Sample records for physics applets electrostatics

  1. PBEQ-Solver for online visualization of electrostatic potential of biomolecules.

    PubMed

    Jo, Sunhwan; Vargyas, Miklos; Vasko-Szedlar, Judit; Roux, Benoît; Im, Wonpil

    2008-07-01

    PBEQ-Solver provides a web-based graphical user interface to read biomolecular structures, solve the Poisson-Boltzmann (PB) equations and interactively visualize the electrostatic potential. PBEQ-Solver calculates (i) electrostatic potential and solvation free energy, (ii) protein-protein (DNA or RNA) electrostatic interaction energy and (iii) pKa of a selected titratable residue. All the calculations can be performed in both aqueous solvent and membrane environments (with a cylindrical pore in the case of membrane). PBEQ-Solver uses the PBEQ module in the biomolecular simulation program CHARMM to solve the finite-difference PB equation of molecules specified by users. Users can interactively inspect the calculated electrostatic potential on the solvent-accessible surface as well as iso-electrostatic potential contours using a novel online visualization tool based on MarvinSpace molecular visualization software, a Java applet integrated within CHARMM-GUI (http://www.charmm-gui.org). To reduce the computational time on the server, and to increase the efficiency in visualization, all the PB calculations are performed with coarse grid spacing (1.5 A before and 1 A after focusing). PBEQ-Solver suggests various physical parameters for PB calculations and users can modify them if necessary. PBEQ-Solver is available at http://www.charmm-gui.org/input/pbeqsolver.

  2. Graphical Response Exercises for Teaching Physics

    ERIC Educational Resources Information Center

    Bonham, Scott

    2007-01-01

    What is physics without graphs and diagrams? The web is becoming ubiquitous, but how can one expect students to make graphs and diagrams on the web? The solution is to extend functionality through Java applets. Four examples of exercises using the Physics Applets for Drawing (PADs) will illustrate how these can be used for physics instruction to…

  3. A Versatile Applet to Explore the Wave Behaviour of Particles

    ERIC Educational Resources Information Center

    Fernandez Palop, J. I.

    2009-01-01

    A pedagogical tool that consists of a Java applet has been developed so that undergraduate students in physics can explore the wave behaviour of particles. The applet executes a simulation in which a two-dimensional wave packet moves towards a slit and an obstacle with variable widths. By changing three parameters, slit width, obstacle width and…

  4. News from Online: More Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sweeney Judd, Carolyn

    1999-09-01

    Absorption (one of three tools) (http://mc2.cchem.berkeley.edu/Chem1A/solar/applets/absorption/ index.html).

    Evaporative cooling in a Bose-Einstein condensation ( http://www.colorado.edu/physics/2000/applets/bec.html). Let's start with the spectrum--the electromagnetic spectrum, of course. Go to the EMSpectrum Explorer at http://mc2.cchem.berkeley.edu/chemcnx/light_energy/EMSpectrum /emspectrum.html. Not only do you get information about wavelength, frequency, and energy, but you also get a handy converter that will calculate frequency, wavelength, and energy when one value is entered. And there is more. For example, clicking on red light of 680 nanometers reveals that mitochondria, the power plants of cells, are about the same size as this wavelength, which is also used for photosynthesis. Interesting food for thought! From the EMSpectrum Explorer, go to the Light and Energy page at http://mc2.cchem.berkeley.edu/chemcnx/light_energy/index.html for three Colors of Light Tools. The Color from Emission tool ( http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/emission/index.html) illustrates additive color by mixing differing amounts of Red, Blue, and Green light. Then look at the Color from Absorption tool at http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/absorption/index.html. The image from the applet shows the white beam and three filters. Take out the blue, green, and red components by altering the scroll bars or text boxes. The third tool, Removing Color with a Single Filter from Colored Light at http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/single/index.html, uses a single filter to take out various colors. Excellent for explaining the theory behind the operation of a basic spectrometer. The Light and Energy tools module, which received support from the National Science Foundation, has been developed under the direction of the ChemLinks Coalition--headed by Beloit College; and The ModularChem Consortium, MC2, headed by the University of California at Berkeley. The Project Director is Marco Molinaro from the University of California at Berkeley; the Project Manager is Susan Walden; Susan Ketchner and Leighanne McConnaughey are also members of the team for this excellent teaching site. For your information, all of the applets will soon be moving, along with the MC2 site, but the old addresses will still work. The next place to explore is Physics 2000 at http://www.colorado.edu/physics/2000/introduction.html. The introductory graphic is a harbinger of good things to come: move the negatively charged particle and see the water molecule spin in response to the position of the charged particle. One goal of the Physics 2000 Educational Initiative is to make physics more accessible to students and people of all ages. Sounds like a good goal for all sciences! One of the first sections is called Einstein's Legacy. Here you can find spectral lines explained in terms of team colors for rival football squads ( http://www.colorado.edu/physics/2000/quantumzone/index.html). Choose from 20 elements to see characteristic emission spectra. The cartoon teachers and students help explain emission spectra. Great applets compare the Bohr atom and the Schrödinger model as well as emission and absorption ( http://www.colorado.edu/physics/2000/quantumzone/schroedinger.html). Einstein's Legacy has many topics: X-rays and CAT Scans, Electromagnetic Waves and Particles, the Quantum Atom, Microwave Ovens, Lasers, and TV & Laptop Screens. Several topics also have sections for the advanced student. One of those advanced sections is part of the second major section of Physics 2000: The Atomic Lab. Two topics are Interference Experiments and Bose-Einstein Condensate. An applet illustrating Laser Cooling is at http://www.colorado.edu/physics/2000/bec/lascool1.html. Next go on to Evaporative Cooling at http://www.colorado.edu/physics/2000/bec/evap_cool.html. The cartoon professors begin the explanation with a picture of steam rising from a cup of hot coffee. Next is an applet with atoms in a parabolic magnetic trap at http://www.colorado.edu/physics/2000/applets/bec.html. The height of the magnetic trap can be changed in order to allow for escape of the most energetic atoms, resulting in cooling so that the Bose-Einstein Condensate is formed. Physics 2000 demands robust computing power. Check the system requirements on the introductory screen before venturing too far into this site. Martin V. Goldman, from the University of Colorado at Boulder, is the Director of Physics 2000, which received support from the Colorado Commission on Higher Education and the National Science Foundation. David Rea is the Technical Director, and many others help make this excellent site possible. Mark your calendars: October 31 through December 3, 1999! Bookmark this site-- http://www.ched-ccce.org/confchem/1999/d/index.html --and sign up. The Winter 1999 CONFCHEM Online Conference will focus on Developments in Spectroscopy and Innovative Strategies for Teaching Spectroscopy in the Undergraduate Curriculum. Scott Van Bramer of Widener University is the conference chair. Experts will present six papers, each to be followed by online discussions. CONFCHEM Online Conferences are sponsored by the American Chemical Society Division of Chemical Education's Committee on Computers in Chemical Education (CCCE). Several Online Conferences are held each year--all are well worth your time. World Wide Web Addresses EMSpectrum Explorer http://mc2.cchem.berkeley.edu/chemcnx/light_energy/EMSpectrum/emspectrum.html Light and Energy http://mc2.cchem.berkeley.edu/chemcnx/light_energy/index.html Emission Spectrum Java Applet http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/emission/index.html Absorption Java Applet http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/absorption/index.html Removing Color with a Single Filter from Colored Light http://mc2.cchem.berkeley.edu/chemcnx/light_energy/applets/single/index.html Physics 2000 http://www.colorado.edu/physics/2000/introduction.html Einstein's Legacy: Spectral lines http://www.colorado.edu/physics/2000/quantumzone/index.html Einstein's: Schrödinger's Atom http://www.colorado.edu/physics/2000/quantumzone /schroedinger.html The Atomic Lab: Laser Cooling http://www.colorado.edu/physics/2000/bec/lascool1.html The Atomic Lab: Evaporative Cooling in a Bose­Einstein Condensation http://www.colorado.edu/physics/2000/bec/evap_cool.html The Winter 1999 CONFCHEM Online Conference will focus on Developments in Spectroscopy and Innovative Strategies for Teaching Spectroscopy in the Undergraduate Curriculum http://www.ched-ccce.org/confchem/1999/d/index.html access date for all sites: July 1999

  5. Evaluation by University Students of the Use of Applets for Learning Physics

    ERIC Educational Resources Information Center

    Bohigas, Xavier; Periago, Christina; Jaen, Xavier; Pejuan, Arcadi

    2011-01-01

    We present the results of a study carried out with students in their second year of Industrial Engineering to find out students' levels of satisfaction concerning the use of simulation tools (in this case an applet was used) as a tool for helping students learn the topic of movement by charged particles within electrical and magnetic fields. The…

  6. eF-seek: prediction of the functional sites of proteins by searching for similar electrostatic potential and molecular surface shape.

    PubMed

    Kinoshita, Kengo; Murakami, Yoichi; Nakamura, Haruki

    2007-07-01

    We have developed a method to predict ligand-binding sites in a new protein structure by searching for similar binding sites in the Protein Data Bank (PDB). The similarities are measured according to the shapes of the molecular surfaces and their electrostatic potentials. A new web server, eF-seek, provides an interface to our search method. It simply requires a coordinate file in the PDB format, and generates a prediction result as a virtual complex structure, with the putative ligands in a PDB format file as the output. In addition, the predicted interacting interface is displayed to facilitate the examination of the virtual complex structure on our own applet viewer with the web browser (URL: http://eF-site.hgc.jp/eF-seek).

  7. Astronomy LITE Demonstrations

    NASA Astrophysics Data System (ADS)

    Brecher, Kenneth

    2006-12-01

    Project LITE (Light Inquiry Through Experiments) is a materials, software, and curriculum development project. It focuses on light, optics, color and visual perception. According to two recent surveys of college astronomy faculty members, these are among the topics most often included in the large introductory astronomy courses. The project has aimed largely at the design and implementation of hands-on experiences for students. However, it has also included the development of lecture demonstrations that employ novel light sources and materials. In this presentation, we will show some of our new lecture demonstrations concerning geometrical and physical optics, fluorescence, phosphorescence and polarization. We have developed over 200 Flash and Java applets that can be used either by teachers in lecture settings or by students at home. They are all posted on the web at http://lite.bu.edu. For either purpose they can be downloaded directly to the user's computer or run off line. In lecture demonstrations, some of these applets can be used to control the light emitted by video projectors to produce physical effects in materials (e.g. fluorescence). Other applets can be used, for example, to demonstrate that the human percept of color does not have a simple relationship with the physical frequency of the stimulating source of light. Project LITE is supported by Grant #DUE-0125992 from the NSF Division of Undergraduate Education.

  8. Classrooms for the Millennials: An Approach for the Next Generation

    ERIC Educational Resources Information Center

    Gerber, Lindsey N.; Ward, Debra D.

    2016-01-01

    The purpose of this paper is to introduce educators to three types of applets that are compatible with smartphones, tablets, and desktop computers: screencasting applets, graphing calculator applets, and student response applets. The applets discussed can be seamlessly and effectively integrated into classrooms to help facilitate lectures, collect…

  9. A modern Galileo tale

    NASA Astrophysics Data System (ADS)

    Arnone, Stefano; Moauro, Francesco; Siccardi, Matteo

    2017-01-01

    The year 2014 marked the four-hundred-and-fiftieth anniversary of Galileo’s birth, making it the perfect occasion to present and illustrate a GeoGebra applet which reproduces some of Galileo’s celebrated experiments on the uniformly accelerated motion, as reported on in ‘Discourses and Mathematical Demonstrations Relating to Two New Sciences’. Our applet is inexpensive, makes up for the lack of a fully-fledged physics lab and can be used as an accompanying activity in an (open) online course. The version we present allows for an ‘empirical’ test of three of the most relevant theorems in the third day of Galileo’s Discourses. By three different experimental setups, students can see a ball roll down a slope, take measures and perform data analysis, following Galileo’s footsteps. The applet is made freely available on the internet, so it can be downloaded and modified to cater for different students’ needs.

  10. An Applet for the Investigation of Simpson's Paradox

    ERIC Educational Resources Information Center

    Schneiter, Kady; Symanzik, Jurgen

    2013-01-01

    This article describes an applet that facilitates investigation of Simpson's Paradox in the context of a number of real and hypothetical data sets. The applet builds on the Baker-Kramer graphical representation for Simpson's Paradox. The implementation and use of the applet are explained. This is followed by a description of how the applet has…

  11. Using AppletMagic(tm) to Implement an Orbit Propagator: New Life for Ada Objects

    NASA Technical Reports Server (NTRS)

    Stark, Michael E.

    1997-01-01

    This paper will discuss the use of the Intermetrics AppletMagic tool to build an applet to display a satellite ground track on a world map. This applet is the result of a prototype project that was developed by the Goddard Space Flight Center's Flight Dynamics Division (FDD), starting in June of 1996. Both Version 1 and Version 2 of this applet can be accessed via the URL http://fdd.gsfc.nasa.gov/Java.html. This paper covers Version 1, as Version 2 did not make radical changes to the Ada part of the applet. This paper will briefly describe the design of the applet, discuss the issues that arose during development, and will conclude with lessons learned and future plans for the FDD's use of Ada and Java. The purpose of this paper is to show examples of a successful project using Oi AppletMagic, and to highlight some of the pitfalls that occurred along the way. It is hoped that this discussion will be useful both to users of AppletMagic and to organizations such as Intermetrics that develop new technology.

  12. WWWinda Orchestrator: a mechanism for coordinating distributed flocks of Java Applets

    NASA Astrophysics Data System (ADS)

    Gutfreund, Yechezkal-Shimon; Nicol, John R.

    1997-01-01

    The WWWinda Orchestrator is a simple but powerful tool for coordinating distributed Java applets. Loosely derived from the Linda programming language developed by David Gelernter and Nicholas Carriero of Yale, WWWinda implements a distributed shared object space called TupleSpace where applets can post, read, or permanently store arbitrary Java objects. In this manner, applets can easily share information without being aware of the underlying communication mechanisms. WWWinda is a very useful for orchestrating flocks of distributed Java applets. Coordination event scan be posted to WWWinda TupleSpace and used to orchestrate the actions of remote applets. Applets can easily share information via the TupleSpace. The technology combines several functions in one simple metaphor: distributed web objects, remote messaging between applets, distributed synchronization mechanisms, object- oriented database, and a distributed event signaling mechanisms. WWWinda can be used a s platform for implementing shared VRML environments, shared groupware environments, controlling remote devices such as cameras, distributed Karaoke, distributed gaming, and shared audio and video experiences.

  13. A Java Applet for Illustrating Internet Error Control

    ERIC Educational Resources Information Center

    Holliday, Mark A.

    2004-01-01

    This paper discusses the author's experiences developing a Java applet that illustrates how error control is implemented in the Transmission Control Protocol (TCP). One section discusses the concepts which the TCP error control Java applet is intended to convey, while the nature of the Java applet is covered in another section. The author…

  14. Seeing the LITE

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    2000-12-01

    We are developing a number of eyes-on experiments, lecture demonstrations and Web based JAVA applets about light, optics, color and visual perception as part of `Project LITE - Light Inquiry Through Experiments'. These are intended for incorporation into introductory level university science courses in astronomy, physics and other disciplines. In this presentation, several of the new LITE demonstrations applicable to large astronomy and physics classes will be shown. One demonstration involves novel materials to display Rayleigh scattering (blue skies, red sunsets and interstellar reddening - NOT redshift!) - including polarization effects. Others employ incandescent bulbs, LED's and laser pointers to illustrate fluorescence, diffraction and other physical and quantum optics phenomena. Still other demonstrations utilize transparent plastic moire overlays as well as computer animated moire patterns to show a variety of astronomical and physical phenomena. We will also display some of our applets posted at the Project LITE Web site (http://www.bu.edu/smec/lite) as well as the associated kit of optical materials we have developed for use by individual students in their own homes or dormitory rooms. This work was supported in part by NSF grant # DUE-9950551.

  15. In Internet-Based Visualization System Study about Breakthrough Applet Security Restrictions

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Huang, Yan

    In the process of realization Internet-based visualization system of the protein molecules, system needs to allow users to use the system to observe the molecular structure of the local computer, that is, customers can generate the three-dimensional graphics from PDB file on the client computer. This requires Applet access to local file, related to the Applet security restrictions question. In this paper include two realization methods: 1.Use such as signature tools, key management tools and Policy Editor tools provided by the JDK to digital signature and authentication for Java Applet, breakthrough certain security restrictions in the browser. 2. Through the use of Servlet agent implement indirect access data methods, breakthrough the traditional Java Virtual Machine sandbox model restriction of Applet ability. The two ways can break through the Applet's security restrictions, but each has its own strengths.

  16. Using Applets in Teaching Mathematics.

    ERIC Educational Resources Information Center

    Heath, Garrett Durand

    2002-01-01

    Use of applets in classroom demonstrations encourages students to use them in homework problems. These applets are dynamic and do not have the syntactical or procedural stumbling blocks associated with most software or textual material, so students can begin exploring and learning immediately. (MM)

  17. ADS's Dexter Data Extraction Applet

    NASA Astrophysics Data System (ADS)

    Demleitner, M.; Accomazzi, A.; Eichhorn, G.; Grant, C. S.; Kurtz, M. J.; Murray, S. S.

    The NASA Astrophysics Data System (ADS) now holds 1.3 million scanned pages, containing numerous plots and figures for which the original data sets are lost or inaccessible. The availability of scans of the figures can significantly ease the regeneration of the data sets. For this purpose, the ADS has developed Dexter, a Java applet that supports the user in this process. Dexter's basic functionality is to let the user manually digitize a plot by marking points and defining the coordinate transformation from the logical to the physical coordinate system. Advanced features include automatic identification of axes, tracing lines and finding points matching a template. This contribution both describes the operation of Dexter from a user's point of view and discusses some of the architectural issues we faced during implementation.

  18. Teaching helix and problems connected with helix using GeoGebra

    NASA Astrophysics Data System (ADS)

    Bímová, Daniela

    2017-12-01

    The contribution presents the dynamic applets created in GeoGebra that show the origin and main properties of a helix and it also presents some constructive problems connected with the helix. There are created the step by step algorithms of some constructions in the chosen applets. Three-dimensional applets include illustrative helix samples and spatial animations that help students better see problems concerning the helix spatially. There is mentioned the website in the contribution on which there is situated GeoGebra book dedicated to the topic "Helix" and containing the mentioned applets. The created applets and materials of the GeoGebra book "Helix" help in teaching and studying the course Constructive Geometry determined for the students of the Faculty of Mechanical Engineering of the Technical University of Liberec.

  19. Developing Preservice Teachers' Understanding of Function Using a Vending Machine Metaphor Applet

    ERIC Educational Resources Information Center

    McCulloch, Allison; Lovett, Jennifer; Edgington, Cyndi

    2017-01-01

    The purpose of this study is to examine the use of a Vending Machine applet as a cognitive root for the development of preservice teachers understanding of function. The applet was designed to purposefully problematize common misconceptions associated with the algebraic nature of typical function machines. Findings indicated affordances and…

  20. Facilitating Student Experimentation with Statistical Concepts.

    ERIC Educational Resources Information Center

    Smith, Patricia K.

    2002-01-01

    Offers a Web page with seven Java applets allowing students to experiment with key concepts in an introductory statistics course. Indicates the applets can be used in three ways: to place links to the applets, to create in-class demonstrations of statistical concepts, and to lead students through experiments and discover statistical relationships.…

  1. The Fractionkit Applet

    ERIC Educational Resources Information Center

    Duke, Roger; Graham, Alan; Johnston-Wilder, Sue

    2008-01-01

    This article is the third in a series of articles describing a research project entitled "Entering into Symbols" (EIS) on the use of mathematical applets at key stages 2 and 3. The first two articles, in "MT200" and "MT203", described applets designed to teach place value ("Tuckshop subtraction") and basic algebra ("Matchbox algebra"). In this…

  2. Interactive Learning with Java Applets: Using Interactive, Web-Based Java Applets to Present Science in a Concrete, Meaningful Manner

    ERIC Educational Resources Information Center

    Corder, Greg

    2005-01-01

    Science teachers face challenges that affect the quality of instruction. Tight budgets, limited resources, school schedules, and other obstacles limit students' opportunities to experience science that is visual and interactive. Incorporating web-based Java applets into science instruction offers a practical solution to these challenges. The…

  3. Designing GeoGebra Applets to Maximize Student Engagement

    ERIC Educational Resources Information Center

    Paoletti, Teo; Monahan, Ceire; Vishnubhotla, Madhavi

    2017-01-01

    GeoGebra is a free tool that has the potential to change both how and what is taught in mathematics. GeoGebra allows teachers and students to explore various mathematical ideas either through the full applet (https://www.geogebra.org/graphing) or by sharing applets via GeoGebra's Materials site (https://www.geogebra. org/materials/). It has many…

  4. [A solution for display and processing of DICOM images in web PACS].

    PubMed

    Xue, Wei-jing; Lu, Wen; Wang, Hai-yang; Meng, Jian

    2009-03-01

    Use the technique of Java Applet to realize the supporting of DICOM image in ordinary Web browser, thereby to expand the processing function of medical image. First analyze the format of DICOM file and design a class which can acquire the pixels, then design two Applet classes, of which one is used to disposal the DICOM image, the other is used to display DICOM image that have been disposaled in the first Applet. They all embedded in the View page, and they communicate by Applet Context object. The method designed in this paper can make users display and process DICOM images directly by using ordinary Web browser, which makes Web PACS not only have the advantages of B/S model, but also have the advantages of the C/S model. Java Applet is the key for expanding the Web browser's function in Web PACS, which provides a guideline to sharing of medical images.

  5. Measuring Single Photons

    Science.gov Websites

    Explore the World of Particle Physics Measuring Single Photons The web pages that follow presume phenomenon and then return to our study of single photon measurement. Your choices include: These choices University of Colorado. A Java applet by Phillip Warner. Dive right into the single photon pages here

  6. A Dynamic Applet for the Exploration of the Concept of the Limit of a Sequence

    ERIC Educational Resources Information Center

    Cheng, Kell; Leung, Allen

    2015-01-01

    This paper reports findings of an explorative study that examine the effectiveness of a GeoGebra-based dynamic applet in supporting students' construction of the formal definition of the limit of a sequence or convergence. More specifically, it is about how the use of the applet enables students to make connections between the graphical…

  7. Handle with care: the impact of using Java applets in Web-based studies on dropout and sample composition.

    PubMed

    Stieger, Stefan; Göritz, Anja S; Voracek, Martin

    2011-05-01

    In Web-based studies, Web browsers are used to display online questionnaires. If an online questionnaire relies on non-standard technologies (e.g., Java applets), it is often necessary to install a particular browser plug-in. This can lead to technically induced dropout because some participants lack the technological know-how or the willingness to install the plug-in. In two thematically identical online studies conducted across two time points in two different participant pools (N = 1,527 and 805), we analyzed whether using a Java applet produces dropout and distortion of demographics in the final sample. Dropout was significantly higher on the Java applet questionnaire page than on the preceding and subsequent questionnaire pages. Age-specific effects were found only in one sample (i.e., dropouts were older), whereas sex-specific effects were found in both samples (i.e., women dropped out more frequently than men on the Java applet page). These results additionally support the recommendation that using additional technologies (e.g., Java applets) can be dangerous in producing a sample that is biased toward both younger and male respondents.

  8. Acoustic Emission Analysis Applet (AEAA) Software

    NASA Technical Reports Server (NTRS)

    Nichols, Charles T.; Roth, Don J.

    2013-01-01

    NASA Glenn Research and NASA White Sands Test Facility have developed software supporting an automated pressure vessel structural health monitoring (SHM) system based on acoustic emissions (AE). The software, referred to as the Acoustic Emission Analysis Applet (AEAA), provides analysts with a tool that can interrogate data collected on Digital Wave Corp. and Physical Acoustics Corp. software using a wide spectrum of powerful filters and charts. This software can be made to work with any data once the data format is known. The applet will compute basic AE statistics, and statistics as a function of time and pressure (see figure). AEAA provides value added beyond the analysis provided by the respective vendors' analysis software. The software can handle data sets of unlimited size. A wide variety of government and commercial applications could benefit from this technology, notably requalification and usage tests for compressed gas and hydrogen-fueled vehicles. Future enhancements will add features similar to a "check engine" light on a vehicle. Once installed, the system will ultimately be used to alert International Space Station crewmembers to critical structural instabilities, but will have little impact to missions otherwise. Diagnostic information could then be transmitted to experienced technicians on the ground in a timely manner to determine whether pressure vessels have been impacted, are structurally unsound, or can be safely used to complete the mission.

  9. Physlets and Web-based Physics Curricular Material

    NASA Astrophysics Data System (ADS)

    Cain, L. S.; Boye, D. M.; Christian, W.

    1998-11-01

    The WWW provides the most uniformly standardized and stable mode of networked information sharing available to date. Physlets, scriptable Java applets specific to physics pedagogy, provide the source around which interactive exercises can be created across the physics curriculum. We have developed WWW-based curricular materials appropriate for courses at the introductory and intermediate level. These include interactive demonstrations, homework assignments, pre-lab and post-lab exercises. A variety of examples, which have been used in courses in musical technology, general physics, physics for non-science majors, and modern physics, will be discussed.

  10. An Applet to Estimate the IOP-Induced Stress and Strain within the Optic Nerve Head

    PubMed Central

    2011-01-01

    Purpose. The ability to predict the biomechanical response of the optic nerve head (ONH) to intraocular pressure (IOP) elevation holds great promise, yet remains elusive. The objective of this work was to introduce an approach to model ONH biomechanics that combines the ease of use and speed of analytical models with the flexibility and power of numerical models. Methods. Models representing a variety of ONHs were produced, and finite element (FE) techniques used to predict the stresses (forces) and strains (relative deformations) induced on each of the models by IOP elevations (up to 10 mm Hg). Multivariate regression was used to parameterize each biomechanical response as an analytical function. These functions were encoded into a Flash-based applet. Applet utility was demonstrated by investigating hypotheses concerning ONH biomechanics posited in the literature. Results. All responses were parameterized well by polynomials (R2 values between 0.985 and 0.999), demonstrating the effectiveness of our fitting approach. Previously published univariate results were reproduced with the applet in seconds. A few minutes allowed for multivariate analysis, with which it was predicted that often, but not always, larger eyes experience higher levels of stress and strain than smaller ones, even at the same IOP. Conclusions. An applet has been presented with which it is simple to make rapid estimates of IOP-related ONH biomechanics. The applet represents a step toward bringing the power of FE modeling beyond the specialized laboratory and can thus help develop more refined biomechanics-based hypotheses. The applet is available for use at www.ocularbiomechanics.com. PMID:21527378

  11. Degraded Operational Environment: Integration of Social Network Infrastructure Concept in a Traditional Military C2 System

    DTIC Science & Technology

    2013-06-01

    Communication Applet) UNIGE – D.I.M.E. Using a free application as “MIT APP Inventor” Android Software Development Kit DEGRADED C2 ICCRTS 2013...operate on an Android operating system up-gradable on which will be developed a simplified ACA ( Android Communication Applet) that will call C24U...Server) IP number . . . Portable COTS Devices ACA - C24U ( Android Communication Applet) Sending/receiving SEFL (Simple Exchange

  12. Galilean Moons, Kepler's Third Law, and the Mass of Jupiter

    NASA Astrophysics Data System (ADS)

    Bates, Alan

    2013-10-01

    Simulations of physical systems are widely available online, with no cost, and are ready to be used in our classrooms. ,2 Such simulations offer an accessible tool that can be used for a range of interactive learning activities. The Jovian Moons Applet2 allows the user to track the position of Jupiter's four Galilean moons with a variety of viewing options. For this activity, data are obtained from the orbital period and orbital radii charts. Earlier experiments have used telescopes to capture the orbital motion of the Galilean moons,3 although observation of astronomical events and the measurement of quantities may be difficult to achieve due to a combination of cost, training, and observing conditions. The applet allows a suitable set of data to be generated and data analysis that verifies Kepler's third law of planetary motion, which leads to a calculated value for the mass of Jupiter.

  13. HYPATIA--An Online Tool for ATLAS Event Visualization

    ERIC Educational Resources Information Center

    Kourkoumelis, C.; Vourakis, S.

    2014-01-01

    This paper describes an interactive tool for analysis of data from the ATLAS experiment taking place at the world's highest energy particle collider at CERN. The tool, called HYPATIA/applet, enables students of various levels to become acquainted with particle physics and look for discoveries in a similar way to that of real research.

  14. Collection of process data after cardiac surgery: initial implementation with a Java-based intranet applet.

    PubMed

    Ratcliffe, M B; Khan, J H; Magee, K M; McElhinney, D B; Hubner, C

    2000-06-01

    Using a Java-based intranet program (applet), we collected postoperative process data after coronary artery bypass grafting. A Java-based applet was developed and deployed on a hospital intranet. Briefly, the nurse entered patient process data using a point and click interface. The applet generated a nursing note, and process data were saved in a Microsoft Access database. In 10 patients, this method was validated by comparison with a retrospective chart review. In 45 consecutive patients, weekly control charts were generated from the data. When aberrations from the pathway occurred, feedback was initiated to restore the goals of the critical pathway. The intranet process data collection method was verified by a manual chart review with 98% sensitivity. The control charts for time to extubation, intensive care unit stay, and hospital stay showed a deviation from critical pathway goals after the first 20 patients. Feedback modulation was associated with a return to critical pathway goals. Java-based applets are inexpensive and can collect accurate postoperative process data, identify critical pathway deviations, and allow timely feedback of process data.

  15. Using applet-servlet communication for optimizing window, level and crop for DICOM to JPEG conversion.

    PubMed

    Kamauu, Aaron W C; DuVall, Scott L; Wiggins, Richard H; Avrin, David E

    2008-09-01

    In the creation of interesting radiological cases in a digital teaching file, it is necessary to adjust the window and level settings of an image to effectively display the educational focus. The web-based applet described in this paper presents an effective solution for real-time window and level adjustments without leaving the picture archiving and communications system workstation. Optimized images are created, as user-defined parameters are passed between the applet and a servlet on the Health Insurance Portability and Accountability Act-compliant teaching file server.

  16. The pH ruler: a Java applet for developing interactive exercises on acids and bases.

    PubMed

    Barrette-Ng, Isabelle H

    2011-07-01

    In introductory biochemistry courses, it is often a struggle to teach the basic concepts of acid-base chemistry in a manner that is relevant to biological systems. To help students gain a more intuitive and visual understanding of abstract acid-base concepts, a simple graphical construct called the pH ruler Java applet was developed. The applet allows students to visualize the abundance of different protonation states of diprotic and triprotic amino acids at different pH values. Using the applet, the student can drag a widget on a slider bar to change the pH and observe in real time changes in the abundance of different ionization states of this amino acid. This tool provides a means for developing more complex inquiry-based, active-learning exercises to teach more advanced topics of biochemistry, such as protein purification, protein structure and enzyme mechanism.

  17. Add Java extensions to your wiki: Java applets can bring dynamic functionality to your wiki pages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scarberry, Randall E.

    Virtually everyone familiar with today’s world wide web has encountered the free online encyclopedia Wikipedia many times. What you may not know is that Wikipedia is driven by an excellent open-source product called MediaWiki which is available to anyone for free. This has led to a proliferation of wiki sites devoted to just about any topic one can imagine. Users of a wiki can add content -- all that is required of them is that they type in their additions into their web browsers using the simple markup language called wikitext. Even better, the developers of wikitext made it extensible.more » With a little server-side development of your own, you can add your own custom syntax. Users aware of your extensions can then utilize them on their wiki pages with a few simple keystrokes. These extensions can be custom decorations, formatting, web applications, and even instances of the venerable old Java applet. One example of a Java applet extension is the Jmol extension (REF), used to embed a 3-D molecular viewer. This article will walk you through the deployment of a fairly elaborate applet via a MediaWiki extension. By no means exhaustive -- an entire book would be required for that -- it will demonstrate how to give the applet resize handles using using a little Javascript and CSS coding and some popular Javascript libraries. It even describes how a user may customize the extension somewhat using a wiki template. Finally, it explains a rudimentary persistence mechanism which allows applets to save data directly to the wiki pages on which they reside.« less

  18. EINO the Answer

    ERIC Educational Resources Information Center

    Hollister, James; Richie, Sam; Weeks, Arthur

    2010-01-01

    This study investigated the various methods involved in creating an intelligent tutor for the University of Central Florida Web Applets (UCF Web Applets), an online environment where student can perform and/or practice experiments. After conducting research into various methods, two major models emerged. These models include: 1) solving the…

  19. LAVA web-based remote simulation: enhancements for education and technology innovation

    NASA Astrophysics Data System (ADS)

    Lee, Sang Il; Ng, Ka Chun; Orimoto, Takashi; Pittenger, Jason; Horie, Toshi; Adam, Konstantinos; Cheng, Mosong; Croffie, Ebo H.; Deng, Yunfei; Gennari, Frank E.; Pistor, Thomas V.; Robins, Garth; Williamson, Mike V.; Wu, Bo; Yuan, Lei; Neureuther, Andrew R.

    2001-09-01

    The Lithography Analysis using Virtual Access (LAVA) web site at http://cuervo.eecs.berkeley.edu/Volcano/ has been enhanced with new optical and deposition applets, graphical infrastructure and linkage to parallel execution on networks of workstations. More than ten new graphical user interface applets have been designed to support education, illustrate novel concepts from research, and explore usage of parallel machines. These applets have been improved through feedback and classroom use. Over the last year LAVA provided industry and other academic communities 1,300 session and 700 rigorous simulations per month among the SPLAT, SAMPLE2D, SAMPLE3D, TEMPEST, STORM, and BEBS simulators.

  20. Using Visualisations in Secondary School Physics Teaching and Learning: Evaluating the Efficacy of an Instructional Program to Facilitate Understanding of Gas and Liquid Pressure Concepts

    ERIC Educational Resources Information Center

    Oh, Elisabeth Yian Yian; Treagust, David F.; Koh, Thiam Seng; Phang, Wei Lian; Ng, Shuh Lit; Sim, Gary; Chandrasegaran, A. L.

    2012-01-01

    An instructional program using four simulation applets was used to facilitate understanding of gas and liquid pressure concepts among twenty-two students in a Year 9 class from an independent secondary school in Singapore. A comparison group consisting of twenty-two students was taught using traditional didactic, chalk-and-talk instruction.…

  1. Interactive Economics Instruction with Java and CGI.

    ERIC Educational Resources Information Center

    Gerdes, Geoffrey R.

    2000-01-01

    States that this Web site is based on the conviction that Web-based materials must contain interactive modules to achieve value beyond that obtained by conventional media. Discusses three applets that can be reached at the homepage of the Web site by selecting the Java applets link. (CMK)

  2. Central Limit Theorem: New SOCR Applet and Demonstration Activity

    PubMed Central

    Dinov, Ivo D.; Christou, Nicolas; Sanchez, Juana

    2011-01-01

    Modern approaches for information technology based blended education utilize a variety of novel instructional, computational and network resources. Such attempts employ technology to deliver integrated, dynamically linked, interactive content and multifaceted learning environments, which may facilitate student comprehension and information retention. In this manuscript, we describe one such innovative effort of using technological tools for improving student motivation and learning of the theory, practice and usability of the Central Limit Theorem (CLT) in probability and statistics courses. Our approach is based on harnessing the computational libraries developed by the Statistics Online Computational Resource (SOCR) to design a new interactive Java applet and a corresponding demonstration activity that illustrate the meaning and the power of the CLT. The CLT applet and activity have clear common goals; to provide graphical representation of the CLT, to improve student intuition, and to empirically validate and establish the limits of the CLT. The SOCR CLT activity consists of four experiments that demonstrate the assumptions, meaning and implications of the CLT and ties these to specific hands-on simulations. We include a number of examples illustrating the theory and applications of the CLT. Both the SOCR CLT applet and activity are freely available online to the community to test, validate and extend (Applet: http://www.socr.ucla.edu/htmls/SOCR_Experiments.html and Activity: http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem). PMID:21833159

  3. Central Limit Theorem: New SOCR Applet and Demonstration Activity.

    PubMed

    Dinov, Ivo D; Christou, Nicolas; Sanchez, Juana

    2008-07-01

    Modern approaches for information technology based blended education utilize a variety of novel instructional, computational and network resources. Such attempts employ technology to deliver integrated, dynamically linked, interactive content and multifaceted learning environments, which may facilitate student comprehension and information retention. In this manuscript, we describe one such innovative effort of using technological tools for improving student motivation and learning of the theory, practice and usability of the Central Limit Theorem (CLT) in probability and statistics courses. Our approach is based on harnessing the computational libraries developed by the Statistics Online Computational Resource (SOCR) to design a new interactive Java applet and a corresponding demonstration activity that illustrate the meaning and the power of the CLT. The CLT applet and activity have clear common goals; to provide graphical representation of the CLT, to improve student intuition, and to empirically validate and establish the limits of the CLT. The SOCR CLT activity consists of four experiments that demonstrate the assumptions, meaning and implications of the CLT and ties these to specific hands-on simulations. We include a number of examples illustrating the theory and applications of the CLT. Both the SOCR CLT applet and activity are freely available online to the community to test, validate and extend (Applet: http://www.socr.ucla.edu/htmls/SOCR_Experiments.html and Activity: http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_GeneralCentralLimitTheorem).

  4. Automatic Web-based Calibration of Network-Capable Shipboard Sensors

    DTIC Science & Technology

    2007-09-01

    Server, Java , Applet, and Servlet . 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF THIS PAGE...49 b. Sensor Applet...........................................................................49 3. Java Servlet ...Table 1. Required System Environment Variables for Java Servlet Development. ......25 Table 2. Payload Data Format of the POST Requests from

  5. Paintbrush of Discovery: Using Java Applets to Enhance Mathematics Education

    ERIC Educational Resources Information Center

    Eason, Ray; Heath, Garrett

    2004-01-01

    This article addresses the enhancement of the learning environment by using Java applets in the mathematics classroom. Currently, the first year mathematics program at the United States Military Academy involves one semester of modeling with discrete dynamical systems (DDS). Several faculty members from the Academy have integrated Java applets…

  6. Developing Interactive Educational Engineering Software for the World Wide Web with Java.

    ERIC Educational Resources Information Center

    Reed, John A.; Afjeh, Abdollah A.

    1998-01-01

    Illustrates the design and implementation of a Java applet for use in educational propulsion engineering curricula. The Java Gas Turbine Simulator applet provides an interactive graphical environment which allows the rapid, efficient construction and analysis of arbitrary gas turbine systems. The simulator can be easily accessed from the World…

  7. Inside the Letter

    ERIC Educational Resources Information Center

    Duke, Roger; Graham, Alan

    2007-01-01

    In this article, the authors describe how a Java applet can help to build learners' intuitions about basic ideas of algebra. "Matchbox Algebra" is a Java applet the authors have designed to enable learners to grasp a key idea in learning algebra: that the letter "x" may be thought of as representing an as-yet-unknown number. They describe the…

  8. IDEA: Identifying Design Principles in Educational Applets

    ERIC Educational Resources Information Center

    Underwood, Jody S.; Hoadley, Christopher; Lee, Hollylynne Stohl; Hollebrands, Karen; DiGiano, Chris; Renninger, K. Ann

    2005-01-01

    The Internet is increasingly being used as a medium for educational software in the form of miniature applications (e.g., applets) to explore concepts in a domain. One such effort in mathematics education, the Educational Software Components of Tomorrow (ESCOT) project, created 42 miniature applications each consisting of a context, a set of…

  9. The Mathlet Toolkit: Creating Dynamic Applets for Differential Equations and Dynamical Systems

    ERIC Educational Resources Information Center

    Decker, Robert

    2011-01-01

    Dynamic/interactive graphing applets can be used to supplement standard computer algebra systems such as Maple, Mathematica, Derive, or TI calculators, in courses such as Calculus, Differential Equations, and Dynamical Systems. The addition of this type of software can lead to discovery learning, with students developing their own conjectures, and…

  10. An Ethernet Java Applet for a Course for Non-Majors.

    ERIC Educational Resources Information Center

    Holliday, Mark A.

    1997-01-01

    Details the topics of a new course that introduces computing and communication technology to students not majoring in computer science. Discusses the process of developing a Java applet (a program that can be invoked through a World Wide Web browser) that illustrates the protocol used by ethernet local area networks to determine which computer can…

  11. Animating Statistics: A New Kind of Applet for Exploring Probability Distributions

    ERIC Educational Resources Information Center

    Kahle, David

    2014-01-01

    In this article, I introduce a novel applet ("module") for exploring probability distributions, their samples, and various related statistical concepts. The module is primarily designed to be used by the instructor in the introductory course, but it can be used far beyond it as well. It is a free, cross-platform, stand-alone interactive…

  12. Developing and Using an Applet to Enrich Students' Concept Image of Rational Polynomials

    ERIC Educational Resources Information Center

    Mason, John

    2015-01-01

    This article draws on extensive experience working with secondary and tertiary teachers and educators using an applet to display rational polynomials (up to degree 7 in numerator and denominator), as support for the challenge to deduce as much as possible about the graph from the graphs of the numerator and the denominator. Pedagogical and design…

  13. Geogebra Applets Design and Development for Junior High School Students to Learn Quadrilateral Mathematics Concepts

    ERIC Educational Resources Information Center

    Nisiyatussani; Ayuningtyas, Vidya; Fathurrohman, Maman; Anriani, Nurul

    2018-01-01

    This design and development research was motivated by the rapid expansion and use of GeoGebra by mathematics educators (teachers and lecturers) in Indonesia. One of GeoGebra features is GeoGebra Applet that can be used, modified, and/or developed by educators for dynamic and interactive mathematics teaching and learning. At the time of research…

  14. A Novel Active-Learning Protein Purification Exercise for Large-Enrollment Introductory Biochemistry Courses Using the CHROM Web Applet

    ERIC Educational Resources Information Center

    Barrette-Ng, Isabelle H.; Usher, Ken C.

    2013-01-01

    The CHROM Web applet has been used to create a new active-learning exercise in which students design a purification scheme for a recombinant protein using ion-exchange chromatography (IEC). To successfully complete the exercise, students are challenged to apply elementary concepts from acid-base chemistry as well as protein and amino acid…

  15. Web based tools for data manipulation, visualisation and validation with interactive georeferenced graphs

    NASA Astrophysics Data System (ADS)

    Ivankovic, D.; Dadic, V.

    2009-04-01

    Some of oceanographic parameters have to be manually inserted into database; some (for example data from CTD probe) are inserted from various files. All this parameters requires visualization, validation and manipulation from research vessel or scientific institution, and also public presentation. For these purposes is developed web based system, containing dynamic sql procedures and java applets. Technology background is Oracle 10g relational database, and Oracle application server. Web interfaces are developed using PL/SQL stored database procedures (mod PL/SQL). Additional parts for data visualization include use of Java applets and JavaScript. Mapping tool is Google maps API (javascript) and as alternative java applet. Graph is realized as dynamically generated web page containing java applet. Mapping tool and graph are georeferenced. That means that click on some part of graph, automatically initiate zoom or marker onto location where parameter was measured. This feature is very useful for data validation. Code for data manipulation and visualization are partially realized with dynamic SQL and that allow as to separate data definition and code for data manipulation. Adding new parameter in system requires only data definition and description without programming interface for this kind of data.

  16. Java Programming Language

    NASA Technical Reports Server (NTRS)

    Shaykhian, Gholam Ali

    2007-01-01

    The Java seminar covers the fundamentals of Java programming language. No prior programming experience is required for participation in the seminar. The first part of the seminar covers introductory concepts in Java programming including data types (integer, character, ..), operators, functions and constants, casts, input, output, control flow, scope, conditional statements, and arrays. Furthermore, introduction to Object-Oriented programming in Java, relationships between classes, using packages, constructors, private data and methods, final instance fields, static fields and methods, and overloading are explained. The second part of the seminar covers extending classes, inheritance hierarchies, polymorphism, dynamic binding, abstract classes, protected access. The seminar conclude by introducing interfaces, properties of interfaces, interfaces and abstract classes, interfaces and cailbacks, basics of event handling, user interface components with swing, applet basics, converting applications to applets, the applet HTML tags and attributes, exceptions and debugging.

  17. Designing Tasks with Interactive Geometry Applets for Use in Research: Some Methodological Issues

    ERIC Educational Resources Information Center

    Sinclair, Margaret

    2006-01-01

    This paper discusses some of the results of a study carried out with two classes of grade 7 students (11-12 years old); the aim of the project was to design, develop, and test interactive geometry tasks for use in future research into how (or whether) interactive applets help students learn mathematics. The study tasks were developed around the…

  18. Real-time Java simulations of multiple interference dielectric filters

    NASA Astrophysics Data System (ADS)

    Kireev, Alexandre N.; Martin, Olivier J. F.

