, alpha-2-macroglobulin, or clusterin. The study of various forms of pathological amyloid deposits that emerge in different but specific brain regions AD patients seems to be crucial as well. The composition of the first initial pathological, pre-fibrillating monomers of fibrillating peptides and their role in AD development and disease progression have been described as well. They are even more challenging for science and simultaneously might be more promising in

  3. Physico-chemical state influences in vitro release profile of curcumin from pectin beads.

    PubMed

    Nguyen, An Thi-Binh; Winckler, Pascale; Loison, Pauline; Wache, Yves; Chambin, Odile

    2014-09-01

    Curcumin is a polyphenolic compound with diverse effects interesting to develop health benefit products but its formulation in functional foods or in food supplement is hampered by its poor water solubility and susceptibility to alkaline conditions, light, oxidation and heat. Encapsulation of curcumin could be a mean to overcome these difficulties. In this paper, curcumin was encapsulated by ionotropic gelation method in low methoxyl pectin beads associated with different surfactants: Solutol(®), Transcutol(®) and sodium caseinate. After encapsulation, physico-chemical properties of encapsulated curcumin such as its solubility, physical state, tautomeric forms and encapsulation efficiency as well as encapsulation yield were characterized. In vitro dissolution of curcumin from beads displayed different kinetic profiles according to bead composition due to different matrix network. As Solutol(®) was a good solvent for curcumin, the drug was present into amorphous form in these beads inducing a rapid release of curcumin in the simulated digestive fluids. In contrast, drug release was slower from sodium caseinate beads since curcumin was not totally dissolved during the manufacturing process. Moreover, the FLIM studies showed that a part of curcumin was encapsulated in caseinate micelles and that 34% of this drug was in keto form which may delay the curcumin release. The Transcutol beads showed also a slow drug release because of the low curcumin solubility and the high density of the matrix. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Review of chemical and radiotoxicological properties of polonium for internal contamination purposes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ansoborlo, Eric; Berard, Philippe; Den Auwer, Christophe

    2012-01-01

    The discovery of polonium (Po) was first published in July 1898 by P. and M. Curie. It was the first element to be discovered by the radiochemical method. Polonium can be considered as a famous but neglected element: only a few studies of polonium chemistry have been published, mostly between 1950 and 1990. The recent (2006) event in which 2106 Po evidently was used as a poison to kill A. Litvinenko has raised new interest in polonium. 2011 being the 100th 8 anniversary of Marie Curie Nobel Prize in Chemistry, the aim of this paper is to review several aspectmore » of polonium linked to its chemical properties and its radiotoxicity, including : i) its radiochemistry and interaction with matter; ii) its main sources and uses; iii) its physico-chemical properties; iv) its main analytical methods; v) its background exposure risk in water, food, and other environmental media; vi) its biokinetics and distribution following inhalation, ingestion and wound contamination; vii) its dosimetry and viii) treatments available (decorporation) in case of internal contamination.« less

  5. Metal and physico-chemical variations at a hydroelectric reservoir analyzed by Multivariate Analyses and Artificial Neural Networks: environmental management and policy/decision-making tools.

    PubMed

    Cavalcante, Y L; Hauser-Davis, R A; Saraiva, A C F; Brandão, I L S; Oliveira, T F; Silveira, A M

    2013-01-01

    This paper compared and evaluated seasonal variations in physico-chemical parameters and metals at a hydroelectric power station reservoir by applying Multivariate Analyses and Artificial Neural Networks (ANN) statistical techniques. A Factor Analysis was used to reduce the number of variables: the first factor was composed of elements Ca, K, Mg and Na, and the second by Chemical Oxygen Demand. The ANN showed 100% correct classifications in training and validation samples. Physico-chemical analyses showed that water pH values were not statistically different between the dry and rainy seasons, while temperature, conductivity, alkalinity, ammonia and DO were higher in the dry period. TSS, hardness and COD, on the other hand, were higher during the rainy season. The statistical analyses showed that Ca, K, Mg and Na are directly connected to the Chemical Oxygen Demand, which indicates a possibility of their input into the reservoir system by domestic sewage and agricultural run-offs. These statistical applications, thus, are also relevant in cases of environmental management and policy decision-making processes, to identify which factors should be further studied and/or modified to recover degraded or contaminated water bodies. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Physico-Chemical Properties of MgGa Mixed Oxides and Reconstructed Layered Double Hydroxides and Their Performance in Aldol Condensation of Furfural and Acetone

    PubMed Central

    Kikhtyanin, Oleg; Čapek, Libor; Tišler, Zdeněk; Velvarská, Romana; Panasewicz, Adriana; Diblíková, Petra; Kubička, David

    2018-01-01

    MgGa layered double hydroxides (Mg/Ga = 2–4) were synthesized and used for the preparation of MgGa mixed oxides and reconstructed hydrotalcites. The properties of the prepared materials were examined by physico-chemical methods (XRD, TGA, NH3-TPD, CO2-TPD, SEM, and DRIFT) and tested in aldol condensation of furfural and acetone. The as-prepared phase-pure MgGa samples possessed hydrotalcite structure, and their calcination resulted in mixed oxides with MgO structure with a small admixture phase characterized by a reflection at 2θ ≈ 36.0°. The interaction of MgGa mixed oxides with pure water resulted in reconstruction of the HTC structure already after 15 s of the rehydration with maximum crystallinity achieved after 60 s. TGA-MS experiments proved a substantial decrease in carbonates in all rehydrated samples compared with their as-prepared counterparts. This allowed suggesting presence of interlayer hydroxyls in the samples. Acido-basic properties of MgGa mixed oxides determined by TPD technique did not correlate with Mg/Ga ratio which was explained by the specific distribution of Ga atoms on the external surface of the samples. CO2-TPD method was also used to evaluate the basic properties of the reconstructed MgGa samples. In these experiments, an intensive peak at T = 450°C on CO2-TPD curve was attributed to the decomposition of carbonates newly formed by CO2 interaction with interlayer carbonates rather than to CO2 desorption from basic sites. Accordingly, CO2-TPD method quantitatively characterized the interlayer hydroxyls only indirectly. Furfural conversion on reconstructed MgGa materials was much larger compared with MgGa mixed oxides confirming that Brønsted basic sites in MgGa catalysts, like MgAl catalysts, were active in the reaction. Mg/Ga ratio in mixed oxides influenced product selectivity which was explained by the difference in textural properties of the samples. In contrast, Mg/Ga ratio in reconstructed catalysts had practically no effect

  7. Physico-Chemical Properties of MgGa Mixed Oxides and Reconstructed Layered Double Hydroxides and Their Performance in Aldol Condensation of Furfural and Acetone.

    PubMed

    Kikhtyanin, Oleg; Čapek, Libor; Tišler, Zdeněk; Velvarská, Romana; Panasewicz, Adriana; Diblíková, Petra; Kubička, David

    2018-01-01

    MgGa layered double hydroxides (Mg/Ga = 2-4) were synthesized and used for the preparation of MgGa mixed oxides and reconstructed hydrotalcites. The properties of the prepared materials were examined by physico-chemical methods (XRD, TGA, NH 3 -TPD, CO 2 -TPD, SEM, and DRIFT) and tested in aldol condensation of furfural and acetone. The as-prepared phase-pure MgGa samples possessed hydrotalcite structure, and their calcination resulted in mixed oxides with MgO structure with a small admixture phase characterized by a reflection at 2θ ≈ 36.0°. The interaction of MgGa mixed oxides with pure water resulted in reconstruction of the HTC structure already after 15 s of the rehydration with maximum crystallinity achieved after 60 s. TGA-MS experiments proved a substantial decrease in carbonates in all rehydrated samples compared with their as-prepared counterparts. This allowed suggesting presence of interlayer hydroxyls in the samples. Acido-basic properties of MgGa mixed oxides determined by TPD technique did not correlate with Mg/Ga ratio which was explained by the specific distribution of Ga atoms on the external surface of the samples. CO 2 -TPD method was also used to evaluate the basic properties of the reconstructed MgGa samples. In these experiments, an intensive peak at T = 450°C on CO 2 -TPD curve was attributed to the decomposition of carbonates newly formed by CO 2 interaction with interlayer carbonates rather than to CO 2 desorption from basic sites. Accordingly, CO 2 -TPD method quantitatively characterized the interlayer hydroxyls only indirectly. Furfural conversion on reconstructed MgGa materials was much larger compared with MgGa mixed oxides confirming that Brønsted basic sites in MgGa catalysts, like MgAl catalysts, were active in the reaction. Mg/Ga ratio in mixed oxides influenced product selectivity which was explained by the difference in textural properties of the samples. In contrast, Mg/Ga ratio in reconstructed catalysts had practically

  8. Physico-chemical properties of MgGa mixed oxides and reconstructed layered double hydroxides and their performance in aldol condensation of furfural and acetone

    NASA Astrophysics Data System (ADS)

    Kikhtyanin, Oleg; Čapek, Libor; Tišler, Zdeněk; Velvarská, Romana; Panasewicz, Adriana; Diblíková, Petra; Kubička, David

    2018-05-01

    MgGa layered double hydroxides (Mg/Ga=2-4) were synthesized and used for the preparation of MgGa mixed oxides and reconstructed hydrotalcites. The properties of the prepared materials were examined by physico-chemical methods (XRD, TGA, NH3-TPD, CO2-TPD, SEM and DRIFT) and tested in aldol condensation of furfural and acetone. The as-prepared phase-pure MgGa samples possessed hydrotalcite structure, and their calcination resulted in mixed oxides with MgO structure with a small admixture phase characterized by a reflection at 2θ ≈ 36.0°. The interaction of MgGa mixed oxides with pure water resulted in reconstruction of the HTC structure already after 15 s of the rehydration with maximum crystallinity achieved after 60 s. TGA-MS experiments proved a substantial decrease in carbonates in all rehydrated samples compared with their as-prepared counterparts. This allowed suggesting presence of interlayer hydroxyls in the samples. Acido-basic properties of MgGa mixed oxides determined by TPD technique did not correlate with Mg/Ga ratio which was explained by the specific distribution of Ga atoms on the external surface of the samples. CO2-TPD method was also used to evaluate the basic properties of the reconstructed MgGa samples. In these experiments, an intensive peak at T=450 °C on CO2-TPD curve was attributed to the decomposition of carbonates newly formed by CO2 interaction with interlayer carbonates rather than to CO2 desorption from basic sites. Accordingly, CO2-TPD method quantitatively characterized the interlayer hydroxyls only indirectly. Furfural conversion on reconstructed MgGa materials was much larger compared with MgGa mixed oxides confirming that Brønsted basic sites in MgGa catalysts, like MgAl catalysts, were active in the reaction. Mg/Ga ratio in mixed oxides influenced product selectivity which was explained by the difference in textural properties of the samples. In contrast, Mg/Ga ratio in reconstructed catalysts had practically no effect on the

  9. Physico-chemical trends in the sediments of Agbede Wetlands, Nigeria

    NASA Astrophysics Data System (ADS)

    Dirisu, Abdul-Rahman; Olomukoro, John Ovie; Ezenwa, Ifeanyi Maxwell

    2017-07-01

    This study assessed the physico-chemical status of sediments in the Agbede Wetlands with the aim to create a reference archive for the Edo North catchment and to further identify the characteristics mostly influenced by the natural and anthropogenic activities going on at the watershed. Nutrients, zinc, nickel and lead were identified to be mostly of anthropogenic origin, while alkali metals and alkaline earth metals were from both anthropogenic and natural sources. The clustering of stations 1 and 4 indicates that the sediment quality in the lentic systems was not completely excluded from the lotic system, suggesting that principal component analysis (PCA) and cluster analysis (CA) techniques are invaluable tools for identifying factors influencing the sediment quality. The mean values of the particle size distribution were in the following order across the ecosystems: sand (61.86-80.53%) > silt (9.75-30.34%) > clay (7.83-13.89%). The contamination of the water bodies was primarily derived from agricultural run-offs and through geochemical weathering of the top soils. Therefore, our analysis indicates that the concentrations of cations, anions and nutrients in the sediments of the lotic and lentic ecosystems in Agbede Wetlands are not at an alarming level.

  10. Insights into the physico-chemical evolution of pyrogenic organic carbon emissions from biomass burning using coupled Lagrangian-Eulerian simulations

    NASA Astrophysics Data System (ADS)

    Suciu, L. G.; Griffin, R. J.; Masiello, C. A.

    2017-12-01

    Wildfires and prescribed burning are important sources of particulate and gaseous pyrogenic organic carbon (PyOC) emissions to the atmosphere. These emissions impact atmospheric chemistry, air quality and climate, but the spatial and temporal variabilities of these impacts are poorly understood, primarily because small and fresh fire plumes are not well predicted by three-dimensional Eulerian chemical transport models due to their coarser grid size. Generally, this results in underestimation of downwind deposition of PyOC, hydroxyl radical reactivity, secondary organic aerosol formation and ozone (O3) production. However, such models are very good for simulation of multiple atmospheric processes that could affect the lifetimes of PyOC emissions over large spatiotemporal scales. Finer resolution models, such as Lagrangian reactive plumes models (or plume-in-grid), could be used to trace fresh emissions at the sub-grid level of the Eulerian model. Moreover, Lagrangian plume models need background chemistry predicted by the Eulerian models to accurately simulate the interactions of the plume material with the background air during plume aging. Therefore, by coupling the two models, the physico-chemical evolution of the biomass burning plumes can be tracked from local to regional scales. In this study, we focus on the physico-chemical changes of PyOC emissions from sub-grid to grid levels using an existing chemical mechanism. We hypothesize that finer scale Lagrangian-Eulerian simulations of several prescribed burns in the U.S. will allow more accurate downwind predictions (validated by airborne observations from smoke plumes) of PyOC emissions (i.e., submicron particulate matter, organic aerosols, refractory black carbon) as well as O3 and other trace gases. Simulation results could be used to optimize the implementation of additional PyOC speciation in the existing chemical mechanism.

  11. Physico-chemical characteristics of ZnO nanoparticles-based discs and toxic effect on human cervical cancer HeLa cells

    NASA Astrophysics Data System (ADS)

    Sirelkhatim, Amna; Mahmud, Shahrom; Seeni, Azman; Kaus, Noor Haida Mohd.; Sendi, Rabab

    2014-10-01

    In this study, we investigated physico-chemical properties of zinc oxide nanoparticles (ZnO NPs)-based discs and their toxicity on human cervical cancer HeLa cell lines. ZnO NPs (80 nm) were produced by the conventional ceramic processing method. FESEM analysis indicated dominant structure of nanorods with dimensions 100-500 nm in length, and 20-100 nm in diameter. The high content of ZnO nanorods in the discs probably played significant role in toxicity towards HeLa cells. Structural defects (oxygen vacancies and zinc/oxygen interstitials) were revealed by PL spectra peaks at 370-376 nm and 519-533 nm for the ZnO discs. The structural, optical and electrical properties of prepared sample have influenced the toxicological effects of ZnO discs towards HeLa cell lines via the generation of reactive oxygen species (ROS), internalization, membrane damage, and eventually cell death. The larger surface to volume area of the ZnO nanorods, combined with defects, stimulated enhanced toxicity via ROS generation hydrogen peroxide, hydroxyl radicals, and superoxide anion. The preliminary results confirmed the ZnO-disc toxicity on HeLa cells was significantly associated with the unique physicochemical properties of ZnO NPs and to our knowledge, this is the first cellular study for treatment of HeLa cells with ZnO discs made from 80 nm ZnO particles.

  12. Physico-chemical characteristics of shallot New-Superior Varieties (NSV) from Indonesia

    NASA Astrophysics Data System (ADS)

    Sukasih, E.; Setyadjit; Musadad, D.

    2018-01-01

    Shallot is one of the priority agricultural commodities to be developed in Indonesia to reduce import and to stabilize domestic supply. The efforts include the selection of varieties, seed technology, agronomy, handling and processing to extend the supply and added value. Indonesian Agency for Agricultural Research and Development (IAARD) has purified, cross-pollinated, selected and released new varieties called New Superior Varieties (NSV) to farmers. The purpose of this research was to investigate the characteristic of fresh shallot NSV by understanding its potential for raw material of processed product. A completely randomized design (CRD) of single factor of ten local varieties of shallot such as Cv. Sembrani, Cv. Kuning, Cv. Pancasona, Cv. Bima, Cv. Trisula, Cv. Pikatan, Cv. Katumi, Cv. Kramat-2, Cv. Mentes and Cv. Majalok of three replication was used to arrange the experiment. The results showed that shallot New Superior Varieties (NSV) were significant by effect the physico-chemical parameters, such as diameter, length, weight of both in main bulb and tiller bulb, fat total, carbohydrate, crude fiber, starch content, antioxidant capacity and quercetin. Of the ten varieties of shallot characterized, the largest bulbs are Cv. Sembrani i.e 5.30 ± 0.3g per bulb, the best red color for shallot peeled was Cv. Kuning. Furthermore Cv. Pancasona have the highest protein content of 4.23 ± 0.2%, Cv. Mentes have the highest functional properties of quercetin 1766.4 ± 134 ppm. Shallot varieties such as Cv. Sembrani, Cv. Bima, Cv. Kuning and Cv. Trisula suitable for use as fresh product. Shallot varieties such as Cv. Pikatan, Cv. Pancasona, Cv. Katumi and Cv. Kramat-2 are suitable as raw materials for processed products. Cv. Mentes and Cv. Majalok were potential for raw materials of functional food and pharmaceutical industries.

  13. A chemical-biological similarity-based grouping of complex substances as a prototype approach for evaluating chemical alternatives.

    PubMed

    Grimm, Fabian A; Iwata, Yasuhiro; Sirenko, Oksana; Chappell, Grace A; Wright, Fred A; Reif, David M; Braisted, John; Gerhold, David L; Yeakley, Joanne M; Shepard, Peter; Seligmann, Bruce; Roy, Tim; Boogaard, Peter J; Ketelslegers, Hans B; Rohde, Arlean M; Rusyn, Ivan

    2016-08-21

    Comparative assessment of potential human health impacts is a critical step in evaluating both chemical alternatives and existing products on the market. Most alternatives assessments are conducted on a chemical-by-chemical basis and it is seldom acknowledged that humans are exposed to complex products, not individual substances. Indeed, substances of U nknown or V ariable composition, C omplex reaction products, and B iological materials (UVCBs) are ubiquitous in commerce yet they present a major challenge for registration and health assessments. Here, we present a comprehensive experimental and computational approach to categorize UVCBs according to global similarities in their bioactivity using a suite of in vitro models. We used petroleum substances, an important group of UVCBs which are grouped for regulatory approval and read-across primarily on physico-chemical properties and the manufacturing process, and only partially based on toxicity data, as a case study. We exposed induced pluripotent stem cell-derived cardiomyocytes and hepatocytes to DMSO-soluble extracts of 21 petroleum substances from five product groups. Concentration-response data from high-content imaging in cardiomyocytes and hepatocytes, as well as targeted high-throughput transcriptomic analysis of the hepatocytes, revealed distinct groups of petroleum substances. Data integration showed that bioactivity profiling affords clustering of petroleum substances in a manner similar to the manufacturing process-based categories. Moreover, we observed a high degree of correlation between bioactivity profiles and physico-chemical properties, as well as improved groupings when chemical and biological data were combined. Altogether, we demonstrate how novel in vitro screening approaches can be effectively utilized in combination with physico-chemical characteristics to group complex substances and enable read-across. This approach allows for rapid and scientifically-informed evaluation of health

  14. Physico-chemical Stability of MabThera Drug-product Solution for Subcutaneous Injection under in-use Conditions with Different Administration Materials.

    PubMed

    Mueller, Claudia; Dietel, Elke; Heynen, Severin R; Nalenz, Heiko; Goldbach, Pierre; Mahler, Hanns-Christian; Schmidt, Johannes; Grauschopf, Ulla; Schoenhamnmer, Karin

    2015-01-01

    MabThera is an essential component of the standard-of-care regimens in the treatment of non-Hodgkin lymphoma and Chronic Lymphatic Leukemia. MabThera for subcutaneous injection is a novel line extension that has been approved by the European Medicines Agency for the treatment of patients with follicular lymphoma and diffuse large B-cell lymphoma. This study aimed to evaluate in-use stability data of MabThera subcutaneous drug-product solution in single-use syringes for subcutaneous administration according to the European Medicines Agency guideline. The drug-product solution was exposed to material contact surfaces of five different administration setups commonly used in subcutaneous drug delivery. MabThera subcutaneous was transferred under aseptic conditions into polypropylene and polycarbonate syringes and stored for 1, 2, and 4 weeks at 2°C to 8°C followed by 24 hours at 30°C. After storage, subcutaneous administration was simulated and MabThera subcutaneous drug-product solution quality attributes were evaluated by using compendial physico-chemical tests, as well as suitable and validated molecule- and formulation-specific analytical methods. MabThera subcutaneous vials were treated and analyzed in parallel. The physico-chemical results of MabThera subcutaneous in the different setups were comparable to the control for all timepoints. No change in drug-product quality after storage and simulated administration was found compared to the control. However, since single-dose products do not contain preservatives, microbial contamination and growth needs to be avoided and product sterility needs to be ensured. The results showed that MabThera subcutaneous remains compatible and stable, from a physico-chemical perspective, for up to 4 weeks at 2°C to 8°C followed by 24 hours at 30°C with the contact materials tested in this study. In order to avoid and minimize microbial growth, MabThera subcutaneous should be used immediately after removal from the original

  15. Importance of Physico-Chemical Properties of Aerosols in the Formation of Arctic Ice Clouds

    NASA Astrophysics Data System (ADS)

    Keita, S. A.; Girard, E.

    2014-12-01

    Ice clouds play an important role in the Arctic weather and climate system but interactions between aerosols, clouds and radiation are poorly understood. Consequently, it is essential to fully understand their properties and especially their formation process. Extensive measurements from ground-based sites and satellite remote sensing reveal the existence of two Types of Ice Clouds (TICs) in the Arctic during the polar night and early spring. TIC-1 are composed by non-precipitating very small (radar-unseen) ice crystals whereas TIC-2 are detected by both sensors and are characterized by a low concentration of large precipitating ice crystals. It is hypothesized that TIC-2 formation is linked to the acidification of aerosols, which inhibit the ice nucleating properties of ice nuclei (IN). As a result, the IN concentration is reduced in these regions, resulting to a smaller concentration of larger ice crystals. Over the past 10 years, several parameterizations of homogeneous and heterogeneous ice nucleation have been developed to reflect the various physical and chemical properties of aerosols. These parameterizations are derived from laboratory studies on aerosols of different chemical compositions. The parameterizations are also developed according to two main approaches: stochastic (that nucleation is a probabilistic process, which is time dependent) and singular (that nucleation occurs at fixed conditions of temperature and humidity and time-independent). This research aims to better understand the formation process of TICs using a newly-developed ice nucleation parameterizations. For this purpose, we implement some parameterizations (2 approaches) into the Limited Area version of the Global Multiscale Environmental Model (GEM-LAM) and use them to simulate ice clouds observed during the Indirect and Semi-Direct Arctic Cloud (ISDAC) in Alaska. We use both approaches but special attention is focused on the new parameterizations of the singular approach. Simulation

  16. Wild blueberry polyphenol-protein food ingredients produced by three drying methods: Comparative physico-chemical properties, phytochemical content, and stability during storage.

    PubMed

    Correia, Roberta; Grace, Mary H; Esposito, Debora; Lila, Mary Ann

    2017-11-15

    Particulate colloidal aggregate food ingredients were prepared by complexing wheat flour, chickpea flour, coconut flour and soy protein isolate with aqueous wild blueberry pomace extracts, then spray drying, freeze drying, or vacuum oven drying to prepare dry, flour-like matrices. Physico-chemical attributes, phytochemical content and stability during storage were compared. Eighteen anthocyanins peaks were identified for samples. Spray dried matrices produced with soy protein isolate had the highest concentration of polyphenols (156.2mg GAE/g) and anthocyanins (13.4mg/g) and the most potent DPPH scavenging activity (714.1μmolesTE/g). Spray dried blueberry polyphenols complexed with protein were protected from degradation during 16weeks at 4°C and 20°C. Soy protein isolate more efficiently captured and stabilized wild blueberry pomace phytochemicals than other protein sources. Overall, spray drying the blueberry extracts complexed with protein proved to be an environment-friendly strategy to produce stable functional ingredients with multiple applications for the food industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. THE USE OF STRUCTURE-ACTIVITY RELATIONSHIPS IN INTEGRATING THE CHEMISTRY AND TOXICOLOGY OF ENDOCRINE DISRUPTING CHEMICALS

    EPA Science Inventory

    Structure activity relationships (SARs) are based on the principle that structurally similar chemicals should have similar biological activity. SARs relate specifically-defined toxicological activity of chemicals to their molecular structure and physico-chemical properties. To de...

  18. Physico-chemical and sensory evaluation of potato (Solanum tuberosum L.) after irradiation.

    PubMed

    Soares, Ivanesa G M; Silva, Edvane B; Amaral, Ademir J; Machado, Erilane C L; Silva, Josenilda M

    2016-06-07

    This work evaluated the effects of ionizing radiation on the physico-chemical and sensory characteristics of the potato cultivar Ágata (Solanum tuberosum L.), including budding and deterioration, with the end goal of increasing shelf life. For this, four groups of samples were harvested at the maturation stage. Three of them were separately exposed to a Co-60 source, receiving respective doses of 0.10, 0.15 and 2.00 kGy, while the non-irradiated group was kept as a control. All samples were stored for 35 days at 24 °C (± 2) and at 39% relative humidity. The following aspects were evaluated: budding, rot, loss of weight, texture, flesh color, moisture, external and internal appearance, aroma, soluble solids, titratable acidity, vitamin C, protein, starch and glucose. The results indicated that 0.15 kGy was the most effective dose to reduce sprouting and post-harvest losses, under the conditions studied.

  19. Physico-chemical characteristics and methanogen communities in swine and dairy manure storage tanks: spatio-temporal variations and impact on methanogenic activity.

    PubMed

    Barret, Maialen; Gagnon, Nathalie; Topp, Edward; Masse, Lucie; Massé, Daniel I; Talbot, Guylaine

    2013-02-01

    Greenhouse gas emissions represent a major environmental problem associated with the management of manure from the livestock industry. Methane is the primary GHG emitted during manure outdoor storage. In this paper, the variability of two swine and two dairy manure storage tanks was surveyed, in terms of physico-chemical and microbiological parameters. The impact of the inter-tank and spatio-temporal variations of these parameters on the methanogenic activity of manure was ascertained. A Partial Least Square regression was carried out, which demonstrated that physico-chemical as well as microbiological parameters had a major influence on the methanogenic activity. Among the 19 parameters included in the regression, the concentrations of VFAs had the strongest negative influence on the methane emission rate of manure, resulting from their well-known inhibitory effect. The relative abundance of two amplicons in archaeal fingerprints was found to positively influence the methanogenic activity, suggesting that Methanoculleus spp. and possibly Methanosarcina spp. are major contributors to methanogenesis in storage tanks. This work gave insights into the mechanisms, which drive methanogenesis in swine and dairy manure storage tanks. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  20. Effect of Gleditsia sinensis Lam. Extract on Physico-Chemical Properties of Emulsion-Type Pork Sausages

    PubMed Central

    Jin, Sang-Keun; Yang, Han-Sul; Choi, Jung-Seok

    2017-01-01

    This study was performed to investigate the effect of Gleditsia sinensis Lam. extract on the physicochemical properties of emulsion-type pork sausages during storage at 10°C for 4 wk. Treatments were as follows: (C, control; T1, sodium ascorbate 0.05%; T2, Gleditsia sinensis Lam. 0.05%; T3, Gleditsia sinensis Lam. 0.1%; T4, Gleditsia sinensis Lam. 0.2%; T5, Gleditsia sinensis Lam. 0.1% + sodium ascorbate 0.05%). The values of pH, moisture content, lightness, redness, and sensory attributes were all significantly decreased, while the yellowness, chroma, hue angle, and texture properties were increased during storage with increase of the Gleditsia sinensis Lam. extract added. In addition, the antioxidant activity and antimicrobial activity in the sausages displayed significant increases (p<0.05). Therefore, although it was concluded that the addition of Gleditsia sinensis Lam. extract is not effective for improvement of the physical properties compared to chemical additives in sausages, it could be applied to meat products as a natural preservatives. PMID:28515651

  1. Effect of Gleditsia sinensis Lam. Extract on Physico-Chemical Properties of Emulsion-Type Pork Sausages.

    PubMed

    Jin, Sang-Keun; Yang, Han-Sul; Choi, Jung-Seok

    2017-01-01

    This study was performed to investigate the effect of Gleditsia sinensis Lam. extract on the physicochemical properties of emulsion-type pork sausages during storage at 10°C for 4 wk. Treatments were as follows: (C, control; T1, sodium ascorbate 0.05%; T2, Gleditsia sinensis Lam. 0.05%; T3, Gleditsia sinensis Lam. 0.1%; T4, Gleditsia sinensis Lam. 0.2%; T5, Gleditsia sinensis Lam. 0.1% + sodium ascorbate 0.05%). The values of pH, moisture content, lightness, redness, and sensory attributes were all significantly decreased, while the yellowness, chroma, hue angle, and texture properties were increased during storage with increase of the Gleditsia sinensis Lam. extract added. In addition, the antioxidant activity and antimicrobial activity in the sausages displayed significant increases ( p <0.05). Therefore, although it was concluded that the addition of Gleditsia sinensis Lam. extract is not effective for improvement of the physical properties compared to chemical additives in sausages, it could be applied to meat products as a natural preservatives.

  2. [Studies on chemical constituents from Elaeocarpus sylvestris].

    PubMed

    Zhang, Hong-Chao; Shi, Hai-Ming

    2008-10-01

    To study the chemical constituents of Elaeocarpus sylvestris. The compounds were isolated by chromatographic methods and their structures were elucidated by physico-chemical properties and spectral analysis. Six compounds were isolated and identified as: 2-hydroxy-benzaldehyde (1), coniferyl alcohol (2), umbelliferone (3), scopoletin (4), beta-sitosterol (5), daucosterol (6). All above compounds are isolated from Elaeocarpus Genus for the first time.

  3. Physico-Chemical Properties and Biodegradability of Genetically Modified Populus trichocarpa and Pinus taeda

    NASA Astrophysics Data System (ADS)

    Edmunds, Charles Warren

    Increasing concerns over greenhouse gas emissions and the finite supply of fossil fuels lead to the goal of utilizing lignocellulosic feedstocks for biofuels, platform chemicals, and biocomposites. Lignin is responsible for the recalcitrance of lignocellulosic biomass and is a major barrier to its deconstruction. Great progress has been made in mapping and modifying the lignin biosynthetic pathway. However, the link between the genetic modification, resulting chemical and physical properties of the wood, and how these properties influence the thermomechanical and recalcitrance to biological and chemical degradation needs further investigation. In this dissertation, the study of modified Populus trichocarpa and Pinus taeda were utilized to accomplish this goal. Thermo-mechanical properties of genetically modified P. trichocarpa with altered lignin content and/or lignin structure were measured with a series of tools including; dynamic mechanical analysis, nuclear magnetic resonance, and wet chemistry techniques. Results demonstrated lignin content and lignin structure likely influence the glass transition temperature (Tg), and that decreased lignin content and the corresponding higher proportion of cell wall carbohydrates may contribute to increased molecular mobility in the wood polymer structure. The effect of lignin biosynthetic pathway modification on biological degradation of these transgenic wood specimens was of interest. However, experimental methods for fungal treatment on small young greenhouse-grown wood specimens are not well established. Therefore, a project was undertaken to develop a method for fungal inoculation and incubation for these unique specimens. Several parameters were tested, and a fungal treatment method was identified with sufficient weight loss after decay and significant reduction in variation of weight loss between replicates compared to previous experiments by direct inoculation of wood with liquid malt extract fungal culture

  4. [Chemical constituents of Changium smyrnioides].

    PubMed

    Ren, Dong-chun; Qian, Shi-hui; Yang, Nian-yun; Xie, Ning; Duan, Jin-ao

    2008-01-01

    To study chemical constituents of Changium smyrnioides Wolff. The chemical components were isolated and purified by silica gel column and recrystallization. The chemical structures were elucidated on the basis of physico-chemical properties and spectral data. Ten compounds were isolated and identified as lignoceric acid (1), beta-sitosterol (2), stigmasterol (3), 5-hydroxy-8-methoxypsoralen (4), glycerylmonopalmitate (5), L-pyroglutamic acid (6), succinic acid (7), vanillic acid-4-O-beta-D-glucopyranoside (8 ), vanillic acid (9), daucosterol (10). Compounds 1, 4, 5, 6, 8 and 9 are obtained from the plant for the first time.

  5. Processes controlling the physico-chemical micro-environments associated with Pompeii worms

    NASA Astrophysics Data System (ADS)

    Le Bris, N.; Zbinden, M.; Gaill, F.

    2005-06-01

    Alvinella pompejana is a tube-dwelling polychaete colonizing hydrothermal smokers of the East Pacific Rise. Extreme temperature, low pH and millimolar sulfide levels have been reported in its immediate surroundings. The conditions experienced by this organism and its associated microbes are, however, poorly known and the processes controlling the physico-chemical gradients in this environment remain to be elucidated. Using miniature in situ sensors coupled with close-up video imagery, we have characterized fine-scale pH and temperature profiles in the biogeoassemblage constituting A. pompejana colonies. Steep discontinuities at both the individual and the colony scale were highlighted, indicating a partitioning of the vent fluid-seawater interface into chemically and thermally distinct micro-environments. The comparison of geochemical models with these data furthermore reveals that temperature is not a relevant tracer of the fluid dilution at these scales. The inner-tube micro-environment is expected to be supplied from the seawater-dominated medium overlying tube openings and to undergo subsequent conductive heating through the tube walls. Its neutral pH is likely to be associated with moderately oxidative conditions. Such a model provides an explanation of the atypical thermal and chemical patterns that were previously reported for this medium from discrete samples and in situ measurements. Conversely, the medium surrounding the tubes is shown to be dominated by the fluid venting from the chimney wall. This hot fluid appears to be gradually cooled (120-30 °C) as it passes through the thickness of the worm colony, as a result of a thermal exchange mechanism induced by the tube assemblage. Its pH, however, remains very low (pH˜4), and reducing conditions can be expected in this medium. Such a thermal and chemical buffering mechanism is consistent with the mineralogical anomalies previously highlighted and provides a first explanation of the exceptional ability of

  6. Physico-chemical and bacteriological quality of drinking water of different sources, Jimma zone, Southwest Ethiopia.

    PubMed

    Yasin, Mohammed; Ketema, Tsige; Bacha, Ketema

    2015-10-05

    The quality of drinking water has always been a major health concern, especially in developing countries, where 80% of the disease cases are attributed to inadequate sanitation and use of polluted water. The inaccessibility of potable water to large segment of a population in the rural communities is the major health concern in most part of developing countries. This study was designed to evaluate the physico-chemical and bacteriological qualities of drinking water of different sources in the study area. The study was conducted at Serbo town and selected kebeles around the same town in Kersa district of Jimma Zone, southwest Ethiopia. Socio-demographic characteristics of the study populations were gathered using structured and pre-tested questionnaires. Standard microbiological methods were employed for determination of bacterial load and detection of coliforms. Physico-chemical analyses [including total dissolved substances (TDS), total suspended substances (TSS), biological oxygen demand (BOD), nitrate and phosphate concentrations, turbidity and electrical conductivities] were conducted following guidelines of American Public Health Association and WHO. Correlations among measured parameters of water samples collected from different water sources were computed using SPSS software (version 20). Only 18.1% (43/237) of the study population had access to tap water in the study area. More than 50% of the community relies on open field waste disposal. Members of the family Enterobacteriaceae, Bacillus and Pseudomonas were among dominant bacterial isolates in the water samples. All water samples collected from unprotected water sources were positive for total coliforms and fecal coliforms (FC). Accordingly, FC were detected in 80% of the total samples with counts ranging between 0.67 and 266.67 CFU/100 ml although 66.67% of tap water samples were negative for FC. The recorded temperature and pH ranged between 20.1-29.90 °C and 5.64-8.14, respectively. The lowest and

  7. A Greenhouse Study on Lead Uptake and Antioxidant Enzyme Activities in Vetiver Grass (Vetiveria zizanioides) as a Function of Lead Concentration and Soil Physico-Chemical Properties

    NASA Astrophysics Data System (ADS)

    Andra, S. P.; Datta, R.; Sarkar, D.; Saminathan, S. K.

    2006-05-01

    enzymes activity in vetiver grass is dependent on soil physico-chemical properties and phytoavailable Pb concentrations.

  8. Correlation between electrical, mechanical and chemical properties of fresh and used aircraft engine oils

    NASA Astrophysics Data System (ADS)

    Gajewski, Juliusz B.; Głogowski, Marek J.; Paszkowski, Maciej; Czarnik-Matusewicz, Bogusława

    2011-06-01

    In this paper the results are presented of measurements of electrical, mechanical and chemical properties of fresh and used aircraft engine oils. Oils were used in a four-stroke aircraft engine and their samples were taken after the 50-hour work of the engine. The resistivity, permittivity and viscosity of oils were measured as a function of temperature. Additionally, some measurements of the absorbance spectra and size of particles contained in the oils were carried out. The significant reduction in the resistivity of the used Total oil was observed. The relative permittivity of both used oils was slightly increased. The oil's relative viscosity depends on temperature of oil and given time that elapsed from the very first moment when the shear force was applied in a rheometer. The results obtained allowed one to identify more precisely the chemical and physico-chemical interactions occurring in the tested samples, as compared with a typical infrared spectroscopy.

  9. Epstein-Barr virus latency switch in human B-cells: a physico-chemical model.

    PubMed

    Werner, Maria; Ernberg, Ingemar; Zou, Jiezhi; Almqvist, Jenny; Aurell, Erik

    2007-08-31

    The Epstein-Barr virus is widespread in all human populations and is strongly associated with human disease, ranging from infectious mononucleosis to cancer. In infected cells the virus can adopt several different latency programs, affecting the cells' behaviour. Experimental results indicate that a specific genetic switch between viral latency programs, reprograms human B-cells between proliferative and resting states. Each of these two latency programs makes use of a different viral promoter, Cp and Qp, respectively. The hypothesis tested in this study is that this genetic switch is controlled by both human and viral transcription factors; Oct-2 and EBNA-1. We build a physico-chemical model to investigate quantitatively the dynamical properties of the promoter regulation and experimentally examine protein level variations between the two latency programs. Our experimental results display significant differences in EBNA-1 and Oct-2 levels between resting and proliferating programs. With the model we identify two stable latency programs, corresponding to a resting and proliferating cell. The two programs differ in robustness and transcriptional activity. The proliferating state is markedly more stable, with a very high transcriptional activity from its viral promoter. We predict the promoter activities to be mutually exclusive in the two different programs, and our relative promoter activities correlate well with experimental data. Transitions between programs can be induced, by affecting the protein levels of our transcription factors. Simulated time scales are in line with experimental results. We show that fundamental properties of the Epstein-Barr virus involvement in latent infection, with implications for tumor biology, can be modelled and understood mathematically. We conclude that EBNA-1 and Oct-2 regulation of Cp and Qp is sufficient to establish mutually exclusive expression patterns. Moreover, the modelled genetic control predict both mono- and bistable

  10. Differences in Health-related Fatty Acids, Intramuscular Fat and the Physico-chemical Quality in Mutton as Affected by Season, Place of Purchase and Meat Portion

    PubMed Central

    Rani, Zikhona T.; Nantapo, Carlos W. T.; Hugo, Arnold; Muchenje, Voster

    2014-01-01

    The objective of the study was to determine the quality and fatty acid profiles of mutton cuts purchased from rural and urban localities in South Africa. Five hundred and ten samples were collected in four seasons from both rural and urban shops and butcheries. Samples were immediately transported to the laboratory in cooler boxes with ice where the following physico-chemical characteristics of mutton were determined; meat pH, color (L*, a*, and b*), cooking losses and Warner Braztler shear force and replicates stored at −20°C pending fatty acid analysis. Meat L* values were lowest (24.7±0.49) in winter and highest (32.2±0.49) in spring. The loin and sirloin cuts recorded the highest intramuscular fat whilst rib and leg cuts recorded the lowest intramuscular fat. In conclusion intramuscular fat, fatty acid profiles and physico-chemical quality of mutton were significantly affected by season and meat portion and not necessarily by the locality and class of shop. PMID:25358324

  11. Mineralogical and physico-chemical characterization of Mbodiene palygorskite for pharmaceutical applications

    NASA Astrophysics Data System (ADS)

    Sylla Gueye, Rokhaya; Davy, Catherine A.; Cazaux, Frédéric; Ndiaye, Augustin; Diop, Mouhamadou Bassir; Skoczylas, Frédéric; Wele, Alassane

    2017-11-01

    This contribution provides a wide morphological, mineralogical, chemical and physical characterization of Mbodiene palygorskite (Senegal), to serve as a basis for the formulation of antidiarrheal and cosmetic products. Data are compared with other palygorskite deposits, either in Senegal or on other continents. Qualitative total rock XRD, semi-quantitative XRD of the clay fraction and quantitative X-Ray fluorescence (XRF) show the presence of 72%wt palygorskite (±2%wt), 13%wt montmorillonite (±2%wt), 8%wt dolomite (±2%wt), 5%wt quartz SiO2 (±2%wt) and 2%wt inter-stratified illite/smectite (±2%wt). Coupled SEM + EDX and TEM + EDX confirm the presence of fibrous palygorskite, with greater amounts of Mg than Al, and Fe substitution to Mg and Al, interspersed with dolomite cubes CaMg(CO3)2. The presence of carbonates in Mbodiene palygorskite may limit its use in the Pharmacopoeia, and make its purification necessary. A specific signature of Mbodiene palygorskite, relevant to the palygorskite family, is deduced from both FTIR and TGA analysis. In terms of physico-chemical characterization, Mbodiene palygorskite has usual values when compared to the literature (for its specific surface area, specific gravity, compressibility and Haussner indexes, CEC, loss on ignition, etc.). After grinding (down to a peak grain size of 500 nm), Mbodiene palygorskite is considered a normal clay, extremely highly plastic, with hard consistency owing to the values of its Atterberg plasticity and liquidity limits, with good flowability owing to its compressibility and Haussner indexes. Its physical characteristics are suitable for manufacturing pastes and colloidal suspensions.

  12. Physico-chemical characterization of Mediterranean background aerosol at the Capogranitola observatory (Sicily)

    NASA Astrophysics Data System (ADS)

    Rinaldi, Matteo; Gilardoni, Stefania; Paglione, Marco; Sandrini, Silvia; Decesari, Stefano; Zanca, Nicola; Marinoni, Angela; Cristofanelli, Paolo; Bonasoni, Paolo; Ielpo, Piera; Fossum, Kirsten; Gobbi, Gian Paolo; Facchini, Maria Cristina

    2017-04-01

    The Mediterranean basin is characterized by elevated aerosol amounts and co-existence of different aerosol types, both natural and anthropogenic, while it is one of the most climatically sensitive areas. Therefore, it offers ideal conditions for studying aerosol processes and aerosol-climate interactions. An intensive aerosol physico-chemical characterization campaign was held at the Environmental-Climatic Observatory at Capo Granitola (Sicily; 37.5753° N, 12.6595° E) during April 2016, under the framework of the project Air-Sea Lab. The Observatory is located at the coast-line, facing the Strait of Sicily, and is part of the national I-AMICA network (http://www.i-amica.it/i-amica/?lang=en). Sub-micrometer aerosol chemical composition was measured by high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS), for the first time at Capogranitola. Sea-salt concentration was estimated from AMS measurements following Ovadnevaite et al. (2012). For a complete mass closure of the submicron aerosol, black carbon (BC) concentration was derived from multiangle absorption photometer (MAAP) measurements. Positive matrix factorization was deployed to investigate organic aerosol (OA) sources at the site. Aerosol chemical composition confirms that Capogranitola is a representative background site, with generally low contribution of BC and nitrate and highly oxidized OA. In particular, aerosol sampled in the marine sector (130-310°) is less affected by local sources and it is likely representative of the central Mediterranean background. Aerosol in background conditions is dominated by sulfate and OA (37% and 31%), followed by ammonium (12%), sea-salt (10%), BC (6%) and nitrate (3%). The average reconstructed sub-micrometer aerosol mass in background conditions is 3.7±2.3 μg m-3. OA source apportionment shows a minor contribution from primary sources, with hydrocarbon-like OA (HOA), from fossil fuel combustion, contributing for 3% and biomass burning OA (BBOA) for

  13. Physico-chemical and genotoxicity analysis of Guaribas river water in the Northeast Brazil.

    PubMed

    de Castro E Sousa, João Marcelo; Peron, Ana Paula; da Silva, Felipe Cavalcanti Carneiro; de Siqueira Dantas, Ellifran Bezerra; de Macedo Vieira Lima, Ataíde; de Oliveira, Victor Alves; Matos, Leomá Albuquerque; Paz, Márcia Fernanda Correia Jardim; de Alencar, Marcus Vinicius Oliveira Barros; Islam, Muhammad Torequl; de Carvalho Melo-Cavalcante, Ana Amélia; Bonecker, Cláudia Costa; Júlio, Horácio Ferreira

    2017-06-01

    River pollution in Brazil is significant. This study aimed to evaluate the physico-chemical and genotoxic profiles of the Guaribas river water, located in Northeast Brazil (State of Piauí, Brazil). The study conducted during the dry and wet seasons to understand the frequency of pollution throughout the year. Genotoxicity analysis was done with the blood of Oreochromis niloticus by using the comet assay. Water samples were collected from upstream, within and downstream the city Picos. The results suggest a significant (p < 0.05) genotoxic effect of the Guaribas river water when compared to the control group. In comparison to the control group, in the river water we found a significant increase in metals such as - Fe, Zn, Cr, Cu and Al. In conclusion, Guaribas river carries polluted water, especially a large quantity of toxic metals, which may impart the genotoxic effect. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. An Investigation of Physico-Mechanical Properties of Ultrafine-Grained Magnesium Alloys Subjected to Severe Plastic Deformation

    NASA Astrophysics Data System (ADS)

    Kozulyn, A. A.; Skripnyak, V. A.; Krasnoveikin, V. A.; Skripnyak, V. V.; Karavatskii, A. K.

    2015-01-01

    The results of investigations of physico-mechanical properties of specimens made from the structural Mg-based alloy (Russian grade Ma2-1) in its coarse-grained and ultrafine-grained states after SPD processing are presented. To form the ultrafine-grained structure, use was made of the method of orthogonal equal-channel angular pressing. After four passes through the die, a simultaneous increase was achieved in microhardness, yield strength, ultimate tensile strength and elongation to failure under conditions of uniaxial tensile loading.

  15. Effect of physico-chemical treatments on ripening behavior and post-harvest quality of Amrapali mango (Mangifera indica L.) during storage.

    PubMed

    Singh, Pankaj; Singh, Manoj Kumar; Kumar, Vipin; Kumar, Mukesh; Malik, Sunil

    2012-03-01

    An experiment was done to assess the effect of various physico-chemical treatments on ripening behavior and post harvest quality of mango cv. Amrapali. The experiment was planned under completely randomized design (CRD) with three replications. The treatment units was five fruits per replication. Total 14 treatments were applied. Out of these, ethrel 750 ppm treated fruits showed better results in respect of specific gravity (0.88), moisture loss (8.45%), decay (2.5%), total soluble solids (TSS, 20.7 degrees brix), sugar content (14.39%) and acidity content (0.32) followed by ethrel 500 ppm; specific gravity (0.90), moisture loss (8.82%), decay (3.5%), TSS (20.7 degrees brix), sugar content (13.99%) and acidity content (0.36%). The pedicellate fruits and ethrel+bavistin (750+1000 ppm) were also found to be significantly superior over control in respect of specific gravity (0.88 and 0.86), moisture loss (9.10 and 9.33%), decay (4.0 and 5.33%), TSS (20.1 and 20.4 degrees brix), sugar content (12.70 and 12.80%) and acidity content (0.42 and 0.38%), respectively. Based on results of this study, it can be concluded that ethrel 750 ppm was found to be the most suitable treatment in improving physico-chemical traits i.e. ripening, storage, quality and shelf-life for commercial purpose in mango.

  16. Physico-chemical characteristics of oil produced from seeds of some date palm cultivars (Phoenix dactylifera L.) .

    PubMed

    Soliman, S S; Al-Obeed, R S; Ahmed, T A

    2015-03-01

    The oil content of saturated and unsaturated fatty acids with some physico-chemical properties and nutrients were investigated in oil produced from seeds of six important date palm cultivars and one seed strain present in Saudi Arabia. The results indicated that the oil extracted from six seed cultivars of date palm ranged from 6.73-10.89% w/w oil. The refractive index of date seeds oil was found to be between 1.4574 to 1.4615. The iodine values, acid values and saponification values were in the range of 74.2-86.6 g iodine 100 g(-1); 2.50-2.58 mg KOH g(-1) and 0.206-0.217 mg KOH g(-1), respectively. Lauric acid, Myristic acid, Palmitic acid C15, Palmitic acid C16 Stearic acid, Arachidic acid and Behenic acid of date seeds oil contents were found between 8.67-49.27; 7.01-15.43; 0-0.57; 4.82-18.09; 1.02-7.86; 0-0.08; and 0-0.15% w/w, in that order. Omega-6 and Omega-9 of date seeds oil were found between 7.31-17.87 and 52.12-58.78%, respectively. Khalas, Barhy cvs. and seed strain gave highest K and Ca, Na and Fe, Mg as compared with other studied cultivars.

  17. Interaction of Colloidal Gold Nanoparticles with Model Serum Proteins: The Nanoparticle-Protein 'Corona' from a PhysicoChemical Viewpoint

    NASA Astrophysics Data System (ADS)

    Dominguez Medina, Sergio

    When nanoparticles come in contact with biological fluids they become coated with a mixture of proteins present in the media, forming what is known as the nanoparticle-protein 'corona'. This corona changes the nanoparticles' original surface properties and plays a central role in how these get screened by cellular receptors. In the context of biomedical research, this presents a bottleneck for the transition of nanoparticles from research laboratories to clinical settings. It is therefore fundamental to probe these nanoparticle-protein interactions in order to understand the different physico-chemical mechanisms involved. This thesis is aimed to investigate the exposure of colloidal gold nanoparticles to model serum proteins, particularly serum albumin, the main transporter of molecular compounds in the bloodstream of mammals. A set of experimental tools based on optical microscopy and spectroscopy were developed in order to probe these interactions in situ. First, the intrinsic photoluminescence and elastic scattering of individual gold nanoparticles were investigated in order to understand its physical origin. These optical signals were then used to measure the size of the nanoparticles while in Brownian diffusion using fluctuation correlation spectroscopy. This spectroscopic tool was then applied to detect the binding of serum albumin onto the nanoparticle surface, increasing its hydrodynamic size. By performing a binding isotherm as a function of protein concentration, it was determined that serum albumin follows an anti-cooperative binding mechanism on negatively charged gold nanoparticles. This protein monolayer substantially enhanced the stability of the colloid, preventing their aggregation in saline solutions with ionic strength higher than biological media. Cationic gold nanoparticles in contrast, aggregated when serum albumin was present at a low protein-to-nanoparticle ratio, but prevented aggregation if exposed in excess. Single-molecule fluorescence

  18. Anti-trypanosomal activities and structural chemical properties of selected compound classes.

    PubMed

    Ponte-Sucre, Alicia; Bruhn, Heike; Schirmeister, Tanja; Cecil, Alexander; Albert, Christian R; Buechold, Christian; Tischer, Maximilian; Schlesinger, Susanne; Goebel, Tim; Fuß, Antje; Mathein, Daniela; Merget, Benjamin; Sotriffer, Christoph A; Stich, August; Krohne, Georg; Engstler, Markus; Bringmann, Gerhard; Holzgrabe, Ulrike

    2015-02-01

    Potent compounds do not necessarily make the best drugs in the market. Consequently, with the aim to describe tools that may be fundamental for refining the screening of candidates for animal and preclinical studies and further development, molecules of different structural classes synthesized within the frame of a broad screening platform were evaluated for their trypanocidal activities, cytotoxicities against murine macrophages J774.1 and selectivity indices, as well as for their ligand efficiencies and structural chemical properties. To advance into their modes of action, we also describe the morphological and ultrastructural changes exerted by selected members of each compound class on the parasite Trypanosoma brucei. Our data suggest that the potential organelles targeted are either the flagellar pocket (compound 77, N-Arylpyridinium salt; 15, amino acid derivative with piperazine moieties), the endoplasmic reticulum membrane systems (37, bisquaternary bisnaphthalimide; 77, N-Arylpyridinium salt; 68, piperidine derivative), or mitochondria and kinetoplasts (88, N-Arylpyridinium salt; 68, piperidine derivative). Amino acid derivatives with fumaric acid and piperazine moieties (4, 15) weakly inhibiting cysteine proteases seem to preferentially target acidic compartments. Our results suggest that ligand efficiency indices may be helpful to learn about the relationship between potency and chemical characteristics of the compounds. Interestingly, the correlations found between the physico-chemical parameters of the selected compounds and those of commercial molecules that target specific organelles indicate that our rationale might be helpful to drive compound design toward high activities and acceptable pharmacokinetic properties for all compound families.

  19. [Study on the chemical constituents of Rhizoma Cyperi].

    PubMed

    Wu, Xi; Xia, Hou-Lin; Huang, Li-Hua; Chen, Dan-Dan; Chen, Jin-Yu; Weng, Hai-Ting

    2008-07-01

    To study the chemical constituents of Rhizoma Cyperi. The constituents were separated and purified by silica gel column chromatography, their structures were identified on the basis of physico-chemical properties and spectral data. Six compounds were isolated and identified as physicion (1), hexadecanoic acid (2), beta-sitosterol (3), stigmasterol (4), catenarin (5), daucosterol (6). Compounds 1, 4, 5 were isolated from this plant for the first fime.

  20. Effect of added phosphate and type of cooking method on physico-chemical and sensory features of cooked lamb loins.

    PubMed

    Roldán, Mar; Antequera, Teresa; Pérez-Palacios, Trinidad; Ruiz, Jorge

    2014-05-01

    This study evaluated the effect of brining with phosphates on the physico-chemical and sensory features of sous-vide and roasted cooked lamb. Lamb loins (n=48) were injected with either 10% w/w of distilled water or a solution containing 0.2% or 0.4% (w/v) of a mixture of phosphate salts. After injection, samples were either sous-vide cooked (12h-60°C) or oven roasted (180°C until 73°C of core temp.). Expressible moisture, cooking loss, instrumental color, pH, water holding capacity, instrumental texture and sensory properties were evaluated. Brining with phosphates led to lower cooking loss in both sous-vide and oven roasted samples, but only the former showed significantly higher moisture content. Phosphates increased instrumental hardness and shear force values in sous-vide samples, while this effect was not as evident in roasted ones. Toughness was reduced and juiciness was improved as a consequence of phosphate addition. Overall, injection of a phosphate solution appears as a potential procedure for improving sensory textural features of cooked lamb whole cuts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. a Baseline Study of Physico-Chemical Parameters and Trace Metals in Waters of Manakudy, South-West Coast of India

    NASA Astrophysics Data System (ADS)

    Subramanian, M.; Muthumanikkam, J.

    2013-05-01

    The transport of trace metals from the land to ocean has a number of different routes and efficiencies. The sources of toxic elements into the rivers to be debouched into the sea through estuaries are either weathered naturally from the soils and rocks or introduced anthropogenically from point or non-point sources, in labile form or in particulate form. However, recent studies indicate that the transport of trace elements to the aquatic environment is much more complex than what has been thought. The chemistry and ecology of an estuarine system are entirely different from the fluvial as well as the marine system. Estuarine environment is characterized by a constantly changing mixture of salt and freshwater. In the present study area Manakudy estuary is situated about 8 kilometres north west of Kanyakumari (Latitude N 08 05 21.8 and Longitude E 077 29 03.7). To gain a better understanding of the geochemical behavior of physico-chemical parameters and trace elements in the estuary and to examine variations in associated chemical changes, 20 water samples were collected throughout the Manakudy estuary, a minor river in south-western India. These samples, collected in typical dry season during 2012, were analyzed for physico-chemical parameters, dissolved major and trace elements. Our results show that dissolved Na, Mg, Ca and Cl behave conservatively along the salinity gradient. The concentration of nutrients is normal and they are due to the higher organic activity in soils as well as faster rates of chemical weathering reaction in the source region. The concentration of major ions is due to tidal influence and it increases with salinity and the nutrients do behave non-conservatively due to biogenic removal. The conservative behaviour of the trace metals with salinity has been strongly affected by the introduction of these metals by external sources. Even though the trace metals in the contaminated water have been removed and incorporated in sediments due to

  2. Physico-chemical changes of ZnO nanoparticles with different size and surface chemistry under physiological pH conditions.

    PubMed

    Gwak, Gyeong-Hyeon; Lee, Won-Jae; Paek, Seung-Min; Oh, Jae-Min

    2015-03-01

    We studied the physico-chemical properties of ZnO nanoparticles under physiological pH conditions (gastric, intestinal and plasma) as functions of their size (20 and 70 nm) and surface chemistry (pristine, L-serine, or citrate coating). ZnO nanoparticles were dispersed in phosphate buffered saline under physiological pH conditions and aliquots were collected at specific time points (0.5, 1, 4, 10 and 24 h) for further characterization. The pH values of the aqueous ZnO colloids at each condition were in the neutral to slightly basic range and showed different patterns depending on the original size and surface chemistry of the ZnO nanoparticles. The gastric pH condition was found to significantly dissolve ZnO nanoparticles up to 18-30 wt%, while the intestinal or plasma pH conditions resulted in much lower dissolution amounts than expected. Based on the X-ray diffraction patterns and X-ray absorption spectra, we identified partial phase transition of the ZnO nanoparticles from wurtzite to Zn(OH)2 under the intestinal and plasma pH conditions. Using scanning electron microscopy, we verified that the overall particle size and morphology of all ZnO nanoparticles were maintained regardless of the pH. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Physico-chemical characterisation of the fat from red-skin rambutan (Nephellium lappaceum L.) seed.

    PubMed

    Manaf, Yanty Noorziana Abdul; Marikkar, Jalaldeen Mohammed Nazrim; Long, Kamariah; Ghazali, Hasanah Mohd

    2013-01-01

    The seeds (6.9±0.2% by weight of fruit) of the red-skin rambutan (Nephelium lappaceum L.) contain a considerable amount of crude fat (38.0±4.36%) and thus, the aim of the study was to determine the physico-chemical properties of this fat for potential applications. The iodine and saponification values, and unsaponifiable matter and free fatty acid contents of the seed fat were 50.27 g I2/100g fat, 182.1 mg KOH/g fat, 0.8% and 2.1%, respectively. The fat is pale yellow with a Lovibond color index of 3.1Y+1.1R. The fatty acid profile indicates an almost equal proportion of saturated (49.1%) and unsaturated (50.9%) fatty acids, where oleic (42.0%) and arachidic (34.3%) acids were the most dominant fatty acids. It also contained small amounts of stearic (8.0%), palmitic (4.6%), gadoleic (5.9%), linoleic (2.2%), behenic (2.1%) palmitoleic (0.7%) myristic (0.1%) and erucic (0.1%) acids. HPLC analysis showed that the fat comprised mainly unknown triacylglycerols (TAG) with high retention times indicating they have higher carbon numbers compared with many vegetable oils. The fat has melting and cooling points of 44.2°C and -42.5°C, respectively, making it a semi-solid at room temperature. The solid content at 0°C was 53.5% and the fat melted completely at 40°C. z-Nose analysis showed that the presence of high levels of volatile compounds in red-skin rambutan seed and seed fat.

  4. Effects of gamma-sterilization on the physico-chemical properties of natural sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bank, Tracy L.; Kukkadapu, Ravi K.; Madden, Andrew S.

    2008-06-30

    A series of experiments were completed to determine the effects of soil sterilization on various soil chemical properties including U(VI) sorption, soil pH, natural organic matter (NOM), cation exchange capacity (CEC), and iron oxidation state. Soils under investigation were a saprolitic sequence of interbedded weathered shale and limestone collected from the Oak Ridge Reservation (ORR). Sediments were sterilized by either steam sterilization at 121oC or by γ-irradiation using a cobalt-60 source. Subsamples of sediments were pretreated with dithionate-citrate-bicarbonate (DCB) and/or H2O2 to remove reducible Fe(III) oxides and NOM. Results from aerobic U(VI) sorption experiments indicated that γ-sterilized sediments sorbed moremore » U(VI) compared to non-sterile sediments. Results from sorption experiments completed using DCB and H2O2-treated samples indicated that the iron oxide and NOM fractions of the sediment accounted for the majority of U(VI) sorption and that γ-irradiation of these phases resulted in increased sorption of U(VI). Mössbauer spectra of γ-sterilized sedimentsdisplayed a decrease in the amount of ferric iron associated with goethite and a small increase in the amount of reduced iron in silicate minerals compared to spectra from non-sterile samples. Our results suggest that sterilization by γ-irradiation induced iron reduction that may have increased sorption of U(VI) on these sediments.« less

  5. Influence of the different sodium chloride concentrations on microbiological and physico-chemical characteristics of mozzarella cheese.

    PubMed

    Faccia, Michele; Mastromatteo, Marianna; Conte, Amalia; Del Nobile, Matteo Alessandro

    2012-11-01

    In this work the effects of addition of different amounts of sodium chloride, during cheese making, on shelf life of mozzarella cheese were evaluated. The mozzarella cheese quality decay was assessed during storage at 9 °C by monitoring microbiological, sensory and physico-chemical changes in the product. Results showed that Pseudomonas spp. growth was responsible for cheese unacceptability, whereas the sensory quality did not limit cheese shelf life. In particular, the highest shelf life values were obtained for mozzarella without salt and with the lowest salt concentration (0·23 g NaCl), and amounted to about 5 and 4 d, respectively. On the contrary, high salt concentrations affected product shelf life, probably as a consequence of progressive solubilisation of cheese casein, due to the phenomenon of 'salting in'.

  6. PHYSICO2: an UNIX based standalone procedure for computation of physicochemical, window-dependent and substitution based evolutionary properties of protein sequences along with automated block preparation tool, version 2.

    PubMed

    Banerjee, Shyamashree; Gupta, Parth Sarthi Sen; Nayek, Arnab; Das, Sunit; Sur, Vishma Pratap; Seth, Pratyay; Islam, Rifat Nawaz Ul; Bandyopadhyay, Amal K

    2015-01-01

    Automated genome sequencing procedure is enriching the sequence database very fast. To achieve a balance between the entry of sequences in the database and their analyses, efficient software is required. In this end PHYSICO2, compare to earlier PHYSICO and other public domain tools, is most efficient in that it i] extracts physicochemical, window-dependent and homologousposition-based-substitution (PWS) properties including positional and BLOCK-specific diversity and conservation, ii] provides users with optional-flexibility in setting relevant input-parameters, iii] helps users to prepare BLOCK-FASTA-file by the use of Automated Block Preparation Tool of the program, iv] performs fast, accurate and user-friendly analyses and v] redirects itemized outputs in excel format along with detailed methodology. The program package contains documentation describing application of methods. Overall the program acts as efficient PWS-analyzer and finds application in sequence-bioinformatics. PHYSICO2: is freely available at http://sourceforge.net/projects/physico2/ along with its documentation at https://sourceforge.net/projects/physico2/files/Documentation.pdf/download for all users.

  7. PHYSICO2: an UNIX based standalone procedure for computation of physicochemical, window-dependent and substitution based evolutionary properties of protein sequences along with automated block preparation tool, version 2

    PubMed Central

    Banerjee, Shyamashree; Gupta, Parth Sarthi Sen; Nayek, Arnab; Das, Sunit; Sur, Vishma Pratap; Seth, Pratyay; Islam, Rifat Nawaz Ul; Bandyopadhyay, Amal K

    2015-01-01

    Automated genome sequencing procedure is enriching the sequence database very fast. To achieve a balance between the entry of sequences in the database and their analyses, efficient software is required. In this end PHYSICO2, compare to earlier PHYSICO and other public domain tools, is most efficient in that it i] extracts physicochemical, window-dependent and homologousposition-based-substitution (PWS) properties including positional and BLOCK-specific diversity and conservation, ii] provides users with optional-flexibility in setting relevant input-parameters, iii] helps users to prepare BLOCK-FASTA-file by the use of Automated Block Preparation Tool of the program, iv] performs fast, accurate and user-friendly analyses and v] redirects itemized outputs in excel format along with detailed methodology. The program package contains documentation describing application of methods. Overall the program acts as efficient PWS-analyzer and finds application in sequence-bioinformatics. Availability PHYSICO2: is freely available at http://sourceforge.net/projects/physico2/ along with its documentation at https://sourceforge.net/projects/physico2/files/Documentation.pdf/download for all users. PMID:26339154

  8. Physico-chemical characterization and pharmacological evaluation of sulfated polysaccharides from three species of Mediterranean brown algae of the genus Cystoseira.

    PubMed

    Hadj Ammar, Hiba; Lajili, Sirine; Ben Said, Rafik; Le Cerf, Didier; Bouraoui, Abderrahman; Majdoub, Hatem

    2015-01-13

    Seaweed polysaccharides are highly active natural substances having valuable applications. The present study was conducted to characterize the physico-chemical properties of sulphated polysaccharides from three Mediterranean brown seaweeds (Cystoseira sedoides, Cystoseira compressa and Cystoseira crinita) and to evaluate their anti-radical, anti-inflammatory and gastroprotective activities. The different rates of neutral sugars, uronic acids, L-fucose and sulphate content were determined by colorimetric techniques. The different macromolecular characteristics of isolated fucoidans were identified by size exclusion chromatography equipped with a triple detection: multiangle light scattering, viscometer and differential refractive index detectors, (SEC/MALS/VD/DRI). Anti-inflammatory activity was evaluated, using the carrageenan-induced rat paw edema test in comparison to the references drugs Acetylsalicylate of Lysine and Diclofenac. The gastroprotective activity was determined using HCl/EtOH induced gastric ulcers in rats and to examine the antioxidant effect of fucoidans in the three species, the free radical scavenging activity was determined using 1,1-diphenyl-2-picrylhydrazyl. The pharmacological evaluation of the isolated fucoidans for their anti-inflammatory, and their gastroprotective effect established that these products from C. sedoides, C. compressa and C. crinita exhibited a significant anti-inflammatory activity at a dose of 50 mg/kg, i.p; the percentages of inhibition of the oedema were 51%, 57% and 58% respectively. And, at the same dose, these fucoidans from C. sedoides and C. compressa showed a significant decrease of the intensity of gastric mucosal damages compared to a control group by 68%, whereas, the fucoidan from C. crinita produced a less gastroprotective effect. Furthermore, the isolated fucoidans exhibited a radical scavenging activity. The comparative study of fucoidans isolated from three species of the genus Cystoseira showed that they

  9. Efficiency of emulsifier-free emulsions and emulsions containing rapeseed lecithin as delivery systems for vectorization and release of coenzyme Q10: physico-chemical properties and in vitro evaluation.

    PubMed

    Kaci, M; Arab-Tehrany, E; Dostert, G; Desjardins, I; Velot, E; Desobry, S

    2016-11-01

    To improve the encapsulation and release of coenzyme Q10 (CoQ10), emulsifier-free-emulsions were developed with a new emulsification process using high-frequency ultrasound (HFU) at 1.7MHz. Nano-emulsions containing CoQ10 were prepared with or without rapeseed lecithin as an emulsifier. The emulsions prepared with HFU were compared with an emulsion of CoQ10 containing emulsifier prepared with the same emulsification technique as well as with emulsions prepared with low-frequency ultrasound coupled with high-pressure homogenization (LFU+HPH). The physico-chemical properties of the emulsions were determined by average droplet size measurement with nano-droplet tracking analysis, droplet surface charge with ζ potential measurement, surface tension and rheological behaviour. Emulsions made by LFU+HPH with an emulsifier showed lower droplet sizes due to cavitation generated by the HFU process. Surface tension results showed that there was no significant difference between emulsions containing lecithin emulsifier regardless of the preparation process or the inclusion of CoQ10. In vitro biocompatibility tests were performed on human mesenchymal stem cells in order to show the cytotoxicity of various formulations and the efficiency of CoQ10-loaded emulsions. In vitro tests proved that the vectors were not toxic. Furthermore, CoQ10 facilitated a high rate of cell proliferation and metabolic activity especially when in an emulsifier-free formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Synthesis and physico-chemical characterization of modified starches from banana (Musa AAB) and its biological activities in diabetic rats.

    PubMed

    Reddy, Chagam Koteswara; Suriya, M; Vidya, P V; Haripriya, Sundaramoorthy

    2017-01-01

    This study describes a simple method of preparation and physico-chemical properties of modified starches (type-3 resistant starches) from banana (Musa AAB), and the modified starches investigated as functional food with a beneficial effect on type-2 diabetes. RS3 was prepared using a method combined with debranching modification and physical modification; native and modifies starches were characterized by scanning electron microscope (SEM), powder X-ray diffraction (XRD), differential scanning calorimetry (DSC) and rapid visco analyzer (RVA). Use of the enzymatic and physical modification methodology, improved the yield of RS (26.62%) from Musa AAB. A reduced viscosity and swelling power; increased transition temperatures, water absorption capacity and solubility index with B-type crystalline pattern and loss of granular appearance were observed during the debranching modification and physical modification. The modified starches exhibited beneficial health effects in diabetic and HFD rats who consumed it. These results recommend that dietary feeding of RS3 was effective in the regulation of glucose and lipid profile in serum and suppressing the oxidative stress in rats under diabetic and HFD condition. This current study provides new bioactive starches, with potential applications in the food and non-food industries. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Seasonal distribution of phytoplankton and its association with physico-chemical parameters in coastal waters of Malvan, west coast of India.

    PubMed

    Hardikar, Revati; Haridevi, C K; Chowdhury, Mintu; Shinde, Namrata; Ram, Anirudh; Rokade, M A; Rakesh, P S

    2017-04-01

    Malvan coast is one of the Marine Protected Area (MPA) of Maharashtra because of its rich coral reef and biodiversity. The study investigated on phytoplankton assemblage and their diversity with respect to physico-chemical parameters covering protected and unprotected area of Malvan coast. Physico-chemical parameters such as salinity, nitrite, nitrate, and ammonia did not display seasonality due to inadequate fresh water influx and allochthonous nutrient input. Positive correlation of phosphate (r = 0.96, p < 0.0001) and silicate (r = 0.91, p < 0.0001) with Total Suspended Solids (TSS) confirmed their autochthonous origin as a result of resuspension of bottom sediments during monsoon. A total of 57 phytoplankton species were identified mostly dominated by Bascillariophyceae (40 species), followed by Dinophyceae (9 species), Chlorophyceae (5 species), Cyanophyceae (2 species), and Dictyochophyceae (1 species) from Malvan coast. Canonical correspondence analysis (CCA) revealed that water temperature and TSS were the most significant parameters influencing the distribution and seasonal shift in phytoplankton species such as Skeletonema costatum and Chaetoceros sp. during pre-monsoon and Psedo-nitzschia sp., Streptotheca thamensis, Eucampia zodiacus, and Lithodesmium undulatum during post-monsoon. Silicate and phosphate had minor influence on phytoplankton distribution. Shannon-Wiener diversity index as a pollution index suggested that the study area was incipiently polluted except at bay stations. Despite of various human interventions the water quality and phytoplankton assemblage of this area has not reached to an alarming situation. The current study provides a valuable baseline data on phytoplankton assemblage from Malvan coast.

  12. The Physico-Chemical Properties of Dietary Fibre Determine Metabolic Responses, Short-Chain Fatty Acid Profiles and Gut Microbiota Composition in Rats Fed Low- and High-Fat Diets

    PubMed Central

    Kulcinskaja, Evelina; Marungruang, Nittaya; Matziouridou, Chrysoula; Nilsson, Ulf; Stålbrand, Henrik; Nyman, Margareta

    2015-01-01

    The aim of this study was to investigate how physico-chemical properties of two dietary fibres, guar gum and pectin, affected weight gain, adiposity, lipid metabolism, short-chain fatty acid (SCFA) profiles and the gut microbiota in male Wistar rats fed either low- or high-fat diets for three weeks. Both pectin and guar gum reduced weight gain, adiposity, liver fat and blood glucose levels in rats fed a high-fat diet. Methoxylation degree of pectin (low, LM and high (HM)) and viscosity of guar gum (low, medium or high) resulted in different effects in the rats, where total blood and caecal amounts of SCFA were increased with guar gum (all viscosities) and with high methoxylated (HM) pectin. However, only guar gum with medium and high viscosity increased the levels of butyric acid in caecum and blood. Both pectin and guar gum reduced cholesterol, liver steatosis and blood glucose levels, but to varying extent depending on the degree of methoxylation and viscosity of the fibres. The medium viscosity guar gum was the most effective preparation for prevention of diet-induced hyperlipidaemia and liver steatosis. Caecal abundance of Akkermansia was increased with high-fat feeding and with HM pectin and guar gum of all viscosities tested. Moreover, guar gum had distinct bifidogenic effects independent of viscosity, increasing the caecal abundance of Bifidobacterium ten-fold. In conclusion, by tailoring the viscosity and possibly also the degree of methoxylation of dietary fibre, metabolic effects may be optimized, through a targeted modulation of the gut microbiota and its metabolites. PMID:25973610

  13. [Studies on chemical constituents of Heterosmilax yunnanensis].

    PubMed

    Qin, Wen-jie; Wang, Gang-li; Lin, Rui-chao

    2007-08-01

    To study the chemical constituents of Heterosmilax yunianensis. The compounds were isolated and repeatedly purified with chromatograph and the structures were elucidated by physico-chemical properties and spectral analysis. Eight compounds were obtained and elucidated as beta-sitosterol (I), glycerol monopalmitate (II), daucosterol (IIl), hexacosanoic acid (IV), 5-hydroxymethyl furaldehyde (V), hergapen (VI), ursolic acid (VII), liquiritigenin (VIII). They have been isolated from this plant for the first time, and IV - VIII are obtained from the plants of Heterosmilax for the first time.

  14. Analysis of the application of selected physico-chemical methods in eliminating odor nuisance of municipal facilities

    NASA Astrophysics Data System (ADS)

    Miller, Urszula; Grzelka, Agnieszka; Romanik, Elżbieta; Kuriata, Magdalena

    2018-01-01

    Operation of municipal management facilities is inseparable from the problem of malodorous compounds emissions to the atmospheric air. In that case odor nuisance is related to the chemical composition of waste, sewage and sludge as well as to the activity of microorganisms whose products of life processes can be those odorous compounds. Significant reduction of odorant emission from many sources can be achieved by optimizing parameters and conditions of processes. However, it is not always possible to limit the formation of odorants. In such cases it is best to use appropriate deodorizing methods. The choice of the appropriate method is based on in terms of physical parameters, emission intensity of polluted gases and their composition, if it is possible to determine. Among the solutions used in municipal economy, there can be distinguished physico-chemical methods such as sorption and oxidation. In cases where the source of the emission is not encapsulated, odor masking techniques are used, which consists of spraying preparations that neutralize unpleasant odors. The paper presents the characteristics of selected methods of eliminating odor nuisance and evaluation of their applicability in municipal management facilities.

  15. PREDICTING THE ADSORPTION CAPACITY OF ACTIVATED CARBON FOR ORGANIC CONTAMINANTS FROM ADSORBENT AND ADSORBATE PROPERTIES

    EPA Science Inventory

    A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficients (βl

  16. Comparison of the physico-chemical and phytochemical characteristics of the oil of two Plukenetia species.

    PubMed

    Chirinos, Rosana; Pedreschi, Romina; Domínguez, Gilberto; Campos, David

    2015-04-15

    A physico-chemical and phytochemical characterisation of the oil of two rich sources of polyunsaturated fatty acids, tocopherols and phytosterols is presented for two close species of Plukenetia, endemic to the Amazon Region of Peru. Plukenetia huayllabambana presented approximately 9% more oil yield than Plukenetia volubilis. Fatty acid profiles were pretty similar for both species but P. huayllabambana presented a significantly higher content of α-linolenic acid than P. volubilis (51.3 and 45.6 g/100 g oil, respectively). Important contents of γ- and δ-tocopherol were evidenced in both oils (127.6 and 84.0 and, 93.3 and 47.5 mg/100 g oil, for P. volubilis and P. huayllabambana, respectively). β-Sitosterol was the most important and representative phytosterol in both oils (∼127 mg/100 g oil). The results of this study indicate P. huayllabambana as an important dietary source of health promoting phytochemicals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A mathematical basis for plant patterning derived from physico-chemical phenomena.

    PubMed

    Beleyur, Thejasvi; Abdul Kareem, Valiya Kadavu; Shaji, Anil; Prasad, Kalika

    2013-04-01

    The position of leaves and flowers along the stem axis generates a specific pattern, known as phyllotaxis. A growing body of evidence emerging from recent computational modeling and experimental studies suggests that regulators controlling phyllotaxis are chemical, e.g. the plant growth hormone auxin and its dynamic accumulation pattern by polar auxin transport, and physical, e.g. mechanical properties of the cell. Here we present comprehensive views on how chemical and physical properties of cells regulate the pattern of leaf initiation. We further compare different computational modeling studies to understand their scope in reproducing the observed patterns. Despite a plethora of experimental studies on phyllotaxis, understanding of molecular mechanisms of pattern initiation in plants remains fragmentary. Live imaging of growth dynamics and physicochemical properties at the shoot apex of mutants displaying stable changes from one pattern to another should provide mechanistic insights into organ initiation patterns. Copyright © 2013 WILEY Periodicals, Inc.

  18. Stratified Bacterial Diversity along Physico-chemical Gradients in High-Altitude Modern Stromatolites

    PubMed Central

    Toneatti, Diego M.; Albarracín, Virginia H.; Flores, Maria R.; Polerecky, Lubos; Farías, María E.

    2017-01-01

    At an altitude of 3,570 m, the volcanic lake Socompa in the Argentinean Andes is presently the highest site where actively forming stromatolite-like structures have been reported. Interestingly, pigment and microsensor analyses performed through the different layers of the stromatolites (50 mm-deep) showed steep vertical gradients of light and oxygen, hydrogen sulfide and pH in the porewater. Given the relatively good characterization of these physico-chemical gradients, the aim of this follow-up work was to specifically address how the bacterial diversity stratified along the top six layers of the stromatolites which seems the most metabolically important and diversified zone of the whole microbial community. We herein discussed how, in only 7 mm, a drastic succession of metabolic adaptations occurred: i.e., microbial communities shift from a UV-high/oxic world to an IR-low/anoxic/high H2S environment which force stratification and metabolic specialization of the bacterial community, thus, modulating the chemical faces of the Socompa stromatolites. The oxic zone was dominated by Deinococcus sp. at top surface (0.3 mm), followed by a second layer of Coleofasciculus sp. (0.3 to ∼2 mm). Sequences from anoxygenic phototrophic Alphaproteobacteria, along with an increasing diversity of phyla including Bacteroidetes, Spirochaetes were found at middle layers 3 and 4. Deeper layers (5–7 mm) were mostly occupied by sulfate reducers of Deltaproteobacteria, Bacteroidetes and Firmicutes, next to a high diversity and equitable community of rare, unclassified and candidate phyla. This analysis showed how microbial communities stratified in a physicochemical vertical profile and according to the light source. It also gives an insight of which bacterial metabolic capabilities might operate and produce a microbial cooperative strategy to thrive in one of the most extreme environments on Earth. PMID:28446906

  19. Stratified Bacterial Diversity along Physico-chemical Gradients in High-Altitude Modern Stromatolites.

    PubMed

    Toneatti, Diego M; Albarracín, Virginia H; Flores, Maria R; Polerecky, Lubos; Farías, María E

    2017-01-01

    At an altitude of 3,570 m, the volcanic lake Socompa in the Argentinean Andes is presently the highest site where actively forming stromatolite-like structures have been reported. Interestingly, pigment and microsensor analyses performed through the different layers of the stromatolites (50 mm-deep) showed steep vertical gradients of light and oxygen, hydrogen sulfide and pH in the porewater. Given the relatively good characterization of these physico-chemical gradients, the aim of this follow-up work was to specifically address how the bacterial diversity stratified along the top six layers of the stromatolites which seems the most metabolically important and diversified zone of the whole microbial community. We herein discussed how, in only 7 mm, a drastic succession of metabolic adaptations occurred: i.e., microbial communities shift from a UV-high/oxic world to an IR-low/anoxic/high H 2 S environment which force stratification and metabolic specialization of the bacterial community, thus, modulating the chemical faces of the Socompa stromatolites. The oxic zone was dominated by Deinococcus sp. at top surface (0.3 mm), followed by a second layer of Coleofasciculus sp. (0.3 to ∼2 mm). Sequences from anoxygenic phototrophic Alphaproteobacteria, along with an increasing diversity of phyla including Bacteroidetes, Spirochaetes were found at middle layers 3 and 4. Deeper layers (5-7 mm) were mostly occupied by sulfate reducers of Deltaproteobacteria, Bacteroidetes and Firmicutes, next to a high diversity and equitable community of rare, unclassified and candidate phyla. This analysis showed how microbial communities stratified in a physicochemical vertical profile and according to the light source. It also gives an insight of which bacterial metabolic capabilities might operate and produce a microbial cooperative strategy to thrive in one of the most extreme environments on Earth.

  20. Physico-chemical factors influencing spore germination in cyanobacterium Fischerella muscicola.

    PubMed

    Mishra, Biranchi N; Kaushik, Manish S; Abraham, Gerard; Singh, Pawan K

    2018-06-19

    Spore (akinete) formation in the heterocystous and branched filamentous cyanobacterium Fischerella muscicola involves a significant increase in cell size and formation of several endospores in each of the cells. In present study, the physico-chemical factors (pH, light sources, nutrient deficiency, nitrogen sources, carbon sources, and growth hormones) affecting the germination of spores of F. muscicola were examined. Increase in spore germination frequency was detected above pH 8 with maximum germination (46.04%) recorded at pH 9, whereas a significant decrease in germination was observed at pH 6 when compared to control (pH 7.6). Spore germination was not observed at pH 5. Among light sources germination frequency followed the following order, that is, red light (39.9%) > white light (33.8%) > yellow light (3.4%) > green light (1.3%) whereas germination did not take place in dark and blue light. Ammonium chloride (NH 4 Cl) supported maximum (99.5%) germination frequency followed by calcium nitrate (Ca(NO 3 ) 2 ), potassium nitrate (KNO 3 ), and minimum germination was observed in urea. Nutrient (phosphorus, calcium, and magnesium) deficiency significantly enhanced the germination frequency with maximum increase in magnesium (Mg) deficient condition. Further, supplementation of carbon sources (glucose, fructose, and sodium acetate) and growth hormones (IAA and GA) also enhanced the germination frequency in this cyanobacterium. Therefore, it may be concluded that, those factors supporting higher germination frequency could be considered for successful production and use of this cyanobacterium in biofertilizer and other algal production technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Physico-chemical changes of the ground waters related to the 2011 El Hierro magmatic reactivation

    NASA Astrophysics Data System (ADS)

    Dionis, S.; Melián, G.; Padrón, E.; Padilla, G.; Nolasco, D.; Rodríguez, F.; Hernández, I.; Peraza, D.; Barrancos, J.; Hernández, P.; Calvo, D.; Pérez, N.

    2012-04-01

    The island of El Hierro (278 Km2), is the smallest, the southwesternmost and the youngest island (˜1.12 My) of the Canarian archipelago. The main geological characteristics of El Hierro consist on the presence of three convergent ridges of volcanic cones on a truncated trihedron shape and giant landslides between the three rift zones, being the most recent El Golfo on the northwest flank of the island. On July 2011 an anomalous seismic activity at Hierro Island started and suggested the initial stage of a volcanic unrest in the volcanic system. On October 10, after the occurrence of more than 10,000 earthquakes, a submarine eruption started. Evidences of this submarine volcanic eruption were visible on the sea surface to the south of La Restinga village, at the south of the island, in the form of large light-green coloured area, turbulent gas emission and the appearance of steamy volcanic fragments three days later. As part of its volcanic surveillance activities, the Instituto Volcanologico de Canarias (INVOLCAN) started a hydrogeochemical monitoring program on August 2011 in order to evaluate the temporal evolution of several physico-chemical parameters of the ground water system of El Hierro. Four observation sites were selected: three wells on the north of the island, where the seismic activity was located at the beginning of the volcano-seismic unrest (SIMO, FRON and PADO) and one horizontal well (gallery) in the south (TACO). Ground water sampling is being regularly collected, three times per week, at each observation site, and in-situ measurements of pH, conductivity and temperature measurements are performed. After 6 month of monitoring, no significant changes have been observed on pH and temperature measurements from all the observation sites. However, clear sharp decrease of conductivity was observed at SIMO on October 10 when the seismic tremor started. In addition, the strongest conductivity decrease pattern was observed later on at SIMO and PADO on

  2. Efficacy of soy protein isolate as a fat replacer on physico-chemical and sensory characteristics of low-fat paneer.

    PubMed

    Kumar, S Siva; Balasubramanian, S; Biswas, A K; Chatli, M K; Devatkal, S K; Sahoo, J

    2011-08-01

    The nutritional and textural properties of low fat paneer using soy protein isolate (SPI) as fat replacer was investigated. The physico-chemical and sensory characteristics of 4 types of paneer made of low-fat milk (3% milk fat (MF) and 10% solids-not-fat (SNF)) and SPI of 0 (T1), 0.1 (T2), 0.2 (T3) and 0.3% SPI (T4) were compared with high fat paneer (TC) made of high fat milk (6% MF and 9% SNF). CaCl2 (0.2%, w/v) was used as coagulant at 75 ± 1°C. Increased level of SPI in paneer increased yield, protein, ash, moisture content and decreased fat, moisture protein ratio, lactose and calorie contents. Titratable acidity and pH varied in narrow range. Instrumental firmness was higher (p ≤ 0.05) in T1-T4 than in TC. The gumminess, chewiness and firmness showed the same trend. Resilience and cohesiveness values showed no significant difference among the samples. Hunter colour L values showed a decreasing, and a and b values increasing trend with increasing levels of SPI. Sensory appearance and colour scores were lower (p ≤ 0.05) for T1-T4 than TC. More than 0.2% SPI imparted beany flavour to paneer.

  3. PREDICTING THE ADSORPTION CAPACITY OF ACTIVATED CARBON FOR EMERGING ORGANIC CONTAMINANTS FROM FUNDAMENTAL ADSORBENT AND ADSORBATE PROPERTIES - PRESENTATION

    EPA Science Inventory

    A quantitative structure-property relationship (QSPR) was developed and combined with the Polanyi-Dubinin-Manes model to predict adsorption isotherms of emerging contaminants on activated carbons with a wide range of physico-chemical properties. Affinity coefficients (βl

  4. Physico-chemical Properties of Supramolecular Complexes of Natural Flavonoids with Biomacromolecules

    NASA Astrophysics Data System (ADS)

    Barvinchenko, V. M.; Lipkovska, N. O.; Fedyanina, T. V.; Pogorelyi, V. K.

    Polyvinylpyrrolidone (a water-soluble biopolymer) and human serum albumin (a globular protein) form supramolecular complexes with natural flavonoids quercetin and rutin in aqueous medium. The interaction with these biomacromolecules (BMM) causes the alteration of flavonoid spectral, protolytic, and other properties; in particular, it essentially increases their solubility. Absorption and solubility measurements revealed the supramolecular compounds of 1:1 stoichiometry for all systems studied. First it was demonstrated experimentally that the interaction with BMM promotes the tautomeric transformation in quercetin molecule. The mechanism of tautomerization via flavonoid molecular structure was discussed. Adsorption of BMM and their supramolecular compounds with flavonoids onto nanosilica was studied as a function of pH, and the properties of the biomacromolecules, flavonoids, and silica surface. It was found that BMM either complexed with quercetin (rutin) or preliminary immobilized on nanosilica increases the flavonoid adsorption.

  5. Adsorption properties of Silochrom chemically modified with nickel acetylacetonate

    NASA Astrophysics Data System (ADS)

    Pakhnutova, Evgeniya; Slizhov, Yuriy

    2017-11-01

    One of the areas of development of gas chromatography is the creation of new chromatographic materials that have improved sorption and analytical characteristics. In this work, for the first time, a new sorbent based on Silochrom C-120 modified with nickel acetylacetonate was studied using a complex of physico-chemical methods. It has been established that due to chemical modification of silica gel surface with nickel acetylacetonate the surface area of the specific surface decreases from 112 to 98 m2/g and surface acidity diminishes by 1.2 pH units. Using the thermogravimetric analysis it has been revealed that the obtained sorbent can be used in gas chromatography up to 290°C. Gas chromatography method was used to investigate the adsorption properties of the modified materials. According to the retention data of adsorbates: n-alkanes (C6-C9), benzene, ethanol, nitropropane and butanone-2 the differential molar adsorption energy q¯dif, 1, Henry adsorption constants K1,C, the differential molar entropy ΔS¯S1 and Δ q¯dif, 1 (special) of adsorbates in dispersion and specific interactions were calculated. The influence of the modifying additive on the changings in the thermodynamic retention characteristics of all sorbates because of the manifestation of specific sorbate-sorbent interactions has been shown. The highest values of the thermodynamic parameters were indicative for sorbates forming hydrogen bonds and capable of donor-acceptor interaction.

  6. Preparation of gelatin films incorporated with tea polyphenol nanoparticles for enhancing controlled-release antioxidant properties

    USDA-ARS?s Scientific Manuscript database

    Tea polyphenols (TP) were incorporated into edible gelatin films either alone or incorporated into nanoparticles in order to determine the physico-chemical properties of the film and the antioxidant properties of TP in a solid gelatin matrix. The TP containing nanoparticles were prepared by cross-li...

  7. [Study on chemical constituents from Schisandra chinensis stem].

    PubMed

    Zheng, Li-shi; Du, Shu-shan; Cai, Qian

    2014-10-01

    To separate and identify the chemical constituents from the stem of Schisandra chinensis. Various chromatographic techniques were used to separate and purify the chemical constituents from 95% ethanol extraction of the stem of Schisandra chinensis. Their structures were elucidated based on the physico-chemical properties and spectral data. Ten compounds were obtained and elucidated as (+)-deoxyschizandrin (1), γ-schizandrin (2), wuweizisu C (3), gomisin N (4), schizandrin (5), anwuweizic acid (6), (-)-dihydroguaiaretic acid (7), tetradecanoic acid (8), β-sitosterol (9) and daucosterol (10). Compounds 6-8 are obtained from the stem of Schisandra chinensis for the first time.

  8. [Physico-chemical features of dinitrosyl iron complexes with natural thiol-containing ligands underlying biological activities of these complexes].