    2008-12-01

    An interactive Java applet for real-time simulation and visualization of the transmittance properties of multiple interference dielectric filters is presented. The most commonly used interference filters as well as the state-of-the-art ones are embedded in this platform-independent applet which can serve research and education purposes. The Transmittance applet can be freely downloaded from the site http://cpc.cs.qub.ac.uk. Program summaryProgram title: Transmittance Catalogue identifier: AEBQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5778 No. of bytes in distributed program, including test data, etc.: 90 474 Distribution format: tar.gz Programming language: Java Computer: Developed on PC-Pentium platform Operating system: Any Java-enabled OS. Applet was tested on Windows ME, XP, Sun Solaris, Mac OS RAM: Variable Classification: 18 Nature of problem: Sophisticated wavelength selective multiple interference filters can include some tens or even hundreds of dielectric layers. The spectral response of such a stack is not obvious. On the other hand, there is a strong demand from application designers and students to get a quick insight into the properties of a given filter. Solution method: A Java applet was developed for the computation and the visualization of the transmittance of multilayer interference filters. It is simple to use and the embedded filter library can serve educational purposes. Also, its ability to handle complex structures will be appreciated as a useful research and development tool. Running time: Real-time simulations

  19. Law of Large Numbers: the Theory, Applications and Technology-based Education

    PubMed Central

    Dinov, Ivo D.; Christou, Nicolas; Gould, Robert

    2011-01-01

    Modern approaches for technology-based blended education utilize a variety of recently developed novel pedagogical, computational and network resources. Such attempts employ technology to deliver integrated, dynamically-linked, interactive-content and heterogeneous learning environments, which may improve student comprehension and information retention. In this paper, we describe one such innovative effort of using technological tools to expose students in probability and statistics courses to the theory, practice and usability of the Law of Large Numbers (LLN). We base our approach on integrating pedagogical instruments with the computational libraries developed by the Statistics Online Computational Resource (www.SOCR.ucla.edu). To achieve this merger we designed a new interactive Java applet and a corresponding demonstration activity that illustrate the concept and the applications of the LLN. The LLN applet and activity have common goals – to provide graphical representation of the LLN principle, build lasting student intuition and present the common misconceptions about the law of large numbers. Both the SOCR LLN applet and activity are freely available online to the community to test, validate and extend (Applet: http://socr.ucla.edu/htmls/exp/Coin_Toss_LLN_Experiment.html, and Activity: http://wiki.stat.ucla.edu/socr/index.php/SOCR_EduMaterials_Activities_LLN). PMID:21603584

  20. Interactive Web-based tutorials for teaching digital electronics

    NASA Astrophysics Data System (ADS)

    Bailey, Donald G.

    2000-10-01

    With a wide range of student abilities in a class, it is difficult to effectively teach and stimulate all students. A series of web based tutorials was designed to help weaker students and stretch the stronger students. The tutorials consist of a series of HTML web pages with embedded Java applets. This combination is particularly powerful for providing interactive demonstrations because any textual content may be easily provided within the web page. The applet is able to be a compete working program that dynamically illustrates the concept, or provides a working environment for the student to experiment and work through their solution. The applet is dynamic, and responds to the student through both mouse clicks and keyboard entry. These allow the student to adjust parameters, make selections, and affect the way the program is run or information is displayed. Such interaction allows each applet to provide a mini demonstration or experiment to help the student understand a particular concept or technique. The approach taken is illustrated with a tutorial that dynamically shows the relationships between a truth table, Karnaugh amp, logic circuit and Boolean algebra representations of a logic function, and dramatically illustrates the effect of minimization on the resultant circuit. Use of the tutorial has resulted in significant benefits, particularly with weaker students.

  1. The Project LITE Spectrum Explorer

    NASA Astrophysics Data System (ADS)

    Brecher, K.; Carr, P.; Garik, P.; Weeks, E.

    2002-12-01

    We are developing a powerful new software tool which can help students at all levels understand the spectral properties of light. As a recent AAS survey of astronomy faculty members found (The Physics Teacher, 39, 52, 2001), essentially all introductory astronomy courses spend a significant amount of time dealing with the nature of light. Among the most difficult concepts for students to master are Kirchhoff's laws, blackbody radiation, the Stefan-Boltzmann law, Wien's law, the nature and causes of emission and absorption lines, and the relation of spectra to the underlying astronomical and physical processes producing them. Students often seem baffled by the connection between a spectrum seen visually as a color band and the same spectrum plotted graphically as intensity versus wavelength or frequency. The "Spectrum Explorer", a JAVA applet, is being developed as part of "Project LITE: Light Inquiry Through Experiments" to address these issues. It can be used by instructors in lecture presentations and by students learning at home or working in laboratory settings. We will show some of the current capabilities of the software which include simultaneous display of multiple spectra (normalized and non-normalized as a function of either wavelength or frequency) and the ability to manipulate blackbody spectra. Our future development plans include the addition of a variety of spectral data sets (from physics and chemistry as well as from astronomy); computed inputs from basic quantum mechanics (e.g. Zeeman effect in hydrogen) and from astronomical models (e.g. time varying spectra in binary stars); and the ability to test the effect of filters and physical processes (e.g. Rayleigh scattering) on input spectra. The Spectrum Explorer (along with many other applets about both the physical and perceptual nature of light) can be found on the Project LITE web site http://lite.bu.edu. Project LITE is supported by Grant #DUE-0125992 from the National Science Foundation Division of Undergraduate Education.

  2. Family-oriented cardiac risk estimator: a Java web-based applet.

    PubMed

    Crouch, Michael A; Jadhav, Ashwin

    2003-01-01

    We developed a Java applet that calculates four different estimates of a person's 10-year risk for heart attack: (1) Estimate based on Framingham equation (2) Framingham equation estimate modified by C-reactive protein (CRP) level (3) Framingham estimate modified by family history of heart disease in parents or siblings (4) Framingham estimate modified by both CRP and family heart disease history. This web-based, family-oriented cardiac risk estimator uniquely considers family history and CRP while estimating risk.

  3. Dynamic Detection of Malicious Code in COTS Software

    DTIC Science & Technology

    2000-04-01

    run the following documented hostile applets or ActiveX of these tools work only on mobile code (Java, ActiveX , controls: 16-11 Hostile Applets Tiny...Killer App Exploder Runner ActiveX Check Spy eSafe Protect Desktop 9/9 blocked NB B NB 13/17 blocked NB Surfinshield Online 9/9 blocked NB B B 13/17...Exploder is an ActiveX control top (@). that performs a clean shutdown of your computer. The interface is attractive, although rather complex, as McLain’s

  4. Physics education through computational tools: the case of geometrical and physical optics

    NASA Astrophysics Data System (ADS)

    Rodríguez, Y.; Santana, A.; Mendoza, L. M.

    2013-09-01

    Recently, with the development of more powerful and accurate computational tools, the inclusion of new didactic materials in the classroom is known to have increased. However, the form in which these materials can be used to enhance the learning process is still under debate. Many different methodologies have been suggested for constructing new relevant curricular material and, among them, just-in-time teaching (JiTT) has arisen as an effective and successful way to improve the content of classes. In this paper, we will show the implemented pedagogic strategies for the courses of geometrical and optical physics for students of optometry. Thus, the use of the GeoGebra software for the geometrical optics class and the employment of new in-house software for the physical optics class created using the high-level programming language Python is shown with the corresponding activities developed for each of these applets.

  5. Dexter: Data Extractor for scanned graphs

    NASA Astrophysics Data System (ADS)

    Demleitner, Markus

    2011-12-01

    The NASA Astrophysics Data System (ADS) now holds 1.3 million scanned pages, containing numerous plots and figures for which the original data sets are lost or inaccessible. The availability of scans of the figures can significantly ease the regeneration of the data sets. For this purpose, the ADS has developed Dexter, a Java applet that supports the user in this process. Dexter's basic functionality is to let the user manually digitize a plot by marking points and defining the coordinate transformation from the logical to the physical coordinate system. Advanced features include automatic identification of axes, tracing lines and finding points matching a template.

  6. Modeling Physical Systems Using Vensim PLE Systems Dynamics Software

    NASA Astrophysics Data System (ADS)

    Widmark, Stephen

    2012-02-01

    Many physical systems are described by time-dependent differential equations or systems of such equations. This makes it difficult for students in an introductory physics class to solve many real-world problems since these students typically have little or no experience with this kind of mathematics. In my high school physics classes, I address this problem by having my students use a variety of software solutions to model physical systems described by differential equations. These include spreadsheets, applets, software my students themselves create, and systems dynamics software. For the latter, cost is often the main issue in choosing a solution for use in a public school and so I researched no-cost software. I found Sphinx SD,2OptiSim,3 Systems Dynamics,4 Simile (Trial Edition),5 and Vensim PLE.6 In evaluating each of these solutions, I looked for the fewest restrictions in the license for educational use, ease of use by students, power, and versatility. In my opinion, Vensim PLE best fulfills these criteria.7

  7. Get Real!--Physically Reasonable Values for Teaching Electrostatics

    ERIC Educational Resources Information Center

    Morse, Robert A.

    2016-01-01

    Students get a sense of realistic values for physical situations from texts, but more importantly from solving problems. Therefore, problems should use realistic values for quantities to provide needed practice. Unfortunately, some problems on tests and in textbooks do not use realistic values. Physical situations in electrostatics seem to be…

  8. Reviews Book: The Babylonian Theorem Video Game: BrainBox360 (Physics Edition) Book: Teaching and Learning Science: Towards a Personalized Approach Book: Good Practice in Science Teaching: What Research Has to Say Equipment: PAPERSHOW Equipment: SEP Steady State Bottle Kit Equipment: Sciencescope Datalogging Balance Equipment: USB Robot Arm Equipment: Sciencescope Spectrophotometer Web Watch

    NASA Astrophysics Data System (ADS)

    2010-07-01

    WE RECOMMEND Good Practice in Science Teaching: What Research Has to Say Book explores and summarizes the research Steady State Bottle Kit Another gem from SEP Sciencescope Datalogging Balance Balance suits everyday use Sciencescope Spectrophotometer Device displays clear spectrum WORTH A LOOK The Babylonian Theorem Text explains ancient Egyptian mathematics BrainBox360 (Physics Edition) Video game tests your knowledge Teaching and Learning Science: Towards a Personalized Approach Book reveals how useful physics teachers really are PAPERSHOW Gadget kit is useful but has limitations Robotic Arm Kit with USB PC Interface Robot arm teaches programming WEB WATCH Simple applets teach complex topics

  9. DEPPDB - DNA electrostatic potential properties database. Electrostatic properties of genome DNA elements.

    PubMed

    Osypov, Alexander A; Krutinin, Gleb G; Krutinina, Eugenia A; Kamzolova, Svetlana G

    2012-04-01

    Electrostatic properties of genome DNA are important to its interactions with different proteins, in particular, related to transcription. DEPPDB - DNA Electrostatic Potential (and other Physical) Properties Database - provides information on the electrostatic and other physical properties of genome DNA combined with its sequence and annotation of biological and structural properties of genomes and their elements. Genomes are organized on taxonomical basis, supporting comparative and evolutionary studies. Currently, DEPPDB contains all completely sequenced bacterial, viral, mitochondrial, and plastids genomes according to the NCBI RefSeq, and some model eukaryotic genomes. Data for promoters, regulation sites, binding proteins, etc., are incorporated from established DBs and literature. The database is complemented by analytical tools. User sequences calculations are available. Case studies discovered electrostatics complementing DNA bending in E.coli plasmid BNT2 promoter functioning, possibly affecting host-environment metabolic switch. Transcription factors binding sites gravitate to high potential regions, confirming the electrostatics universal importance in protein-DNA interactions beyond the classical promoter-RNA polymerase recognition and regulation. Other genome elements, such as terminators, also show electrostatic peculiarities. Most intriguing are gene starts, exhibiting taxonomic correlations. The necessity of the genome electrostatic properties studies is discussed.

  10. Teaching Electrostatics and Entropy in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Reeves, Mark

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology courses is important contribution of the entropy in driving fundamental biological processes towards equilibrium. I will present material developed to teach electrostatic screening in solutions and the function of nerve cells where entropic effects act to counterbalance electrostatic attraction. These ideas are taught in an introductory, calculus-based physics course to biomedical engineers using SCALEUP pedagogy. Results of student mastering of complex problems that cross disciplinary boundaries between biology and physics, as well as the challenges that they face in learning this material will be presented.

  11. A new constituent of electrostatic energy in semiconductors. An attempt to reformulate electrostatic energy in matter

    NASA Astrophysics Data System (ADS)

    Sallese, Jean-Michel

    2016-06-01

    The concept of electric energy is revisited in detail for semiconductors. We come to the conclusion that the main relationship used to calculate the energy related to the penetration of the electric field in semiconductors is missing a fundamental term. For instance, spatial derivate of the electrostatic energy using the traditional formula fails at giving the correct electrostatic force between semiconductor based capacitor plates, and reveals unambiguously the existence of an extra contribution to the standard electrostatic free energy. The additional term is found to be related to the generation of space charge regions which are predicted when combining electrostatics with semiconductor physics laws, such as for accumulation and inversion layers. On the contrary, no such energy is needed when relying on electrostatics only, as for instance when adopting the so-called full depletion approximation. The same holds for neutral and charged insulators that are still consistent with the customary definition, but these two examples are in fact singular cases. In semiconductors for instance, this additional energy can largely exceed the energy gained by the dipoles, thus becoming the dominant term. This unexpected result clearly asks for a generalization of electrostatic energy in matter in order to reconcile basic concepts of electrostatic energy in the framework of classical physics.

  12. Electrostatic atomization--Experiment, theory and industrial applications

    NASA Astrophysics Data System (ADS)

    Okuda, H.; Kelly, Arnold J.

    1996-05-01

    Experimental and theoretical research has been initiated at the Princeton Plasma Physics Laboratory on the electrostatic atomization process in collaboration with Charged Injection Corporation. The goal of this collaboration is to set up a comprehensive research and development program on the electrostatic atomization at the Princeton Plasma Physics Laboratory so that both institutions can benefit from the collaboration. Experimental, theoretical and numerical simulation approaches are used for this purpose. An experiment consisting of a capillary sprayer combined with a quadrupole mass filter and a charge detector was installed at the Electrostatic Atomization Laboratory to study fundamental properties of the charged droplets such as the distribution of charges with respect to the droplet radius. In addition, a numerical simulation model is used to study interaction of beam electrons with atmospheric pressure water vapor, supporting an effort to develop an electrostatic water mist fire-fighting nozzle.

  13. Using Programmable Calculators to Solve Electrostatics Problems.

    ERIC Educational Resources Information Center

    Yerian, Stephen C.; Denker, Dennis A.

    1985-01-01

    Provides a simple routine which allows first-year physics students to use programmable calculators to solve otherwise complex electrostatic problems. These problems involve finding electrostatic potential and electric field on the axis of a uniformly charged ring. Modest programing skills are required of students. (DH)

  14. Limiting assumptions in molecular modeling: electrostatics.

    PubMed

    Marshall, Garland R

    2013-02-01

    Molecular mechanics attempts to represent intermolecular interactions in terms of classical physics. Initial efforts assumed a point charge located at the atom center and coulombic interactions. It is been recognized over multiple decades that simply representing electrostatics with a charge on each atom failed to reproduce the electrostatic potential surrounding a molecule as estimated by quantum mechanics. Molecular orbitals are not spherically symmetrical, an implicit assumption of monopole electrostatics. This perspective reviews recent evidence that requires use of multipole electrostatics and polarizability in molecular modeling.

  15. Frontier applications of electrostatic accelerators

    NASA Astrophysics Data System (ADS)

    Liu, Ke-Xin; Wang, Yu-Gang; Fan, Tie-Shuan; Zhang, Guo-Hui; Chen, Jia-Er

    2013-10-01

    Electrostatic accelerator is a powerful tool in many research fields, such as nuclear physics, radiation biology, material science, archaeology and earth sciences. Two electrostatic accelerators, one is the single stage Van de Graaff with terminal voltage of 4.5 MV and another one is the EN tandem with terminal voltage of 6 MV, were installed in 1980s and had been put into operation since the early 1990s at the Institute of Heavy Ion Physics. Many applications have been carried out since then. These two accelerators are described and summaries of the most important applications on neutron physics and technology, radiation biology and material science, as well as accelerator mass spectrometry (AMS) are presented.

  16. Electrostatically actuatable light modulating device

    DOEpatents

    Koehler, Dale R.

    1991-01-01

    The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

  17. Getting Shocks: Teaching Secondary School Physics through History.

    ERIC Educational Resources Information Center

    Heering, Peter

    2000-01-01

    Uses several replicas of experimental set-ups that were originally used in electrostatic research in teaching electrostatics through history on secondary school level. Makes visible the change of the style of electrostatic experimentation that took place at the end of the 18th century. (Contains 25 references.) (ASK)

  18. Java-based PACS and reporting system for nuclear medicine

    NASA Astrophysics Data System (ADS)

    Slomka, Piotr J.; Elliott, Edward; Driedger, Albert A.

    2000-05-01

    In medical imaging practice, images and reports often need be reviewed and edited from many locations. We have designed and implemented a Java-based Remote Viewing and Reporting System (JaRRViS) for a nuclear medicine department, which is deployed as a web service, at the fraction of the cost dedicated PACS systems. The system can be extended to other imaging modalities. JaRRViS interfaces to the clinical patient databases of imaging workstations. Specialized nuclear medicine applets support interactive displays of data such as 3-D gated SPECT with all the necessary options such as cine, filtering, dynamic lookup tables, and reorientation. The reporting module is implemented as a separate applet using Java Foundation Classes (JFC) Swing Editor Kit and allows composition of multimedia reports after selection and annotation of appropriate images. The reports are stored on the server in the HTML format. JaRRViS uses Java Servlets for the preparation and storage of final reports. The http links to the reports or to the patient's raw images with applets can be obtained from JaRRViS by any Hospital Information System (HIS) via standard queries. Such links can be sent via e-mail or included as text fields in any HIS database, providing direct access to the patient reports and images via standard web browsers.

  19. Secure web-based access to radiology: forms and databases for fast queries

    NASA Astrophysics Data System (ADS)

    McColl, Roderick W.; Lane, Thomas J.

    2002-05-01

    Currently, Web-based access to mini-PACS or similar databases commonly utilizes either JavaScript, Java applets or ActiveX controls. Many sites do not permit applets or controls or other binary objects for fear of viruses or worms sent by malicious users. In addition, the typical CGI query mechanism requires several parameters to be sent with the http GET/POST request, which may identify the patient in some way; this in unacceptable for privacy protection. Also unacceptable are pages produced by server-side scripts which can be cached by the browser, since these may also contain sensitive information. We propose a simple mechanism for access to patient information, including images, which guarantees security of information, makes it impossible to bookmark the page, or to return to the page after some defined length of time. In addition, this mechanism is simple, therefore permitting rapid access without the need to initially download an interface such as an applet or control. In addition to image display, the design of the site allows the user to view and save movies of multi-phasic data, or to construct multi-frame datasets from entire series. These capabilities make the site attractive for research purposes such as teaching file preparation.

  20. Strategies for combining physics videos and virtual laboratories in the training of physics teachers

    NASA Astrophysics Data System (ADS)

    Dickman, Adriana; Vertchenko, Lev; Martins, Maria Inés

    2007-03-01

    Among the multimedia resources used in physics education, the most prominent are virtual laboratories and videos. On one hand, computer simulations and applets have very attractive graphic interfaces, showing an incredible amount of detail and movement. On the other hand, videos, offer the possibility of displaying high quality images, and are becoming more feasible with the increasing availability of digital resources. We believe it is important to discuss, throughout the teacher training program, both the functionality of information and communication technology (ICT) in physics education and, the varied applications of these resources. In our work we suggest the introduction of ICT resources in a sequence integrating these important tools in the teacher training program, as opposed to the traditional approach, in which virtual laboratories and videos are introduced separately. In this perspective, when we introduce and utilize virtual laboratory techniques we also provide for its use in videos, taking advantage of graphic interfaces. Thus the students in our program learn to use instructional software in the production of videos for classroom use.

  1. Factors determining electrostatic fields in molecular dynamics simulations of the Ras/effector interface.

    PubMed

    Ensign, Daniel L; Webb, Lauren J

    2011-12-01

    Using molecular dynamics simulations, we explore geometric and physical factors contributing to calculated electrostatic fields at the binding surface of the GTPase Ras with a spectroscopically labeled variant of a downstream effector, the Ras-binding domain of Ral guanine nucleotide dissociation stimulator (RalGDS). A related system (differing by mutation of one amino acid) has been studied in our group using vibrational Stark effect spectroscopy, a technique sensitive to electrostatic fields. Electrostatic fields were computed using the AMBER 2003 force field and averaged over snapshots from molecular dynamics simulation. We investigate geometric factors by exploring how the orientation of the spectroscopic probe changes on Ras-effector binding. In addition, we explore the physical origin of electrostatic fields at our spectroscopic probe by comparing contributions to the field from discrete components of the system, such as explicit solvent, residues on the Ras surface, and residues on the RalGDS surface. These models support our experimental hypothesis that vibrational Stark shifts are caused by Ras binding to its effector and not the structural rearrangements of the effector surface or probe reorientation on Ras-effector binding, for at least some of our experimental probes. These calculations provide physical insight into the origin, magnitude, and importance of electrostatic fields in protein-protein interactions and suggest new experiments to probe the field's role in protein docking. Copyright © 2011 Wiley-Liss, Inc.

  2. A Bridge between Two Important Problems in Optics and Electrostatics

    ERIC Educational Resources Information Center

    Capelli, R.; Pozzi, G.

    2008-01-01

    It is shown how the same physically appealing method can be applied to find analytic solutions for two difficult and apparently unrelated problems in optics and electrostatics. They are: (i) the diffraction of a plane wave at a perfectly conducting thin half-plane and (ii) the electrostatic field associated with a parallel array of stripes held at…

  3. Comprehensive Modeling of Superficial Dust Removal via Electrostatic and Dielectrophoretic Forces in Extraterres-trial Exploration Mission

    NASA Technical Reports Server (NTRS)

    Dominguez, Jesus A.; Phillips, James R. III; Mackey, Paul J.; Hogue, Michael D.; Johansen, Michael R.; Cox, Rachel E.; Calle, Carlos I.

    2017-01-01

    The Electrostatics and Surface Physics Laboratory (ESPL) at NASA Kennedy Space Center has developed a dust mitigation technology that uses electrostatic and dielectrophoretic (DEP) forces to disperse and remove the dust already deposited on surfaces preventing the accumulation of dust particles approaching or already deposited on those surfaces.

  4. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  5. Review on the Modeling of Electrostatic MEMS

    PubMed Central

    Chuang, Wan-Chun; Lee, Hsin-Li; Chang, Pei-Zen; Hu, Yuh-Chung

    2010-01-01

    Electrostatic-driven microelectromechanical systems devices, in most cases, consist of couplings of such energy domains as electromechanics, optical electricity, thermoelectricity, and electromagnetism. Their nonlinear working state makes their analysis complex and complicated. This article introduces the physical model of pull-in voltage, dynamic characteristic analysis, air damping effect, reliability, numerical modeling method, and application of electrostatic-driven MEMS devices. PMID:22219707

  6. The Electrocardiogram as an Example of Electrostatics

    ERIC Educational Resources Information Center

    Hobbie, Russell K.

    1973-01-01

    Develops a simplified electrostatic model of the heart with conduction within the torso neglected to relate electrocardiogram patterns to the charge distribution within the myocardium. Suggests its application to explanation of Coulomb's law in general physics. (CC)

  7. Electrostatic Field Invisibility Cloak

    NASA Astrophysics Data System (ADS)

    Lan, Chuwen; Yang, Yuping; Geng, Zhaoxin; Li, Bo; Zhou, Ji

    2015-11-01

    The invisibility cloak has been drawing much attention due to its new concept for manipulating many physical fields, from oscillating wave fields (electromagnetic, acoustic and elastic) to static magnetic fields, dc electric fields, and diffusive fields. Here, an electrostatic field invisibility cloak has been theoretically investigated and experimentally demonstrated to perfectly hide two dimensional objects without disturbing their external electrostatic fields. The desired cloaking effect has been achieved via both cancelling technology and transformation optics (TO). This study demonstrates a novel way for manipulating electrostatic fields, which shows promise for a wide range of potential applications.

  8. AMOEBA 2.0: A physics-first approach to biomolecular simulations

    NASA Astrophysics Data System (ADS)

    Rackers, Joshua; Ponder, Jay

    The goal of the AMOEBA force field project is to use classical physics to understand and predict the nature of interactions between biological molecules. While making significant advances over the past decade, the ultimate goal of predicting binding energies with ``chemical accuracy'' remains elusive. The primary source of this inaccuracy comes from the physics of how molecules interact at short range. For example, despite AMOEBA's advanced treatment of electrostatics, the force field dramatically overpredicts the electrostatic energy of DNA stacking interactions. AMOEBA 2.0 works to correct these errors by including simple, first principles physics-based terms to account for the quantum mechanical nature of these short-range molecular interactions. We have added a charge penetration term that considerably improves the description of electrostatic interactions at short range. We are reformulating the polarization term of AMOEBA in terms of basic physics assertions. And we are reevaluating the van der Waals term to match ab initio energy decompositions. These additions and changes promise to make AMOEBA more predictive. By including more physical detail of the important short-range interactions of biological molecules, we hope to move closer to the ultimate goal of true predictive power.

  9. Physics education in the Greek community schools of Istanbul (19th century). Scientific instruments and experiments in electrostatics

    NASA Astrophysics Data System (ADS)

    Lazos, Panagiotis; Vlahakis, George N.

    2016-03-01

    The Greek schools operating in Istanbul date back to the 19th century. These schools have noteworthy collections of old scientific instruments that were used in teaching experimental physics. Amongst them, more outstanding are the scientific instruments used in demonstrating electrostatics. This paper briefly presents the equipment, focuses on exceptional scientific instruments and attempts to illuminate certain aspects in teaching the natural sciences.

  10. Controlling EPICS from a web browser.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, K., Jr.

    1999-04-13

    An alternative to using a large graphical display manager like MEDM [1,2] to interface to a control system, is to use individual control objects, such as text boxes, meters, etc., running in a browser. This paper presents three implementations of this concept, one using ActiveX controls, one with Java applets, and another with Microsoft Agent. The ActiveX controls have performance nearing that of MEDM, but they only work on Windows platforms. The Java applets require a server to get around Web security restrictions and are not as fast, but they have the advantage of working on most platforms and withmore » both of the leading Web browsers. The agent works on Windows platforms with and without a browser and allows voice recognition and speech synthesis, making it somewhat more innovative than MEDM.« less

  11. Reintroducing electrostatics into macromolecular crystallographic refinement: application to neutron crystallography and DNA hydration.

    PubMed

    Fenn, Timothy D; Schnieders, Michael J; Mustyakimov, Marat; Wu, Chuanjie; Langan, Paul; Pande, Vijay S; Brunger, Axel T

    2011-04-13

    Most current crystallographic structure refinements augment the diffraction data with a priori information consisting of bond, angle, dihedral, planarity restraints, and atomic repulsion based on the Pauli exclusion principle. Yet, electrostatics and van der Waals attraction are physical forces that provide additional a priori information. Here, we assess the inclusion of electrostatics for the force field used for all-atom (including hydrogen) joint neutron/X-ray refinement. Two DNA and a protein crystal structure were refined against joint neutron/X-ray diffraction data sets using force fields without electrostatics or with electrostatics. Hydrogen-bond orientation/geometry favors the inclusion of electrostatics. Refinement of Z-DNA with electrostatics leads to a hypothesis for the entropic stabilization of Z-DNA that may partly explain the thermodynamics of converting the B form of DNA to its Z form. Thus, inclusion of electrostatics assists joint neutron/X-ray refinements, especially for placing and orienting hydrogen atoms. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Reintroducing Electrostatics into Macromolecular Crystallographic Refinement: Application to Neutron Crystallography and DNA Hydration

    PubMed Central

    Fenn, Timothy D.; Schnieders, Michael J.; Mustyakimov, Marat; Wu, Chuanjie; Langan, Paul; Pande, Vijay S.; Brunger, Axel T.

    2011-01-01

    Summary Most current crystallographic structure refinements augment the diffraction data with a priori information consisting of bond, angle, dihedral, planarity restraints and atomic repulsion based on the Pauli exclusion principle. Yet, electrostatics and van der Waals attraction are physical forces that provide additional a priori information. Here we assess the inclusion of electrostatics for the force field used for all-atom (including hydrogen) joint neutron/X-ray refinement. Two DNA and a protein crystal structure were refined against joint neutron/X-ray diffraction data sets using force fields without electrostatics or with electrostatics. Hydrogen bond orientation/geometry favors the inclusion of electrostatics. Refinement of Z-DNA with electrostatics leads to a hypothesis for the entropic stabilization of Z-DNA that may partly explain the thermodynamics of converting the B form of DNA to its Z form. Thus, inclusion of electrostatics assists joint neutron/X-ray refinements, especially for placing and orienting hydrogen atoms. PMID:21481775

  13. 40 CFR 440.50 - Applicability; description of the titanium ore subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) mills beneficiating titanium ores by electrostatic methods, magnetic and physical methods, or flotation methods; and (c) mines engaged in the dredge mining of placer deposits of sands containing rutile... methods in conjunction with electrostatic or magnetic methods). ...

  14. Electrostatic potentials of the S-locus F-box proteins contribute to the pollen S specificity in self-incompatibility in Petunia hybrida.

    PubMed

    Li, Junhui; Zhang, Yue; Song, Yanzhai; Zhang, Hui; Fan, Jiangbo; Li, Qun; Zhang, Dongfen; Xue, Yongbiao

    2017-01-01

    Self-incompatibility (SI) is a self/non-self discrimination system found widely in angiosperms and, in many species, is controlled by a single polymorphic S-locus. In the Solanaceae, Rosaceae and Plantaginaceae, the S-locus encodes a single S-RNase and a cluster of S-locus F-box (SLF) proteins to control the pistil and pollen expression of SI, respectively. Previous studies have shown that their cytosolic interactions determine their recognition specificity, but the physical force between their interactions remains unclear. In this study, we show that the electrostatic potentials of SLF contribute to the pollen S specificity through a physical mechanism of 'like charges repel and unlike charges attract' between SLFs and S-RNases in Petunia hybrida. Strikingly, the alteration of a single C-terminal amino acid of SLF reversed its surface electrostatic potentials and subsequently the pollen S specificity. Collectively, our results reveal that the electrostatic potentials act as a major physical force between cytosolic SLFs and S-RNases, providing a mechanistic insight into the self/non-self discrimination between cytosolic proteins in angiosperms. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  15. A MATHEMATICAL MODEL OF ELECTROSTATIC PRECIPITATION. (REVISION 1): VOLUME I. MODELING AND PROGRAMMING

    EPA Science Inventory

    The report briefly describes the fundamental mechanisms and limiting factors involved in the electrostatic precipitation process. It discusses theories and procedures used in the computer model to describe the physical mechanisms, and generally describes the major operations perf...

  16. New tools for investigating student learning in upper-division electrostatics

    NASA Astrophysics Data System (ADS)

    Wilcox, Bethany R.

    Student learning in upper-division physics courses is a growing area of research in the field of Physics Education. Developing effective new curricular materials and pedagogical techniques to improve student learning in upper-division courses requires knowledge of both what material students struggle with and what curricular approaches help to overcome these struggles. To facilitate the course transformation process for one specific content area --- upper-division electrostatics --- this thesis presents two new methodological tools: (1) an analytical framework designed to investigate students' struggles with the advanced physics content and mathematically sophisticated tools/techniques required at the junior and senior level, and (2) a new multiple-response conceptual assessment designed to measure student learning and assess the effectiveness of different curricular approaches. We first describe the development and theoretical grounding of a new analytical framework designed to characterize how students use mathematical tools and techniques during physics problem solving. We apply this framework to investigate student difficulties with three specific mathematical tools used in upper-division electrostatics: multivariable integration in the context of Coulomb's law, the Dirac delta function in the context of expressing volume charge densities, and separation of variables as a technique to solve Laplace's equation. We find a number of common themes in students' difficulties around these mathematical tools including: recognizing when a particular mathematical tool is appropriate for a given physics problem, mapping between the specific physical context and the formal mathematical structures, and reflecting spontaneously on the solution to a physics problem to gain physical insight or ensure consistency with expected results. We then describe the development of a novel, multiple-response version of an existing conceptual assessment in upper-division electrostatics courses. The goal of this new version is to provide an easily-graded electrostatics assessment that can potentially be implemented to investigate student learning on a large scale. We show that student performance on the new multiple-response version exhibits a significant degree of consistency with performance on the free-response version, and that it continues to provide significant insight into student reasoning and student difficulties. Moreover, we demonstrate that the new assessment is both valid and reliable using data from upper-division physics students at multiple institutions. Overall, the work described in this thesis represents a significant contribution to the methodological tools available to researchers and instructors interested in improving student learning at the upper-division level.

  17. A charge- and energy-conserving implicit, electrostatic particle-in-cell algorithm on mapped computational meshes

    NASA Astrophysics Data System (ADS)

    Chacón, L.; Chen, G.; Barnes, D. C.

    2013-01-01

    We describe the extension of the recent charge- and energy-conserving one-dimensional electrostatic particle-in-cell algorithm in Ref. [G. Chen, L. Chacón, D.C. Barnes, An energy- and charge-conserving, implicit electrostatic particle-in-cell algorithm, Journal of Computational Physics 230 (2011) 7018-7036] to mapped (body-fitted) computational meshes. The approach maintains exact charge and energy conservation properties. Key to the algorithm is a hybrid push, where particle positions are updated in logical space, while velocities are updated in physical space. The effectiveness of the approach is demonstrated with a challenging numerical test case, the ion acoustic shock wave. The generalization of the approach to multiple dimensions is outlined.

  18. Prospects and challenges of touchless electrostatic detumbling of small bodies

    NASA Astrophysics Data System (ADS)

    Bennett, Trevor; Stevenson, Daan; Hogan, Erik; Schaub, Hanspeter

    2015-08-01

    The prospects of touchlessly detumbling a small, multiple meters in size, space object using electrostatic forces are intriguing. Physically capturing an object with a large rotation rate poses significant momentum transfer and collision risks. If the spin rate is reduced to less than 1 deg/s, relative motion sensing and control associated with mechanical docking becomes manageable. In particular, this paper surveys the prospects and challenges of detumbling large debris objects near Geostationary Earth Orbit for active debris remediation, and investigates if such electrostatic tractors are suitable for small asteroids being considered for asteroid retrieval missions. Active charge transfer is used to impart arresting electrostatic torques on such objects, given that they are sufficiently non-spherical. The concept of touchless electrostatic detumbling of space debris is outlined through analysis and experiments and is shown to hold great promise to arrest the rotation within days to weeks. However, even conservatively optimistic simulations of small asteroid detumbling scenarios indicate that such a method could take over a year to arrest the asteroid rotation. The numerical debris detumbling simulation includes a charge transfer model in a space environment, and illustrates how a conducting rocket body could be despun without physical contact.

  19. Structural phase transition in monolayer MoTe2 driven by electrostatic doping

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Xiao, Jun; Zhu, Hanyu; Li, Yao; Alsaid, Yousif; Fong, King Yan; Zhou, Yao; Wang, Siqi; Shi, Wu; Wang, Yuan; Zettl, Alex; Reed, Evan J.; Zhang, Xiang

    2017-10-01

    Monolayers of transition-metal dichalcogenides (TMDs) exhibit numerous crystal phases with distinct structures, symmetries and physical properties. Exploring the physics of transitions between these different structural phases in two dimensions may provide a means of switching material properties, with implications for potential applications. Structural phase transitions in TMDs have so far been induced by thermal or chemical means; purely electrostatic control over crystal phases through electrostatic doping was recently proposed as a theoretical possibility, but has not yet been realized. Here we report the experimental demonstration of an electrostatic-doping-driven phase transition between the hexagonal and monoclinic phases of monolayer molybdenum ditelluride (MoTe2). We find that the phase transition shows a hysteretic loop in Raman spectra, and can be reversed by increasing or decreasing the gate voltage. We also combine second-harmonic generation spectroscopy with polarization-resolved Raman spectroscopy to show that the induced monoclinic phase preserves the crystal orientation of the original hexagonal phase. Moreover, this structural phase transition occurs simultaneously across the whole sample. This electrostatic-doping control of structural phase transition opens up new possibilities for developing phase-change devices based on atomically thin membranes.

  20. Remote Sensing Information Gateway: A free application and web service for fast, convenient, interoperable access to large repositories of atmospheric data

    NASA Astrophysics Data System (ADS)

    Plessel, T.; Szykman, J.; Freeman, M.

    2012-12-01

    EPA's Remote Sensing Information Gateway (RSIG) is a widely used free applet and web service for quickly and easily retrieving, visualizing and saving user-specified subsets of atmospheric data - by variable, geographic domain and time range. Petabytes of available data include thousands of variables from a set of NASA and NOAA satellites, aircraft, ground stations and EPA air-quality models. The RSIG applet is used by atmospheric researchers and uses the rsigserver web service to obtain data and images. The rsigserver web service is compliant with the Open Geospatial Consortium Web Coverage Service (OGC-WCS) standard to facilitate data discovery and interoperability. Since rsigserver is publicly accessible, it can be (and is) used by other applications. This presentation describes the architecture and technical implementation details of this successful system with an emphasis on achieving convenience, high-performance, data integrity and security.

  1. A Feasability Study of the Wheel Electrostatic Spectrometer

    NASA Technical Reports Server (NTRS)

    Johansen, Michael Ryan; Phillips, James Ralph; Kelley, Joshua David; Mackey, Paul J.; Holbert, Eirik; Clements, Gregory R.; Calle, Carlos I.

    2014-01-01

    Mars rover missions rely on time-consuming, power-exhausting processes to analyze the Martian regolith. A low power electrostatic sensor in the wheels of a future Mars rover could be used to quickly determine when the rover is driving over a different type of regolith. The Electrostatics and Surface Physics Laboratory at NASA's Kennedy Space Center developed the Wheel Electrostatic Spectrometer as a feasibility study to investigate this option. In this paper, we discuss recent advances in this technology to increase the repeatability of the tribocharging experiments, along with supporting data. In addition, we discuss the development of a static elimination tool optimized for Martian conditions.

  2. Deppdb--DNA electrostatic potential properties database: electrostatic properties of genome DNA.

    PubMed

    Osypov, Alexander A; Krutinin, Gleb G; Kamzolova, Svetlana G

    2010-06-01

    The electrostatic properties of genome DNA influence its interactions with different proteins, in particular, the regulation of transcription by RNA-polymerases. DEPPDB--DNA Electrostatic Potential Properties Database--was developed to hold and provide all available information on the electrostatic properties of genome DNA combined with its sequence and annotation of biological and structural properties of genome elements and whole genomes. Genomes in DEPPDB are organized on a taxonomical basis. Currently, the database contains all the completely sequenced bacterial and viral genomes according to NCBI RefSeq. General properties of the genome DNA electrostatic potential profile and principles of its formation are revealed. This potential correlates with the GC content but does not correspond to it exactly and strongly depends on both the sequence arrangement and its context (flanking regions). Analysis of the promoter regions for bacterial and viral RNA polymerases revealed a correspondence between the scale of these proteins' physical properties and electrostatic profile patterns. We also discovered a direct correlation between the potential value and the binding frequency of RNA polymerase to DNA, supporting the idea of the role of electrostatics in these interactions. This matches a pronounced tendency of the promoter regions to possess higher values of the electrostatic potential.

  3. Uncertainty quantification analysis of the dynamics of an electrostatically actuated microelectromechanical switch model

    NASA Astrophysics Data System (ADS)

    Snow, Michael G.; Bajaj, Anil K.

    2015-08-01

    This work presents an uncertainty quantification (UQ) analysis of a comprehensive model for an electrostatically actuated microelectromechanical system (MEMS) switch. The goal is to elucidate the effects of parameter variations on certain key performance characteristics of the switch. A sufficiently detailed model of the electrostatically actuated switch in the basic configuration of a clamped-clamped beam is developed. This multi-physics model accounts for various physical effects, including the electrostatic fringing field, finite length of electrodes, squeeze film damping, and contact between the beam and the dielectric layer. The performance characteristics of immediate interest are the static and dynamic pull-in voltages for the switch. Numerical approaches for evaluating these characteristics are developed and described. Using Latin Hypercube Sampling and other sampling methods, the model is evaluated to find these performance characteristics when variability in the model's geometric and physical parameters is specified. Response surfaces of these results are constructed via a Multivariate Adaptive Regression Splines (MARS) technique. Using a Direct Simulation Monte Carlo (DSMC) technique on these response surfaces gives smooth probability density functions (PDFs) of the outputs characteristics when input probability characteristics are specified. The relative variation in the two pull-in voltages due to each of the input parameters is used to determine the critical parameters.

  4. Electrostatic Precipitator

    NASA Image and Video Library

    2017-06-09

    Dr. Carlos Calle, lead scientist in the Kennedy Space Center's Electrostatics and Surface Physics Laboratory, left, and Jay Phillips, a research physicist, are modifying an electrostatic precipitator to help remove dust from simulated Martian atmosphere. NASA's Journey to Mars requires cutting-edge technologies to solve the problems explorers will face on the Red Planet. Scientists are developing some of the needed solutions by adapting a device to remove the ever-present dust from valuable elements in the Martian atmosphere. Those commodities include oxygen, water and methane.

  5. Electrostatic Precipitator

    NASA Image and Video Library

    2017-06-09

    Dr. Carlos Calle, lead scientist in the Kennedy Space Center's Electrostatics and Surface Physics Laboratory, left, and Jay Phillips, a research physicist, are modifying an electrostatic precipitator to help remove dust from a simulated Martian atmosphere. NASA's Journey to Mars requires cutting-edge technologies to solve the problems explorers will face on the Red Planet. Scientists are developing some of the needed solutions by adapting a device to remove the ever-present dust from valuable elements in the Martian atmosphere. Those commodities include oxygen, water and methane.

  6. Electrostatic Precipitator

    NASA Image and Video Library

    2017-06-09

    Jay Phillips, a research physicist in the Kennedy Space Center's Electrostatics and Surface Physics Laboratory, left, and Dr. Carlos Calle, lead scientist in the lab, are modifying an electrostatic precipitator to help remove dust from simulated Martian atmosphere. NASA's Journey to Mars requires cutting-edge technologies to solve the problems explorers will face on the Red Planet. Scientists are developing some of the needed solutions by adapting a device to remove the ever-present dust from valuable elements in the Martian atmosphere. Those commodities include oxygen, water and methane.

  7. DNS Rebinding Attacks

    DTIC Science & Technology

    2009-09-01

    active scripting, file downloads, installation of desktop items, signed and unsigned ActiveX controls, Java permissions, launching applications and...files in an IFRAME, running ActiveX controls and plug-ins, and scripting of Java applets [49]. This security measure is very effective against DNS

  8. Microscopic modeling of multi-lane highway traffic flow

    NASA Astrophysics Data System (ADS)

    Hodas, Nathan O.; Jagota, Anand

    2003-12-01

    We discuss a microscopic model for the study of multi-lane highway traffic flow dynamics. Each car experiences a force resulting from a combination of the desire of the driver to attain a certain velocity, aerodynamic drag, and change of the force due to car-car interactions. The model also includes multi-lane simulation capability and the ability to add and remove obstructions. We implement the model via a Java applet, which is used to simulate traffic jam formation, the effect of bottlenecks on traffic flow, and the existence of light, medium, and heavy traffic flow. The simulations also provide insight into how the properties of individual cars result in macroscopic behavior. Because the investigation of emergent characteristics is so common in physics, the study of traffic in this manner sheds new light on how the micro-to-macro transition works in general.

  9. Effects of capacitors, resistors, and residual charges on the static and dynamic performance of electrostatically actuated devices

    NASA Astrophysics Data System (ADS)

    Chan, Edward K.; Dutton, Robert W.

    1999-03-01

    The important practical and realistic design issues of an electrostatic actuator/positioner with full-gap travel are discussed. Analytic expressions and numerical simulations show that parasitic capacitances, and non-uniform deformation in two and three dimensions influence the range of travel of an electrostatic positioner stabilized by the addition of a series capacitor. The effects of residual charge on electrostatically-actuated devices are described. The dynamic stepping characteristics of the positioner under compressible squeeze-film damping and resistive damping are compared. The physical descriptions of devices being fabricated in the MUMPs process are presented along with 3D simulation results that demonstrate viability.

  10. A retrospective of the career of Ray Herb

    NASA Astrophysics Data System (ADS)

    Norton, G. A.; Ferry, J. A.; Daniel, R. E.; Klody, G. M.

    1999-04-01

    Ray Herb's career in the development of electrostatic accelerators spans 65 years. He began in 1933 by pressurizing a Van de Graaff generator, for the first time. Over the next six years, the group at the University of Wisconsin, under his direction, developed the fundamentals of equipotential rings, potential grading, corona triode control, and other basic mechanisms for the practical use of electrostatic accelerators while making fundamental contributions to experimental nuclear physics. This group held the world's record in sustaining potential difference of 4.5 MV. During World War II, he worked on radar at the Radiation Laboratory. After the war, Herb resumed his career with further fundamental contributions including metal/ceramic bonding, ultrahigh vacuum pumping, negative ion source development and metal charge carriers. The company, National Electrostatics, under his direction manufactured the accelerator which still holds the world's record for the highest sustained potential difference of 32±1.5 MV. Throughout his career he led teams which made the electrostatic accelerator a valuable tool for applications in a wide variety of scientific fields, well beyond nuclear physics.

  11. Physical properties of molten core materials: Zr-Ni and Zr-Cr alloys measured by electrostatic levitation

    NASA Astrophysics Data System (ADS)

    Ohishi, Yuji; Kondo, Toshiki; Ishikawa, Takehiko; Okada, Junpei T.; Watanabe, Yuki; Muta, Hiroaki; Kurosaki, Ken; Yamanaka, Shinsuke

    2017-03-01

    It is important to understand the behaviors of molten core materials to investigate the progression of a core meltdown accident. In the early stages of bundle degradation, low-melting-temperature liquid phases are expected to form via the eutectic reaction between Zircaloy and stainless steel. The main component of Zircaloy is Zr and those of stainless steel are Fe, Ni, and Cr. Our group has previously reported physical property data such as viscosity, density, and surface tension for Zr-Fe liquid alloys using an electrostatic levitation technique. In this study, we report the viscosity, density, and surface tension of Zr-Ni and Zr-Cr liquid alloys (Zr1-xNix (x = 0.12 and 0.24) and Zr0.77Cr0.23) using the electrostatic levitation technique.