    PubMed

    Vanin, A F; Borodulin, R R; Kubrina, L N; Mikoian, V D; Burbaev, D Sh

    2013-01-01

    Current notions and new experimental data of the authors on physico-chemical features of dinitrosyl iron complexes with natural thiol-containing ligands (glutathione or cysteine), underlying the ability of the complexes to act as NO molecule and nitrosonium ion donors, are considered. This ability determines various biological activities of dinitrosyl iron complexes--inducing long-lasting vasodilation and thereby long-lasting hypotension in human and animals, inhibiting pellet aggregation, increasing red blood cell elasticity, thereby stimulating microcirculation, and reducing necrotic zone in animals with myocardial infarction. Moreover, dinitrosyl iron complexes are capable of accelerating skin wound healing, improving the function of penile cavernous tissue, blocking apoptosis development in cell cultures. When decomposed dinitrosyl iron complexes can exert cytotoxic effect that can be used for curing infectious and carcinogenic pathologies.

  9. Seed incorporation during vinification and its impact on chemical and organoleptic properties in Syzygium cumini wine.

    PubMed

    VenuGopal, K S; Anu-Appaiah, K A

    2017-12-15

    Syzgium cumini (Jamun) is an evergreen tropical tree, its various parts are known for many therapeutic properties. The present work represents the production of wines from jamun fruits using two different native isolates (Saccharomyces cerevisiae - KF551990 and Pichia gummiguttae - MCC 1273) and influence of jamun seeds on the physico-chemical parameters, chromatic properties, phenolic components and sensory attributes of wine. Wine produced was bottle aged for one year. On aging there was a reduction in bitterness and astringency. Aging lead to reduction in monomeric anthocyanin with an increase in co-pigmented and polymeric anthocynins thus affecting the wine color. Anthocyanin analysis in jamun wine indicated petunidin 3,5-diglucoside as the principal anthocyanin. PCA analysis of wine revealed association of young jamun wine with anthocyanin components. PLS analysis exhibited both positive and negative correlation between various attributes indicating sensory perception of jamun wine is affected by overall composition of the wine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Physico-Chemical and Structural Characteristics of Vegetables Cooked Under Sous-Vide, Cook-Vide, and Conventional Boiling.

    PubMed

    Iborra-Bernad, C; García-Segovia, P; Martínez-Monzó, J

    2015-08-01

    In this paper, physico-chemical and structural properties of cut and cooked purple-flesh potato, green bean pods, and carrots have been studied. Three different cooking methods have been applied: traditional cooking (boiling water at 100 °C), cook-vide (at 80 and 90 °C) and sous-vide (at 80 °C and 90 °C). Similar firmness was obtained in potato applying the same cooking time using traditional cooking (100 °C), and cook-vide and sous-vide at 90 °C, while in green beans and carrots the application of the sous-vide (90 °C) required longer cooking times than cook-vide (90 °C) and traditional cooking (100 °C). Losses in anthocyanins (for purple-flesh potatoes) and ascorbic acid (for green beans) were higher applying traditional cooking. β-Carotene extraction increased in carrots with traditional cooking and cook-vide (P < 0.05). Cryo-SEM micrographs suggested higher swelling pressure of starch in potatoes cells cooked in contact with water, such as traditional cooking and cook-vide. Traditional cooking was the most aggressive treatment in green beans because the secondary walls were reduced compared with sous-vide and cook-vide. Sous-vide preserved organelles in the carrot cells, which could explain the lower extraction of β-carotene compared with cook-vide and traditional cooking. Sous-vide cooking of purple-flesh potato is recommended to maintain its high anthocyanin content. Traditional boiling could be recommended for carrots because increase β-carotenes availability. For green beans, cook-vide, and sous-vide provided products with higher ascorbic acid content. © 2015 Institute of Food Technologists®

  11. Evolution of proteolytic and physico-chemical characteristics of Norwegian dry-cured ham during its processing.

    PubMed

    Petrova, Inna; Tolstorebrov, Ignat; Mora, Leticia; Toldrá, Fidel; Eikevik, Trygve Magne

    2016-11-01

    Proteolytic activity and physico-chemical characteristics were studied for Norwegian dry-cured ham at four different times of processing: raw hams, post-salted hams (3 months of processing), hams selected in the middle of the production (12 months of processing) and hams at the end of the processing (24 months). Cathepsin H activity decreased until negligible values after 3 months of processing, whereas cathepsins B and B+L were inactive at 12 months. AAP was the most active aminopeptidase whereas RAP and MAP were active just during the first 12 months of processing. Proteolysis index reached a value of 4.56±1.03 % with non-significant differences between 12 and 24 months of ripening. Peptide identification by LC-MS/MS was done and two peptides (GVEEPPKGHKGNKK and QAISNNKDQGSY) showing a linear response with the time of processing were found. Unfreezable water content and glass transition temperature were investigated using differential scanning calorimetry (DSC) technique with non-significant differences in the temperature of glass transition for 12 and 24 months of processing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Predicting Odor Pleasantness from Odorant Structure: Pleasantness as a Reflection of the Physical World

    DTIC Science & Technology

    2009-11-01

    34 ( Engen , 1982). We next reduced the dimensionality of physico- chemical properties, and identified a primary axis of physico- chemical space. This axis...words, there is no scientist or perfumer who can predict the smell of a novel molecule by its physico- chemical structure, or the physico- chemical ...structure of a novel smell. Understanding this link between physico- chemical structure and percept has been elusive because the percept is in large

  13. Preparation and physico-chemical properties of hydrogels from carboxymethyl cassava starch crosslinked with citric acid

    NASA Astrophysics Data System (ADS)

    Boonkham, Sasikan; Sangseethong, Kunruedee; Chatakanon, Pathama; Niamnuy, Chalida; Nakasaki, Kiyohiko; Sriroth, Klanarong

    2014-06-01

    Recently, environmentally friendly hydrogels prepared from renewable bio-based resources have drawn significant attention from both industrial and academic sectors. In this study, chemically crosslinked hydrogels have been developed from cassava starch which is a bio-based polymer using a non-toxic citric acid as a crosslinking agent. Cassava starch was first modified by carboxymethylation to improve its water absorbency property. The carboxymethyl cassava starch (CMCS) obtained was then crosslinked with citric acid at different concentrations and reaction times. The gel fraction of hydrogels increased progressively with increasing citric acid concentration. Free swelling capacity of hydrogels in de-ionized water, saline solution and buffers at various pHs as well as absorption under load were investigated. The results revealed that swelling behavior and mechanical characteristic of hydrogels depended on the citric acid concentration used in reaction. Increasing citric acid concentration resulted in hydrogels with stronger network but lower swelling and absorption capacity. The cassava starch hydrogels developed were sensitive to ionic strength and pH of surrounding medium, showing much reduced swelling capacity in saline salt solution and acidic buffers.

  14. Enhancement of physico-chemical properties of the hydrophobic anticancer molecule following nanoencapsulation

    NASA Astrophysics Data System (ADS)

    Kumari, Anshu; Kumar, Amit; Gupta, Sharad

    2018-02-01

    Flavonoids are one of the important naturally available small molecules found in our daily diets. They have been considered as potential therapeutic agents for anticancer therapy. Despite their anti-cancer properties, their therapeutic application is very limited due to poor water solubility, which results in poor bioavailability to the diseased cells. Hence, to overcome this limitation of Flavonoids, Quercetin (Qct), the most extensively studied flavonoid, prompted us to encapsulate it within nanoparticles. We have successfully encapsulated Qct within cationic polymer based nanoparticles using simple two-step self-assembly fabrication method and studied its effect on absorption and emission properties of Qct. This study was aimed at Qct encapsulation and its effect on the optical properties of Qct for the diagnostic applications. Our results indicate that Qct was efficiently encapsulated within the polymeric nanoparticles. This resulted into 17 times increase in fluorescence emission of encapsulated Qct (Qct-NPs) in comparison with its aqueous suspension. Thus, Qct-NPs can be utilized as a fluorescent probe for various biomedical applications. These probes will have multiple functions integrated into a single nanostructure, enabling the Qct nanoparticles for imaging and therapy. This is the first report on the effect of nanoencapsulation on optical properties of Qct. Thus, Qct-NPs can be harnessed as an effective theranostic agent, and that will not only allow to image and but also treat the cancer in a single clinical procedure.

  15. Cyanobacterial distributions along a physico-chemical gradient in the Northeastern Pacific Ocean.

    PubMed

    Sudek, Sebastian; Everroad, R Craig; Gehman, Alyssa-Lois M; Smith, Jason M; Poirier, Camille L; Chavez, Francisco P; Worden, Alexandra Z

    2015-10-01

    The cyanobacteria Prochlorococcus and Synechococcus are important marine primary producers. We explored their distributions and covariance along a physico-chemical gradient from coastal to open ocean waters in the Northeastern Pacific Ocean. An inter-annual pattern was delineated in the dynamic transition zone where upwelled and eastern boundary current waters mix, and two new Synechococcus clades, Eastern Pacific Clade (EPC) 1 and EPC2, were identified. By applying state-of-the-art phylogenetic analysis tools to bar-coded 16S amplicon datasets, we observed higher abundance of Prochlorococcus high-light I (HLI) and low-light I (LLI) in years when more oligotrophic water intruded farther inshore, while under stronger upwelling Synechococcus I and IV dominated. However, contributions of some cyanobacterial clades were proportionally relatively constant, e.g. Synechococcus EPC2. In addition to supporting observations that Prochlorococcus LLI thrive at higher irradiances than other LL taxa, the results suggest LLI tolerate lower temperatures than previously reported. The phylogenetic precision of our 16S rRNA gene analytical approach and depth of bar-coded sequencing also facilitated detection of clades at low abundance in unexpected places. These include Prochlorococcus at the coast and Cyanobium-related sequences offshore, although it remains unclear whether these came from resident or potentially advected cells. Our study enhances understanding of cyanobacterial distributions in an ecologically important eastern boundary system. © 2014 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. [Studies on chemical constituents from leaves and stems of Aconitum coreanum].

    PubMed

    Li, Yan; Liang, Shuai

    2009-05-01

    To study the chemical constituents in the leaves and stems of Aconitum coreanum. The isolation and purification of chemical constituents were carried out on silica gel and polyamide column chromatographic. Their structures were identified by physico-chemical properties and spectral analysis. Five compounds were obtained and their structures were identified as guan-fu base I (1), guan-fu base R (2), beta-sitosterol (3), D-mannitol (4), daucosterol (5). Compound 2 is a new compound. Compounds 1 and 3, 4 are isolated from the leaves and stems of A. coreanum for the first time.

  17. [Studies on chemical constituents of cultivated Cistanche salsa].

    PubMed

    Yang, Jian-Hu; Hu, Jun-Ping; Rena, Kasimu; Du, Nian-Sheng

    2008-11-01

    To study the chemical constituents of cultivated Cistanche salsa. Compounds were isolated and purified on several chromatography, and then were identified by physico-chemical properties and structurally elucidated by spectral analysis. Seven compounds were isolated and identified as beta-sitosterol (I), daucosterol (II), beta-sitosteryl glucoside 3'-O-heptadecoicate (III), 8-hydroxygeraniol 1-beta-D-glucopyranoside (IV), 2-methanol-5-hydroxy-pyridine (V), betaine (VI), galactitol (VII). The chemical constituents of artificial cultivated Cistanche salsa are studied for the first time. Among them, compound III and IV are isolated from the plant for the first time, compound V is isolated from this genus for the first time.

  18. Physico-chemical analyses of Hispano-Moresque lustred ceramic: a precursor for Italian majolica?

    NASA Astrophysics Data System (ADS)

    Chabanne, D.; Bouquillon, A.; Aucouturier, M.; Dectot, X.; Padeletti, G.

    2008-07-01

    The paper presents a comprehensive physico-chemical investigation on a series of Hispano-Moresque objects produced in the eastern Spain workshops between the XIV and XVIII centuries and fragments from XII century, in order to compare them with the Italian Renaissance majolica production. The techniques used are mainly non-destructive (ion beam analyses and X-ray diffraction), sometimes complemented by SEM observation and microanalysis, and electrothermal atomic emission spectrometry. Such methods allow a full description of the terra cotta, of the glaze and of the different surface layers which constitute the lustre decoration indicating individual elemental composition and thickness of each layer containing or not metallic nanoparticles. Principal results show the following: i) a constant source of supply for the eastern Spain terra cotta; ii) a significant change in the composition of the Spanish glazes around the XVII century, with the disappearance of the opacifying tin oxide addition; iii) significant evolutions in the structure and composition of the lustre layers, in particular related to the presence or not of a metal-free surface glaze film and its thickness; iv) interesting analogies and differences with the Italian majolica; v) confirmation of the change in the quality of blue pigment during XVI century, already evidenced by the authors in previous publications. A discussion about the transmission of the lustre technique between eastern Spain and Italy at the Renaissance period is proposed.

  19. Influence of trace elements on dental enamel properties: A review.

    PubMed

    Qamar, Zeeshan; Haji Abdul Rahim, Zubaidah Binti; Chew, Hooi Pin; Fatima, Tayyaba

    2017-01-01

    Dental enamel, an avascular, irreparable, outermost and protective layer of the human clinical crown has a potential to withstand the physico-chemical effects and forces. These properties are being regulated by a unique association among elements occurring in the crystallites setup of human dental enamel. Calcium and phosphate are the major components (hydroxyapatite) in addition to some trace elements which have a profound effect on enamel. The current review was planned to determine the aptitude of various trace elements to substitute and their influence on human dental enamel in terms of physical and chemical properties.

  20. Year-Long Monitoring of Physico-Chemical and Biological Variables Provide a Comparative Baseline of Coral Reef Functioning in the Central Red Sea

    PubMed Central

    Roik, Anna; Röthig, Till; Roder, Cornelia; Ziegler, Maren; Kremb, Stephan G.

    2016-01-01

    Coral reefs in the central Red Sea are sparsely studied and in situ data on physico-chemical and key biotic variables that provide an important comparative baseline are missing. To address this gap, we simultaneously monitored three reefs along a cross-shelf gradient for an entire year over four seasons, collecting data on currents, temperature, salinity, dissolved oxygen (DO), chlorophyll-a, turbidity, inorganic nutrients, sedimentation, bacterial communities of reef water, and bacterial and algal composition of epilithic biofilms. Summer temperature (29–33°C) and salinity (39 PSU) exceeded average global maxima for coral reefs, whereas DO concentration was low (2–4 mg L-1). While temperature and salinity differences were most pronounced between seasons, DO, chlorophyll-a, turbidity, and sedimentation varied most between reefs. Similarly, biotic communities were highly dynamic between reefs and seasons. Differences in bacterial biofilms were driven by four abundant families: Rhodobacteraceae, Flavobacteriaceae, Flammeovirgaceae, and Pseudanabaenaceae. In algal biofilms, green crusts, brown crusts, and crustose coralline algae were most abundant and accounted for most of the variability of the communities. Higher bacterial diversity of biofilms coincided with increased algal cover during spring and summer. By employing multivariate matching, we identified temperature, salinity, DO, and chlorophyll-a as the main contributing physico-chemical drivers of biotic community structures. These parameters are forecast to change most with the progression of ocean warming and increased nutrient input, which suggests an effect on the recruitment of Red Sea benthic communities as a result of climate change and anthropogenic influence. In conclusion, our study provides insight into coral reef functioning in the Red Sea and a comparative baseline to support coral reef studies in the region. PMID:27828965

  1. Year-Long Monitoring of Physico-Chemical and Biological Variables Provide a Comparative Baseline of Coral Reef Functioning in the Central Red Sea.

    PubMed

    Roik, Anna; Röthig, Till; Roder, Cornelia; Ziegler, Maren; Kremb, Stephan G; Voolstra, Christian R

    2016-01-01

    Coral reefs in the central Red Sea are sparsely studied and in situ data on physico-chemical and key biotic variables that provide an important comparative baseline are missing. To address this gap, we simultaneously monitored three reefs along a cross-shelf gradient for an entire year over four seasons, collecting data on currents, temperature, salinity, dissolved oxygen (DO), chlorophyll-a, turbidity, inorganic nutrients, sedimentation, bacterial communities of reef water, and bacterial and algal composition of epilithic biofilms. Summer temperature (29-33°C) and salinity (39 PSU) exceeded average global maxima for coral reefs, whereas DO concentration was low (2-4 mg L-1). While temperature and salinity differences were most pronounced between seasons, DO, chlorophyll-a, turbidity, and sedimentation varied most between reefs. Similarly, biotic communities were highly dynamic between reefs and seasons. Differences in bacterial biofilms were driven by four abundant families: Rhodobacteraceae, Flavobacteriaceae, Flammeovirgaceae, and Pseudanabaenaceae. In algal biofilms, green crusts, brown crusts, and crustose coralline algae were most abundant and accounted for most of the variability of the communities. Higher bacterial diversity of biofilms coincided with increased algal cover during spring and summer. By employing multivariate matching, we identified temperature, salinity, DO, and chlorophyll-a as the main contributing physico-chemical drivers of biotic community structures. These parameters are forecast to change most with the progression of ocean warming and increased nutrient input, which suggests an effect on the recruitment of Red Sea benthic communities as a result of climate change and anthropogenic influence. In conclusion, our study provides insight into coral reef functioning in the Red Sea and a comparative baseline to support coral reef studies in the region.

  2. Decoupling the deep: crop rotations, fertilization and soil physico-chemical properties down the profile

    NASA Astrophysics Data System (ADS)

    Hobley, Eleanor; Honermeier, Bernd; Don, Axel; Amelung, Wulf; Kögel-Knabner, Ingrid

    2017-04-01

    . This resulted in a reduction of N density at depth, which was not mirrored in C densities, indicating that fava beans decouple C and N cycles in the deep soil profile. We then tested whether these effects are a result of plant (i.e. enhanced rooting depth associated with lowered subsoil bulk density) or microbial (i.e. N-cycling and denitrification processes) activities, by investigating the isotopic signatures of C and N down the profile. Our results indicate that the selection of crop rotation influences soil C and N cycling and depth distribution. Although mineral N fertilizer has significant benefits for yield, the choice of crop rotation has a greater influence on soil C and N cycling and specifically the addition of leguminous plants into rotation can provide additional yield benefits and stability. Incorporating legumes into crop rotations affects soil physical and chemical properties and decouples C and N cycles in the deep soil profile, indicating different nutrient and water cycling processes in the deep soil profile.

  3. Modelling the influence of inulin as a fat substitute in comminuted meat products on their physico-chemical characteristics and eating quality using a mixture design approach.

    PubMed

    Keenan, Derek F; Resconi, Virginia C; Kerry, Joseph P; Hamill, Ruth M

    2014-03-01

    The effects of fat substitution using two commercial inulin products on the physico-chemical properties and eating quality of a comminuted meat product (breakfast sausage) were modelled using a specialised response surface experiment specially developed for mixtures. 17 treatments were assigned representing a different substitution level for fat with inulin. Sausages were formulated to contain pork shoulder, back fat/inulin, water, rusk and seasoning (44.3, 18.7, 27.5, 7 and 2.5% w/w). Composition, sensory, instrumental texture and colour characteristics were assessed. Fructan analysis showed that inulin was unaffected by heat or processing treatments. Models showed increasing inulin inclusions decreased cook loss (p<0.0017) and improved emulsion stability (p<0.0001) but also resulted in greater textural and eating quality modification of sausages. Hardness values increased (p<0.0001) with increasing inulin concentration, with panellists also scoring products containing inulin as less tender (p<0.0112). Optimisation predicted two acceptable sausage formulations with significantly lower fat levels than the control, which would contain sufficient inulin to deliver a prebiotic health effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering

    PubMed Central

    Liuyun, Jiang; Yubao, Li; Chengdong, Xiong

    2009-01-01

    In this study, we report the physico-chemical and biological properties of a novel biodegradable composite scaffold made of nano-hydroxyapatite and natural derived polymers of chitosan and carboxymethyl cellulose, namely, n-HA/CS/CMC, which was prepared by freeze-drying method. The physico-chemical properties of n-HA/CS/CMC scaffold were tested by infrared absorption spectra (IR), transmission electron microscope(TEM), scanning electron microscope(SEM), universal material testing machine and phosphate buffer solution (PBS) soaking experiment. Besides, the biological properties were evaluated by MG63 cells and Mesenchymal stem cells (MSCs) culture experiment in vitro and a short period implantation study in vivo. The results show that the composite scaffold is mainly formed through the ionic crossing-linking of the two polyions between CS and CMC, and n-HA is incorporated into the polyelectrolyte matrix of CS-CMC without agglomeration, which endows the scaffold with good physico-chemical properties such as highly interconnected porous structure, high compressive strength and good structural stability and degradation. More important, the results of cells attached, proliferated on the scaffold indicate that the scaffold is non-toxic and has good cell biocompatibility, and the results of implantation experiment in vivo further confirm that the scaffold has good tissue biocompatibility. All the above results suggest that the novel degradable n-HA/CS/CMC composite scaffold has a great potential to be used as bone tissue engineering material. PMID:19594953

  5. Physico-chemical measurements of CL-20 for environmental applications. Comparison with RDX and HMX.

    PubMed

    Monteil-Rivera, Fanny; Paquet, Louise; Deschamps, Stéphane; Balakrishnan, Vimal K; Beaulieu, Chantale; Hawari, Jalal

    2004-01-30

    CL-20 is a polycyclic energetic nitramine, which may soon replace the monocyclic nitramines RDX and HMX, because of its superior explosive performance. Therefore, to predict its environmental fate, analytical and physico-chemical data must be made available. An HPLC technique was thus developed to measure CL-20 in soil samples based on the US Environmental Protection Agency method 8330. We found that the soil water content and aging (21 days) had no effect on the recoveries (>92%) of CL-20, provided that the extracts were kept acidic (pH 3). The aqueous solubility of CL-20 was poor (3.6 mg l(-1) at 25 degrees C) and increased with temperature to reach 18.5 mg l(-1) at 60 degrees C. The octanol-water partition coefficient of CL-20 (log KOW = 1.92) was higher than that of RDX (log KOW = 0.90) and HMX (log KOW = 0.16), indicating its higher affinity to organic matter. Finally, CL-20 was found to decompose in non-acidified water upon contact with glass containers to give NO2- (2 equiv.), N2O (2 equiv.), and HCOO- (2 equiv.). The experimental findings suggest that CL-20 should be less persistent in the environment than RDX and HMX.

  6. Comparison on the physico-chemical and nutritional qualities of normal and abnormal colored fresh chicken liver.

    PubMed

    Xiong, Guoyuan; Gao, Xueqin; Zheng, Haibo; Li, Xin; Xu, Xinglian; Zhou, Guanghong

    2017-06-01

    This study evaluated the differences of physico-chemical and nutritional qualities between abnormal colored chicken livers (ANCCLs) and normal colored chicken livers (NCCLs) and the safety of the both livers. Compared with NCCLs, ANCCLs were lower in protein, water contents (P < 0.01), pH and pigment contents (P < 0.05). NCCLs contained higher polyunsaturated fatty acid (PUFA) and saturated fatty acids (SFA) (P < 0.05). The PUFA/SFA ratio of NCCLs was 0.453, higher (P < 0.05) than that of ANCCLs. The contents of alanine, valine, tyrosine, lysine and histidine in NCCLs were higher (P < 0.05) than in ANCCLs. The contents of K, Na, P, Cu, Fe and Se of NCCLs were higher (P < 0.05), but the Ca content was lower (P < 0.05). The content of the heavy metals (As, Hg, Pb and Cd) of the two types of livers complied with food safety requirements. Although NCCLs had higher nutritional value than ANCCLs, both livers were acceptable for human consumption. © 2016 Japanese Society of Animal Science.

  7. Physico-chemical pretreatment and enzymatic hydrolysis of cotton stalk for ethanol production by Saccharomyces cerevisiae.

    PubMed

    Singh, Anita; Bajar, Somvir; Bishnoi, Narsi R

    2017-11-01

    The aim of this work was to study the physico-chemical pretreatment and enzymatic hydrolysis of cotton stalk for ethanol production by Saccharomyces cerevisiae. Firstly, factors affecting pretreatment were screened out by Plackett-Burman design (PBD) and most significant factors were further optimized by Box-Behnken design (BBD). As shown by experimental study, most significant factors were FeCl 3 concentration (FC), irradiation time (IT) and substrate concentration (SC) affecting pretreatment of cotton stalk among all studied factors. Under optimum conditions of pretreatment FC 0.15mol/l, IT 20min and SC 55g/l, the release of reducing sugar was 6.6g/l. Hydrolysis of pretreated cotton stalk was done by crude on-site produced enzymes and hydrolysate was concentrated. Ethanol production by Saccharomyces cerevisiae using concentrated cotton stalk hydrolysate was 9.8g p /l, with ethanol yield 0.37g p /g s on consumed sugars. The data indicated that microwave FeCl 3 pretreated cotton stalk hydrolyses by crude unprocessed enzyme cocktail was good, and ethanol can be produced by fermentation of hydrolysate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Bacteriological and physico-chemical quality of drinking water sources in a rural community of Ethiopia.

    PubMed

    Tsega, N; Sahile, S; Kibret, M; Abera, B

    2013-12-01

    Accesses to safe water is a universal need however, many of the world's population lack access to adequate and safe water. Consumption of water contaminated causes health risk to the public and the situation is serous in rural areas. To assess the bacteriological and physico-chemical quality of drinking water sources in a rural community of Ethiopia. Water samples were collected from tap, open springs, open dug wells and protected springs for bacteriological analysis of total coliforms and thermotolerant coliforms. The turbidity, pH and temperature were measured immediately after collection. Most drinking water sources were found to have coliform counts above the recommended national and international guidelines and had high sanitary risk scores. There was a statistically significant difference among water sources with respect to TC and TTC (p < 0.05) and there was a statistically significant positive correlation between coliform counts and sanitary risk scores (p < 0.01). Most water sources didn't satisfy the turbidity values recommended by WHO. The water sources were heavily contaminated which suggested poor protection and sanitation practice in the water sources. Source protection strategies as well as monitoring are recommend for this community.

  9. Correlating the cold flow and melting properties of fatty acid methyl ester (FAME) mixtures

    USDA-ARS?s Scientific Manuscript database

    Fatty acid methyl ester (FAME) mixtures derived from plant oils or animal fats are used to make biodiesel, lubricants, surfactants, plasticizers, ink solvents, paint strippers and other products. Processing requires a precise knowledge of the physico-chemical properties of mixtures with diverse and ...

  10. Fast, Low-Cost and Non-Destructive Physico-Chemical Analysis of Virgin Olive Oils Using Near-Infrared Reflectance Spectroscopy

    PubMed Central

    Garrido-Varo, Ana; Sánchez, María-Teresa; De la Haba, María-José; Torres, Irina; Pérez-Marín, Dolores

    2017-01-01

    Near-Infrared (NIR) Spectroscopy was used for the non-destructive assessment of physico-chemical quality parameters in olive oil. At the same time, the influence of the sample presentation mode (spinning versus static cup) was evaluated using two spectrophotometers with similar optical characteristics. A total of 478 olive oil samples were used to develop calibration models, testing various spectral signal pre-treatments. The models obtained by applying MPLS regression to spectroscopic data yielded promising results for olive oil quality measurements, particularly for acidity, the peroxide index and alkyl and ethyl ester content. The results obtained indicate that this non-invasive technology can be used successfully by the olive oil sector to categorize olive oils, to detect potential fraud and to provide consumers with more reliable information. Although both sample presentation modes yielded comparable results, equations constructed with samples scanned using the spinning mode provided greater predictive capacity. PMID:29144417

  11. Evaluation of the physico-chemical, rheological and sensory characteristics of commercially available Frankfurters in Spain and consumer preferences.

    PubMed

    González-Viñas, M A; Caballero, A B; Gallego, I; García Ruiz, A

    2004-08-01

    The physico-chemical, rheological and sensory characteristics of different commercially available Frankfurters were studied. Samples presented values of A(w) and pH from 0.954 to 0.972 and 5.88 to 6.43, respectively. Greater differences were observed in parameters such as fat and salt content, with values ranging from 10.83% to 21.92% and 1.85% to 3.01%, respectively. With regard to total nitrogen, all samples presented values close to 2%. Free-choice profiling and generalised procrustes analysis of the sensory data permitted differentiation between samples and provided information about the attributes responsible for the observed differences. All the frankfurters scored in the moderate range for overall acceptability. Consumers identified reasons for purchasing frankfurters when evaluating the product's packaging. The most important criterion for consumers when purchasing frankfurters was the appetising aspect of the product in the packaging's illustration.

  12. Spatial distribution analysis of chemical and biochemical properties across Koiliaris CZO

    NASA Astrophysics Data System (ADS)

    Tsiknia, Myrto; Varouchakis, Emmanouil A.; Paranychianakis, Nikolaos V.; Nikolaidis, Nikolaos P.

    2015-04-01

    Arid and semi-arid ecosystems cover approximately 47% of the Earth's surface. Soils in these climatic zones are often severely degraded and poor in organic carbon and nutrients. Anthropogenic activities like overgrazing and intensive agricultural practices further exacerbate the quality of the soils making them more vulnerable to erosion and accelerating losses of nutrients which might end up to surface waterways degrading their quality. Data of the geospatial distribution of nutrient availability as well as on the involved processes at watershed level might help us to identify areas which will potentially act as sources of nutrients and probably will allow us to adopt appropriate management practices to mitigate environmental impacts. In the present study we have performed an extensive sampling campaign (50 points) across a typical Mediterranean watershed, the Koiliaris Critical Zone Observatory (CZO), organized in such a way to effectively capture the complex variability (climatic, soil properties, hydrology, land use) of the watershed. Analyses of soil physico-chemical properties (texture, pH, EC, TOC, TN, NO3--N, and NH4+-N) and biochemical assays (potential nitrification rate, nitrogen mineralization rate, enzymes activities) were carried out. Geostatistical analysis and more specifically the kriging interpolation method was employed to generate distribution maps of the distribution of nitrogen forms and of the related biochemical assays. Such maps could provide an important tool for effective ecosystem management and monitoring decisions.

  13. The lack of foundation in the mechanism on which are based the physico-chemical theories for the origin of the genetic code is counterposed to the credible and natural mechanism suggested by the coevolution theory.

    PubMed

    Di Giulio, Massimo

    2016-06-21

    I analyze the mechanism on which are based the majority of theories that put to the center of the origin of the genetic code the physico-chemical properties of amino acids. As this mechanism is based on excessive mutational steps, I conclude that it could not have been operative or if operative it would not have allowed a full realization of predictions of these theories, because this mechanism contained, evidently, a high indeterminacy. I make that disapproving the four-column theory of the origin of the genetic code (Higgs, 2009) and reply to the criticism that was directed towards the coevolution theory of the origin of the genetic code. In this context, I suggest a new hypothesis that clarifies the mechanism by which the domains of codons of the precursor amino acids would have evolved, as predicted by the coevolution theory. This mechanism would have used particular elongation factors that would have constrained the evolution of all amino acids belonging to a given biosynthetic family to the progenitor pre-tRNA, that for first recognized, the first codons that evolved in a certain codon domain of a determined precursor amino acid. This happened because the elongation factors recognized two characteristics of the progenitor pre-tRNAs of precursor amino acids, which prevented the elongation factors from recognizing the pre-tRNAs belonging to biosynthetic families of different precursor amino acids. Finally, I analyze by means of Fisher's exact test, the distribution, within the genetic code, of the biosynthetic classes of amino acids and the ones of polarity values of amino acids. This analysis would seem to support the biosynthetic classes of amino acids over the ones of polarity values, as the main factor that led to the structuring of the genetic code, with the physico-chemical properties of amino acids playing only a subsidiary role in this evolution. As a whole, the full analysis brings to the conclusion that the coevolution theory of the origin of the

  14. Physico-chemical properties and cytotoxic potential of Cordyceps sinensis metabolites.

    PubMed

    Lee, Eun-Jeong; Jang, Ka-Hee; Im, Seon-Young; Lee, Yoon-Kyung; Farooq, Muhammad; Farhoudi, Rozbeh; Lee, Dong-Jin

    2015-01-01

    This study was conducted to estimate the antioxidant activities, biochemical properties and biological activities of one of the entomopathogenic fungi, Cordyceps sinensis. Analysis of fungal metabolites indicated that the most abundant free sugar was glucose; the highest component of organic acids was citric acid from 10-day culture medium and the glutamate was the predominant amino acid observed from 3-day culture medium. Maximum total polyphenols and flavonoids were detected in the 15-day culture medium. For cytotoxicity test, three cancer cell lines, HepG2 (liver), MCF-7 (breast) and A549 (lung) were used. The IC50 values of the highest toxicity of HepG2 cell lines were observed from 10-day cultured medium, whereas the highest toxicity of MCF-7 and A549 was observed on 5-day cultured medium. This is the first study reporting on the strong antioxidant and cytotoxic potential of C. sinensis. Culture medium of C. sinensis may thus be used as an effective antioxidant and anticancer treatment of natural origin.

  15. Effects of processing parameters on immersion vacuum cooling time and physico-chemical properties of pork hams.

    PubMed

    Feng, Chao-Hui; Drummond, Liana; Zhang, Zhi-Hang; Sun, Da-Wen

    2013-10-01

    The effects of agitation (1002 rpm), different pressure reduction rates (60 and 100 mbar/min), as well as employing cold water with different initial temperatures (IWT: 7 and 20°C) on immersion vacuum cooling (IVC) of cooked pork hams were experimentally investigated. Final pork ham core temperature, cooling time, cooling loss, texture properties, colour and chemical composition were evaluated. The application for the first time of agitation during IVC substantially reduced the cooling time (47.39%) to 4.6°C, compared to IVC without agitation. For the different pressure drop rates, there was a trend that shorter IVC cooling times were achieved with lower cooling rate, although results were not statistically significant (P>0.05). For both IWTs tested, the same trend was observed: shorter cooling time and lower cooling loss were obtained under lower linear pressure drop rate of 60 mbar/min (not statistically significant, P>0.05). Compared to the reference cooling method (air blast cooling), IVC achieved higher cooling rates and better meat quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Physico-chemical protection, rather than biochemical composition, governs the responses of soil organic carbon decomposition to nitrogen addition in a temperate agroecosystem.

    PubMed

    Tan, Wenbing; Wang, Guoan; Huang, Caihong; Gao, Rutai; Xi, Beidou; Zhu, Biao

    2017-11-15

    The heterogeneous responses of soil organic carbon (SOC) decomposition in different soil fractions to nitrogen (N) addition remain elusive. In this study, turnover rates of SOC in different aggregate fractions were quantified based on changes in δ 13 C following the conversion of C 3 to C 4 vegetation in a temperate agroecosystem. The turnover of both total organic matter and specific organic compound classes within each aggregate fraction was inhibited by N addition. Moreover, the intensity of inhibition increases with decreasing aggregate size and increasing N addition level, but does not vary among chemical compound classes within each aggregate fraction. Overall, the response of SOC decomposition to N addition is dependent on the physico-chemical protection of SOC by aggregates and minerals, rather than the biochemical composition of organic substrates. The results of this study could help to understand the fate of SOC in the context of increasing N deposition. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Physico-chemical, antioxidant, and anti-inflammatory properties and stability of hawthorn (Crataegus monogyna Jacq.) procyanidins microcapsules with inulin and maltodextrin.

    PubMed

    Wyspiańska, Dorota; Kucharska, Alicja Z; Sokół-Łętowska, Anna; Kolniak-Ostek, Joanna

    2017-01-01

    Procyanidins from the bark of hawthorn (Crataegus monogyna Jacq.) were isolated and purified. Qualitative and quantitative composition was compared with that of the extract of hawthorn fruit (Crataegus monogyna Jacq.). Stability and antioxidant and anti-inflammatory properties of procyanidins before and after micro-encapsulation were estimated. The effects of the carrier type (inulin and maltodextrin) and procyanidins:carrier ratio (1:1, 1:3) and the influence of storage temperature (20 °C, -20 °C, -80 °C) on the content of procyanidins were evaluated. Samples before and after micro-encapsulation contained from 651 to 751 mg of procyanidins in 1 g. Among the procyanidins, (-)-epicatechin, dimer B2, and trimer C1 dominated. The use of inulin during spray drying resulted in greater efficiency of micro-encapsulation than the use of maltodextrin. During storage of the samples at 20 °C degradation of procyanidins was observed, whereas at -20 °C and -80 °C concentrations of them increased. The microcapsules with procyanidins from the bark of hawthorn, as well as the extract of procyanidins, have valuable biological activity, and strong antioxidant and anti-inflammatory properties. It is better to prepare microcapsules with a greater amount of carrier, with the procyanidin/carrier ratio 1:3. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  18. Some physico-chemical properties of Prunus armeniaca L. gum exudates.

    PubMed

    Fathi, Morteza; Mohebbi, Mohebbat; Koocheki, Arash

    2016-01-01

    The objectives of this paper were to investigate some physicochemical properties of Prunus armeniaca L. gum exudates (PAGE). PAGE had, on average, 66.89% carbohydrate, 10.47% uronic acids, 6.9% moisture (w.b.), 2.91% protein, 4% ash and 1.59% fat. PAGE was composed of monosaccharides including l-arabinose, d-galactose, xylose, mannose and rhamnose in molar percentages of 41.52%, 23.72%, 17.82%, 14.40% and 2.54%, respectively. Elemental analysis showed that PAGE had high values of nutrients. FTIR analysis demonstrated the presence of carboxyl, hydroxyl and methyl groups and glycoside bonds. The weight average molecular weight, number average molecular weight and polydispersity index were found to be approximately 5.69 × 10(5)g/mol, 4.33 g/mol and 1.31, respectively. Rheological measurement of PAGE solutions as a function of concentration (8, 10 and 12% (w/w)) and temperature (10, 20, 30 and 40°C) demonstrated that the gum solutions had a non Newtonian shear thinning behaviour. Intrinsic viscosity for PAGE in deionized water was 3.438 dl/g based on Kramer equation. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. A comparative pharmacognostical and preliminary physico-chemical analysis of stem and leaf of Bacopa monnieri (L.) Pennel and Bacopa floribunda (R.BR.) Wettst.

    PubMed

    Gubbannavar, Jyoti S; Chandola, H M; Harisha, C R; Khanpara, Komal; Shukla, V J

    2013-01-01

    Brahmi is a well-known herbal drug having an effect on brain as a memory enhancer. Bacopa monnieri (L.) Pennel and Bacopa floribunda (R.Br.) Wettst are both marketed in the name of Brahmi. The present study differentiates Bacopa monnieri and Bacopa floribunda in morphology, transverse section (T.S.) of root and leaf, powder microscopy, and chemical constituents. Morphological characters show color difference in flower, stem and leaf and differences in microscopic study, organoleptic study, and powder characteristics. Morphologically, Bacopa monnieri leaf is fleshy and more succulent than Bacopa floribunda leaf. There is also a difference in the interval of the stem internodes of the two. Physico-chemical analysis revealed presence of 26% bacoside A in Bacopa floribunda leaf and 27% in Bacopa floribunda stem, which is higher than the bacoside A content in leaf (22%) and stem (18%) of Bacopa monnieri. However due to the hemolytic action of bacoside A, which is the toxic effect of the chemical constituent, it seems likely that Bacopa monnieri is more popular in regular use than Bacopa floribunda.

  20. A comparative pharmacognostical and preliminary physico-chemical analysis of stem and leaf of Bacopa monnieri (L.) Pennel and Bacopa floribunda (R.BR.) Wettst

    PubMed Central

    Gubbannavar, Jyoti S.; Chandola, H. M.; Harisha, C. R.; Khanpara, Komal; Shukla, V. J.

    2013-01-01

    Brahmi is a well-known herbal drug having an effect on brain as a memory enhancer. Bacopa monnieri (L.) Pennel and Bacopa floribunda (R.Br.) Wettst are both marketed in the name of Brahmi. The present study differentiates Bacopa monnieri and Bacopa floribunda in morphology, transverse section (T.S.) of root and leaf, powder microscopy, and chemical constituents. Morphological characters show color difference in flower, stem and leaf and differences in microscopic study, organoleptic study, and powder characteristics. Morphologically, Bacopa monnieri leaf is fleshy and more succulent than Bacopa floribunda leaf. There is also a difference in the interval of the stem internodes of the two. Physico-chemical analysis revealed presence of 26% bacoside A in Bacopa floribunda leaf and 27% in Bacopa floribunda stem, which is higher than the bacoside A content in leaf (22%) and stem (18%) of Bacopa monnieri. However due to the hemolytic action of bacoside A, which is the toxic effect of the chemical constituent, it seems likely that Bacopa monnieri is more popular in regular use than Bacopa floribunda. PMID:24049413

  1. Co-milled API-lactose systems for inhalation therapy: impact of magnesium stearate on physico-chemical stability and aerosolization performance.

    PubMed

    Lau, Michael; Young, Paul M; Traini, Daniela

    2017-06-01

    Particle micronization for inhalation can impart surface disorder (amorphism) of crystalline structures. This can lead to stability issues upon storage at elevated humidity from recrystallization of the amorphous state, which can subsequently affect the aerosol performance of the dry powder formulation. The aim of this study was to investigate the impact of an additive, magnesium stearate (MGST), on the stability and aerosol performance of co-milled active pharmaceutical ingredient (API) with lactose. Blends of API-lactose with/without MGST were prepared and co-milled by the jet-mill apparatus. Samples were stored at 50% relative humidity (RH) and 75% RH for 1, 5, and 15 d. Analysis of changes in particle size, agglomerate structure/strength, moisture sorption, and aerosol performance were analyzed by laser diffraction, scanning electron microscopy (SEM), dynamic vapor sorption (DVS), and in-vitro aerodynamic size assessment by impaction. Co-milled formulation with MGST (5% w/w) led to a reduction in agglomerate size and strength after storage at elevated humidity compared with co-milled formulation without MGST, as observed from SEM and laser diffraction. Hysteresis in the sorption/desorption isotherm was observed in the co-milled sample without MGST, which was likely due to the recrystallization of the amorphous regions of micronized lactose. Deterioration in aerosol performance after storage at elevated humidity was greater for the co-milled samples without MGST, compared with co-milled with MGST. MGST has been shown to have a significant impact on co-milled dry powder stability after storage at elevated humidity in terms of physico-chemical properties and aerosol performance.

  2. Density Functionals of Chemical Bonding

    PubMed Central

    Putz, Mihai V.

    2008-01-01

    The behavior of electrons in general many-electronic systems throughout the density functionals of energy is reviewed. The basic physico-chemical concepts of density functional theory are employed to highlight the energy role in chemical structure while its extended influence in electronic localization function helps in chemical bonding understanding. In this context the energy functionals accompanied by electronic localization functions may provide a comprehensive description of the global-local levels electronic structures in general and of chemical bonds in special. Becke-Edgecombe and author’s Markovian electronic localization functions are discussed at atomic, molecular and solid state levels. Then, the analytical survey of the main workable kinetic, exchange, and correlation density functionals within local and gradient density approximations is undertaken. The hierarchy of various energy functionals is formulated by employing both the parabolic and statistical correlation degree of them with the electronegativity and chemical hardness indices by means of quantitative structure-property relationship (QSPR) analysis for basic atomic and molecular systems. PMID:19325846

  3. Physico-chemical characterization and antibacterial activity of inclusion complexes of Hyptis martiusii Benth essential oil in β-cyclodextrin.

    PubMed

    Andrade, Tatianny A; Freitas, Thiago S; Araújo, Francielly O; Menezes, Paula P; Dória, Grace Anne A; Rabelo, Alessandra S; Quintans-Júnior, Lucindo J; Santos, Márcio R V; Bezerra, Daniel P; Serafini, Mairim R; Menezes, Irwin Rose A; Nunes, Paula Santos; Araújo, Adriano A S; Costa, Maria S; Campina, Fábia F; Santos, Antonia T L; Silva, Ana R P; Coutinho, Henrique D M

    2017-05-01

    Cyclodextrins (CDs) have been used as important pharmaceutical excipients for improve the physicochemical properties of the drugs of low solubility as the essential oil of Hyptis martiusii. This oil is important therapeutically, but the low solubility and bioavailability compromises your use. Therein, the aim of this study was to obtain and to characterize physico-chemically the samples obtained by physical mixture (PM), paste complexation (PC) and slurry complexation (SC) of the essential oil Hyptis martiusii (EOHM) in β-CD, and to compare the antibacterial and modulatory-antibiotic activity of products obtained and oil free. The physicochemical characterization was performed by differential scanning calorimetry (DSC), thermogravimetry/derivative thermogravimetry (TG/DTG), scanning electron microscopy (SEM), X-ray diffraction (XRD) and Karl Fischer titration. Additionally, the antibacterial tests were performed by microdilution technique. Thus, it was observed that the PM method showed low complexing capacity, unlike PC and SC in which it was observed the formation of inclusion complexes. In addition, the second stage of the TG/DTG curves showed that SC was the best method inclusion with mass loss of 6.9% over the PC that was 6.0%. The XRD results corroborate with the results above suggesting the formation of new solid phase and the SEM photomicrographs showed the porous surface of the samples PC and SC. The essential oil alone demonstrated an antibacterial and modulatory effect against the S. aureus and the Gram negative strain, respectively. However, the β-CD and the inclusion complex did not demonstrate any biological activity in the performed antibacterial assays. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Effect of green coffee extract on rheological, physico-sensory and antioxidant properties of bread.

    PubMed

    Mukkundur Vasudevaiah, A; Chaturvedi, A; Kulathooran, R; Dasappa, I

    2017-06-01

    Green coffee extract, GCE ( Coffee canephora ) was used at 1.0, 1.5 and 2.0% levels for making bioactive rich bread. The processed GCE from the green coffee beans had 21.42% gallic acid equivalents (GAE) total polyphenols (TPP), 37.28% chlorogenic acid (CGA) and 92.73% radical scavenging activity (RSA), at 100 ppm concentration of GCE and caffeine content (1.75%). Rheological, physico-sensory and antioxidant properties of GCE incorporated breads were analysed and compared with control bread. The results revealed not much significant change in the rheological characteristics of dough up to 1.5% level; an increase in bread volume; greenness of bread crumb and mostly unchanged textural characteristics of the bread with increased addition of GCE from 0 to 2.0%. Sensory evaluation showed that maximum level of incorporation of GCE without adverse effect on the overall quality of bread (especially taste) was at 1.5% level. The contents of TPP, RSA and CGA increased by 12, 6 and 42 times when compared to control bread and had the highest amount of 4-5 caffeoylquinic acid.