  12. Applying the tools of physics to teaching physics

    NASA Astrophysics Data System (ADS)

    Wieman, Carl

    2003-05-01

    The strengths of modern AMO physics are its solid foundation on objective quantitative data, the rapid widespread dissemination and duplication of ideas, results, and successful approaches, and the rapid utilization of technological developments to achieve new capabilities. Unfortunately AMO physicists usually abandon these powerful tools in their approach to the teaching of physics and instead rely on an approach that would be considered little more than individual superstition if used in the context of actual AMO science. Choices of content and presentation in teaching are usually based on tradition or totally subjective judgments of the instructor. I will discuss my efforts to approach teaching physics much as I have done experimental physics. This includes: collecting and utilizing data (both my own and that from the research of others), developing a strategy for dealing with numerous degrees of freedom that one cannot control nearly as well as one would like (whether they are atomic interactions or student attitudes), optimizing the use of the time and money available, and taking advantage of useful new technology. The latter discussion will include some specifics on using technology that allows real time measurement of student learning and engagement in a large class and the development and use of interactive applets to facilitate conceptual understanding. Achieving true understanding and appreciation of physics by introductory students is a major challenge. Fortunately, there is sufficient room for improvement in the current educational system that one can fall far short of that ideal and still be making major progress.

  13. Technology Tips: Using the Iterate Command to Construct Recursive Geometric Sketches

    ERIC Educational Resources Information Center

    Harper, Suzanne R.; Driskell, Shannon

    2006-01-01

    How to iterate geometric shapes to construct Baravelle spirals and Pythagorean trees is demonstrated in this article. The "Surfing Note" sends readers to a site with applets that will generate fractals such as the Sierpinski gasket or the Koch snowflake.

  14. Central Limit Theorem: New SOCR Applet and Demonstration Activity

    ERIC Educational Resources Information Center

    Dinov, Ivo D.; Christou, Nicholas; Sanchez, Juana

    2008-01-01

    Modern approaches for information technology based blended education utilize a variety of novel instructional, computational and network resources. Such attempts employ technology to deliver integrated, dynamically linked, interactive content and multi-faceted learning environments, which may facilitate student comprehension and information…

  15. An applet for the Gabor similarity scaling of the differences between complex stimuli.

    PubMed

    Margalit, Eshed; Biederman, Irving; Herald, Sarah B; Yue, Xiaomin; von der Malsburg, Christoph

    2016-11-01

    It is widely accepted that after the first cortical visual area, V1, a series of stages achieves a representation of complex shapes, such as faces and objects, so that they can be understood and recognized. A major challenge for the study of complex shape perception has been the lack of a principled basis for scaling of the physical differences between stimuli so that their similarity can be specified, unconfounded by early-stage differences. Without the specification of such similarities, it is difficult to make sound inferences about the contributions of later stages to neural activity or psychophysical performance. A Web-based app is described that is based on the Malsburg Gabor-jet model (Lades et al., 1993), which allows easy specification of the V1 similarity of pairs of stimuli, no matter how intricate. The model predicts the psycho physical discriminability of metrically varying faces and complex blobs almost perfectly (Yue, Biederman, Mangini, von der Malsburg, & Amir, 2012), and serves as the input stage of a large family of contemporary neurocomputational models of vision.

  16. Retrieving high-resolution images over the Internet from an anatomical image database

    NASA Astrophysics Data System (ADS)

    Strupp-Adams, Annette; Henderson, Earl

    1999-12-01

    The Visible Human Data set is an important contribution to the national collection of anatomical images. To enhance the availability of these images, the National Library of Medicine has supported the design and development of a prototype object-oriented image database which imports, stores, and distributes high resolution anatomical images in both pixel and voxel formats. One of the key database modules is its client-server Internet interface. This Web interface provides a query engine with retrieval access to high-resolution anatomical images that range in size from 100KB for browser viewable rendered images, to 1GB for anatomical structures in voxel file formats. The Web query and retrieval client-server system is composed of applet GUIs, servlets, and RMI application modules which communicate with each other to allow users to query for specific anatomical structures, and retrieve image data as well as associated anatomical images from the database. Selected images can be downloaded individually as single files via HTTP or downloaded in batch-mode over the Internet to the user's machine through an applet that uses Netscape's Object Signing mechanism. The image database uses ObjectDesign's object-oriented DBMS, ObjectStore that has a Java interface. The query and retrieval systems has been tested with a Java-CDE window system, and on the x86 architecture using Windows NT 4.0. This paper describes the Java applet client search engine that queries the database; the Java client module that enables users to view anatomical images online; the Java application server interface to the database which organizes data returned to the user, and its distribution engine that allow users to download image files individually and/or in batch-mode.

  17. Physics or Fantasy?

    ERIC Educational Resources Information Center

    Slisko, Josip; Krokhin, Arkady

    1995-01-01

    Though the field of physics is moving toward more realistic problems and the use of computers and mathematical modeling to promote insightful treatment of physical problems, artificial problems still appear in textbooks in the field of electrostatics. Discusses physical arguments why one of the most popular textbook applications of Coulomb's Law…

  18. Electrostatic Deformation of Liquid Surfaces by a Charged Rod and a Van De Graaff Generator

    ERIC Educational Resources Information Center

    Slisko, Josip; García-Molina, Rafael; Abril, Isabel

    2014-01-01

    Authors of physics textbooks frequently use the deflection of a thin, vertically falling water jet by a charged balloon, comb, or rod as a visually appealing and conceptually relevant example of electrostatic attraction. Nevertheless, no attempts are made to explore whether these charged bodies could cause visible deformation of a horizontal water…

  19. Electrostatic correlations at the Stern layer: Physics or chemistry?

    NASA Astrophysics Data System (ADS)

    Travesset, A.; Vangaveti, S.

    2009-11-01

    We introduce a minimal free energy describing the interaction of charged groups and counterions including both classical electrostatic and specific interactions. The predictions of the model are compared against the standard model for describing ions next to charged interfaces, consisting of Poisson-Boltzmann theory with additional constants describing ion binding, which are specific to the counterion and the interfacial charge ("chemical binding"). It is shown that the "chemical" model can be appropriately described by an underlying "physical" model over several decades in concentration, but the extracted binding constants are not uniquely defined, as they differ depending on the particular observable quantity being studied. It is also shown that electrostatic correlations for divalent (or higher valence) ions enhance the surface charge by increasing deprotonation, an effect not properly accounted within chemical models. The charged phospholipid phosphatidylserine is analyzed as a concrete example with good agreement with experimental results. We conclude with a detailed discussion on the limitations of chemical or physical models for describing the rich phenomenology of charged interfaces in aqueous media and its relevance to different systems with a particular emphasis on phospholipids.

  20. DATAFERRETT AND DATAWEB

    EPA Science Inventory

    DataFerrett is a data extraction software and a data mining tool that accesses data stored in TheDataWeb through the Internet. It can be installed as an application on your desktop or use a java applet with an Internet browser. Census Bureau and Bureau of Labor Statistics release...

  1. Physical and chemical test results of electrostatic safe flooring materials

    NASA Technical Reports Server (NTRS)

    Gompf, R. H.

    1988-01-01

    This test program was initiated because a need existed at the Kennedy Space Center (KSC) to have this information readily available to the engineer who must make the choice of which electrostatic safe floor to use in a specific application. The information, however, should be of value throughout both the government and private industry in the selection of a floor covering material. Included are the test results of 18 floor covering materials which by test evaluation at KSC are considered electrostatically safe. Tests were done and/or the data compiled in the following areas: electrostatics, flammability, hypergolic compatibility, outgassing, floor type, material thickness, and available colors. Each section contains the test method used to gather the data and the test results.

  2. A Java viewer to publish Digital Imaging and Communications in Medicine (DICOM) radiologic images on the World Wide Web.

    PubMed

    Setti, E; Musumeci, R

    2001-06-01

    The world wide web is an exciting service that allows one to publish electronic documents made of text and images on the internet. Client software called a web browser can access these documents, and display and print them. The most popular browsers are currently Microsoft Internet Explorer (Microsoft, Redmond, WA) and Netscape Communicator (Netscape Communications, Mountain View, CA). These browsers can display text in hypertext markup language (HTML) format and images in Joint Photographic Expert Group (JPEG) and Graphic Interchange Format (GIF). Currently, neither browser can display radiologic images in native Digital Imaging and Communications in Medicine (DICOM) format. With the aim to publish radiologic images on the internet, we wrote a dedicated Java applet. Our software can display radiologic and histologic images in DICOM, JPEG, and GIF formats, and provides a a number of functions like windowing and magnification lens. The applet is compatible with some web browsers, even the older versions. The software is free and available from the author.

  3. Electrostatic plasma simulation by Particle-In-Cell method using ANACONDA package

    NASA Astrophysics Data System (ADS)

    Blandón, J. S.; Grisales, J. P.; Riascos, H.

    2017-06-01

    Electrostatic plasma is the most representative and basic case in plasma physics field. One of its main characteristics is its ideal behavior, since it is assumed be in thermal equilibrium state. Through this assumption, it is possible to study various complex phenomena such as plasma oscillations, waves, instabilities or damping. Likewise, computational simulation of this specific plasma is the first step to analyze physics mechanisms on plasmas, which are not at equilibrium state, and hence plasma is not ideal. Particle-In-Cell (PIC) method is widely used because of its precision for this kind of cases. This work, presents PIC method implementation to simulate electrostatic plasma by Python, using ANACONDA packages. The code has been corroborated comparing previous theoretical results for three specific phenomena in cold plasmas: oscillations, Two-Stream instability (TSI) and Landau Damping(LD). Finally, parameters and results are discussed.

  4. Electrostatic potential calculation for biomolecules--creating a database of pre-calculated values reported on a per residue basis for all PDB protein structures.

    PubMed

    Rocchia, W; Neshich, G

    2007-10-05

    STING and Java Protein Dossier provide a collection of physical-chemical parameters, describing protein structure, stability, function, and interaction, considered one of the most comprehensive among the available protein databases of similar type. Particular attention in STING is paid to the electrostatic potential. It makes use of DelPhi, a well-known tool that calculates this physical-chemical quantity for biomolecules by solving the Poisson Boltzmann equation. In this paper, we describe a modification to the DelPhi program aimed at integrating it within the STING environment. We also outline how the "amino acid electrostatic potential" and the "surface amino acid electrostatic potential" are calculated (over all Protein Data Bank (PDB) content) and how the corresponding values are made searchable in STING_DB. In addition, we show that the STING and Java Protein Dossier are also capable of providing these particular parameter values for the analysis of protein structures modeled in computers or being experimentally solved, but not yet deposited in the PDB. Furthermore, we compare the calculated electrostatic potential values obtained by using the earlier version of DelPhi and those by STING, for the biologically relevant case of lysozyme-antibody interaction. Finally, we describe the STING capacity to make queries (at both residue and atomic levels) across the whole PDB, by looking at a specific case where the electrostatic potential parameter plays a crucial role in terms of a particular protein function, such as ligand binding. BlueStar STING is available at http://www.cbi.cnptia.embrapa.br.

  5. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    PubMed Central

    Zhang, Wen-Ming; Meng, Guang; Chen, Di

    2007-01-01

    Electrostatic micro-electro-mechanical system (MEMS) is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  6. Reviews

    NASA Astrophysics Data System (ADS)

    2005-05-01

    WE RECOMMEND Private Universe and Minds of Our Own This DVD for teachers addresses challenges faced in the classroom. EasySenseLink and EasySense Flash Logger These two dataloggers are fast, versatile and inexpensive. The Butthead Game, Space Rifle and Disc Shooter Together, these toys can be used to explain the photoelectric effect. Resistance and thickness boards These high-quality, value-for-money boards produce excellent results. WORTH A LOOK Einstein A to Z A useful and well researched text about EinsteinÂ's life and work. Einstein Alive Depending on how it is lit, this display can look concave or convex. Phyzzing Through Physics As PowerPoint presentations go, this one is useful and good value. HANDLE WITH CARE Pressure toadstools An overpriced tool that you could make yourself using dowelling. Parallel and series boards Easily damaged, these boards are best used in demonstrations only. WEB WATCH Educational websites that make electricity fun to learn. Applets website: an online gem for teachers.

  7. SIRTF Tools for DIRT

    NASA Astrophysics Data System (ADS)

    Pound, M. W.; Wolfire, M. G.; Amarnath, N. S.

    2003-12-01

    The Dust InfraRed ToolBox (DIRT - a part of the Web Infrared ToolShed, or WITS, located at http://dustem.astro.umd.edu) is a Java applet for modeling astrophysical processes in circumstellar shells around young and evolved stars. DIRT has been used by the astrophysics community for about 5 years. Users can automatically and efficiently search grids of pre-calculated models to fit their data. A large set of physical parameters and dust types are included in the model database, which contains over 500,000 models. We are adding new functionality to DIRT to support new missions like SIRTF and SOFIA. A new Instrument module allows for plotting of the model points convolved with the spatial and spectral responses of the selected instrument. This lets users better fit data from specific instruments. Currently, we have implemented modules for the Infrared Array Camera (IRAC) and Multiband Imaging Photometer (MIPS) on SIRTF.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruenwald, J., E-mail: johannes.gruenwald@inp-greifswald.de; Fröhlich, M.

    A model of the behavior of transit time instabilities in an electrostatic confinement fusion reactor is presented in this letter. It is demonstrated that different modes are excited within the spherical cathode of a Farnsworth fusor. Each of these modes is dependent on the fusion products as well as the acceleration voltage applied between the two electrodes and they couple to a resulting oscillation showing non-linear beat phenomena. This type of instability is similar to the transit time instability of electrons between two resonant surfaces but the presence of ions and the occurring fusion reactions alter the physics of thismore » instability considerably. The physics of this plasma instability is examined in detail for typical physical parameter ranges of electrostatic confinement fusion devices.« less

  9. Active Learning Strategies for the Mathematics Classroom

    ERIC Educational Resources Information Center

    Kerrigan, John

    2018-01-01

    Active learning involves students engaging with course content beyond lecture: through writing, applets, simulations, games, and more (Prince, 2004). As mathematics is often viewed as a subject area that is taught using more traditional methods (Goldsmith & Mark, 1999), there are actually many simple ways to make undergraduate mathematics…

  10. A Modern Galileo Tale

    ERIC Educational Resources Information Center

    Arnone, Stefano; Moauro, Francesco; Siccardi, Matteo

    2017-01-01

    The year 2014 marked the four-hundred-and-fiftieth anniversary of Galileo's birth, making it the perfect occasion to present and illustrate a GeoGebra applet which reproduces some of Galileo's celebrated experiments on the uniformly accelerated motion, as reported on in "Discourses and Mathematical Demonstrations Relating to Two New…

  11. Remote Access to Earth Science Data by Content, Space and Time

    NASA Technical Reports Server (NTRS)

    Dobinson, E.; Raskin, G.

    1998-01-01

    This demo presents the combination on an http-based client/server application that facilitates internet access to Earth science data coupled with a Java applet GUI that allows the user to graphically select data based on spatial and temporal coverage plots and scientific parameters.

  12. EPA Remote Sensing Information Gateway

    NASA Astrophysics Data System (ADS)

    Paulsen, H. K.; Szykman, J. J.; Plessel, T.; Freeman, M.; Dimmick, F.

    2009-12-01

    The Remote Sensing Information Gateway was developed by the U.S. Environmental Protection Agency (EPA) to assist researchers in easily obtaining and combining a variety of environmental datasets related to air quality research. Current datasets available include, but are not limited to surface PM2.5 and O3 data, satellite derived aerosol optical depth , and 3-dimensional output from U.S. EPA's Models 3/Community Multi-scale Air Quality (CMAQ) modeling system. The presentation will include a demonstration that illustrates several scenarios of how researchers use the tool to help them visualize and obtain data for their work; with a particular focus on episode analysis related to biomass burning impacts on air quality. The presentation will provide an overview on how RSIG works and how the code has been—and can be—adapted for other projects. One example is the Virtual Estuary, which focuses on automating the retrieval and pre-processing of a variety of data needed for estuarine research. RSIG’s source codes are freely available to researchers with permission from the EPA principal investigator, Dr. Jim Szykman. RSIG is available to the community and can be accessed online at http://www.epa.gov/rsig. Once the JAVA policy file is configured on your computer you can run the RSIG applet on your computer and connect to the RSIG server to visualize and retrieve available data sets. The applet allows the user to specify the temporal/spatial areas of interest, and the types of data to retrieve. The applet then communicates with RSIG subsetter codes located on the data owners’ remote servers; the subsetter codes assemble and transfer via ordinary Internet protocols only the specified data to the researcher’s computer. This is much faster than the usual method of transferring large files via FTP and greatly reduces network traffic. The RSIG applet then visualizes the transferred data on a latitude-longitude map, automatically locating the data in the correct geographic position. Images, animations, and aggregated data can be saved or exported in a variety of data formats: Binary External Data Representation (XDR) format (simple, efficient), NetCDF-COARDS format, NetCDF-IOAPI format (regridding the data to a CMAQ grid), HDF (unsubsetted satellite files), ASCII tab-delimited spreadsheet, MCMC (used for input into HB model), PNG images, MPG movies, KMZ movies (for display in Google Earth and similar applications), GeoTIFF RGB format and 32-bit float format. RSIG’s source codes are freely available to researchers with permission from the EPA. Contacts for obtaining RSIG code are available at the RSIG website.

  13. Colorado Upper-Division Electrostatics Diagnostic: A Conceptual Assessment for the Junior Level

    ERIC Educational Resources Information Center

    Chasteen, Stephanie V.; Pepper, Rachel E.; Caballero, Marcos D.; Pollock, Steven J.; Perkins, Katherine K.

    2012-01-01

    As part of an effort to systematically improve our junior-level E&M I course, we have developed a tool to assess student conceptual learning of electrostatics at the upper division. Together with a group of physics faculty, we established a list of learning goals for the course that, with results from student observations and interviews,…

  14. Electron Optics for Biologists: Physical Origins of Spherical Aberrations

    ERIC Educational Resources Information Center

    Geissler, Peter; Zadunaisky, Jose

    1974-01-01

    Reports on the physical origins of spherical aberrations in axially symmetric electrostatic lenses to convey the essentials of electon optics to those who must think critically about the resolution of the electron microscope. (GS)

  15. Toward Technology Integration in Mathematics Education: A Technology-Integration Course Planning Assignment

    ERIC Educational Resources Information Center

    Kersaint, Gladis

    2007-01-01

    This article describes a technology integration course planning assignment that was developed to enhance preservice teachers' technological pedagogical content knowledge (TPCK). This assignment required preservice teachers work with peers to integrate various technological tools (e.g., graphing calculators, web-based mathematics applets, etc) in a…

  16. JSXGraph--Dynamic Mathematics with JavaScript

    ERIC Educational Resources Information Center

    Gerhauser, Michael; Valentin, Bianca; Wassermann, Alfred

    2010-01-01

    Since Java applets seem to be on the retreat in web application, other approaches for displaying interactive mathematics in the web browser are needed. One such alternative could be our open-source project JSXGraph. It is a cross-browser library for displaying interactive geometry, function plotting, graphs, and data visualization in a web…

  17. Technological Minimalism: A Cost-Effective Alternative for Course Design and Development.

    ERIC Educational Resources Information Center

    Lorenzo, George

    2001-01-01

    Discusses the use of minimum levels of technology, or technological minimalism, for Web-based multimedia course content. Highlights include cost effectiveness; problems with video streaming, the use of XML for Web pages, and Flash and Java applets; listservs instead of proprietary software; and proper faculty training. (LRW)

  18. Adapting the Mathematical Task Framework to Design Online Didactic Objects

    ERIC Educational Resources Information Center

    Bowers, Janet; Bezuk, Nadine; Aguilar, Karen

    2011-01-01

    Designing didactic objects involves imagining how students can conceive of specific mathematical topics and then imagining what types of classroom discussions could support these mental constructions. This study investigated whether it was possible to design Java applets that might serve as didactic objects to support online learning where…

  19. Students' Use of Technological Features while Solving a Mathematics Problem

    ERIC Educational Resources Information Center

    Lee, Hollylynne Stohl; Hollebrands, Karen F.

    2006-01-01

    The design of technology tools has the potential to dramatically influence how students interact with tools, and these interactions, in turn, may influence students' mathematical problem solving. To better understand these interactions, we analyzed eighth grade students' problem solving as they used a java applet designed to specifically accompany…

  20. Determination of the Influence of Electric Fields upon the Densification of Ionic Ceramics

    DTIC Science & Technology

    2017-07-21

    and assisting the development of new techniques to expose nanoparticles to non -contacting electrostatic fields at temperatures as high as 900...through TEM imaging, and assisting the development of new techniques to expose nanoparticles to non -contacting electrostatic fields at temperatures as...during flash sintering lead to non -homogeneous microstructures. We expect that therefore physical properties may be inhomogeneous depending local

  1. New Distributed Multipole Methods for Accurate Electrostatics for Large-Scale Biomolecular Simultations

    NASA Astrophysics Data System (ADS)

    Sagui, Celeste

    2006-03-01

    An accurate and numerically efficient treatment of electrostatics is essential for biomolecular simulations, as this stabilizes much of the delicate 3-d structure associated with biomolecules. Currently, force fields such as AMBER and CHARMM assign ``partial charges'' to every atom in a simulation in order to model the interatomic electrostatic forces, so that the calculation of the electrostatics rapidly becomes the computational bottleneck in large-scale simulations. There are two main issues associated with the current treatment of classical electrostatics: (i) how does one eliminate the artifacts associated with the point-charges (e.g., the underdetermined nature of the current RESP fitting procedure for large, flexible molecules) used in the force fields in a physically meaningful way? (ii) how does one efficiently simulate the very costly long-range electrostatic interactions? Recently, we have dealt with both of these challenges as follows. In order to improve the description of the molecular electrostatic potentials (MEPs), a new distributed multipole analysis based on localized functions -- Wannier, Boys, and Edminston-Ruedenberg -- was introduced, which allows for a first principles calculation of the partial charges and multipoles. Through a suitable generalization of the particle mesh Ewald (PME) and multigrid method, one can treat electrostatic multipoles all the way to hexadecapoles all without prohibitive extra costs. The importance of these methods for large-scale simulations will be discussed, and examplified by simulations from polarizable DNA models.

  2. Boundary asymptotics for a non-neutral electrochemistry model with small Debye length

    NASA Astrophysics Data System (ADS)

    Lee, Chiun-Chang; Ryham, Rolf J.

    2018-04-01

    This article addresses the boundary asymptotics of the electrostatic potential in non-neutral electrochemistry models with small Debye length in bounded domains. Under standard physical assumptions motivated by non-electroneutral phenomena in oxidation-reduction reactions, we show that the electrostatic potential asymptotically blows up at boundary points with respect to the bulk reference potential as the scaled Debye length tends to zero. The analysis gives a lower bound for the blow-up rate with respect to the model parameters. Moreover, the maximum potential difference over any compact subset of the physical domain vanishes exponentially in the zero-Debye-length limit. The results mathematically confirm the physical description that electrolyte solutions are electrically neutral in the bulk and are strongly electrically non-neutral near charged surfaces.

  3. Electrostatic contribution to the persistence length of a semiflexible dipolar chain.

    PubMed

    Podgornik, Rudi

    2004-09-01

    We investigate the electrostatic contribution to the persistence length of a semiflexible polymer chain whose segments interact via a screened Debye-Hückel dipolar interaction potential. We derive the expressions for the renormalized persistence length on the level of a 1/D-expansion method already successfully used in other contexts of polyelectrolye physics. We investigate different limiting forms of the renormalized persistence length of the dipolar chain and show that, in, general, it depends less strongly on the screening length than in the context of a monopolar chain. We show that for a dipolar chain the electrostatic persistence length in the same regime of the parameter phase space as the original Odijk-Skolnick-Fixman (OSF) form for a monopolar chain depends logarithmically on the screening length rather than quadratically. This can be understood solely on the basis of a swifter decay of the dipolar interactions with separation compared to the monopolar electrostatic interactions. We comment also on the general contribution of higher multipoles to the electrostatic renormalization of the bending rigidity.

  4. Study of talcum charging status in parallel plate electrostatic separator based on particle trajectory analysis

    NASA Astrophysics Data System (ADS)

    Yunxiao, CAO; Zhiqiang, WANG; Jinjun, WANG; Guofeng, LI

    2018-05-01

    Electrostatic separation has been extensively used in mineral processing, and has the potential to separate gangue minerals from raw talcum ore. As for electrostatic separation, the particle charging status is one of important influence factors. To describe the talcum particle charging status in a parallel plate electrostatic separator accurately, this paper proposes a modern images processing method. Based on the actual trajectories obtained from sequence images of particle movement and the analysis of physical forces applied on a charged particle, a numerical model is built, which could calculate the charge-to-mass ratios represented as the charging status of particle and simulate the particle trajectories. The simulated trajectories agree well with the experimental results obtained by images processing. In addition, chemical composition analysis is employed to reveal the relationship between ferrum gangue mineral content and charge-to-mass ratios. Research results show that the proposed method is effective for describing the particle charging status in electrostatic separation.

  5. Robert Jemison Van de Graaff was born on December 20, 1901 in Tuscaloosa,

    Science.gov Websites

    received the Duddel Medal of the Physical Society of Great Britain. In 1951 Luis W. Alvarez of the advanced nuclear physics" by the American Physical Society. The prize was named for a scientist who ; Physical Review, Volume 38, 1931, pp. 1919-1920. "Electrostatic Generators for the Acceleration of

  6. Diminish electrostatic in piezoresponse force microscopy through longer or ultra-stiff tips

    NASA Astrophysics Data System (ADS)

    Gomez, A.; Puig, T.; Obradors, X.

    2018-05-01

    Piezoresponse Force Microscopy is a powerful but delicate nanoscale technique that measures the electromechanical response resulting from the application of a highly localized electric field. Though mechanical response is normally due to piezoelectricity, other physical phenomena, especially electrostatic interaction, can contribute to the signal read. We address this problematic through the use of longer ultra-stiff probes providing state of the art sensitivity, with the lowest electrostatic interaction and avoiding working in high frequency regime. In order to find this solution we develop a theoretical description addressing the effects of electrostatic contributions in the total cantilever vibration and its quantification for different setups. The theory is subsequently tested in a Periodically Poled Lithium Niobate (PPLN) crystal, a sample with well-defined 0° and 180° domains, using different commercial available conductive tips. We employ the theoretical description to compare the electrostatic contribution effects into the total phase recorded. Through experimental data our description is corroborated for each of the tested commercially available probes. We propose that a larger probe length can be a solution to avoid electrostatic forces, so the cantilever-sample electrostatic interaction is reduced. Our proposed solution has great implications into avoiding artifacts while studying soft biological samples, multiferroic oxides, and thin film ferroelectric materials.

  7. PLZT Ceramic Driving Rotary Micro-mirror Based on Photoelectric-electrostatic Mechanism

    NASA Astrophysics Data System (ADS)

    Tang, Yujuan; Yang, Zhong; Chen, Yusong; Wang, Xinjie

    2017-12-01

    Based on the anomalous photovoltaic effect of PLZT, a rotary micro-mirror driven by hybrid photoelectric-electrostatic actuation of PLZT ceramic is proposed. Firstly, the mathematical modelling of coupled multi-physics fields of PLZT ceramic is established during illumination and light off phases. Then, the relationship between the rotation angle and the photovoltage of PLZT ceramics is established. In addition, the feasibility of rotary micro-mirror with hybrid photoelectric-electrostatic driving is verified via closed-loop control for photo-induced voltage of PLZT ceramic. The experimental results show that the photo-induced voltage of PLZT ceramics has good dynamic control precision using on-off closed-loop control method.

  8. Charles Augustin Coulomb and the fundamental law of electrostatics

    NASA Astrophysics Data System (ADS)

    Falconer, Isobel

    2004-10-01

    In his famous experiment on the inverse square law of electrostatics, Coulomb neither defined electric charge nor gave reliable measurements of the force-distance relation. Yet the experiment has often been viewed as the basis of the fundamental law of electrostatics. This paper discusses Coulomb's life, showing the context within which he was working, how he arrived at the experiment, and the use he made of it. Physics in France in the late 18th century was undergoing a transformation from a science of holistic observation and explanations to one of universal laws and exact measurement. Coulomb was both a subject of, and an important contributor to, this change, and these two aspects are evident in his approach to the experiment and to the later uptake of his results. The reaction in the rest of Europe was initially less favourable, and the ultimate fame of Coulomb's experiment was dependent on the triumph of French mathematical physics in the 19th century.

  9. More Homespun Experiments in Physics.

    ERIC Educational Resources Information Center

    Siddons, J. C.

    1979-01-01

    Describes how some experiments in physics can be presented in class using cheap materials. How to produce an electrostatic charge using a polythene bottle and how to make a tissue paper electroscope using a tin can are among the experiments described. (HM)

  10. The Power of L-Systems in Fractal Construction and Theory

    ERIC Educational Resources Information Center

    Perham, Arnold E.; Perham, Faustine L.

    2005-01-01

    The article discusses the use of L-systems, which provide students with a unique method to construct line fractals, including the Koch snowflake, the Sierpinski triangle, and the Harter-Heighway dragon. Applets that use L-system theory offer a graphics tool that promotes geometric reasoning, sparks enthusiasm, and connects to historical themes in…

  11. SOCR "Motion Charts": An Efficient, Open-Source, Interactive and Dynamic Applet for Visualizing Longitudinal Multivariate Data

    ERIC Educational Resources Information Center

    Al-Aziz, Jameel; Christou, Nicolas; Dinov, Ivo D.

    2010-01-01

    The amount, complexity and provenance of data have dramatically increased in the past five years. Visualization of observed and simulated data is a critical component of any social, environmental, biomedical or scientific quest. Dynamic, exploratory and interactive visualization of multivariate data, without preprocessing by dimensionality…

  12. Integrating an Educational Game in Moodle LMS

    ERIC Educational Resources Information Center

    Minovic, Miroslav; Milovanovic, Milos; Minovic, Jelena; Starcevic, Dusan

    2012-01-01

    The authors present a learning platform based on a computer game. Learning games combine two industries: education and entertainment, which is often called "Edutainment." The game is realized as a strategic game (similar to Risk[TM]), implemented as a module for Moodle CMS, utilizing Java Applet technology. Moodle is an open-source course…

  13. Astroblaster--A Fascinating Game of Multi-Ball Collisions

    ERIC Educational Resources Information Center

    Kires, Marian

    2009-01-01

    Multi-ball collisions inside the Astroblaster toy are explained from the conservation of momentum point of view. The important role of the coefficient of restitution is demonstrated in ideal and real cases. Real experimental results with the simple toy can be compared with a computer model represented by an interactive Java applet. (Contains 1…

  14. Is Seeing Believing? Training Users on Information Security: Evidence from Java Applets

    ERIC Educational Resources Information Center

    Ayyagari, Ramakrishna; Figueroa, Norilyz

    2017-01-01

    Information Security issues are one of the top concerns of CEOs. Accordingly, information systems education and research have addressed security issues. One of the main areas of research is the behavioral issues in Information Security, primarily focusing on users' compliance to information security policies. We contribute to this literature by…

  15. Rubrics for Evaluating Open Education Resource (OER) Objects

    ERIC Educational Resources Information Center

    Achieve, Inc., 2011

    2011-01-01

    The rubrics presented in this report represent an evaluation system for objects found within Open Education Resources. An object could include images, applets, lessons, units, assessments and more. For the purpose of this evaluation, any component that can exist as a stand-alone qualifies as an object. The rubrics in this packet can be applied…

  16. The Hebrewer: A Web-Based Inflection Generator

    ERIC Educational Resources Information Center

    Foster, James Q.; Harrell, Lane Foster; Raizen, Esther

    2004-01-01

    This paper reports on the grammatical and programmatical production aspects of the "Hebrewer," a cross-platform web-based reference work in the form of a Hebrew inflection generator. The Hebrewer, a Java applet/servlet combination, is currently capable of generating 2,500 nouns in full declension and 500 verbs in full conjugation,…

  17. Multiple-Choice Tests with Correction Allowed in Autism: An Excel Applet

    ERIC Educational Resources Information Center

    Martinez, Elisabetta Monari

    2010-01-01

    The valuation of academic achievements in students with severe language impairment is problematic if they also have difficulties in sustaining attention and in praxic skills. In severe autism all of these difficulties may occur together. Multiple-choice tests offer the advantage that simple praxic skills are required, allowing the tasks to be…

  18. Critical Evaluation of Internet Resources for Teaching Trend and Variability in Bivariate Data

    ERIC Educational Resources Information Center

    Forster, Pat

    2007-01-01

    A search on the Internet for resources for teaching statistics yields multiple sites with data sets, projects, worksheets, applets, and software. Often these are made available without information on how they might benefit learning. This paper addresses potential benefits from resources that target trend and variability relationships in bivariate…

  19. A Web-Based Tutor for Java™: Evidence of Meaningful Learning

    ERIC Educational Resources Information Center

    Emurian, Henry H.

    2006-01-01

    Students in a graduate class and an undergraduate class in Information Systems completed a Web-based programmed instruction tutor that taught a simple Java applet as the first technical training exercise in a computer programming course. The tutor is a competency-based instructional system for individualized distance learning. When a student…

  20. Pre-Service Teachers' Ability to Identify and Implement Cognitive Levels in Mathematics Learning

    ERIC Educational Resources Information Center

    Ortiz, Enrique

    2017-01-01

    This study analyzed pre-service teachers' ability to identify and implement cognitive levels. The framework involved the use of the Concrete, Pictorial and Abstract (CPA) cognitive levels combined with the Virtual-level (CPVA-levels). The V-level involves applets and apps, and three digital-dynamic sublevels: virtual-Concrete, virtual-Pictorial…

  1. Biomolecules in the Computer: Jmol to the Rescue

    ERIC Educational Resources Information Center

    Herraez, Angel

    2006-01-01

    Jmol is free, open source software for interactive molecular visualization. Since it is written in the Java[TM] programming language, it is compatible with all major operating systems and, in the applet form, with most modern web browsers. This article summarizes Jmol development and features that make it a valid and promising replacement for…

  2. Interactive Web-Based Pointillist Visualization of Hydrogenic Orbitals Using Jmol

    ERIC Educational Resources Information Center

    Tully, Shane P.; Stitt, Thomas M.; Caldwell, Robert D.; Hardock, Brian J.; Hanson, Robert M.; Maslak, Przemyslaw

    2013-01-01

    A Monte Carlo method is used to generate interactive pointillist displays of electron density in hydrogenic orbitals. The Web applet incorporating Jmol viewer allows for clear and accurate presentation of three-dimensional shapes and sizes of orbitals up to "n" = 5, where "n" is the principle quantum number. The obtained radial…

  3. A web-based 3D geological information visualization system

    NASA Astrophysics Data System (ADS)

    Song, Renbo; Jiang, Nan

    2013-03-01

    Construction of 3D geological visualization system has attracted much more concern in GIS, computer modeling, simulation and visualization fields. It not only can effectively help geological interpretation and analysis work, but also can it can help leveling up geosciences professional education. In this paper, an applet-based method was introduced for developing a web-based 3D geological information visualization system. The main aims of this paper are to explore a rapid and low-cost development method for constructing a web-based 3D geological system. First, the borehole data stored in Excel spreadsheets was extracted and then stored in SQLSERVER database of a web server. Second, the JDBC data access component was utilized for providing the capability of access the database. Third, the user interface was implemented with applet component embedded in JSP page and the 3D viewing and querying functions were implemented with PickCanvas of Java3D. Last, the borehole data acquired from geological survey were used for test the system, and the test results has shown that related methods of this paper have a certain application values.

  4. Field Modeling, Symplectic Tracking, and Spin Decoherence for EDM and Muon $$g\\textrm{-}2$$ Lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valetov, Eremey Vladimirovich

    2017-01-01

    While the first particle accelerators were electrostatic machines, and several electrostatic storage rings were subsequently commissioned and operated, electrostatic storage rings pose a number of challenges. Unlike motion in the magnetic field, where particle energy remains constant, particle energy generally changes in electrostatic elements. Conservation of energy in an electrostatic element is, in practice, only approximate, and it requires careful and accurate design, manufacturing, installation, and operational use. Electrostatic deflectors require relatively high electrostatic fields, tend to introduce nonlinear aberrations of all orders, and are more challenging to manufacture than homogeneous magnetic dipoles. Accordingly, magnetic storage rings are overwhelmingly prevalent.more » The search for electric dipole moments (EDMs) of fundamental particles is of key importance in the study of C and CP violations and their sources. C and CP violations are part of the Sakharov conditions that explain the matter–antimatter asymmetry in the universe. Determining the source of CP violations would provide valuable empirical insight for beyond-Standard-Model physics. EDMs of fundamental particles have not to this date been experimentally observed. The search for fundamental particle EDMs has narrowed the target search region; however, an EDM signal is yet to be discovered. In 2008, Brookhaven National Laboratory (BNL) had proposed the frozen spin (FS) concept for the search of a deuteron EDM. The FS concept envisions launching deuterons through a storage ring with combined electrostatic and magnetic fields. The electrostatic and magnetic fields are in a proportion that would, without an EDM, freeze the deuteron’s spin along its momentum as the deuteron moves around the lattice. The radial electrostatic field would result in a torque on the spin vector, proportional to a deuteron EDM, rotating the spin vector out of the midplane.« less

  5. ELISA - an electrostatic storage ring for low-energy ions

    NASA Astrophysics Data System (ADS)

    Pape Moeller, Soeren

    1997-05-01

    The design of a new type of storage ring for low-energy ions using electrostatic deflection and focusing devices is described. Electrostatic bends and quadrupoles are used since they are more efficient than magnetic ones for low-velocity heavy ions. Furthermore, electrostatic devices are more compact and easier to construct than magnetic devices. In comparison to an electromagnetic trap, one important advantage of the elecrostatic ring is the easy access to the circulating beam and its decay products. These and other features, e.g. no magnetic fields, makes such storage devices attractive for many atomic-physics experiments. Also neigboring fields as chemistry and biology might benefit from such an relatively inexpensive device. One important difference between an electrostatic and a magnetic ring is, that the longitudinal energy is not conserved for the electrostatic ring. The actual ring will have a race-track shape as defined by two straight sections each with two quadrupole doublets connected by 180-degrees bends. The bends will consist of 160-degrees spherical deflection plates surrounded by two parallel plate 10-degrees bends. The storage ring ELISA, currently being built, will have a circumference of 6 meters. The first beam tests will take place during summer 1996.

  6. "Good Vibrations": A workshop on oscillations and normal modes

    NASA Astrophysics Data System (ADS)

    Barbieri, Sara; Carpineti, Marina; Giliberti, Marco; Rigon, Enrico; Stellato, Marco; Tamborini, Marina

    2016-05-01

    We describe some theatrical strategies adopted in a two hour workshop in order to show some meaningful experiments and the underlying useful ideas to describe a secondary school path on oscillations, that develops from harmonic motion to normal modes of oscillations, and makes extensive use of video analysis, data logging, slow motions and applet simulations. Theatre is an extremely useful tool to stimulate motivation starting from positive emotions. That is the reason why the theatrical approach to the presentation of physical themes has been explored by the group "Lo spettacolo della Fisica" (http://spettacolo.fisica.unimi.it) of the Physics Department of University of Milano for the last ten years (Carpineti et al., JCOM, 10 (2011) 1; Nuovo Cimento B, 121 (2006) 901) and has been inserted also in the European FP7 Project TEMI (Teaching Enquiry with Mysteries Incorporated, see http://teachingmysteries.eu/en) which involves 13 different partners coming from 11 European countries, among which the Italian (Milan) group. According to the TEMI guidelines, this workshop has a written script based on emotionally engaging activities of presenting mysteries to be solved while participants have been involved in nice experiments following the developed path.

  7. Electrostatic Radio Frequency (RF) Microelectromechanical Systems (MEMS) Switches With Metal Alloy Electric Contacts

    DTIC Science & Technology

    2004-09-01

    Serway , Raymond A. Physics for Scientists and Engineers . New York: Saunders College Publishing, 1986. 141. Sharvin, Y.V. Sov. Phys. JETP , 21 :655 (1965...III. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 Micro-Switch Physical Description . . . . . . . . . . . 17 3.2 MEMS...Insertion Loss . . . . . . . . . . . . . . . . . . . . . . . . 56 IMD Intermodulation Distortion . . . . . . . . . . . . . . . . 56 PVD Physical Vapor

  8. MapApp: A Java(TM) Applet for Accessing Geographic Databases

    NASA Astrophysics Data System (ADS)

    Haxby, W.; Carbotte, S.; Ryan, W. B.; OHara, S.

    2001-12-01

    MapApp (http://coast.ldeo.columbia.edu/help/MapApp.html) is a prototype Java(TM) applet that is intended to give easy and versatile access to geographic data sets through a web browser. It was developed initially to interface with the RIDGE Multibeam Synthesis. Subsequently, interfaces with other geophysical databases were added. At present, multibeam bathymetry grids, underway geophysics along ship tracks, and the LDEO Borehole Research Group's ODP well logging database are accessible through MapApp. We plan to add an interface with the Ridge Petrology Database in the near future. The central component of MapApp is a world physiographic map. Users may navigate around the map (zoom/pan) without waiting for HTTP requests to a remote server to be processed. A focus request loads image tiles from the server to compose a new map at the current viewing resolution. Areas in which multibeam grids are available may be focused to a pixel resolution of about 200 m. These areas may be identified by toggling a mask. Databases may be accessed through menus, and selected data objects may be loaded into MapApp by selecting items from tables. Once loaded, a bathymetry grid may be contoured or used to create bathymetric profiles; ship tracks and ODP sites may be overlain on the map and their geophysical data plotted in X-Y graphs. The advantage of applets over traditional web pages is that they permit dynamic interaction with data sets, while limiting time consuming interaction with a remote server. Users may customize the graphics display by modifying the scale, or the symbol or line characteristics of rendered data, contour interval, etc. The ease with which users can select areas, view the physiography of areas, and preview data sets and evaluate them for quality and applicability, makes MapApp a valuable tool for education and research.

  9. Mechanical behavior simulation of MEMS-based cantilever beam using COMSOL multiphysics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acheli, A., E-mail: aacheli@cdta.dz; Serhane, R.

    This paper presents the studies of mechanical behavior of MEMS cantilever beam made of poly-silicon material, using the coupling of three application modes (plane strain, electrostatics and the moving mesh) of COMSOL Multi-physics software. The cantilevers playing a key role in Micro Electro-Mechanical Systems (MEMS) devices (switches, resonators, etc) working under potential shock. This is why they require actuation under predetermined conditions, such as electrostatic force or inertial force. In this paper, we present mechanical behavior of a cantilever actuated by an electrostatic force. In addition to the simplification of calculations, the weight of the cantilever was not taken intomore » account. Different parameters like beam displacement, electrostatics force and stress over the beam have been calculated by finite element method after having defining the geometry, the material of the cantilever model (fixed at one of ends but is free to move otherwise) and his operational space.« less

  10. Spray characteristics affected by physical properties of adjuvants

    USDA-ARS?s Scientific Manuscript database

    Four drift adjuvants, Array, In-Place, Vector and Control, were tested and physical properties and spray spectrum parameters measured. Array had the highest conductivity, indicating a good potential for the electrostatic charging, and the highest shear viscosity. All adjuvants had very similar neut...

  11. Computational modeling of electrostatic charge and fields produced by hypervelocity impact

    DOE PAGES

    Crawford, David A.

    2015-05-19

    Following prior experimental evidence of electrostatic charge separation, electric and magnetic fields produced by hypervelocity impact, we have developed a model of electrostatic charge separation based on plasma sheath theory and implemented it into the CTH shock physics code. Preliminary assessment of the model shows good qualitative and quantitative agreement between the model and prior experiments at least in the hypervelocity regime for the porous carbonate material tested. The model agrees with the scaling analysis of experimental data performed in the prior work, suggesting that electric charge separation and the resulting electric and magnetic fields can be a substantial effectmore » at larger scales, higher impact velocities, or both.« less

  12. Liberation characteristic and physical separation of printed circuit board (PCB).

    PubMed

    Guo, Chao; Wang, Hui; Liang, Wei; Fu, Jiangang; Yi, Xin

    2011-01-01

    Recycling of printed circuit board (PCB) is an important subject and to which increasing attention is paid, both in treatment of waste as well as recovery of valuable material terms. Precede physical and mechanical method, a good liberation is the premise to further separation. In this study, two-step crushing process is employed, and standard sieve is applied to screen crushed material to different size fractions, moreover, the liberation situation and particles shape in different size are observed. Then metal of the PCB is separated by physical methods, including pneumatic separation, electrostatic separation and magnetic separation, and major metal contents are characterized by inductively coupled plasma emission spectrometry (ICP-AES). Results show that the metal and nonmetal particles of PCB are dissociated completely under the crush size 0.6mm; metal is mainly enriched in the four size fractions between 0.15 and 1.25 mm; relatively, pneumatic separation is suitable for 0.6-0.9 mm size fraction, while the electrostatic separation is suitable for three size fractions that are 0.15-0.3mm, 0.3-0.6mm and 0.9-1.25 mm. The whole process that involves crushing, electrostatic and magnetic separation has formed a closed cycle that can return material and provide salable product. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  13. Physical and mechanical properties of gelatin-CMC composite films under the influence of electrostatic interactions.

    PubMed

    Esteghlal, Sara; Niakousari, Mehrdad; Hosseini, Seyed Mohammad Hashem

    2018-07-15

    The objective of current study was to examine the electrostatic interactions between gelatin and carboxymethyl cellulose (CMC) as a function of pH and mixing ratio (MR) and to observe how the physical and mechanical properties of gelatin-CMC composite films are affected by these interactions. The interaction between biopolymers was studied using turbidometric analysis at different gelatin: CMC MRs and pH values. A reduction in pH and MR enhanced the electrostatic interactions; while, decreased the relative viscosity of mixed system. Physical and mechanical properties of resultant composite films were examined and compared with those of control gelatin films. Changes in the intensity of interactions between the two biopolymers resulted in films with different properties. Polymer complexation led to formation of resistant film networks of less solubility and swellability. Water vapor permeability (WVP) was not significantly (P≤0.05) influenced by incorporating CMC into continuous gelatin films. Composite films prepared at MR of 9:1 and pH opt (corresponding to the maximum amount of interaction) revealed different characteristics such as maximum amounts of WVP and swelling and minimum amounts of tensile strength and solubility. FTIR spectra of composite films confirmed that gelatin and CMC were not covalently bonded. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Mathematical analysis of the boundary-integral based electrostatics estimation approximation for molecular solvation: exact results for spherical inclusions.