  5. Optimization of physico-chemical and nutritional parameters for a novel pullulan-producing fungus, Eurotium chevalieri.

    PubMed

    Gaur, R; Singh, R; Tiwari, S; Yadav, S K; Daramwal, N S

    2010-09-01

    To isolate the novel nonmelanin pullulan-producing fungi from soil and to optimize the physico-chemical and nutritional parameters for pullulan production. A selective enrichment method was followed for the isolation, along with development of a suitable medium for pullulan production, using shake flask experiments. Pullulan content was confirmed using pure pullulan and pullulanase hydrolysate. Eurotium chevalieri was able to produce maximum pullulan (38 ± 1·0 g l(-1) ) at 35°C, pH 5·5, 2·5% sucrose, 0·3% ammonium sulfate and 0·2% yeast extract in a shake flash culture medium with an agitation rate of 30 rev min(-1) for 65 h. The novel pullulan-producing fungus was identified as E. chevalieri (MTCC no. 9614), which was able to produce nonmelanin pullulan at from poorer carbon and nitrogen sources than Aureobasidium pullulans and may therefore be useful for the commercial production of pullulan. Eurotium chevalieri could produce pullulan in similar amounts to A. pullulans. Therefore, in future, this fungus could also be used for commercial pullulan production, because it is neither polymorphic nor melanin producing, hence its handling during pullulan fermentation will be easier and more economical. © 2010 The Authors. Journal compilation © 2010 The Society for Applied Microbiology.

  6. Effect of sodium lactate as cryostabilizer on physico-chemical attributes of croaker (Johnius gangeticus) muscle protein.

    PubMed

    Dey, S S; Dora, K C

    2010-08-01

    Effect of sodium lactate as cryostabilizer on physico-chemical attributes of croaker (Johnius gangeticus) fish muscle protein was studied during freezing and frozen (-20 ± 2°C) storage for 3 months. Minced meat was mixed with 4% sucrose, 4% sorbitol, and 0.3% sodium tri poly phosphate (STPP) (T1), minced meat was mixed with 6% (w/v) sodium lactate and 0.3% STPP (T2) and control (C) was without any additive. The decreasing rate of Ca(2+) ATPase activity, thaw drip, water holding capacity and relative viscosity in T1 and T2 samples from that of C was significantly lower, indicating higher protective effect of additives. In case of cryoprotectant treated samples, the degradation of myosin heavy chain was much lower than that of C which prevents the aggregation and subsequent insolubilization of myosin during frozen storage. The sodium lactate prevented Ca(2+)ATPase activity more than that of sucrose/sorbitol during isothermal storage at -20 ± 2°C for 3 months. This inferred that sodium lactate can effectively be used as an alternative cryostabilizer to sucrose/sorbitol for stabilization of croaker muscle protein native structure.

  7. Effect of Hydrothermal Treatment on the Physicochemical, Rheological, and Oil-Resistant Properties of Rice Flour

    USDA-ARS?s Scientific Manuscript database

    Rice flour was thermo-mechanically modified by steam jet-cooking and the physico-chemical and rheological properties of the resulting product were characterized. Then, its performance in frying batters was evaluated as an oil barrier. Compared to native rice flour, the steam jet-cooked rice flour ...

  8. Improvement of physico-chemical properties and phenolic compounds bioavailability by concentrating dietary fiber of peach (Prunus persica) juice by-product.

    PubMed

    Rodríguez-González, Sarahí; Pérez-Ramírez, Iza F; Castaño-Tostado, Eduardo; Amaya-Llano, Silvia; Rodríguez-García, Mario E; Reynoso-Camacho, Rosalía

    2018-06-01

    This study aimed to concentrate dietary fiber (DF) from peach (Prunus persica) juice by-product (PJBP), to improve its functional properties, and its polyphenols bioavailability. The dietary fiber concentrates (DFCs) were obtained from PJBP using water/ethanol treatments (100:0, 20:80, 50:50, 80:20, and 0:100, v/v) at 1:5 ratio (wet weight/solvent, w/v) for 5 and 20 min at 21 °C. All treatments concentrated condensed tannins, total and insoluble DF, with the highest content found with 100% H 2 O treatment. The major polyphenols of DFC were 4-O-caffeoylquinic, chlorogenic, and 1,5-di-O-caffeoylquinic acids. Water and oil retention capacity and maximum glucose diffusion rate were improved mainly with 100% H 2 O treatment. Healthy rats were fed with a standard diet supplemented with 8% of PJBP, DFC obtained with 100% H 2 O for 5 min, or DFC obtained with 20% EtOH for 5 min. Gastrointestinal digesta weight and viscosity were increased in animals supplemented with 100% H 2 O DFC. Moreover, the urinary excretion of polyphenol metabolites, mainly glucuronide and sulfate conjugates, was increased with this treatment, indicating a greater bioavailability of PJBP polyphenols, which was associated with an increased dietary fiber porosity. Water treatment could be used to potentiate PJBP functional properties and polyphenols bioavailability. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Seasonal succession of estuarine fish, shrimps, macrozoobenthos and plankton: Physico-chemical and trophic influence. The Gironde estuary as a case study

    NASA Astrophysics Data System (ADS)

    Selleslagh, Jonathan; Lobry, Jérémy; N'Zigou, Aimé Roger; Bachelet, Guy; Blanchet, Hugues; Chaalali, Aurélie; Sautour, Benoît; Boët, Philippe

    2012-10-01

    Characterization of the structure and seasonal variability of biotic communities is essential for a better understanding of estuarine ecosystem functioning and in order to manage these highly fluctuating and naturally stressed systems. Numerous studies have investigated the role of environmental factors in controlling temporal variations in biotic communities. However, most have concluded that the explanatory power of physico-chemical variables was significant but not sufficient to explain ecological dynamics. The present study aimed to propose the importance of trophic interactions as an additional structuring factor of species seasonal variability by examining simultaneous dynamics of all estuarine biotic communities, using the oligo-mesohaline area of the Gironde estuary (SW France) as a case study. Data on the main biological groups (fish, shrimps, macrozoobenthos and plankton) sampled during a five-year period (2004-2008) at monthly intervals using a well standardized protocol, as well as data on environmental variables, were compiled here for the first time. According to species composition, the Gironde estuary is used as a nursery, feeding, resident and migratory habitat. For almost all species, strong seasonal fluctuations occurred with a succession of species, indicating an optimization of the use of the available resources over a typical year by estuarine biological communities. Multivariate analyses discriminated four seasonal groups of species with two distinctive ecological seasons. A clear shift in July indicated a biomass transfer from a "planktonic phase" to a "bentho-demersal phase", corresponding to spring and summer-autumn periods, respectively. With regard to the temporal fluctuations of dominant species of all biological groups, this study highlighted the possible influence of trophic relationships, predation in particular, on seasonal variations in species abundance, in addition to the physico-chemical influence. This study enabled us to

  10. Improvement of Physico-mechanical Properties of Partially Amorphous Acetaminophen Developed from Hydroalcoholic Solution Using Spray Drying Technique

    PubMed Central

    Sadeghi, Fatemeh; Torab, Mansour; Khattab, Mostafa; Homayouni, Alireza; Afrasiabi Garekani, Hadi

    2013-01-01

    Objective(s): This study was performed aiming to investigate the effect of particle engineering via spray drying of hydroalcoholic solution on solid states and physico-mechanical properties of acetaminophen. Materials and Methods: Spray drying of hydroalcoholic solution (25% v/v ethanol/water) of acetaminophen (5% w/v) in the presence of small amounts of polyninylpyrrolidone K30 (PVP) (0, 1.25, 2.5 and 5% w/w based on acetaminophen weight) was carried out. The properties of spray dried particles namely morphology, surface characteristics, particle size, crystallinity, dissolution rate and compactibility were evaluated. Results: Spray drying process significantly changed the morphology of acetaminophen crystals from acicular (rod shape) to spherical microparticle. Differential scanning calorimetery (DSC) and x-ray powder diffraction (XRPD) studies ruled out any polymorphism in spray dried samples, however, a major reduction in crystallinity up to 65%, especially for those containing 5% w/w PVP was observed. Spray dried acetaminophen particles especially those obtained in the presence of PVP exhibited an obvious improvement of the dissolution and compaction properties. Tablets produced from spray dried samples exhibited excellent crushing strengths and no tendency to cap. Conclusions: The findings of this study revealed that spray drying of acetaminophen from hydroalcoholic solution in the presence of small amount of PVP produced partially amorphous particles with improved dissolution and excellent compaction properties. PMID:24379968

  11. Aircraft-Based measurement of the physico-chemical evolution of atmospheric aerosols in the air pollution plume over a megacity and a remote area

    NASA Astrophysics Data System (ADS)

    Park, J. S.; Lee, T.; Park, T.; Lee, J. B.; Lim, Y. J.; Ahn, J.; Kim, J.; Park, S.; Collett, J. L., Jr.

    2017-12-01

    Aerosols influence climate change directly (scattering and absorption) and indirectly (cloud condensation nuclei), also adverse health effects. The Korean peninsula is a great place to study different sources of the aerosols: urban, rural and marine. In addition, Seoul is one of the large metropolitan areas in the world and has a variety of sources because half of the Korean population lives in Seoul, which comprises only 12% of the country's area. To understand the physico-chemical evolution of atmospheric aerosols in the air pollution plume over a megacity and a remote area, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on an airborne platform (NASA DC-8 and Beechcraft King Air) in June, 2015 and May-June, 2016 during MAPS-Seoul and KORUS-AQ campaigns, respectively, in Korea. The HR-ToF-AMS is capable of measuring non-refractory size resolved chemical composition of submicron particle (NR-PM1). NR-PM1 includes mass concentration of organics, nitrate, sulfate, and ammonium with 10 seconds time resolution. Organics was dominated species in aerosol during all of flights. Organics and nitrate were dominant around energy industrial complex near by Taean, South Korea. The presentation will provide an overview of the composition of NR-PM1 measured in air pollution plumes, and deliver detail information about width, depth and spatial distribution of the pollutant in the air pollution plumes. The results of this study will provide high temporal and spatial resolved details on the air pollution plumes, which are valuable input parameters of aerosol properties for the current air quality models.

  12. Effect of combined physico-chemical processes on the phytotoxicity of olive mill wastewaters.

    PubMed

    Andreozzi, Roberto; Canterino, Marisa; Di Somma, Ilaria; Lo Giudice, Roberto; Marotta, Raffaele; Pinto, Gabriele; Pollio, Antonino

    2008-03-01

    A pool of laboratory experiments is planned with the aim of evaluating the possibility to reduce the phytotoxicity of olive mill wastewater (OMW) with combined physico-chemical processes (centrifugation-ozonation, centrifugation-solar photolysis, centrifugation-solar modified photoFenton, centrifugation-solar modified photoFenton-ozonation). A moderate COD removal of an OMW is reached by using ozonation or solar modified photoFenton separately or solar modified photoFenton/O(3) combined process even for prolonged treatment times. The O(3)-treated OMWs are still toxic towards algal growth (Pseudokirchneriella subcapitata) and only for dilutions equal to or higher than 1:160 a stimulation of algal growth is observed. The sole ozonation does not reduce significantly the phytotoxicity of tested OMW measured through the GI calculation of Raphanus sativus L., Cucumis sativus L. and Lactuca sativa L. A marked reduction of OMW inhibition, higher than 50%, is evidenced for 1:8 dilution OMW samples ozonated for 2h. The long-term storage of OMW associated with solar irradiation without or with Fe(III) ions under continuous aeration is less efficient than ozonation, and the combined action of the two former treatments does not significantly contribute to enhance both COD removal and germination index. Better results are obtained on seed germination and root elongation of plantlets of the three selected species, which germinated on OMW-free solidified medium and were then transferred on a solidified culture medium containing O(3)-treated OMW diluted 1:2 and 1:4. The operating costs are estimated for the solar modified photoFenton-ozonation process.

  13. Determination of optimum harvest maturity and physico-chemical quality of Rastali banana (Musa AAB Rastali) during fruit ripening.

    PubMed

    Kheng, Tee Yei; Ding, Phebe; Abdul Rahman, Nor Aini

    2012-01-15

    A series of physico-chemical quality (peel and pulp colours, pulp firmness, fruit pH, sugars and acids content, respiration rate and ethylene production) were conducted to study the optimum harvest periods (either week 11 or week 12 after emergence of the first hand) of Rastali banana (Musa AAB Rastali) based on the fruit quality during ripening. Rastali banana fruit exhibited a climacteric rise with the peaks of both CO(2) and ethylene production occurring simultaneously at day 3 after ripening was initiated and declined at day 5 when fruits entered the senescence stage. De-greening was observed in both of the harvesting weeks with peel turned from green to yellow, tissue softening, and fruits became more acidic and sweeter as ripening progressed. Sucrose, fructose and glucose were the main sugars found while malic, citric and succinic acids were the main organic acids found in the fruit. Rastali banana harvested at weeks 11 and 12 can be considered as commercial harvest period when the fruits have developed good organoleptic and quality attributes during ripening. However, Rastali banana fruit at more mature stage of harvest maturity taste slightly sweeter and softer with higher ethylene production which also means the fruits may undergo senescence faster than fruit harvested at week 11. Copyright © 2011 Society of Chemical Industry.

  14. Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system.

    PubMed

    Ullah, Muhammad Wajid; Ul-Islam, Mazhar; Khan, Shaukat; Kim, Yeji; Park, Joong Kon

    2016-01-20

    This study was aimed to characterize the structural and physico-mechanical properties of bio-cellulose produced through cell-free system. Fourier transform-infrared spectrum illustrated exact matching of structural peaks with microbial cellulose, used as reference. Field-emission scanning electron microscopy revealed that fibrils of bio-cellulose were thicker and more compact than microbial cellulose. The specific positions of peaks in the X-ray diffraction and nuclear magnetic resonance spectra indicated that bio-cellulose possessed cellulose II polymorphic structure. Bio-cellulose presented superior physico-mechanical properties than microbial cellulose. The water holding capacity of bio-cellulose and microbial cellulose were found to be 188.6 ± 5.41 and 167.4 ± 4.32 times their dry-weights, respectively. Tensile strengths and degradation temperature of bio-cellulose were 17.63 MPa and 352 °C, respectively compared to 14.71 MPa and 327 °C of microbial cellulose. Overall, the results indicated successful synthesis and superior properties of bio-cellulose that advocate its effectiveness for various applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Loss of sulfur dioxide and changes in some chemical properties of Malatya apricots (Prunus armeniaca L.) during sulfuring and drying.

    PubMed

    Türkyılmaz, Meltem; Özkan, Mehmet; Güzel, Nihal

    2014-09-01

    This study was conducted to determine the differences in some analytical properties of four apricot cultivars and to determine the changes in these analytical properties during sulfuring and sun-drying. There were significant differences in the contents of polyphenols, carotenoids and organic acids (OA) as well as antioxidant activities (AOAs) of the cultivars (P < 0.05). After sulfuring and drying, considerable reductions were detected in the contents of total polyphenols (TPCs, 11-26%), OAs (4-32%) and β-carotene (6-21%), and AOAs (2-21%) of the samples. Sun-drying resulted in 71-83% decreases in sulfur dioxide (SO2 ) contents of sulfured-dried apricots (SDAs) in comparison with apricots immediately after sulfuring. As the TPCs increased, the SO2 absorption by the samples also increased. In contrast, the OA contents had no effect on SO2 absorption, but an increase in OA content resulted in an increase in the browning values of the SDAs. As expected, increases in contents of ferulic acid (r = 0.932), chlorogenic acid (r = 0.850), epicatechin (r = 0.804) and quercetin (r = 0.750) led to an increase in browning values of the SDAs. There were significant effects of cultivar and processing on the physico-chemical properties investigated in the study, and with the absorption of SO2 and the formation of a brown colour in the samples. © 2014 Society of Chemical Industry.

  16. Influence of surface heterogeneity in electroosmotic flows—Implications in chromatography, fluid mixing, and chemical reactions in microdevices

    NASA Astrophysics Data System (ADS)

    Adrover, Alessandra; Giona, Massimiliano; Pagnanelli, Francesca; Toro, Luigi

    2007-04-01

    We analyze the influence of surface heterogeneity, inducing a random ζ-potential at the walls in electroosmotic incompressible flows. Specifically, we focus on how surface heterogeneity modifies the physico-chemical processes (transport, chemical reaction, mixing) occurring in microchannel and microreactors. While the macroscopic short-time features associated with solute transport (e.g. chromatographic patterns) do not depend significantly on ζ-potential heterogeneity, spatial randomness in the surface ζ-potential modifies the spectral properties of the advection-diffusion operator, determining different long-term properties of transport/reaction phenomena compared to the homogeneous case. Examples of physical relevance (chromatography, infinitely fast reactions) are addressed.

  17. Physico-Chemical Characterization, Bioactive Compounds and Antioxidant Activity of Malay Apple [Syzygium malaccense (L.) Merr. & L.M. Perry

    PubMed Central

    Nunes, Polyana Campos; Aquino, Jailane de Souza; Rockenbach, Ismael Ivan; Stamford, Tânia Lúcia Montenegro

    2016-01-01

    The purpose of this study was to evaluate the physico-chemical characteristics, bioactive compounds and antioxidant activity of Malay apple fruit (Syzygium malaccense) grown in Brazil with regard to the geographical origin and its peel fractions and edible portion analyzed independently. Fruit diameter, weight, yield, and centesimal composition, ascorbic acid, reductive sugars, total soluble solids, pH and fiber content were determined. Total phenolics (1293 mg gallic acid equivalent/100 g) and total anthocyanins (1045 mg/100 g) contents were higher in the peel, with the major anthocyanin identified using HPLC-DAD-MS/MS as cyanidin 3-glucoside. Higher values for DPPH antiradical scavenging activity (47.52 μMol trolox equivalent antioxidant capacity/g) and Ferric Reducing Antioxidant Potential (FRAP, 0.19 mM ferreous sulfate/g) were also observed in the peel fraction. All extracts tested showed the ability to inhibit oxidation in the β-carotene/linoleic acid system. This study highlights the potential of Malay apple fruit as a good source of antioxidant compounds with potential benefits to human health. PMID:27352306

  18. Influence of Moisture Content and Compression Axis on Physico-mechanical Properties of Shorea robusta Seeds

    NASA Astrophysics Data System (ADS)

    Shashikumar, C.; Pradhan, R. C.; Mishra, S.

    2018-06-01

    Shorea robusta (Sal) is mainly harvested and processed for its seed oil, which has diverse application in commercial food and non-food based industries. Before extraction of its oil, seeds undergo into various post-harvest unit operations. Physical and mechanical properties play an important role in the handling and other processing activity. In this study influence of moisture content and compression axis of sal seed on physico-mechanical properties were studied and their application are highlighted. The experiments were conducted at five different moisture levels of 6.38, 10.49, 13.63, 17.64, and 21.95% (d.b) at two different orientations. The first orientation is on major axis (LEN) of the seed, and the other orientation is on intermediate or minor axis (WID), which is right angle to the major axis. It was observed that 68% of sal seeds were of medium size group at initial moisture content of 10.49% (d.b). The mean length and width of sal seed was found to be 26.7 mm and 12.8 mm, respectively. It was found that values of hardness, deformation at hardness, deformation at hardness percentage and energy for rupture were higher in minor axis (WID) as compared to the major axis (LEN). The results provide necessary data that may be useful to engineers, scientists, industries in the design of a suitable post-harvest processing machine.

  19. Influence of Moisture Content and Compression Axis on Physico-mechanical Properties of Shorea robusta Seeds

    NASA Astrophysics Data System (ADS)

    Shashikumar, C.; Pradhan, R. C.; Mishra, S.

    2018-02-01

    Shorea robusta (Sal) is mainly harvested and processed for its seed oil, which has diverse application in commercial food and non-food based industries. Before extraction of its oil, seeds undergo into various post-harvest unit operations. Physical and mechanical properties play an important role in the handling and other processing activity. In this study influence of moisture content and compression axis of sal seed on physico-mechanical properties were studied and their application are highlighted. The experiments were conducted at five different moisture levels of 6.38, 10.49, 13.63, 17.64, and 21.95% (d.b) at two different orientations. The first orientation is on major axis (LEN) of the seed, and the other orientation is on intermediate or minor axis (WID), which is right angle to the major axis. It was observed that 68% of sal seeds were of medium size group at initial moisture content of 10.49% (d.b). The mean length and width of sal seed was found to be 26.7 mm and 12.8 mm, respectively. It was found that values of hardness, deformation at hardness, deformation at hardness percentage and energy for rupture were higher in minor axis (WID) as compared to the major axis (LEN). The results provide necessary data that may be useful to engineers, scientists, industries in the design of a suitable post-harvest processing machine.

  20. Physico-chemical characteristics and functional properties of chitin and chitosan produced by Mucor circinelloides using yam bean as substrate.

    PubMed

    Fai, Ana Elizabeth C; Stamford, Thayza C M; Stamford-Arnaud, Thatiana M; Santa-Cruz, Petrus D'Amorim; da Silva, Marta C Freitas; Campos-Takaki, Galba M; Stamford, Tânia L M

    2011-08-23

    Microbiological processes were used for chitin and chitosan production by Mucor circinelloides (UCP 050) grown in yam bean (Pachyrhizus erosus L. Urban) medium. The polysaccharides were extracted by alkali-acid treatment and structural investigations by X-ray diffraction, Fourier transform IR analysis, viscosity and thermal analysis by TG, DTG, and DTA were done. The highest biomass yield (20.7 g/L) was obtained at 96 hours. The highest levels of chitosan (64 mg/g) and chitin (500 mg/g) were produced at 48 and 72 hours, respectively. It was demonstrated that yam bean shows great potential as an economic medium and it is possible to achieve a good yield of chitosan with chemical properties that enable its use in biotechnological applications.

  1. Selected physical and chemical properties of Feverfew (Tanacetum parthenium) extracts important for formulated product quality and performance.

    PubMed

    Jin, Ping; Madieh, Shadi; Augsburger, Larry L

    2008-01-01

    The objectives of this research are: (1) to assess selected formulation-relevant physical properties of several commercial Feverfew extracts, including flowability, hygroscopicity, compressibility and compactibility (2) to develop and validate a suitable extraction method and HPLC assay, and (3) to determine the parthenolide content of several commercial Feverfew extracts. Carr's index, minimum orifice diameter and particle-particle interaction were used to evaluate powder flowability. Hygroscopicity was evaluated by determining the equilibrium moisture content (EMC) after storage at various % relative humidities. Heckle analysis and compression pressure-radial tensile strength relationship were used to represent compression and compaction properties of feverfew extracts. An adapted analytical method was developed based on literature methods and then validated for the determination of parthenolide in feverfew. The commercial extracts tested exhibited poor to very poor flowability. The comparatively low mean yield pressure suggested that feverfew extracts deformed mainly plastically. Hygroscopicity and compactibility varied greatly with source. No commercial feverfew extracts tested contained the label claimed parthenolide. Even different batches from the same manufacturer showed significantly different parthenolide content. Therefore, extract manufactures should commit to proper quality control procedures that ensure accurate label claims, and supplement manufacturers should take into account possible differences in physico-chemical properties when using extracts from multiple suppliers.

  2. The effect of pulping concentration treatment on the properties of microcrystalline cellulose powder obtained from waste paper.

    PubMed

    Okwonna, Okumneme O

    2013-10-15

    Microcrystalline cellulose (MCC) powder was isolated from three grades of waste paper: book, Groundwood/Newsprint and paperboard, through the processes of pulping and hydrolysis. Pulping treatment on these grades of waste paper was done using varying concentrations of caustic soda. Effects of the concentration of the pulping medium on the thermal and kinetic properties were investigated. Also determined were the effects of this on the physico-chemical properties. The chemical structure was characterized using an infrared spectroscopy (FTIR). Results showed these properties to be affected by the concentration of the pulping medium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Linear and Branched PEIs (Polyethylenimines) and Their Property Space.

    PubMed

    Lungu, Claudiu N; Diudea, Mircea V; Putz, Mihai V; Grudziński, Ireneusz P

    2016-04-13

    A chemical property space defines the adaptability of a molecule to changing conditions and its interaction with other molecular systems determining a pharmacological response. Within a congeneric molecular series (compounds with the same derivatization algorithm and thus the same brute formula) the chemical properties vary in a monotonic manner, i.e., congeneric compounds share the same chemical property space. The chemical property space is a key component in molecular design, where some building blocks are functionalized, i.e., derivatized, and eventually self-assembled in more complex systems, such as enzyme-ligand systems, of which (physico-chemical) properties/bioactivity may be predicted by QSPR/QSAR (quantitative structure-property/activity relationship) studies. The system structure is determined by the binding type (temporal/permanent; electrostatic/covalent) and is reflected in its local electronic (and/or magnetic) properties. Such nano-systems play the role of molecular devices, important in nano-medicine. In the present article, the behavior of polyethylenimine (PEI) macromolecules (linear LPEI and branched BPEI, respectively) with respect to the glucose oxidase enzyme GOx is described in terms of their (interacting) energy, geometry and topology, in an attempt to find the best shape and size of PEIs to be useful for a chosen (nanochemistry) purpose.

  4. Linear and Branched PEIs (Polyethylenimines) and Their Property Space

    PubMed Central

    Lungu, Claudiu N.; Diudea, Mircea V.; Putz, Mihai V.; Grudziński, Ireneusz P.

    2016-01-01

    A chemical property space defines the adaptability of a molecule to changing conditions and its interaction with other molecular systems determining a pharmacological response. Within a congeneric molecular series (compounds with the same derivatization algorithm and thus the same brute formula) the chemical properties vary in a monotonic manner, i.e., congeneric compounds share the same chemical property space. The chemical property space is a key component in molecular design, where some building blocks are functionalized, i.e., derivatized, and eventually self-assembled in more complex systems, such as enzyme-ligand systems, of which (physico-chemical) properties/bioactivity may be predicted by QSPR/QSAR (quantitative structure-property/activity relationship) studies. The system structure is determined by the binding type (temporal/permanent; electrostatic/covalent) and is reflected in its local electronic (and/or magnetic) properties. Such nano-systems play the role of molecular devices, important in nano-medicine. In the present article, the behavior of polyethylenimine (PEI) macromolecules (linear LPEI and branched BPEI, respectively) with respect to the glucose oxidase enzyme GOx is described in terms of their (interacting) energy, geometry and topology, in an attempt to find the best shape and size of PEIs to be useful for a chosen (nanochemistry) purpose. PMID:27089324

  5. A physico-chemical assessment of the thermal stability of pneumococcal conjugate vaccine components

    PubMed Central

    Gao, Fang; Lockyer, Kay; Burkin, Karena; Crane, Dennis T; Bolgiano, Barbara

    2014-01-01

    Physico-chemical analysis of pneumococcal polysaccharide (PS)-protein conjugate vaccine components used for two commercially licensed vaccines was performed to compare the serotype- and carrier protein-specific stabilities of these vaccines. Nineteen different monovalent pneumococcal conjugates from commercial vaccines utilizing CRM197, diphtheria toxoid (DT), Protein D (PD) or tetanus toxoid (TT) as carrier proteins were incubated at temperatures up to 56°C for up to eight weeks or were subjected to freeze-thawing (F/T). Structural stability was evaluated by monitoring their size, integrity and carrier protein conformation. The molecular size of the vaccine components was well maintained for Protein D, TT and DT conjugates at -20°C, 4°C and F/T, and for CRM197 conjugates at 4°C and F/T. It was observed that four of the eight serotypes of Protein D conjugates tended to form high molecular weight complexes at 37°C or above. The other conjugated carrier proteins also appeared to form oligomers or ‘aggregates’ at elevated temperatures, but rarely when frozen and thawed. There was evidence of degradation in some of the conjugates as evidenced by the formation of lower molecular weight materials which correlated with measured free saccharide. In conclusion, pneumococcal-Protein D/TT/DT and most CRM197 bulk conjugate vaccines were stable when stored at 2–8°C, the recommended temperature. In common between the conjugates produced by the two manufacturers, serotypes 1, 5, and 19F were relatively less stable and 6B was the most stable, with types 7F and 23F also showing good stability. PMID:25483488

  6. Computing Properties Of Chemical Mixtures At Equilibrium

    NASA Technical Reports Server (NTRS)

    Mcbride, B. J.; Gordon, S.

    1995-01-01

    Scientists and engineers need data on chemical equilibrium compositions to calculate theoretical thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93 is general program that calculates chemical equilibrium compositions and properties of mixtures for any chemical system for which thermodynamic data are available. Includes thermodynamic data for more than 1,300 gaseous and condensed species and thermal-transport data for 151 gases. Written in FORTRAN 77.

  7. Physico-chemical properties of gluten-free pancakes from rice and sweet potato flours.

    USDA-ARS?s Scientific Manuscript database

    Gluten-free pancakes were prepared using rice flour, and rice flour replaced with various amounts, at 10, 20 and 40%, of sweet potato flour. The apparent viscosity of the pancake batter increased with increased sweet potato flour replacement. Texture properties of the cooked pancakes, such as, har...

  8. Swift heavy ion induced modification in morphological and physico-chemical properties of tin oxide nanocomposites

    NASA Astrophysics Data System (ADS)

    Jaiswal, Manoj Kumar; Kanjilal, D.; Kumar, Rajesh

    2013-11-01

    Nanocomposite thin films of tin oxide (SnO2)/titanium oxide (TiO2) were grown on silicon (1 0 0) substrates by electron beam evaporation deposition technique using sintered nanocomposite pellet of SnO2/TiO2 in the percentage ratio of 95:5. Sintering of the nanocomposite pellet was done at 1300 °C for 24 h. The thicknesses of these films were measured to be 100 nm during deposition using piezo-sensor attached to the deposition chamber. TiO2 doped SnO2 nanocomposite films were irradiated by 100 MeV Au8+ ion beam at fluence range varying from 1 × 1011 ions/cm2 to 5 × 1013 ions/cm2 at Inter University Accelerator Center (IUAC), New Delhi, India. Chemical properties of pristine and ion irradiation modified thin films were characterized by Fourier Transform Infrared (FTIR) spectroscopy. FTIR peak at 610 cm-1 confirms the presence of O-Sn-O bridge of tin (IV) oxide signifying the composite nature of pristine and irradiated thin films. Atomic Force Microscope (AFM) in tapping mode was used to study the surface morphology and grain growth due to swift heavy ion irradiation at different fluencies. Grain size calculations obtained from sectional analysis of AFM images were compared with results obtained from Glancing Angle X-ray Diffraction (GAXRD) measurements using Scherrer’s formulae. Phase transformation due to irradiation was observed from Glancing Angle X-ray Diffraction (GAXRD) results. The prominent 2θ peaks observed in GAXRD spectrum are at 30.67°, 32.08°, 43.91°, 44.91° and 52.35° in the irradiated films.

  9. Physico-chemical properties of instant ogbono (Irvingia gabonensis) mix powder

    PubMed Central

    Bamidele, Oluwaseun P; Ojedokun, Omotayo S; Fasogbon, Beatrice M

    2015-01-01

    The main objective of the research is to develop a recipe of instant dry soup mix for easy preparation of ogbono soup. Instant ogbono mix powder was processed using common locally ingredients. Dika kernel powder, dried ugwu leaf, crayfish, stock fish, and a mixture of locust bean, onion, seasoning and Cameroon powder were formulated at different ratios to find the best acceptable ogbono mix powder. The samples were subjected to proximate, functional, vitamin, mineral, and sensory analyses. The formulated sample D with the highest ratio of crayfish and stock fish had the highest value of protein and carbohydrate (24.13 and 35.61%, respectively). The control sample (100% dika kernel powder) was low in moisture content (6.20%) but high in crude fat, other samples followed in this order (control > A > B > C > D) for crude fat. Ash, crude fiber, and carbohydrate showed a significant difference (P < 0.05) in all the samples. The functional properties of the sample showed a significant difference (P < 0.05) in all the samples with the control having the highest value for the water absorption, swelling capacity, and bulk density which may be due to the high crude fiber and low moisture content recorded for the control sample in the proximate analysis. The mineral content of all the samples were higher than the control with phosphorous having the highest value and iron the least value. Vitamin C was the main dominating vitamin in the sample followed by vitamin B2, vitamin A, and vitamin B3. The sensory evaluation revealed that 100% dika kernel powder gave a good attribute of the soup but with less nutritional composition, while some formulated samples showed a similar attribute with higher nutritional value. Sample A with the highest overall acceptability had the best attribute of ogbono soup. Instant ogbono mix powder has higher nutritional value and easy to cook. PMID:26288723

  10. Physico-chemical characteristics of microwave-dried wheat distillers grain with solubles.

    PubMed

    Mosqueda, Maria Rosario P; Tabil, Lope G; Meda, Venkatesh

    2013-01-01

    Laboratory-prepared samples of wheat distillers grain with solubles with varying condensed distillers solubles (CDS) content were dried under varying microwave power, and microwave convection settings using a domestic microwave oven to examine their effect on the chemical, structural, color, flow, compression, thermal, and frictional properties of the product, which is dried distillers grain with solubles (DDGS). As CDS level increased, protein and ash content increased, while fat and fiber content decreased in wheat-based DDGS. Fat content was also markedly effected by the microwave oven drying conditions. While CDS level, microwave power or microwave convection setting, and/or their interactions significantly effected a number of physical properties; results indicated that CDS level had a stronger influence compared to the other factors. DDGS samples with high CDS levels were significantly denser, finer but more differentiated in size, less flowable, and less dispersible. These also produced denser and stronger pellets.

  11. A comparative analysis on the physicochemical properties of tick-borne encephalitis virus envelope protein residues that affect its antigenic properties.

    PubMed

    Bukin, Yu S; Dzhioev, Yu P; Tkachev, S E; Kozlova, I V; Paramonov, A I; Ruzek, D; Qu, Z; Zlobin, V I

    2017-06-15

    This work is dedicated to the study of the variability of the main antigenic envelope protein E among different strains of tick-borne encephalitis virus at the level of physical and chemical properties of the amino acid residues. E protein variants were extracted from then NCBI database. Four amino acid residues properties in the polypeptide sequences were investigated: the average volume of the amino acid residue in the protein tertiary structure, the number of amino acid residue hydrogen bond donors, the charge of amino acid residue lateral radical and the dipole moment of the amino acid residue. These physico-chemical properties are involved in antigen-antibody interactions. As a result, 103 different variants of the antigenic determinants of the tick-borne encephalitis virus E protein were found, significantly different by physical and chemical properties of the amino acid residues in their structure. This means that some strains among the natural variants of tick-borne encephalitis virus can potentially escape the immune response induced by the standard vaccine. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Protein and Lipid Binding Parameters in Rainbow Trout (Oncorhynchus mykiss) Blood and Liver Fractions to Extrapolate from an in Vitro metabolic Degradation Assay to in Vivo Bioaccumulation Potential of Hydrophobic Organic Chemicals

    EPA Science Inventory

    Biotransformation reduces the extent to which environmental contaminants accumulate in fish and other aquatic biota. Unfortunately, the tendency for compounds to be metabolized is not easily predicted from physico-chemical properties (e.g., octanol:water partitioning) or an exam...

  13. Toxicokinetic Triage for Environmental Chemicals | Science ...

    EPA Pesticide Factsheets

    Toxicokinetic (TK) models are essential for linking administered doses to blood and tissue concentrations. In vitro-to-in vivo extrapolation (IVIVE) methods have been developed to determine TK from limited in vitro measurements and chemical structure-based property predictions, providing a less resource–intensive alternative to traditional in vivo TK approaches. High throughput TK (HTTK) methods use IVIVE to estimate doses that produce steady-state plasma concentrations equivalent to those producing biological activity in in vitro screening studies (e.g., ToxCast). In this study, the domain of applicability and assumptions of HTTK approaches were evaluated using both in vivo data and simulation analysis. Based on in vivo data for 87 chemicals, specific properties (e.g., in vitro HTTK data, physico-chemical descriptors, chemical structure, and predicted transporter affinities) were identified that correlate with poor HTTK predictive ability. For 350 xenobiotics with literature HTTK data, we then differentiated those xenobiotics for which HTTK approaches are likely to be sufficient, from those that may require additional data. For 272 chemicals we also developed a HT physiologically-based TK (HTPBTK) model that requires somewhat greater information than a steady-state model, but allows non-steady state dynamics and can predict chemical concentration time-courses for a variety of exposure scenarios, tissues, and species. We used this HTPBTK model to show that the

  14. Application of physico-chemical typing methods for the epidemiological analysis of Salmonella enteritidis strains of phage type 25/17.

    PubMed Central

    Seltmann, G.; Voigt, W.; Beer, W.

    1994-01-01

    Eighty-nine Salmonella enteritidis phage type 25/17 strains isolated from a localized outbreak in the German state Nordrhein-Westfalen (outbreak NWI) could not be further differentiated by biochemotyping and plasmid pattern analysis. They were submitted to a complex typing system consisting of modern physico-chemical analytical procedures. In lipopolysaccharide pattern analysis the strains proved to be homogeneous. In multilocus enzyme electrophoresis, outer membrane and whole cell protein pattern (WCPP) analysis, and Fourier-transform infrared (FT-IR) spectroscopy (increasing extent of differentiation in the given order) strains deviating from each basal pattern were found. The extent of correspondence in these deviations was satisfactory. Forty-six strains of the same sero- and phage type, however, obtained from different outbreaks, were additionally typed. The results obtained with them indicate that the data of the first group were not restricted to strains from outbreak NWI, but of general validity. It was found that both WCPP and FT-IR represent valuable methods for the sub-grouping of bacteria. Images Fig. 1 Fig. 2 Fig. 3 PMID:7995351

  15. Evaluation of physico-chemical characteristics of groundwater of Company Bagh pumping station and its six distribution points in old Jammu City, India.

    PubMed

    Khajuria, Meenakshi; Dutta, S P S

    2011-10-01

    To assess water quality of Company Bagh pumping station and its six distribution points, viz. Parade Ground, Mohalla Paharian, Purani Mandi, Malhotrian Street, Raghunathpura and Hari Market in old Jammu city of India, water parameters viz. temperature, turbidity, pH, electrical conductivity, free carbon dioxide, dissolved oxygen, biochemical oxygen demand, chemical oxygen demand, bicarbonate, chloride, calcium, magnesium, total hardness, sodium, potassium, sulphate, silicate, nitrate, phosphate, iron, copper, zinc, lead and chromium were analyzed during the years 2000-2001/2001-2002. There was alteration in water quality parameters in the distribution system caused by entry of sewage, soil, etc. through dislocation, cracks, valve regulators/turncock, defective joints, breakage, etc. in the pipes through crossing and deposits of biofilms inside the pipes, dead ends and their degradation through microbes. Comparison of water quality with National and International Standards revealed that all the parameters were within permissible limits of drinking water standards. Water Quality Index (WQI) of various physico-chemical parameters revealed that the water of Company Bagh pumping station and its six distribution points was fit for human consumption as it was found under the category of good (WQI < 50).

  16. Tectonic uplift and denudation rate influence soil chemical weathering intensity in a semi-arid environment, southeast Spain: physico-chemical and mineralogical evidence

    NASA Astrophysics Data System (ADS)

    Ameijeiras-Mariño, Yolanda; Opfergelt, Sophie; Schoonejans, Jérôme; Vanacker, Veerle; Sonnet, Philippe; Delmelle, Pierre

    2015-04-01

    quartz. Soil weathering intensity in each catchment was assessed previously [1] using three independent weathering indices: the Total Reserve in Bases (TRB = [Ca2+] + [Na+] + [K+] + [Mg2+]), soil Fed/Fet ratio (Fe-oxides/total Fe), and Cation Exchange Capacity (CEC). In agreement with the soil mineralogy, the physico-chemical analyses revealed increasing weathering intensity from CAB to EST. We postulate that the higher chemical weathering intensity in EST reflects lower denudation and uplift rates compared to CAB and therefore, soil chemical weathering intensity in this semi-arid environment may be controlled by denudation and uplift rates [1] Ameijeiras-Mariño et al, EGU 2014-9714-1

  17. Modification of surface characteristic and tribo-electric properties of polymers by DBD plasma in atmospheric air

    NASA Astrophysics Data System (ADS)

    Bekkara, Mohammed Fethi; Dascalescu, Lucien; Benmimoun, Youcef; Zeghloul, Thami; Tilmatine, Amar; Zouzou, Noureddine

    2018-01-01

    The aim of this paper is to quantify the effects of dielectric barrier discharge (DBD) exposure on the physico-chemical and tribo-electric properties of polymers. The study was conducted in atmospheric air on polypropylene, polyethylene and polyvinyl-chloride. These three types of polymers are widely used in industry. The polymers were characterized by means of an optical profilometer, a fourier-transform infrared (FTIR) spectrometer and an electric charge measurement system. The latter is composed of a Faraday pail connected to an electrometer. The profilometer analyses showed that the DBD plasma treatment has increased the surface roughness of the three polymers. FTIR revealed that oxygen atoms and polar groups were grafted on their surfaces, thereby conferring them a hydrophilic character. The short (2 sec) DBD plasma treatment has considerably improved the electrostatic charge acquired by the polymers during electrostatic tribo-charging, while longer exposures conferred the polymer anti-static properties and decreased its tribo-charging capability. The correlation between the results of the physico-chemical analyses and the tribo-electric behavior has been discussed.

  18. Effect of starter culture and turmeric on physico-chemical quality of carabeef pastirma.

    PubMed

    Maurya, P; Borpuzari, R N; Nath, D R; Nath, N C

    2010-01-01

    Carabeef samples were sliced, pressed, cured and divided into 6 groups. Starter cultures (Micrococcus varians M483 (MV), Staphylococcus carnosus (SC), Lactobacillus sakei (LS), M. varians M483+ Lb. sakei and Staph. carnosus + Lb. sakei) were inoculated at the dose of 10(6)-0(7)cfu/g and stored at 10 ± 1°C for 7 days. Uninoculated samples were maintained as control. Samples were then divided into 2 treatment groups. Samples of treatment 1 (T1) were smeared with a paste of turmeric followed by application of a thick layer of the paste of garlic, cumin, black pepper and red pepper whereas, samples of treatment 2 (T2) were applied with a thick layer of spices as above without turmeric. With the gradual fall in pH there was a reduction in water-holding capacity (WHC) of samples. The WHC of samples treated with SC+LS of T1 reduced to 6.3 ± 0.03 cm(2) and those inoculated with MV+LS of T2 to 6.2 ± 0.03 cm(2). The extract release volume (ERV) increased in all samples during storage. The least ERV of 11.7 and 11.6 ml were recorded in samples inoculated with MV of T1 and T2, respectively. The tyrosine (TV) and thiobarbituric acid (TBA) number of turmeric treated samples were significantly lower than non turmeric treated samples. The samples inoculated with LS had the least TV of 30.9 mg tyrosine/100 g of meat and TBA number of 0.06 mg manoladehyde/kg of meat. Samples inoculated with MV and LS of both T1 and T2 were better in physico-chemical qualities.

  19. Temporal variations in physico-chemical and microbiological characteristics of Mvudi river, South Africa.

    PubMed

    Edokpayi, Joshua N; Odiyo, John O; Msagati, Titus A M; Potgieter, Natasha

    2015-04-14

    Surface water has been a source of domestic water due to shortage of potable water in most rural areas. This study was carried out to evaluate the level of contamination of Mvudi River in South Africa by measuring turbidity, electrical conductivity (EC), pH, concentrations of nitrate, fluoride, chloride, and sulphate. E. coli and Enterococci were analysed using membrane filtration technique. Average pH, EC and Turbidity values were in the range of 7.2-7.7, 10.5-16.1 mS/m and 1.3-437.5 NTU, respectively. The mean concentrations of fluoride, chloride, nitrate and sulphate for both the wet and the dry seasons were 0.11 mg/L and 0.27 mg/L, 9.35 mg/L and 14.82 mg/L, 3.25 mg/L and 6.87 mg/L, 3.24 mg/L and 0.70 mg/L, respectively. E. coli and Enterococci counts for both the wet and the dry seasons were 4.81 × 103 (log = 3.68) and 5.22 × 103 (log = 3.72), 3.4 × 103 (log = 3.53) and 1.22 × 103 (log = 3.09), per 100 mL of water, respectively. The count of E. coli for both seasons did not vary significantly (p > 0.05) but Enterococci count varied significantly (p < 0.001). All the physico-chemical parameters obtained were within the recommended guidelines of the Department of Water Affairs and Forestry of South Africa and the World Health Organization for domestic and recreational water use for both seasons except turbidity and nitrates. The microbiological parameters exceeded the established guidelines. Mvudi River is contaminated with faecal organisms and should not be used for domestic purposes without proper treatment so as to mitigate the threat it poses to public health.

  20. Urban dew and rain in Paris, France: Occurrence and physico-chemical characteristics

    NASA Astrophysics Data System (ADS)

    Beysens, D.; Mongruel, A.; Acker, K.

    2017-06-01

    This paper summarizes one year (April 2011 to March 2012) measurements on planar condensing surfaces of dew and rain events and related physico-chemical characteristics in the urban environment of Paris (city center). Yearly collected water was 3.48 mm for dew (63 events) and 593 mm for rain (146 events). The latter value compares well with rain data (547 mm and 107 events) collected within 12 km at Paris-Orly airport. An estimation of dew yield based on meteo data gives 2.35 mm and 74 events, to be compared with 17.11 mm and 196 events at Paris-Orly. These differences highlight the large reduction in dew events and dew yields in an urban area as compared to a close rural-like area. This reduction is not due to a sky view reduction but to heat island that increases air temperature and decreases relative humidity. Analysis of dew (34) and rain (77) samples were done concerning pH, electrical conductivity (EC), major anions and cations as well as selected trace metals and other minor ions. Mean pH values are found similar for both, dew (6.5) and rain (6.1), rain being slightly more acidic than dew. The mean dew total ionic content (TIC 1.8 meq/l) and EC value (124 μS/cm) are about four times that of rain (0.45 meq/l; 35 μS/cm), meaning that total dissolved solids in dew is nearly four times that in rain. Sulfate and nitrate are the most acidifying components, calcium the most neutralizing constituent with ratio of mean total acidity/total alkalinity comparable for dew and rain ( 0.9). Sulfate and nitrate have mainly anthropogenic sources, whereas chloride and magnesium are mostly connected with marine air masses. Dew is a considerable factor of wet deposition of pollutants; dew and rain ion concentrations, however, meet the WHO requirements for drinking water.

  1. Evaluation of nutritional value, characteristics, functional properties of Cymodocea nodosa and its benefits on health diseases.

    PubMed

    Kolsi, Rihab Ben Abdallah; Salah, Hichem Ben; Saidi, Saber Abdelkader; Allouche, Noureddine; Belghith, Hafedh; Belghith, Karima

    2017-12-08

    Nutritional fact study has prime importance to make the species edible and commercially viable to the food consumers. This is the first report that indicates the chemical characterization, functional, antioxidant and antihypertensive properties of Cymodocea nodosa to evaluate its nutritional status. Physico-chemical determination was determined by colorimetric and spectroscopic analysis. The functional and texture properties were evaluated since a desirable texture should be retained. Bioactive substances were determined by liquid chromatography-high resolution electrospray ionization mass spectrometry HPLC-DAD-ESI/MS2 analysis. Health benefit of this plant was highlighting by the antioxidant and antihypertensive potentials. Results showed that the seagrass powder was characterized by a high content of fibers (56.4%), the fatty acids profile was dominated by the oleic acid, which represents about 62.0% of the total fatty acids and the functional properties proved important values of swelling capacity (6.71 ± 0.2) and water holding capacity (12.26 ± 0.25), that were comparable to those of some foodstuffs. Finally, the physico-chemical analysis shows the wealth in phenolic compounds, that could be explained by the high antioxidant and antihypertensive ability which was concentration dependent. The results from this study suggested that this marine plant could be utilized as a healthy food item for human consumption.

  2. Coatings with controlled porosity and chemical properties

    DOEpatents

    Frye, Gregory C.; Brinker, C. Jeffrey; Doughty, Daniel H.; Bein, Thomas; Moller, Karin

    1996-01-01

    Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  3. Coatings with controlled porosity and chemical properties

    DOEpatents

    Frye, Gregory C.; Brinker, C. Jeffrey; Doughty, Daniel H.; Bein, Thomas; Moller, Karin

    1993-01-01

    Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  4. Morphological and physical - chemical issues of metal nanostructures used in medical field

    NASA Astrophysics Data System (ADS)

    Duceac, L. D.; Velenciuc, N.; Dobre, E. C.

    2016-06-01

    In recent years applications of nanotechnology integrated into nanomedicine and bio-nanotechnology have attracted the attention of many researchers from different fields. Processes from chemical engineering especially nanostructured materials play an important role in medical and pharmaceutical development. Fundamental researches focused on finding simple, easily accomplished synthesis methods, morphological aspects and physico-chemical advanced characterization of nanomaterials. More over, by controlling synthesis conditions textural characteristics and physicochemical properties such as particle size, shape, surface, porosity, aggregation degree and composition can be tailored. Low cytotoxicity and antimicrobial effects of these nanostructured materials makes them be applied in medicine field. The major advantage of metal based nanoparticles is the use either for their antimicrobial properties or as drug-carriers having the potential to be active at low concentrations against infectious agents.

  5. Coatings with controlled porosity and chemical properties

    DOEpatents

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1993-07-06

    Coatings and sensors are described having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  6. ACToR Chemical Structure processing using Open Source ...

    EPA Pesticide Factsheets

    ACToR (Aggregated Computational Toxicology Resource) is a centralized database repository developed by the National Center for Computational Toxicology (NCCT) at the U.S. Environmental Protection Agency (EPA). Free and open source tools were used to compile toxicity data from over 1,950 public sources. ACToR contains chemical structure information and toxicological data for over 558,000 unique chemicals. The database primarily includes data from NCCT research programs, in vivo toxicity data from ToxRef, human exposure data from ExpoCast, high-throughput screening data from ToxCast and high quality chemical structure information from the EPA DSSTox program. The DSSTox database is a chemical structure inventory for the NCCT programs and currently has about 16,000 unique structures. Included are also data from PubChem, ChemSpider, USDA, FDA, NIH and several other public data sources. ACToR has been a resource to various international and national research groups. Most of our recent efforts on ACToR are focused on improving the structural identifiers and Physico-Chemical properties of the chemicals in the database. Organizing this huge collection of data and improving the chemical structure quality of the database has posed some major challenges. Workflows have been developed to process structures, calculate chemical properties and identify relationships between CAS numbers. The Structure processing workflow integrates web services (PubChem and NIH NCI Cactus) to d

  7. Physico-Chemical Properties and Phase Behaviour of Pyrrolidinium-Based Ionic Liquids

    PubMed Central

    Domańska, Urszula

    2010-01-01

    A review of the relevant literature on 1-alkyl-1-methylpyrrolidinium-based ionic liquids has been presented. The phase diagrams for the binary systems of {1-ethyl-1-methylpyrrolidinium trifluoromethanesulfonate (triflate) [EMPYR][CF3SO3] + water, or + 1-butanol} and for the binary systems of {1-propyl-1-methylpyrrolidinium trifluoromethanesulfonate (triflate) [PMPYR][CF3SO3] + water, or + an alcohol (1-butanol, 1-hexanol, 1-octanol, 1-decanol)} have been determined at atmospheric pressure using a dynamic method. The influence of alcohol chain length was discussed for the [PMPYR][CF3SO3]. A systematic decrease in the solubility was observed with an increase of the alkyl chain length of an alcohol. (Solid + liquid) phase equilibria with complete miscibility in the liquid phase region were observed for the systems involving water and alcohols. The solubility of the ionic liquid increases as the alkyl chain length on the pyrrolidinium cation increases. The correlation of the experimental data has been carried out using the Wilson, UNIQUAC and the NRTL equations. The phase diagrams reported here have been compared to the systems published earlier with the 1-alkyl-1-methylpyrrolidinium-based ionic liquids. The influence of the cation and anion on the phase behaviour has been discussed. The basic thermal properties of pure ILs, i.e., melting temperature and the enthalpy of fusion, the solid-solid phase transition temperature and enthalpy have been measured using a differential scanning microcalorimetry technique. PMID:20480044

  8. Tumor abolition and antitumor immunostimulation by physico-chemical tumor ablation.

    PubMed

    Keisari, Yona

    2017-01-01

    Tumor ablation by thermal, chemical and radiological sources has received substantial attention for the treatment of many localized malignancies. The primary goal of most ablation procedures is to eradicate all viable malignant cells within a designated target volume through the application of energy or chemicals. Methods such as radiotherapy, chemical and biological ablation, photodynamic therapy, cryoablation, high-temperature ablation (radiofrequency, microwave, laser, and ultrasound), and electric-based ablation have been developed for focal malignancies. In recent years a large volume of data emerged on the effect of in situ tumor destruction (ablation) on inflammatory and immune components resulting in systemic anti-tumor reactions. It is evident that in situ tumor ablation can involve tumor antigen release, cross presentation and the release of DAMPS and make the tumor its own cellular vaccine. Tumor tissue destruction by in situ ablation may stimulate antigen-specific cellular immunity engendered by an inflammatory milieu. Dendritic cells (DCs) attracted to this microenvironment, will undergo maturation after internalizing cellular debris containing tumor antigens and will be exposed to damage associated molecular pattern (DAMP). Mature DCs can mediate antigen-specific cellular immunity via presentation of processed antigens to T cells. The immunomodulatory properties, exhibited by in situ ablation could portend a future collaboration with immunotherapeutic measures. In this review are summarized and discuss the preclinical and clinical studies pertinent to the phenomena of stimulation of specific anti-tumor immunity by various ablation modalities and the immunology related measures used to boost this response.

  9. [Studies on chemical constituents of the seeds of Allium cepa].

    PubMed

    Yuan, Ling; Ji, Teng-Fei; Wang, Ai-Guo; Yang, Jian-Bo; Su, Ya-Lun

    2008-02-01

    To study the chemical constituents from the seeds of Allium cepa L., the constituents of the seeds of Allium cepa L. To isolate and purify by silica gel, macroporous resin HP-20, Sephadex LH-20, RP-18 column. Seven compounds were isolated from the EtOH extract of the seeds of Allium cepa., their structures were elucidated by physico-chemical properties and spectroscopic analysis as tianshic acid (I), N-trans-feruloyl tyramine (II), beta-sitosterol-3 beta-glucopyranoside-6'-palmitate (III), sitosterol (IV), daucosterol (V), tryptophane (VI), adenine riboside (VI). Compounds V-VIII are obtained from this plant for the first time, compounds I-IV are isolated from the genus Allium for the first time.

  10. Coatings with controlled porosity and chemical properties

    DOEpatents

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1996-12-31

    Coatings and sensors are disclosed having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided. 7 figs.

  11. Experimental Extinguishment of Fires by Blast.

    DTIC Science & Technology

    1982-05-01

    Icopmy DTIC TAB I Unan-nounced Approved by: Justiri cat i O__ : R. C. Phillips, Director Chemical Engineering Laboratory D1str1i.:: to,/ G. R...SRI study. Of interest this year has been the role played by fuel type--notably, the Dertinent physico- chemical properties--compared with the...perturbing geometries on fire behavior. Present tests on common liquid fuels representing various combinations of physico- chemical properties demonstrate

  12. Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite

    NASA Astrophysics Data System (ADS)

    Paluszkiewicz, Czesława; Ślósarczyk, Anna; Pijocha, Dawid; Sitarz, Maciej; Bućko, Mirosław; Zima, Aneta; Chróścicka, Anna; Lewandowska-Szumieł, Małgorzata

    2010-07-01

    Hydroxyapatite (HA) - Ca 10(PO 4) 6(OH) 2 is a basic inorganic model component of hard biological tissues, such as bones and teeth. The significant property of HA is its ability to exchange Ca 2+ ions, which influences crystallinity, physico-chemical and biological properties of modified hydroxyapatite materials. In this work, FTIR, Raman spectroscopy, XRD, SEM and EDS techniques were used to determine thermal stability, chemical and phase composition of Mn containing hydroxyapatite (MnHA). Described methods confirmed thermal decomposition and phase transformation of MnHA to αTCP, βTCP and formation of Mn 3O 4 depending on sintering temperature and manganese content. In vitro biological evaluation of Mn-modified HA ceramics was also performed using human osteoblast cells.

  13. Physico-chemical characteristics, nutrient composition and consumer acceptability of wheat varieties grown under organic and inorganic farming conditions.

    PubMed

    Nitika; Punia, Darshan; Khetarpaul, N

    2008-05-01

    The aim of the investigation was to analyse physico-chemical characteristics, nutrient composition and consumer acceptability of wheat varieties grown under organic and inorganic farming conditions. The seeds of five varieties of wheat (C-306, WH-283, WH-711, WH-896 and WH-912) grown under organic and inorganic farming conditions were ground in a Junior Mill to pass through 60-mesh sieves and were stored in air-tight containers until use. Standard methods were used to estimate the physico-chemical characteristics and nutrient composition. Consumer acceptability was studied by carrying out the organoleptic evaluation of wheat chapatis, a common item in diets of the Indian population. The results of study revealed that inorganically grown wheat varieties had significantly higher 1,000-grain weight and more grain hardness as compared with organically grown wheat varieties, and a non-significant difference was observed in their gluten content, water absorption capacity and hydration capacity. On average, wheat varieties grown under inorganic conditions contained significantly higher protein and crude fibre content as compared with varieties grown under organic conditions. WH-711 variety had maximum protein content. Protein fractions (i.e. albumin, globulin, prolamin and glutelin) were significantly higher in varieties grown under inorganic conditions than those of varieties grown under organic conditions. The variety WH-711 had the highest total soluble sugars and variety WH-912 had the highest starch content. Phytic acid and polyphenol contents were significantly higher in inorganically grown wheat varieties as compared with organically grown wheat varieties. The wheat varieties grown under organic conditions had significantly higher protein and starch digestibility than the wheat grown under inorganic conditions. The data revealed that there were significant differences in total calcium and phosphorus contents of wheat varieties grown under organic and inorganic

  14. Preparation, characterization and properties of polymer-layered silicate nanocomposites

    NASA Astrophysics Data System (ADS)

    Fonseca, Claudia Alencar

    Nanocomposites are a relatively new class of composites, that in the polymer area typically consist of particle-filled polymers where at least one dimension of the dispersed particles is in the nanometer range. Amongst all potential nanocomposite precursors, those based on clay and layered silicates have been more widely investigated. These nanocomposites exhibit markedly improved mechanical, thermal, optical and physico-chemical properties when compared to conventional (microscale) composites. In the present work, properties of nanocomposites of Ethylene Methacrylic Acid copolymers and organically modified Montmorillonite formed from the melt was investigated. Nanocomposites of Poly(vinyl alcohol) and Montmorillonite formed from solution was also studied.

  15. Prediction and mechanism elucidation of analyte retention on phospholipid stationary phases (IAM-HPLC) by in silico calculated physico-chemical descriptors.

    PubMed

    Russo, Giacomo; Grumetto, Lucia; Barbato, Francesco; Vistoli, Giulio; Pedretti, Alessandro

    2017-03-01

    The present study proposes a method for an in silico calculation of phospholipophilicity. Phospholipophilicity is intended as the measure of analyte affinity for phospholipids; it is currently assessed by HPLC measures of analyte retention on phosphatidylcholine-like stationary phases (IAM - Immobilized Artificial Membrane) resulting in log k W IAM values. Due to the amphipathic and electrically charged nature of phospholipids, retention on these stationary phases results from complex mechanisms, being affected not only by lipophilicity (as measured by n-octanol/aqueous phase partition coefficients, log P) but also by the occurrence of polar and/or electrostatic intermolecular interaction forces. Differently from log P, to date no method has been proposed for in silico calculation of log k W IAM . The study is aimed both at shedding new light into the retention mechanism on IAM stationary phases and at offering a high-throughput method to achieve such values. A wide set of physico-chemical and topological properties were taken into account, yielding a robust final model including four in silico calculated parameters (lipophilicity, hydrophilic/lipophilic balance, molecular size, and molecule flexibility). The here presented model was based on the analysis of 205 experimentally determined values, taken from the literature and measured by a single research group to minimize the interlaboratory variability; such model is able to predict phospholipophilicity values on both the two IAM stationary phases to date marketed, i.e. IAM.PC.MG and IAM.PC.DD2, with a fairly good degree (r 2 =0.85) of accuracy. The present work allowed the development of a free on-line service aimed at calculating log k W IAM values of any molecule included in the PubChem database, which is freely available at http://nova.disfarm.unimi.it/logkwiam.htm. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. CET89 - CHEMICAL EQUILIBRIUM WITH TRANSPORT PROPERTIES, 1989

    NASA Technical Reports Server (NTRS)

    Mcbride, B.

    1994-01-01

    Scientists and engineers need chemical equilibrium composition data to calculate the theoretical thermodynamic properties of a chemical system. This information is essential in the design and analysis of equipment such as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical processing equipment. The substantial amount of numerical computation required to obtain equilibrium compositions and transport properties for complex chemical systems led scientists at NASA's Lewis Research Center to develop CET89, a program designed to calculate the thermodynamic and transport properties of these systems. CET89 is a general program which will calculate chemical equilibrium compositions and mixture properties for any chemical system with available thermodynamic data. Generally, mixtures may include condensed and gaseous products. CET89 performs the following operations: it 1) obtains chemical equilibrium compositions for assigned thermodynamic states, 2) calculates dilute-gas transport properties of complex chemical mixtures, 3) obtains Chapman-Jouguet detonation properties for gaseous species, 4) calculates incident and reflected shock properties in terms of assigned velocities, and 5) calculates theoretical rocket performance for both equilibrium and frozen compositions during expansion. The rocket performance function allows the option of assuming either a finite area or an infinite area combustor. CET89 accommodates problems involving up to 24 reactants, 20 elements, and 600 products (400 of which may be condensed). The program includes a library of thermodynamic and transport properties in the form of least squares coefficients for possible reaction products. It includes thermodynamic data for over 1300 gaseous and condensed species and transport data for 151 gases. The subroutines UTHERM and UTRAN convert thermodynamic and transport data to unformatted form for faster processing. The program conforms to the FORTRAN 77 standard, except for

  17. Polyphenols content of spent coffee grounds subjected to physico-chemical pretreatments influences lignocellulolytic enzymes production by Bacillus sp. R2.

    PubMed

    Khelil, Omar; Choubane, Slimane; Cheba, Ben Amar

    2016-07-01

    The objective of this study was to investigate the impact of polyphenols content changes issued after physico-chemical treatments of spent coffee grounds on lignocellulolytic enzymes production by Bacillus sp. R2. Total polyphenols of the collected substrates were extracted with water under autoclaving conditions. Results showed that polyphenols content of spent coffee grounds decreased with continued treatments. Untreated spent coffee grounds were the best substrate for cellulase and pectinase (1.33±0.06μ/ml and 0.32±0.02μ/ml respectively). A strong positive correlation was noticed between polyphenols content and cellulase and pectinase activities. However, xylanase and peroxidase correlated moderately with polyphenols content and their highest activities were registered with spent coffee grounds treated with boiling water and 1% EDTA (0.31±0.002μ/ml and 15.56±0.56μ/ml respectively). The obtained results indicate that polyphenols content of the pretreated substrates influences the production of lignocellulolytic enzymes by Bacillus sp. R2. Copyright © 2016. Published by Elsevier Ltd.

  18. Chemical properties of peat used in balneology

    NASA Astrophysics Data System (ADS)

    Szajdak, L.; Hładoń, T.

    2009-04-01

    The physiological activity of peats is observed in human peat-bath therapy and in the promotion of growth in some plants. Balneological peat as an ecologically clean and natural substance is perceived as being more 'human friendly' than synthetic compounds. Poland has a long tradition of using balneological peat for therapeutic purposes. Balneological peat reveals a physical effect by altering temperature and biochemical effects through biologically active substances. It is mainly used for the treatment of rheumatic diseases that are quite common in Poland. Peat represents natural product. Physico-chemical properties of peat in particular surface-active, sorption and ion exchanges, defining their biological function, depend mainly on the chemical composition and molecular structure of humic substances representing the major constituent of organic soil (peat). The carbon of organic matter of peats is composed of 10 to 20% carbohydrates, primarily of microbial origin; 20% nitrogen-containing constituents, such as amino acids and amino sugars; 10 to 20% aliphatic fatty acids, alkanes, etc.; with the rest of carbon being aromatic. For balneology peat should be highly decomposed (preferably H8), natural and clean. The content of humic acids should exceed 20% of dry weight, ash content will be less than 15 15% of dry weight, sulphur content less than 0.3% of dry weight and the amount of water more than 85%. It will not contain harmful bacteria and heavy metals. Humic substances (HS) of peat are known to be macromolecular polydisperse biphyllic systems including both hydrophobic domains (saturated hydrocarbon chains, aromatic structural units) and hydrophilic functional groups, i. e having amphiphilic character. Amphiphilic properties of FA are responsible for their solubility, viscosity, conformation, surfactant-like character and a variety of physicochemical properties of considerable biologically practical significance. The chemical composition of peats depends

  19. Graphene oxide decorated electrospun gelatin nanofibers: Fabrication, properties and applications.

    PubMed

    Jalaja, K; Sreehari, V S; Kumar, P R Anil; Nirmala, R James

    2016-07-01

    Gelatin nanofiber fabricated by electrospinning process is found to mimic the complex structural and functional properties of natural extracellular matrix for tissue regeneration. In order to improve the physico-chemical and biological properties of the nanofibers, graphene oxide is incorporated in the gelatin to form graphene oxide decorated gelatin nanofibers. The current research effort is focussed on the fabrication and evaluation of physico-chemical and biological properties of graphene oxide-gelatin composite nanofibers. The presence of graphene oxide in the nanofibers was established by transmission electron microscopy (TEM). We report the effect of incorporation of graphene oxide on the mechanical, thermal and biological performance of the gelatin nanofibers. The tensile strength of gelatin nanofibers was increased from 8.29±0.53MPa to 21±2.03MPa after the incorporation of GO. In order to improve the water resistance of nanofibers, natural based cross-linking agent, namely, dextran aldehyde was employed. The cross-linked composite nanofibers showed further increase in the tensile strength up to 56.4±2.03MPa. Graphene oxide incorporated gelatin nanofibers are evaluated for bacterial activity against gram positive (Staphylococcus aureus) and gram negative (Escherichia coli) bacteria and cyto compatibility using mouse fibroblast cells (L-929 cells). The results indicate that the graphene oxide incorporated gelatin nanofibers do not prevent bacterial growth, nevertheless support the L-929 cell adhesion and proliferation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Changes in the Treatment of Some Physico-Chemical Properties of Cassava Mill Effluents Using Saccharomyces cerevisiae.

    PubMed

    Izah, Sylvester Chibueze; Bassey, Sunday Etim; Ohimain, Elijah Ige

    2017-10-16

    Cassava is majorly processed into gari by smallholders in Southern Nigeria. During processing, large volume of effluents are produced in the pressing stage of cassava tuber processing. The cassava mill effluents are discharged into the soil directly and it drain into nearby pits, surface water, and canals without treatment. Cassava mill effluents is known to alter the receiving soil and water characteristics and affects the biota in such environments, such as fishes (water), domestic animals, and vegetation (soil). This study investigated the potential of Saccharomyces cerevisiae to be used for the treatment of some physicochemical properties of cassava mill effluents. S. cerevisiae was isolated from palm wine and identified based on conventional microbiological techniques, viz. morphological, cultural, and physiological/biochemical characteristics. The S. cerevisiae was inoculated into sterile cassava mill effluents and incubated for 15 days. Triplicate samples were withdrawn from the setup after the fifth day of treatment. Portable equipment was used to analyze the in-situ parameters, viz. total dissolved solids (TDS), pH, dissolved oxygen (DO), conductivity, salinity, and turbidity. Anions (nitrate, sulphate, and phosphate) and chemical oxygen demand (COD) were analyzed using spectrophotometric and open reflux methods respectively. Results showed a decline of 37.62%, 22.96%, 29.63%, 20.49%, 21.44%, 1.70%, 53.48%, 68.00%, 100%, and 74.48% in pH, conductivity, DO, TDS, salinity, sulphate, nitrate, phosphate, and COD levels respectively, and elevation of 17.17% by turbidity. The study showed that S. cerevisiae could be used for the treatment of cassava mill effluents prior to being discharged into the environment so as to reduce the pollution or contamination and toxicity levels.

  1. An in-depth analysis of the physico-mechanical properties imparted by agricultural fibers and food processing residues in polypropylene biocomposites

    NASA Astrophysics Data System (ADS)

    Murdy, Rachel Campbell; Mak, Michelle; Misra, Manjusri; Mohanty, Amar K.

    2015-05-01

    The use of agricultural and food processing residues as potential reinforcements in plastics has been extensively studied. However, there is a large variation in the mechanical performance of agricultural fiber-based biocomposites due to different processing materials and parameters. An in-depth comparison of the resulting effect of the agricultural filler on the matrix is often not possible given the discrepancy in processing conditions. This study seeks to determine the intrinsic properties of agricultural fibers and food processing residues for their use in polypropylene biocomposites based on a standardization of experimental design. The effect of 25wt% loading of miscanthus, fall-and spring-harvest switchgrass, wheat straw, oat hull, soy hull, soy stalk, hemp and flax on the physico-mechanical properties of polypropylene biocomposites was investigated. The addition of fiber led to an improvement in flexural strength, flexural modulus, and tensile modulus, and a general decrease in tensile strength at yield, elongation at break and Izod impact strength. Scanning electron microscopy highlighted the interfacial adhesion, orientation and distribution of the fibers within the matrix, confirming that fiber length and dispersion within the matrix are positively correlated with mechanical properties. The crystallization of the polypropylene phase and a compositional analysis of the agricultural fibers and processing residues were also compared to offer insight into the effect of the filler's intrinsic properties on the resulting material performance.

  2. Effect of incorporation of antioxidants on the chemical, rheological, and sensory properties of probiotic petit suisse cheese.

    PubMed

    Pereira, E P R; Cavalcanti, R N; Esmerino, E A; Silva, R; Guerreiro, L R M; Cunha, R L; Bolini, H M A; Meireles, M A; Faria, J A F; Cruz, A G

    2016-03-01

    This work investigated the effect of the addition of different antioxidants (ascorbic acid, glucose oxidase, cysteine, and jabuticaba extract) on the rheological and sensorial properties of the probiotic petit suisse cheese. Absence of influence of the antioxidants at the physico-chemical characteristics of the petit suisse cheese was observed. Overall, the petit suisse cheeses presented weak gel characteristics and behaved as pseudoplastic material, except for control. All treatments exhibited a thixotropic non-Newtonian behavior; however, higher hysteresis area was obtained for control sample, which indicates that antioxidants incorporated to petit suisse had a protective effect on the typical thixotropic behavior of the Quark gel. The commercial sample presented higher scores for all aspects by consumers, whereas the probiotic petit suisse samples presented opposite behavior. Projective mapping was able to generate a vocabulary where the sample containing jabuticaba skin extract obtained by supercritical extraction was characterized by the panelists as presenting grape flavor and purple color. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Toxicokinetic Triage for Environmental Chemicals.

    PubMed

    Wambaugh, John F; Wetmore, Barbara A; Pearce, Robert; Strope, Cory; Goldsmith, Rocky; Sluka, James P; Sedykh, Alexander; Tropsha, Alex; Bosgra, Sieto; Shah, Imran; Judson, Richard; Thomas, Russell S; Setzer, R Woodrow

    2015-09-01

    Toxicokinetic (TK) models link administered doses to plasma, blood, and tissue concentrations. High-throughput TK (HTTK) performs in vitro to in vivo extrapolation to predict TK from rapid in vitro measurements and chemical structure-based properties. A significant toxicological application of HTTK has been "reverse dosimetry," in which bioactive concentrations from in vitro screening studies are converted into in vivo doses (mg/kg BW/day). These doses are predicted to produce steady-state plasma concentrations that are equivalent to in vitro bioactive concentrations. In this study, we evaluate the impact of the approximations and assumptions necessary for reverse dosimetry and develop methods to determine whether HTTK tools are appropriate or may lead to false conclusions for a particular chemical. Based on literature in vivo data for 87 chemicals, we identified specific properties (eg, in vitro HTTK data, physico-chemical descriptors, and predicted transporter affinities) that correlate with poor HTTK predictive ability. For 271 chemicals we developed a generic HT physiologically based TK (HTPBTK) model that predicts non-steady-state chemical concentration time-courses for a variety of exposure scenarios. We used this HTPBTK model to find that assumptions previously used for reverse dosimetry are usually appropriate, except most notably for highly bioaccumulative compounds. For the thousands of man-made chemicals in the environment that currently have no TK data, we propose a 4-element framework for chemical TK triage that can group chemicals into 7 different categories associated with varying levels of confidence in HTTK predictions. For 349 chemicals with literature HTTK data, we differentiated those chemicals for which HTTK approaches are likely to be sufficient, from those that may require additional data. Published by Oxford University Press on behalf of Society of Toxicology 2015. This work is written by US Government employees and is in the public

  4. Toxicokinetic Triage for Environmental Chemicals

    PubMed Central

    Wambaugh, John F.; Wetmore, Barbara A.; Pearce, Robert; Strope, Cory; Goldsmith, Rocky; Sluka, James P.; Sedykh, Alexander; Tropsha, Alex; Bosgra, Sieto; Shah, Imran; Judson, Richard; Thomas, Russell S.; Woodrow Setzer, R.

    2015-01-01

    Toxicokinetic (TK) models link administered doses to plasma, blood, and tissue concentrations. High-throughput TK (HTTK) performs in vitro to in vivo extrapolation to predict TK from rapid in vitro measurements and chemical structure-based properties. A significant toxicological application of HTTK has been “reverse dosimetry,” in which bioactive concentrations from in vitro screening studies are converted into in vivo doses (mg/kg BW/day). These doses are predicted to produce steady-state plasma concentrations that are equivalent to in vitro bioactive concentrations. In this study, we evaluate the impact of the approximations and assumptions necessary for reverse dosimetry and develop methods to determine whether HTTK tools are appropriate or may lead to false conclusions for a particular chemical. Based on literature in vivo data for 87 chemicals, we identified specific properties (eg, in vitro HTTK data, physico-chemical descriptors, and predicted transporter affinities) that correlate with poor HTTK predictive ability. For 271 chemicals we developed a generic HT physiologically based TK (HTPBTK) model that predicts non-steady-state chemical concentration time-courses for a variety of exposure scenarios. We used this HTPBTK model to find that assumptions previously used for reverse dosimetry are usually appropriate, except most notably for highly bioaccumulative compounds. For the thousands of man-made chemicals in the environment that currently have no TK data, we propose a 4-element framework for chemical TK triage that can group chemicals into 7 different categories associated with varying levels of confidence in HTTK predictions. For 349 chemicals with literature HTTK data, we differentiated those chemicals for which HTTK approaches are likely to be sufficient, from those that may require additional data. PMID:26085347

  5. Physical-chemical property based sequence motifs and methods regarding same

    DOEpatents

    Braun, Werner [Friendswood, TX; Mathura, Venkatarajan S [Sarasota, FL; Schein, Catherine H [Friendswood, TX

    2008-09-09

    A data analysis system, program, and/or method, e.g., a data mining/data exploration method, using physical-chemical property motifs. For example, a sequence database may be searched for identifying segments thereof having physical-chemical properties similar to the physical-chemical property motifs.

  6. A chemical–biological similarity-based grouping of complex substances as a prototype approach for evaluating chemical alternatives† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6gc01147k Click here for additional data file.

    PubMed Central

    Grimm, Fabian A.; Iwata, Yasuhiro; Sirenko, Oksana; Chappell, Grace A.; Wright, Fred A.; Reif, David M.; Braisted, John; Gerhold, David L.; Yeakley, Joanne M.; Shepard, Peter; Seligmann, Bruce; Roy, Tim; Boogaard, Peter J.; Ketelslegers, Hans B.; Rohde, Arlean M.

    2016-01-01

    Comparative assessment of potential human health impacts is a critical step in evaluating both chemical alternatives and existing products on the market. Most alternatives assessments are conducted on a chemical-by-chemical basis and it is seldom acknowledged that humans are exposed to complex products, not individual substances. Indeed, substances of Unknown or Variable composition, Complex reaction products, and Biological materials (UVCBs) are ubiquitous in commerce yet they present a major challenge for registration and health assessments. Here, we present a comprehensive experimental and computational approach to categorize UVCBs according to global similarities in their bioactivity using a suite of in vitro models. We used petroleum substances, an important group of UVCBs which are grouped for regulatory approval and read-across primarily on physico-chemical properties and the manufacturing process, and only partially based on toxicity data, as a case study. We exposed induced pluripotent stem cell-derived cardiomyocytes and hepatocytes to DMSO-soluble extracts of 21 petroleum substances from five product groups. Concentration-response data from high-content imaging in cardiomyocytes and hepatocytes, as well as targeted high-throughput transcriptomic analysis of the hepatocytes, revealed distinct groups of petroleum substances. Data integration showed that bioactivity profiling affords clustering of petroleum substances in a manner similar to the manufacturing process-based categories. Moreover, we observed a high degree of correlation between bioactivity profiles and physico-chemical properties, as well as improved groupings when chemical and biological data were combined. Altogether, we demonstrate how novel in vitro screening approaches can be effectively utilized in combination with physico-chemical characteristics to group complex substances and enable read-across. This approach allows for rapid and scientifically-informed evaluation of health impacts of

  7. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...

  8. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...

  9. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...

  10. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...

  11. 40 CFR 716.50 - Reporting physical and chemical properties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reporting physical and chemical... SUBSTANCES CONTROL ACT HEALTH AND SAFETY DATA REPORTING General Provisions § 716.50 Reporting physical and chemical properties. Studies of physical and chemical properties must be reported under this subpart if...

  12. Physico-chemical properties of Moringa oleifera seed oil enzymatically interesterified with palm stearin and palm kernel oil and its potential application in food.

    PubMed

    Dollah, Sarafhana; Abdulkarim, Sabo Mohammed; Ahmad, Siti Hajar; Khoramnia, Anahita; Mohd Ghazali, Hasanah

    2016-08-01

    High oleic acid Moringa oleifera seed oil (MoO) has been rarely applied in food products due to the low melting point and lack of plasticity. Enzymatic interesterification (EIE) of MoO with palm stearin (PS) and palm kernel oil (PKO) could yield harder fat stocks that may impart desirable nutritional and physical properties. Blends of MoO and PS or PKO were examined for triacylglycerol (TAG) composition, thermal properties and solid fat content (SFC). EIE caused rearrangement of TAGs, reduction of U3 and increase of U2 S in MoO/PS blends while reduction of U3 and S3 following increase of S2 U and U2 S in MoO/PKO blends (U, unsaturated and S, saturated fatty acids). SFC measurements revealed a wide range of plasticity, enhancements of spreadability, mouthfeel and cooling effect for interesterified MoO/PS, indicating the possible application of these blends in margarines. However, interesterified MoO/PKO was not suitable in margarine application, while ice-cream may be formulated from these blends. A soft margarine formulated from MoO/PS 70:30 revealed high oxidative stability during 8 weeks storage with no significant changes in peroxide and p-anisidine values. EIE of fats with MoO allowed nutritional and oxidative stable plastic fats to be obtained, suitable for possible use in industrial food applications. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  13. Physico-chemical properties of aqueous drug solutions: From the basic thermodynamics to the advanced experimental and simulation results.

    PubMed

    Bellich, Barbara; Gamini, Amelia; Brady, John W; Cesàro, Attilio

    2018-04-05

    The physical chemical properties of aqueous solutions of model compounds are illustrated in relation to hydration and solubility issues by using three perspectives: thermodynamic, spectroscopic and molecular dynamics simulations. The thermodynamic survey of the fundamental backgrounds of concentration dependence and experimental solubility results show some peculiar behavior of aqueous solutions with several types of similar solutes. Secondly, the use of a variety of experimental spectroscopic devices, operating under different experimental conditions of dimension and frequency, has produced a large amount of structural and dynamic data on aqueous solutions showing the richness of the information produced, depending on where and how the experiment is carried out. Finally, the use of molecular dynamics computational work is presented to highlight how the different types of solute functional groups and surface topologies organize adjacent water molecules differently. The highly valuable contribution of computer simulation studies in providing molecular explanations for experimental deductions, either of a thermodynamic or spectroscopic nature, is shown to have changed the current knowledge of many aqueous solution processes. While this paper is intended to provide a collective view on the latest literature results, still the presentation aims at a tutorial explanation of the potentials of the three methodologies in the field of aqueous solutions of pharmaceutical molecules. Copyright © 2018. Published by Elsevier B.V.

  14. Kinetic bottlenecks to chemical exchange rates for deep-sea animals - Part 1: Oxygen

    NASA Astrophysics Data System (ADS)

    Hofmann, A. F.; Peltzer, E. T.; Brewer, P. G.

    2012-10-01

    Ocean warming will reduce dissolved oxygen concentrations which can pose challenges to marine life. Oxygen limits are traditionally reported simply as a static concentration thresholds with no temperature, pressure or flow rate dependency. Here we treat the oceanic oxygen supply potential for heterotrophic consumption as a dynamic molecular exchange problem analogous to familiar gas exchange processes at the sea surface. A combination of the purely physico-chemical oceanic properties temperature, hydrostatic pressure, and oxygen concentration defines the ability of the ocean to supply oxygen to any given animal. This general oceanic oxygen supply potential is modulated by animal specific properties such as the diffusive boundary layer thickness to define and limit maximal oxygen supply rates. Here we combine all these properties into formal, mechanistic equations defining novel oceanic properties that subsume various relevant classical oceanographic parameters to better visualize, map, comprehend, and predict the impact of ocean deoxygenation on aerobic life. By explicitly including temperature and hydrostatic pressure into our quantities, various ocean regions ranging from the cold deep-sea to warm, coastal seas can be compared. We define purely physico-chemical quantities to describe the oceanic oxygen supply potential, but also quantities that contain organism-specific properties which in a most generalized way describe general concepts and dependencies. We apply these novel quantities to example oceanic profiles around the world and find that temperature and pressure dependencies of diffusion and partial pressure create zones of greatest physical constriction on oxygen supply typically at around 1000 m depth, which coincides with oxygen concentration minimum zones. In these zones, which comprise the bulk of the world ocean, ocean warming and deoxygenation have a clear negative effect for aerobic life. In some shallow and warm waters the enhanced diffusion and

  15. Effect of different binders on the physico-chemical, textural, histological, and sensory qualities of retort pouched buffalo meat nuggets.

    PubMed

    Devadason, I Prince; Anjaneyulu, A S R; Babji, Y

    2010-01-01

    The functional properties of 4 binders, namely corn starch, wheat semolina, wheat flour, and tapioca starches, were evaluated to improve the quality of buffalo meat nuggets processed in retort pouches at F(0) 12.13. Incorporation of corn starch in buffalo meat nuggets produced more stable emulsion than other binders used. Product yield, drip loss, and pH did not vary significantly between the products with different binders. Shear force value was significantly higher for product with corn starch (0.42 +/- 0.0 Kg/cm(3)) followed by refined wheat flour (0.36 +/- 0.010 Kg/cm(3)), tapioca starch (0.32 +/- 0.010 Kg/cm(3)), and wheat semolina (0.32 +/- 0.010 Kg/cm(3)). Type of binder used had no significant effect on frying loss, moisture, and protein content of the product. However, fat content was higher in products with corn starch when compared to products with other binders. Texture profile indicated that products made with corn starch (22.17 +/- 2.55 N) and refined wheat flour (21.50 +/- 0.75 N) contributed firmer texture to the product. Corn starch contributed greater chewiness (83.8 +/- 12.51) to the products resulting in higher sensory scores for texture and overall acceptability. Products containing corn starch showed higher sensory scores for all attributes in comparison to products with other binders. Panelists preferred products containing different binders in the order of corn starch (7.23 +/- 0.09) > refined wheat flour (6.48 +/- 0.13) > tapioca starch (6.45 +/- 0.14) > wheat semolina (6.35 +/- 0.13) based on sensory scores. Histological studies indicated that products with corn starch showed dense protein matrix, uniform fat globules, and less number of vacuoles when compared to products made with other binders. The results indicated that corn flour is the better cereal binder for developing buffalo meat nuggets when compared to all other binders based on physico-chemical and sensory attributes.

  16. Exploring functional relationships between post-fire soil water repellency, soil structure and physico-chemical properties

    NASA Astrophysics Data System (ADS)

    Quarfeld, Jamie; Brook, Anna; Keestra, Saskia; Wittenberg, Lea

    2016-04-01

    Soil water repellency (WR) and aggregate stability (AS) are two soil properties that are typically modified after burning and impose significant influence on subsequent hydrological and geomorphological dynamics. The response of AS and soil WR to fire depends upon how fire has influenced other key soil properties (e.g. soil OM, mineralogy). Meanwhile, routine thinning of trees and woody vegetation may alter soil properties (e.g. structure and porosity, wettability) by use of heavy machinery and species selection. The study area is situated along a north-facing slope of Mount Carmel national park (Israel). The selected sites are presented as a continuum of management intensity and fire histories. To date, the natural baseline of soil WR has yet to be thoroughly assessed and must be investigated alongside associated soil aggregating parameters in order to understand its overall impact. This study examines (i) the natural baseline of soil WR and physical properties compared to those of disturbed sites in the immediate (controlled burn) and long-term (10-years), and (ii) the interactions of soil properties with different control factors (management, surface cover, seasonal-temporal, burn temperature, soil organic carbon (OC) and mineralogy) in Mediterranean calcareous soils. Analysis of surface soil samples before and after destruction of WR by heating (200-600°C) was implemented using a combination of traditional methods and infrared (IR) spectroscopy. Management and surface cover type conditioned the wettability, soil structure and porosity of soils in the field, although this largely did not affect the heat-induced changes observed in the lab. A positive correlation was observed along an increasing temperature gradient, with relative maxima of MWD and BD reached by most soils at the threshold of 400-500°C. Preliminary analyses of soil OC (MIR) and mineralogical composition (VIS-NIR) support existing research regarding: (i) the importance of soil OC quality and

  17. Utilization of wastewater originated from naturally fermented virgin coconut oil manufacturing process for bioextract production: physico-chemical and microbial evolution.

    PubMed

    Tripetchkul, Sudarut; Kusuwanwichid, Sasithorn; Koonsrisuk, Songpon; Akeprathumchai, Saengchai

    2010-08-01

    Production of virgin coconut oil via natural fermentation has led to large amount of wastes being generated, i.e., coconut pulp and wastewater containing coconut crème. Objective of this study is to gain more insight into the feasibility of utilization of such wastes as raw materials together with several types of wastes such as fish waste and/or pineapple peel for bioextract production. Chemical, physico-chemical and biological changes including phytotoxicity of the fermented mixture were closely monitored. Physical observation suggested that fermentation of bioextract obtained with fish waste appeared to be complete within the first month of fermentation while bioextract obtained using pineapple waste seemed to be complete after 8 months post-fermentation. Fermentation broth is of blackish color with alcoholic as well as acidic odour with no gas bubble and/or yeast film present on top of the surface. During the whole fermentation interval, several attributes of both bioextracts, e.g., pH, chemical oxygen demand (COD) and organic acids, were statistically different. Further, the total bacteria and lactic acid bacteria present in pineapple bioextract were statistically higher than those of the fish bioextract (p<0.01). The highest germination indices of 123 and 106 were obtained at 21 and 14 days post-fermentation for fish and pineapple bioextracts, respectively. In addition, qualities of both bioextracts conformed well with those specified by the Thai standard for liquid biofertilizer after 1 month fermentation. Results further showed that wastewater derived from virgin coconut oil manufacturing process could effectively be employed together with other types of wastes such as fish waste and pineapple peel for bioextract production. However, for the best bioextract quality, fermentation should be carefully planned since over fermentation led to bioextract of low qualities. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Papulacandins, a new family of antibiotics with antifungal activity, I. Fermentation, isolation, chemical and biological characterization of papulacandins A, B, C, D and E.

    PubMed

    Traxler, P; Gruner, J; Auden, J A

    1977-04-01

    Papulacandin, a new antibiotic complex, active against Candida albicans and several other yeasts, was isolated from a strain of Papularia sphaerosperma. The fermentation, isolation, physico-chemical properties and biological activity of the five structurally related papulacandins A, B, C, D and E are reported. Papulacandin B, the main component, was assigned the formula of C47H64O17.

  19. An in-depth analysis of the physico-mechanical properties imparted by agricultural fibers and food processing residues in polypropylene biocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murdy, Rachel Campbell; Mak, Michelle; Misra, Manjusri

    The use of agricultural and food processing residues as potential reinforcements in plastics has been extensively studied. However, there is a large variation in the mechanical performance of agricultural fiber-based biocomposites due to different processing materials and parameters. An in-depth comparison of the resulting effect of the agricultural filler on the matrix is often not possible given the discrepancy in processing conditions. This study seeks to determine the intrinsic properties of agricultural fibers and food processing residues for their use in polypropylene biocomposites based on a standardization of experimental design. The effect of 25wt% loading of miscanthus, fall-and spring-harvest switchgrass,more » wheat straw, oat hull, soy hull, soy stalk, hemp and flax on the physico-mechanical properties of polypropylene biocomposites was investigated. The addition of fiber led to an improvement in flexural strength, flexural modulus, and tensile modulus, and a general decrease in tensile strength at yield, elongation at break and Izod impact strength. Scanning electron microscopy highlighted the interfacial adhesion, orientation and distribution of the fibers within the matrix, confirming that fiber length and dispersion within the matrix are positively correlated with mechanical properties. The crystallization of the polypropylene phase and a compositional analysis of the agricultural fibers and processing residues were also compared to offer insight into the effect of the filler’s intrinsic properties on the resulting material performance.« less

  20. Physico-chemical characterization of polymeric micelles loaded with platinum derivatives by capillary electrophoresis and related methods.