    PubMed

    Bardhan, Jaydeep P; Knepley, Matthew G

    2011-09-28

    We analyze the mathematically rigorous BIBEE (boundary-integral based electrostatics estimation) approximation of the mixed-dielectric continuum model of molecular electrostatics, using the analytically solvable case of a spherical solute containing an arbitrary charge distribution. Our analysis, which builds on Kirkwood's solution using spherical harmonics, clarifies important aspects of the approximation and its relationship to generalized Born models. First, our results suggest a new perspective for analyzing fast electrostatic models: the separation of variables between material properties (the dielectric constants) and geometry (the solute dielectric boundary and charge distribution). Second, we find that the eigenfunctions of the reaction-potential operator are exactly preserved in the BIBEE model for the sphere, which supports the use of this approximation for analyzing charge-charge interactions in molecular binding. Third, a comparison of BIBEE to the recent GBε theory suggests a modified BIBEE model capable of predicting electrostatic solvation free energies to within 4% of a full numerical Poisson calculation. This modified model leads to a projection-framework understanding of BIBEE and suggests opportunities for future improvements. © 2011 American Institute of Physics

  15. Operation of electrothermal and electrostatic MUMPs microactuators underwater

    NASA Astrophysics Data System (ADS)

    Sameoto, Dan; Hubbard, Ted; Kujath, Marek

    2004-10-01

    Surface-micromachined actuators made in multi-user MEMS processes (MUMPs) have been operated underwater without modifying the manufacturing process. Such actuators have generally been either electro-thermally or electro-statically actuated and both actuator styles are tested here for suitability underwater. This is believed to be the first time that thermal and electrostatic actuators have been compared for deflection underwater relative to air performance. A high-frequency ac square wave is used to replicate a dc-driven actuator output without the associated problem of electrolysis in water. This method of ac activation, with frequencies far above the mechanical resonance frequencies of the MEMS actuators, has been termed root mean square (RMS) operation. Both thermal and electrostatic actuators have been tested and proved to work using RMS control. Underwater performance has been evaluated by using in-air operation of these actuators as a benchmark. When comparing deflection per volt applied, thermal actuators operate between 5 and 9% of in-air deflection and electrostatic actuators show an improvement in force per volt applied of upwards of 6000%. These results agree with predictions based on the physical properties of the surrounding medium.

  16. Model-Based Reasoning: Using Visual Tools to Reveal Student Learning

    ERIC Educational Resources Information Center

    Luckie, Douglas; Harrison, Scott H.; Ebert-May, Diane

    2011-01-01

    Using visual models is common in science and should become more common in classrooms. Our research group has developed and completed studies on the use of a visual modeling tool, the Concept Connector. This modeling tool consists of an online concept mapping Java applet that has automatic scoring functions we refer to as Robograder. The Concept…

  17. Experience of Integrating Various Technological Tools into the Study and Future Teaching of Mathematics Education Students

    ERIC Educational Resources Information Center

    Gorev, Dvora; Gurevich-Leibman, Irina

    2015-01-01

    This paper presents our experience of integrating technological tools into our mathematics teaching (in both disciplinary and didactic courses) for student-teachers. In the first cycle of our study, a variety of technological tools were used (e.g., dynamic software, hypertexts, video and applets) in teaching two disciplinary mathematics courses.…

  18. Remote Control Laboratory Using EJS Applets and TwinCAT Programmable Logic Controllers

    ERIC Educational Resources Information Center

    Besada-Portas, E.; Lopez-Orozco, J. A.; de la Torre, L.; de la Cruz, J. M.

    2013-01-01

    This paper presents a new methodology to develop remote laboratories for systems engineering and automation control courses, based on the combined use of TwinCAT, a laboratory Java server application, and Easy Java Simulations (EJS). The TwinCAT system is used to close the control loop for the selected plants by means of programmable logic…

  19. Equations with Technology: Different Tools, Different Views

    ERIC Educational Resources Information Center

    Drijvers, Paul; Barzel, Barbel

    2012-01-01

    Has technology revolutionised the mathematics classroom, or is it still a device waiting to be exploited for the benefit of the learner? There are applets that will enable the user to solve complex equations at the push of a button. So, does this jeopardise other methods, make other methods redundant, or even diminish other methods in the mind of…

  20. Why is "S" a Biased Estimate of [sigma]?

    ERIC Educational Resources Information Center

    Sanqui, Jose Almer T.; Arnholt, Alan T.

    2011-01-01

    This article describes a simulation activity that can be used to help students see that the estimator "S" is a biased estimator of [sigma]. The activity can be implemented using either a statistical package such as R, Minitab, or a Web applet. In the activity, the students investigate and compare the bias of "S" when sampling from different…

  1. Comparative Study of the Effectiveness of Three Learning Environments: Hyper-Realistic Virtual Simulations, Traditional Schematic Simulations and Traditional Laboratory

    ERIC Educational Resources Information Center

    Martinez, Guadalupe; Naranjo, Francisco L.; Perez, Angel L.; Suero, Maria Isabel; Pardo, Pedro J.

    2011-01-01

    This study compared the educational effects of computer simulations developed in a hyper-realistic virtual environment with the educational effects of either traditional schematic simulations or a traditional optics laboratory. The virtual environment was constructed on the basis of Java applets complemented with a photorealistic visual output.…

  2. CHEMFLO-2000: INTERACTIVE SOFTWARE FOR PREDICTING AND VISUALIZING TRANSIENT WATER AND CHEMICAL MOVEMENT IN SOILS AND ASSOCIATED UNCERTAINTIES

    EPA Science Inventory

    An interactive Java applet and a stand-alone application program will be developed based on the CHEMFLO model developed in the mid-1980s and published as an EPA report (EPA/600/8-89/076). The model solves Richards Equation for transient water movement in unsaturated soils, and so...

  3. Bringing Interactivity to the Web: The JAVA Solution.

    ERIC Educational Resources Information Center

    Knee, Richard H.; Cafolla, Ralph

    Java is an object-oriented programming language of the Internet. It's popularity lies in its ability to create interactive Web sites across platforms. The most common Java programs are applications and applets, which adhere to a set of conventions that lets them run within a Java-compatible browser. Java is becoming an essential subject matter and…

  4. Physics 3204. Course Description.

    ERIC Educational Resources Information Center

    Newfoundland and Labrador Dept. of Education.

    A description of the physics 3204 course in Newfoundland and Labrador is provided. The description includes: (1) statement of purpose, including general objectives of science education; (2) a list of six course objectives; (3) course content for units on sound, light, optical instruments, electrostatics, current electricity, Michael Faraday and…

  5. Materials Science

    NASA Image and Video Library

    1998-09-30

    Dr. Jan Rogers, project scientist for the Electrostatic Levitator (ESL) at NASA's Marshall Space Flight Center(MSFC). The ESL uses static electricity to suspend an obejct (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials sciences program.

  6. Additional application of the NASCAP code. Volume 2: SEPS, ion thruster neutralization and electrostatic antenna model

    NASA Technical Reports Server (NTRS)

    Katz, I.; Cassidy, J. J.; Mandell, M. J.; Parks, D. E.; Schnuelle, G. W.; Stannard, P. R.; Steen, P. G.

    1981-01-01

    The interactions of spacecraft systems with the surrounding plasma environment were studied analytically for three cases of current interest: calculating the impact of spacecraft generated plasmas on the main power system of a baseline solar electric propulsion stage (SEPS), modeling the physics of the neutralization of an ion thruster beam by a plasma bridge, and examining the physical and electrical effects of orbital ambient plasmas on the operation of an electrostatically controlled membrane mirror. In order to perform these studies, the NASA charging analyzer program (NASCAP) was used as well as several other computer models and analytical estimates. The main result of the SEPS study was to show how charge exchange ion expansion can create a conducting channel between the thrusters and the solar arrays. A fluid-like model was able to predict plasma potentials and temperatures measured near the main beam of an ion thruster and in the vicinity of a hollow cathode neutralizer. Power losses due to plasma currents were shown to be substantial for several proposed electrostatic antenna designs.

  7. A simple derivation for amplitude and time period of charged particles in an electrostatic bathtub potential

    NASA Astrophysics Data System (ADS)

    Prathap Reddy, K.

    2016-11-01

    An ‘electrostatic bathtub potential’ is defined and analytical expressions for the time period and amplitude of charged particles in this potential are obtained and compared with simulations. These kinds of potentials are encountered in linear electrostatic ion traps, where the potential along the axis appears like a bathtub. Ion traps are used in basic physics research and mass spectrometry to store ions; these stored ions make oscillatory motion within the confined volume of the trap. Usually these traps are designed and studied using ion optical software, but in this work the bathtub potential is reproduced by making two simple modifications to the harmonic oscillator potential. The addition of a linear ‘k 1|x|’ potential makes the simple harmonic potential curve steeper with a sharper turn at the origin, while the introduction of a finite-length zero potential region at the centre reproduces the flat region of the bathtub curve. This whole exercise of modelling a practical experimental situation in terms of a well-known simple physics problem may generate interest among readers.

  8. Upper-Division Student Difficulties with Separation of Variables

    ERIC Educational Resources Information Center

    Wilcox, Bethany R.; Pollock, Steven J.

    2015-01-01

    Separation of variables can be a powerful technique for solving many of the partial differential equations that arise in physics contexts. Upper-division physics students encounter this technique in multiple topical areas including electrostatics and quantum mechanics. To better understand the difficulties students encounter when utilizing the…

  9. Project Physics Tests 4, Light and Electromagnetism.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 4 are presented in this booklet. Included are 70 multiple-choice and 22 problem-and-essay questions. Concepts of light and electromagnetism are examined on charges, reflection, electrostatic forces, electric potential, speed of light, electromagnetic waves and radiations, Oersted's and Faraday's work,…

  10. Electricity and Magnetism 1, Electrostatics.

    ERIC Educational Resources Information Center

    Phillips, Melba

    This monograph was written for the Conference on the New Instructional Materials in Physics, held at the University of Washington in summer, 1965. Designed for college students who are non-physics majors, the approach is phenomenological and macroscopic. There are three sections arranged in order of increasing sophistication. The sections are (1)…

  11. An Investigation into Digital Media: Characteristics of Learning Objects Which K-12 Teachers Determine Meet Their Instructional Needs

    ERIC Educational Resources Information Center

    Guthrie, Patricia Ann

    2010-01-01

    In recent years, learning objects have emerged as an instructional tool for teachers. Digital libraries and collections provide teachers with free or fee-base access to a variety of learning objects from photos and famous speeches to Flash animations and interactive Java Applets. Learning objects offer opportunities for students to interact with…

  12. Using a Technology-Supported Approach to Preservice Teachers' Multirepresentational Fluency: Unifying Mathematical Concepts and Their Representations

    ERIC Educational Resources Information Center

    McGee, Daniel; Moore-Russo, Deborah

    2015-01-01

    A test project at the University of Puerto Rico in Mayagüez used GeoGebra applets to promote the concept of multirepresentational fluency among high school mathematics preservice teachers. For this study, this fluency was defined as simultaneous awareness of all representations associated with a mathematical concept, as measured by the ability to…

  13. The Use of Applets for Developing Understanding in Mathematics: A Case Study Using Maplets for Calculus with Continuity Concepts

    ERIC Educational Resources Information Center

    Patenaude, Raymond E.

    2013-01-01

    The Common Core State Standards for Mathematics (CCSSM) are founded on a long history of mathematics education research emphasizing the importance of teaching mathematics for understanding. The CCSSM along with the National Council of Teachers of Mathematics (NCTM) recommend the use of technology in the teaching of mathematics. New mobile…

  14. Creating a YouTube-Like Collaborative Environment in Mathematics: Integrating Animated Geogebra Constructions and Student-Generated Screencast Videos

    ERIC Educational Resources Information Center

    Lazarus, Jill; Roulet, Geoffrey

    2013-01-01

    This article discusses the integration of student-generated GeoGebra applets and Jing screencast videos to create a YouTube-like medium for sharing in mathematics. The value of combining dynamic mathematics software and screencast videos for facilitating communication and representations in a digital era is demonstrated herein. We share our…

  15. Flipping between Languages? An Exploratory Analysis of the Usage by Spanish-Speaking English Language Learner Tertiary Students of a Bilingual Probability Applet

    ERIC Educational Resources Information Center

    Lesser, Lawrence M.; Wagler, Amy E.; Salazar, Berenice

    2016-01-01

    English language learners (ELLs) are a rapidly growing part of the student population in many countries. Studies on resources for language learners--especially Spanish-speaking ELLs--have focused on areas such as reading, writing, and mathematics, but not introductory probability and statistics. Semi-structured qualitative interviews investigated…

  16. Spiderweb deformation induced by electrostatically charged insects

    PubMed Central

    Ortega-Jimenez, Victor Manuel; Dudley, Robert

    2013-01-01

    Capture success of spider webs has been associated with their microstructure, ornamentation, and wind-induced vibrations. Indirect evidence suggests that statically charged objects can attract silk thread, but web deformations induced by charged insects have not yet been described. Here, we show under laboratory conditions that electrostatically charged honeybees, green bottle flies, fruit flies, aphids, and also water drops falling near webs of cross-spiders (Araneus diadematus) induce rapid thread deformation that enhances the likelihood of physical contact, and thus of prey capture. PMID:23828093

  17. Electrostatically Accelerated Encounter and Folding for Facile Recognition of Intrinsically Disordered Proteins

    PubMed Central

    Ganguly, Debabani; Zhang, Weihong; Chen, Jianhan

    2013-01-01

    Achieving facile specific recognition is essential for intrinsically disordered proteins (IDPs) that are involved in cellular signaling and regulation. Consideration of the physical time scales of protein folding and diffusion-limited protein-protein encounter has suggested that the frequent requirement of protein folding for specific IDP recognition could lead to kinetic bottlenecks. How IDPs overcome such potential kinetic bottlenecks to viably function in signaling and regulation in general is poorly understood. Our recent computational and experimental study of cell-cycle regulator p27 (Ganguly et al., J. Mol. Biol. (2012)) demonstrated that long-range electrostatic forces exerted on enriched charges of IDPs could accelerate protein-protein encounter via “electrostatic steering” and at the same time promote “folding-competent” encounter topologies to enhance the efficiency of IDP folding upon encounter. Here, we further investigated the coupled binding and folding mechanisms and the roles of electrostatic forces in the formation of three IDP complexes with more complex folded topologies. The surface electrostatic potentials of these complexes lack prominent features like those observed for the p27/Cdk2/cyclin A complex to directly suggest the ability of electrostatic forces to facilitate folding upon encounter. Nonetheless, similar electrostatically accelerated encounter and folding mechanisms were consistently predicted for all three complexes using topology-based coarse-grained simulations. Together with our previous analysis of charge distributions in known IDP complexes, our results support a prevalent role of electrostatic interactions in promoting efficient coupled binding and folding for facile specific recognition. These results also suggest that there is likely a co-evolution of IDP folded topology, charge characteristics, and coupled binding and folding mechanisms, driven at least partially by the need to achieve fast association kinetics for cellular signaling and regulation. PMID:24278008

  18. Electrostatic stiffening and induced persistence length for coassembled molecular bottlebrushes

    NASA Astrophysics Data System (ADS)

    Storm, Ingeborg M.; Stuart, Martien A. Cohen; de Vries, Renko; Leermakers, Frans A. M.

    2018-03-01

    A self-consistent field analysis for tunable contributions to the persistence length of isolated semiflexible polymer chains including electrostatically driven coassembled deoxyribonucleic acid (DNA) bottlebrushes is presented. When a chain is charged, i.e., for polyelectrolytes, there is, in addition to an intrinsic rigidity, an electrostatic stiffening effect, because the electric double layer resists bending. For molecular bottlebrushes, there is an induced contribution due to the grafts. We explore cases beyond the classical phantom main-chain approximation and elaborate molecularly more realistic models where the backbone has a finite volume, which is necessary for treating coassembled bottlebrushes. We find that the way in which the linear charge density or the grafting density is regulated is important. Typically, the stiffening effect is reduced when there is freedom for these quantities to adapt to the curvature stresses. Electrostatically driven coassembled bottlebrushes, however, are relatively stiff because the chains have a low tendency to escape from the compressed regions and the electrostatic binding force is largest in the convex part. For coassembled bottlebrushes, the induced persistence length is a nonmonotonic function of the polymer concentration: For low polymer concentrations, the stiffening grows quadratically with coverage; for semidilute polymer concentrations, the brush chains retract and regain their Gaussian size. When doing so, they lose their induced persistence length contribution. Our results correlate well with observed physical characteristics of electrostatically driven coassembled DNA-bioengineered protein-polymer bottlebrushes.

  19. Counterion-induced swelling of ionic microgels

    NASA Astrophysics Data System (ADS)

    Denton, Alan R.; Tang, Qiyun

    2016-10-01

    Ionic microgel particles, when dispersed in a solvent, swell to equilibrium sizes that are governed by a balance between electrostatic and elastic forces. Tuning of particle size by varying external stimuli, such as pH, salt concentration, and temperature, has relevance for drug delivery, microfluidics, and filtration. To model swelling of ionic microgels, we derive a statistical mechanical theorem, which proves exact within the cell model, for the electrostatic contribution to the osmotic pressure inside a permeable colloidal macroion. Applying the theorem, we demonstrate how the distribution of counterions within an ionic microgel determines the internal osmotic pressure. By combining the electrostatic pressure, which we compute via both Poisson-Boltzmann theory and molecular dynamics simulation, with the elastic pressure, modeled via the Flory-Rehner theory of swollen polymer networks, we show how deswelling of ionic microgels with increasing concentration of particles can result from a redistribution of counterions that reduces electrostatic pressure. A linearized approximation for the electrostatic pressure, which proves remarkably accurate, provides physical insight and greatly eases numerical calculations for practical applications. Comparing with experiments, we explain why soft particles in deionized suspensions deswell upon increasing concentration and why this effect may be suppressed at higher ionic strength. The failure of the uniform ideal-gas approximation to adequately account for counterion-induced deswelling below close packing of microgels is attributed to neglect of spatial variation of the counterion density profile and the electrostatic pressure of incompletely neutralized macroions.

  20. The Four Lives of a Nuclear Accelerator

    NASA Astrophysics Data System (ADS)

    Wiescher, Michael

    2017-06-01

    Electrostatic accelerators have emerged as a major tool in research and industry in the second half of the twentieth century. In particular in low energy nuclear physics they have been essential for addressing a number of critical research questions from nuclear structure to nuclear astrophysics. This article describes this development on the example of a single machine which has been used for nearly sixty years at the forefront of scientific research in nuclear physics. The article summarizes the concept of electrostatic accelerators and outlines how this accelerator developed from a bare support function to an independent research tool that has been utilized in different research environments and institutions and now looks forward to a new life as part of the experiment CASPAR at the 4,850" level of the Sanford Underground Research Facility.

  1. Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm

    DOE PAGES

    Huang, C. -K.; Zeng, Y.; Wang, Y.; ...

    2016-10-01

    The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical systemmore » due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.« less

  2. Review and perspectives of electrostatic turbulence and transport studies in the basic plasma physics device TORPEX

    NASA Astrophysics Data System (ADS)

    Avino, Fabio; Bovet, Alexandre; Fasoli, Ambrogio; Furno, Ivo; Gustafson, Kyle; Loizu, Joaquim; Ricci, Paolo; Theiler, Christian

    2012-10-01

    TORPEX is a basic plasma physics toroidal device located at the CRPP-EPFL in Lausanne. In TORPEX, a vertical magnetic field superposed on a toroidal field creates helicoidal field lines with both ends terminating on the torus vessel. We review recent advances in the understanding and control of electrostatic interchange turbulence, associated structures and their effect on suprathermal ions. These advances are obtained using high-resolution diagnostics of plasma parameters and wave fields throughout the whole device cross-section, fluid models and numerical simulations. Furthermore, we discuss future developments including the possibility of generating closed field line configurations with rotational transform using an internal toroidal wire carrying a current. This system will also allow the study of innovative fusion-relevant configurations, such as the snowflake divertor.

  3. Electrical stress and strain in lunar regolith simulants

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Richard, D.; Davis, S.

    2011-11-01

    Experiments to entrain dust with electrostatic and fluid-dynamic forces result in particulate clouds of aggregates rather than individual dust grains. This is explained within the framework of Griffith-flaw theory regarding the comminution/breakage of weak solids. Physical and electrical inhomogeneities in powders are equivalent to microcracks in solids insofar as they facilitate failure at stress risers. Electrical charging of powders induces bulk sample stresses similar to mechanical stresses experienced by strong solids, depending on the nature of the charging. A powder mass therefore "breaks" into clumps rather than separating into individual dust particles. This contrasts with the expectation that electrical forces on the Moon will eject a submicron population of dust from the regolith into the exosphere. A lunar regolith will contain physical and electrostatic inhomogeneities similar to those in most charged powders.

  4. Finite grid instability and spectral fidelity of the electrostatic Particle-In-Cell algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, C. -K.; Zeng, Y.; Wang, Y.

    The origin of the Finite Grid Instability (FGI) is studied by resolving the dynamics in the 1D electrostatic Particle-In-Cell (PIC) model in the spectral domain at the single particle level and at the collective motion level. The spectral fidelity of the PIC model is contrasted with the underlying physical system or the gridless model. The systematic spectral phase and amplitude errors from the charge deposition and field interpolation are quantified for common particle shapes used in the PIC models. Lastly, it is shown through such analysis and in simulations that the lack of spectral fidelity relative to the physical systemmore » due to the existence of aliased spatial modes is the major cause of the FGI in the PIC model.« less

  5. Bench-scale performance testing and economic analyses of electrostatic dry coal cleaning. Final report, October 1980-July 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rich, S.R.

    1987-02-01

    The report gives results of preliminary performance evaluations and economic analyses of the Advanced Energy Dynamics (AED) electrostatic dry coal-cleaning process. Grab samples of coal-feed-product coals were obtained from 25 operating physical coal-cleaning (PCC) plants. These samples were analyzed for ash, sulfur, and energy content and splits of the original samples of feed run-of-mine coal were provided for bench-scale testing in an electrostatic separation apparatus. The process showed superior sulfur-removal performance at equivalent cost and energy-recovery levels. The ash-removal capability of the process was not evaluated completely: overall, ash-removal results indicated that the process did not perform as well asmore » the PCC plants.« less

  6. Understanding Student Use of Differentials in Physics Integration Problems

    ERIC Educational Resources Information Center

    Hu, Dehui; Rebello, N. Sanjay

    2013-01-01

    This study focuses on students' use of the mathematical concept of differentials in physics problem solving. For instance, in electrostatics, students need to set up an integral to find the electric field due to a charged bar, an activity that involves the application of mathematical differentials (e.g., "dr," "dq"). In this…

  7. Coupled Multiple-Response versus Free-Response Conceptual Assessment: An Example from Upper-Division Physics

    ERIC Educational Resources Information Center

    Wilcox, Bethany R.; Pollock, Steven J.

    2014-01-01

    Free-response research-based assessments, like the Colorado Upper-division Electrostatics Diagnostic (CUE), provide rich, fine-grained information about students' reasoning. However, because of the difficulties inherent in scoring these assessments, the majority of the large-scale conceptual assessments in physics are multiple choice. To increase…

  8. The Leaf Electroscope: A Take-Home Project of Unexpected Depth

    ERIC Educational Resources Information Center

    Stewart, John; Skinner, Stephen; Stewart, Gay

    2013-01-01

    The leaf electroscope is a common piece of demonstration equipment found in many high school and introductory college physics laboratories. Its simplicity allows a compelling demonstration of electrostatic forces, and its versatility makes it useful in the demonstration of a number of physical phenomena. The electroscope has a long history; a…

  9. An electrostatic glass actuator for ultrahigh vacuum: A rotating light trap for continuous beams of laser-cooled atoms.

    PubMed

    Füzesi, F; Jornod, A; Thomann, P; Plimmer, M D; Dudle, G; Moser, R; Sache, L; Bleuler, H

    2007-10-01

    This article describes the design, characterization, and performance of an electrostatic glass actuator adapted to an ultrahigh vacuum environment (10(-8) mbar). The three-phase rotary motor is used to drive a turbine that acts as a velocity-selective light trap for a slow continuous beam of laser-cooled atoms. This simple, compact, and nonmagnetic device should find applications in the realm of time and frequency metrology, as well as in other areas of atomic, molecular physics and elsewhere.

  10. Course 1: Physics of Protein-DNA Interaction

    NASA Astrophysics Data System (ADS)

    Bruinsma, R. F.

    1 Introduction 1.1 The central dogma and bacterial gene expression 1.2 Molecular structure 2 Thermodynamics and kinetics of repressor-DNA interaction 2.1 Thermodynamics and the lac repressor 2.2 Kinetics of repressor-DNA interaction 3 DNA deformability and protein-DNA interaction 3.1 Introduction 3.2 The worm-like chain 3.3 The RST model 4 Electrostatics in water and protein-DNA interaction 4.1 Macro-ions and aqueous electrostatics 4.2 The primitive model 4.3 Manning condensation 4.4 Counter-ion release and non-specific protein-DNA interaction

  11. Intertwining Evidence- and Model-Based Reasoning in Physics Sensemaking: An Example from Electrostatics

    ERIC Educational Resources Information Center

    Russ, Rosemary S.; Odden, Tor Ole B.

    2017-01-01

    Our field has long valued the goal of teaching students not just the facts of physics, but also the thinking and reasoning skills of professional physicists. The complexity inherent in scientific reasoning demands that we think carefully about how we conceptualize for ourselves, enact in our classes, and encourage in our students the relationship…

  12. Electrostatic sampling of trace DNA from clothing.

    PubMed

    Zieger, Martin; Defaux, Priscille Merciani; Utz, Silvia

    2016-05-01

    During acts of physical aggression, offenders frequently come into contact with clothes of the victim, thereby leaving traces of DNA-bearing biological material on the garments. Since tape-lifting and swabbing, the currently established methods for non-destructive trace DNA sampling from clothing, both have their shortcomings in collection efficiency and handling, we thought about a new collection method for these challenging samples. Testing two readily available electrostatic devices for their potential to sample biological material from garments made of different fabrics, we found one of them, the electrostatic dust print lifter (DPL), to perform comparable to well-established sampling with wet cotton swabs. In simulated aggression scenarios, we had the same success rate for the establishment of single aggressor profiles, suitable for database submission, with both the DPL and wet swabbing. However, we lost a substantial amount of information with electrostatic sampling, since almost no mixed aggressor-victim profiles suitable for database entry could be established, compared to conventional swabbing. This study serves as a proof of principle for electrostatic DNA sampling from items of clothing. The technique still requires optimization before it might be used in real casework. But we are confident that in the future it could be an efficient and convenient contribution to the toolbox of forensic practitioners.

  13. Progress in developing Poisson-Boltzmann equation solvers

    PubMed Central

    Li, Chuan; Li, Lin; Petukh, Marharyta; Alexov, Emil

    2013-01-01

    This review outlines the recent progress made in developing more accurate and efficient solutions to model electrostatics in systems comprised of bio-macromolecules and nano-objects, the last one referring to objects that do not have biological function themselves but nowadays are frequently used in biophysical and medical approaches in conjunction with bio-macromolecules. The problem of modeling macromolecular electrostatics is reviewed from two different angles: as a mathematical task provided the specific definition of the system to be modeled and as a physical problem aiming to better capture the phenomena occurring in the real experiments. In addition, specific attention is paid to methods to extend the capabilities of the existing solvers to model large systems toward applications of calculations of the electrostatic potential and energies in molecular motors, mitochondria complex, photosynthetic machinery and systems involving large nano-objects. PMID:24199185

  14. Determining Trajectory of Triboelectrically Charged Particles, Using Discrete Element Modeling

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Kennedy Space Center (KSC) Electrostatics and Surface Physics Laboratory is participating in an Innovative Partnership Program (IPP) project with an industry partner to modify a commercial off-the-shelf simulation software product to treat the electrodynamics of particulate systems. Discrete element modeling (DEM) is a numerical technique that can track the dynamics of particle systems. This technique, which was introduced in 1979 for analysis of rock mechanics, was recently refined to include the contact force interaction of particles with arbitrary surfaces and moving machinery. In our work, we endeavor to incorporate electrostatic forces into the DEM calculations to enhance the fidelity of the software and its applicability to (1) particle processes, such as electrophotography, that are greatly affected by electrostatic forces, (2) grain and dust transport, and (3) the study of lunar and Martian regoliths.

  15. WebScope: A New Tool for Fusion Data Analysis and Visualization

    NASA Astrophysics Data System (ADS)

    Yang, Fei; Dang, Ningning; Xiao, Bingjia

    2010-04-01

    A visualization tool was developed through a web browser based on Java applets embedded into HTML pages, in order to provide a world access to the EAST experimental data. It can display data from various trees in different servers in a single panel. With WebScope, it is easier to make a comparison between different data sources and perform a simple calculation over different data sources.

  16. DIRT: Dust InfraRed Toolbox

    NASA Astrophysics Data System (ADS)

    Pound, Marc W.; Wolfire, Mark G.; Mundy, Lee G.; Teuben, Peter; Lord, Steve

    2011-02-01

    DIRT is a Java applet for modelling astrophysical processes in circumstellar dust shells around young and evolved stars. With DIRT, you can: select and display over 500,000 pre-run model spectral energy distributions (SEDs) find the best-fit model to your data set account for beam size in model fitting manipulate data and models with an interactive viewer display gas and dust density and temperature profiles display model intensity profiles at various wavelengths

  17. Learning algebra on screen and on paper: The effect of using a digital tool on students' understanding

    NASA Astrophysics Data System (ADS)

    Jupri, Al; Drijvers, Paul; van den Heuvel-Panhuizen, Marja

    2016-02-01

    The use of digital tools in algebra education is expected to not only contribute to master skill, but also to acquire conceptual understanding. The question is how digital tools affect students" thinking and understanding. This paper presents an analysis of data of one group of three grade seventh students (12-13 year-old) on the use of a digital tool for algebra, the Cover-up applet for solving equations in particular. This case study was part of a larger teaching experiment on initial algebra enriched with digital technology which aimed to improve students" conceptual understanding and skills in solving equations in one variable. The qualitative analysis of a video observation, digital and written work showed that the use of the applet affects student thinking in terms of strategies used by students while dealing with the equations. We conclude that the effects of the use of the digital tool can be traced from student problem solving strategies on paper-and-pencil environment which are similar to strategies while working with the digital tool. In future research, we recommend to use specific theoretical lenses, such as the theory of instrumental genesis and the onto-semiotic approach, to reveal more explicit relationships between students" conceptual understanding and the use of a digital tool.

  18. Charge regulation at semiconductor-electrolyte interfaces.

    PubMed

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2015-07-01

    The interface between a semiconductor material and an electrolyte solution has interesting and complex electrostatic properties. Its behavior will depend on the density of mobile charge carriers that are present in both phases as well as on the surface chemistry at the interface through local charge regulation. The latter is driven by chemical equilibria involving the immobile surface groups and the potential determining ions in the electrolyte solution. All these lead to an electrostatic potential distribution that propagate such that the electrolyte and the semiconductor are dependent on each other. Hence, any variation in the charge density in one phase will lead to a response in the other. This has significant implications on the physical properties of single semiconductor-electrolyte interfaces and on the electrostatic interactions between semiconductor particles suspended in electrolyte solutions. The present paper expands on our previous publication (Fleharty et al., 2014) and offers new results on the electrostatics of single semiconductor interfaces as well as on the interaction of charged semiconductor colloids suspended in electrolyte solution. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Laboratory investigation of surface processes on airless bodies due to electrostatic dust mobilization

    NASA Astrophysics Data System (ADS)

    Wang, X.; Hood, N.; Schwan, J.; Hsu, H. W.; Horanyi, M.

    2017-12-01

    Electrostatic dust mobilization on the surfaces of airless bodies due to direct exposure to solar wind and solar ultraviolet (UV) radiation has been suggested from a number of unusual planetary observations and supported by our recent laboratory experiments. This electrostatic process may have a significant contribution in the evolution of these surfaces in addition to other surface processes, e.g., thermal fragmentation. The critical questions are how this process changes the surface physical characteristics and how efficient this process can be. We report new laboratory experiments that record dust activities as function of the incoming fluxes of photons or energetic electrons over a long exposure time under Earth gravity. Dust is observed to hop and move on the surface, causing the significant change in surface morphology and becoming smoother over time. Our results indicate that the dynamics of dust mobilization may be complicated by temporal charging effect as dust moves. Various sizes and types of dust are examined, showing large effects on dust mobilization. These laboratory data will help us to predict the electrostatic surface processes and estimate their timescales in space conditions.

  20. Role of out-of-plane dielectric thickness in the electrostatic simulation of atomically thin lateral junctions

    NASA Astrophysics Data System (ADS)

    Nipane, Ankur; Zhang, Yefei; Teherani, James T.

    2018-06-01

    Two-dimensional materials enable novel electronic and optoelectronic devices due to their unique properties. Device modeling plays a fundamental role in developing these novel devices by providing insights into the underlying physics. In this work, we present the dramatic impact of the simulated out-of-plane dielectric thickness on the electrostatics of lateral junctions formed from atomically thin materials. We show that unlike bulk junctions, the boundary conditions on the edges of the simulation region significantly affect the electrostatics of two-dimensional (2D) lateral junctions by modifying the out-of-plane electric field. We also present an intuitive understanding of the Neumann boundary conditions imposed on the boundaries of the simulation region. The Neumann boundary conditions alter the intended simulation by generating reflections of the device across the boundaries. Finally, we derive a minimal dielectric thickness for a symmetrically doped 2D lateral p-n junction, above which the out-of-plane simulation region boundaries minimally affect the simulated electric field, electrostatic potential, and depletion width of the junction.

  1. Comparative study of 2-DOF micromirrors for precision light manipulation

    NASA Astrophysics Data System (ADS)

    Young, Johanna I.; Shkel, Andrei M.

    2001-08-01

    Many industry experts predict that the future of fiber optic telecommunications depends on the development of all-optical components for switching of photonic signals from fiber to fiber throughout the networks. MEMS is a promising technology for providing all-optical switching at high speeds with significant cost reductions. This paper reports on the the analysis of two designs for 2-DOF electrostatically actuated MEMS micromirrors for precision controllable large optical switching arrays. The behavior of the micromirror designs is predicted by coupled-field electrostatic and modal analysis using a finite element analysis (FEA) multi-physics modeling software. The analysis indicates that the commonly used gimbal type mirror design experiences electrostatic interference and would therefore be difficult to precisely control for 2-DOF motion. We propose a new design approach which preserves 2-DOF actuation while minimizing electrostatic interference between the drive electrodes and the mirror. Instead of using two torsional axes, we use one actuator which combines torsional and flexural DOFs. A comparative analysis of the conventional gimbal design and the one proposed in this paper is performed.

  2. Hands-on-Entropy, Energy Balance with Biological Relevance

    NASA Astrophysics Data System (ADS)

    Reeves, Mark

    2015-03-01

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is important contribution of the entropy in driving fundamental biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy). This has enabled students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce complex biological processes and structures in order model them mathematically to account for both deterministic and probabilistic processes. The students test these models in simulations and in laboratory experiments that are biologically relevant such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront random forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory physics with a bio focus. Supported by NSF DUE.

  3. Experimental study of electrostatic discharges of spacecraft solar array protective coatings under radiation

    NASA Astrophysics Data System (ADS)

    Khasanshin, Rashid; Novikov, Lev

    Action of charged particles on low-conductive dielectrics causes formation of areas with a high charge density inside; their fields may give rise to development of electrostatic discharge between the charged area and the surface of the dielectric. Discharge channels are growing due to breakdown of dielectric and formation of a conducting phase. Generation of the channels is a complex stochastic process accompanied by such physical and chemical processes as ionization, gas formation, heating, and so on, which cause formation of conducting phase in a glass. That is why no quantitative theory describing formation of conductive channels has been formulated yet. The study of electrostatic discharges in dielectrics under radiation is essential both from a scientific point of view and for the solution of applied problems. In particular, interaction of a spacecraft with ambient plasma causes accumulation of electric charges on its surface producing, as a consequence, electric potential between the spacecraft surface and the plasma. For example, potentials on the surface of satellites operating on a geostationary orbit reach up to 20 kV. Elec-trostatic discharges caused by such potentials can produce not only the considerable electromag-netic interference, but also lead to the destruction of hardware components and structural ele-ments. Electrostatic charging due to electrons from the Earth’s radiation belts causes degradation of solar arrays as a result of surface and internal electrostatic discharges. In the work, surface of K-208 spacecraft solar array protective coatings irradiated by 20 and 40 keV electrons and protons has studied using by AFM methods. Traces of electrostatic dis-charges at different radiation flux densities were analyzed.

  4. Physics Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Short articles describe techniques for stroboscopic photography of moving objects, mechanical and electronic demonstrations of beats at radio frequencies, simple apparatus for the determination of the specific heat of steam, and the measurement of electrostatic potential by a flame probe. (AL)

  5. Shared virtual environments for telerehabilitation.

    PubMed

    Popescu, George V; Burdea, Grigore; Boian, Rares

    2002-01-01

    Current VR telerehabilitation systems use offline remote monitoring from the clinic and patient-therapist videoconferencing. Such "store and forward" and video-based systems cannot implement medical services involving patient therapist direct interaction. Real-time telerehabilitation applications (including remote therapy) can be developed using a shared Virtual Environment (VE) architecture. We developed a two-user shared VE for hand telerehabilitation. Each site has a telerehabilitation workstation with a videocamera and a Rutgers Master II (RMII) force feedback glove. Each user can control a virtual hand and interact hapticly with virtual objects. Simulated physical interactions between therapist and patient are implemented using hand force feedback. The therapist's graphic interface contains several virtual panels, which allow control over the rehabilitation process. These controls start a videoconferencing session, collect patient data, or apply therapy. Several experimental telerehabilitation scenarios were successfully tested on a LAN. A Web-based approach to "real-time" patient telemonitoring--the monitoring portal for hand telerehabilitation--was also developed. The therapist interface is implemented as a Java3D applet that monitors patient hand movement. The monitoring portal gives real-time performance on off-the-shelf desktop workstations.

  6. Web-based Tool Suite for Plasmasphere Information Discovery

    NASA Astrophysics Data System (ADS)

    Newman, T. S.; Wang, C.; Gallagher, D. L.

    2005-12-01

    A suite of tools that enable discovery of terrestrial plasmasphere characteristics from NASA IMAGE Extreme Ultra Violet (EUV) images is described. The tool suite is web-accessible, allowing easy remote access without the need for any software installation on the user's computer. The features supported by the tool include reconstruction of the plasmasphere plasma density distribution from a short sequence of EUV images, semi-automated selection of the plasmapause boundary in an EUV image, and mapping of the selected boundary to the geomagnetic equatorial plane. EUV image upload and result download is also supported. The tool suite's plasmapause mapping feature is achieved via the Roelof and Skinner (2000) Edge Algorithm. The plasma density reconstruction is achieved through a tomographic technique that exploits physical constraints to allow for a moderate resolution result. The tool suite's software architecture uses Java Server Pages (JSP) and Java Applets on the front side for user-software interaction and Java Servlets on the server side for task execution. The compute-intensive components of the tool suite are implemented in C++ and invoked by the server via Java Native Interface (JNI).

  7. On the use of history of mathematics: an introduction to Galileo's study of free fall motion

    NASA Astrophysics Data System (ADS)

    Ponce Campuzano, Juan Carlos; Matthews, Kelly E.; Adams, Peter

    2018-05-01

    In this paper, we report on an experimental activity for discussing the concepts of speed, instantaneous speed and acceleration, generally introduced in first year university courses of calculus or physics. Rather than developing the ideas of calculus and using them to explain these basic concepts for the study of motion, we led 82 first year university students through Galileo's experiments designed to investigate the motion of falling bodies, and his geometrical explanation of his results, via simple dynamic geometric applets designed with GeoGebra. Our goal was to enhance the students' development of mathematical thinking. Through a scholarship of teaching and learning study design, we captured data from students before, during and after the activity. Findings suggest that the historical development presented to the students helped to show the growth and evolution of the ideas and made visible authentic ways of thinking mathematically. Importantly, the activity prompted students to question and rethink what they knew about speed and acceleration, and also to appreciate the novel concepts of instantaneous speed and acceleration at which Galileo arrived.

  8. Case of Two Electrostatics Problems: Can Providing a Diagram Adversely Impact Introductory Physics Students' Problem Solving Performance?

    ERIC Educational Resources Information Center

    Maries, Alexandru; Singh, Chandralekha

    2018-01-01

    Drawing appropriate diagrams is a useful problem solving heuristic that can transform a problem into a representation that is easier to exploit for solving it. One major focus while helping introductory physics students learn effective problem solving is to help them understand that drawing diagrams can facilitate problem solution. We conducted an…

  9. Development of Charge to Mass Ratio Microdetector for Future Mars Mission

    NASA Technical Reports Server (NTRS)

    Chen, Yuan-Lian Albert

    2003-01-01

    The Mars environment comprises a dry, cold and low air pressure atmosphere with low gravity (0.38g) and high resistivity soil. The global dust storms that cover a large portion of Mars are observed often from Earth. This environment provides an ideal condition for turboelectric charging. The extremely dry conditions on the Martian surface have raised concerns that electrostatic charge buildup will not be dissipated easily. If turboelectrically generated charge cannot be dissipated or avoided, then dust will accumulate on charged surfaces and electrostatic discharge may cause hazards for future exploration missions. The low surface on Mars helps to prolong the charge decay on the dust particles and soil. To better understanding the physics of Martian charged dust particles is essential to future Mars missions. We research and design two sensors, velocity/charge sensor and PZT momentum sensors, to measure the velocity distribution, charge distribution and mass distribution of Martian wed dust particles. These sensors are fabricated at NASA Kenney Space Center, Electrostatic and Surface Physics Laboratory. The sensors are calibrated. The momentum sensor is capable to measure 45 pan size particles. The designed detector is very simple, robust, without moving parts, and does not require a high voltage power supply. Two sensors are combined to form the Dust Microdetector - CHAL.

  10. Electrostatic Solvation Energy for Two Oppositely Charged Ions in a Solvated Protein System: Salt Bridges Can Stabilize Proteins

    PubMed Central

    Gong, Haipeng; Freed, Karl F.

    2010-01-01

    Abstract Born-type electrostatic continuum methods have been an indispensable ingredient in a variety of implicit-solvent methods that reduce computational effort by orders of magnitude compared to explicit-solvent MD simulations and thus enable treatment using larger systems and/or longer times. An analysis of the limitations and failures of the Born approaches serves as a guide for fundamental improvements without diminishing the importance of prior works. One of the major limitations of the Born theory is the lack of a liquidlike description of the response of solvent dipoles to the electrostatic field of the solute and the changes therein, a feature contained in the continuum Langevin-Debye (LD) model applied here to investigate how Coulombic interactions depend on the location of charges relative to the protein/water boundary. This physically more realistic LD model is applied to study the stability of salt bridges. When compared head to head using the same (independently measurable) physical parameters (radii, dielectric constants, etc.), the LD model is in good agreement with observations, whereas the Born model is grossly in error. Our calculations also suggest that a salt bridge on the protein's surface can be stabilizing when the charge separation is ≤4 Å. PMID:20141761

  11. Electrostatic plasma lens for focusing negatively charged particle beams.

    PubMed

    Goncharov, A A; Dobrovolskiy, A M; Dunets, S M; Litovko, I V; Gushenets, V I; Oks, E M

    2012-02-01

    We describe the current status of ongoing research and development of the electrostatic plasma lens for focusing and manipulating intense negatively charged particle beams, electrons, and negative ions. The physical principle of this kind of plasma lens is based on magnetic isolation electrons providing creation of a dynamical positive space charge cloud in shortly restricted volume propagating beam. Here, the new results of experimental investigations and computer simulations of wide-aperture, intense electron beam focusing by plasma lens with positive space charge cloud produced due to the cylindrical anode layer accelerator creating a positive ion stream towards an axis system is presented.

  12. Measurements of plasma loading in the presence of electrostatic waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Riccardi, C.; Agostini, E.; Fontanesi, M.

    1995-10-01

    An experimental analysis of the plasma impedance with respect to the coupling of ES (electrostatic) waves is described in this paper. The waves are excited through a slow-wave antenna and the experiment performed in a toroidal device [C. Riccardi {ital et} {ital al}., Plasma Phys. {bold 36}, 1791 (1994)]. The measured impedance is compared with a simple theoretical model for magnetized homogeneous plasma, in order to establish the presence of bulk or surface waves and of some nonlinear effects when power is raised. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  13. Microgravity

    NASA Image and Video Library

    1998-09-30

    Optical ports ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (beam passes through the window at left), positioning lasers (one port is at center), and lamps to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  14. Electrostatics-Driven Hierarchical Buckling of Charged Flexible Ribbons.

    PubMed

    Yao, Zhenwei; Olvera de la Cruz, Monica

    2016-04-08

    We investigate the rich morphologies of an electrically charged flexible ribbon, which is a prototype for many beltlike structures in biology and nanomaterials. Long-range electrostatic repulsion is found to govern the hierarchical buckling of the ribbon from its initially flat shape to its undulated and out-of-plane twisted conformations. In this process, the screening length is the key controlling parameter, suggesting that a convenient way to manipulate the ribbon morphology is simply to change the salt concentration. We find that these shapes originate from the geometric effect of the electrostatic interaction, which fundamentally changes the metric over the ribbon surface. We also identify the basic modes by which the ribbon reshapes itself in order to lower the energy. The geometric effect of the physical interaction revealed in this Letter has implications for the shape design of extensive ribbonlike materials in nano- and biomaterials.