    PubMed

    Oukacine, Farid; Bernard, Stephane; Bobe, Iulian; Cottet, Hervé

    2014-12-28

    (1,2-diamino-cyclohexane)Platinum(II) ((DACH)Pt) loaded polymeric micelles of poly(ethylene glycol-b-sodium glutamate) (PEG-b-PGlu) are currently studied as a potential candidate to replace oxaliplatin in the treatment of cancers with the aim to reduce side effects like cumulative peripheral distal neurotoxicity and acute dysesthesias. As for all synthetic polymeric drug delivery systems, the characterization of the (co)polymer precursors and of the final drug delivery system (polymeric micelles) is crucial to control the repeatability of the different batches and to get correlation between physico-chemical structure and biological activity. In this work, the use of capillary electrophoresis (CE) and related methods for the characterization of (DACH)Pt-loaded polymeric micelles and their precursor (PEG-b-PGlu copolymer) has been investigated in detail. The separation and quantification of residual PGlu homopolymer in the PEG-b-PGlu sample were performed by free solution capillary zone electrophoresis mode. This mode brought also information on the PEG-b-PGlu copolymer composition and polydispersity. It also permitted to monitor the decomposition of polymeric micelles in the presence of NaCl at room temperature. Interactions between PEG-b-PGlu unimers, on one hand, and polymeric micelles or surfactants, on the other hand, were studied by using the Micellar Electrokinetic Chromatography and Frontal Analysis Capillary Electrophoresis modes. Finally, weight-average hydrodynamic radii of the loaded polymeric micelles and of the PEG-b-PGlu unimers were determined by Taylor Dispersion Analysis (an absolute size determination method that can be easily implemented on CE apparatus). Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Design of a fragment library that maximally represents available chemical space.

    PubMed

    Schulz, M N; Landström, J; Bright, K; Hubbard, R E

    2011-07-01

    Cheminformatics protocols have been developed and assessed that identify a small set of fragments which can represent the compounds in a chemical library for use in fragment-based ligand discovery. Six different methods have been implemented and tested on Input Libraries of compounds from three suppliers. The resulting Fragment Sets have been characterised on the basis of computed physico-chemical properties and their similarity to the Input Libraries. A method that iteratively identifies fragments with the maximum number of similar compounds in the Input Library (Nearest Neighbours) produces the most diverse library. This approach could increase the success of experimental ligand discovery projects, by providing fragments that can be progressed rapidly to larger compounds through access to available similar compounds (known as SAR by Catalog).

  2. Chemical hydrogen storage material property guidelines for automotive applications

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  3. [Strategy of molecular design of drugs: the unification of macro-properties and micro-structures of a molecule].

    PubMed

    Guo, Zong-Ru

    2008-03-01

    The interaction of a drug with the organism involves both the disposition of a drug by the organism and the action of a drug on the organism. The disposition of various exogenous substances, including drugs, complies with general rules. The underlying physical and chemical changes to different drugs in view of time and space, i. e. pharmacokinetics, share common characteristics, that is the tout ensemble of a molecule and its macroscopic properties convey direct effect on the pharmacokinetic behavior as the tendency and consequence of biological evolution. The action of a drug on the organism, on the other hand, implicates the physico-chemical binding of a drug molecule to the target protein, which induces pharmacological and toxicological effects. The biological reactions, no matter beneficial or adverse, are all specific and individual manifestation of the drug molecule and determined by the interactive binding between definitive atoms or groups of the drug molecule and the macromolecular target in three-dimension. Such critical atoms, groups, or fragments responsible for the interaction reflect the microscopic structures of drug molecules and are called pharmacophore. In this context, a drug molecule is presumed as an assembly of macroscopic property and microscopic structure, with the macroscopic properties determining the absorption, distribution, metabolism and elimination of drugs and the microscopic structure coining pharmacological action. The knowledge of the internal relationship between macroscopy/microscopy and PK/PD conduces to comprehension of drug action and guides molecular drug design, because this conception facilitates the identification of structural features necessary for biological response, and the determination of factors modulating the physico-chemical and pharmacokinetic properties. The factors determining macro-properties include molecular weight, solubility, charge, lipophilicity (partition), and polar surface area, etc., which are

  4. Physico-chemical, microbiological and ecotoxicological evaluation of a septic tank/Fenton reaction combination for the treatment of hospital wastewaters.

    PubMed

    Berto, Josiani; Rochenbach, Gisele Canan; Barreiros, Marco Antonio B; Corrêa, Albertina X R; Peluso-Silva, Sandra; Radetski, Claudemir Marcos

    2009-05-01

    Hospital wastewater is considered a complex mixture populated with pathogenic microorganisms. The genetic constitution of these microorganisms can be changed through the direct and indirect effects of hospital wastewater constituents, leading to the appearance of antibiotic multi-resistant bacteria. To avoid environmental contamination hospital wastewaters must be treated. The objective of this study was to evaluate the efficiency of hospital wastewater treated by a combined process of biological degradation (septic tank) and the Fenton reaction. Thus, after septic tank biodegradation, batch Fenton reaction experiments were performed in a laboratory-scale reactor and the effectiveness of this sequential treatment was evaluated by a physico-chemical/microbiological time-course analysis of COD, BOD(5), and thermotolerant and total coliforms. The results showed that after 120min of Fenton treatment BOD(5) and COD values decreased by 90.6% and 91.0%, respectively. The BOD(5)/COD ratio changed from 0.46 to 0.48 after 120min of treatment. Bacterial removal efficiency reached 100%, while biotests carried out with Scenedesmus subspicatus and Daphnia magna showed a significant decrease in the ecotoxicity of hospital wastewater after the sequential treatment. The use of this combined system would ensure that neither multi-resistant bacteria nor ecotoxic substances are released to the environment through hospital wastewater discharge.

  5. Computing the Ediz eccentric connectivity index of discrete dynamic structures

    NASA Astrophysics Data System (ADS)

    Wu, Hualong; Kamran Siddiqui, Muhammad; Zhao, Bo; Gan, Jianhou; Gao, Wei

    2017-06-01

    From the earlier studies in physical and chemical sciences, it is found that the physico-chemical characteristics of chemical compounds are internally connected with their molecular structures. As a theoretical basis, it provides a new way of thinking by analyzing the molecular structure of the compounds to understand their physical and chemical properties. In our article, we study the physico-chemical properties of certain molecular structures via computing the Ediz eccentric connectivity index from mathematical standpoint. The results we yielded mainly apply to the techniques of distance and degree computation of mathematical derivation, and the conclusions have guiding significance in physical engineering.

  6. Characterization of Physico-Chemical Properties and Antioxidant Capacities of Bioactive Honey Produced from Australian Grown Agastache rugosa and its Correlation with Colour and Poly-Phenol Content.

    PubMed

    Anand, Sushil; Pang, Edwin; Livanos, George; Mantri, Nitin

    2018-01-05

    The antioxidant and antimicrobial components of honey vary based on sourced of nectar. Medicinal plants with the therapeutic value have potential to produce honey with greater bioactivity. The aim of the present study was to characterize the physico-chemical and antioxidant capacities of Agastache honey produced from Agastache rugosa and compare them with other popular commercial honeys sold in Australia. The total phenolics, total flavonoids, moisture content, colour, pH, protein content and antioxidant capacity were evaluated for Agastache , Manuka, Jelly bush, Tea tree, Super manuka and Jarrah honeys. The results reveal that the moisture content ranged from 17-21%, pH ranged from 3.8-4.3 and estimated protein content ranged from 900-2200 µg/g. The DPPH•, ABTS•+, ORAC and FRAP methods were used to measure the antioxidant capacity of the honey samples. The DPPH• % inhibition, ABTS•+, ORAC and FRAP values for Agastache honey were 9.85 (±1.98 µmol TE/g), 26.88 (±0.32 µmol TE/g), 19.78 (±1.1 µmol TE/g) and 3.61 (±0.02 µmol TE/g) whereas the highest antioxidant capacity values obtained were 18.69 (±0.9 µmol TE/g), 30.72 (±0.27 µmol TE/g), 26.95 (±0.9 µmol TE/g) and 3.68 (±0.04 µmol TE/g), respectively. There was a positive correlation between colour, total phenolic content and DPPH• scavenging activity for most of the honeys except Tea tree honey. However, there was no clear correlation with ABTS•+, ORAC and FRAP values. The measured antioxidant capacity of samples varied with the assays used. The DPPH• assay clearly indicated that the phenolic compounds contribute to the scavenging activity of the honeys. Nevertheless, all assays confirm that Agastache honey has significant antioxidant capacity. Therefore, Agastache honey can be important to human nutrition and health.

  7. Chemical Properties of Combustion Aerosols: An Overview

    EPA Science Inventory

    A wide variety of pyrogenic and anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is remarkably complex. ...

  8. Chemical hydrogen storage material property guidelines for automotive applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storagemore » material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.« less

  9. Agro-waste biosorbents: Effect of physico-chemical properties on atrazine and imidacloprid sorption.

    PubMed

    Mandal, Abhishek; Singh, Neera; Nain, Lata

    2017-09-02

    Low cost agro-waste biosorbents namely eucalyptus bark (EB), corn cob (CC), bamboo chips (BC), rice straw (RS) and rice husk (RH) were characterized and used to study atrazine and imidacloprid sorption. Adsorption studies suggested that biosorbents greatly varied in their pesticide sorption behaviour. The EB was the best biosorbent to sorb both atrazine and imidacloprid with K F values of 169.9 and 85.71, respectively. The adsorption isotherm were nonlinear in nature with slope (1/n) values <1. The Freundlich constant Correlating atrazine/imidacloprid sorption parameter [K F .(1/n)] with the physicochemical properties of the biosorbents suggested that atrazine adsorption correlated significantly to the aromaticity, polarity, surface area, fractal dimension, lacunarity and relative C-O band intensity parameters of biosorbents. Probably, both physisorption and electrostatic interactions were responsible for the pesticide sorption. The eucalyptus bark can be exploited as low cost adsorbent for the removal of these pesticides as well as a component of on-farm biopurification systems.

  10. Physico-chemical and biological factors influencing dinoflagellate cyst production in the Cariaco Basin

    NASA Astrophysics Data System (ADS)

    Bringué, Manuel; Thunell, Robert C.; Pospelova, Vera; Pinckney, James L.; Romero, Oscar E.; Tappa, Eric J.

    2018-04-01

    We present a 2.5-year-long sediment trap record of dinoflagellate cyst production in the Cariaco Basin, off Venezuela (southern Caribbean Sea). The site lies under the influence of wind-driven, seasonal upwelling which promotes high levels of primary productivity during boreal winter and spring. Changes in dinoflagellate cyst production is documented between November 1996 and May 1999 at ˜ 14-day intervals and interpreted in the context of in situ observations of physico-chemical and biological parameters measured at the mooring site. Dinoflagellate cyst assemblages are diverse (57 taxa) and dominated by cyst taxa of heterotrophic affinity, primarily Brigantedinium spp. (51 % of the total trap assemblage). Average cyst fluxes to the trap are high (17.1 × 103 cysts m-2 day-1) and show great seasonal and interannual variability. On seasonal timescales, dinoflagellate cyst production responds closely to variations in upwelling strength, with increases in cyst fluxes of several protoperidinioid taxa observed during active upwelling intervals, predominantly Brigantedinium spp. Cyst taxa produced by autotrophic dinoflagellates, in particular Bitectatodinium spongium, also respond positively to upwelling. Several spiny brown cysts contribute substantially to the assemblages, including Echinidinium delicatum (9.7 %) and Echinidinium granulatum (7.3 %), and show a closer affinity to weaker upwelling conditions. The strong El Niño event of 1997/98 appears to have negatively impacted cyst production in the basin with a 1-year lag, and may have contributed to the unusually high fluxes of cysts type Cp (possibly the cysts of the toxic dinoflagellate Cochlodinium polykrikoides sensu Li et al., 2015), with cyst type Cp fluxes up to 11.8 × 103 cysts m-2 day-1 observed during the weak upwelling event of February-May 1999. Possible trophic interactions between dinoflagellates and other major planktonic groups are also investigated by comparing the timing and

  11. Chemical and Physical Properties of Hi-Cal-2

    NASA Technical Reports Server (NTRS)

    Spakowski, A. E.; Allen, Harrison, Jr.; Caves, Robert M.

    1955-01-01

    As part of the Navy Project Zip to consider various boron-containing materials as possible high-energy fuels, the chemical and physical properties of Hi-Cal-2 prepared by the Callery Chemical Company were evaluated at the NACA Lewis laboratory. Elemental chemical analysis, heat of combustion, vapor pressure and decomposition, freezing point, density, self ignition temperature, flash point, and blow-out velocity were determined for the fuel. Although the precision of measurement of these properties was not equal to that obtained for hydrocarbons, this special release research memorandum was prepared to make the data available as soon as possible.

  12. Physico-chemical properties of excavated plastic from landfill mining and current recycling routes.

    PubMed

    Canopoli, L; Fidalgo, B; Coulon, F; Wagland, S T

    2018-06-01

    In Europe over 5.25 billion tonnes of waste has been landfilled between 1995 and 2015. Among this large amount of waste, plastic represents typically 5-25 wt% which is significant and has the potential to be recycled and reintroduced into the circular economy. To date there is still however little information available of the opportunities and challenges in recovering plastics from landfill sites. In this review, the impacts of landfill chemistry on the degradation and/or contamination of excavated plastic waste are analysed. The feasibility of using excavated plastic waste as feedstock for upcycling to valuable chemicals or liquid fuels through thermochemical conversion is also critically discussed. The limited degradation that is experienced by many plastics in landfills (>20 years) which guarantee that large amount is still available is largely due to thermooxidative degradation and the anaerobic conditions. However, excavated plastic waste cannot be conventionally recycled due to high level of ash, impurities and heavy metals. Recent studies demonstrated that pyrolysis offers a cost effective alternative option to conventional recycling. The produced pyrolysis oil is expected to have similar characteristics to petroleum diesel oil. The production of valuable product from excavated plastic waste will also increase the feasibility of enhanced landfill mining projects. However, further studies are needed to investigate the uncertainties about the contamination level and degradation of excavated plastic waste and address their viability for being processed through pyrolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Nuclear magnetic resonance, vibrational spectroscopic studies, physico-chemical properties and computational calculations on (nitrophenyl) octahydroquinolindiones by DFT method.

    PubMed

    Pasha, M A; Siddekha, Aisha; Mishra, Soni; Azzam, Sadeq Hamood Saleh; Umapathy, S

    2015-02-05

    In the present study, 2'-nitrophenyloctahydroquinolinedione and its 3'-nitrophenyl isomer were synthesized and characterized by FT-IR, FT-Raman, (1)H NMR and (13)C NMR spectroscopy. The molecular geometry, vibrational frequencies, (1)H and (13)C NMR chemical shift values of the synthesized compounds in the ground state have been calculated by using the density functional theory (DFT) method with the 6-311++G (d,p) basis set and compared with the experimental data. The complete vibrational assignments of wave numbers were made on the basis of potential energy distribution using GAR2PED programme. Isotropic chemical shifts for (1)H and (13)C NMR were calculated using gauge-invariant atomic orbital (GIAO) method. The experimental vibrational frequencies, (1)H and (13)C NMR chemical shift values were found to be in good agreement with the theoretical values. On the basis of vibrational analysis, molecular electrostatic potential and the standard thermodynamic functions have been investigated. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Effect of drug physico-chemical properties on the efficiency of top-down process and characterization of nanosuspension.

    PubMed

    Liu, Tao; Müller, Rainer H; Möschwitzer, Jan P

    2015-01-01

    The top-down approach is frequently used for drug nanocrystal production. A large number of review papers have referred to the top-down approach in terms of process parameters such as stabilizer selection. However, a very important factor, that is, the influence of drug properties, has been not addressed so far. This review will first discuss different nanocrystal technologies in brief. The focus will be on reviewing the different drug properties such as solid state and particle morphology on the efficiency of particle size reduction during top-down processes. Furthermore, the drug properties in the final nanosuspensions are critical for drug dissolution velocity. Therefore, another focus is the characterization of drugs in obtained nanosuspension. Drug physical properties play an important role in the production efficiency. The combinative technologies using modified drugs could significantly improve the performances of top-down processes. However, further understanding of the drug millability and homogenization will still be needed. In addition, a carefully established characterization system for nansuspension is essential.

  15. Physico-chemical and sensory characteristics of young dairy bull beef derived from two breed types across five production systems employing two first season feeding regimes.

    PubMed

    Nian, Yingqun; Allen, Paul; Prendiville, Robert; Kerry, Joseph P

    2018-03-01

    The present study aimed to assess the physico-chemical and sensory characteristics of Longissimus thoracis muscle from young dairy bulls: Holstein-Friesian (HF) and Jersey × Holstein-Friesian (JEX). Bulls slaughtered at 15 months of age differed with respect to the finishing system, whereas 19-month-old bulls differed in energy consumption during a second grazing season and finishing period. All bulls were offered different diets during the first grazing season. Insoluble and total collagen contents increased with slaughter age, whereas collagen solubility and hue angle reduced with age. Bulls fed a higher concentrate finishing diet held a longer beef flavour. Intramuscular fat (IMF) content and beef flavour score were enhanced by higher concentrate intake during the second season and finishing period. Beef from a higher forage diet displayed a more intense red colour and higher thawing loss. There was limited effect of silage finishing or first and second grazing season on quality traits. Beef from JEX breed had a higher IMF content, higher flavour, juiciness and texture-related scores while lower moisture content compared to HF beef. The eating quality of beef from young dairy bulls was generally good. Slaughter age and the energy level of diet had obvious effects on quality characteristics. Cross-breeding Jersey with the HF breed can improve the beef quality of young dairy bulls. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  16. Using biological and physico-chemical test methods to assess the role of concrete mixture design in resistance to microbially induced corrosion

    NASA Astrophysics Data System (ADS)

    House, Mitchell Wayne

    Concrete is the most widely used material for construction of wastewater collection, storage, and treatment infrastructure. The chemical and physical characteristics of hydrated portland cement make it susceptible to degradation under highly acidic conditions. As a result, some concrete wastewater infrastructure may be susceptible to a multi-stage degradation process known as microbially induced corrosion, or MIC. MIC begins with the production of aqueous hydrogen sulfide (H2S(aq)) by anaerobic sulfate reducing bacteria present below the waterline. H2S(aq) partitions to the gas phase where it is oxidized to sulfuric acid by the aerobic sulfur oxidizing bacteria Thiobacillus that resides on concrete surfaces above the waterline. Sulfuric acid then attacks the cement paste portion of the concrete matrix through decalcification of calcium hydroxide and calcium silica hydrate coupled with the formation of expansive corrosion products. The attack proceeds inward resulting in reduced service life and potential failure of the concrete structure. There are several challenges associated with assessing a concrete's susceptibility to MIC. First, no standard laboratory tests exist to assess concrete resistance to MIC. Straightforward reproduction of MIC in the laboratory is complicated by the use of microorganisms and hydrogen sulfide gas. Physico-chemical tests simulating MIC by immersing concrete specimens in sulfuric acid offer a convenient alternative, but do not accurately capture the damage mechanisms associated with biological corrosion. Comparison of results between research studies is difficult due to discrepancies that can arise in experimental methods even if current ASTM standards are followed. This thesis presents two experimental methods to evaluate concrete resistance to MIC: one biological and one physico-chemical. Efforts are made to address the critical aspects of each testing method currently absent in the literature. The first method presented is a new test

  17. [Comparative studies on fibrogenic properties of diatomites and other silica dusts].

    PubMed

    Woźniak, H

    1983-01-01

    The experiment carried out on animals was aimed at testing fibrogenic properties of two samples of the Carpathian diatomites and silica earth from Piotrowice. Experimental pneumoconiosis was induced by intratracheal administration of 50 mg of dust suspended in 0,6 ml of NaCl physiological solution to experimental animals (rats). The animals were killed after 3,6 and 9 months since dust administration and the examinations consisted in determination of wet lungs weight, hydroxyproline content in lungs, mediastinum nodes weight and lipids content. Comparison of the achieved results indicated that diatomites fibrogenic properties are many times lower than fibrogenic properties of silica earth. This fact, at similar physico-chemical properties of these raw materials, creates a possibility of elimination of workers exposure to highly aggressive silica earth dust by replacing it by diatomite.

  18. Physico-chemical analysis of ground water samples of coastal areas of south Chennai in the post-Tsunami scenario.

    PubMed

    Rajendran, A; Mansiya, C

    2015-11-01

    The study of changes in ground water quality on the east coast of chennai due to the December 26, 2004 tsunami and other subsequent disturbances is a matter of great concern. The post-Tsunami has caused considerable plant, animal, material and ecological changes in the entire stretch of chennai coastal area. Being very close to sea and frequently subjected to coastal erosion, water quality has been a concern in this coastal strip, and especially after the recent tsunami this strip seems to be more vulnerable. In the present investigation, ten ground water samples were collected from various parts of south chennai coastal area. Physico-chemical parameters such as pH, temperature, Biochemical oxygen demand (BOD), Dissolved oxygen (DO), total solids; turbidity and fecal coliform were analyzed. The overall Water quality index (WQI) values for all the samples were found to be in the range of 68.81-74.38 which reveals a fact that the quality of all the samples is only medium to good and could be used for drinking and other domestic uses only after proper treatment. The long term adverse impacts of tsunami on ground water quality of coastal areas and the relationships that exist and among various parameters are carefully analyzed. Local residents and corporation authorities have been made aware of the quality of their drinking water and the methods to conserve the water bodies. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. CheS-Mapper - Chemical Space Mapping and Visualization in 3D.

    PubMed

    Gütlein, Martin; Karwath, Andreas; Kramer, Stefan

    2012-03-17

    Analyzing chemical datasets is a challenging task for scientific researchers in the field of chemoinformatics. It is important, yet difficult to understand the relationship between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects. To that respect, visualization tools can help to better comprehend the underlying correlations. Our recently developed 3D molecular viewer CheS-Mapper (Chemical Space Mapper) divides large datasets into clusters of similar compounds and consequently arranges them in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kind of features, like structural fragments as well as quantitative chemical descriptors. These features can be highlighted within CheS-Mapper, which aids the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. As a final function, the tool can also be used to select and export specific subsets of a given dataset for further analysis.

  20. CheS-Mapper - Chemical Space Mapping and Visualization in 3D

    PubMed Central

    2012-01-01

    Analyzing chemical datasets is a challenging task for scientific researchers in the field of chemoinformatics. It is important, yet difficult to understand the relationship between the structure of chemical compounds, their physico-chemical properties, and biological or toxic effects. To that respect, visualization tools can help to better comprehend the underlying correlations. Our recently developed 3D molecular viewer CheS-Mapper (Chemical Space Mapper) divides large datasets into clusters of similar compounds and consequently arranges them in 3D space, such that their spatial proximity reflects their similarity. The user can indirectly determine similarity, by selecting which features to employ in the process. The tool can use and calculate different kind of features, like structural fragments as well as quantitative chemical descriptors. These features can be highlighted within CheS-Mapper, which aids the chemist to better understand patterns and regularities and relate the observations to established scientific knowledge. As a final function, the tool can also be used to select and export specific subsets of a given dataset for further analysis. PMID:22424447

  1. Leaf physico-chemical and physiological properties of maize (Zea mays L.) populations from different origins.

    PubMed

    Revilla, Pedro; Fernández, Victoria; Álvarez-Iglesias, Lorena; Medina, Eva T; Cavero, José

    2016-10-01

    In this study we evaluated the leaf surface properties of maize populations native to different water availability environments. Leaf surface topography, wettability and gas exchange performance of five maize populations from the Sahara desert, dry (south) and humid (north-western) areas of Spain were analysed. Differences in wettability, stomatal and trichome densities, surface free energy and solubility parameter values were recorded between populations and leaf sides. Leaves from the humid Spanish population with special regard to the abaxial side, were less wettable and less susceptible to polar interactions. The higher wettability and hydrophilicity of Sahara populations with emphasis on the abaxial leaf surfaces, may favour dew deposition and foliar water absorption, hence improving water use efficiency under extremely dry conditions. Compared to the other Saharan populations, the dwarf one had a higher photosynthesis rate suggesting that dwarfism may be a strategy for improving plant tolerance to arid conditions. The results obtained for different maize populations suggest that leaf surfaces may vary in response to drought, but further studies will be required to examine the potential relationship between leaf surface properties and plant stress tolerance. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Properties and applications of chemically functionalized graphene.

    PubMed

    Craciun, M F; Khrapach, I; Barnes, M D; Russo, S

    2013-10-23

    The vast and yet largely unexplored family of graphene materials has great potential for future electronic devices with novel functionalities. The ability to engineer the electrical and optical properties in graphene by chemically functionalizing it with a molecule or adatom is widening considerably the potential applications targeted by graphene. Indeed, functionalized graphene has been found to be the best known transparent conductor or a wide gap semiconductor. At the same time, understanding the mechanisms driving the functionalization of graphene with hydrogen is proving to be of fundamental interest for energy storage devices. Here we discuss recent advances on the properties and applications of chemically functionalized graphene.

  3. The alterations in high density polyethylene properties with gamma irradiation

    NASA Astrophysics Data System (ADS)

    Zaki, M. F.; Elshaer, Y. H.; Taha, Doaa. H.

    2017-10-01

    In the present investigation, high density polyethylene (HDPE) polymer has been used to study the alterations in its properties under gamma-irradiation. Physico-chemical properties have been investigated with different spectroscopy techniques, Fourier Transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), biocompatibility properties, as well as, mechanical properties change. The FT-IR analysis shows the formation of new band at 1716 cm-1 that is attributed to the oxidation of irradiated polymer chains, which is due to the formation of carbonyl groups (C˭O). XRD patterns show that a decrease in the crystallite size and increase in the Full Width at Half Maximum (FWHM). This means that the crystallinity of irradiated samples is decreased with increase in gamma dose. The contact angle measurements show an increase in the surface free energy as the gamma irradiation increases. The measurements of mechanical properties of irradiated HDPE samples were discussed.

  4. Chemical properties of forest soils

    Treesearch

    Charles H. Perry; Michael C. Amacher

    2007-01-01

    Why Is Soil Chemistry Important? The soil quality indicator was initially developed as a tool for assessing the current status of forest soil resources and predicting potential changes in soil properties. Soil chemistry data can be used to diagnose tree vigor and document the deposition of atmospheric pollutants (e.g., acid rain). This chapter focuses on two chemical...

  5. 32 CFR 174.16 - Real property containing explosive or chemical agent hazards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemical agent hazards from past DoD military munitions-related or chemical warfare-related activities... 32 National Defense 1 2010-07-01 2010-07-01 false Real property containing explosive or chemical... REALIGNMENT Environmental Matters § 174.16 Real property containing explosive or chemical agent hazards. The...

  6. 32 CFR 174.16 - Real property containing explosive or chemical agent hazards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chemical agent hazards from past DoD military munitions-related or chemical warfare-related activities... 32 National Defense 1 2014-07-01 2014-07-01 false Real property containing explosive or chemical... REALIGNMENT Environmental Matters § 174.16 Real property containing explosive or chemical agent hazards. The...

  7. 32 CFR 174.16 - Real property containing explosive or chemical agent hazards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chemical agent hazards from past DoD military munitions-related or chemical warfare-related activities... 32 National Defense 1 2012-07-01 2012-07-01 false Real property containing explosive or chemical... REALIGNMENT Environmental Matters § 174.16 Real property containing explosive or chemical agent hazards. The...

  8. 32 CFR 174.16 - Real property containing explosive or chemical agent hazards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chemical agent hazards from past DoD military munitions-related or chemical warfare-related activities... 32 National Defense 1 2013-07-01 2013-07-01 false Real property containing explosive or chemical... REALIGNMENT Environmental Matters § 174.16 Real property containing explosive or chemical agent hazards. The...

  9. 32 CFR 174.16 - Real property containing explosive or chemical agent hazards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chemical agent hazards from past DoD military munitions-related or chemical warfare-related activities... 32 National Defense 1 2011-07-01 2011-07-01 false Real property containing explosive or chemical... REALIGNMENT Environmental Matters § 174.16 Real property containing explosive or chemical agent hazards. The...

  10. Microbial Properties Database Editor Tutorial

    EPA Science Inventory

    A Microbial Properties Database Editor (MPDBE) has been developed to help consolidate microbial-relevant data to populate a microbial database and support a database editor by which an authorized user can modify physico-microbial properties related to microbial indicators and pat...

  11. Effects of volumetric expansion in molecular crystals: A quantum mechanical investigation on aspirin and paracetamol most stable polymorphs

    NASA Astrophysics Data System (ADS)

    Adhikari, Kapil; Flurchick, Kenneth M.; Valenzano, Loredana

    2015-02-01

    This work reports a study performed at hybrid semi-empirical density functional level (B3LYP-D2*) of the physico-chemical properties of aspirin (acetylsalicylic acid) and paracetamol (acetaminophen) in their most stable crystalline forms. It is shown how effects arising from volumetric expansions influence the properties of the materials. Structural, energetic, and vibrational properties are in good agreement with experimental values reported at temperatures far from 0 K. Results show that the proposed approach is reliable enough to reproduce effects of volumetric expansion on lattice energies and other measurable physico-chemical observables related to inter-molecular forces.

  12. Bis-quaternary gemini surfactants as components of nonviral gene delivery systems: a comprehensive study from physicochemical properties to membrane interactions.

    PubMed

    Cardoso, Ana M; Morais, Catarina M; Silva, Sandra G; Marques, Eduardo F; de Lima, Maria C Pedroso; Jurado, Maria Amália S

    2014-10-20

    Gemini surfactants have been successfully used as components of gene delivery systems. In the present work, a family of gemini surfactants, represented by the general structure [CmH2m+1(CH3)2N(+)(CH2)sN(+)(CH3)2CmH2m+1]2Br(-), or simply m-s-m, was used to prepare cationic gene carriers, aiming at their application in transfection studies. An extensive characterization of the gemini surfactant-based complexes, produced with and without the helper lipids cholesterol and DOPE, was carried out in order to correlate their physico-chemical properties with transfection efficiency. The most efficient complexes were those containing helper lipids, which, combining amphiphiles with propensity to form structures with different intrinsic curvatures, displayed a morphologically labile architecture, putatively implicated in the efficient DNA release upon complex interaction with membranes. While complexes lacking helper lipids were translocated directly across the lipid bilayer, complexes containing helper lipids were taken up by cells also by macropinocytosis. This study contributes to shed light on the relationship between important physico-chemical properties of surfactant-based DNA vectors and their efficiency to promote gene transfer, which may represent a step forward to the rational design of gene delivery systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Influence of the grade on the variability of the mechanical properties of polypropylene waste.

    PubMed

    Jmal, Hamdi; Bahlouli, Nadia; Wagner-Kocher, Christiane; Leray, Dimitri; Ruch, Frédéric; Munsch, Jean-Nicolas; Nardin, Michel

    2018-05-01

    The prior properties of recycled polypropylene depend on the origin of waste deposits and its chemical constituents. To obtain specific properties with a predefine melt flow index of polypropylene, the suppliers of polymer introduce additives and fillers. However, the addition of additives and/or fillers can modify strongly the mechanical behaviour of recycled polypropylene. To understand the impact of the additives and fillers on the quasi-static mechanical behaviour, we consider, in this study, three different recycled polypropylenes with three different melt flow index obtained from different waste deposits. The chemical constituents of the additives and filler contents of the recycled polypropylenes are determined through thermo-physico-chemical analysis. Tensile and bending tests performed at different strain rates allow identifying the mechanical properties such as the elastic modulus, the yield stress, the maximum stress, and the failure mechanisms. The results obtained are compared with non-recycled polypropylene and with few researches to explain the combined effect of additives. Finally, a post-mortem analysis of the samples was carried out to make the link between the obtained mechanical properties and microstructure. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Electrospun nanofibrous scaffolds of segmented polyurethanes based on PEG, PLLA and PTMC blocks: Physico-chemical properties and morphology.

    PubMed

    Trinca, Rafael Bergamo; Abraham, Gustavo A; Felisberti, Maria Isabel

    2015-11-01

    Biocompatible polymeric scaffolds are crucial for successful tissue engineering. Biomedical segmented polyurethanes (SPUs) are an important and versatile class of polymers characterized by a broad spectrum of compositions, molecular architectures, properties and applications. Although SPUs are versatile materials that can be designed by different routes to cover a wide range of properties, they have been infrequently used for the preparation of electrospun nanofibrous scaffolds. This study reports the preparation of new electrospun polyurethane scaffolds. The segmented polyurethanes were synthesized using low molar masses macrodyols (poly(ethylene glycol), poly(l-lactide) and poly(trimethylene carbonate)) and 1,6-hexane diisocyanate and 1,4-butanodiol as isocyanate and chain extensor, respectively. Different electrospinning parameters such as solution properties and processing conditions were evaluated to achieve smooth, uniform bead-free fibers. Electrospun micro/nanofibrous structures with mean fiber diameters ranging from 600nm to 770nm were obtained by varying the processing conditions. They were characterized in terms of thermal and dynamical mechanical properties, swelling degree and morphology. The elastomeric polyurethane scaffolds exhibit interesting properties that could be appropriate as biomimetic matrices for soft tissue engineering applications. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Physico-chemical properties of biodiesel manufactured from waste frying oil using domestic adsorbents

    PubMed Central

    Ismail, Samir Abd-elmonem A; Ali, Rehab Farouk M

    2015-01-01

    We have evaluated the efficiency of sugar cane bagasse ash (SCBA), date palm seed carbon (DPSC), and rice husk ash (RHA) as natural adsorbents and compared them with the synthetic adsorbent Magnesol XL for improving the quality of waste frying oil (WFO) and for the impact on the physicochemical properties of the obtained biodiesel. We measured moisture content, refractive index (RI), density, acid value (AV), iodine value (IV), peroxide value (PV), and saponification value (SV), as well as fatty acid profile. Purification treatments with various levels of adsorbents caused significant (P ≤ 0.05) decreases in free fatty acids (FFAs), PVs, and IVs. The highest yields (86.45 and 87.80%) were observed for biodiesel samples produced from WFO treated with 2% Magnesol and 3% of RHA, respectively, followed by samples treated with 2 and 3% of DPSC or RHA. Pre-treatments caused a significant decrease in the content of C 18:2 linoleic acids, consistent with a significant increase in the content of monounsaturated and saturated fatty acids (MUFA) in the treated samples. The highest oxidation value (COX) (1.30) was observed for biodiesel samples produced from WFO without purification treatments. However, the lowest values (0.44–0.73) were observed for biodiesel samples produced from WFO treated with different levels of adsorbents. Our results indicate that pre-treatments with different levels of adsorbents regenerated the quality of WFO and improved the quality of the obtained biodiesel. PMID:27877789

  16. Physico-chemical properties of biodiesel manufactured from waste frying oil using domestic adsorbents

    NASA Astrophysics Data System (ADS)

    Ismail, Samir Abd-elmonem A.; Ali, Rehab Farouk M.

    2015-06-01

    We have evaluated the efficiency of sugar cane bagasse ash (SCBA), date palm seed carbon (DPSC), and rice husk ash (RHA) as natural adsorbents and compared them with the synthetic adsorbent Magnesol XL for improving the quality of waste frying oil (WFO) and for the impact on the physicochemical properties of the obtained biodiesel. We measured moisture content, refractive index (RI), density, acid value (AV), iodine value (IV), peroxide value (PV), and saponification value (SV), as well as fatty acid profile. Purification treatments with various levels of adsorbents caused significant (P ≤ 0.05) decreases in free fatty acids (FFAs), PVs, and IVs. The highest yields (86.45 and 87.80%) were observed for biodiesel samples produced from WFO treated with 2% Magnesol and 3% of RHA, respectively, followed by samples treated with 2 and 3% of DPSC or RHA. Pre-treatments caused a significant decrease in the content of C 18:2 linoleic acids, consistent with a significant increase in the content of monounsaturated and saturated fatty acids (MUFA) in the treated samples. The highest oxidation value (COX) (1.30) was observed for biodiesel samples produced from WFO without purification treatments. However, the lowest values (0.44-0.73) were observed for biodiesel samples produced from WFO treated with different levels of adsorbents. Our results indicate that pre-treatments with different levels of adsorbents regenerated the quality of WFO and improved the quality of the obtained biodiesel.

  17. Role of fuel chemical properties on combustor radiative heat load

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1984-01-01

    In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, United Technologies Research Center (UTRC) has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced high-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties; hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.

  18. Solubility correlations. Part 1. Simultaneous fitting of both solute and solvent properties.

    PubMed

    Battino, Rubin; Seybold, Paul G

    2007-11-01

    A method is described for estimating solubility by fitting both solute and solvent properties in a single equation. The method is illustrated by examining the solubilities of five rare gases (He, Ne, Ar, Kr, Xe) and five 'permanent' gases (O(2), N(2), CH(4), CF(4), SF(6)) in either n-alkane (C(5)H(12) to C(16)H(34)) or alkan-1-ol (CH(3)OH to C(11)H(23)OH) solvents. Generally, the correlation (R(2)) values of the fits achieved were significantly better than 0.9. It is suggested that similar methods can be used for estimating other physico-chemical properties such as excess molar volumes and enthalpies of solution.

  19. Microbial properties database editor tutorial

    USDA-ARS?s Scientific Manuscript database

    A Microbial Properties Database Editor (MPDBE) has been developed to help consolidate microbialrelevant data to populate a microbial database and support a database editor by which an authorized user can modify physico-microbial properties related to microbial indicators and pathogens. Physical prop...

  20. Distribution of trace elements in certain ecological components and animal products in a dairy farm at Tirupati, Chittoor District, Andhra Pradesh, India.

    PubMed

    Raghu, V

    2013-12-01

    Biogeochemical characteristics of the cattle are dealt based on the observations made in Ayurveda in the light of modern scientific developments in applied environmental geochemistry. The biogeochemical characteristics of certain important ecological components and animal products of the stall-fed animals were studied. For this purpose, a dairy farm of Tirumala-Tirupati Devasthanams, a religious organization in Tirupati, Chittoor District, Andhra Pradesh was selected. This study is intended to trace out the trace element interactions in the ecological components (soil, water, fodder, feed) of the stall-fed animals and their output components viz. dung, urine and milk. Physical, physico-chemical properties and certain trace elements were determined for composite samples of ecological components and dung, urine, and milk of stall-fed animals. The variations in the distribution of pH and EC of urine and milk reflect the variations in their physico-chemical or hydro-chemical properties. As mentioned in Ayurveda, not only the properties of milk but also the properties of dung and urine reflect their diet and conditions of their habitat. Even though the diet is the same, the cows of different breeds yield milk of variable physical, physico-chemical properties and trace element composition which can be attributed to their body colour, substantiating Ayurveda.

  1. Effects of argon sputtering and UV-ozone radiation on the physico-chemical surface properties of ITO

    NASA Astrophysics Data System (ADS)

    Che, Hui; El Bouanani, M.

    2018-01-01

    X-ray photoelectron spectroscopy (XPS) and Ultraviolet Photoelectron Spectroscopy (UPS) were used to evaluate and determine the effects of 1 KeV Ar+ irradiation (sputtering) on the surface chemical composition and work function of Indium Thin Oxide (ITO). While Ar+ sputtering removes carbon-based surface contaminants, it also modifies the Sn-rich surface of ITO and leads to a reduction of the oxidation state of Sn from Sn4+ to Sn2+. The decrease in the work function of ITO is directly correlated to the decrease of Sn atomic concentration in the Sn-rich top surface layer and the reduction of the oxidation state of surface Sn.

  2. A novel approach to investigate the effect of methionine oxidation on pharmacokinetic properties of therapeutic antibodies

    PubMed Central

    Stracke, Jan; Emrich, Thomas; Rueger, Petra; Schlothauer, Tilman; Kling, Lothar; Knaupp, Alexander; Hertenberger, Hubert; Wolfert, Andreas; Spick, Christian; Lau, Wilma; Drabner, Georg; Reiff, Ulrike; Koll, Hans; Papadimitriou, Apollon

    2014-01-01

    Preserving the chemical and structural integrity of therapeutic antibodies during manufacturing and storage is a major challenge during pharmaceutical development. Oxidation of Fc methionines Met252 and Met428 is frequently observed, which leads to reduced affinity to FcRn and faster plasma clearance if present at high levels. Because oxidation occurs in both positions simultaneously, their individual contribution to the concomitant changes in pharmacokinetic properties has not been clearly established. A novel pH-gradient FcRn affinity chromatography method was applied to isolate three antibody oxidation variants from an oxidized IgG1 preparation based on their FcRn binding properties. Physico-chemical characterization revealed that the three oxidation variants differed predominantly in the number of oxMet252 per IgG (0, 1, or 2), but not significantly in the content of oxMet428. Corresponding to the increase in oxMet252 content, stepwise reduction of FcRn affinity in vitro, as well as faster clearance and shorter terminal half-life, in huFcRn-transgenic mice were observed. A single Met252 oxidation per antibody had no significant effect on pharmacokinetics (PK) compared with unmodified IgG. Importantly, only molecules with both heavy chains oxidized at Met252 exhibited significantly faster clearance. In contrast, Met428 oxidation had no apparent negative effect on PK and even led to somewhat improved FcRn binding and slower clearance. This minor effect, however, seemed to be abrogated by the dominant effect of Met252 oxidation. The novel approach of functional chromatographic separation of IgG oxidation variants followed by physico-chemical and biological characterization has yielded the first experimentally-backed explanation for the unaltered PK properties of antibody preparations containing relatively high Met252 and Met428 oxidation levels. PMID:25517308

  3. ABIOTIC REDOX TRANSFORMATION OF ORGANIC COMPOUNDS AT THE CLAY-WATER INTERFACE

    EPA Science Inventory

    The interactions of clay, water and organic compounds considerably modify the structural and physico-chemical properties of all components and create a unique domain for biological and chemical species in environments. Previous research indicates that the nature and properties of...

  4. Removal of polycyclic aromatic hydrocarbons in aqueous environment by chemical treatments: a review.

    PubMed

    Rubio-Clemente, Ainhoa; Torres-Palma, Ricardo A; Peñuela, Gustavo A

    2014-04-15

    Due to their carcinogenic, mutagenic and teratogenic potential, the removal of polycyclic aromatic hydrocarbons (PAHs) from aqueous environment using physical, biological and chemical processes has been studied by several researchers. This paper reviews the current state of knowledge concerning PAHs including their physico-chemical properties, input sources, occurrence, adverse effects and conventional and alternative chemical processes applied for their removal from water. The mechanisms and reactions involved in each treatment method are reported, and the effects of various variables on the PAH degradation rate as well as the extent of degradation are also discussed. Extensive literature analysis has shown that an effective way to perform the conversion and mineralization of this type of substances is the application of advanced oxidation processes (AOPs). Furthermore, combined processes, particularly AOPs coupled with biological treatments, seem to be one of the best solutions for the treatment of effluents containing PAHs. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. The Fate of Chemical Warfare Agents in the Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talmage, Sylvia Smith; Munro, Nancy B; Watson, Annetta Paule

    2007-01-01

    Chemical Warfare Agents, Second Edition has been totally revised since the successful first edition and expanded to about three times the length, with many new chapters and much more in-depth consideration of all the topics. The chapters have been written by distinguished international experts in various aspects of chemical warfare agents and edited by an experienced team to produce a clear review of the field. The book now contains a wealth of material on the mechanisms of action of the major chemical warfare agents, including the nerve agent cyclosarin, formally considered to be of secondary importance, as well as ricinmore » and abrin. Chemical Warfare Agents, Second Edition discusses the physico-chemical properties of chemical warfare agents, their dispersion and fate in the environment, their toxicology and management of their effects on humans, decontamination and protective equipment. New chapters cover the experience gained after the use of sarin to attack travelers on the Tokyo subway and how to deal with the outcome of the deployment of riot control agents such as CS gas. This book provides a comprehensive review of chemical warfare agents, assessing all available evidence regarding the medical, technical and legal aspects of their use. It is an invaluable reference work for physicians, public health planners, regulators and any other professionals involved in this field.« less

  6. Finding and estimating chemical property data for environmental assessment.

    PubMed

    Boethling, Robert S; Howard, Philip H; Meylan, William M

    2004-10-01

    The ability to predict the behavior of a chemical substance in a biological or environmental system largely depends on knowledge of the physicochemical properties and reactivity of that substance. We focus here on properties, with the objective of providing practical guidance for finding measured values and using estimation methods when necessary. Because currently available computer software often makes it more convenient to estimate than to retrieve measured values, we try to discourage irrational exuberance for these tools by including comprehensive lists of Internet and hard-copy data resources. Guidance for assessors is presented in the form of a process to obtain data that includes establishment of chemical identity, identification of data sources, assessment of accuracy and reliability, substructure searching for analogs when experimental data are unavailable, and estimation from chemical structure. Regarding property estimation, we cover estimation from close structural analogs in addition to broadly applicable methods requiring only the chemical structure. For the latter, we list and briefly discuss the most widely used methods. Concluding thoughts are offered concerning appropriate directions for future work on estimation methods, again with an emphasis on practical applications.

  7. Chemical properties and methods of analysis of refractory compounds

    NASA Technical Reports Server (NTRS)

    Samsonov, G. V. (Editor); Frantsevich, I. N. (Editor); Yeremenko, V. N. (Editor); Nazarchuk, T. N. (Editor); Popova, O. I. (Editor)

    1978-01-01

    Reactions involving refractory metals and the alloys based on them are discussed. Chemical, electrochemical, photometric, spectrophotometric, and X-ray analysis are among the methods described for analyzing the results of the reactions and for determining the chemical properties of these materials.

  8. Physico-chemical and sensory properties of marmalades made from mixtures of fruits and under-exploited Andean tubers.

    PubMed

    Lotufo Haddad, Agustina M; Margalef, María Isabel; Armada, Margarita; Goldner, María Cristina

    2017-09-01

    This work studies the added value to the Andean tuber crops through the production of jams. The objective were: (1) to study the sensory and instrumental characteristics of dietetic marmalades made with fruits and Andean tubers; (2) to research consumer's acceptability and emotional responses; (3) to assess the relationship between sensory and instrumental variables and (4) to determine sensory, instrumental and emotional variables that influence the acceptability. Pearson's correlations showed that spreadability was the variable better predicted by sensory and instrumental ones. The analysis of variance showed that sourness increased with the increase of strawberry and the decrease of apple contents (P < 0.05). The acceptability increased when the strawberry proportion was higher. The sweetness-sourness balance drove the hedonic response and some emotions changed from one feeling to its corresponding opposite when the strawberry proportion reached 50 or 60. According to a partial least square 2 and a principal components analysis of sensory/acceptability/emotion data, 'typical', 'autochthonous', 'urban' and 'present' resulted in positive emotions which favored the consumer liking. Formulating marmalades with mixtures of fruits and Andean tubers will allow giving value-added to these crops. The elaboration of products using innovative raw materials will be an incentive for farmers to cultivate them. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  9. Thermal and rheological properties of a family of botryosphaerans produced by Botryosphaeria rhodina MAMB-05.

    PubMed

    Fonseca, Paulo R M S; Dekker, Robert F H; Barbosa, Aneli M; Silveira, Joana L M; Vasconcelos, Ana F D; Monteiro, Nilson K; Aranda-Selverio, Gabriel; da Silva, Maria de Lourdes Corradi

    2011-09-02

    Differential scanning calorimetry (DSC), thermogravimetry (TG) and Fourier-transform infra-red spectroscopy (FT-IR) analyses were performed to investigate changes in the physico-chemical properties of botryosphaerans, a family of exopolysaccharides (EPS) produced by the fungus Botryosphaeria rhodina MAMB-05 grown on glucose (EPS(GLC)), sucrose (EPS(SUC)) and fructose (EPS(FRU)). A slight endothermic transition and small mass loss attributable to the removal of water of hydration were observed in the DSC and TG analyses, respectively, for the three EPS samples. The FT-IR spectra confirmed no structural changes occurred during thermal treatment. Viscometry was utilized to obtain information on the rheological behaviour of the EPS in aqueous solutions. The Power Law and Cross Equations determined the natural pseudoplastic characteristics of the EPS. Comparatively, results obtained for EPS produced when B. rhodina MAMB-05 was grown on each of the three carbohydrate sources demonstrated similar apparent viscosity values for EPS(GLC) and EPS(SUC), while EPS(FRU) displayed the lowest apparent viscosity of the three botryosphaerans, suggesting a higher degree of ramification and lower Mw. EPS(GLC) and EPS(SUC) possessed similar degrees of ramification. The slight differences found in their viscosities can be explained by the differences in the type of branching among the three botryosphaerans, thus varying the strength of intermolecular interactions and consequently, consistency and viscosity. The physico-chemical studies of botryosphaerans represent the originality of this work, and the knowledge of these properties is an important criterion for potential applications.

  10. Mineralogic-chemical and physical characteristics of the mud in İzmir (western Turkey): suitability for use in pelotherapy

    NASA Astrophysics Data System (ADS)

    Çelik Karakaya, Muazzez; Karakaya, Necati

    2013-04-01

    The study conducted on peloid used spas in İzmir city region (western part of Turkey) included the investigation of the mineralogical, physico-chemical and geochemical properties of the three types of peloid samples in order to assess the suitability of the material for healing- aesthetic-related purposes. In situ formed muds in lagoons near the Aegean Sea (named as first group) and inner swamp muds (second group) unprocessed and raw have been using therapy and thermal baths. Mud and hot springs at around the Aegean Sea have been popular since ancient times for the treatment of rheumatic diseases, musculoskeletal disorders in the region. The mineralogical characteristics of the thermal muds are in accordance with the geological origin of the material and water sources. Mineralogic composition, mineral content and morphologic properties of the samples were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM-EDS). Chemical composition of the muds and thermal waters were determined by ICP-EAS and ICP-MS. Both of the sediment is fine- to medium size-grained and composed mostly of clay minerals, partially quartz, feldspar, carbonates, and halite, and rarely gypsum. The mineralogic composition of the muds controls the physico-chemical properties of the muds. Anion e.g., Cl, Br, and SO4, contents the thermal waters of the first group is extremely different and so the springs contain a high level of sodium chloride, magnesium sulphate, and calcium bicarbonate. The water temperature is 45 oC with a pH of 6.95 and electrical conductivity (EC) is 4.5 mS/lt in the first group while 71 oC with a pH 6.58 and EC is 2.52 mS/lt in the second ones. However, major and some of the trace element concentration of the mud samples are nearly similar, As, Cd, Cu, Hg, Ni, Sb, Se, T and Zn content of the first group is exceptionally lower than the second ones. And the hazardous element concentrations are extremely higher than the pharmaceutical clay in the second

  11. Physico-chemical transition from peridotite assemblage to the eclogite one (experimental data at 7.0 GPa).

    NASA Astrophysics Data System (ADS)

    Butvina, Valentina; Litvin, Yurii

    2010-05-01

    Peridotites and eclogites, including diamond-bearing ones, are the basic ultra-basic and basic rocks of the upper mantle (Ringwood, 1969, 1975; Sobolev, 1974; Marakushev, 1985; Taylor & Anand, 2004). These rocks are presented in the assemblage of mantle xenolyths in kimberlites, but the basic minerals of peridotite paragenesis, olivine, orthopyroxene, garnet and clinopyroxene as well as of an eclogite paragenesis, garnet and omphacite are wide-spread synthetic inclusions in diamonds. The cases of finding minerals and peridotite and eclogite parageneses in diamond are described. It implies that these parageneses can have a single mantle source. However, the formation of peridotite and eclogite mineral parageneses at differentiation of the primary ultrabasite melt during physico-chemical single process is possible only at overcoming the 'eclogite' thermal barrier (O'Hara, 1968; Litvin, 1991). Eclogite genesis is one of the most difficult and discussional problems of modern petrology. Among investigators there is an opinion about eclogite heterogeneity not only on conditions of formation (crust, mantle), but also by composition of the initial rocks (para-, orthoeclogites) as well as by the way of their formation (magmatic, metamorphic, metasomatic). In literature diamond-bearing eclogite nodules of kimberlite pipes are often considered as metamorphic, which are formed at subduction of the Archean or of the Proterozoic oceanic crust (MacGregor & Manton, 1986; McCandless & Gurney, 1986, 1997 et al.). Only the presence of Na2O in garnet and K2O in clinopyroxene is a criterion of their participation in mantle magmatic processes. Together with the hypotheses considered on eclogite origin there exists a version suggested in papers (Kushiro, 1972; Kushiro & Yoder, 1974), according to which mantle eclogites could be formed due to peridotite substance in the processes of fractional crystallization of ultrabasite magmas. The present paper is devoted to the experimental study of

  12. A Chemical Properties Simulator to Support Integrated Environmental Modeling

    EPA Science Inventory

    Users of Integrated Environmental Modeling (IEM) systems are responsible for defining individual chemicals and their properties, a process that is time-consuming at best and overwhelming at worst, especially for new chemicals with new structures. A software tool is needed to allo...

  13. Physical and Chemical Properties of Anthropogenic Aerosols: An overview

    EPA Science Inventory

    A wide variety of anthropogenic sources emit fine aerosols to the atmosphere. The physical and chemical properties of these aerosols are of interest due to their influence on climate, human health, and visibility. Aerosol chemical composition is complex. Combustion aerosols can c...

  14. Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds

    NASA Astrophysics Data System (ADS)

    Khan, Pintu Kumar; Mahato, Arnab; Kundu, Biswanath; Nandi, Samit K.; Mukherjee, Prasenjit; Datta, Someswar; Sarkar, Soumya; Mukherjee, Jayanta; Nath, Shalini; Balla, Vamsi K.; Mandal, Chitra

    2016-09-01

    Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering.

  15. Influence of single and binary doping of strontium and lithium on in vivo biological properties of bioactive glass scaffolds

    PubMed Central

    Khan, Pintu Kumar; Mahato, Arnab; Kundu, Biswanath; Nandi, Samit K.; Mukherjee, Prasenjit; Datta, Someswar; Sarkar, Soumya; Mukherjee, Jayanta; Nath, Shalini; Balla, Vamsi K.; Mandal, Chitra

    2016-01-01

    Effects of strontium and lithium ion doping on the biological properties of bioactive glass (BAG) porous scaffolds have been checked in vitro and in vivo. BAG scaffolds were prepared by conventional glass melting route and subsequently, scaffolds were produced by evaporation of fugitive pore formers. After thorough physico-chemical and in vitro cell characterization, scaffolds were used for pre-clinical study. Soft and hard tissue formation in a rabbit femoral defect model after 2 and 4 months, were assessed using different tools. Histological observations showed excellent osseous tissue formation in Sr and Li + Sr scaffolds and moderate bone regeneration in Li scaffolds. Fluorochrome labeling studies showed wide regions of new bone formation in Sr and Li + Sr doped samples as compared to Li doped samples. SEM revealed abundant collagenous network and minimal or no interfacial gap between bone and implant in Sr and Li + Sr doped samples compared to Li doped samples. Micro CT of Li + Sr samples showed highest degree of peripheral cancellous tissue formation on periphery and cortical tissues inside implanted samples and vascularity among four compositions. Our findings suggest that addition of Sr and/or Li alters physico-chemical properties of BAG and promotes early stage in vivo osseointegration and bone remodeling that may offer new insight in bone tissue engineering. PMID:27604654

  16. Poloxamer 407/188 binary thermosensitive hydrogels as delivery systems for infiltrative local anesthesia: Physico-chemical characterization and pharmacological evaluation.

    PubMed

    Akkari, Alessandra C S; Papini, Juliana Z Boava; Garcia, Gabriella K; Franco, Margareth K K Dias; Cavalcanti, Leide P; Gasperini, Antonio; Alkschbirs, Melissa Inger; Yokaichyia, Fabiano; de Paula, Eneida; Tófoli, Giovana R; de Araujo, Daniele R

    2016-11-01

    In this study, we reported the development and the physico-chemical characterization of poloxamer 407 (PL407) and poloxamer 188 (PL188) binary systems as hydrogels for delivering ropivacaine (RVC), as drug model, and investigate their use in infiltrative local anesthesia for applications on the treatment of post-operative pain. We studied drug-micelle interaction and micellization process by light scattering and differential scanning calorimetry (DSC), the sol-gel transition and hydrogel supramolecular structure by small-angle-X-ray scattering (SAXS) and morphological evaluation by Scanning Electron Microscopy (SEM). In addition, we have presented the investigation of drug release mechanisms, in vitro/in vivo toxic and analgesic effects. Micellar dimensions evaluation showed the formation of PL407-PL188 mixed micelles and the drug incorporation, as well as the DSC studies showed increased enthalpy values for micelles formation after addition of PL 188 and RVC, indicating changes on self-assembly and the mixed micelles formation evoked by drug incorporation. SAXS studies revealed that the phase organization in hexagonal structure was not affected by RVC insertion into the hydrogels, maintaining their supramolecular structure. SEM analysis showed similar patterns after RVC addition. The RVC release followed the Higuchi model, modulated by the PL final concentration and the insertion of PL 188 into the system. Furthermore, the association PL407-PL188 induced lower in vitro cytotoxic effects, increased the duration of analgesia, in a single-dose model study, without evoking in vivo inflammation signs after local injection. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mental Rolodexing: Senior Chemistry Majors' Understanding of Chemical and Physical Properties

    ERIC Educational Resources Information Center

    DeFever, Ryan S.; Bruce, Heather; Bhattacharyya, Gautam

    2015-01-01

    Using a constructivist framework, eight senior chemistry majors were interviewed twice to determine: (i) structural inferences they are able to make from chemical and physical properties; and (ii) their ability to apply their inferences and understandings of these chemical and physical properties to solve tasks on the reactivity of organic…

  18. Property distribution of drug-related chemical databases*

    NASA Astrophysics Data System (ADS)

    Oprea, Tudor I.

    2000-04-01

    The process of compound selection and prioritization is crucial for both combinatorial chemistry (CBC) and high throughput screening (HTS). Compound libraries have to be screened for unwanted chemical structures, as well as for unwanted chemical properties. Property extrema can be eliminated by using property filters, in accordance with their actual distribution. Property distribution was examined in the following compound databases: MACCS-II Drug Data Report (MDDR), Current Patents Fast-alert, Comprehensive Medicinal Chemistry, Physician Desk Reference, New Chemical Entities, and the Available Chemical Directory (ACD). The ACDF and MDDRF subsets were created by removing reactive functionalities from the ACD and MDDR databases, respectively. The ACDF subset was further filtered by keeping only molecules with a `drug-like' score [Ajay et al., J. Med. Chem., 41 (1998) 3314; Sadowski and Kubinyi, J. Med. Chem., 41 (1998) 3325] below 0.8. The following properties were examined: molecular weight (MW), the calculated octanol/water partition coefficient (CLOGP), the number of rotatable (RTB) and rigid bonds (RGB), the number of rings (RNG), and the number of hydrogen bond donors (HDO) and acceptors (HAC). Of these, MW and CLOGP follow a Gaussian distribution, whereas all other descriptors have an asymmetric (truncated Gaussian) distribution. Four out of five compounds in ACDF and MDDRF pass the `rule of 5' test, a probability scheme that estimates oral absorption proposed by Lipinski et al. [Adv. Drug Deliv. Rev., 23 (1997) 3]. Because property distributions of HDO, HAC, MW and CLOGP (used in the `rule of 5' test) do not differ significantly between these datasets, the `rule of 5' does not distinguish `drugs' from `nondrugs'. Therefore, Pareto analyses were performed to examine skewed distributions in all compound collections. Seventy percent of the `drug-like' compounds were found between the following limits: 0 ≤ HDO ≤ 2, 2 ≤ HAC ≤ 9, 2 ≤ RTB ≤ 8, and 1

  19. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time-Temperature Superposition Principle.

    PubMed

    Yang, Teng-Chun; Chien, Yi-Chi; Wu, Tung-Lin; Hung, Ke-Chang; Wu, Jyh-Horng

    2017-03-30

    This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time-temperature superposition principle (TTSP), and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance ( ICR ) of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature.

  20. Effects of Heat-Treated Wood Particles on the Physico-Mechanical Properties and Extended Creep Behavior of Wood/Recycled-HDPE Composites Using the Time–Temperature Superposition Principle

    PubMed Central

    Yang, Teng-Chun; Chien, Yi-Chi; Wu, Tung-Lin; Hung, Ke-Chang; Wu, Jyh-Horng

    2017-01-01

    This study investigated the effectiveness of heat-treated wood particles for improving the physico-mechanical properties and creep performance of wood/recycled-HDPE composites. The results reveal that the composites with heat-treated wood particles had significantly decreased moisture content, water absorption, and thickness swelling, while no improvements of the flexural properties or the wood screw holding strength were observed, except for the internal bond strength. Additionally, creep tests were conducted at a series of elevated temperatures using the time–temperature superposition principle (TTSP), and the TTSP-predicted creep compliance curves fit well with the experimental data. The creep resistance values of composites with heat-treated wood particles were greater than those having untreated wood particles due to the hydrophobic character of the treated wood particles and improved interfacial compatibility between the wood particles and polymer matrix. At a reference temperature of 20 °C, the improvement of creep resistance (ICR) of composites with heat-treated wood particles reached approximately 30% over a 30-year period, and it increased significantly with increasing reference temperature. PMID:28772726

  1. Formation and properties of surface-anchored polymer assemblies with tunable physico-chemical characteristics

    NASA Astrophysics Data System (ADS)

    Wu, Tao

    We describe two new methodologies leading to the formation of novel surface-anchored polymer assemblies on solid substrates. While the main goal is to understand the fundamentals pertaining to the preparation and properties of the surface-bound polymer assemblies (including neutral and chargeable polymers), several examples also are mentioned throughout the Thesis that point out to practical applications of such structures. The first method is based on generating assemblies comprising anchored polymers with a gradual variation of grafting densities on solid substrates. These structures are prepared by first covering the substrate with a molecular gradient of the polymerization initiator, followed by polymerization from these substrate-bound initiator centers ("grafting from"). We apply this technique to prepare grafting density gradients of poly(acryl amide) (PAAm) and poly(acrylic acid) (PAA) on silica-covered substrates. We show that using the grafting density gradient geometry, the characteristics of surface-anchored polymers in both the low grafting density ("mushroom") regime as well as the high grafting density ("brush") regime can be accessed conveniently on a single sample. We use a battery of experimental methods, including Fourier transform infrared spectroscopy (FTIR), Near-edge absorption fine structure spectroscopy (NEXAFS), contact angle, ellipsometry, to study the characteristics of the surface-bound polymer layers. We also probe the scaling laws of neutral polymer as a function of grafting density, and for weak polyelectrolyte, in addition to the grafting density, we study the affect of solution ionic strength and pH values. In the second novel method, which we coined as "mechanically assisted polymer assembly" (MAPA), we form surface anchored polymers by "grafting from" polymerization initiators deposited on elastic surfaces that have been previously extended uniaxially by a certain length increment, Deltax. Upon releasing the strain in the

  2. Optical properties and vertical distribution of pollution aerosols in the Mediterranean basin in summertime: airborne observations from the Charmex SOP0, SOP1, and SOP2 campaigns

    NASA Astrophysics Data System (ADS)

    Di Biagio, Claudia; Beekmann, Matthias; Chevallier, Servanne; Denjean, Cyrielle; Doppler, Lionel; Gaimoz, Cecile; Grand, Noel; Loisil, Rodrigue; Mallet, Marc; Pelon, Jacques; Ravetta, Francois; Sartelet, Karine; Schnitt, Sabrina; Triquet, Sylvain; Zapf, Pascal; Formenti, Paola

    2014-05-01

    The Mediterranean basin is a very complex area where high concentrations of atmospheric aerosols of different origin and types may be found. The North-Western part of the Mediterranean basin, due to its closeness with high polluted industrialized areas and coastal high populated cities, is frequently affected by severe pollution episodes. The strength of these episodes is particularly intense during summer when stable meteorological conditions favour the accumulation of pollutants in the lowermost atmospheric layers. Three intensive airborne campaigns (TRAQA, TRansport and Air QuAlity, June-July 2012), ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region, June 2013) and SAFMED (Secondary Aerosol Formation in the MEDiterranean, July 2013) have been conducted over the North-Western and Central Mediterranean basin with the SAFIRE ATR-42 aircraft in the framework of the ChArMex Special Observing Periods 0 and 1. During the different campaigns the ATR-42 was equipped with a large set of instruments for the measurements of the aerosol physico-chemical (GRIMM, SMPS, PCASP, USHAS, FSSP for size distribution, and three lines for filter sampling on polycarbonate and quartz membranes in order to derive the bulk aerosol composition) and optical properties (TSI nephelometer, Magee Sci. aethalomether, and CAPS for scattering, absorption, and extinction coefficients at several wavelengths in the visible). Lidar backscatter profiles at 355, 532, and 1064 nm, meteorological parameters, upward and downward shortwave and longwave radiative fluxes, and atmospheric composition (H2O, CO2, CO, and O3) were also measured from aircraft instrumentation. In this work we present data on the aerosol physico-chemical and optical properties obtained during the 25 scientific flights of TRAQA, ADRIMED, and SAFMED performed in correspondence of pollution episodes. During the campaigns the Western Mediterranean basin was interested by different synoptic

  3. Properties of Basil and Lavender Essential Oils Adsorbed on the Surface of Hydroxyapatite.

    PubMed

    Predoi, Daniela; Groza, Andreea; Iconaru, Simona Liliana; Predoi, Gabriel; Barbuceanu, Florica; Guegan, Regis; Motelica-Heino, Mikael Stefan; Cimpeanu, Carmen

    2018-04-24

    The research conducted in this study presented for the first time results of physico-chemical properties and in vitro antimicrobial activity of hydroxyapatite plant essential oil against Gram-positive bacteria (methicillin-resistant Staphylococcus aureus (MRSA) and S. aureus 0364) and Gram-negative bacteria ( Escherichia coli ATCC 25922). The samples were studied by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy to determine the morphology and structure of the nanocomposites of hydroxyapatite coated with basil (HAp-B) and lavender (HAp-L) essential oils (EOs). The values of the BET specific surface area (S BET ), total pore volume (V P ) and pore size (D P ) were determined. The results for the physico-chemical properties of HAp-L and HAp-B revealed that lavender EOs were well adsorbed on the surface of hydroxyapatite, whereas basil EOs showed a poor adsorption on the surface of hydroxyapatite. We found that the lavender EOs hydroxyapatite (HAp-L) exhibited a very good inhibitory growth activity. The value of the minimum inhibitory concentration (MIC) related to growth bacteria was 0.039 mg/mL for MRSA, 0.02 mg/mL for S. aureus and 0.039 mg/mL E. coli ATCC 25922. The basil EO hydroxyapatite (HAp-B) showed poor inhibition of bacterial cell growth. The MIC value was 0.625 mg/mL for the HAp-B sample in the presence of the MRSA bacteria, 0.313 mg/mL in the presence of S. aureus and 0.078 mg/mL for E. coli ATCC 25922.

  4. Adapting SimpleTreat for simulating behaviour of chemical substances during industrial sewage treatment.

    PubMed

    Struijs, J; van de Meent, D; Schowanek, D; Buchholz, H; Patoux, R; Wolf, T; Austin, T; Tolls, J; van Leeuwen, K; Galay-Burgos, M

    2016-09-01

    The multimedia model SimpleTreat, evaluates the distribution and elimination of chemicals by municipal sewage treatment plants (STP). It is applied in the framework of REACH (Registration, Evaluation, Authorization and Restriction of Chemicals). This article describes an adaptation of this model for application to industrial sewage treatment plants (I-STP). The intended use of this re-parametrized model is focused on risk assessment during manufacture and subsequent uses of chemicals, also in the framework of REACH. The results of an inquiry on the operational characteristics of industrial sewage treatment installations were used to re-parameterize the model. It appeared that one property of industrial sewage, i.e. Biological Oxygen Demand (BOD) in combination with one parameter of the activated sludge process, the hydraulic retention time (HRT) is satisfactory to define treatment of industrial wastewater by means of the activated sludge process. The adapted model was compared to the original municipal version, SimpleTreat 4.0, by means of a sensitivity analysis. The consistency of the model output was assessed by computing the emission to water from an I-STP of a set of fictitious chemicals. This set of chemicals exhibit a range of physico-chemical and biodegradability properties occurring in industrial wastewater. Predicted removal rates of a chemical from raw sewage are higher in industrial than in municipal STPs. The latter have typically shorter hydraulic retention times with diminished opportunity for elimination of the chemical due to volatilization and biodegradation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. SOME CHEMICAL PROPERTIES UNDERLYING ARSENIC'S BIOLOGICAL ACTIVITY

    EPA Science Inventory

    ABSTRACT

    In this paper some of the chemical properties of arsenicals (atomic
    and molecular orbitals, electronegativity, valence state, changes between
    valence state, nucleophilicity, the hard/soft acid/base principle) that may
    account for some of the b...

  6. Emergence of Coding and its Specificity as a Physico-Informatic Problem

    NASA Astrophysics Data System (ADS)

    Wills, Peter R.; Nieselt, Kay; McCaskill, John S.

    2015-06-01

    We explore the origin-of-life consequences of the view that biological systems are demarcated from inanimate matter by their possession of referential information, which is processed computationally to control choices of specific physico-chemical events. Cells are cybernetic: they use genetic information in processes of communication and control, subjecting physical events to a system of integrated governance. The genetic code is the most obvious example of how cells use information computationally, but the historical origin of the usefulness of molecular information is not well understood. Genetic coding made information useful because it imposed a modular metric on the evolutionary search and thereby offered a general solution to the problem of finding catalysts of any specificity. We use the term "quasispecies symmetry breaking" to describe the iterated process of self-organisation whereby the alphabets of distinguishable codons and amino acids increased, step by step.

  7. Response of soil physico-chemical properties to restoration approaches and submergence in the water level fluctuation zone of the Danjiangkou Reservoir, China.

    PubMed

    Shu, Xiao; Zhang, KeRong; Zhang, QuanFa; Wang, WeiBo

    2017-11-01

    With the completion of the Danjiangkou Dam, the impoundment and drainage of dams can significantly alter shorelines, hydrological regime, and sediment and can result in the loss of soil and original riparian vegetation. Revegetation may affect soil properties and have broad important implications both for ecological services and soil recovery. In this work, we investigated the soil properties under different restoration approaches, and before and after submergence in the water level fluctuation zone (WLFZ) of the Danjiangkou Reservoir. Soil physical (bulk density and soil moisture), chemical (pH, soil organic carbon, nitrogen, phosphorus and potassium contents), and heavy metals were determined. This study reported that restoration approaches have impacts on soil moisture, pH, N, soil organic carbon, P, K and heavy metals in the WLFZ of the Danjiangkou Reservoir. Our results indicated that different restoration approaches could increase the soil moisture while decrease soil pH. Higher soil organic carbon in propagule banks transplantation (PBT) and shrubs restoration (SR) indicate that PBT and SR may provide soil organic matter more quickly than trees restoration (TR). SR and TR could significantly improve the soil total P and available P. PBT and SR could improve the soil total K and available K. SR and TR could significantly promote Cu and Zn adsorption, and Pb and Fe release by plant. Submergence could significantly affect the soil pH, NO 3 - -N, NH 4 + -N, total P and available P. Submergence could promote NO 3 - -N and available P adsorption, and NH 4 + -N and total P release by soil. The soil quality index (SQI) values implied that TR and PBT greatly improved soil quality. The present study suggests that PBT and TR could be effective for soil restoration in WLFZ of the Danjiangkou Reservoir. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Dynamic rheological, microstructural and physicochemical properties of blend fish protein recovered from kilka (Clupeonella cultriventris) and silver carp (Hypophthalmichthys molitrix) by the pH-shift process or washing-based technology.

    PubMed

    Abdollahi, Mehdi; Rezaei, Masoud; Jafarpour, Ali; Undeland, Ingrid

    2017-08-15

    This study aimed to evaluate how blending pH-shift produced protein isolates from gutted kilka (Clupeonella cultriventris) and silver carp (Hypophthalmichthys molitrix) affected dynamic rheological and chemical properties of the proteins as well as microstructural and physico-mechanical properties of produced gels. Studied variables were protein solubilization pH (acid vs. alkaline) and blending step (before or after protein precipitation). Comparisons were made with conventionally washed minces from kilka and silver carp fillets; either alone or after blending. Rheological studies revealed that blending alkali-produced protein isolates before precipitation resulted in rapid increase of G' reflecting the formation of intermolecular protein-protein interactions with higher rate. Furthermore, blending of alkali-produced protein isolates and washed minces, respectively, of kilka and silver carp improved physico-mechanical properties of the resultant gels compared to pure kilka proteins. However, the pH-shift method showed higher efficacy in development of blend surimi at the same blending ratio compared to the conventional washing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The Chemical Behavior of Fluids Released during Deep Subduction Based on Fluid Inclusions

    NASA Astrophysics Data System (ADS)

    Frezzotti, M. L.; Ferrando, S.

    2014-12-01

    We present a review of current research on fluid inclusions in (HP-) UHP metamorphic rocks that, combined with existing experimental research and thermodynamic models, allow us to investigate the chemical and physical properties of fluids released during deep subduction, their solvent and element transport capacity, and the subsequent implications for the element recycling in the mantle wedge. An impressive number of fluid inclusion studies indicate three main populations of fluid inclusions in HP and UHP metamorphic rocks: i) aqueous and/or non-polar gaseous fluid inclusions (FI), ii) multiphase solid inclusions (MSI), and iii) melt inclusions (MI). Chemical data from preserved fluid inclusions in rocks match with and implement "model" fluids by experiments and thermodynamics, revealing a continuity behind the extreme variations of physico-chemical properties of subduction-zone fluids. From fore-arc to sub-arc depths, fluids released by progressive devolatilization reactions from slab lithologies change from relatively diluted chloride-bearing aqueous solutions (± N2), mainly influenced by halide ligands, to (alkali) aluminosilicate-rich aqueous fluids, in which polymerization probably governs the solubility and transport of major (e.g., Si and Al) and trace elements (including C). Fluid inclusion data implement the petrological models explaining deep volatile liberation in subduction zones, and their flux into the mantle wedge.

  10. Physico-chemical properties of aerosols in Sao Paulo, Brazil and mechanisms of secondary organic aerosol formation.

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Luiza Godoy, Maria; Godoy, Jose Marcus

    2013-04-01

    Megacities emissions are increasingly becoming a global issue, where emissions from the transportation sector play an increasingly important role. Sao Paulo is a megacity with a population of about 18 million people, 7 million cars and large-scale industrial emissions. As a result of the vehicular and industrial emissions, the air quality in Sao Paulo is bellow WMO standards for aerosol particles and ozone. Many uncertainties are found on gas- and particulate matter vehicular emission factors and their following atmospheric processes, e.g. secondary organic aerosol formation. Due to the uniqueness of the vehicular fuel in Brazil, largely based on ethanol use, such characterization currently holds further uncertainties. To improve the understanding of the role of this unique emission characteristics, we are running a source apportionment study in Sao Paulo focused on the mechanisms of organic aerosol formation. One of the goals of this study is a quantitative aerosol source apportionment focused on vehicular emissions, including ethanol and gasohol (both fuels used by light-duty vehicles). This study comprises four sampling sites with continuous measurements for one year, where trace elements and organic aerosol are being measured for PM2.5 and PM10 along with real-time NOx, O3, PM10 and CO measurements. Aerosol optical properties and size distribution are being measured on a rotation basis between sampling stations. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to measure in real time VOCs and aerosol composition, respectively. Trace elements were measured using XRF and OC/EC analysis was determined with a Sunset OC/EC instrument. A TSI Nephelometer with 3 wavelengths measure light scattering and a MAAP measure black carbon. Results show aerosol number concentrations ranging between 10,000 and 35,000 cm-3, mostly concentrated in the nucleation and Aitken modes, with a peak in size at 80

  11. Evaluation of surficial sediment toxicity and sediment physico-chemical characteristics of representative sites in the Lagoon of Venice (Italy)

    NASA Astrophysics Data System (ADS)

    Losso, C.; Arizzi Novelli, A.; Picone, M.; Marchetto, D.; Pessa, G.; Molinaroli, E.; Ghetti, P. F.; Volpi Ghirardini, A.

    2004-11-01

    Toxic hazard in sites with varying types and levels of contamination in the Lagoon of Venice was estimated by means of toxicity bioassays based on the early life-stages of the autochthonous sea urchin Paracentrotus lividus. Elutriate was chosen as the test matrix, due to its ability to highlight potential toxic effects towards sensitive biological components of the water column caused by sediment resuspension phenomena affecting the Lagoon. Surficial sediments (core-top 5 cm deep), directly influenced by resuspension/redeposition processes, and core sediments (core 20 cm deep), recording time-mediated contamination, were sampled in some sites located in the lagoonal area most greatly influenced by anthropogenic activities. Particle size, organic matter and water content were also analysed. In two sites, the results of physical parameters showed that the core-top sediments were coarser than the 20-cm core sediments. Sperm cell toxicity test results showed the negligible acute toxicity of elutriates from all investigated sites. The embryo toxicity test demonstrated a short-term chronic toxicity gradient for elutriates from the 20-cm core sediments, in general agreement both with the expected contamination gradient and with results of the Microtox® solid-phase test. Elutriates of the core-top 5-cm sediments revealed a totally inverted gradient, in comparison with that for the 20-cm core sediments, and the presence of a "hot spot" of contamination in the site chosen as a possible reference. Investigations on ammonia and sulphides as possible confounding factors excluded their contribution to this "hot spot". Integrated physico-chemical and toxicity results on sediments at various depths demonstrated the presence of disturbed sediments in the central basin of the Lagoon of Venice.

  12. The effect of sewage effluent on the physico-chemical and biological characteristics of the Sand River, Limpopo, South Africa

    NASA Astrophysics Data System (ADS)

    Seanego, K. G.; Moyo, N. A. G.

    Population growth in urban areas is putting pressure on sewage treatment plants. The improper treatment of sewage entering the aquatic ecosystems causes deterioration of the water quality of the receiving water body. The effect of sewage effluent on the Sand River was assessed. Eight sampling sites were selected, site 1 and 2 were upstream of the sewage treatment plant along the urbanised area of Polokwane, whilst sites 3, 4, 5, 6, 7 and 8 were downstream. The physico-chemical parameters and coliform counts in the water samples were determined. The suitability of the water for irrigation was also determined. Hierarchical average linkage cluster analysis produced two clusters, grouping two sites above the sewage treatment works and six sites downstream of the sewage effluent discharge point. Principal component analysis (PCA) identified total nitrogen, total phosphorus, conductivity and salinity as the major factors contributing to the variability of the Sand River water quality. These factors are strongly associated with the downstream sites. Canonial correspondence analysis (CCA) indicated the macroinvertebrates, Chironomidae, Belastomatidae, Chaoborus and Hirudinea being strongly associated with nitrogen, phosphorus, conductivity and temperature. Escherichia coli levels in the Polokwane wastewater treatment works maturation ponds, could potentially lead to contamination of the Polokwane aquifer. The Sodium Adsorption Ratio was between 1.5 and 3.0 and residual sodium carbonate was below 1.24 Meq/l, indicating that the Sand River water is still suitable for irrigation. The total phosphorus concentrations fluctuated across the different site. Total nitrogen concentrations showed a gradual decrease downstream from the point of discharge. This shows that the river still has a good self-purification capacity.

  13. Physico-Chemical Characteristics of Uraniferous Supergene Minerals; CARACTERISTIQUES PHYSICO-CHIMIQUES DES MINERAUX URANIFERES SUPERGENES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Semat, M.A.

    1960-01-01

    Transport and deposit conditions of uraniferous minerals are breifly described. The synthesis of crystallograpic, physical, optical, and thermal properties permits defining the main characteristics of this mineralogical group. Tables to facilicate identification of the supergene uranium minerals are given on investigation by anion and cation; system, cleavages, cell parameters, interplanar spacings, refractive indices, optical barings; classification by decreasing values of the most intense line of the powder diagram; diagram for the three higher interplanar spacings; and diagram of the refractive indices. (auth)

  14. The physico-chemical properties and structural characteristics of artificial soil for cut slope restoration in Southwestern China

    PubMed Central

    Chen, Shunan; Ai, Xiaoyan; Dong, Tengyun; Li, Binbin; Luo, Ruihong; Ai, Yingwei; Chen, Zhaoqiong; Li, Chuanren

    2016-01-01

    Cut slopes are frequently generated by construction work in hilly areas, and artificial soil is often sprayed onto them to promote ecological rehabilitation. The artificial soil properties are very important for effective management of the slopes. This paper uses fractal and moment methods to characterize soil particle size distribution (PSD) and aggregates composition. The fractal dimension (D) showed linear relationships between clay, silt, and sand contents, with coefficients of determination from 0.843 to 0.875, suggesting that using of D to evaluate the PSD of artificial soils is reasonable. The bias (CS) and peak convex (CE) coefficients showed significant correlations with structure failure rate, moisture content, and total porosity, which validated the moment method to quantitatively describe soil structure. Railway slope (RS) soil has lower organic carbon and soil moisture, and higher pH than natural slope soil. Overall, RS exhibited poor soil structure and physicochemical properties, increasing the risk of soil erosion. Hence, more effective management measures should be adopted to promote the restoration of cut slopes. PMID:26883986

  15. Variations in the chemical properties of landfill leachate

    NASA Astrophysics Data System (ADS)

    Chu, L. M.; Cheung, K. C.; Wong, M. H.

    1994-01-01

    Landfill leachates were collected and their chemical properties analyzed once every two months over a ten-month period from the Gin Drinkers' Bay (GDB) and Junk Bay (JB) landfills. The contents of solids, and inorganic and organic components fluctuated considerably with time. In general, the chemical properties of the two leachates correlated negatively ( P<0.05) with the amounts of rainfall prior to the sampling periods. However, magnesium and pH of the leachates remained relatively constant with respect to sampling time. The JB leachate contained higher average contents of solids and inorganic and organic matter than those of GDB with the exception of trace metals. Trace metals were present in the two leachates in trace quantities (<1.0 mg/liter). The concentrations of average ammoniacal nitrogen were 1040 and 549 mg/liter, while chemical oxygen demand (COD) values were 767 and 695 mg/liter for JB and GDB leachates, respectively. These results suggest that the leachates need further treatment before they can be discharged to the coastal waters.

  16. Physico-chemical profiles of the wobble ↔ Watson-Crick G*·2AP(w) ↔ G·2AP(WC) and A·2AP(w) ↔ A*·2AP(WC) tautomerisations: a QM/QTAIM comprehensive survey.

    PubMed

    Brovarets', Ol'ha O; Voiteshenko, Ivan S; Hovorun, Dmytro M

    2017-12-20

    This study is intended to clarify in detail the tautomeric transformations of the wobble (w) G*·2AP(w) and A·2AP(w) nucleobase mispairs involving 2-aminopurine (2AP) into the Watson-Crick (WC) G·2AP(WC) and A*·2AP(WC) base mispairs (asterisks denote mutagenic tautomers of the DNA bases), respectively, by quantum-mechanical methods and Bader's Quantum Theory of Atoms in Molecules. Our previously reported methodology has been used, which allows the evolution of the physico-chemical parameters to be tracked along the entire internal reaction coordinate (IRC), not exclusively in the stationary states of these reactions. These biologically important G*·2AP(w) ↔ G·2AP(WC) and A·2AP(w) ↔ A*·2AP(WC) w ↔ WC tautomerisations, which are involved in mutagenic tautomerically-conformational pathways, determine the origin of the transitions and transversions induced by 2AP. In addition, it is established that they proceed through planar, highly stable, zwitterionic transition states and they exhibit similar physico-chemical profiles and stages of sequential intrapair proton transfer, followed by spatial rearrangement of the nucleobases relative to each other within the base pairs. These w ↔ WC tautomerisations occur non-dissociatively and are accompanied by a significant alteration in geometry (from wobble to Watson-Crick and vice versa) and redistribution of the specific intermolecular interactions, which can be divided into 10 patterns including AHB H-bonds and loosened A-H-B covalent bridges along the IRC of tautomerisation. Based on the redistribution of the geometrical and electron-topological parameters of the intrapair hydrogen bonds, exactly 9 key points have been allocated to characterize the evolution of these reactions.

  17. Chlorine treatment effectiveness and physico-chemical and bacteriological characteristics of treated water supplies in distribution networks of Accra-Tema Metropolis, Ghana

    NASA Astrophysics Data System (ADS)

    Karikari, A. Y.; Ampofo, J. A.

    2013-06-01

    Drinking water quality from two major treatment plants in Ghana; Kpong and Weija Plants, and distribution networks in the Accra-Tema Metropolis were monitored monthly for a year at fifteen different locations. The study determined the relationship between chlorine residual, other physico-chemical qualities of the treated water, and, bacteria regrowth. Results indicated that the treated water at the Kpong and Weija Treatment Plants conformed to WHO guidelines for potable water. However, the water quality deteriorated bacteriologically, from the plants to the delivery points with high numbers of indicator and opportunistic pathogens. This could be due to inadequate disinfection residual, biofilms or accidental point source contamination by broken pipes, installation and repair works. The mean turbidity ranged from 1.6 to 2.4 NTU; pH varied from 6.8 to 7.4; conductivity fluctuated from 71.1 to 293 μS/cm. Chlorine residual ranged from 0.13 to 1.35 mg/l. High residual chlorine was observed at the treatment plants, which decreased further from the plants. Results showed that additional chlorination does not take place at the booster stations. Chlorine showed inverse relationship with microbial counts. Total coliform bacteria ranged from 0 to 248 cfu/100 ml, and faecal coliform values varied from 0 to 128 cfu/100 ml. Other microorganisms observed in the treated water included Aeromonas spp., Clostridium spp. and Pseudomonas spp. Boiling water in the household before consumption will reduce water-related health risks.

  18. [Studies on chemical constituents from seeds of Euryale ferox].

    PubMed

    Sun, Hai-lin; Zhang, Ya-qiong; Xie, Xiao-yan; Che, Yan-yun

    2014-11-01

    To study the chemical constituents from the seeds of Euryale ferox. The chemical constituents were isolated by silica gel column, Sephadex LH-20 and their structures were identified by physico-chemical and spectral analysis. Seven compounds were purified from the 95% ethanol extract. These constituents were elucidated as protocatechuic acid (1), gallic acid (2), gallic acid ethyl ester(3),5 ,7-dihydroxychromone(4), β-sitosterol(5), daucosterol(6), and 5,7-dihydroxy-6,4'-dimethoxyflavone(7), respectively. All compounds are isolated from this plant for the first time.

  19. Assessment of Chemical and Physico-Chemical Properties of Cyanobacterial Lipids for Biodiesel Production

    PubMed Central

    Da Rós, Patrícia C. M.; Silva, Caroline S. P.; Silva-Stenico, Maria E.; Fiore, Marli F.; De Castro, Heizir F.

    2013-01-01

    Five non-toxin producing cyanobacterial isolates from the genera Synechococcus, Trichormus, Microcystis, Leptolyngbya and Chlorogloea were examined in terms of quantity and quality as lipid feedstock for biofuel production. Under the conditions used in this study, the biomass productivity ranged from 3.7 to 52.7 mg·L−1·day−1 in relation to dry biomass, while the lipid productivity varied between 0.8 and 14.2 mg·L−1·day−1. All cyanobacterial strains evaluated yielded lipids with similar fatty acid composition to those present in the seed oils successfully used for biodiesel synthesis. However, by combining biomass and lipid productivity parameters, the greatest potential was found for Synechococcus sp. PCC7942, M. aeruginosa NPCD-1 and Trichormus sp. CENA77. The chosen lipid samples were further characterized using Fourier Transform Infrared spectroscopy (FTIR), viscosity and thermogravimetry and used as lipid feedstock for biodiesel synthesis by heterogeneous catalysis. PMID:23880929

  20. Correlations Between Optical, Chemical and Physical Properties of Biomass Burn Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hopkins, Rebecca J.; Lewis, Keith M.; Dessiaterik, Yury

    2007-09-20

    Single scattering albedo (ω) and Angstrom absorption coefficient (αap) values are measured at 405, 532 and 870 nm for aerosols generated during controlled laboratory combustion of twelve wildland fuels. Considerable fuel dependent variation in these optical properties is observed at these wavelengths. Complementary microspectroscopy techniques are used to elucidate spatially resolved local chemical bonding, carbon-to-oxygen atomic ratios, percent of sp2 hybridization (graphitic nature), elemental composition, particle size and morphology. These parameters are compared directly with the corresponding optical properties for each combustion product, facilitating an understanding of the fuel dependent variability observed. Results indicate that combustion products can be dividedmore » into three categories based on chemical, physical and optical properties. Only materials displaying a high degree of sp2 hybridization, with chemical and physical properties characteristic of ‘soot’ or black carbon, exhibit ω and αap values that indicate a high light absorbing capacity.« less

  1. A Chemical Properties Simulator to Support Integrated Environmental Modeling (proceeding)

    EPA Science Inventory

    Users of Integrated Environmental Modeling (IEM) systems are responsible for defining individual chemicals and their properties, a process that is time-consuming at best and overwhelming at worst, especially for new chemicals with new structures. A software tool is needed to allo...

  2. Effect of storage temperature on physico-chemical and sensory attributes of purple passion fruit (Passiflora edulis Sims).

    PubMed

    Kishore, Kundan; Pathak, K A; Shukla, Rohit; Bharali, Rinku

    2011-08-01

    Physico-chemical and sensory quality of juice from purple passion fruit under different storage temperature and time were assessed. The maximum loss in fruit weight was recorded under room temperature (25 ± 1°C) followed by at 11 ± 1°C. There was an increase in juice percentage up to 9 and 13 days under room temperature and storage at 11 ± 1°C respectively. The optimum flavour in juice was up to 5 days at 25 ± 1°C and up to 21 days at 8 ± 1°C. A significant reduction in sourness was recorded on 5th day under all treatments and the scores for sourness became almost constant after 17 days. The maximum increase in the mean scores of sweetness on 5th day was observed at 25 ± 1°C followed by at 11 ± 1°C. The optimum level of juice sweetness was maintained up to 21 days at 8 ± 1°C. Total soluble solids content increased in initial stage followed by reduction. There was a reduction in the titrable acidity up to 21 days at 8 ± 1°C. A decreasing trend in the reducing and non-reducing sugar of passion fruit was observed under all the treatments. Fruits stored at 25 ± 1°C, developed off-flavour in juice after 5 days, while storage at 8 ± 1°C produced no off-flavor even up to 21 days. Fruits can be stored for 5 days only at 25 ± 1°C as the overall sensory quality of juice reduced significantly afterwards, while juice maintained the optimum overall quality up to 21 days at 8 ± 1°C.

  3. Assisted phytostabilization of a multicontaminated mine technosol using biochar amendment: Early stage evaluation of biochar feedstock and particle size effects on As and Pb accumulation of two Salicaceae species (Salix viminalis and Populus euramericana).

    PubMed

    Lebrun, Manhattan; Miard, Florie; Nandillon, Romain; Léger, Jean-Christophe; Hattab-Hambli, Nour; Scippa, Gabriella S; Bourgerie, Sylvain; Morabito, Domenico

    2018-03-01

    Soil contamination by metal(loid)s is one of the most important environmental problem. It leads to loss of environment biodiversity and soil functions and can have harmful effects on human health. Therefore, contaminated soils could be remediated, using phytoremediation. Indeed, plant growth will improve soil conditions while accumulating metal(loid)s and modifying their mobility. However, due to the poor fertility and high metal(loid)s levels of these soils, amendments, like biochar, has to be applied. This study was performed on a former mine technosol contaminated by As and Pb and aimed to study (i) the effect of biochar on soil physico-chemical properties and plant phytostabilization potential (ii) biochar feedstock and particle size effects. In this goal, a mesocosm experiment was set up using four different biochars, obtained from two feedstocks (lightwood and pinewood) and harboring two particle sizes (inf. 0.1 mm and 0.2-0.4 mm) and two Salicaceae species. Soil and soil pore water physico-chemical properties as well as plant growth and metal(loid)s distribution were assessed. The results showed that biochar was efficient in improving soil physico-chemical properties and reducing Pb soil pore water concentrations. This amelioration allowed plant growth and increased dry weight production of both species. Regarding metal(loid)s distribution, willow and poplar showed an As and Pb accumulation in roots and low translocation towards edible parts, i.e stems and leaves, which shows a phytostabilization potential. Finally, the 2 biochar parameters, feedstock and particle size, only affected soil and soil pore water physico-chemical properties while having no effect on plant growth. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Physico-chemical, colorimetric, rheological parameters and chemometric discrimination of the origin of Mugil cephalus' roes during the manufacturing process of Bottarga.