  15. Adsorption of charged protein residues on an inorganic nanosheet: Computer simulation of LDH interaction with ion channel

    NASA Astrophysics Data System (ADS)

    Tsukanov, Alexey A.; Psakhie, Sergey G.

    2016-08-01

    Quasi-two-dimensional and hybrid nanomaterials based on layered double hydroxides (LDH), cationic clays, layered oxyhydroxides and hydroxides of metals possess large specific surface area and strong electrostatic properties with permanent or pH-dependent electric charge. Such nanomaterials may impact cellular electrostatics, changing the ion balance, pH and membrane potential. Selective ion adsorption/exchange may alter the transmembrane electrochemical gradient, disrupting potential-dependent cellular processes. Cellular proteins as a rule have charged residues which can be effectively adsorbed on the surface of layered hydroxide based nanomaterials. The aim of this study is to attempt to shed some light on the possibility and mechanisms of protein "adhesion" an LDH nanosheet and to propose a new direction in anticancer medicine, based on physical impact and strong electrostatics. An unbiased molecular dynamics simulation was performed and the combined process free energy estimation (COPFEE) approach was used.

  16. Coarse-graining, Electrostatics and pH effects in phospholipid systems

    NASA Astrophysics Data System (ADS)

    Travesset, Alex; Vangaveti, Sweta

    2010-03-01

    We introduce a minimal free energy describing the interaction of charged groups and counterions including both classical electrostatic and specific interactions. The predictions of the model are compared against the standard model for describing ions next to charged interfaces, consisting of Poisson-Boltzmann theory with additional constants describing ion binding, which are specific to the counterion and the interfacial charge (``chemical binding''). It is shown that the ``chemical'' model can be appropriately described by an underlying ``physical'' model over several decades in concentration, but the extracted binding constants are not uniquely defined, as they differ depending on the particular observable quantity being studied. It is also shown that electrostatic correlations for divalent (or higher valence) ions enhance the surface charge by increasing deprotonation, an effect not properly accounted within chemical models. The model is applied to the charged phospholipids phosphatidylserine, Phosphatidc acid and Phosphoinositides and implications for different biological processes are discussed.

  17. Electron Optics Cannot Be Taught through Computation?

    ERIC Educational Resources Information Center

    van der Merwe, J. P.

    1980-01-01

    Describes how certain concepts basic to electron optics may be introduced to undergraduate physics students by calculating trajectories of charged particles through electrostatic fields which can be evaluated on minicomputers with a minimum of programing effort. (Author/SA)

  18. Titanium-Zirconium-Nickel Alloy Inside Marshall's Electrostatic Levitator (ESL)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This Photo, which appeared on the July cover of `Physics Today', is of the Electrostatic Levitator (ESL) at NASA's Marshall Space Flight Center (MSFC). The ESL uses static electricity to suspend an object (about 3-4 mm in diameter) inside a vacuum chamber allowing scientists to record a wide range of physical properties without the sample contracting the container or any instruments, conditions that would alter the readings. Once inside the chamber, a laser heats the sample until it melts. The laser is then turned off and the sample cools, changing from a liquid drop to a solid sphere. In this particular shot, the ESL contains a solid metal sample of titanium-zirconium-nickel alloy. Since 1977, the ESL has been used at MSFC to study the characteristics of new metals, ceramics, and glass compounds. Materials created as a result of these tests include new optical materials, special metallic glasses, and spacecraft components.

  19. Elasticity in Physically Cross-Linked Amyloid Fibril Networks.

    PubMed

    Cao, Yiping; Bolisetty, Sreenath; Adamcik, Jozef; Mezzenga, Raffaele

    2018-04-13

    We provide a constitutive model of semiflexible and rigid amyloid fibril networks by combining the affine thermal model of network elasticity with the Derjaguin-Landau-Vervey-Overbeek (DLVO) theory of electrostatically charged colloids. When compared to rheological experiments on β-lactoglobulin and lysozyme amyloid networks, this approach provides the correct scaling of elasticity versus both concentration (G∼c^{2.2} and G∼c^{2.5} for semiflexible and rigid fibrils, respectively) and ionic strength (G∼I^{4.4} and G∼I^{3.8} for β-lactoglobulin and lysozyme, independent from fibril flexibility). The pivotal role played by the screening salt is to reduce the electrostatic barrier among amyloid fibrils, converting labile physical entanglements into long-lived cross-links. This gives a power-law behavior of G with I having exponents significantly larger than in other semiflexible polymer networks (e.g., actin) and carrying DLVO traits specific to the individual amyloid fibrils.

  20. KSC-2013-3906

    NASA Image and Video Library

    2013-11-07

    CAPE CANAVERAL, Fla. -- Preparations are underway to conduct a dust particle experiment for the Electrodynamic Dust Shield for Dust Mitigation project in the Electrostatics and Surface Physics Laboratory in the SwampWorks at NASA's Kennedy Space Center in Florida. The technology works by creating an electric field that propagates out like the ripples on a pond. This could prevent dust accumulation on spacesuits, thermal radiators, solar panels, optical instruments and view ports for future lunar and Mars exploration activities. CAPE CANAVERAL, Fla. -- Preparations are underway to conduct a dust particle experiment for the Electrodynamic Dust Shield for Dust Mitigation project in the Electrostatics and Surface Physics Laboratory in the SwampWorks at NASA's Kennedy Space Center in Florida. The technology works by creating an electric field that propagates out like the ripples on a pond. This could prevent dust accumulation on spacesuits, thermal radiators, solar panels, optical instruments and view ports for future lunar and Mars exploration activities.

  1. Lone pair-π interactions in biological systems: occurrence, function, and physical origin.

    PubMed

    Kozelka, Jiří

    2017-12-01

    Lone pair-π interactions are now recognized as a supramolecular bond whose existence in biological systems is documented by a growing number of examples. They are commonly attributed to electrostatic forces. This review attempts to highlight some recent discoveries evidencing the important role which lone pair-π interactions, and anion-π interactions in particular, play in stabilizing the structure and affecting the function of biomolecules. Special attention is paid to studies exploring the physical origin of these at first glance counterintuitive interactions between a lone pair of electrons of one residue and the π-cloud of another. Recent theoretical work went beyond the popular electrostatic model and inquired the extent to which orbital interactions have to be taken into account. In at least one biologically relevant case-that of anion-flavin interactions-a substantial charge-transfer component has been shown to operate.

  2. Elasticity in Physically Cross-Linked Amyloid Fibril Networks

    NASA Astrophysics Data System (ADS)

    Cao, Yiping; Bolisetty, Sreenath; Adamcik, Jozef; Mezzenga, Raffaele

    2018-04-01

    We provide a constitutive model of semiflexible and rigid amyloid fibril networks by combining the affine thermal model of network elasticity with the Derjaguin-Landau-Vervey-Overbeek (DLVO) theory of electrostatically charged colloids. When compared to rheological experiments on β -lactoglobulin and lysozyme amyloid networks, this approach provides the correct scaling of elasticity versus both concentration (G ˜c2.2 and G ˜c2.5 for semiflexible and rigid fibrils, respectively) and ionic strength (G ˜I4.4 and G ˜I3.8 for β -lactoglobulin and lysozyme, independent from fibril flexibility). The pivotal role played by the screening salt is to reduce the electrostatic barrier among amyloid fibrils, converting labile physical entanglements into long-lived cross-links. This gives a power-law behavior of G with I having exponents significantly larger than in other semiflexible polymer networks (e.g., actin) and carrying DLVO traits specific to the individual amyloid fibrils.

  3. [Investigations on the effect of an electrostatic field free of residual waves on the motility of the mouse (author's transl)].

    PubMed

    Fischer, G

    1977-08-01

    Comparative investigations were carried out concerning the influence on the motility of mice of different electrobioclimatic conditions (electrostatic field with a residual wave component of 1% and a field strength of 4.500 V/m; pure residual wave component: 32 Vs/s, field strength 120 V/m/ss; electrostatic field established by batteries: initial voltage 900 V, field strength 4.500 V/m; shielded from ambient atmospheric electrical fields: damping efficiency at 99%). The Faraday condition represented the control as absolutely objective physical magnitude. All experimental chambers were positioned under Faraday shields. Following a 20 day period of acclimatization to the unaccustomed surroundings for the animals (adaptation period), we established the previously described electrophysical conditions in the cages for a further period of 20 days (experimental period). The lowest values measured during the daily readings were found in the Faraday cage, resp. in the pure electrostatic field, the highest in the DC-field with residual wave component resp. in the residual wave component alone. We draw the following conclusion from the findings: the pure DC-field apparently does not possess those bioclimatologically decisive importance that has been and is being postulated from several sides. Many of the stimtng effects observed and attributed to the electrostatic field are most probably due to the residual wave component resulting from the high-voltage generators employed.

  4. Cartilage-like electrostatic stiffening of responsive cryogel scaffolds

    NASA Astrophysics Data System (ADS)

    Offeddu, G. S.; Mela, I.; Jeggle, P.; Henderson, R. M.; Smoukov, S. K.; Oyen, M. L.

    2017-02-01

    Cartilage is a structural tissue with unique mechanical properties deriving from its electrically-charged porous structure. Traditional three-dimensional environments for the culture of cells fail to display the complex physical response displayed by the natural tissue. In this work, the reproduction of the charged environment found in cartilage is achieved using polyelectrolyte hydrogels based on polyvinyl alcohol and polyacrylic acid. The mechanical response and morphology of microporous physically-crosslinked cryogels are compared to those of heat-treated chemical gels made from the same polymers, as a result of pH-dependent swelling. In contrast to the heat-treated chemically-crosslinked gels, the elastic modulus of the physical cryogels was found to increase with charge activation and swelling, explained by the occurrence of electrostatic stiffening of the polymer chains at large charge densities. At the same time, the permeability of both materials to fluid flow was impaired by the presence of electric charges. This cartilage-like mechanical behavior displayed by responsive cryogels can be reproduced in other polyelectrolyte hydrogel systems to fabricate biomimetic cellular scaffolds for the repair of the tissue.

  5. The self-consistent parallel electric field due to electrostatic ion-cyclotron turbulence in downward auroral-current regions of the Earth's magnetosphere. IV

    NASA Astrophysics Data System (ADS)

    Jasperse, John R.; Basu, Bamandas; Lund, Eric J.; Grossbard, Neil

    2010-06-01

    The physical processes that determine the self-consistent electric field (E∥) parallel to the magnetic field have been an unresolved problem in magnetospheric physics for over 40 years. Recently, a new multimoment fluid theory was developed for inhomogeneous, nonuniformly magnetized plasma in the guiding-center and gyrotropic approximation that includes the effect of electrostatic, turbulent, wave-particle interactions (see Jasperse et al. [Phys. Plasmas 13, 072903 (2006); Jasperse et al., Phys. Plasmas13, 112902 (2006)]). In the present paper and its companion paper [Jasperse et al., Phys. Plasmas 17, 062903 (2010)], which are intended as sequels to the earlier work, a fundamental model for downward, magnetic field-aligned (Birkeland) currents for quasisteady conditions is presented. The model includes the production of electrostatic ion-cyclotron turbulence in the long-range potential region by an electron, bump-on-tail-driven ion-cyclotron instability. Anomalous momentum transfer (anomalous resistivity) by itself is found to produce a very small contribution to E∥; however, the presence of electrostatic, ion-cyclotron turbulence has a very large effect on the altitude dependence of the entire quasisteady solution. Anomalous energy transfer (anomalous heating and cooling) modifies the density, drift, and temperature altitude profiles and hence the generalized parallel-pressure gradients and mirror forces in the electron and ion momentum-balance equations. As a result, |E∥| is enhanced by nearly a factor of 40 compared to its value when turbulence is absent. The space-averaged potential increase associated with the strong double layer at the bottom of the downward-current sheet is estimated using the FAST satellite data and the multimoment fluid theory.

  6. Self-consistent treatment of electrostatics in molecular DNA braiding through external forces.

    PubMed

    Lee, Dominic J

    2014-06-01

    In this paper we consider a physical system in which two DNA molecules braid about each other. The distance between the two molecular ends, on either side of the braid, is held at a distance much larger than supercoiling radius of the braid. The system is subjected to an external pulling force, and a moment that induces the braiding. In a model, developed for understanding such a system, we assume that each molecule can be divided into a braided and unbraided section. We also suppose that the DNA is nicked so that there is no constraint of the individual linking numbers of the molecules. Included in the model are steric and electrostatic interactions, thermal fluctuations of the braided and unbraided sections of the molecule, as well as the constraint on the braid linking (catenation) number. We compare two approximations used in estimating the free energy of the braided section. One is where the amplitude of undulations of one molecule with respect to the other is determined only by steric interactions. The other is a self-consistent determination of the mean-squared amplitude of these undulations. In this second approximation electrostatics should play an important role in determining this quantity, as suggested by physical arguments. We see that if the electrostatic interaction is sufficiently large there are indeed notable differences between the two approximations. We go on to test the self-consistent approximation-included in the full model-against experimental data for such a system, and we find good agreement. However, there seems to be a slight left-right-handed braid asymmetry in some of the experimental results. We discuss what might be the origin of this small asymmetry.

  7. Toward Paradoxical Inconsistency in Electrostatics of Metallic Conductors

    DTIC Science & Technology

    Naturally, when dealing with fundamental problems, the V and V effort should include careful exploration and, if necessary, revision of the fundamentals...Current developments show a clear trend toward more serious efforts in validation and verification (V and V) of physical and engineering models...underlying the physics. With this understanding in mind, we review some fundamentals of the models of crystalline electric conductors and find a

  8. PREFACE: 7th International Conference on Applied Electrostatics (ICAES-2012)

    NASA Astrophysics Data System (ADS)

    Li, Jie

    2013-03-01

    ICAES is an important conference organized every four years by the Committee on Electrostatics of the Chinese Physical Society, which serves as a forum for scientists, educators and engineers interested in the fundamentals, applications, disasters and safety of electrostatics, etc. In recent years, new techniques, applications and fundamental theories on electrostatics have developed considerably. ICAES-7, held in Dalian, China, from 17-19 September 2012, aimed to provide a forum for all scholars to report the newest developments in electrostatics, to probe the questions that scholars faced and to discuss fresh ideas related to electrostatics. ICAES-7 was co-organized and hosted by Dalian University of Technology, and was sponsored by the Ministry of Education of China, the National Natural Science Foundation of China, Dalian University of Technology, Nanjing Suman Electronics Co. Ltd (Suman, China), Shekonic (Yangzhou Shuanghong, China) Electric/Mechanical Co. Ltd, and Suzhou TA&A Ultra Clean Technology Co. Ltd. (China). On behalf of the organizing committee of ICAES-7, I express my great appreciation for their support of the conference. Over 160 scholars and engineers from many countries including Croatia, The Czech Republic, D.P.R. Korea, Germany, Japan, Malaysia, Poland, Russia, the United States of America, China attended ICAES-7, and the conference collected and selected 149 papers for publication. The subjects of those papers cover the fundamentals of electrostatics, electrostatic disaster and safety, and electrostatic application (e.g. precipitation, pollutant control, biological treatment, mixture separation and food processing, etc). I cordially thank all authors and attendees for their support, and my appreciation is also given to the conference honorary chair, the organizing committee and advisory committee, and the conference secretaries for their hard work. ICAES-7 is dedicated to the memory of Professor Jen-Shih Chang (professor emeritus in the Faculty of Engineering, McMaster University, Canada), Haitian Scholar of Dalian University of Technology (China), who passed away on 27 February 2011. Professor Chang was active in research fields including the applications of electrostatics, electromagnetic hydrodynamics, plasma environmental pollution control technologies, etc and he contributed much to the development of these fields. Professor Chang was the visiting professor at some Key Universities in China and was the friend of Chinese scholars engaged in electrostatics. Professor Chang was also active in joining and supporting the previous ICAES. We will cherish the memory of Professor Jen-Shih Chang forever. Professor Jie Li Proceedings Editor Dalian, September 2012 Conference photograph

  9. Soldier Perceptions of the Rapid Decision Trainer

    DTIC Science & Technology

    2005-05-01

    utility. "* Integrated 3D spatialized sound, supporting SCORM Integration the most common sound formats including Wav and Midi . A major objective of this...34low" and "very low" ratings in a similar manner for the lowest ratings categories. Pre-LFX Questionnaire Overall training value of the RDT. Lieutenants...on school computers and has issues are similar to ActiveX, however applets issued the RDT on CD-ROM to each IOBC student installed on the client

  10. Malware Memory Analysis of the IVYL Linux Rootkit: Investigating a Publicly Available Linux Rootkit Using the Volatility Memory Analysis Framework

    DTIC Science & Technology

    2015-04-01

    report is to examine how a computer forensic investigator/incident handler, without specialised computer memory or software reverse engineering skills ...The skills amassed by incident handlers and investigators alike while using Volatility to examine Windows memory images will be of some help...bin/pulseaudio --start --log-target=syslog 1362 1000 1000 nautilus 1366 1000 1000 /usr/lib/pulseaudio/pulse/gconf- helper 1370 1000 1000 nm-applet

  11. SOCR Motion Charts: An Efficient, Open-Source, Interactive and Dynamic Applet for Visualizing Longitudinal Multivariate Data

    PubMed Central

    Al-Aziz, Jameel; Christou, Nicolas; Dinov, Ivo D.

    2011-01-01

    The amount, complexity and provenance of data have dramatically increased in the past five years. Visualization of observed and simulated data is a critical component of any social, environmental, biomedical or scientific quest. Dynamic, exploratory and interactive visualization of multivariate data, without preprocessing by dimensionality reduction, remains a nearly insurmountable challenge. The Statistics Online Computational Resource (www.SOCR.ucla.edu) provides portable online aids for probability and statistics education, technology-based instruction and statistical computing. We have developed a new Java-based infrastructure, SOCR Motion Charts, for discovery-based exploratory analysis of multivariate data. This interactive data visualization tool enables the visualization of high-dimensional longitudinal data. SOCR Motion Charts allows mapping of ordinal, nominal and quantitative variables onto time, 2D axes, size, colors, glyphs and appearance characteristics, which facilitates the interactive display of multidimensional data. We validated this new visualization paradigm using several publicly available multivariate datasets including Ice-Thickness, Housing Prices, Consumer Price Index, and California Ozone Data. SOCR Motion Charts is designed using object-oriented programming, implemented as a Java Web-applet and is available to the entire community on the web at www.socr.ucla.edu/SOCR_MotionCharts. It can be used as an instructional tool for rendering and interrogating high-dimensional data in the classroom, as well as a research tool for exploratory data analysis. PMID:21479108

  12. Proton Electrostatic Analyzer.

    DTIC Science & Technology

    1983-02-01

    Detector Assembly ......................................... 11 2.2 Analyzer (Energy Selector) Assembly............................ 12 2.3 Collimator...Spectrometer assembly ........................................ 13 2.2 Base plate .................................................. 14 - ~ 2.3 Detector ... sensitive vehicle systems. Space objects undergo differential charging due to variations in physical properties among their surface regions. The rate and

  13. Carbon Nanotube/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    NASA Technical Reports Server (NTRS)

    Smith, J. G., Jr.; Watson, K. A.; Thompson, C. M.; Connell, J. W.

    2002-01-01

    Low solar absorptivity, space environmentally stable polymeric materials possessing sufficient electrical conductivity for electrostatic charge dissipation (ESD) are of interest for potential applications on spacecraft as thin film membranes on antennas, solar sails, large lightweight space optics, and second surface mirrors. One method of imparting electrical conductivity while maintaining low solar absorptivity is through the use of single wall carbon nanotubes (SWNTs). However, SWNTs are difficult to disperse. Several preparative methods were employed to disperse SWNTs into the polymer matrix. Several examples possessed electrical conductivity sufficient for ESD. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  14. On the influence that the ground electrode diameter has in the propulsion efficiency of an asymmetric capacitor in nitrogen gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martins, Alexandre A.; Pinheiro, Mario J.

    In this work, the propulsion force developed in an asymmetric capacitor will be calculated for three different diameters of the ground electrode. The used ion source is a small diameter wire, which generates a positive corona discharge in nitrogen gas directed to the ground electrode. By applying the fluid dynamic and electrostatic theories, all hydrodynamic and electrostatic forces that act on the considered geometries will be computed in an attempt to provide a physical insight on the force mechanism that acts on the asymmetrical capacitors, and also to understand how to increase the efficiency of propulsion.

  15. Strategies for Controlled Placement of Nanoscale Building Blocks

    PubMed Central

    2007-01-01

    The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others. PMID:21794185

  16. Microgravity

    NASA Image and Video Library

    1998-09-30

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (such as the deuterium arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  17. Microgravity

    NASA Image and Video Library

    1998-09-30

    Optical prots ring the Electrostatic Levitator (ESL) vacuum chamber to admit light from the heating laser (the beam passes through the window at left), poisitioning lasers (one port is at center), and lamps (arc lamp at right), and to allow diagnostic instruments to view the sample. The ESL uses static electricity to suspend an object (about 2-3 mm in diameter) inside a vacuum chamber while a laser heats the sample until it melts. This lets scientists record a wide range of physical properties without the sample contacting the container or any instruments, conditions that would alter the readings. The Electrostatic Levitator is one of several tools used in NASA's microgravity materials science program.

  18. In situ Investigation of Magnetism in Metastable Phases of Levitated Fe83 B17 During Solidification

    NASA Astrophysics Data System (ADS)

    Quirinale, D. G.; Messina, D.; Rustan, G. E.; Kreyssig, A.; Prozorov, R.; Goldman, A. I.

    2017-11-01

    In situ measurements of structure, density, and magnetization on samples of Fe83 B17 using an electrostatic levitation furnace allow us to identify and correlate the magnetic and structural transitions in this system during its complex solidification process. In particular, we identify magnetic ordering in the metastable Fe23 B6 /fcc Fe coherently grown structures and primitive tetragonal Fe3 B metastable phase in addition to characterizing the equilibrium Fe2 B phase. Our measurements demonstrate that the incorporation of a tunnel-diode oscillator circuit within an electrostatic levitation furnace enables investigations of the physical properties of high-temperature metastable structures.

  19. Reviews Book: How to Teach Quantum Physics to Your Dog Equipment: LEGO Renewable Energy Add-on Set 9688 Book: The Rough Guide to the Future Book: Seven Tales of the Pendulum Equipment: Genecon DUE Equipment: Manual Electrostatic Generator Book: Quantify! A Crash Course in Smart Thinking Book: Fads and Fallacies in the Name of Science Book: The Strangest Man Book: The Ultimate Quotable Einstein Web Watch

    NASA Astrophysics Data System (ADS)

    2011-05-01

    WE RECOMMEND How to Teach Quantum Physics to Your Dog The key theories of quantum physics explained using canine behaviour LEGO Renewable Energy Add-on Set 9688 Set builds a hand generator, solar station, wind turbine, hydro turbine, boat pulley, solar vehicle, and much more The Rough Guide to the Future Book explores the insights that science can contribute to predicting the future Seven Tales of the Pendulum This book deals with the significance of the pendulum in science, history and culture Genecon DUE Equipment demonstrates generation of electricity Fads and Fallacies in the Name of Science Book investigates the nature of human gullibility The Strangest Man: The Hidden Life of Paul Dirac, Quantum Genius Biography charts the life of Paul Dirac WORTH A LOOK Manual Electrostatic Generator Kit acts as a miniature Van de Graaff Quantify! A Crash Course in Smart Thinking Various topics illustrate the application of basic physical laws The Ultimate Quotable Einstein A compilation of Einstein's famous quotes WEB WATCH Open Source Physics simulations are worth a look

  20. The pKa Cooperative: A Collaborative Effort to Advance Structure-Based Calculations of pKa values and Electrostatic Effects in Proteins

    PubMed Central

    Nielsen, Jens E.; Gunner, M. R.; Bertrand García-Moreno, E.

    2012-01-01

    The pKa Cooperative http://www.pkacoop.org was organized to advance development of accurate and useful computational methods for structure-based calculation of pKa values and electrostatic energy in proteins. The Cooperative brings together laboratories with expertise and interest in theoretical, computational and experimental studies of protein electrostatics. To improve structure-based energy calculations it is necessary to better understand the physical character and molecular determinants of electrostatic effects. The Cooperative thus intends to foment experimental research into fundamental aspects of proteins that depend on electrostatic interactions. It will maintain a depository for experimental data useful for critical assessment of methods for structure-based electrostatics calculations. To help guide the development of computational methods the Cooperative will organize blind prediction exercises. As a first step, computational laboratories were invited to reproduce an unpublished set of experimental pKa values of acidic and basic residues introduced in the interior of staphylococcal nuclease by site-directed mutagenesis. The pKa values of these groups are unique and challenging to simulate owing to the large magnitude of their shifts relative to normal pKa values in water. Many computational methods were tested in this 1st Blind Prediction Challenge and critical assessment exercise. A workshop was organized in the Telluride Science Research Center to assess objectively the performance of many computational methods tested on this one extensive dataset. This volume of PROTEINS: Structure, Function, and Bioinformatics introduces the pKa Cooperative, presents reports submitted by participants in the blind prediction challenge, and highlights some of the problems in structure-based calculations identified during this exercise. PMID:22002877

  1. Experimental Study of Lunar Dust Transportation due to Electrostatic Forces and Micro-meteorite Impacts

    NASA Astrophysics Data System (ADS)

    Orger, N. C.; Toyoda, K.; Cho, M.

    2017-12-01

    Lunar dust particles can be transported via several physical mechanisms above the surface, and the electrostatic dust lofting was suspected to be the responsible mechanism for the high-altitude lunar horizon glow above the terminator region. Most of the recent studies have shown that contact forces acting on the dust grains of sub-micrometer and micrometer sizes are much larger than the electrostatic forces resulting from the ambient plasma conditions; however, the electrostatic forces are strong enough to accelerate the lunar dust grains to high altitudes once the dust particles are separated from the surface by an initial mechanism. In this study our purpose is to investigate if the dust particles can be transported under the electrostatic forces after they are released from the surface by the micrometeorite impacts. It is expected to be the most of the dust grains will be launched from the elastic deformation regions, and the contact forces will be canceled after they are moved tens of nanometers. For the experiments, silica particles are used in a cavity with 2 cm diameter and 5 mm depth on the graphite plates. First, the dust particles are baked under an infrared lamp to release the absorbed atmospheric particles in the vacuum chamber. Second, the electron beam source emits electrons with 100 - 200 eV energies, and a Faraday cup measures the electron current in the vacuum chamber. Third, a laser beam is used to simulate micro-meteorite impacts, and the results are monitored with a high speed camera mostly focusing on the elastic deformation region. Therefore, this study investigates how the impacts modify the dust transportation as an initial mechanism for electrostatic dust lofting to high altitudes.

  2. The Effects of Computer-Assisted Instruction Designed According to 7E Model of Constructivist Learning on Physics Student Teachers' Achievement, Concept Learning, Self-Efficacy Perceptions and Attitudes

    ERIC Educational Resources Information Center

    Kocakaya, Serhat; Gonen, Selahattin

    2010-01-01

    The purpose of this study was to investigate the effects of a Computer-Assisted Instruction designed according to 7E model of constructivist learning(CAI7E) related to "electrostatic'' topic on physics student teachers' cognitive development, misconceptions, self-efficacy perceptions and attitudes. The study was conducted in 2006-2007…

  3. Plasma Waves and Structures Associated with Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ergun, R.; Wilder, F. D.; Ahmadi, N.; Goodrich, K.; Holmes, J.; Newman, D. L.; Burch, J.; Torbert, R. B.; Le Contel, O.; Giles, B. L.; Strangeway, R. J.; Lindqvist, P. A.

    2017-12-01

    Space observations of magnetic reconnection indicate a variety of plasma wave modes and structures in the vicinity of the electron diffusion region including electromagnetic whistler waves, quasi-electrostatic whistler waves, electron phase-space holes, double layers, electron acoustic waves, lower hybrid waves, upper hybrid waves, and electromagnetic drift waves. These waves and plasma structures are seen in magnetotail reconnection and subsolar reconnection. The MMS mission has the unique ability to unequivocally identify the electron diffusion region and distinguish waves in the EDR from those in the extended separatrix. Such a distinction is critical since some of the observed waves may be involved the reconnection process while others may result from subsequent or associated events and do not directly influence the reconnection process. For example, some of the largest amplitude (> 100 mV/m) electrostatic waves have been identified as electron acoustic waves and upper hybrid waves. These waves are likely generated as a result of reconnection and do not appear to strongly influence the reconnection process. On the other hand, large-amplitude electrostatic whistler waves have been observed very near the X-line, are seen in simulations, and may be participating in reconnection physics. Electromagnetic drift waves almost always appear in cases of asymmetric reconnection and may lead to a more turbulent process. We summarize wave observations by MMS and discuss the relative their possible role in magnetic reconnection physics, concentrating on recent magnetotail observations.

  4. Recovery of ferrous and nonferrous metal from ASR by physical separation

    NASA Astrophysics Data System (ADS)

    Kim, Min-gyu; Han, Oh-hyung; Park, Chul-hyun

    2017-04-01

    A recycle ratio of waste automobiles in Korea is low, compared to that of the advanced countries. Especially in its recycle, separation of automotive shredder residue (ASR), the residual fraction of approximate 25% obtained after dismantling and shredding from waste car, is needed. However ASR is cannot be effectively separated due to its heterogeneous materials and coated or laminated complexes and then is largely deposited in land-fill sites as waste. In this study ASR was separated by a series of physical processing operations such as comminution, air classification and magnetic separation and electrostatic separations. In particular it focuses on estimating the optimal conditions of magnetic and electrostatic separations for improving the separation efficiency of valuable ferrous and non-ferrous metals such as iron (Fe), aluminum, copper and etc. In magnetic separation, 91.5% Fe grade and 91% recovery could be obtained at conditions of particle size under 10mm and magnetic intensity of 400 gauss. In corona electrostatic separation for recovering nonferrous metals, a grade of 79.2% and recovery of 90.7% could be successfully achieved under conditions of -6mm particle size, 50kV electrode potential, 35rpm drum speed and 20 degree splitter position, respectively. Acknowledgments This study was supported by the R&D Center for Valuable Recycling (Global-Top R&BD Program) of the Ministry of Environment. (Project No. 2016002250001)

  5. FUNDAMENTAL PROCESSES INVOLVED IN SO2 CAPTURE BY CALCIUM-BASED ADSORBENTS

    EPA Science Inventory

    The paper discusses the fundamental processes in sulfur dioxide (SO2) capture by calcium-based adsorbents for upper furnace, duct, and electrostatic precipitator (ESP) reaction sites. It examines the reactions in light of controlling mechanisms, effect of sorbent physical propert...

  6. Electrostatic design of protein-protein association rates.

    PubMed

    Schreiber, Gideon; Shaul, Yossi; Gottschalk, Kay E

    2006-01-01

    De novo design and redesign of proteins and protein complexes have made promising progress in recent years. Here, we give an overview of how to use available computer-based tools to design proteins to bind faster and tighter to their protein-complex partner by electrostatic optimization between the two proteins. Electrostatic optimization is possible because of the simple relation between the Debye-Huckel energy of interaction between a pair of proteins and their rate of association. This can be used for rapid, structure-based calculations of the electrostatic attraction between the two proteins in the complex. Using these principles, we developed two computer programs that predict the change in k(on), and as such the affinity, on introducing charged mutations. The two programs have a web interface that is available at www.weizmann.ac.il/home/bcges/PARE.html and http://bip.weizmann.ac.il/hypare. When mutations leading to charge optimization are introduced outside the physical binding site, the rate of dissociation is unchanged and therefore the change in k(on) parallels that of the affinity. This design method was evaluated on a number of different protein complexes resulting in binding rates and affinities of hundreds of fold faster and tighter compared to wild type. In this chapter, we demonstrate the procedure and go step by step over the methodology of using these programs for protein-association design. Finally, the way to easily implement the principle of electrostatic design for any protein complex of choice is shown.

  7. A fast multipole method combined with a reaction field for long-range electrostatics in molecular dynamics simulations: The effects of truncation on the properties of water

    NASA Astrophysics Data System (ADS)

    Mathias, Gerald; Egwolf, Bernhard; Nonella, Marco; Tavan, Paul

    2003-06-01

    We present a combination of the structure adapted multipole method with a reaction field (RF) correction for the efficient evaluation of electrostatic interactions in molecular dynamics simulations under periodic boundary conditions. The algorithm switches from an explicit electrostatics evaluation to a continuum description at the maximal distance that is consistent with the minimum image convention, and, thus, avoids the use of a periodic electrostatic potential. A physically motivated switching function enables charge clusters interacting with a given charge to smoothly move into the solvent continuum by passing through the spherical dielectric boundary surrounding this charge. This transition is complete as soon as the cluster has reached the so-called truncation radius Rc. The algorithm is used to examine the dependence of thermodynamic properties and correlation functions on Rc in the three point transferable intermolecular potential water model. Our test simulations on pure liquid water used either the RF correction or a straight cutoff and values of Rc ranging from 14 Å to 40 Å. In the RF setting, the thermodynamic properties and the correlation functions show convergence for Rc increasing towards 40 Å. In the straight cutoff case no such convergence is found. Here, in particular, the dipole-dipole correlation functions become completely artificial. The RF description of the long-range electrostatics is verified by comparison with the results of a particle-mesh Ewald simulation at identical conditions.

  8. The “Electrostatic-Switch” Mechanism: Monte Carlo Study of MARCKS-Membrane Interaction

    PubMed Central

    Tzlil, Shelly; Murray, Diana; Ben-Shaul, Avinoam

    2008-01-01

    The binding of the myristoylated alanine-rich C kinase substrate (MARCKS) to mixed, fluid, phospholipid membranes is modeled with a recently developed Monte Carlo simulation scheme. The central domain of MARCKS is both basic (ζ = +13) and hydrophobic (five Phe residues), and is flanked with two long chains, one ending with the myristoylated N-terminus. This natively unfolded protein is modeled as a flexible chain of “beads” representing the amino acid residues. The membranes contain neutral (ζ = 0), monovalent (ζ = −1), and tetravalent (ζ = −4) lipids, all of which are laterally mobile. MARCKS-membrane interaction is modeled by Debye-Hückel electrostatic potentials and semiempirical hydrophobic energies. In agreement with experiment, we find that membrane binding is mediated by electrostatic attraction of the basic domain to acidic lipids and membrane penetration of its hydrophobic moieties. The binding is opposed by configurational entropy losses and electrostatic membrane repulsion of the two long chains, and by lipid demixing upon adsorption. The simulations provide a physical model for how membrane-adsorbed MARCKS attracts several PIP2 lipids (ζ = −4) to its vicinity, and how phosphorylation of the central domain (ζ = +13 to ζ = +7) triggers an “electrostatic switch”, which weakens both the membrane interaction and PIP2 sequestration. This scheme captures the essence of “discreteness of charge” at membrane surfaces and can examine the formation of membrane-mediated multicomponent macromolecular complexes that function in many cellular processes. PMID:18502797

  9. New technology for separating resin powder and fiberglass powder from fiberglass-resin powder of waste printed circuit boards.

    PubMed

    Li, Jia; Gao, Bei; Xu, Zhenming

    2014-05-06

    New recycling technologies have been developed lately to enhance the value of the fiberglass powder-resin powder fraction (FRP) from waste printed circuit boards. The definite aim of the present paper is to present some novel methods that use the image forces for the separation of the resin powder and fiberglass powder generated from FRP during the corona electrostatic separating process. The particle shape charactization and particle trajectory simulation were performed on samples of mixed non-metallic particles. The simulation results pointed out that particles of resin powder and particles of fiberglass powder had different detach trajectories at the conditions of the same size and certain device parameters. An experiment carried out using a corona electrostatic separator validated the possibility of sorting these particles based on the differences in their shape characteristics. The differences in the physical properties of the different types of particles provided the technical basis for the development of electrostatic separation technologies for the recycling industry.

  10. Self-consistent Langmuir waves in resonantly driven thermal plasmas

    NASA Astrophysics Data System (ADS)

    Lindberg, R. R.; Charman, A. E.; Wurtele, J. S.

    2007-12-01

    The longitudinal dynamics of a resonantly driven Langmuir wave are analyzed in the limit that the growth of the electrostatic wave is slow compared to the bounce frequency. Using simple physical arguments, the nonlinear distribution function is shown to be nearly invariant in the canonical particle action, provided both a spatially uniform term and higher-order spatial harmonics are included along with the fundamental in the longitudinal electric field. Requirements of self-consistency with the electrostatic potential yield the basic properties of the nonlinear distribution function, including a frequency shift that agrees closely with driven, electrostatic particle simulations over a range of temperatures. This extends earlier work on nonlinear Langmuir waves by Morales and O'Neil [G. J. Morales and T. M. O'Neil, Phys. Rev. Lett. 28, 417 (1972)] and Dewar [R. L. Dewar, Phys. Plasmas 15, 712 (1972)], and could form the basis of a reduced kinetic treatment of plasma dynamics for accelerator applications or Raman backscatter.

  11. Effects of non-Gaussian Brownian motion on direct force optical tweezers measurements of the electrostatic forces between pairs of colloidal particles.

    PubMed

    Raudsepp, Allan; A K Williams, Martin; B Hall, Simon

    2016-07-01

    Measurements of the electrostatic force with separation between a fixed and an optically trapped colloidal particle are examined with experiment, simulation and analytical calculation. Non-Gaussian Brownian motion is observed in the position of the optically trapped particle when particles are close and traps weak. As a consequence of this motion, a simple least squares parameterization of direct force measurements, in which force is inferred from the displacement of an optically trapped particle as separation is gradually decreased, contains forces generated by the rectification of thermal fluctuations in addition to those originating directly from the electrostatic interaction between the particles. Thus, when particles are close and traps weak, simply fitting the measured direct force measurement to DLVO theory extracts parameters with modified meanings when compared to the original formulation. In such cases, however, physically meaningful DLVO parameters can be recovered by comparing the measured non-Gaussian statistics to those predicted by solutions to Smoluchowski's equation for diffusion in a potential.

  12. Characterization of Dielectric Nanocomposites with Electrostatic Force Microscopy

    PubMed Central

    El Khoury, D.; Fedorenko, V.; Castellon, J.; Laurentie, J.-C.; Fréchette, M.; Ramonda, M.

    2017-01-01

    Nanocomposites physical properties unexplainable by general mixture laws are usually supposed to be related to interphases, highly present at the nanoscale. The intrinsic dielectric constant of the interphase and its volume need to be considered in the prediction of the effective permittivity of nanodielectrics, for example. The electrostatic force microscope (EFM) constitutes a promising technique to probe interphases locally. This work reports theoretical finite-elements simulations and experimental measurements to interpret EFM signals in front of nanocomposites with the aim of detecting and characterizing interphases. According to simulations, we designed and synthesized appropriate samples to verify experimentally the ability of EFM to characterize a nanoshell covering nanoparticles, for different shell thicknesses. This type of samples constitutes a simplified electrostatic model of a nanodielectric. Experiments were conducted using either DC or AC-EFM polarization, with force gradient detection method. A comparison between our numerical model and experimental results was performed in order to validate our predictions for general EFM-interphase interactions. PMID:29109811

  13. Colorado Upper-Division Electrostatics diagnostic: A conceptual assessment for the junior level

    NASA Astrophysics Data System (ADS)

    Chasteen, Stephanie V.; Pepper, Rachel E.; Caballero, Marcos D.; Pollock, Steven J.; Perkins, Katherine K.

    2012-12-01

    As part of an effort to systematically improve our junior-level E&M I course, we have developed a tool to assess student conceptual learning of electrostatics at the upper division. Together with a group of physics faculty, we established a list of learning goals for the course that, with results from student observations and interviews, served as a guide in creating the Colorado Upper-Division Electrostatics (CUE) assessment. The result is a 17-question open-ended post-test diagnostic (with an optional 7-question pretest) and an accompanying grading rubric. We present measures of the validation and reliability of the instrument and grading rubric, plus results from 535 students in both standard and interactive-engagement courses across seven institutions as a baseline for the instrument. Overall, we find that the CUE is a valid and reliable measure, and the data herein are intended to be of use to researchers and faculty interested in using the CUE to measure student learning.

  14. Sorption of poly(hexamethylenebiguanide) on cellulose: mechanism of binding and molecular recognition.

    PubMed

    Blackburn, Richard S; Harvey, Anna; Kettle, Lorna L; Payne, John D; Russell, Stephen J

    2006-06-20

    Antimicrobial agents such as poly(hexamethylene biguanide) (PHMB) find application in medical, apparel, and household textile sectors; although it is understood that certain concentrations need to be applied to achieve suitable performance, there has been very little work published concerning the interactions of the polymer and its adsorption mechanism on cellulose. In this paper, such physical chemistry parameters are examined and related to computational chemistry studies. Adsorption isotherms were constructed: at low concentrations, these were typical Langmuir isotherms; at higher concentrations, they were more indicative of Freundlich isotherms, attributed to a combination of electrostatic and hydrogen-bonding forces, which endorsed computational chemistry proposals. At lower concentrations, electrostatic interactions between PHMB and carboxylic acid groups in the cellulose dominate with a contribution to binding through hydrogen bonding; as the concentration of PHMB increases, hydrogen bonding with cellulose becomes increasingly dominant. At high PHMB concentrations, observations of increasing PHMB adsorption are attributed to monolayer aggregation and multilayer stacking of PHMB through electrostatic interactions with counterions and hydrogen bonding of biguanide groups.

  15. From Random Walks to Brownian Motion, from Diffusion to Entropy: Statistical Principles in Introductory Physics

    NASA Astrophysics Data System (ADS)

    Reeves, Mark

    2014-03-01

    Entropy changes underlie the physics that dominates biological interactions. Indeed, introductory biology courses often begin with an exploration of the qualities of water that are important to living systems. However, one idea that is not explicitly addressed in most introductory physics or biology textbooks is dominant contribution of the entropy in driving important biological processes towards equilibrium. From diffusion to cell-membrane formation, to electrostatic binding in protein folding, to the functioning of nerve cells, entropic effects often act to counterbalance deterministic forces such as electrostatic attraction and in so doing, allow for effective molecular signaling. A small group of biology, biophysics and computer science faculty have worked together for the past five years to develop curricular modules (based on SCALEUP pedagogy) that enable students to create models of stochastic and deterministic processes. Our students are first-year engineering and science students in the calculus-based physics course and they are not expected to know biology beyond the high-school level. In our class, they learn to reduce seemingly complex biological processes and structures to be described by tractable models that include deterministic processes and simple probabilistic inference. The students test these models in simulations and in laboratory experiments that are biologically relevant. The students are challenged to bridge the gap between statistical parameterization of their data (mean and standard deviation) and simple model-building by inference. This allows the students to quantitatively describe realistic cellular processes such as diffusion, ionic transport, and ligand-receptor binding. Moreover, the students confront ``random'' forces and traditional forces in problems, simulations, and in laboratory exploration throughout the year-long course as they move from traditional kinematics through thermodynamics to electrostatic interactions. This talk will present a number of these exercises, with particular focus on the hands-on experiments done by the students, and will give examples of the tangible material that our students work with throughout the two-semester sequence of their course on introductory physics with a bio focus. Supported by NSF DUE.

  16. The physics of charge separation preceding lightning strokes in thunderclouds

    NASA Technical Reports Server (NTRS)

    Kyrala, Ali

    1987-01-01

    The physics of charge separation preceding lightning strokes in thunderclouds is presented by three types of arguments: An explanation is given for the aggregation of electrical charges of like sign overcoming Coulomb repulsion by attraction due to exchange interaction. The latter is well known in quantum mechanics from the theories of the nuclear bond and the covalent bond. A classical electrostatic model of charge balls of segregated positive and negative charges in the thundercloud is presented. These charge balls can only be maintained in temporarily stable locations by a containing vortex. Because they will be of different sizes and masses, they will stabilize at different altitudes when drag forces are included with the given electrostatic force. The question of how the charges become concentrated again after lightning discharges is approached by means of the collisional Boltzmann transport equation to explain quasi-periodic recharging. It is shown that solutions cannot be separable in both position and time if they are to represent aggregation.

  17. The KACST Heavy-Ion Electrostatic Storage Ring

    NASA Astrophysics Data System (ADS)

    Almuqhim, A. A.; Alshammari, S. M.; El Ghazaly, M. O. A.; Papash, A. I.; Welsch, C. P.

    2011-10-01

    A novel Electrostatic Storage Ring (ESR) for beams at energies up to 30keV/q is now being constructed at the National Centre for Mathematics and Physics (NCMP), King Abdul-Aziz City for Science and Technology (KACST). The ring is designed to be the core of a highly flexible experimental platform that will combine a large package of complementary beam techniques for atomic and molecular physics and related fields. The lattice design had to cover the different experimental techniques that the ring will be equipped with, such as e.g. Electron-Ion, Laser-Ion, Ion-Ion or Ion-Neutral beams, in both crossed and merged-beam configurations. The development of such an ESR is realized in a staged approach, in which a simple and early-run adaptation of the ring is built first, and then this basic version is upgraded to a higher symmetry of the ultimate version of the ring. Here, we report a general overview of this technical development with a focus on the layout of the first built stage of the ring.

  18. Electrostatic Assist of Liquid Transfer in Printing Processes

    NASA Astrophysics Data System (ADS)

    Huang, Chung-Hsuan; Kumar, Satish

    2016-11-01

    Transfer of liquid from one surface to another plays an important role in many printing processes. Incomplete liquid transfer can produce defects that are detrimental to the operation of printed electronic devices, and one strategy for minimizing these defects is to apply an electric field, a technique known as electrostatic assist (ESA). However, the underlying physical mechanisms of ESA remain a mystery. To better understand these mechanisms, slender-jet models for both perfect dielectric and leaky dielectric Newtonian liquid bridges with moving contact lines are developed. Nonlinear partial differential equations describing the time- and axial-evolution of the bridge radius and interfacial charge are derived, and then solved using finite-element methods. For perfect dielectrics, it is found that application of an electric field enhances transfer of liquid to the more wettable surface. For leaky dielectrics, application of an electric field can augment or oppose the influence of wettability differences, depending on the direction of the electric field and the sign of the interfacial charge. The physical mechanisms underlying these observations will be discussed.

  19. KSC-2013-3908

    NASA Image and Video Library

    2013-11-07

    CAPE CANAVERAL, Fla. -- Dust particles scatter during an experiment for the Electrodynamic Dust Shield for Dust Mitigation project in the Electrostatics and Surface Physics Laboratory in the SwampWorks at NASA's Kennedy Space Center in Florida. The fabricated material is designed to mimic the dust on the lunar surface. The technology works by creating an electric field that propagates out like the ripples on a pond. This could prevent dust accumulation on spacesuits, thermal radiators, solar panels, optical instruments and view ports for future lunar and Mars exploration activities. CAPE CANAVERAL, Fla. -- Preparations are underway to conduct a dust particle experiment for the Electrodynamic Dust Shield for Dust Mitigation project in the Electrostatics and Surface Physics Laboratory in the SwampWorks at NASA's Kennedy Space Center in Florida. The technology works by creating an electric field that propagates out like the ripples on a pond. This could prevent dust accumulation on spacesuits, thermal radiators, solar panels, optical instruments and view ports for future lunar and Mars exploration activities.

  20. Charged particle tracking through electrostatic wire meshes using the finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devlin, L. J.; Karamyshev, O.; Welsch, C. P., E-mail: carsten.welsch@cockcroft.ac.uk

    Wire meshes are used across many disciplines to accelerate and focus charged particles, however, analytical solutions are non-exact and few codes exist which simulate the exact fields around a mesh with physical sizes. A tracking code based in Matlab-Simulink using field maps generated using finite element software has been developed which tracks electrons or ions through electrostatic wire meshes. The fields around such a geometry are presented as an analytical expression using several basic assumptions, however, it is apparent that computational calculations are required to obtain realistic values of electric potential and fields, particularly when multiple wire meshes are deployed.more » The tracking code is flexible in that any quantitatively describable particle distribution can be used for both electrons and ions as well as other benefits such as ease of export to other programs for analysis. The code is made freely available and physical examples are highlighted where this code could be beneficial for different applications.« less

  1. KSC-2013-3907

    NASA Image and Video Library

    2013-11-07

    CAPE CANAVERAL, Fla. -- Dust particles are readied for an experiment for the Electrodynamic Dust Shield for Dust Mitigation project in the Electrostatics and Surface Physics Laboratory in the SwampWorks at NASA's Kennedy Space Center in Florida. The fabricated material is designed to mimic the dust on the lunar surface. The technology works by creating an electric field that propagates out like the ripples on a pond. This could prevent dust accumulation on spacesuits, thermal radiators, solar panels, optical instruments and view ports for future lunar and Mars exploration activities. CAPE CANAVERAL, Fla. -- Preparations are underway to conduct a dust particle experiment for the Electrodynamic Dust Shield for Dust Mitigation project in the Electrostatics and Surface Physics Laboratory in the SwampWorks at NASA's Kennedy Space Center in Florida. The technology works by creating an electric field that propagates out like the ripples on a pond. This could prevent dust accumulation on spacesuits, thermal radiators, solar panels, optical instruments and view ports for future lunar and Mars exploration activities.

  2. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Effect of Phosphate on the Self-Assembly of Peptide EMK16-II

    NASA Astrophysics Data System (ADS)

    Zou, Da-Wei; Tie, Zuo-Xiu; Qin, Meng; Lu, Chun-Mei; Wang, Wei

    2009-08-01

    The ionic-complementary peptide EMK16-II is used to investigate the effects of hydrophobic and electrostatic interactions on the self-assembling process by atomic force microscopy and circular dichroism spectra. It is found that the increase of hydrophobicity of the peptides promotes the aggregation of fibrils in pure water. The effects of phosphate with different concentrations on electrostatic interactions are also investigated. It is found that the self-assembling process is enhanced at a low concentration of phosphate and more ordered fibrillar aggregates are formed. When the concentration of phosphate increases to a certain value (9 mM), only a few fibrils are found to be formed. No fibrils but amorphous aggregates exist when the concentration further increases. A physical interpretation is presented such that one divalent anion can interact with two positively charged residual groups in different peptide molecules like a “bridge" which destroys the ionic-complementary feature and largely inhibits the formation of ordered fibrils.

  3. Clear, Conductive, Transparent, Flexible Space Durable Composite Films for Electrostatic Charge Mitigation

    NASA Technical Reports Server (NTRS)

    Watson, Kent A.; Connell, John W.; Delozier, Donavon M.; Smith, Joseph G., Jr.

    2004-01-01

    Space environmentally durable polymeric films with low color and sufficient electrical conductivity to mitigate electrostatic charge (ESC) build-up have been under investigation as part of a materials development activity. These materials have potential applications on advanced spacecraft, particularly on large, deployable, ultra-light weight Gossamer spacecraft. The approach taken to impart sufficient electrical conductivity into the polymer film while maintaining flexibility is to use single wall carbon nanotubes (SWNTs) as conductive additives. Approaches investigated in our lab involved an in-situ polymerization method, addition of SWNTs to a polymer containing reactive end-groups, and spray coating of polymer surfaces. The work described herein is a summary of the current status of this project. Surface conductivities (measured as surface resistance) in the range sufficient for ESC mitigation were achieved with minimal effects on the physical, thermal, mechanical and optical properties of the films. Additionally, the electrical conductivity was not affected by harsh mechanical manipulation of the films. The chemistry and physical properties of these nanocomposites will be discussed.

  4. Investigation of dust transport on the lunar surface in laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Wang, X.; Horanyi, M.; Robertson, S. H.

    2009-12-01

    There has been much evidence indicating dust levitation and transport on or near the lunar surface. Dust mobilization is likely to be caused by electrostatic forces acting on small lunar dust particles that are charged by UV radiation and solar wind plasma. To learn about the basic physical process, we investigated the dynamics of dust grains on a conducting surface in laboratory plasmas. The first experiment was conducted with a dust pile (JSC-Mars-1) sitting on a negatively biased surface in plasma. The dust pile spread and formed a diffusing dust ring. Dust hopping was confirmed by noticing grains on protruding surfaces. The electrostatic potential distributions measured above the dust pile show an outward pointing electrostatic force and a non-monotonic sheath above the dust pile, indicating a localized upward electrostatic force responsible for lifting dust off the surface. The second experiment was conducted with a dust pile sitting on an electrically floating conducting surface in plasma with an electron beam. Potential measurements show a horizontal electric field at the dust/surface boundary and an enhanced vertical electric field in the sheath above the dust pile when the electron beam current is set to be comparable to the Bohm ion current. Secondary electrons emitted from the surfaces play an important role in this case.

  5. Analytical theory of the space-charge region of lateral p-n junctions in nanofilms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurugubelli, Vijaya Kumar, E-mail: vkgurugubelli@gmail.com; Karmalkar, Shreepad

    There is growing interest in fabricating conventional semiconductor devices in a nanofilm which could be a 3D material with one reduced dimension (e.g., silicon-on-insulator (SOI) film), or single/multiple layers of a 2D material (e.g., MoS{sub 2}), or a two dimensional electron gas/two dimensional hole gas (2DEG/2DHG) layer. Lateral p-n junctions are essential parts of these devices. The space-charge region electrostatics in these nanofilm junctions is strongly affected by the surrounding field, unlike in bulk junctions. Current device physics of nanofilms lacks a simple analytical theory of this 2D electrostatics of lateral p-n junctions. We present such a theory taking intomore » account the film's thickness, permittivity, doping, interface charge, and possibly different ambient permittivities on film's either side. In analogy to the textbook theory of the 1D electrostatics of bulk p-n junctions, our theory yields simple formulas for the depletion width, the extent of space-charge tails beyond this width, and the screening length associated with the space-charge layer in nanofilm junctions; these formulas agree with numerical simulations and measurements. Our theory introduces an electrostatic thickness index to classify nanofilms into sheets, bulk and intermediate sized.« less

  6. Innovative Electrostatic Adhesion Technologies

    NASA Technical Reports Server (NTRS)

    Bryan, Tom; Macleod, Todd; Gagliano, Larry; Williams, Scott; McCoy, Brian

    2015-01-01

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA gripper pad surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and development has demonstrated that EA can function effectively in space, even in the presence of strong ultraviolet radiation, atomic oxygen, and free electrons. We created a test setup in an existing vacuum chamber to simulate low-Earth-orbit conditions. An EA mechanism was fabricated and installed in the chamber, instrumented, operated in a vacuum, and subjected to ultraviolet photons and free electrons generated by an in-chamber multipactor electron emitter. Extensions to EA that can add value include proximity and contact sensing and transverse motion or rotation, both of which could enhance docking or assembly applications. Possible next steps include development of targeted applications for ground investigation or on-orbit subsystem performance demonstrations using low cost access to space such as CubeSats.

  7. Innovative Electrostatic Adhesion Technologies

    NASA Astrophysics Data System (ADS)

    Gagliano, L.; Bryan, T.; Williams, S.; McCoy, B.; MacLeod, T.

    Developing specialized Electro-Static grippers (commercially used in Semiconductor Manufacturing and in package handling) will allow gentle and secure Capture, Soft Docking, and Handling of a wide variety of materials and shapes (such as upper-stages, satellites, arrays, and possibly asteroids) without requiring physical features or cavities for a pincher or probe or using harpoons or nets. Combined with new rigid boom mechanisms or small agile chaser vehicles, flexible, high speed Electro-Static Grippers can enable compliant capture of spinning objects starting from a safe stand-off distance. Electroadhesion (EA) can enable lightweight, ultra-low-power, compliant attachment in space by using an electrostatic force to adhere similar and dissimilar surfaces. A typical EA enabled device is composed of compliant space-rated materials, such as copper-clad polyimide encapsulated by polymers. Attachment is induced by strong electrostatic forces between any substrate material, such as an exterior satellite panel and a compliant EA surface. When alternate positive and negative charges are induced in adjacent planar electrodes in an EA surface, the electric fields set up opposite charges on the substrate and cause an electrostatic adhesion between the electrodes and the induced charges on the substrate. Since the electrodes and the polymer are compliant and can conform to uneven or rough surfaces, the electrodes can remain intimately close to the entire surface, enabling high clamping pressures. Clamping pressures of more than 3 N/cm2 in shear can be achieved on a variety of substrates with ultra-low holding power consumption (measured values are less than 20 microW/Newton weight held). A single EA surface geometry can be used to clamp both dielectric and conductive substrates, with slightly different physical mechanisms. Furthermore EA clamping requires no normal force be placed on the substrate, as conventional docking requires. Internally funded research and development has demonstrated that EA can function effectively in space, even in the presence of strong ultraviolet radiation, atomic oxygen, and free electrons. We created a test setup in an existing vacuum chamber to simulate low-Earth-orbit conditions. An EA mechanism was fabricated and installed in the chamber, instrumented, operated in a vacuum, and subjected to ultraviolet photons and free electrons generated by an in-chamber multipactor electron emitter. Extensions to EA that can add value include proximity and contact sensing and transverse motion or rotation, both of which could enhance docking or assembly applications. Possible next steps include development of targeted applications for ground investigation or on-orbit subsystem performance demonstrations using low cost access to space such as CubeSats.

  8. DIRT: The Dust InfraRed Toolbox

    NASA Astrophysics Data System (ADS)

    Pound, M. W.; Wolfire, M. G.; Mundy, L. G.; Teuben, P. J.; Lord, S.

    We present DIRT, a Java applet geared toward modeling a variety of processes in envelopes of young and evolved stars. Users can automatically and efficiently search grids of pre-calculated models to fit their data. A large set of physical parameters and dust types are included in the model database, which contains over 500,000 models. The computing cluster for the database is described in the accompanying paper by Teuben et al. (2000). A typical user query will return about 50-100 models, which the user can then interactively filter as a function of 8 model parameters (e.g., extinction, size, flux, luminosity). A flexible, multi-dimensional plotter (Figure 1) allows users to view the models, rotate them, tag specific parameters with color or symbol size, and probe individual model points. For any given model, auxiliary plots such as dust grain properties, radial intensity profiles, and the flux as a function of wavelength and beamsize can be viewed. The user can fit observed data to several models simultaneously and see the results of the fit; the best fit is automatically selected for plotting. The URL for this project is http://dustem.astro.umd.edu.

  9. JIP: Java image processing on the Internet

    NASA Astrophysics Data System (ADS)

    Wang, Dongyan; Lin, Bo; Zhang, Jun

    1998-12-01

    In this paper, we present JIP - Java Image Processing on the Internet, a new Internet based application for remote education and software presentation. JIP offers an integrate learning environment on the Internet where remote users not only can share static HTML documents and lectures notes, but also can run and reuse dynamic distributed software components, without having the source code or any extra work of software compilation, installation and configuration. By implementing a platform-independent distributed computational model, local computational resources are consumed instead of the resources on a central server. As an extended Java applet, JIP allows users to selected local image files on their computers or specify any image on the Internet using an URL as input. Multimedia lectures such as streaming video/audio and digital images are integrated into JIP and intelligently associated with specific image processing functions. Watching demonstrations an practicing the functions with user-selected input data dramatically encourages leaning interest, while promoting the understanding of image processing theory. The JIP framework can be easily applied to other subjects in education or software presentation, such as digital signal processing, business, mathematics, physics, or other areas such as employee training and charged software consumption.

  10. Comment on ‘Towards addressing transient learning challenges in undergraduate physics: an example from electrostatics’

    NASA Astrophysics Data System (ADS)

    Kwang-Hua, Chu Rainer

    2016-11-01

    We make some crucial remarks about the recent presentation by Fredlund et al (2015 Eur. J. Phys. 36 055002) considering the tutorial problem raised therein. After working out the velocity of the electron (we also included the role of image charges or induced charges) as it strikes the (conducting) metal sphere, we found the velocity value is already near the relativistic regime. The latter then encounters the open issue; to obtain a classical equation of motion of a point charge for which Yaghjian (2008 Phys. Rev. E 78 046606) has mentioned the following difficulty: the electrostatic energy of formation and thus the electrostatic mass of a point charge is infinite.

  11. In situ Investigation of Magnetism in Metastable Phases of Levitated Fe 83 B 17 During Solidification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quirinale, D. G.; Messina, D.; Rustan, G. E.

    In situ measurements of structure, density, and magnetization on samples of Fe 83 B 17 using an electrostatic levitation furnace allow us to identify and correlate the magnetic and structural transitions in this system during its complex solidification process. In particular, we identify magnetic ordering in the metastable Fe 23 B 6 / fcc Fe coherently grown structures and primitive tetragonal Fe 3 B metastable phase in addition to characterizing the equilibrium Fe 2 B phase. Our measurements demonstrate that the incorporation of a tunnel-diode oscillator circuit within an electrostatic levitation furnace enables investigations of the physical properties of high-temperaturemore » metastable structures.« less

  12. Single-Molecule Studies of Hyaluronic Acid Conformation

    NASA Astrophysics Data System (ADS)

    Innes-Gold, Sarah; Berezney, John; Saleh, Omar

    Hyaluronic acid (HA) is a charged linear polysaccharide abundant in extracellular spaces. Its solution conformation and mechanical properties help define the environment outside of cells, play key roles in cell motility and adhesion processes, and are of interest for the development of HA biomaterials. Intra-chain hydrogen bonds and electrostatic repulsion contribute to HAs physical structure, but the nature of this structure, as well as its dependence on solution electrostatics, are not well-understood. To address this problem, we have investigated HA conformation and mechanical properties under a range of solution conditions systematically designed to affect charge screening or hydrogen bonding. We used magnetic tweezers to apply biological-scale stretching forces to individual HA chains under varying solution conditions.

  13. ESA's tools for internal charging

    NASA Astrophysics Data System (ADS)

    Sorensen, J.; Rodgers, D. J.; Ryden, K. A.; Latham, P. M.; Wrenn, G. L.; Levy, L.; Panabiere, G.

    2000-06-01

    Electrostatic discharges, caused by bulk charging of spacecraft insulating materials, are a major cause of satellite anomalies. A quantitative knowledge of the charge build-up is essential in order to eliminate these problems in the design stage. This is a presentation of ESA's tools to assess whether a given structure is liable to experience electrostatic discharges or not. A study has been made of the physical phenomenon, and an engineering specification has been created to be used to assess a structure for potential discharge problems. The specification has been implemented in a new software DICTAT. The implementation of tests in dedicated facilities is an important part of the specification, and tests have been performed to validate the new tool.

  14. Design of an electrostatic phase shifting device for biological transmission electron microscopy.

    PubMed

    Koeck, Philip J B

    2018-04-01

    I suggest an electrostatic phase plate designed to broaden the contrast transfer function of a transmission electron microscope operated close to Scherzer defocus primarily in the low resolution direction. At higher defocus the low frequency behavior is equal to that close to Scherzer defocus, but CTF-correction becomes necessary to extend image interpretation to higher resolution. One simple realization of the phase plate consists of two ring shaped electrodes symmetrically surrounding the central beam. Since no physical components come into contact with the central beam and charge on the electrodes is controlled by an external voltage supply, problems with uncontrolled charging are expected to be reduced. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Energy decomposition analysis of the interactions in adduct ions of acetophenone and Na+, NH4+ and H+ in the gas phase

    NASA Astrophysics Data System (ADS)

    Sugimura, Natsuhiko; Igarashi, Yoko; Aoyama, Reiko; Shibue, Toshimichi

    2017-09-01

    The physical origins of the interactions in the acetophenone cation adducts [M+Na]+, [M+NH4]+, and [M+H]+ were explored by localized molecular orbital-energy decomposition analysis and density functional theory. The analyses highlighted the differences in the interactions in the three adduct ions. Electrostatic energy was important in [M+Na]+ and there was little change in the acetophenone orbital shape. Both electrostatic and polarization energy were important in [M+NH4]+, and a considerable change in the orbital shape occurred to maximize the strength of the hydrogen bond. Polarization energy was the major attractive force in [M+H]+.

  16. Laser Soap Fountain

    ERIC Educational Resources Information Center

    Foley, Tyler; Pegram, Matthew; Jenkins, Zachary; Hester, Brooke C.; Burris, Jennifer L.

    2015-01-01

    We have developed an eye-catching demonstration that showcases a variety of physics topics from total internal reflection to electrostatics to non-Newtonian fluid dynamics, including the Kaye effect. The essential components of the demonstration include a vertical stream of liquid soap in which a laser pointer is internally reflected, and which…

  17. Web-based health services and clinical decision support.

    PubMed

    Jegelevicius, Darius; Marozas, Vaidotas; Lukosevicius, Arunas; Patasius, Martynas

    2004-01-01

    The purpose of this study was the development of a Web-based e-health service for comprehensive assistance and clinical decision support. The service structure consists of a Web server, a PHP-based Web interface linked to a clinical SQL database, Java applets for interactive manipulation and visualization of signals and a Matlab server linked with signal and data processing algorithms implemented by Matlab programs. The service ensures diagnostic signal- and image analysis-sbased clinical decision support. By using the discussed methodology, a pilot service for pathology specialists for automatic calculation of the proliferation index has been developed. Physicians use a simple Web interface for uploading the pictures under investigation to the server; subsequently a Java applet interface is used for outlining the region of interest and, after processing on the server, the requested proliferation index value is calculated. There is also an "expert corner", where experts can submit their index estimates and comments on particular images, which is especially important for system developers. These expert evaluations are used for optimization and verification of automatic analysis algorithms. Decision support trials have been conducted for ECG and ophthalmology ultrasonic investigations of intraocular tumor differentiation. Data mining algorithms have been applied and decision support trees constructed. These services are under implementation by a Web-based system too. The study has shown that the Web-based structure ensures more effective, flexible and accessible services compared with standalone programs and is very convenient for biomedical engineers and physicians, especially in the development phase.

  18. Ferrocene Containing Copolymers with Improved Electrostatic Dissipation Properties for Advanced Applications

    NASA Technical Reports Server (NTRS)

    Smith, T. M.; Nelson, G. L.

    2005-01-01

    Electrostatic dissipative polymers are used for a variety of functions. Typical methods utilized to transform electrically insulating polymers into either charge dissipative or conductive materials involve incorporating a conductive filler, conductive polymer, oxidizing the surface using plasma, or incorporating surfactants that act as surface wetting agents. Another approach is to synthesize a block copolymer that is expected to result in better electrical properties with minimal impacts to physical, fire, and thermal properties. One such block that can be added into the main chain of polymers is a diol terminated ferrocene oligomer, which is expected to impart electrostatic dissipative properties into the host polymer while concurrently improving the overall fire properties. Previous work with polyurethanes incorporating a ferrocene oligomer into the main chain resulted in much improved fire retardancy. In dealing with electrostatic dissipative materials the important questions are: how easily does the material charge and how quickly can the charge move to ground. One normally describes the materials conductivity, but conductivity only measures the fastest path for an electron not the slowest path. The slowest path is the one of interest, since it is left on the surface and thus can cause discharges. In order to assess ease of charging and decay times corona charge dissipation measurements can accurately assess these properties by introducing a charge on the surface of the material then measuring the surface voltage and the amount of charge deposited. The charge decay curve then will give an indication of a materials electrostatic dissipation properties. Normally, triboelectric testing can be performed, but results vary. Corona charge dissipation results are more repeatable.

  19. An easy-to-build remote laboratory with data transfer using the Internet School Experimental System

    NASA Astrophysics Data System (ADS)

    Schauer, František; Lustig, František; Dvořák, Jiří; Ožvoldová, Miroslava

    2008-07-01

    The present state of information communication technology makes it possible to devise and run computer-based e-laboratories accessible to any user with a connection to the Internet, equipped with very simple technical means and making full use of web services. Thus, the way is open for a new strategy of physics education with strongly global features, based on experiment and experimentation. We name this strategy integrated e-learning, and remote experiments across the Internet are the foundation for this strategy. We present both pedagogical and technical reasoning for the remote experiments and outline a simple system based on a server-client approach, and on web services and Java applets. We give here an outline of the prospective remote laboratory system with data transfer using the Internet School Experimental System (ISES) as hardware and ISES WEB Control kit as software. This approach enables the simple construction of remote experiments without building any hardware and virtually no programming, using a paste and copy approach with typical prebuilt blocks such as a camera view, controls, graphs, displays, etc. We have set up and operate at present seven experiments, running round the clock, with more than 12 000 connections since 2005. The experiments are widely used in practical teaching of both university and secondary level physics. The recording of the detailed steps the experimentor takes during the measurement enables detailed study of the psychological aspects of running the experiments. The system is ready for a network of universities to start covering the basic set of physics experiments. In conclusion we summarize the results achieved and experiences of using remote experiments built on the ISES hardware system.

  20. Kinetic electron and ion instability of the lunar wake simulated at physical mass ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haakonsen, Christian Bernt, E-mail: chaako@mit.edu; Hutchinson, Ian H., E-mail: ihutch@mit.edu; Zhou, Chuteng, E-mail: ctzhou@mit.edu

    2015-03-15

    The solar wind wake behind the moon is studied with 1D electrostatic particle-in-cell (PIC) simulations using a physical ion to electron mass ratio (unlike prior investigations); the simulations also apply more generally to supersonic flow of dense magnetized plasma past non-magnetic objects. A hybrid electrostatic Boltzmann electron treatment is first used to investigate the ion stability in the absence of kinetic electron effects, showing that the ions are two-stream unstable for downstream wake distances (in lunar radii) greater than about three times the solar wind Mach number. Simulations with PIC electrons are then used to show that kinetic electron effectsmore » can lead to disruption of the ion beams at least three times closer to the moon than in the hybrid simulations. This disruption occurs as the result of a novel wake phenomenon: the non-linear growth of electron holes spawned from a narrow dimple in the electron velocity distribution. Most of the holes arising from the dimple are small and quickly leave the wake, approximately following the unperturbed electron phase-space trajectories, but some holes originating near the center of the wake remain and grow large enough to trigger disruption of the ion beams. Non-linear kinetic-electron effects are therefore essential to a comprehensive understanding of the 1D electrostatic stability of such wakes, and possible observational signatures in ARTEMIS data from the lunar wake are discussed.« less

  1. 41 CFR 51-9.304-5 - Reproduction fee schedule.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 1 2010-07-01 2010-07-01 true Reproduction fee schedule... RULES 9.3-Individual Access to Records § 51-9.304-5 Reproduction fee schedule. (a) The fee for... physical characteristics do not permit reproduction by routine electrostatic copying shall be the direct...

  2. 41 CFR 51-9.304-5 - Reproduction fee schedule.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 1 2011-07-01 2009-07-01 true Reproduction fee schedule... RULES 9.3-Individual Access to Records § 51-9.304-5 Reproduction fee schedule. (a) The fee for... physical characteristics do not permit reproduction by routine electrostatic copying shall be the direct...

  3. Assessing Students' Conceptual Knowledge of Electricity and Magnetism

    ERIC Educational Resources Information Center

    McColgan, Michele W.; Finn, Rose A.; Broder, Darren L.; Hassel, George E.

    2017-01-01

    We present the Electricity and Magnetism Conceptual Assessment (EMCA), a new assessment aligned with second-semester introductory physics courses. Topics covered include electrostatics, electric fields, circuits, magnetism, and induction. We have two motives for writing a new assessment. First, we find other assessments such as the Brief…

  4. Laplace Boundary-Value Problem in Paraboloidal Coordinates

    ERIC Educational Resources Information Center

    Duggen, L.; Willatzen, M.; Voon, L. C. Lew Yan

    2012-01-01

    This paper illustrates both a problem in mathematical physics, whereby the method of separation of variables, while applicable, leads to three ordinary differential equations that remain fully coupled via two separation constants and a five-term recurrence relation for series solutions, and an exactly solvable problem in electrostatics, as a…

  5. Validation and Analysis of the Coupled Multiple Response Colorado Upper-Division Electrostatics Diagnostic

    ERIC Educational Resources Information Center

    Wilcox, Bethany R.; Pollock, Steven J.

    2015-01-01

    Standardized conceptual assessment represents a widely used tool for educational researchers interested in student learning within the standard undergraduate physics curriculum. For example, these assessments are often used to measure student learning across educational contexts and instructional strategies. However, to support the large-scale…

  6. Upper-Division Student Difficulties with the Dirac Delta Function

    ERIC Educational Resources Information Center

    Wilcox, Bethany R.; Pollock, Steven J.

    2015-01-01

    The Dirac delta function is a standard mathematical tool that appears repeatedly in the undergraduate physics curriculum in multiple topical areas including electrostatics, and quantum mechanics. While Dirac delta functions are often introduced in order to simplify a problem mathematically, students still struggle to manipulate and interpret them.…

  7. Demystifying Electric Flux and Gauss's Law

    ERIC Educational Resources Information Center

    McManus, Jeff

    2017-01-01

    Many physics students have experienced the difficulty of internalizing concepts in electrostatics. After studying concrete, measurable details in mechanics, they are challenged by abstract ideas such as electric fields, flux, Gauss's law, and electric potential. There are a few well-known hands-on activities that help students get experience with…

  8. DETERMINING THE INFECTIOUS DOSE-50 FOR WEAPONS-GRADE ANTHRAX IN RHESUS MONKEYS USING A BIOLOGICALLY-BASED MODEL

    EPA Science Inventory

    One of the significant discoveries following the bioterrorist episodes beginning in October 2001 was that a modified form of Bacillus anthracis (Ames strain) was the causative agent. Physical alteration of the inoculum had occurred; the electrostatic charge had been removed and t...

  9. Electrostatic Levitation Technique for Investigations of Physical Properties of Liquid States

    NASA Astrophysics Data System (ADS)

    Okada, Junpei; Ishikawa, Takehiko; Paradis, Paul-Francois; Yoda, Shinichi

    Electrostatic levitator (ESL) levitates a charged sample in a high vacuum using computer con-trolled electrostatic fields [1]. It can levitate materials such as metals, semiconductors, and some insulators. Sample temperature can be varied over a wide range, and samples can be deeply undercooled. We have been engaged in the research and development of the electro-static levitation technique with the aim of performing levitation dissolution experiments in the International Space Station (ISS). Our device for the electrostatic levitation dissolution test has been developed for experiments on the ISS. To this end, the system is designed to be compact and portable so that it can be launched by rocket and used for experiments in the limited space on the ISS. Accordingly, the device can be installed not just on the ISS or our research laboratory, but also in various external sites. We devised a plan to install the electrostatic levitation system in a site other than the ISS to study atomic structure and electron structure of ultra-high-temperature liquids. We mounted our system on third generation synchrotron radiation facility "SPring-8" in Japan, to investigate the atomic and electron structures of high-temperature liquids. The SPring-8 is an experimental facility that allows use of the most powerful X-rays in the world. We conducted a variety of experiments on ultra-high-temperature liquids using SPring-8. The X-ray is ideal for exploring atomic structure and electron structure. Since the X-ray is an electromagnetic wave, it interacts with electrons. In addition, most electrons gather around the atomic nucleus. By close analysis of the scattered x-rays, we can determine its atomic structure and electron structure in detail. In this talk, we introduce an x-ray Compton scattering and x-ray Raman scattering measurements on liquid aluminum and silicon. [1] W. -K. Rhim, et al, Rev. Sci. Instrum. (1985) 56 307.

  10. Investigation of electrostatic waves in the ion cyclotron range of frequencies in L-4 and ACT-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Masayuki

    Electrostatic waves in the ion cyclotron range of frequencies (ICRF) were studied in the Princeton L-4 and ACT-1 devices for approximately ten years, from 1975 to 1985. The investigation began in the L-4 linear device, looking for the parametric excitation of electrostatic ion cyclotron waves in multi-ion-species plasmas. In addition, this investigation verified multi-ion-species effects on the electrostatic ion cyclotron wave dispersion religion including the ion-ion hybrid resonance. Finite-Larmor-radius modification of the wave dispersion relation was also observed, even for ion temperatures of T{sub i} {approx} 1/40 eV. Taking advantage of the relatively high field and long device length ofmore » L-4, the existence of the cold electrostatic ion cyclotron wave (CES ICW) was verified. With the arrival of the ACT-1 toroidal device, finite-Larmor-radius (FLR) waves were studied in a relatively collisionless warm-ion hydrogen plasma. Detailed investigations of ion Bernstein waves (IBW) included the verification of mode-transformation in their launching, their wave propagation characteristics, their absorption, and the resulting ion heating. This basic physics activity played a crucial role in developing a new reactor heating concept termed ion Bernstein wave heating. Experimental research in the lower hybrid frequency range confirmed the existence of FLR effects near the lower hybrid resonance, predicted by Stix in 1965. In a neon plasma with a carefully placed phased wave exciter, the neutralized ion Bernstein wave was observed for the first time. Using a fastwave ICRF antenna, two parasitic excitation processes for IBW -- parametric instability and density-gradient-driven excitation -- were also discovered. In the concluding section of this paper, a possible application of externally launched electrostatic waves is suggested for helium ash removal from fusion reactor plasmas.« less

  11. Investigation of electrostatic waves in the ion cyclotron range of frequencies in L-4 and ACT-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, Masayuki.

    Electrostatic waves in the ion cyclotron range of frequencies (ICRF) were studied in the Princeton L-4 and ACT-1 devices for approximately ten years, from 1975 to 1985. The investigation began in the L-4 linear device, looking for the parametric excitation of electrostatic ion cyclotron waves in multi-ion-species plasmas. In addition, this investigation verified multi-ion-species effects on the electrostatic ion cyclotron wave dispersion religion including the ion-ion hybrid resonance. Finite-Larmor-radius modification of the wave dispersion relation was also observed, even for ion temperatures of T[sub i] [approx] 1/40 eV. Taking advantage of the relatively high field and long device length ofmore » L-4, the existence of the cold electrostatic ion cyclotron wave (CES ICW) was verified. With the arrival of the ACT-1 toroidal device, finite-Larmor-radius (FLR) waves were studied in a relatively collisionless warm-ion hydrogen plasma. Detailed investigations of ion Bernstein waves (IBW) included the verification of mode-transformation in their launching, their wave propagation characteristics, their absorption, and the resulting ion heating. This basic physics activity played a crucial role in developing a new reactor heating concept termed ion Bernstein wave heating. Experimental research in the lower hybrid frequency range confirmed the existence of FLR effects near the lower hybrid resonance, predicted by Stix in 1965. In a neon plasma with a carefully placed phased wave exciter, the neutralized ion Bernstein wave was observed for the first time. Using a fastwave ICRF antenna, two parasitic excitation processes for IBW -- parametric instability and density-gradient-driven excitation -- were also discovered. In the concluding section of this paper, a possible application of externally launched electrostatic waves is suggested for helium ash removal from fusion reactor plasmas.« less

  12. Macroion solutions in the cell model studied by field theory and Monte Carlo simulations.

    PubMed

    Lue, Leo; Linse, Per

    2011-12-14

    Aqueous solutions of charged spherical macroions with variable dielectric permittivity and their associated counterions are examined within the cell model using a field theory and Monte Carlo simulations. The field theory is based on separation of fields into short- and long-wavelength terms, which are subjected to different statistical-mechanical treatments. The simulations were performed by using a new, accurate, and fast algorithm for numerical evaluation of the electrostatic polarization interaction. The field theory provides counterion distributions outside a macroion in good agreement with the simulation results over the full range from weak to strong electrostatic coupling. A low-dielectric macroion leads to a displacement of the counterions away from the macroion. © 2011 American Institute of Physics

  13. Onsager's symmetry relation and the residual parallel Reynolds stress in a magnetized plasma with electrostatic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuo, Yang, E-mail: yangzustc@gmail.com; Wang, Shaojie

    2014-09-15

    The physics of the residual parallel Reynolds stress in a rotating plasma with electrostatic turbulence is explicitly identified by using the transport formulation of the gyrokinetic turbulence. It is clarified that the residual stress consists of four terms, among which are the cross terms due to the pressure gradient and the temperature gradient and the terms related to the turbulent acceleration impulse and the turbulent heating rate. The last two terms are identified for the first time, and are shown to cause analogous residual term in the heat flux. Meanwhile, the transport matrix reveals diffusion in the phase space. Themore » transport matrix is demonstrated to satisfy the Onsager's symmetry relation.« less

  14. Using VizieR/Aladin to Measure Neglected Double Stars

    NASA Astrophysics Data System (ADS)

    Harshaw, Richard

    2013-04-01

    The VizierR service of the Centres de Donnes Astronomiques de Strasbourg (France) offers amateur astronomers a treasure trove of resources, including access to the most current version of the Washington Double Star Catalog (WDS) and links to tens of thousands of digitized sky survey plates via the Aladin Java applet. These plates allow the amateur to make accurate measurements of position angle and separation for many neglected pairs that fall within reasonable tolerances for the use of Aladin. This paper presents 428 measurements of 251 neglected pairs from the WDS.

  15. Data display and analysis with μView

    NASA Astrophysics Data System (ADS)

    Tucakov, Ivan; Cosman, Jacob; Brewer, Jess H.

    2006-03-01

    The μView utility is a new Java applet version of the old db program, extended to include direct access to MUD data files, from which it can construct a variety of spectrum types, including complex and RRF-transformed spectra. By using graphics features built into all modern Web browsers, it provides full graphical display capabilities consistently across all platforms. It has the full command-line functionality of db as well as a more intuitive graphical user interface and extensive documentation, and can read and write db, csv and XML format files.

  16. Ondex Web: web-based visualization and exploration of heterogeneous biological networks.

    PubMed

    Taubert, Jan; Hassani-Pak, Keywan; Castells-Brooke, Nathalie; Rawlings, Christopher J

    2014-04-01

    Ondex Web is a new web-based implementation of the network visualization and exploration tools from the Ondex data integration platform. New features such as context-sensitive menus and annotation tools provide users with intuitive ways to explore and manipulate the appearance of heterogeneous biological networks. Ondex Web is open source, written in Java and can be easily embedded into Web sites as an applet. Ondex Web supports loading data from a variety of network formats, such as XGMML, NWB, Pajek and OXL. http://ondex.rothamsted.ac.uk/OndexWeb.

  17. Experimental history: swinging pendulums and melting shellac.

    PubMed

    Palmieri, Paolo

    2009-09-01

    Four hundred years ago Galileo Galilei aimed a telescope at the sky. He revolutionized astronomy. Equally revolutionary were his experiments in physics. Unlike his astronomical observations the experiments remain difficult to understand and replicate even today. Two centuries after Galileo, Augustin Coulomb demonstrated experimentally the law of electrostatic force. It has never been successfully replicated. Yet both Galileo and Coulomb were exquisite experimentalists. The fact is that revolutionary experiments in physics are never finished. They are open for investigation for generations to come.

  18. Performance evaluation of the zero-multipole summation method in modern molecular dynamics software.

    PubMed

    Sakuraba, Shun; Fukuda, Ikuo

    2018-05-04

    The zero-multiple summation method (ZMM) is a cutoff-based method for calculating electrostatic interactions in molecular dynamics simulations, utilizing an electrostatic neutralization principle as a physical basis. Since the accuracies of the ZMM have been revealed to be sufficient in previous studies, it is highly desirable to clarify its practical performance. In this paper, the performance of the ZMM is compared with that of the smooth particle mesh Ewald method (SPME), where the both methods are implemented in molecular dynamics software package GROMACS. Extensive performance comparisons against a highly optimized, parameter-tuned SPME implementation are performed for various-sized water systems and two protein-water systems. We analyze in detail the dependence of the performance on the potential parameters and the number of CPU cores. Even though the ZMM uses a larger cutoff distance than the SPME does, the performance of the ZMM is comparable to or better than that of the SPME. This is because the ZMM does not require a time-consuming electrostatic convolution and because the ZMM gains short neighbor-list distances due to the smooth damping feature of the pairwise potential function near the cutoff length. We found, in particular, that the ZMM with quadrupole or octupole cancellation and no damping factor is an excellent candidate for the fast calculation of electrostatic interactions. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  19. [Bacteriophage λ: electrostatic properties of the genome and its elements].

    PubMed

    Krutinina, G G; Krutinin, E A; Kamzolova, S G; Osypov, A A

    2015-01-01

    Bacteriophage λ is a classical model object in molecular biology, but little is still known on the physical properties of its DNA and regulatory elements. A study was made of the electrostatic properties of phage λ DNA and regulatory elements. A global electrostatic potential distribution along the phage genome was found to be nonuniform with main regulatory elements being located in a limited region with a high potential. The RNA polymerase binding frequency on the linearized phage chromosome directly correlates with its local potential. Strong promoters of the phage and its host Escherichia coli have distinct electrostatic upstream elements, which differ in nucleotide sequence. Attachment and recombination sites of phage λ and its host have a higher potential, which possibly facilitates their recognition by integrase. Phage λ and host Rho-independent terminators have a symmetrical M-shaped potential profile, which only slightly depends on the annotated terminator palindrome length, and occur in a region with a substantially higher potential, which may cause polymerase retention, facilitating the formation of a terminator hairpin in RNA. It was concluded that virtually all elements of phage λ genome have potential distribution specifics, which are related to their structural properties and may play a role in their biological function. The global potential distribution along the phage genome reflects the architecture of the regulation of its transcription and integration in the host genome.

  20. Entropic and Electrostatic Effects on the Folding Free Energy of a Surface-Attached Biomolecule: An Experimental and Theoretical Study

    PubMed Central

    Watkins, Herschel M.; Vallée-Bélisle, Alexis; Ricci, Francesco; Makarov, Dmitrii E.; Plaxco, Kevin W.

    2012-01-01

    Surface-tethered biomolecules play key roles in many biological processes and biotechnologies. However, while the physical consequences of such surface attachment have seen significant theoretical study, to date this issue has seen relatively little experimental investigation. In response we present here a quantitative experimental and theoretical study of the extent to which attachment to a charged –but otherwise apparently inert– surface alters the folding free energy of a simple biomolecule. Specifically, we have measured the folding free energy of a DNA stem loop both in solution and when site-specifically attached to a negatively charged, hydroxyl-alkane-coated gold surface. We find that, whereas surface attachment is destabilizing at low ionic strength it becomes stabilizing at ionic strengths above ~130 mM. This behavior presumably reflects two competing mechanisms: excluded volume effects, which stabilize the folded conformation by reducing the entropy of the unfolded state, and electrostatics, which, at lower ionic strengths, destabilizes the more compact folded state via repulsion from the negatively charged surface. To test this hypothesis we have employed existing theories of the electrostatics of surface-bound polyelectrolytes and the entropy of surface-bound polymers to model both effects. Despite lacking any fitted parameters, these theoretical models quantitatively fit our experimental results, suggesting that, for this system, current knowledge of both surface electrostatics and excluded volume effects is reasonably complete and accurate. PMID:22239220

  1. Vlasov Simulation of Electrostatic Solitary Structures in Multi-Component Plasmas

    NASA Technical Reports Server (NTRS)

    Umeda, Takayuki; Ashour-Abdalla, Maha; Pickett, Jolene S.; Goldstein, Melvyn L.

    2012-01-01

    Electrostatic solitary structures have been observed in the Earth's magnetosheath by the Cluster spacecraft. Recent theoretical work has suggested that these solitary structures are modeled by electron acoustic solitary waves existing in a four-component plasma system consisting of core electrons, two counter-streaming electron beams, and one species of background ions. In this paper, the excitation of electron acoustic waves and the formation of solitary structures are studied by means of a one-dimensional electrostatic Vlasov simulation. The present result first shows that either electron acoustic solitary waves with negative potential or electron phase-space holes with positive potential are excited in four-component plasma systems. However, these electrostatic solitary structures have longer duration times and higher wave amplitudes than the solitary structures observed in the magnetosheath. The result indicates that a high-speed and small free energy source may be needed as a fifth component. An additional simulation of a five-component plasma consisting of a stable four-component plasma and a weak electron beam shows the generation of small and fast electron phase-space holes by the bump-on-tail instability. The physical properties of the small and fast electron phase-space holes are very similar to those obtained by the previous theoretical analysis. The amplitude and duration time of solitary structures in the simulation are also in agreement with the Cluster observation.

  2. The sliding-helix voltage sensor

    PubMed Central

    Peyser, Alexander; Nonner, Wolfgang

    2012-01-01

    The voltage sensor (VS) domain of voltage-gated ion channels underlies electrical excitability of living cells. We simulate a mesoscale model of the VS domain to determine the functional consequences of some of its physical elements. Our mesoscale model is based on VS charges, linear dielectrics and whole-body motion, applied to an S4 ‘sliding helix’. The electrostatics under voltage-clamped boundary conditions are solved consistently using a boundary element method. Based on electrostatic configurational energy, statistical-mechanical expectations of the experimentally observable relation between displaced charge and membrane voltage are predicted. Consequences of the model are investigated for variations of: S4 configuration (α- and 310-helical), countercharge alignment with S4 charges, protein polarizability, geometry of the gating canal, screening of S4 charges by the baths, and fixed charges located at the bath interfaces. The sliding helix VS domain has an inherent electrostatic stability in the explored parameter space: countercharges present in the region of weak dielectric always retain an equivalent S4 charge in that region but allow sliding movements displacing 3 to 4 e0. That movement is sensitive to small energy variations (< 2kT) along the path dependent on a number of electrostatic parameters tested in our simulations. These simulations show how the slope of the relation between displaced charge and voltage could be tuned in a channel. PMID:22907204

  3. A model for chorus associated electrostatic bursts

    NASA Technical Reports Server (NTRS)

    Grabbe, C. L.

    1984-01-01

    The linear theory of the generation of electrostatic bursts of noise by electrons trapped in chorus wave packets is developed for a finite temperature electron beam and a Maxwellian elecron and ion background. The growth rates determined qualitatively in good agreement with those obtained by previous authors from a more idealized model. Two connected instability mechanisms seem to be occurring: a beam plasma (electron-ion two-stream) instability commonly associated with intensification of the chorus power levels, and a transitional or borderline resistive medium instability commonly associated with chorus hooks. The physical reasons for the two mechanisms is discussed. In the second case electron beams are difficult to identify in the particle data. An expression is obtained for the maximum growth rate in terms of the ratios of the beam and electron thermal velocities to the beam velocity, and of the beam density to plasma density. It is anticipated that this may allow the observed peak in the electrostatic noise spectrum to be used as a diagnostic for the beam characteristics. Previously announced in STAR as N84-12832

  4. Electrostatically defined isolated domain wall in integer quantum Hall regime as precursor for reconfigurable Majorana network

    NASA Astrophysics Data System (ADS)

    Kazakov, Alexander; Simion, George; Kolkovsky, Valery; Adamus, Zbigniew; Karczewski, Grzegorz; Wojtowicz, Tomasz; Lyanda-Geller, Yuli; Rokhinson, Leonid

    Development of a two-dimensional systems with reconfigurable one-dimensional topological superconductor channels became primary direction in experimental branch of Majorana physics. Such system would allow to probe non-Abelian properties of Majorana quasiparticles and realize the ultimate goal of Majorana research - topological qubit for topologically protected quantum computations. In order to create and exchange Majorana quasiparticles desired system may be spin-full, but fermion doubling should be lifted. These requirements may be fulfilled in domain walls (DW) which are formed during quantum Hall ferromagnet (QHF) transition when two Landau levels with opposite spin polarization become degenerate. We developed a system based on CdMnTe quantum well with engineered placement of Mn ions where exchange interaction and, consequently, QHF transition can be controlled by electrostatic gating. Using electrostatic control of exchange we create conductive channels of DWs which, unlike conventional edge channels, are not chiral and should contain both spin polarizations. We will present results on the formation of isolated DWs of various widths and discuss their transport properties. Department of Defence Office of Naval research Award N000141410339.

  5. An analytical particle mover for the charge- and energy-conserving, nonlinearly implicit, electrostatic particle-in-cell algorithm

    NASA Astrophysics Data System (ADS)

    Chen, G.; Chacón, L.