    PubMed

    Caredda, Marco; Addis, Margherita; Pes, Massimo; Fois, Nicola; Sanna, Gabriele; Piredda, Giovanni; Sanna, Gavino

    2018-06-01

    The aim of this work was to measure the physico-chemical and the colorimetric parameters of ovaries from Mugil cephalus caught in the Tortolì lagoon (South-East coast of Sardinia) along the steps of the manufacturing process of Bottarga, together with the rheological parameters of the final product. A lowering of all CIELab coordinates (lightness, redness and yellowness) was observed during the manufacture process. All CIELab parameters were used to build a Linear Discriminant Analysis (LDA) predictive model able to determine in real time if the roes had been subdued to a freezing process, with a success in prediction of 100%. This model could be used to identify the origin of the roes, since only the imported ones are frozen. The major changes of all the studied parameters (p < 0.05) were noted in the drying step rather than in the salting step. After processing, Bottarga was characterized by a pH value of 5.46 (CV = 2.8) and a moisture content of 25% (CV = 8), whereas the typical per cent amounts of proteins, fat and NaCl, calculated as a percentage on the dried weight, were 56 (CV = 2), 34 (CV = 3) and 3.6 (CV = 17), respectively. The physical chemical changes of the roes during the manufacturing process were consistent for moisture, which decreased by 28%, whereas the protein and the fat contents on the dried weight got respectively lower of 3% and 2%. NaCl content increased by 3.1%. Principal Component Analyses (PCA) were also performed on all data to establish trends and relationships among all parameters. Hardness and consistency of Bottarga were negatively correlated with the moisture content (r = -0.87 and r = -0.88, respectively), while its adhesiveness was negatively correlated with the fat content (r = -0.68). Copyright © 2018. Published by Elsevier Ltd.

  5. Effect of gamma radiation on the physico-chemical properties of alginate-based films and beads

    NASA Astrophysics Data System (ADS)

    Huq, Tanzina; Khan, Avik; Dussault, Dominic; Salmieri, Stephane; Khan, Ruhul A.; Lacroix, Monique

    2012-08-01

    Alginate solution (3%, w/v) was prepared using deionized water from its powder. Then the solution was exposed to gamma radiation (0.1-25 kGy). The alginate films were prepared by solution casting. It was found that gamma radiation has strong effect on alginate solution. At low doses, mechanical strength of the alginate films improved but after 5 kGy dose, the strength started to decrease. The mechanism of alginate radiolysis in aqueous solution is discussed. Film formation was not possible from alginate solution at doses >5 kGy. The mechanical properties such as puncture strength (PS), puncture deformation (PD), viscoelasticity (Y) coefficient of the un-irradiated films were investigated. The values of PS, PD and Y coefficient of the films were 333 N/mm, 3.20 mm and 27%, respectively. Alginate beads were prepared from 3% alginate solution (w/v) by ionotropic gelation method in 5% CaCl2 solution. The rate of gel swelling improved in irradiated alginate-based beads at low doses (up to 0.5 kGy).

  6. Acoustic characterisation of liquid foams with an impedance tube.

    PubMed

    Pierre, Juliette; Guillermic, Reine-Marie; Elias, Florence; Drenckhan, Wiebke; Leroy, Valentin

    2013-10-01

    Acoustic measurements provide convenient non-invasive means for the characterisation of materials. We show here for the first time how a commercial impedance tube can be used to provide accurate measurements of the velocity and attenuation of acoustic waves in liquid foams, as well as their effective "acoustic" density, over the 0.5-6kHz frequency range. We demonstrate this using two types of liquid foams: a commercial shaving foam and "home-made" foams with well-controlled physico-chemical and structural properties. The sound velocity in the latter foams is found to be independent of the bubble size distribution and is very well described by Wood's law. This implies that the impedance technique may be a convenient way to measure in situ the density of liquid foams. Important questions remain concerning the acoustic attenuation, which is found to be influenced in a currently unpredictible manner by the physico-chemical composition and the bubble size distribution of the characterised foams. We confirm differences in sound velocities in the two types of foams (having the same structural properties) which suggests that the physico-chemical composition of liquid foams has a non-negligible effect on their acoustic properties.

  7. Retention of silver nano-particles and silver ions in calcareous soils: Influence of soil properties.

    PubMed

    Rahmatpour, Samaneh; Shirvani, Mehran; Mosaddeghi, Mohammad R; Bazarganipour, Mehdi

    2017-05-15

    The rapid production and application of silver nanoparticles (AgNPs) have led to significant release of AgNPs into the terrestrial environments. Once released into the soil, AgNPs could enter into different interactions with soil particles which play key roles in controlling the fate and transport of these nanoparticles. In spite of that, experimental studies on the retention of AgNPs in soils are very scarce. Hence, the key objective of this research was to find out the retention behavior of AgNPs and Ag(I) ions in a range of calcareous soils. A second objective was to determine the extent to which the physico-chemical properties of the soils influence the Ag retention parameters. To this end, isothermal batch experiments were used to determine the retention of Poly(vinylpyrrolidinone)-capped AgNPs (PVP-AgNPs) and Ag(I) ions by nine calcareous soils with a diversity of physico-chemical properties. The results revealed that the retention data for both PVP-AgNPs and Ag(I) ions were well described by the classical Freundlich and Langmuir isothermal equations. The retention of PVP-AgNPs and Ag(I) ions was positively correlated to clay and organic carbon (OC) contents as well as electrical conductivity (EC), pH, and cation exchange capacity (CEC) of the soils. Due to multicolinearity among the soil properties, principal component analysis (PCA) was used to group the soil properties which affect the retention of PVP-AgNPs and Ag(I) ions. Accordingly, we identified two groups of soil properties controlling retention of PVP-AgNPs and Ag(I) ions in the calcareous soils. The first group comprised soil solid phase parameters like clay, OC, and CEC, which generally control hetero-aggregation and adsorption reactions and the second group included soil solution variables such as EC and pH as well as Cl - and Ca 2+ concentrations, which are supposed to mainly affect homo-aggregation and precipitation reactions. Copyright © 2017. Published by Elsevier Ltd.

  8. TSCA Work Plan Chemical Technical Supplement – Physicochemical Properties and Environmental Fate of the Brominated Phthalates Cluster (BPC) Chemicals

    EPA Pesticide Factsheets

    TSCA Work Plan Chemical Technical Supplement – Physicochemical Properties and Environmental Fate of the Brominated Phthalates Cluster (BPC) Chemicals -- Brominated Phthalates Cluster Flame Retardants.

  9. Physico-chemical characterization of African urban aerosols (Bamako in Mali and Dakar in Senegal) and their toxic effects in human bronchial epithelial cells: description of a worrying situation.

    PubMed

    Val, Stéphanie; Liousse, Cathy; Doumbia, El Hadji Thierno; Galy-Lacaux, Corinne; Cachier, Hélène; Marchand, Nicolas; Badel, Anne; Gardrat, Eric; Sylvestre, Alexandre; Baeza-Squiban, Armelle

    2013-04-02

    The involvement of particulate matter (PM) in cardiorespiratory diseases is now established in developed countries whereas in developing areas such as Africa with a high level of specific pollution, PM pollution and its effects are poorly studied. Our objective was to characterize the biological reactivity of urban African aerosols on human bronchial epithelial cells in relation to PM physico-chemical properties to identify toxic sources. Size-speciated aerosol chemical composition was analyzed in Bamako (BK, Mali, 2 samples with one having desert dust event BK1) and Dakar (DK; Senegal) for Ultrafine UF, Fine F and Coarse C PM. PM reactivity was studied in human bronchial epithelial cells investigating six biomarkers (oxidative stress responsive genes and pro-inflammatory cytokines). PM mass concentrations were mainly distributed in coarse mode (60%) and were impressive in BK1 due to the desert dust event. BK2 and DK samples showed a high content of total carbon characteristic of urban areas. The DK sample had huge PAH quantities in bulk aerosol compared with BK that had more water soluble organic carbon and metals. Whatever the site, UF and F PM triggered the mRNA expression of the different biomarkers whereas coarse PM had little or no effect. The GM-CSF biomarker was the most discriminating and showed the strongest pro-inflammatory effect of BK2 PM. The analysis of gene expression signature and of their correlation with main PM compounds revealed that PM-induced responses are mainly related to organic compounds. The toxicity of African aerosols is carried by the finest PM as with Parisian aerosols, but when considering PM mass concentrations, the African population is more highly exposed to toxic particulate pollution than French population. Regarding the prevailing sources in each site, aerosol biological impacts are higher for incomplete combustion sources resulting from two-wheel vehicles and domestic fires than from diesel vehicles (Dakar). Desert dust

  10. Properties Characterization of Chemically Modified Hemp Hurds

    PubMed Central

    Stevulova, Nadezda; Cigasova, Julia; Estokova, Adriana; Terpakova, Eva; Geffert, Anton; Kacik, Frantisek; Singovszka, Eva; Holub, Marian

    2014-01-01

    The effect of chemical treatment of hemp hurds slices in three solutions (EDTA (Ethylenediaminetetraacetic acid), NaOH and Ca(OH)2) on the properties of natural material was discussed in this paper. Changes in the morphology, chemical composition and structure as well as thermal stability of hemp hurds before and after their modification were investigated by using FTIR (Fourier transform infrared spectroscopy), XRD (X-ray powder diffraction analysis) and TG (thermogravimetry)/DSC (differential scanning calorimetry). Size exclusion chromatography (SEC) measurements were used for determination of degree of cellulose polymerization of hemp hurd samples. Chemical modification is related to the partial removal of non-cellulosic components of lignin, hemicellulose and pectin as well as waxes from the surface of hemp hurd slices. Another effect of the chemical treatment applied is connected with increasing the crystallinity index of cellulose determined by FTIR and XRD methods. Decrease in degree of cellulose polymerization and polydispersity index in chemically modified hemp hurds compared to the original sample was observed. Increase in thermal stability of treated hemp hurd was found. The most significant changes were observed in alkaline treated hemp hurds by NaOH. PMID:28788294

  11. Biomedically relevant chemical and physical properties of coal combustion products.

    PubMed Central

    Fisher, G L

    1983-01-01

    The evaluation of the potential public and occupational health hazards of developing and existing combustion processes requires a detailed understanding of the physical and chemical properties of effluents available for human and environmental exposures. These processes produce complex mixtures of gases and aerosols which may interact synergistically or antagonistically with biological systems. Because of the physicochemical complexity of the effluents, the biomedically relevant properties of these materials must be carefully assessed. Subsequent to release from combustion sources, environmental interactions further complicate assessment of the toxicity of combustion products. This report provides an overview of the biomedically relevant physical and chemical properties of coal fly ash. Coal fly ash is presented as a model complex mixture for health and safety evaluation of combustion processes. PMID:6337824

  12. Protein Corona Composition of Superparamagnetic Iron Oxide Nanoparticles with Various Physico-Chemical Properties and Coatings

    NASA Astrophysics Data System (ADS)

    Sakulkhu, Usawadee; Mahmoudi, Morteza; Maurizi, Lionel; Salaklang, Jatuporn; Hofmann, Heinrich

    2014-05-01

    Because of their biocompatibility and unique magnetic properties, superparamagnetic iron oxide nanoparticles NPs (SPIONs) are recognized as some of the most prominent agents for theranostic applications. Thus, understanding the interaction of SPIONs with biological systems is important for their safe design and efficient applications. In this study, SPIONs were coated with 2 different polymers: polyvinyl alcohol polymer (PVA) and dextran. The obtained NPs with different surface charges (positive, neutral, and negative) were used as a model study of the effect of surface charges and surface polymer materials on protein adsorption using a magnetic separator. We found that the PVA-coated SPIONs with negative and neutral surface charge adsorbed more serum proteins than the dextran-coated SPIONs, which resulted in higher blood circulation time for PVA-coated NPs than the dextran-coated ones. Highly abundant proteins such as serum albumin, serotransferrin, prothrombin, alpha-fetoprotein, and kininogen-1 were commonly found on both PVA- and dextran-coated SPIONs. By increasing the ionic strength, soft- and hard-corona proteins were observed on 3 types of PVA-SPIONs. However, the tightly bound proteins were observed only on negatively charged PVA-coated SPIONs after the strong protein elution.

  13. Effect of polymer blend types and gamma radiation on the physico-chemical properties of polycarbonate

    NASA Astrophysics Data System (ADS)

    Nouh, S. A.; Magida, M. M.; Al-Shekify, L. S.; Bashter, I. I.

    2016-12-01

    Samples from polycarbonate (PC) were classified into two main groups. The first group was blended with Abietic acid (Rosin) with different compositions, while the second group was blended with ethylene-vinyl acetate (EVA) copolymer with almost the same composition. A comparative study of the effect of both Rosin and EVA concentration on the thermal stability of PC has been investigated using thermogravimetric analysis. The results show that blending with Rosin causes the dominance of degradation. Samples from PC with 20% Rosin blend were irradiated with gamma at the dose of range 20-300 kGy. The resultant effect of gamma radiation on the structural properties of the 20% Rosin/ 80%PC blend has been investigated using Fourier Transform Infrared FTIR spectroscopy. The results indicate that degradation of the polymer blend dominates, thus increases the creation of hot free radicals that leads to the formation of color centers in PC. In addition, the transmission of the 20% Rosin/80%PC samples as well as color changes was studied. The color intensity ΔE was greatly increased with increasing the gamma dose up to 300 kGy, accompanied by a significant increase in the blue color component.

  14. Characterisation of the physico-mechanical parameters of MSW.

    PubMed

    Stoltz, Guillaume; Gourc, Jean-Pierre; Oxarango, Laurent

    2010-01-01

    Following the basics of soil mechanics, the physico-mechanical behaviour of municipal solid waste (MSW) can be defined through constitutive relationships which are expressed with respect to three physical parameters: the dry density, the porosity and the gravimetric liquid content. In order to take into account the complexity of MSW (grain size distribution and heterogeneity larger than for conventional soils), a special oedometer was designed to carry out laboratory experiments. This apparatus allowed a coupled measurement of physical parameters for MSW settlement under stress. The studied material was a typical sample of fresh MSW from a French landfill. The relevant physical parameters were measured using a gas pycnometer. Moreover, the compressibility of MSW was studied with respect to the initial gravimetric liquid content. Proposed methods to assess the set of three physical parameters allow a relevant understanding of the physico-mechanical behaviour of MSW under compression, specifically, the evolution of the limit liquid content. The present method can be extended to any type of MSW. 2010 Elsevier Ltd. All rights reserved.

  15. Properties of sugar-based low-melting mixtures

    NASA Astrophysics Data System (ADS)

    Fischer, Veronika; Kunz, Werner

    2014-05-01

    Physico-chemical properties of ternary sugar-based low-melting mixtures were determined. Choline chloride, urea and glucose or sorbitol, serving as sugars, were blended in various compositions. The refractive index, density, viscosity, decomposition temperatures and glass transition temperatures were measured. Further, the influence of temperature and water content was investigated. The results show that the mixtures are liquid below room temperature and the viscosity and density are dependent on the temperature and composition. Moreover, the viscosity decreases with increasing water content. These mixtures are biodegradable, low toxic, non-volatile, non-reactive with water and can be accomplished with low-cost materials. In consideration of these advantages and a melting point below room temperature, these low-melting mixtures can be a good alternative to ionic liquids as well as environmentally unfriendly and toxic solvents.

  16. Physico-Chemical and Structural Interpretation of Discrete Derivative Indices on N-Tuples Atoms

    PubMed Central

    Martínez-Santiago, Oscar; Marrero-Ponce, Yovani; Barigye, Stephen J.; Le Thi Thu, Huong; Torres, F. Javier; Zambrano, Cesar H.; Muñiz Olite, Jorge L.; Cruz-Monteagudo, Maykel; Vivas-Reyes, Ricardo; Vázquez Infante, Liliana; Artiles Martínez, Luis M.

    2016-01-01

    This report examines the interpretation of the Graph Derivative Indices (GDIs) from three different perspectives (i.e., in structural, steric and electronic terms). It is found that the individual vertex frequencies may be expressed in terms of the geometrical and electronic reactivity of the atoms and bonds, respectively. On the other hand, it is demonstrated that the GDIs are sensitive to progressive structural modifications in terms of: size, ramifications, electronic richness, conjugation effects and molecular symmetry. Moreover, it is observed that the GDIs quantify the interaction capacity among molecules and codify information on the activation entropy. A structure property relationship study reveals that there exists a direct correspondence between the individual frequencies of atoms and Hückel’s Free Valence, as well as between the atomic GDIs and the chemical shift in NMR, which collectively validates the theory that these indices codify steric and electronic information of the atoms in a molecule. Taking in consideration the regularity and coherence found in experiments performed with the GDIs, it is possible to say that GDIs possess plausible interpretation in structural and physicochemical terms. PMID:27240357

  17. Physico-chemical characteristics and free fatty acid composition of dry fermented mutton sausages as affected by the use of various combinations of starter cultures and spices.

    PubMed

    Zhao, Lihua; Jin, Ye; Ma, Changwei; Song, Huanlu; Li, Hui; Wang, Zhenyu; Xiao, Shan

    2011-08-01

    The microbiological, physico-chemical and free fatty acid composition of dry fermented mutton sausages were determined during ripening and storage. Three sausage mixtures (starter culture [SC], SC and black pepper [SC+BP] and SC, BP and cumin [SC+BP+C]) were compared with a control (CO). In general, the lactic acid bacteria populations in the SC+BP increased significantly to 9 log CFU/g and were higher than the CO (8 log CFU/g) (P<0.05) from fermentation to ripening. The pH values of the SC, SC+BP and SC+BP+C were 4.81, 4.55 and 4.53 respectively, significantly lower (P<0.05) than the CO at the end of fermentation. The water activity (a(w)) in all sausages decreased significantly to 0.88 at Day 7. The total free fatty acid (TFFA) in the treatments increased significantly (P<0.05) during ripening and storage. The levels of MUFA+PUFA/SFA in SC+BP and SC+BP+C at Day 7 were 2.44 and 2.31 respectively, higher than the control (1.65) (P>0.05). Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. [Soil water reservoir properties and influencing factors of typical newly-established green belts of Shanghai Chenshan Botanical Garden, China.

    PubMed

    Wu, Hai Bing; Fang, Hai Lan; Peng, Hong Ling

    2016-05-01

    The effects of different vegetation types, compaction ways and soil basic physico-chemical properties on soil water reservoir in the typical newly-established green belts of Shanghai Chenshan Botanical Garden were studied. The results showed that the total reservoir capacity, detention capacity and effective storage for the Botanical Garden were lower than those of natural forests. However, the dead storage was very high accounting for 60.6% of the total reservoir capacity, resulting in reduced flood storage and drainage capacity for the greens. The total reservoir capacity and detention capacity of different vegetation types were in order of brush land> tree land> grassland> bamboo land> bare land. The effective storages of the brush land and the tree land were relatively high, whereas those of the bare land and the bamboo land were lower. The ratios of the dead storage over the total re-servoir capacity in the bare land and the bamboo land were relatively high with the values 65.5% and 67.6%, respectively. The total reservoir capacity, detention capacity and effective storage of the brush land were significantly different from those of the bare land. The vegetation significantly improved the water storage and retention capacity for the soil, while the compaction by large machinery and man-caused trampling reduced the total reservoir capacity, detention capacity and effective storage of soils. The water reservoir properties were influenced by soil bulk density, saturated hydraulic conductivity, capillary porosity, non-capillary porosity, total porosity, clay and organic matter contents. Therefore, improving the soil physico-chemical properties might increase the soil reservoir capacity of the urban green belt effectively.

  19. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  20. Surface properties of hydrogenated nanodiamonds: a chemical investigation.

    PubMed

    Girard, H A; Petit, T; Perruchas, S; Gacoin, T; Gesset, C; Arnault, J C; Bergonzo, P

    2011-06-28

    Hydrogen terminations (C-H) confer to diamond layers specific surface properties such as a negative electron affinity and a superficial conductive layer, opening the way to specific functionalization routes. For example, efficient covalent bonding of diazonium salts or of alkene moieties can be performed on hydrogenated diamond thin films, owing to electronic exchanges at the interface. Here, we report on the chemical reactivity of fully hydrogenated High Pressure High Temperature (HPHT) nanodiamonds (H-NDs) towards such grafting, with respect to the reactivity of as-received NDs. Chemical characterizations such as FTIR, XPS analysis and Zeta potential measurements reveal a clear selectivity of such couplings on H-NDs, suggesting that C-H related surface properties remain dominant even on particles at the nanoscale. These results on hydrogenated NDs open up the route to a broad range of new functionalizations for innovative NDs applications development. This journal is © the Owner Societies 2011

  1. Chemical composition and functional characteristics of dietary fiber-rich powder obtained from core of maize straw.

    PubMed

    Lv, Jin-Shun; Liu, Xiao-Yan; Zhang, Xiao-Pan; Wang, Lin-Shuang

    2017-07-15

    A novel dietary fiber (MsCDF) based core of maize straw (Core) was prepared by using high boiling solvent of sodium peroxide by high pressure pretreatment (HBSHP). The composition of MsCDF, and several physicochemical properties for MsCDF related to its nutritional quality were investigated. The results revealed that the MsCDF contains high contents total dietary fiber (TDF), soluble dietary fiber (SDF), insoluble dietary fiber (IDF) and two main monosaccharaides, xylose and glucose. Meanwhile, the studies of physicochemical properties of MsCDF indicated that MsCDF performed well water-holding capacity (WHC), oil-holding capacity (OHC), Swelling, solubility (SOL), Glucose dialysis retardation index (GDRI) and adsorption capacity on cholesterol. The results of this study serve as evidence that MsCDF can be used as a functional food additive, Core can be used as a crude material to produce MsCDF and the technology of HBSHP can be used to modify the physico-chemical properties of Core. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. SPARC GENERATED CHEMICAL PROPERTIES DATABASE FOR USE IN NATIONAL RISK ASSESSMENTS

    EPA Science Inventory

    The SPARC (Sparc Performs Automated Reasoning in Chemistry) Model was used to provide temperature dependent algorithms used to estimate chemical properties for approximately 200 chemicals of interest to the promulgation of the Hazardous Waste Identification Rule (HWIR) . Proper...

  3. Predicting the properties of the lead alloys from DFT calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buimaga-Iarinca, L., E-mail: luiza.iarinca@itim-cj.ro; Calborean, A.

    2015-12-23

    We provide qualitative results for the physical properties of the lead alloys at atomic scale by using DFT calculations. Our approach is based on the two assumptions: (i) the geometric structure of lead atoms provides a matrix where the alloying elements can take their positions in the structure as substitutions and (ii) there is a small probability of a direct interaction between the alloying elements, thus the interactions of each alloying element may be approximated by the interactions to the lead matrix. DFT calculations are used to investigate the interaction between several types of impurities and the lead matrix formore » low concentrations of the alloying element. We report results such as the enthalpy of formation, charge transfer and mechanical stress induced by the impurities in the lead matrix; these results can be used as qualitative guide in tuning the physico-chemical properties of the lead alloys.« less

  4. Estimation of nutrients and organic matter in Korean swine slurry using multiple regression analysis of physical and chemical properties.

    PubMed

    Suresh, Arumuganainar; Choi, Hong Lim

    2011-10-01

    Swine waste land application has increased due to organic fertilization, but excess application in an arable system can cause environmental risk. Therefore, in situ characterizations of such resources are important prior to application. To explore this, 41 swine slurry samples were collected from Korea, and wide differences were observed in the physico-biochemical properties. However, significant (P<0.001) multiple property correlations (R²) were obtained between nutrients with specific gravity (SG), electrical conductivity (EC), total solids (TS) and pH. The different combinations of hydrometer, EC meter, drying oven and pH meter were found useful to estimate Mn, Fe, Ca, K, Al, Na, N and 5-day biochemical oxygen demands (BOD₅) at improved R² values of 0.83, 0.82, 0.77, 0.75, 0.67, 0.47, 0.88 and 0.70, respectively. The results from this study suggest that multiple property regressions can facilitate the prediction of micronutrients and organic matter much better than a single property regression for livestock waste. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Crystallization, Optical and Chemical Properties of Fluoride Glasses

    NASA Technical Reports Server (NTRS)

    Doremus, R. H.

    1985-01-01

    Fluoride glasses have great promise as infrared optical components, especially fibers, because they are transparent to 8 micrometers and higher. In order to optimize properties, different glass compositions are needed. Some are hard to form in a container, and may possibly be formable in a containerless furnace. Understanding of crystallization with and without a container could lead to glasses with optimum properties. Chemical durability (attack by water) can limit or extend the applicability of fluoride glasses. Progress to date is given.

  6. Physico-mechanical properties of a brick based with sand of dunes stabilized by hydraulic lime

    NASA Astrophysics Data System (ADS)

    Djouhri, Mohamed; Bentebba, Mohamed Taher

    2017-02-01

    Brick establishment is an essential and elementary cell in any construction. In this study, bricks in mortar with sand of dunes (BRSD) were made and submitted to the various trials of characterization. The addition of hydraulic lime according to progressive rates allowed following the influence of the dosage of the latter on the physical characteristics and on the mechanical performances of bricks according to several formulations. The experimental method of formulation is mainly based on the optimization of materials constituting the hydraulic lime and the sand dunes, with the aim of reaching a new composition to enjoy physico-mechanical characteristics wishes. The various realized tries showed that the addition of lime, in a certain interval, possesses an important influence on the physic-mechanical performances of bricks in particular the mechanical resistance and the heat insulation, for a dosage of 30 % of hydraulic lime, the compression resistance of the brick is 8 MPa with a thermal conductivity of 1.7 W/m°C.

  7. Interstellar matrices: the chemical composition and evolution of interstellar ices as observed by ISO.

    PubMed

    d'Hendecourt, L; Dartois, E

    2001-03-15

    Matrix isolation techniques have been developed in the early sixties as a tool for studying the spectroscopic properties of out of equilibrium species (atoms, radicals, ions, reactive molecules), embedded in rare gas inert matrices at low temperatures. Cold interstellar grains surfaces are able to condense out gas phase molecules, routinely observed by radioastronomy. These grain 'mantles' can be considered as 'interstellar matrices'. However, these matrices are not clean and unreactive. They are made principally of dirty ices whose composition must be determined carefully to assess the importance of the solid state chemistry that takes place in the Interstellar Medium. Infrared spectroscopy, both in astronomy and in the laboratory, is the unique tool to determine the chemical composition of these ices. Astronomical spectra can directly be compared with laboratory ones obtained using classical matrix isolation techniques. Furthermore, dedicated experiments may be undertaken to further improve the understanding of the basic physico-chemical processes that take place in cosmic ices.

  8. History of EPI Suite™ and future perspectives on chemical property estimation in US Toxic Substances Control Act new chemical risk assessments.

    PubMed

    Card, Marcella L; Gomez-Alvarez, Vicente; Lee, Wen-Hsiung; Lynch, David G; Orentas, Nerija S; Lee, Mari Titcombe; Wong, Edmund M; Boethling, Robert S

    2017-03-22

    Chemical property estimation is a key component in many industrial, academic, and regulatory activities, including in the risk assessment associated with the approximately 1000 new chemical pre-manufacture notices the United States Environmental Protection Agency (US EPA) receives annually. The US EPA evaluates fate, exposure and toxicity under the 1976 Toxic Substances Control Act (amended by the 2016 Frank R. Lautenberg Chemical Safety for the 21 st Century Act), which does not require test data with new chemical applications. Though the submission of data is not required, the US EPA has, over the past 40 years, occasionally received chemical-specific data with pre-manufacture notices. The US EPA has been actively using this and publicly available data to develop and refine predictive computerized models, most of which are housed in EPI Suite™, to estimate chemical properties used in the risk assessment of new chemicals. The US EPA develops and uses models based on (quantitative) structure-activity relationships ([Q]SARs) to estimate critical parameters. As in any evolving field, (Q)SARs have experienced successes, suffered failures, and responded to emerging trends. Correlations of a chemical structure with its properties or biological activity were first demonstrated in the late 19 th century and today have been encapsulated in a myriad of quantitative and qualitative SARs. The development and proliferation of the personal computer in the late 20 th century gave rise to a quickly increasing number of property estimation models, and continually improved computing power and connectivity among researchers via the internet are enabling the development of increasingly complex models.

  9. Engineering electrical properties of graphene: chemical approaches

    NASA Astrophysics Data System (ADS)

    Kim, Yong-Jin; Kim, Yuna; Novoselov, Konstantin; Hong, Byung Hee

    2015-12-01

    To ensure the high performance of graphene-based devices, it is necessary to engineer the electrical properties of graphene with enhanced conductivity, controlled work function, opened or closed bandgaps, etc. This can be performed by various non-covalent chemical approaches, including molecular adsorption, substrate-induced doping, polymerization on graphene, deposition of metallic thin films or nanoparticles, etc. In addition, covalent approaches such as the substitution of carbon atoms with boron or nitrogen and the functionalization with hydrogen or fluorine are useful to tune the bandgaps more efficiently, with better uniformity and stability. In this review, representative examples of chemically engineered graphene and its device applications will be reviewed, and remaining challenges will be discussed.

  10. Assessment of full-scale biological nutrient removal systems upgraded with physico-chemical processes for the removal of emerging pollutants present in wastewaters from Mexico.

    PubMed

    Estrada-Arriaga, Edson Baltazar; Cortés-Muñoz, Juana Enriqueta; González-Herrera, Arturo; Calderón-Mólgora, César Guillermo; de Lourdes Rivera-Huerta, Ma; Ramírez-Camperos, Esperanza; Montellano-Palacios, Leticia; Gelover-Santiago, Silvia Lucila; Pérez-Castrejón, Sara; Cardoso-Vigueros, Lina; Martín-Domínguez, Alejandra; García-Sánchez, Liliana

    2016-11-15

    Two full-scale biological nutrient removal systems upgraded with three physico-chemical processes (coagulation, chemical precipitation, and neutral Fenton) were evaluated in order to determine the removal of emerging pollutants (EPs) present in municipal wastewater from Mexico. Between 41 and 55 EPs were detected in the influents of two wastewater treatment plants (WWTPs), including personal care products (PPCPs), antibiotics, analgesics, antiepileptics, antilipidemics, antihypertensives, antiseptics, stimulants, and hormones. Emerging pollutants were detected at concentrations ranging from 0.69ng/L to 94,600ng/L. High concentrations of emerging pollutants were found during dry season. WWTP 1, integrated by oxidation ditches and UV light lamps, showed removal efficiencies of EPs between 20% and 22%. On the other hand, WWTP 2 consisted of anaerobic/anoxic/aerobic tanks coupled with two disinfection processes; chlorine dioxide and UV light lamps, for which the removal of EPs was significant (up to 80%). The concentrations of emerging pollutants in WWTP 1 effluent was found within a range

  11. Relations between water physico-chemistry and benthic algal communities in a northern Canadian watershed: defining reference conditions using multiple descriptors of community structure.

    PubMed

    Thomas, Kathryn E; Hall, Roland I; Scrimgeour, Garry J

    2015-09-01

    Defining reference conditions is central to identifying environmental effects of anthropogenic activities. Using a watershed approach, we quantified reference conditions for benthic algal communities and their relations to physico-chemical conditions in rivers in the South Nahanni River watershed, NWT, Canada, in 2008 and 2009. We also compared the ability of three descriptors that vary in terms of analytical costs to define algal community structure based on relative abundances of (i) all algal taxa, (ii) only diatom taxa, and (iii) photosynthetic pigments. Ordination analyses showed that variance in algal community structure was strongly related to gradients in environmental variables describing water physico-chemistry, stream habitats, and sub-watershed structure. Water physico-chemistry and local watershed-scale descriptors differed significantly between algal communities from sites in the Selwyn Mountain ecoregion compared to sites in the Nahanni-Hyland ecoregions. Distinct differences in algal community types between ecoregions were apparent irrespective of whether algal community structure was defined using all algal taxa, diatom taxa, or photosynthetic pigments. Two algal community types were highly predictable using environmental variables, a core consideration in the development of Reference Condition Approach (RCA) models. These results suggest that assessments of environmental impacts could be completed using RCA models for each ecoregion. We suggest that use of algal pigments, a high through-put analysis, is a promising alternative compared to more labor-intensive and costly taxonomic approaches for defining algal community structure.

  12. Implications of interfacial characteristics of food foaming agents in foam formulations.

    PubMed

    Rodríguez Patino, Juan M; Carrera Sánchez, Cecilio; Rodríguez Niño, Ma Rosario

    2008-08-05

    The manufacture of food dispersions (emulsions and foams) with specific quality attributes depends on the selection of the most appropriate raw materials and processing conditions. These dispersions being thermodynamically unstable require the use of emulsifiers (proteins, lipids, phospholipids, surfactants etc.). Emulsifiers typically coexist in the interfacial layer with specific functions in the processing and properties of the final product. The optimum use of emulsifiers depends on our knowledge of their interfacial physico-chemical characteristics - such as surface activity, amount adsorbed, structure, thickness, topography, ability to desorb (stability), lateral mobility, interactions between adsorbed molecules, ability to change conformation, interfacial rheological properties, etc. -, the kinetics of film formation and other associated physico-chemical properties at fluid interfaces. These monolayers constitute well defined systems for the analysis of food colloids at the micro- and nano-scale level, with several advantages for fundamental studies. In the present review we are concerned with the analysis of physico-chemical properties of emulsifier films at fluid interfaces in relation to foaming. Information about the above properties would be very helpful in the prediction of optimised formulations for food foams. We concluded that at surface pressures lower than that of monolayer saturation the foaming capacity is low, or even zero. A close relationship was observed between foaming capacity and the rate of diffusion of the foaming agent to the air-water interface. However, the foam stability correlates with the properties of the film at long-term adsorption.

  13. Physico-chemical properties and efficacy of silk fibroin fabric coated with different waxes as wound dressing.

    PubMed

    Kanokpanont, Sorada; Damrongsakkul, Siriporn; Ratanavaraporn, Juthamas; Aramwit, Pornanong

    2013-04-01

    Silk fibroin (SF) has been widely used as a wound dressing material due to its suitable physical and biological characteristics. In this study, a non-adhesive wound dressing which applies to cover the wound surface as an absorbent pad that would absorb wound fluid while accelerate wound healing was developed. The modification of SF fabrics by wax coating was purposed to prepare the non-adhesive wound dressing that is required in order to minimize pain and risk of repeated injury. SF woven fabrics were coated with different types of waxes including shellac wax, beeswax, or carnauba wax. Physical and mechanical properties of the wax-coated SF fabrics were characterized. It was clearly observed that all waxes could be successfully coated on the SF fabrics, possibly due to the hydrophobic interactions between hydrophobic domains of SF and waxes. The wax coating improved tensile modulus and percentage of elongation of the SF fabrics due to the denser structure and the thicker fibers coated. The in vitro degradation study demonstrated that all wax-coated SF fabrics remained up to 90% of their original weights after 7 weeks of incubation in lysozyme solution under physiological conditions. The wax coating did not affect the degradation behavior of the SF fabrics. A peel test of the wax-coated SF fabrics was carried out in the partial- and full-thickness wounds of porcine skin in comparison to that of the commercial wound dressing. Any wax-coated SF fabrics were less adhesive than the control, as confirmed by less number of cells attached and less adhesive force. This might be that the wax-coated SF fabrics showed the hydrophobic property, allowing the loosely adherence to the hydrophilic wound surface. In addition, the in vivo biocompatibility test of the wax-coated SF fabrics was performed in Sprague-Dawley rats with subcutaneous model. The irritation scores indicated that the carnauba wax-coated SF fabric was not irritant while the shellac wax or beeswax-coated SF

  14. Effect of addition of nano-hydroxyapatite on physico-chemical and antibiofilm properties of calcium silicate cements.

    PubMed

    Guerreiro-Tanomaru, Juliane Maria; Vázquez-García, Fernando Antonio; Bosso-Martelo, Roberta; Bernardi, Maria Inês Basso; Faria, Gisele; Tanomaru, Mario

    2016-01-01

    Mineral Trioxide Aggregate (MTA) is a calcium silicate cement composed of Portland cement (PC) and bismuth oxide. Hydroxyapatite has been incorporated to enhance mechanical and biological properties of dental materials. This study evaluated physicochemical and mechanical properties and antibiofilm activity of MTA and PC associated with zirconium oxide (ZrO2) and hydroxyapatite nanoparticles (HAn). White MTA (Angelus, Brazil); PC (70%)+ZrO2 (30%); PC (60%)+ZrO2 (30%)+HAn (10%); PC (50%)+ZrO2 (30%)+HAn (20%) were evaluated. The pH was assessed by a digital pH-meter and solubility by mass loss. Setting time was evaluated by using Gilmore needles. Compressive strength was analyzed by mechanical test. Samples were radiographed alongside an aluminum step wedge to evaluate radiopacity. For the antibiofilm evaluation, materials were placed in direct contact with E. faecalis biofilm induced on dentine blocks. The number of colony-forming units (CFU mL-1) in the remaining biolfilm was evaluated. The results were submitted to ANOVA and the Tukey test, with 5% significance. There was no difference in pH levels of PC+ZrO2, PC+ZrO2+HAn (10%) and PC+ZrO2+HAn (20%) (p>0.05) and these cements presented higher pH levels than MTA (p<0.05). The highest solubility was observed in PC+ZrO2+HAn (10%) and PC+ZrO2+HAn (20%) (p<0.05). MTA had the shortest initial setting time (p<0.05). All the materials showed radiopacity higher than 3 mmAl. PC+ZrO2 and MTA had the highest compressive strength (p<0.05). Materials did not completely neutralize the bacterial biofilm, but the association with HAn provided greater bacterial reduction than MTA and PC+ZrO2 (p<0.05) after the post-manipulation period of 2 days. The addition of HAn to PC associated with ZrO2 harmed the compressive strength and solubility. On the other hand, HAn did not change the pH and the initial setting time, but improved the radiopacity (HAn 10%), the final setting time and the E. faecalis antibiofilm activity of the cement.

  15. Effect of addition of nano-hydroxyapatite on physico-chemical and antibiofilm properties of calcium silicate cements

    PubMed Central

    GUERREIRO-TANOMARU, Juliane Maria; VÁZQUEZ-GARCÍA, Fernando Antonio; BOSSO-MARTELO, Roberta; BERNARDI, Maria Inês Basso; FARIA, Gisele; TANOMARU, Mario

    2016-01-01

    ABSTRACT Objective Mineral Trioxide Aggregate (MTA) is a calcium silicate cement composed of Portland cement (PC) and bismuth oxide. Hydroxyapatite has been incorporated to enhance mechanical and biological properties of dental materials. This study evaluated physicochemical and mechanical properties and antibiofilm activity of MTA and PC associated with zirconium oxide (ZrO2) and hydroxyapatite nanoparticles (HAn). Material and Methods White MTA (Angelus, Brazil); PC (70%)+ZrO2 (30%); PC (60%)+ZrO2 (30%)+HAn (10%); PC (50%)+ZrO2 (30%)+HAn (20%) were evaluated. The pH was assessed by a digital pH-meter and solubility by mass loss. Setting time was evaluated by using Gilmore needles. Compressive strength was analyzed by mechanical test. Samples were radiographed alongside an aluminum step wedge to evaluate radiopacity. For the antibiofilm evaluation, materials were placed in direct contact with E. faecalis biofilm induced on dentine blocks. The number of colony-forming units (CFU mL-1) in the remaining biolfilm was evaluated. The results were submitted to ANOVA and the Tukey test, with 5% significance. Results There was no difference in pH levels of PC+ZrO2, PC+ZrO2+HAn (10%) and PC+ZrO2+HAn (20%) (p>0.05) and these cements presented higher pH levels than MTA (p<0.05). The highest solubility was observed in PC+ZrO2+HAn (10%) and PC+ZrO2+HAn (20%) (p<0.05). MTA had the shortest initial setting time (p<0.05). All the materials showed radiopacity higher than 3 mmAl. PC+ZrO2 and MTA had the highest compressive strength (p<0.05). Materials did not completely neutralize the bacterial biofilm, but the association with HAn provided greater bacterial reduction than MTA and PC+ZrO2 (p<0.05) after the post-manipulation period of 2 days. Conclusions The addition of HAn to PC associated with ZrO2 harmed the compressive strength and solubility. On the other hand, HAn did not change the pH and the initial setting time, but improved the radiopacity (HAn 10%), the final setting time

  16. Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions

    NASA Technical Reports Server (NTRS)

    Jones, Alan (Inventor); Thomas, Nathan A. (Inventor); Todd, Paul W. (Inventor)

    2016-01-01

    A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.

  17. Properties of various plants and animals feedstocks for biodiesel production.

    PubMed

    Karmakar, Aninidita; Karmakar, Subrata; Mukherjee, Souti

    2010-10-01

    As an alternative fuel biodiesel is becoming increasingly important due to diminishing petroleum reserves and adverse environmental consequences of exhaust gases from petroleum-fuelled engines. Biodiesel, the non-toxic fuel, is mono alkyl esters of long chain fatty acids derived from renewable feedstock like vegetable oils, animal fats and residual oils. Choice of feedstocks depends on process chemistry, physical and chemical characteristics of virgin or used oils and economy of the process. Extensive research information is available on transesterification, the production technology and process optimization for various biomaterials. Consistent supply of feedstocks is being faced as a major challenge by the biodiesel production industry. This paper reviews physico-chemical properties of the plant and animal resources that are being used as feedstocks for biodiesel production. Efforts have also been made to review the potential resources that can be transformed into biodiesel successfully for meeting the ever increasing demand of biodiesel production. Copyright 2010 Elsevier Ltd. All rights reserved.

  18. Data on the chemical properties of commercial fish sauce products.

    PubMed

    Nakano, Mitsutoshi; Sagane, Yoshimasa; Koizumi, Ryosuke; Nakazawa, Yozo; Yamazaki, Masao; Watanabe, Toshihiro; Takano, Katsumi; Sato, Hiroaki

    2017-12-01

    This data article reports on the chemical properties of commercial fish sauce products associated with the fish sauce taste and flavor. All products were analyzed in triplicate. Dried solid content was analyzed by moisture analyzer. Fish sauce salinity was determined by a salt meter. pH was measured using a pH meter. The acidity was determined using a titration assay. Amino nitrogen and total nitrogen were evaluated using a titration assay and Combustion-type nitrogen analyzer, respectively. The analyzed products originated from Japan, Thailand, Vietnam, China, the Philippines, and Italy. Data on the chemical properties of the products are provided in table format in the current article.

  19. Particle size distribution of rice flour affecting the starch enzymatic hydrolysis and hydration properties.

    PubMed

    de la Hera, Esther; Gomez, Manuel; Rosell, Cristina M

    2013-10-15

    Rice flour is becoming very attractive as raw material, but there is lack of information about the influence of particle size on its functional properties and starch digestibility. This study evaluates the degree of dependence of the rice flour functional properties, mainly derived from starch behavior, with the particle size distribution. Hydration properties of flours and gels and starch enzymatic hydrolysis of individual fractions were assessed. Particle size heterogeneity on rice flour significantly affected functional properties and starch features, at room temperature and also after gelatinization; and the extent of that effect was grain type dependent. Particle size heterogeneity on rice flour induces different pattern in starch enzymatic hydrolysis, with the long grain having slower hydrolysis as indicated the rate constant (k). No correlation between starch digestibility and hydration properties or the protein content was observed. It seems that in intact granules interactions with other grain components must be taken into account. Overall, particle size fractionation of rice flour might be advisable for selecting specific physico-chemical properties. Copyright © 2013. Published by Elsevier Ltd.

  20. Thermodynamic properties for applications in chemical industry via classical force fields.

    PubMed

    Guevara-Carrion, Gabriela; Hasse, Hans; Vrabec, Jadran

    2012-01-01

    Thermodynamic properties of fluids are of key importance for the chemical industry. Presently, the fluid property models used in process design and optimization are mostly equations of state or G (E) models, which are parameterized using experimental data. Molecular modeling and simulation based on classical force fields is a promising alternative route, which in many cases reasonably complements the well established methods. This chapter gives an introduction to the state-of-the-art in this field regarding molecular models, simulation methods, and tools. Attention is given to the way modeling and simulation on the scale of molecular force fields interact with other scales, which is mainly by parameter inheritance. Parameters for molecular force fields are determined both bottom-up from quantum chemistry and top-down from experimental data. Commonly used functional forms for describing the intra- and intermolecular interactions are presented. Several approaches for ab initio to empirical force field parameterization are discussed. Some transferable force field families, which are frequently used in chemical engineering applications, are described. Furthermore, some examples of force fields that were parameterized for specific molecules are given. Molecular dynamics and Monte Carlo methods for the calculation of transport properties and vapor-liquid equilibria are introduced. Two case studies are presented. First, using liquid ammonia as an example, the capabilities of semi-empirical force fields, parameterized on the basis of quantum chemical information and experimental data, are discussed with respect to thermodynamic properties that are relevant for the chemical industry. Second, the ability of molecular simulation methods to describe accurately vapor-liquid equilibrium properties of binary mixtures containing CO(2) is shown.