    2013-08-01

    We propose a 1D analytical particle mover for the recent charge- and energy-conserving electrostatic particle-in-cell (PIC) algorithm in Ref. [G. Chen, L. Chacón, D.C. Barnes, An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm, Journal of Computational Physics 230 (2011) 7018-7036]. The approach computes particle orbits exactly for a given piece-wise linear electric field. The resulting PIC algorithm maintains the exact charge and energy conservation properties of the original algorithm, but with improved performance (both in efficiency and robustness against the number of particles and timestep). We demonstrate the advantageous properties of the scheme with a challenging multiscale numerical test case, the ion acoustic wave. Using the analytical mover as a reference, we demonstrate that the choice of error estimator in the Crank-Nicolson mover has significant impact on the overall performance of the implicit PIC algorithm. The generalization of the approach to the multi-dimensional case is outlined, based on a novel and simple charge conserving interpolation scheme.

  6. Energy gain calculations in spherical IEC fusion systems using the BAFP code

    NASA Astrophysics Data System (ADS)

    Chacón, L.; Miley, G. H.; Barnes, D. C.; Knoll, D. A.

    1999-11-01

    The spherical IEC fusion concept takes advantage of the potential well generated by an inner spherical cathode (physical or virtual), biased negatively to several kV with respect to a concentric outer grounded boundary, to focus ions inwards and form a dense central core where fusion may occur. However, defocusing of the ion beams due to ion-ion collisions may prevent a satisfactory energy balance in the system. This research concentrates of spherically symmetric virtual cathode IEC devices, in which a spherical cloud of electrons, confined á la Penning trap, creates the ion-confining electrostatic well. A bounce-averaged Fokker-Planck model has been constructed to analyze the ion physics in ideal conditions (i.e., spherically uniform electrostatic well, no collisional interaction between ions and electrons, single ion species).(L. Chacon, D. C. Barnes, D. A. Knoll, 40^th) Annual Meeting of the APS Division of Plasma Physics, New Orleans, LA, Nov. 1998 Results will reproduce the phenomenology of previously published( W. Nevins, Phys. Plasmas), 2(10), 3804-3819 (1995) theoretical limits, and will show that, under some conditions, steady-state solutions with relatively high gains and small ion recirculation powers exist for the bounce-averaged Fokker-Planck transport equation. Variations in gain with parameter space will be presented.

  7. Unit: Charge, Inspection Pack, National Trial Print. Reference No. 214.

    ERIC Educational Resources Information Center

    Australian Science Education Project, Toorak, Victoria.

    This physical science unit from the Australian Science Education Project (ASEP) focuses on electrostatics. After students complete the activities contained in the core of the unit, they have six optional activities to pursue: How do charged objects behave? (conductors, insulators, charged objects); What is blue? (formation of copper ion); Putting…

  8. Indirect Charged Particle Detection: Concepts and a Classroom Demonstration

    ERIC Educational Resources Information Center

    Childs, Nicholas B.; Horányi, Mihály; Collette, Andrew

    2013-01-01

    We describe the principles of macroscopic charged particle detection in the laboratory and their connections to concepts taught in the physics classroom. Electrostatic dust accelerator systems, capable of launching charged dust grains at hypervelocities (1-100 km/s), are a critical tool for space exploration. Dust grains in space typically have…

  9. Overview of Particle Production Facilities Available in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kugler, Andrej

    2007-11-26

    A brief overview of particle production facilities available in Czech Republic is given. In particular are described the facilities at the Nuclear Physics Institute in Rez near Prague, namely: an isochronous cyclotron, an electrostatic accelerator tandetron and a microtron. An outline of the main research projects carried out is included.

  10. The KACST Heavy-Ion Electrostatic Storage Ring

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almuqhim, A. A.; Alshammari, S. M.; El Ghazaly, M. O. A.

    2011-10-27

    A novel Electrostatic Storage Ring (ESR) for beams at energies up to 30keV/q is now being constructed at the National Centre for Mathematics and Physics (NCMP), King Abdul-Aziz City for Science and Technology (KACST). The ring is designed to be the core of a highly flexible experimental platform that will combine a large package of complementary beam techniques for atomic and molecular physics and related fields. The lattice design had to cover the different experimental techniques that the ring will be equipped with, such as e.g. Electron-Ion, Laser-Ion, Ion-Ion or Ion-Neutral beams, in both crossed and merged-beam configurations. The developmentmore » of such an ESR is realized in a staged approach, in which a simple and early-run adaptation of the ring is built first, and then this basic version is upgraded to a higher symmetry of the ultimate version of the ring. Here, we report a general overview of this technical development with a focus on the layout of the first built stage of the ring.« less

  11. Overview of the future upgrade of the INFN-LNS superconducting cyclotron

    NASA Astrophysics Data System (ADS)

    Calabretta, Luciano; Calanna, Alessandra; Cuttone, Giacomo; D'Agostino, Grazia; Rifuggiato, Danilo; Domenico Russo, Antonio

    2017-06-01

    The LNS Superconducting Cyclotron, named “Ciclotrone Superconduttore” (CS), has been in operation for more than 20 years. A wide range of ion species from hydrogen to lead, with energy in the range 10 to 80 AMeV, have been delivered to users. The maximum beam power is limited to 100 W due to the beam dissipation on the electrostatic deflectors. To fulfil the demand of users aiming at studying rare processes in nuclear physics, an upgrade of the cyclotron is necessarily intended to increase the intensity of ion beams with mass lower than 40 a.m.u. up to a power 10 kW. This will be achieved by means of extraction by stripping. This solution needs to replace the cryostat including the superconducting coils. The present capability of the cyclotron will be maintained, i.e. all the ion species allowed by the operating diagram will be available, being extracted by electrostatic extraction. In addition to the high power beams for nuclear physics, it will be possible to produce medical radioisotopes like 211At using an internal target.

  12. Instrumentation and Methodology Development for Mars Mission

    NASA Technical Reports Server (NTRS)

    Chen, Yuan-Liang Albert

    2002-01-01

    The Mars environment comprises a dry, cold and low air pressure atmosphere with low gravity (0.38g) and high resistivity soil. The global dust storms that cover a large portion of Mars were observed often from Earth. This environment provides an idea condition for triboelectric charging. The extremely dry conditions on the Martian surface have raised concerns that electrostatic charge buildup will not be dissipated easily. If triboelectrically generated charge cannot be dissipated or avoided, then dust will accumulate on charged surfaces and electrostatic discharge may cause hazards for future exploration missions. The low surface temperature on Mars helps to prolong the charge decay on the dust particles and soil. To better understand the physics of Martian charged dust particles is essential to future Mars missions. We research and design two sensors, velocity/charge sensor and PZT momentum sensors, to detect the velocity distribution, charge distribution and mass distribution of Martian charged dust particles. These sensors are fabricated at NASA Kenney Space Center, Electromagnetic Physics Testbed. The sensors will be tested and calibrated for simulated Mars atmosphere condition with JSC MARS-1 Martian Regolith simulant in this NASA laboratory.

  13. An ionic-chemical-mechanical model for muscle contraction.

    PubMed

    Manning, Gerald S

    2016-12-01

    The dynamic process underlying muscle contraction is the parallel sliding of thin actin filaments along an immobile thick myosin fiber powered by oar-like movements of protruding myosin cross bridges (myosin heads). The free energy for functioning of the myosin nanomotor comes from the hydrolysis of ATP bound to the myosin heads. The unit step of translational movement is based on a mechanical-chemical cycle involving ATP binding to myosin, hydrolysis of the bound ATP with ultimate release of the hydrolysis products, stress-generating conformational changes in the myosin cross bridge, and relief of built-up stress in the myosin power stroke. The cycle is regulated by a transition between weak and strong actin-myosin binding affinities. The dissociation of the weakly bound complex by addition of salt indicates the electrostatic basis for the weak affinity, while structural studies demonstrate that electrostatic interactions among negatively charged amino acid residues of actin and positively charged residues of myosin are involved in the strong binding interface. We therefore conjecture that intermediate states of increasing actin-myosin engagement during the weak-to-strong binding transition also involve electrostatic interactions. Methods of polymer solution physics have shown that the thin actin filament can be regarded in some of its aspects as a net negatively charged polyelectrolyte. Here we employ polyelectrolyte theory to suggest how actin-myosin electrostatic interactions might be of significance in the intermediate stages of binding, ensuring an engaged power stroke of the myosin motor that transmits force to the actin filament, and preventing the motor from getting stuck in a metastable pre-power stroke state. We provide electrostatic force estimates that are in the pN range known to operate in the cycle. © 2016 Wiley Periodicals, Inc.

  14. CFD-ACE+: a CAD system for simulation and modeling of MEMS

    NASA Astrophysics Data System (ADS)

    Stout, Phillip J.; Yang, H. Q.; Dionne, Paul; Leonard, Andy; Tan, Zhiqiang; Przekwas, Andrzej J.; Krishnan, Anantha

    1999-03-01

    Computer aided design (CAD) systems are a key to designing and manufacturing MEMS with higher performance/reliability, reduced costs, shorter prototyping cycles and improved time- to-market. One such system is CFD-ACE+MEMS, a modeling and simulation environment for MEMS which includes grid generation, data visualization, graphical problem setup, and coupled fluidic, thermal, mechanical, electrostatic, and magnetic physical models. The fluid model is a 3D multi- block, structured/unstructured/hybrid, pressure-based, implicit Navier-Stokes code with capabilities for multi- component diffusion, multi-species transport, multi-step gas phase chemical reactions, surface reactions, and multi-media conjugate heat transfer. The thermal model solves the total enthalpy from of the energy equation. The energy equation includes unsteady, convective, conductive, species energy, viscous dissipation, work, and radiation terms. The electrostatic model solves Poisson's equation. Both the finite volume method and the boundary element method (BEM) are available for solving Poisson's equation. The BEM method is useful for unbounded problems. The magnetic model solves for the vector magnetic potential from Maxwell's equations including eddy currents but neglecting displacement currents. The mechanical model is a finite element stress/deformation solver which has been coupled to the flow, heat, electrostatic, and magnetic calculations to study flow, thermal electrostatically, and magnetically included deformations of structures. The mechanical or structural model can accommodate elastic and plastic materials, can handle large non-linear displacements, and can model isotropic and anisotropic materials. The thermal- mechanical coupling involves the solution of the steady state Navier equation with thermoelastic deformation. The electrostatic-mechanical coupling is a calculation of the pressure force due to surface charge on the mechanical structure. Results of CFD-ACE+MEMS modeling of MEMS such as cantilever beams, accelerometers, and comb drives are discussed.

  15. Mapping cognitive structures of community college students engaged in basic electrostatics laboratories

    NASA Astrophysics Data System (ADS)

    Haggerty, Dennis Charles

    Community college students need to be abstract thinkers in order to be successful in the introductory Physics curriculum. The purpose of this dissertation is to map the abstract thinking of community college Physics students. The laboratory environment was used as a vehicle for the mapping. Three laboratory experiments were encountered. One laboratory was based on the classic Piagetian task, the centripetal motion (CM) problem. The other two laboratories were introductory electrostatic Physics experiments, Resistance (RES) and Capacitance (CAP). The students performed all laboratories using the thinking-aloud technique. The researcher collected their verbal protocols using audiotapes. The audiotaped data was quantified by comparing it to a scoring matrix based on the Piagetian logical operators (Inhelder & Piaget, 1958) for abstract thinking. The students received scores for each laboratory experiment. These scores were compared to a reliable test of intellectual functioning, the Shipley Institute of Living Scale (SILS). Spearman rank correlation coefficients (SRCC) were obtained for SILS versus CM; SILS versus RES; and SILS versus CAP. Statistically significant results were obtained for SILS versus CM and SILS versus RES at the p < 0.05 level. When an outlier to the data was considered and suppressed, the SILS versus CAP was also statistically significant at the p < 0.05 level. The scoring matrix permits a bridge from the qualitative Piagetian level of cognitive development to a quantified, mapped level of cognitive development. The ability to quantify student abstract thinking in Physics education provides a means to adjust an instructional approach. This approach could lead to a proper state of Physics education.

  16. Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balke, Nina; Kalinin, Sergei V.; Jesse, Stephen

    Kelvin probe force microscopy (KPFM) has provided deep insights into the role local electronic, ionic and electrochemical processes play on the global functionality of materials and devices, even down to the atomic scale. Conventional KPFM utilizes heterodyne detection and bias feedback to measure the contact potential difference (CPD) between tip and sample. This measurement paradigm, however, permits only partial recovery of the information encoded in bias- and time-dependent electrostatic interactions between the tip and sample and effectively down-samples the cantilever response to a single measurement of CPD per pixel. This level of detail is insufficient for electroactive materials, devices, ormore » solid-liquid interfaces, where non-linear dielectrics are present or spurious electrostatic events are possible. Here, we simulate and experimentally validate a novel approach for spatially resolved KPFM capable of a full information transfer of the dynamic electric processes occurring between tip and sample. General acquisition mode, or G-Mode, adopts a big data approach utilising high speed detection, compression, and storage of the raw cantilever deflection signal in its entirety at high sampling rates (> 4 MHz), providing a permanent record of the tip trajectory. We develop a range of methodologies for analysing the resultant large multidimensional datasets involving classical, physics-based and information-based approaches. Physics-based analysis of G-Mode KPFM data recovers the parabolic bias dependence of the electrostatic force for each cycle of the excitation voltage, leading to a multidimensional dataset containing spatial and temporal dependence of the CPD and capacitance channels. We use multivariate statistical methods to reduce data volume and separate the complex multidimensional data sets into statistically significant components that can then be mapped onto separate physical mechanisms. Overall, G-Mode KPFM offers a new paradigm to study dynamic electric phenomena in electroactive interfaces as well as offer a promising approach to extend KPFM to solid-liquid interfaces.« less

  17. Full data acquisition in Kelvin Probe Force Microscopy: Mapping dynamic electric phenomena in real space

    DOE PAGES

    Balke, Nina; Kalinin, Sergei V.; Jesse, Stephen; ...

    2016-08-12

    Kelvin probe force microscopy (KPFM) has provided deep insights into the role local electronic, ionic and electrochemical processes play on the global functionality of materials and devices, even down to the atomic scale. Conventional KPFM utilizes heterodyne detection and bias feedback to measure the contact potential difference (CPD) between tip and sample. This measurement paradigm, however, permits only partial recovery of the information encoded in bias- and time-dependent electrostatic interactions between the tip and sample and effectively down-samples the cantilever response to a single measurement of CPD per pixel. This level of detail is insufficient for electroactive materials, devices, ormore » solid-liquid interfaces, where non-linear dielectrics are present or spurious electrostatic events are possible. Here, we simulate and experimentally validate a novel approach for spatially resolved KPFM capable of a full information transfer of the dynamic electric processes occurring between tip and sample. General acquisition mode, or G-Mode, adopts a big data approach utilising high speed detection, compression, and storage of the raw cantilever deflection signal in its entirety at high sampling rates (> 4 MHz), providing a permanent record of the tip trajectory. We develop a range of methodologies for analysing the resultant large multidimensional datasets involving classical, physics-based and information-based approaches. Physics-based analysis of G-Mode KPFM data recovers the parabolic bias dependence of the electrostatic force for each cycle of the excitation voltage, leading to a multidimensional dataset containing spatial and temporal dependence of the CPD and capacitance channels. We use multivariate statistical methods to reduce data volume and separate the complex multidimensional data sets into statistically significant components that can then be mapped onto separate physical mechanisms. Overall, G-Mode KPFM offers a new paradigm to study dynamic electric phenomena in electroactive interfaces as well as offer a promising approach to extend KPFM to solid-liquid interfaces.« less

  18. Water-mediated electron transfer between protein redox centers.

    PubMed

    Migliore, Agostino; Corni, Stefano; Felice, Rosa Di; Molinari, Elisa

    2007-04-12

    Recent experimental and theoretical investigations show that water molecules between or near redox partners can significantly affect their electron-transfer (ET) properties. Here we study the effects of intervening water molecules on the electron self-exchange reaction of azurin (Az), by performing a conformational sampling on the water medium and by using a newly developed ab initio method to calculate transfer integrals between molecular redox sites. We show that the insertion of water molecules at the interface between the copper active sites of Az dimers slightly increases the overall ET rate, while some favorable water conformations can considerably enhance the ET kinetics. These features are traced back to the interplay of two competing factors: the electrostatic interaction between the water and protein subsystems (mainly opposing the ET process for the water arrangements drawn from MD simulations) and the effectiveness of water in mediating ET coupling pathways. Such an interplay provides a physical basis for the found absence of correlation between the electronic couplings derived through ab initio electronic structure calculations and the related quantities obtained through the Empirical Pathways (EP) method. In fact, the latter does not account for electrostatic effects on the transfer integrals. Thus, we conclude that the water-mediated electron tunneling is not controlled by the geometry of a single physical pathway. We discuss the results in terms of the interplay between different ET pathways controlled by the conformational changes of one of the water molecules via its electrostatic influence. Finally, we examine the dynamical effects of the interfacial water and check the validity of the Condon approximation.

  19. Visualization of Documents and Concepts in Neuroinformatics with the 3D-SE Viewer

    PubMed Central

    Naud, Antoine; Usui, Shiro; Ueda, Naonori; Taniguchi, Tatsuki

    2007-01-01

    A new interactive visualization tool is proposed for mining text data from various fields of neuroscience. Applications to several text datasets are presented to demonstrate the capability of the proposed interactive tool to visualize complex relationships between pairs of lexical entities (with some semantic contents) such as terms, keywords, posters, or papers' abstracts. Implemented as a Java applet, this tool is based on the spherical embedding (SE) algorithm, which was designed for the visualization of bipartite graphs. Items such as words and documents are linked on the basis of occurrence relationships, which can be represented in a bipartite graph. These items are visualized by embedding the vertices of the bipartite graph on spheres in a three-dimensional (3-D) space. The main advantage of the proposed visualization tool is that 3-D layouts can convey more information than planar or linear displays of items or graphs. Different kinds of information extracted from texts, such as keywords, indexing terms, or topics are visualized, allowing interactive browsing of various fields of research featured by keywords, topics, or research teams. A typical use of the 3D-SE viewer is quick browsing of topics displayed on a sphere, then selecting one or several item(s) displays links to related terms on another sphere representing, e.g., documents or abstracts, and provides direct online access to the document source in a database, such as the Visiome Platform or the SfN Annual Meeting. Developed as a Java applet, it operates as a tool on top of existing resources. PMID:18974802

  20. Visualization of Documents and Concepts in Neuroinformatics with the 3D-SE Viewer.

    PubMed

    Naud, Antoine; Usui, Shiro; Ueda, Naonori; Taniguchi, Tatsuki

    2007-01-01

    A new interactive visualization tool is proposed for mining text data from various fields of neuroscience. Applications to several text datasets are presented to demonstrate the capability of the proposed interactive tool to visualize complex relationships between pairs of lexical entities (with some semantic contents) such as terms, keywords, posters, or papers' abstracts. Implemented as a Java applet, this tool is based on the spherical embedding (SE) algorithm, which was designed for the visualization of bipartite graphs. Items such as words and documents are linked on the basis of occurrence relationships, which can be represented in a bipartite graph. These items are visualized by embedding the vertices of the bipartite graph on spheres in a three-dimensional (3-D) space. The main advantage of the proposed visualization tool is that 3-D layouts can convey more information than planar or linear displays of items or graphs. Different kinds of information extracted from texts, such as keywords, indexing terms, or topics are visualized, allowing interactive browsing of various fields of research featured by keywords, topics, or research teams. A typical use of the 3D-SE viewer is quick browsing of topics displayed on a sphere, then selecting one or several item(s) displays links to related terms on another sphere representing, e.g., documents or abstracts, and provides direct online access to the document source in a database, such as the Visiome Platform or the SfN Annual Meeting. Developed as a Java applet, it operates as a tool on top of existing resources.

  1. A computer tool for a minimax criterion in binary response and heteroscedastic simple linear regression models.

    PubMed

    Casero-Alonso, V; López-Fidalgo, J; Torsney, B

    2017-01-01

    Binary response models are used in many real applications. For these models the Fisher information matrix (FIM) is proportional to the FIM of a weighted simple linear regression model. The same is also true when the weight function has a finite integral. Thus, optimal designs for one binary model are also optimal for the corresponding weighted linear regression model. The main objective of this paper is to provide a tool for the construction of MV-optimal designs, minimizing the maximum of the variances of the estimates, for a general design space. MV-optimality is a potentially difficult criterion because of its nondifferentiability at equal variance designs. A methodology for obtaining MV-optimal designs where the design space is a compact interval [a, b] will be given for several standard weight functions. The methodology will allow us to build a user-friendly computer tool based on Mathematica to compute MV-optimal designs. Some illustrative examples will show a representation of MV-optimal designs in the Euclidean plane, taking a and b as the axes. The applet will be explained using two relevant models. In the first one the case of a weighted linear regression model is considered, where the weight function is directly chosen from a typical family. In the second example a binary response model is assumed, where the probability of the outcome is given by a typical probability distribution. Practitioners can use the provided applet to identify the solution and to know the exact support points and design weights. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Web-based Interactive Landform Simulation Model - Grand Canyon

    NASA Astrophysics Data System (ADS)

    Luo, W.; Pelletier, J. D.; Duffin, K.; Ormand, C. J.; Hung, W.; Iverson, E. A.; Shernoff, D.; Zhai, X.; Chowdary, A.

    2013-12-01

    Earth science educators need interactive tools to engage and enable students to better understand how Earth systems work over geologic time scales. The evolution of landforms is ripe for interactive, inquiry-based learning exercises because landforms exist all around us. The Web-based Interactive Landform Simulation Model - Grand Canyon (WILSIM-GC, http://serc.carleton.edu/landform/) is a continuation and upgrade of the simple cellular automata (CA) rule-based model (WILSIM-CA, http://www.niu.edu/landform/) that can be accessed from anywhere with an Internet connection. Major improvements in WILSIM-GC include adopting a physically based model and the latest Java technology. The physically based model is incorporated to illustrate the fluvial processes involved in land-sculpting pertaining to the development and evolution of one of the most famous landforms on Earth: the Grand Canyon. It is hoped that this focus on a famous and specific landscape will attract greater student interest and provide opportunities for students to learn not only how different processes interact to form the landform we observe today, but also how models and data are used together to enhance our understanding of the processes involved. The latest development in Java technology (such as Java OpenGL for access to ubiquitous fast graphics hardware, Trusted Applet for file input and output, and multithreaded ability to take advantage of modern multi-core CPUs) are incorporated into building WILSIM-GC and active, standards-aligned curricula materials guided by educational psychology theory on science learning will be developed to accompany the model. This project is funded NSF-TUES program.

  3. Physics Learning with a Computer Algebra System: Towards a Learning Environment That Promotes Enhanced Problem Representations.

    ERIC Educational Resources Information Center

    Savelsbergh, Elwin R.; Ferguson-Hessler, Monica G. M.; de Jong, Ton

    An approach to teaching problem-solving based on using the computer software Mathematica is applied to the study of electrostatics and is compared with the normal approach to the module. Learning outcomes for both approaches were not significantly different. The experimental course successfully addressed a number of misconceptions. Students in the…

  4. Nonlinear, relativistic Langmuir waves in astrophysical magnetospheres

    NASA Technical Reports Server (NTRS)

    Chian, Abraham C.-L.

    1987-01-01

    Large amplitude, electrostatic plasma waves are relevant to physical processes occurring in the astrophysical magnetospheres wherein charged particles are accelerated to relativistic energies by strong waves emitted by pulsars, quasars, or radio galaxies. The nonlinear, relativistic theory of traveling Langmuir waves in a cold plasma is reviewed. The cases of streaming electron plasma, electronic plasma, and two-streams are discussed.

  5. Understanding Gauss's Law Using Spreadsheets

    ERIC Educational Resources Information Center

    Baird, William H.

    2013-01-01

    Some of the results from the electrostatics portion of introductory physics are particularly difficult for students to understand and/or believe. For students who have yet to take vector calculus, Gauss's law is far from obvious and may seem more difficult than Coulomb's. When these same students are told that the minimum potential…

  6. Magnetic Interactions and the Method of Images: A Wealth of Educational Suggestions

    ERIC Educational Resources Information Center

    Bonanno, A.; Camarca, M.; Sapia, P.

    2011-01-01

    Under some conditions, the method of images (well known in electrostatics) may be implemented in magnetostatic problems too, giving an excellent example of the usefulness of formal analogies in the description of physical systems. In this paper, we develop a quantitative model for the magnetic interactions underlying the so-called Geomag[TM]…

  7. Challenges in Designing Appropriate Scaffolding to Improve Students' Representational Consistency: The Case of a Gauss's Law Problem

    ERIC Educational Resources Information Center

    Maries, Alexandru; Lin, Shih-Yin; Singh, Chandralekha

    2017-01-01

    Prior research suggests that introductory physics students have difficulty with graphing and interpreting graphs. Here, we discuss an investigation of student difficulties in translating between mathematical and graphical representations for a problem in electrostatics and the effect of increasing levels of scaffolding on students'…

  8. WEAPONS-GRADE ANTHRAX: DETERMINING THE ID-50 (INHALATION) IN RHESUS MONKEYS USING A BIOLOGICALLY-BASED MODEL FOR USE IN HUMAN RISK ASSESSMENT

    EPA Science Inventory

    One of the significant discoveries following the bioterrorist attacks of October 2001 was that a modified form of Bacillus anthracis (Ames strain) was the causative agent. Physical alteration of the inoculum had occurred; the electrostatic charge had been altered and the resultin...

  9. KSC-2015-1029

    NASA Image and Video Library

    2015-01-06

    CAPE CANAVERAL, Fla. -- During a visit to NASA's Kennedy Space Center in Florida, NASA Chief Technologist David Miller, right, tours laboratories inside the Swamp Works facility. At left, Dr. Carlos Calle, lead in the Electrostatics and Surface Physics Laboratory, demonstrates a system that uses an electric field wave to move simulated moon dust away from surfaces. Photo credit: NASA/Kim Shiflett

  10. 3Drefine: an interactive web server for efficient protein structure refinement

    PubMed Central

    Bhattacharya, Debswapna; Nowotny, Jackson; Cao, Renzhi; Cheng, Jianlin

    2016-01-01

    3Drefine is an interactive web server for consistent and computationally efficient protein structure refinement with the capability to perform web-based statistical and visual analysis. The 3Drefine refinement protocol utilizes iterative optimization of hydrogen bonding network combined with atomic-level energy minimization on the optimized model using a composite physics and knowledge-based force fields for efficient protein structure refinement. The method has been extensively evaluated on blind CASP experiments as well as on large-scale and diverse benchmark datasets and exhibits consistent improvement over the initial structure in both global and local structural quality measures. The 3Drefine web server allows for convenient protein structure refinement through a text or file input submission, email notification, provided example submission and is freely available without any registration requirement. The server also provides comprehensive analysis of submissions through various energy and statistical feedback and interactive visualization of multiple refined models through the JSmol applet that is equipped with numerous protein model analysis tools. The web server has been extensively tested and used by many users. As a result, the 3Drefine web server conveniently provides a useful tool easily accessible to the community. The 3Drefine web server has been made publicly available at the URL: http://sysbio.rnet.missouri.edu/3Drefine/. PMID:27131371

  11. Understanding the physical basis of the salt dependence of the electrostatic binding free energy of mutated charged ligand-nucleic acid complexes.

    PubMed

    Harris, Robert C; Bredenberg, Johan H; Silalahi, Alexander R J; Boschitsch, Alexander H; Fenley, Marcia O

    2011-06-01

    The predictions of the derivative of the electrostatic binding free energy of a biomolecular complex, ΔG(el), with respect to the logarithm of the 1:1 salt concentration, d(ΔG(el))/d(ln[NaCl]), SK, by the Poisson-Boltzmann equation, PBE, are very similar to those of the simpler Debye-Hückel equation, DHE, because the terms in the PBE's predictions of SK that depend on the details of the dielectric interface are small compared to the contributions from long-range electrostatic interactions. These facts allow one to obtain predictions of SK using a simplified charge model along with the DHE that are highly correlated with both the PBE and experimental binding data. The DHE-based model developed here, which was derived from the generalized Born model, explains the lack of correlation between SK and ΔG(el) in the presence of a dielectric discontinuity, which conflicts with the popular use of this supposed correlation to parse experimental binding free energies into electrostatic and nonelectrostatic components. Moreover, the DHE model also provides a clear justification for the correlations between SK and various empirical quantities, like the number of ion pairs, the ligand charge on the interface, the Coulomb binding free energy, and the product of the charges on the complex's components, but these correlations are weak, questioning their usefulness. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Separation of non-ferrous metals from ASR by corona electrostatic separation

    NASA Astrophysics Data System (ADS)

    Kim, Yang-soo; Choi, Jin-Young; Jeon, Ho-Seok; Han, Oh-Hyung; Park, Chul-Hyun

    2016-04-01

    Automotive shredder residue (ASR), the residual fraction of approximate 25% obtained after dismantling and shredding from waste car, consists of polymers (plastics and rubber), metals (ferrous and non-ferrous), wood, glass and fluff (textile and fiber). ASR cannot be effectively separated due to its heterogeneous materials and coated or laminated complexes and then largely deposited in land-fill sites as waste. Thus reducing a pollutant release before disposal, techniques that can improve the liberation of coated (or laminated) complexes and the recovery of valuable metals from the shredder residue are needed. ASR may be separated by a series of physical processing operations such as comminution, air, magnetic and electrostatic separations. The work deals with the characterization of the shredder residue coming from an industrial plant in korea and focuses on estimating the optimal conditions of corona electrostatic separation for improving the separation efficiency of valuable non-ferrous metals such as aluminum, copper and etc. From the results of test, the maximum separation achievable for non-ferrous metals using a corona electrostatic separation has been shown to be recovery of 92.5% at a grade of 75.8%. The recommended values of the process variables, particle size, electrode potential, drum speed, splitter position and relative humidity are -6mm, 50 kV, 35rpm, 20° and less 40%, respectively. Acknowledgments This study was supported by the R&D Center for Valuable Recycling (Global-Top R&BD Program) of the Ministry of Environment. (Project No. GT-11-C-01-170-0)

  13. Modeling Electrostatic Fields Generated by Internal Charging of Materials in Space Radiation Environments

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.

    2011-01-01

    Internal charging is a risk to spacecraft in energetic electron environments. DICTAT, NU MIT computational codes are the most widely used engineering tools for evaluating internal charging of insulator materials exposed to these environments. Engineering tools are designed for rapid evaluation of ESD threats, but there is a need for more physics based models for investigating the science of materials interactions with energetic electron environments. Current tools are limited by the physics included in the models and ease of user implementation .... additional development work is needed to improve models.

  14. University Physics, Study Guide, Revised Edition

    NASA Astrophysics Data System (ADS)

    Benson, Harris

    1996-01-01

    Partial table of contents: Vectors. One-Dimensional Kinematics. Particle Dynamics II. Work and Energy. Linear Momentum. Systems of Particles. Angular Momentum and Statics. Gravitation. Solids and Fluids. Oscillations. Mechanical Waves. Sound. First Law of Thermodynamics. Kinetic Theory. Entropy and the Second Law of Thermodynamics. Electrostatics. The Electric Field. Gauss's Law. Electric Potential. Current and Resistance. The Magnetic Field. Sources of the Magnetic Field. Electromagnetic Induction. Light: Reflection and Refraction. Lenses and Optical Instruments. Wave Optics I. Special Relativity. Early Quantum Theory. Nuclear Physics. Appendices. Answers to Odd-Numbered Exercises and Problems. Index.

  15. GelScape: a web-based server for interactively annotating, manipulating, comparing and archiving 1D and 2D gel images.

    PubMed

    Young, Nelson; Chang, Zhan; Wishart, David S

    2004-04-12

    GelScape is a web-based tool that permits facile, interactive annotation, comparison, manipulation and storage of protein gel images. It uses Java applet-servlet technology to allow rapid, remote image handling and image processing in a platform-independent manner. It supports many of the features found in commercial, stand-alone gel analysis software including spot annotation, spot integration, gel warping, image resizing, HTML image mapping, image overlaying as well as the storage of gel image and gel annotation data in compliance with Federated Gel Database requirements.

  16. Protein electron transfer: is biology (thermo)dynamic?

    NASA Astrophysics Data System (ADS)

    Matyushov, Dmitry V.

    2015-12-01

    Simple physical mechanisms are behind the flow of energy in all forms of life. Energy comes to living systems through electrons occupying high-energy states, either from food (respiratory chains) or from light (photosynthesis). This energy is transformed into the cross-membrane proton-motive force that eventually drives all biochemistry of the cell. Life’s ability to transfer electrons over large distances with nearly zero loss of free energy is puzzling and has not been accomplished in synthetic systems. The focus of this review is on how this energetic efficiency is realized. General physical mechanisms and interactions that allow proteins to fold into compact water-soluble structures are also responsible for a rugged landscape of energy states and a broad distribution of relaxation times. Specific to a protein as a fluctuating thermal bath is the protein-water interface, which is heterogeneous both dynamically and structurally. The spectrum of interfacial fluctuations is a consequence of protein’s elastic flexibility combined with a high density of surface charges polarizing water dipoles into surface nanodomains. Electrostatics is critical to the protein function and the relevant questions are: (i) What is the spectrum of interfacial electrostatic fluctuations? (ii) Does the interfacial biological water produce electrostatic signatures specific to proteins? (iii) How is protein-mediated chemistry affected by electrostatics? These questions connect the fluctuation spectrum to the dynamical control of chemical reactivity, i.e. the dependence of the activation free energy of the reaction on the dynamics of the bath. Ergodicity is often broken in protein-driven reactions and thermodynamic free energies become irrelevant. Continuous ergodicity breaking in a dense spectrum of relaxation times requires using dynamically restricted ensembles to calculate statistical averages. When applied to the calculation of the rates, this formalism leads to the nonergodic activated kinetics, which extends the transition-state theory to dynamically dispersive media. Releasing the grip of thermodynamics in kinetic calculations through nonergodicity provides the mechanism for an efficient optimization between reaction rates and the spectrum of relaxation times of the protein-water thermal bath. Bath dynamics, it appears, play as important role as the free energy in optimizing biology’s performance.

  17. A guided note taking strategy supports student learning in the large lecture classes

    NASA Astrophysics Data System (ADS)

    Tanamatayarat, J.; Sujarittham, T.; Wuttiprom, S.; Hefer, E.

    2017-09-01

    In higher education, lecturing has been found to be the most prevalent teaching format for large classes. Generally, this format tends not to result in effective learning outcomes. Therefore, to support student learning in these large lecture classes, we developed guided notes containing quotations, blank spaces, pictures, and problems. A guided note taking strategy was selected and has been used in our introductory physics course for many years. In this study, we investigated the results of implementing the guided note taking strategy to promote student learning on electrostatics. The samples were three groups of first-year students from two universities: 163 and 224 science students and 147 engineering students. All of the students were enrolled in the introductory physics course in the second semester. To assess the students’ understanding, we administered pre- and post-tests to the students by using the electrostatics test. The questions were selected from the conceptual survey of electricity and magnetism (CSEM) and some leading physics textbooks. The results of the students’ understanding were analyzed by the average normalized gains (). The value of each group was 0.61, 0.55, and 0.54, respectively. Furthermore, the students’ views on learning with the guided note taking strategy were explored by using the five-point rating scale survey. Most students perceived that the strategy helped support their active learning and engagement in the lectures.

  18. Microscopic models for bridging electrostatics and currents

    NASA Astrophysics Data System (ADS)

    Borghi, L.; DeAmbrosis, A.; Mascheretti, P.

    2007-03-01

    A teaching sequence based on the use of microscopic models to link electrostatic phenomena with direct currents is presented. The sequence, devised for high school students, was designed after initial work carried out with student teachers attending a school of specialization for teaching physics at high school, at the University of Pavia. The results obtained with them are briefly presented, because they directed our steps for the development of the teaching sequence. For both the design of the experiments and their interpretation, we drew inspiration from the original works of Alessandro Volta; in addition, a structural model based on the particular role of electrons as elementary charges both in electrostatic phenomena and in currents was proposed. The teaching sequence starts from experiments on charging objects by rubbing and by induction, and engages students in constructing microscopic models to interpret their observations. By using these models and by closely examining the ideas of tension and capacitance, the students acknowledge that a charging (or discharging) process is due to the motion of electrons that, albeit for short time intervals, represent a current. Finally, they are made to see that the same happens in transients of direct current circuits.

  19. Nonlinear Evolution of Counter-Propagating Whistler Mode Waves Excited by Anisotropic Electrons Within the Equatorial Source Region: 1-D PIC Simulations

    NASA Astrophysics Data System (ADS)

    Chen, Huayue; Gao, Xinliang; Lu, Quanming; Sun, Jicheng; Wang, Shui

    2018-02-01

    Nonlinear physical processes related to whistler mode waves are attracting more and more attention for their significant role in reshaping whistler mode spectra in the Earth's magnetosphere. Using a 1-D particle-in-cell simulation model, we have investigated the nonlinear evolution of parallel counter-propagating whistler mode waves excited by anisotropic electrons within the equatorial source region. In our simulations, after the linear phase of whistler mode instability, the strong electrostatic standing structures along the background magnetic field will be formed, resulting from the coupling between excited counter-propagating whistler mode waves. The wave numbers of electrostatic standing structures are about twice those of whistler mode waves generated by anisotropic hot electrons. Moreover, these electrostatic standing structures can further be coupled with either parallel or antiparallel propagating whistler mode waves to excite high-k modes in this plasma system. Compared with excited whistler mode waves, these high-k modes typically have 3 times wave number, same frequency, and about 2 orders of magnitude smaller amplitude. Our study may provide a fresh view on the evolution of whistler mode waves within their equatorial source regions in the Earth's magnetosphere.

  20. Electrostatic risk to reticles in the nanolithography era

    NASA Astrophysics Data System (ADS)

    Rider, Gavin C.

    2016-04-01

    Reticles can be damaged by electric field as well as by the conductive transfer of charge. As device feature sizes have moved from the micro- into the nano-regime, reticle sensitivity to electric field has been increasing owing to the physics of field induction. Hence, the predominant risk to production reticles today is from exposure to electric field. Measurements of electric field that illustrate the extreme risk faced by today's production reticles are presented. It is shown that some of the standard methods used for prevention of electrostatic discharge in semiconductor manufacturing, being based on controlling static charge and voltage, do not offer reticles adequate protection against electric field. In some cases, they actually increase the risk of reticle damage. Methodology developed specifically to protect reticles against electric field is required, which is described in SEMI Standard E163. Measurements are also presented showing that static dissipative plastic is not an ideal material to use for the construction of reticle pods as it both generates and transmits transient electric field. An appropriate combination of insulating material and metallic shielding is shown to provide the best electrostatic protection for reticles, with fail-safe protection only being possible if the reticle is fully shielded within a metal Faraday cage.

  1. Multilevel Summation of Electrostatic Potentials Using Graphics Processing Units*

    PubMed Central

    Hardy, David J.; Stone, John E.; Schulten, Klaus

    2009-01-01

    Physical and engineering practicalities involved in microprocessor design have resulted in flat performance growth for traditional single-core microprocessors. The urgent need for continuing increases in the performance of scientific applications requires the use of many-core processors and accelerators such as graphics processing units (GPUs). This paper discusses GPU acceleration of the multilevel summation method for computing electrostatic potentials and forces for a system of charged atoms, which is a problem of paramount importance in biomolecular modeling applications. We present and test a new GPU algorithm for the long-range part of the potentials that computes a cutoff pair potential between lattice points, essentially convolving a fixed 3-D lattice of “weights” over all sub-cubes of a much larger lattice. The implementation exploits the different memory subsystems provided on the GPU to stream optimally sized data sets through the multiprocessors. We demonstrate for the full multilevel summation calculation speedups of up to 26 using a single GPU and 46 using multiple GPUs, enabling the computation of a high-resolution map of the electrostatic potential for a system of 1.5 million atoms in under 12 seconds. PMID:20161132

  2. Electrodynamic Dust Shield Demonstrator

    NASA Technical Reports Server (NTRS)

    Stankie, Charles G.

    2013-01-01

    The objective of the project was to design and manufacture a device to demonstrate a new technology developed by NASA's Electrostatics and Surface Physics Laboratory. The technology itself is a system which uses magnetic principles to remove regolith dust from its surface. This project was to create an enclosure that will be used to demonstrate the effectiveness of the invention to The Office of the Chief Technologist. ONE of the most important challenges of space exploration is actually caused by something very small and seemingly insignificant. Dust in space, most notably on the moon and Mars, has caused many unforeseen issues. Dirt and dust on Earth, while a nuisance, can be easily cleaned and kept at bay. However, there is considerably less weathering and erosion in space. As a result, the microscopic particles are extremely rough and abrasive. They are also electrostatically charged, so they cling to everything they make contact with. This was first noted to be a major problem during the Apollo missions. Dust would stick to the spacesuits, and could not be wiped off as predicted. Dust was brought back into the spacecraft, and was even inhaled by astronauts. This is a major health hazard. Atmospheric storms and other events can also cause dust to coat surfaces of spacecraft. This can cause abrasive damage to the craft. The coating can also reduce the effectiveness of thermal insulation and solar panels.' A group of engineers at Kennedy Space Center's Electrostatics and Surface Physics Laboratory have developed a new technology, called the Electrodynamic Dust Shield, to help alleviate these problems. It is based off of the electric curtain concept developed at NASA in 1967. "The EDS is an active dust mitigation technology that uses traveling electric fields to transport electrostatically charged dust particles along surfaces. To generate the traveling electric fields, the EDS consists of a multilayer dielectric coating with an embedded thin electrode grid running a multiphase low frequency AC signal. Electrostatically charged particles, such as those encountered on the moon, Mars, or an asteroid, are carried along by the traveling field due to the action of Coulomb and dielectrophoretic forces."2 The technical details have been described in a separate article. This document details the design and construction process of a small demonstration unit. Once finished, this device will go to the Office of the ChiefTechnologist at NASA headquarters, where it will be used to familiarize the public with the technology. 1 NASA KSC FO Intern, Prototype Development Laboratory, Kennedy Space Center, University of Central Florida Kennedy Space

  3. Turbulent particulate transportation during electrostatic precipitation

    NASA Astrophysics Data System (ADS)

    Choi, Bum Seog

    The generation of secondary flows and turbulence by a corona discharge influences particle transport in an electrostatic precipitator (ESP), and is known to play an important role in the particle collection process. However, it is difficult to characterise theoretically and experimentally the ``turbulent'' fluctuations of the gas flow produced by negative tuft corona. Because of this difficulty, only limited studies have been undertaken previously to understand the structure of corona-induced turbulence and its influence on particle transport in ESPs. The present study is aimed at modelling electrohydrodynamic turbulent flows and particle transport, and at establishing an unproved understanding of them. For a multiply interactive coupling of electrostatics, fluid dynamics and particle dynamics, a strongly coupled system of the governing equations has been solved. The present computer model has considered the most important interaction mechanisms including an ionic wind, corona- induced turbulence and the particle space charge effect. Numerical simulations have been performed for the extensive validation of the numerical and physical models. To account for electrically excited turbulence associated with the inhomogeneous and unsteady characteristics of negative corona discharges, a new turbulence model (called the electrostatic turbulence model) has been developed. In this, an additional production or destruction term is included into the turbulent kinetic energy and dissipation rate equations. It employs a gradient type model of the current density and an electrostatic diffusivity concept. The results of the computation show that the electrostatic turbulence model gives much better agreement with the experimental data than the conventional RNG k-ɛ turbulence model when predicting turbulent gas flows and particle distributions in an ESP. Computations of turbulent particulate two-phase flows for both mono-dispersed and poly-dispersed particles have been performed. The effects of coriona-induced turbulence and the particle space charge on particle transport and the collection process have been investigated. The calculated results for the poly-dispersed particulate flow were compared with those of the mono-dispersed particulate flow, and significant differences were demonstrated. It is established that effective particle- particle interaction occurs, due to the influence of the particle space charge, even for dilute gas-particle flows that occur in ESPs.

  4. Real-Space Multiple-Scattering Theory and Its Applications at Exascale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenbach, Markus; Wang, Yang

    In recent decades, the ab initio methods based on density functional theory (DFT) (Hohenberg and Kohn 1964, Kohn and Sham 1965) have become a widely used tool in computational materials science, which allows theoretical prediction of physical properties of materials from the first principles and theoretical interpretation of new physical phenomena found in experiments. In the framework of DFT, the original problem that requires solving a quantum mechanical equation for a many-electron system is reduced to a one-electron problem that involves an electron moving in an effective field, while the effective field potential is made up of an electrostatic potential,more » also known as Hartree potential, arising from the electronic and ion charge distribution in space and an exchange–correlation potential, which is a function of the electron density and encapsulates the exchange and correlation effects of the many-electron system. Even though the exact functional form of the exchange-correlation potential is formally unknown, a local density approximation (LDA) or a generalized gradient approximation (GGA) is usually applied so that the calculation of the exchange–correlation potential, as well as the exchange–correlation energy, becomes tractable while a required accuracy is retained. Based on DFT, ab initio electronic structure calculations for a material generally involve a self-consistent process that iterates between two computational tasks: (1) solving an one-electron Schrödinger equation, also known as Kohn–Sham equation, to obtain the electron density and, if needed, the magnetic moment density, and (2) solving the Poisson equation to obtain the electrostatic potential corresponding to the electron density and constructing the effective potential by adding the exchange–correlation potential to the electrostatic potential. This self-consistent process proceeds until a convergence criteria is reached.« less

  5. An improved fast multipole method for electrostatic potential calculations in a class of coarse-grained molecular simulations

    NASA Astrophysics Data System (ADS)

    Poursina, Mohammad; Anderson, Kurt S.

    2014-08-01

    This paper presents a novel algorithm to approximate the long-range electrostatic potential field in the Cartesian coordinates applicable to 3D coarse-grained simulations of biopolymers. In such models, coarse-grained clusters are formed via treating groups of atoms as rigid and/or flexible bodies connected together via kinematic joints. Therefore, multibody dynamic techniques are used to form and solve the equations of motion of such coarse-grained systems. In this article, the approximations for the potential fields due to the interaction between a highly negatively/positively charged pseudo-atom and charged particles, as well as the interaction between clusters of charged particles, are presented. These approximations are expressed in terms of physical and geometrical properties of the bodies such as the entire charge, the location of the center of charge, and the pseudo-inertia tensor about the center of charge of the clusters. Further, a novel substructuring scheme is introduced to implement the presented far-field potential evaluations in a binary tree framework as opposed to the existing quadtree and octree strategies of implementing fast multipole method. Using the presented Lagrangian grids, the electrostatic potential is recursively calculated via sweeping two passes: assembly and disassembly. In the assembly pass, adjacent charged bodies are combined together to form new clusters. Then, the potential field of each cluster due to its interaction with faraway resulting clusters is recursively calculated in the disassembly pass. The method is highly compatible with multibody dynamic schemes to model coarse-grained biopolymers. Since the proposed method takes advantage of constant physical and geometrical properties of rigid clusters, improvement in the overall computational cost is observed comparing to the tradition application of fast multipole method.

  6. electromagnetics, eddy current, computer codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gartling, David

    TORO Version 4 is designed for finite element analysis of steady, transient and time-harmonic, multi-dimensional, quasi-static problems in electromagnetics. The code allows simulation of electrostatic fields, steady current flows, magnetostatics and eddy current problems in plane or axisymmetric, two-dimensional geometries. TORO is easily coupled to heat conduction and solid mechanics codes to allow multi-physics simulations to be performed.

  7. Chameleon gravity, electrostatics, and kinematics in the outer galaxy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pourhasan, R.; Mann, R.B.; Afshordi, N.

    2011-12-01

    Light scalar fields are expected to arise in theories of high energy physics (such as string theory), and find phenomenological motivations in dark energy, dark matter, or neutrino physics. However, the coupling of light scalar fields to ordinary (or dark) matter is strongly constrained from laboratory, solar system, and astrophysical tests of the fifth force. One way to evade these constraints in dense environments is through the chameleon mechanism, where the field's mass steeply increases with ambient density. Consequently, the chameleonic force is only sourced by a thin shell near the surface of dense objects, which significantly reduces its magnitude.more » In this paper, we argue that thin-shell conditions are equivalent to ''conducting'' boundary conditions in electrostatics. As an application, we use the analogue of the method of images to calculate the back-reaction (or self-force) of an object around a spherical gravitational source. Using this method, we can explicitly compute the violation of the equivalence principle in the outskirts of galactic haloes (assuming an NFW dark matter profile): Intermediate mass satellites can be slower than their larger/smaller counterparts by as much as 10% close to a thin shell.« less

  8. The structure and intermolecular forces of DNA condensates.

    PubMed

    Yoo, Jejoong; Aksimentiev, Aleksei

    2016-03-18

    Spontaneous assembly of DNA molecules into compact structures is ubiquitous in biological systems. Experiment has shown that polycations can turn electrostatic self-repulsion of DNA into attraction, yet the physical mechanism of DNA condensation has remained elusive. Here, we report the results of atomistic molecular dynamics simulations that elucidated the microscopic structure of dense DNA assemblies and the physics of interactions that makes such assemblies possible. Reproducing the setup of the DNA condensation experiments, we measured the internal pressure of DNA arrays as a function of the DNA-DNA distance, showing a quantitative agreement between the results of our simulations and the experimental data. Analysis of the MD trajectories determined the DNA-DNA force in a DNA condensate to be pairwise, the DNA condensation to be driven by electrostatics of polycations and not hydration, and the concentration of bridging cations, not adsorbed cations, to determine the magnitude and the sign of the DNA-DNA force. Finally, our simulations quantitatively characterized the orientational correlations of DNA in DNA arrays as well as diffusive motion of DNA and cations. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  9. An Energy- and Charge-conserving, Implicit, Electrostatic Particle-in-Cell Algorithm in curvilinear geometry

    NASA Astrophysics Data System (ADS)

    Chen, G.; Chacón, L.; Barnes, D. C.

    2012-03-01

    A recent proof-of-principle study proposes an energy- and charge-conserving, fully implicit particle-in-cell algorithm in one dimension [1], which is able to use timesteps comparable to the dynamical timescale of interest. Here, we generalize the method to employ non-uniform meshes via a curvilinear map. The key enabling technology is a hybrid particle pusher [2], with particle positions updated in logical space and particle velocities updated in physical space. The self-adaptive, charge-conserving particle mover of Ref. [1] is extended to the non-uniform mesh case. The fully implicit implementation, using a Jacobian-free Newton-Krylov iterative solver, remains exactly charge- and energy-conserving. The extension of the formulation to multiple dimensions will be discussed. We present numerical experiments of 1D electrostatic, long-timescale ion-acoustic wave and ion-acoustic shock wave simulations, demonstrating that charge and energy are conserved to round-off for arbitrary mesh non-uniformity, and that the total momentum remains well conserved.[4pt] [1] Chen, Chac'on, Barnes, J. Comput. Phys. 230 (2011). [0pt] [2] Camporeale and Delzanno, Bull. Am. Phys. Soc. 56(6) (2011); Wang, et al., J. Plasma Physics, 61 (1999).

  10. Transport of Cryptosporidium oocysts in porous media: Role of straining and physicochemical filtration

    USGS Publications Warehouse

    Tufenkji, N.; Miller, G.F.; Ryan, J.N.; Harvey, R.W.; Elimelech, M.

    2004-01-01

    The transport and filtration behavior of Cryptosporidium parvum oocysts in columns packed with quartz sand was systematically examined under repulsive electrostatic conditions. An increase in solution ionic strength resulted in greater oocyst deposition rates despite theoretical predictions of a significant electrostatic energy barrier to deposition. Relatively high deposition rates obtained with both oocysts and polystyrene latex particles of comparable size at low ionic strength (1 mM) suggest that a physical mechanism may play a key role in oocyst removal. Supporting experiments conducted with latex particles of varying sizes, under very low ionic strength conditions where physicochemical filtration is negligible, clearly indicated that physical straining is an important capture mechanism. The results of this study indicate that irregularity of sand grain shape (verified by SEM imaging) contributes considerably to the straining potential of the porous medium. Hence, both straining and physicochemical filtration are expected to control the removal of C. parvum oocysts in settings typical of riverbank filtration, soil infiltration, and slow sand filtration. Because classic colloid filtration theory does not account for removal by straining, these observations have important implications with respect to predictions of oocyst transport.

  11. Kinetic features revealed by top-hat electrostatic analysers: numerical simulations and instrument response results

    NASA Astrophysics Data System (ADS)

    De Marco, Rossana; Marcucci, Maria Federica; Brienza, Daniele; Bruno, Roberto; Consolini, Giuseppe; Perrone, Denise; Valentini, Franceso; Servidio, Sergio; Stabile, Sara; Pezzi, Oreste; Sorriso-Valvo, Luca; Lavraud, Benoit; De Keyser, Johan; Retinò, Alessandro; Fazakerley, Andrew; Wicks, Robert; Vaivads, Andris; Salatti, Mario; Veltri, Pierliugi

    2017-04-01

    Turbulence Heating ObserveR (THOR) is the first mission devoted to study energization, acceleration and heating of turbulent space plasmas, and designed to perform field and particle measurements at kinetic scales in different near-Earth regions and in the solar wind. Solar Orbiter (SolO), together with Solar Probe Plus, will provide the first comprehensive remote and in situ measurements which are critical to establish the fundamental physical links between the Sun's dynamic atmosphere and the turbulent solar wind. The fundamental process of turbulent dissipation is mediated by physical mechanism that occur at a variety of temporal and spatial scales, and most efficiently at the kinetics scales. Hybrid Vlasov-Maxwell simulations of solar-wind turbulence show that kinetic effects manifest as particle beams, production of temperature anisotropies and ring-like modulations, preferential heating of heavy ions. We use a numerical code able to reproduce the response of a typical electrostatic analyzer of top-hat type starting from velocity distribution functions (VDFs) generated by Hybrid Vlasov-Maxwell (HVM) numerical simulations. Here, we show how optimized particle measurements by top-hat analysers can capture the kinetic features injected by turbulence in the VDFs.

  12. Electromagnetic radiation from beam-plasma instabilities

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.; Whelan, D. A.

    1982-01-01

    The mechanism by which unstable electrostatic waves of an electron-beam plasma system are converted into observed electromagnetic waves is of great current interest in space plasma physics. Electromagnetic radiation arises from both natural beam-plasma systems, e.g., type III solar bursts and kilometric radiation, and from man-made electron beams injected from rockets and spacecraft. In the present investigation the diagnostic difficulties encountered in space plasmas are overcome by using a large laboratory plasma. A finite diameter (d approximately equal to 0.8 cm) electron beam is injected into a uniform quiescent magnetized afterglow plasma of dimensions large compared with electromagnetic wavelength. Electrostatic waves grow, saturate and decay within the uniform central region of the plasma volume so that linear mode conversion on density gradients can be excluded as a possible generation mechanism for electromagnetic waves.

  13. Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

    PubMed Central

    Jasulaneca, Liga; Kosmaca, Jelena; Meija, Raimonds; Andzane, Jana

    2018-01-01

    This review summarizes relevant research in the field of electrostatically actuated nanobeam-based nanoelectromechanical (NEM) switches. The main switch architectures and structural elements are briefly described and compared. Investigation methods that allow for exploring coupled electromechanical interactions as well as studies of mechanically or electrically induced effects are covered. An examination of the complex nanocontact behaviour during various stages of the switching cycle is provided. The choice of the switching element and the electrode is addressed from the materials perspective, detailing the benefits and drawbacks for each. An overview of experimentally demonstrated NEM switching devices is provided, and together with their operational parameters, the reliability issues and impact of the operating environment are discussed. Finally, the most common NEM switch failure modes and the physical mechanisms behind them are reviewed and solutions proposed. PMID:29441272

  14. Impact of centrifugal drifts on ion turbulent transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belli, Emily A.; Candy, J.

    Here, the influence of sonic toroidal rotation on gyrokinetic stability and transport is studied, with important implications for heavy impurity dynamics. When centrifugal drifts and electrostatic trapping corrections are included, significant modifications to the calculated transport of heavy impurities are observed. These high-rotation corrections add to the standard Coriolis drift and toroidal rotation shear drive which are normally included in gyrokinetics. Yet, because of their complexity, centrifugal and electrostatic trapping terms (quadratic in the main ion Mach number) are not generally included in gyrokinetic codes. In this work, we explore the implications of using reduced descriptions of the rotational physics.more » For heavy impurities such as tungsten, cross terms due to the centrifugal force can dominate the rotation dynamics, and neglecting them is shown to lead to large errors in the impurity particle flux.« less

  15. Impact of centrifugal drifts on ion turbulent transport

    DOE PAGES

    Belli, Emily A.; Candy, J.

    2018-03-01

    Here, the influence of sonic toroidal rotation on gyrokinetic stability and transport is studied, with important implications for heavy impurity dynamics. When centrifugal drifts and electrostatic trapping corrections are included, significant modifications to the calculated transport of heavy impurities are observed. These high-rotation corrections add to the standard Coriolis drift and toroidal rotation shear drive which are normally included in gyrokinetics. Yet, because of their complexity, centrifugal and electrostatic trapping terms (quadratic in the main ion Mach number) are not generally included in gyrokinetic codes. In this work, we explore the implications of using reduced descriptions of the rotational physics.more » For heavy impurities such as tungsten, cross terms due to the centrifugal force can dominate the rotation dynamics, and neglecting them is shown to lead to large errors in the impurity particle flux.« less

  16. Photodetachment of Zwitterions: Probing Intramolecular Coulomb Repulsion and Attraction in the Gas Phase Using Pyridinium Dicarboxylate Anions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xue B.; Dacres, J E.; Yang, Xin

    2003-10-23

    Zwitterions are critically important in many biological transformations and are used in numerous chemical processes. The consequences of electrostatic effects on reactivity and physical properties, however, are largely unknown. In this work, we report the results of negative ion photoelectron spectra of nine isomeric pyridinium dicarboxylate zwitterions and three nonzwitterionic methoxycarbonylpyridine carboxylate isomers (-O(2)CPyrCO(2)CH(3)). Information about the intramolecular electrostatic interactions was directly obtained from the photoelectron spectra. The adiabatic and vertical detachment energies were measured and understood in terms of intramolecular Coulombic forces. Calculations at the B3LYP and CCSD(T) level were performed and compared to the experimental electron binding energies.more » Structures, relative stabilities, and the electron detachment sites also were obtained from the calculations.« less

  17. Titanium-Zirconium-Nickel Alloy Inside Marshall's Electrostatic Levitator (ESL)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This is a close-up of a sample of titanium-zirconium-nickel alloy inside the Electrostatic Levitator (ESL) vacuum chamber at NASA's Marshall Space Flight Center (MSFC). The ESL uses static electricity to suspend an object (about 3-4 mm in diameter) inside a vacuum chamber allowing scientists to record a wide range of physical properties without the sample contracting the container or any instruments, conditions that would alter the readings. Once inside the chamber, a laser heats the sample until it melts. The laser is then turned off and the sample cools, changing from a liquid drop to a solid sphere. Since 1977, the ESL has been used at MSFC to study the characteristics of new metals, ceramics, and glass compounds. Materials created as a result of these tests include new optical materials, special metallic glasses, and spacecraft components.

  18. Boundary element based multiresolution shape optimisation in electrostatics

    NASA Astrophysics Data System (ADS)

    Bandara, Kosala; Cirak, Fehmi; Of, Günther; Steinbach, Olaf; Zapletal, Jan

    2015-09-01

    We consider the shape optimisation of high-voltage devices subject to electrostatic field equations by combining fast boundary elements with multiresolution subdivision surfaces. The geometry of the domain is described with subdivision surfaces and different resolutions of the same geometry are used for optimisation and analysis. The primal and adjoint problems are discretised with the boundary element method using a sufficiently fine control mesh. For shape optimisation the geometry is updated starting from the coarsest control mesh with increasingly finer control meshes. The multiresolution approach effectively prevents the appearance of non-physical geometry oscillations in the optimised shapes. Moreover, there is no need for mesh regeneration or smoothing during the optimisation due to the absence of a volume mesh. We present several numerical experiments and one industrial application to demonstrate the robustness and versatility of the developed approach.

  19. On the physical interpretation of the nuclear molecular orbital energy.

    PubMed

    Charry, Jorge; Pedraza-González, Laura; Reyes, Andrés

    2017-06-07

    Recently, several groups have extended and implemented molecular orbital (MO) schemes to simultaneously obtain wave functions for electrons and selected nuclei. Many of these schemes employ an extended Hartree-Fock approach as a first step to find approximate electron-nuclear wave functions and energies. Numerous studies conducted with these extended MO methodologies have explored various effects of quantum nuclei on physical and chemical properties. However, to the best of our knowledge no physical interpretation has been assigned to the nuclear molecular orbital energy (NMOE) resulting after solving extended Hartree-Fock equations. This study confirms that the NMOE is directly related to the molecular electrostatic potential at the position of the nucleus.

  20. PCE: web tools to compute protein continuum electrostatics

    PubMed Central

    Miteva, Maria A.; Tufféry, Pierre; Villoutreix, Bruno O.

    2005-01-01

    PCE (protein continuum electrostatics) is an online service for protein electrostatic computations presently based on the MEAD (macroscopic electrostatics with atomic detail) package initially developed by D. Bashford [(2004) Front Biosci., 9, 1082–1099]. This computer method uses a macroscopic electrostatic model for the calculation of protein electrostatic properties, such as pKa values of titratable groups and electrostatic potentials. The MEAD package generates electrostatic energies via finite difference solution to the Poisson–Boltzmann equation. Users submit a PDB file and PCE returns potentials and pKa values as well as color (static or animated) figures displaying electrostatic potentials mapped on the molecular surface. This service is intended to facilitate electrostatics analyses of proteins and thereby broaden the accessibility to continuum electrostatics to the biological community. PCE can be accessed at . PMID:15980492

  1. Project LITE - Light Inquiry Through Experiments

    NASA Astrophysics Data System (ADS)

    Brecher, K.

    2004-12-01

    Hands-on, inquiry-based, constructivist activity offers students a powerful way to explore, uncover and ultimately gain a feel for the nature of science. In order to make practicable a more genuine approach to learning astronomy, we have undertaken the development of hands-on (and eyes-on) materials that can be used in introductory undergraduate astronomy courses. These materials focus on light and optics. Over the past several years as part of Project LITE (Light Inquiry Through Experiments), we have developed a kit of optical materials that is integrated with a set of Java applets. The combined kit and software allows students to do actual experiments concerning geometrical optics, fluorescence, phosphorescence, polarization and other topics by making use of the photons that are emitted by their computer screens. We have also developed a suite of over 100 Flash applets that allow students to directly explore many aspects of visual perception. A major effort of the project concerns spectroscopy, since it is arguably the most important tool used by astronomers to disentangle the nature of the universe. It is also one of the most challenging subjects to teach in undergraduate astronomy courses. The spectroscopy component of Project LITE includes take-home laboratory materials and experiments that are integrated with web-based software. We have also developed a novel quantitative handheld binocular spectrometer (patent pending). Our major spectroscopic software is called the Spectrum Explorer (SPEX). It allows students to create, manipulate and explore all types of spectra including blackbody, power law, emission and absorption. We are now extending the SPEX capabilities to help students gain easy access to the astronomical spectra included in the NVO databases. All of the Project LITE software can be found http://lite.bu.edu. Project LITE is supported by Grant #DUE-0125992 from the NSF Division of Undergraduate Education.

  2. JSME: a free molecule editor in JavaScript.

    PubMed

    Bienfait, Bruno; Ertl, Peter

    2013-01-01

    A molecule editor, i.e. a program facilitating graphical input and interactive editing of molecules, is an indispensable part of every cheminformatics or molecular processing system. Today, when a web browser has become the universal scientific user interface, a tool to edit molecules directly within the web browser is essential. One of the most popular tools for molecular structure input on the web is the JME applet. Since its release nearly 15 years ago, however the web environment has changed and Java applets are facing increasing implementation hurdles due to their maintenance and support requirements, as well as security issues. This prompted us to update the JME editor and port it to a modern Internet programming language - JavaScript. The actual molecule editing Java code of the JME editor was translated into JavaScript with help of the Google Web Toolkit compiler and a custom library that emulates a subset of the GUI features of the Java runtime environment. In this process, the editor was enhanced by additional functionalities including a substituent menu, copy/paste, drag and drop and undo/redo capabilities and an integrated help. In addition to desktop computers, the editor supports molecule editing on touch devices, including iPhone, iPad and Android phones and tablets. In analogy to JME the new editor is named JSME. This new molecule editor is compact, easy to use and easy to incorporate into web pages. A free molecule editor written in JavaScript was developed and is released under the terms of permissive BSD license. The editor is compatible with JME, has practically the same user interface as well as the web application programming interface. The JSME editor is available for download from the project web page http://peter-ertl.com/jsme/

  3. Architecture for biomedical multimedia information delivery on the World Wide Web

    NASA Astrophysics Data System (ADS)

    Long, L. Rodney; Goh, Gin-Hua; Neve, Leif; Thoma, George R.

    1997-10-01

    Research engineers at the National Library of Medicine are building a prototype system for the delivery of multimedia biomedical information on the World Wide Web. This paper discuses the architecture and design considerations for the system, which will be used initially to make images and text from the third National Health and Nutrition Examination Survey (NHANES) publicly available. We categorized our analysis as follows: (1) fundamental software tools: we analyzed trade-offs among use of conventional HTML/CGI, X Window Broadway, and Java; (2) image delivery: we examined the use of unconventional TCP transmission methods; (3) database manager and database design: we discuss the capabilities and planned use of the Informix object-relational database manager and the planned schema for the HNANES database; (4) storage requirements for our Sun server; (5) user interface considerations; (6) the compatibility of the system with other standard research and analysis tools; (7) image display: we discuss considerations for consistent image display for end users. Finally, we discuss the scalability of the system in terms of incorporating larger or more databases of similar data, and the extendibility of the system for supporting content-based retrieval of biomedical images. The system prototype is called the Web-based Medical Information Retrieval System. An early version was built as a Java applet and tested on Unix, PC, and Macintosh platforms. This prototype used the MiniSQL database manager to do text queries on a small database of records of participants in the second NHANES survey. The full records and associated x-ray images were retrievable and displayable on a standard Web browser. A second version has now been built, also a Java applet, using the MySQL database manager.

  4. Damping control of micromachined lowpass mechanical vibration isolation filters using electrostatic actuation with electronic signal processing

    NASA Astrophysics Data System (ADS)

    Dean, Robert; Flowers, George; Sanders, Nicole; MacAllister, Ken; Horvath, Roland; Hodel, A. S.; Johnson, Wayne; Kranz, Michael; Whitley, Michael

    2005-05-01

    Some harsh environments, such as those encountered by aerospace vehicles and various types of industrial machinery, contain high frequency/amplitude mechanical vibrations. Unfortunately, some very useful components are sensitive to these high frequency mechanical vibrations. Examples include MEMS gyroscopes and resonators, oscillators and some micro optics. Exposure of these components to high frequency mechanical vibrations present in the operating environment can result in problems ranging from an increased noise floor to component failure. Passive micromachined silicon lowpass filter structures (spring-mass-damper) have been demonstrated in recent years. However, the performance of these filter structures is typically limited by low damping (especially if operated in near-vacuum environments) and a lack of tunability after fabrication. Active filter topologies, such as piezoelectric, electrostrictive-polymer-film and SMA have also been investigated in recent years. Electrostatic actuators, however, are utilized in many micromachined silicon devices to generate mechanical motion. They offer a number of advantages, including low power, fast response time, compatibility with silicon micromachining, capacitive position measurement and relative simplicity of fabrication. This paper presents an approach for realizing active micromachined mechanical lowpass vibration isolation filters by integrating an electrostatic actuator with the micromachined passive filter structure to realize an active mechanical lowpass filter. Although the electrostatic actuator can be used to adjust the filter resonant frequency, the primary application is for increasing the damping to an acceptable level. The physical size of these active filters is suitable for use in or as packaging for sensitive electronic and MEMS devices, such as MEMS vibratory gyroscope chips.

  5. The Problem of Preconcentration of Uranium Ores by Physical Processes; LES PROBLEMES DE LA PRECONCENTRATION DES MINERAIS D'URANIUM PAR VOIE PHYSIQUE. LE TRIAGE ELECTRONIQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuchot, L.; Ginocchio, A. et al.

    1959-10-31

    As uranium ores, like most other ores, are not definite substances which can be treated directly for the production of the metal, the ores must be concentrated. The common physical processes used for all ores, such as sieving, gravimetric separation, flotation, electromagnetic separation, and electrostatic separation, are applicable to the beneficiation of uranium. The radioactivity of uranium ores has led to a radiometric method for the concentration. This method is described in detail. As an example, the preconcentration of Forez ores is discussed. (J.S.R.)

  6. Deciphering the physics and chemistry of perovskites with transmission electron microscopy.

    PubMed

    Polking, Mark J

    2016-03-28

    Perovskite oxides exhibit rich structural complexity and a broad range of functional properties, including ferroelectricity, ferromagnetism, and superconductivity. The development of aberration correction for the transmission electron microscope and concurrent progress in electron spectroscopy, electron holography, and other techniques has fueled rapid progress in the understanding of the physics and chemistry of these materials. New techniques based on the transmission electron microscope are first surveyed, and the applications of these techniques for the study of the structure, chemistry, electrostatics, and dynamics of perovskite oxides are then explored in detail, with a particular focus on ferroelectric materials.

  7. Electrostatic interaction energy and factor 1.23

    NASA Astrophysics Data System (ADS)

    Rubčić, A.; Arp, H.; Rubčić, J.

    The factor F≫1.23 has originally been found in the redshift of quasars. Recently, it has been found in very different physical phenomena: the life-time of muonium, the masses of elementary particles (leptons, quarks,...), the correlation of atomic weight (A) and atomic number (Z) and the correlation of the sum of masses of all orbiting bodies with the mass of the central body in gravitational systems.

  8. Characteristics of the tail of Comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Scarf, F. L.

    1986-01-01

    The physical structure and characteristics of the Comet Giacobini-Zinner tail are described. Variations in the vector B-field configuration, the electron distribution function, the energetic ion population, and the electromagnetic and electrostatic plasma wave spectra are analyzed. The ICE detected a two-lobe magnetic field configuration and a narrow central plasma sheet. Additional analyses proposed for the Giacobini-Zinner tail data are discussed.

  9. Physical-Chemical Properties of Articulated Rodlike Polymers

    DTIC Science & Technology

    1984-04-01

    poly-lysine have shown an ’ordinary to extraordinary’ transition where long range forces are postulated to create a lattice -like structure between...concentrations, the scattering moieties are held in a pseudo- lattice order, As the concentration increases, the 57 effects of excluded volume become...were intermolecular since the chains were already fully extended. The long range nature of the electrostatic interactions created a pseudo- lattice

  10. WebGLORE: a web service for Grid LOgistic REgression.

    PubMed

    Jiang, Wenchao; Li, Pinghao; Wang, Shuang; Wu, Yuan; Xue, Meng; Ohno-Machado, Lucila; Jiang, Xiaoqian

    2013-12-15

    WebGLORE is a free web service that enables privacy-preserving construction of a global logistic regression model from distributed datasets that are sensitive. It only transfers aggregated local statistics (from participants) through Hypertext Transfer Protocol Secure to a trusted server, where the global model is synthesized. WebGLORE seamlessly integrates AJAX, JAVA Applet/Servlet and PHP technologies to provide an easy-to-use web service for biomedical researchers to break down policy barriers during information exchange. http://dbmi-engine.ucsd.edu/webglore3/. WebGLORE can be used under the terms of GNU general public license as published by the Free Software Foundation.

  11. jSquid: a Java applet for graphical on-line network exploration.

    PubMed

    Klammer, Martin; Roopra, Sanjit; Sonnhammer, Erik L L

    2008-06-15

    jSquid is a graph visualization tool for exploring graphs from protein-protein interaction or functional coupling networks. The tool was designed for the FunCoup web site, but can be used for any similar network exploring purpose. The program offers various visualization and graph manipulation techniques to increase the utility for the user. jSquid is available for direct usage and download at http://jSquid.sbc.su.se including source code under the GPLv3 license, and input examples. It requires Java version 5 or higher to run properly. erik.sonnhammer@sbc.su.se Supplementary data are available at Bioinformatics online.

  12. Java and its future in biomedical computing.

    PubMed Central

    Rodgers, R P

    1996-01-01

    Java, a new object-oriented computing language related to C++, is receiving considerable attention due to its use in creating network-sharable, platform-independent software modules (known as "applets") that can be used with the World Wide Web. The Web has rapidly become the most commonly used information-retrieval tool associated with the global computer network known as the Internet, and Java has the potential to further accelerate the Web's application to medical problems. Java's potentially wide acceptance due to its Web association and its own technical merits also suggests that it may become a popular language for non-Web-based, object-oriented computing. PMID:8880677

  13. A rigorous and simpler method of image charges

    NASA Astrophysics Data System (ADS)

    Ladera, C. L.; Donoso, G.

    2016-07-01

    The method of image charges relies on the proven uniqueness of the solution of the Laplace differential equation for an electrostatic potential which satisfies some specified boundary conditions. Granted by that uniqueness, the method of images is rightly described as nothing but shrewdly guessing which and where image charges are to be placed to solve the given electrostatics problem. Here we present an alternative image charges method that is based not on guessing but on rigorous and simpler theoretical grounds, namely the constant potential inside any conductor and the application of powerful geometric symmetries. The aforementioned required uniqueness and, more importantly, guessing are therefore both altogether dispensed with. Our two new theoretical fundaments also allow the image charges method to be introduced in earlier physics courses for engineering and sciences students, instead of its present and usual introduction in electromagnetic theory courses that demand familiarity with the Laplace differential equation and its boundary conditions.

  14. Small-amplitude oscillations of electrostatically levitated drops

    NASA Astrophysics Data System (ADS)

    Feng, J. Q.; Beard, K. V.

    1990-07-01

    The nature of axisymmetric oscillations of electrostatically levitated drops is examined using an analytical method of multiple-parameter perturbations. The solution for the quiescent equilibrium shape exhibits both stretching of the drop surface along the direction of the externally applied electric field and asymmetry about the drop's equatorial plane. In the presence of electric and gravitational fields, small-amplitude oscillations of charged drops differ from the linear modes first analyzed by Rayleigh. The oscillatory response at each frequency consists of several Legendre polynomials rather than just one, and the characteristic frequency for each axisymmetric mode decreases from that calculated by Rayleigh as the electric field strength increases. This lowering of the characteristic frequencies is enhanced by the net electric charge required for levitation against gravity. Since the contributions of the various forces appear explicitly in the analytic solutions, physical insight is readily gained into their causative role in drop behavior.

  15. Comparison between off-resonance and electron Bernstein waves heating regime in a microwave discharge ion source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castro, G.; Di Giugno, R.; Miracoli, R.

    2012-02-15

    A microwave discharge ion source (MDIS) operating at the Laboratori Nazionali del Sud of INFN, Catania has been used to compare the traditional electron cyclotron resonance (ECR) heating with an innovative mechanisms of plasma ignition based on the electrostatic Bernstein waves (EBW). EBW are obtained via the inner plasma electromagnetic-to-electrostatic wave conversion and they are absorbed by the plasma at cyclotron resonance harmonics. The heating of plasma by means of EBW at particular frequencies enabled us to reach densities much larger than the cutoff ones. Evidences of EBW generation and absorption together with X-ray emissions due to high energy electronsmore » will be shown. A characterization of the discharge heating process in MDISs as a generalization of the ECR heating mechanism by means of ray tracing will be shown in order to highlight the fundamental physical differences between ECR and EBW heating.« less

  16. Plasma simulation in a hybrid ion electric propulsion system

    NASA Astrophysics Data System (ADS)

    Jugroot, Manish; Christou, Alex

    2015-04-01

    An exciting possibility for the next generation of satellite technology is the microsatellite. These satellites, ranging from 10-500 kg, can offer advantages in cost, reduced risk, and increased functionality for a variety of missions. For station keeping and control of these satellites, a suitable compact and high efficiency thruster is required. Electrostatic propulsion provides a promising solution for microsatellite thrust due to their high specific impulse. The rare gas propellant is ionized into plasma and generates a beam of high speed ions by electrostatic processes. A concept explored in this work is a hybrid combination of dc ion engines and hall thrusters to overcome space-charge and lifetime limitations of current ion thruster technologies. A multiphysics space and time-dependent formulation was used to investigate and understand the underlying physical phenomena. Several regions and time scales of the plasma have been observed and will be discussed.

  17. Angular trapping of anisometric nano-objects in a fluid.

    PubMed

    Celebrano, Michele; Rosman, Christina; Sönnichsen, Carsten; Krishnan, Madhavi

    2012-11-14

    We demonstrate the ability to trap, levitate, and orient single anisometric nanoscale objects with high angular precision in a fluid. An electrostatic fluidic trap confines a spherical object at a spatial location defined by the minimum of the electrostatic system free energy. For an anisometric object and a potential well lacking angular symmetry, the system free energy can further strongly depend on the object's orientation in the trap. Engineering the morphology of the trap thus enables precise spatial and angular confinement of a single levitating nano-object, and the process can be massively parallelized. Since the physics of the trap depends strongly on the surface charge of the object, the method is insensitive to the object's dielectric function. Furthermore, levitation of the assembled objects renders them amenable to individual manipulation using externally applied optical, electrical, or hydrodynamic fields, raising prospects for reconfigurable chip-based nano-object assemblies.

  18. Electrostatic Debye layer formed at a plasma-liquid interface

    NASA Astrophysics Data System (ADS)

    Rumbach, Paul; Clarke, Jean Pierre; Go, David B.

    2017-05-01

    We construct an analytic model for the electrostatic Debye layer formed at a plasma-liquid interface by combining the Gouy-Chapman theory for the liquid with a simple parabolic band model for the plasma sheath. The model predicts a nonlinear scaling between the plasma current density and the solution ionic strength, and we confirmed this behavior with measurements using a liquid-anode plasma. Plots of the measured current density as a function of ionic strength collapse the data and curve fits yield a plasma electron density of ˜1019m-3 and an electric field of ˜104V /m on the liquid side of the interface. Because our theory is based firmly on fundamental physics, we believe it can be widely applied to many emerging technologies involving the interaction of low-temperature, nonequilibrium plasma with aqueous media, including plasma medicine and various plasma chemical synthesis techniques.

  19. Electron Jet of Asymmetric Reconnection

    NASA Technical Reports Server (NTRS)

    Khotyaintsev, Yu. V.; Graham, D. B.; Norgren, C.; Eriksson, E.; Li, W.; Johlander, A.; Vaivads, A.; Andre, M.; Pritchett, P. L.; Retino, A.; hide

    2016-01-01

    We present Magnetospheric Multiscale observations of an electron-scale current sheet and electron outflow jet for asymmetric reconnection with guide field at the subsolar magnetopause. The electron jet observed within the reconnection region has an electron Mach number of 0.35 and is associated with electron agyrotropy. The jet is unstable to an electrostatic instability which generates intense waves with E(sub parallel lines) amplitudes reaching up to 300 mV/m and potentials up to 20% of the electron thermal energy. We see evidence of interaction between the waves and the electron beam, leading to quick thermalization of the beam and stabilization of the instability. The wave phase speed is comparable to the ion thermal speed, suggesting that the instability is of Buneman type, and therefore introduces electron-ion drag and leads to braking of the electron flow. Our observations demonstrate that electrostatic turbulence plays an important role in the electron-scale physics of asymmetric reconnection.

  20. A three dimensional dynamic study of electrostatic charging in materials

    NASA Technical Reports Server (NTRS)

    Katz, I.; Parks, D. E.; Mandell, M. J.; Harvey, J. M.; Brownell, D. H., Jr.; Wang, S. S.; Rotenberg, M.

    1977-01-01

    A description is given of the physical models employed in the NASCAP (NASA Charging Analyzer Program) code, and several test cases are presented. NASCAP dynamically simulates the charging of an object made of conducting segments which may be entirely or partially covered with thin dielectric films. The object may be subject to either ground test or space user-specified environments. The simulation alternately treats (1) the tendency of materials to accumulate and emit charge when subject to plasma environment, and (2) the consequent response of the charged particle environment to an object's electrostatic field. Parameterized formulations of the emission properties of materials subject to bombardment by electrons, protons, and sunlight are presented. Values of the parameters are suggested for clean aluminum, Al2O3, clean magnesium, MgO, SiO2 kapton, and teflon. A discussion of conductivity in thin dielectrics subject to radiation and high fields is given, together with a sample calculation.

  1. Suppressing Klein tunneling in graphene using a one-dimensional array of localized scatterers.

    PubMed

    Walls, Jamie D; Hadad, Daniel

    2015-02-13

    Graphene's unique physical and chemical properties make it an attractive platform for use in micro- and nanoelectronic devices. However, electrostatically controlling the flow of electrons in graphene can be challenging as a result of Klein tunneling, where electrons normally incident to a one-dimensional potential barrier of height V are perfectly transmitted even as V → ∞. In this study, theoretical and numerical calculations predict that the transmission probability for an electron wave normally incident to a one-dimensional array of localized scatterers can be significantly less than unity when the electron wavelength is smaller than the spacing between scatterers. In effect, placing periodic openings throughout a potential barrier can, somewhat counterintuitively, decrease transmission in graphene. Our results suggest that electrostatic potentials with spatial variations on the order of the electron wavelength can suppress Klein tunneling and could find applications in developing graphene electronic devices.

  2. Emergence of a Stern Layer from the Incorporation of Hydration Interactions into the Gouy-Chapman Model of the Electrical Double Layer.

    PubMed

    Brown, Matthew A; Bossa, Guilherme Volpe; May, Sylvio

    2015-10-27

    In one of the most commonly used phenomenological descriptions of the electrical double layer, a charged solid surface and a diffuse region of mobile ions are separated from each other by a thin charge-depleted Stern layer. The Stern layer acts as a capacitor that improves the classical Gouy-Chapman model by increasing the magnitude of the surface potential and limiting the maximal counterion concentration. We show that very similar Stern-like properties of the diffuse double layer emerge naturally from adding a nonelectrostatic hydration repulsion to the electrostatic Coulomb potential. The interplay of electrostatic attraction and hydration repulsion of the counterions and the surface leads to the formation of a diffuse counterion layer that remains well separated from the surface. In addition, hydration repulsions between the ions limit and control the maximal ion concentration and widen the width of the diffuse double layer. Our mean-field model, which we express in terms of electrostatic and hydration potentials, is physically consistent and conceptually similar to the classical Gouy-Chapman model. It allows the incorporation of ion specificity, accounts for hydration properties of charged surfaces, and predicts Stern layer properties, which we analyze in terms of the effective size of the hydrated counterions.

  3. Self-consistent field model for strong electrostatic correlations and inhomogeneous dielectric media.

    PubMed

    Ma, Manman; Xu, Zhenli

    2014-12-28

    Electrostatic correlations and variable permittivity of electrolytes are essential for exploring many chemical and physical properties of interfaces in aqueous solutions. We propose a continuum electrostatic model for the treatment of these effects in the framework of the self-consistent field theory. The model incorporates a space- or field-dependent dielectric permittivity and an excluded ion-size effect for the correlation energy. This results in a self-energy modified Poisson-Nernst-Planck or Poisson-Boltzmann equation together with state equations for the self energy and the dielectric function. We show that the ionic size is of significant importance in predicting a finite self energy for an ion in an inhomogeneous medium. Asymptotic approximation is proposed for the solution of a generalized Debye-Hückel equation, which has been shown to capture the ionic correlation and dielectric self energy. Through simulating ionic distribution surrounding a macroion, the modified self-consistent field model is shown to agree with particle-based Monte Carlo simulations. Numerical results for symmetric and asymmetric electrolytes demonstrate that the model is able to predict the charge inversion at high correlation regime in the presence of multivalent interfacial ions which is beyond the mean-field theory and also show strong effect to double layer structure due to the space- or field-dependent dielectric permittivity.

  4. Dust agglomeration

    NASA Technical Reports Server (NTRS)

    2000-01-01

    John Marshall, an investigator at Ames Research Center and a principal investigator in the microgravity fluid physics program, is studying the adhesion and cohesion of particles in order to shed light on how granular systems behave. These systems include everything from giant dust clouds that form planets to tiny compressed pellets, such as the ones you swallow as tablets. This knowledge should help us control the grains, dust, and powders that we encounter or use on a daily basis. Marshall investigated electrostatic charge in microgravity on the first and second U.S. Microgravity Laboratory shuttle missions to see how grains aggregate, or stick together. With gravity's effects eliminated on orbit, Marshall found that the grains of sand that behaved ever so freely on Earth now behaved like flour. They would just glom together in clumps and were quite difficult to disperse. That led to an understanding of the prevalence of the electrostatic forces. The granules wanted to aggregate as little chains, like little hairs, and stack end to end. Some of the chains had 20 or 30 grains. This phenomenon indicated that another force, what Marshall believes to be an electrostatic dipole, was at work.(The diagram on the right emphasizes the aggregating particles in the photo on the left, taken during the USML-2 mission in 1995.)

  5. Microgravity

    NASA Image and Video Library

    2000-05-15

    John Marshall, an investigator at Ames Research Center and a principal investigator in the microgravity fluid physics program, is studying the adhesion and cohesion of particles in order to shed light on how granular systems behave. These systems include everything from giant dust clouds that form planets to tiny compressed pellets, such as the ones you swallow as tablets. This knowledge should help us control the grains, dust, and powders that we encounter or use on a daily basis. Marshall investigated electrostatic charge in microgravity on the first and second U.S. Microgravity Laboratory shuttle missions to see how grains aggregate, or stick together. With gravity's effects eliminated on orbit, Marshall found that the grains of sand that behaved ever so freely on Earth now behaved like flour. They would just glom together in clumps and were quite difficult to disperse. That led to an understanding of the prevalence of the electrostatic forces. The granules wanted to aggregate as little chains, like little hairs, and stack end to end. Some of the chains had 20 or 30 grains. This phenomenon indicated that another force, what Marshall believes to be an electrostatic dipole, was at work.(The diagram on the right emphasizes the aggregating particles in the photo on the left, taken during the USML-2 mission in 1995.)

  6. Theoretical assessment of the disparity in the electrostatic forces between two point charges and two conductive spheres of equal radii

    NASA Astrophysics Data System (ADS)

    Kolikov, Kiril

    2016-11-01

    The Coulomb's formula for the force FC of electrostatic interaction between two point charges is well known. In reality, however, interactions occur not between point charges, but between charged bodies of certain geometric form, size and physical structure. This leads to deviation of the estimated force FC from the real force F of electrostatic interaction, thus imposing the task to evaluate the disparity. In the present paper the problem is being solved theoretically for two charged conductive spheres of equal radii and arbitrary electric charges. Assessment of the deviation is given as a function of the ratio of the distance R between the spheres centers to the sum of their radii. For the purpose, relations between FC and F derived in a preceding work of ours, are employed to generalize the Coulomb's interactions. At relatively short distances between the spheres, the Coulomb force FC, as estimated to be induced by charges situated at the centers of the spheres, differ significantly from the real force F of interaction between the spheres. In the case of zero and non-zero charge we prove that with increasing the distance between the two spheres, the force F decrease rapidly, virtually to zero values, i.e. it appears to be short-acting force.

  7. An experimental system for controlled exposure of biological samples to electrostatic discharges.

    PubMed

    Marjanovič, Igor; Kotnik, Tadej

    2013-12-01

    Electrostatic discharges occur naturally as lightning strokes, and artificially in light sources and in materials processing. When an electrostatic discharge interacts with living matter, the basic physical effects can be accompanied by biophysical and biochemical phenomena, including cell excitation, electroporation, and electrofusion. To study these phenomena, we developed an experimental system that provides easy sample insertion and removal, protection from airborne particles, observability during the experiment, accurate discharge origin positioning, discharge delivery into the sample either through an electric arc with adjustable air gap width or through direct contact, and reliable electrical insulation where required. We tested the system by assessing irreversible electroporation of Escherichia coli bacteria (15 mm discharge arc, 100 A peak current, 0.1 μs zero-to-peak time, 0.2 μs peak-to-halving time), and gene electrotransfer into CHO cells (7 mm discharge arc, 14 A peak current, 0.5 μs zero-to-peak time, 1.0 μs peak-to-halving time). Exposures to natural lightning stroke can also be studied with this system, as due to radial current dissipation, the conditions achieved by a stroke at a particular distance from its entry are also achieved by an artificial discharge with electric current downscaled in magnitude, but similar in time course, correspondingly closer to its entry. © 2013.

  8. Ion-acoustic and electron-acoustic type nonlinear waves in dusty plasmas

    NASA Astrophysics Data System (ADS)

    Volosevich, A.-V.; Meister, C.-V.

    2003-04-01

    In the present work, two three-dimensional nonlinear theoretical models of electrostatic solitary waves are investigated within the frame of magnetohydrodynamics. Both times, a multi-component plasma is considered, which consists of hot electrons with a rather flexible distribution function, hot ions with Boltzmann-type distribution, and (negatively as well as positively charged) dust. Additionally, cold ion beams are taken into account in the model to study ion-acoustic structures (IAS), and cold electron beams are included into the model to investigate electron-acoustic structures (EAS). The numerical results of the considered theoretical models allow to make the following conclusions: 1) Electrostatic structures with negative potential (of rarefaction type) are formed both in the IAS model and in the EAS model, but structures with negative potential (of compressional type) are formed in the IAS model only. 2) The intervals of various plasma parameters (velocities of ion and electron beams, temperatures, densities of the plasma components, ions' masses), for which the existence of IAS and EAS solitary waves and structures is possible, are calculated. 3) Further, the parameters of the electrostatic structures (wave amplitudes, scales along and perpendicular to the magnetic field, velocities) are estimated. 4) The application of the present numerical simulation for multi-component plasmas to various astrophysical systems under different physical conditions is discussed.

  9. An undergraduate laboratory experiment for measuring ɛ 0, μ 0 and speed of light c with do-it-yourself catastrophe machines: electrostatic and magnetostatic pendula

    NASA Astrophysics Data System (ADS)

    Mishonov, Todor M.; Varonov, Albert M.; Maksimovski, Dejan D.; Manolev, Stojan G.; Gourev, Vassil N.; Yordanov, Vasil G.

    2017-03-01

    An experimental set-up for electrostatic measurement of {\\varepsilon }0, separate magnetostatic measurement of {μ }0 and determination of the speed of light c=1/\\sqrt{{\\varepsilon }0{μ }0} according to Maxwell’s theory with percent accuracy is described. No forces are measured with the experimental set-up, therefore there is no need for a scale, and the experiment cost of less than £20 is mainly due to the batteries used. Multiplied 137 times, this experimental set-up was given at the Fourth Open International Experimental Physics Olympiad (EPO4) and a dozen high school students performed successful experiments. The experimental set-up actually contains two different pendula for electric and magnetic measurements. In the magnetic experiment the pendulum is constituted by a magnetic coil attracted to a fixed one. In the electrostatic pendulum when the distance between the plates becomes shorter than a critical value the suspended plate catastrophically sticks to the fixed one, while in the magnetic pendulum the same occurs when the current in the coils becomes greater than a certain critical value. The basic idea of the methodology is to use the loss of stability as a tool for the determination of fundamental constants.

  10. Electromagnetic theory of the nuclear interaction. Application to the deuteron {sup 2}H

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaeffer, Bernard

    2012-06-20

    Bieler of the Rutherford laboratory imagined in 1924 a magnetic attraction equilibrating an electrostatic repulsion between the protons. Since the discovery of the neutron and the magnetic moments of the nucleons proving that the neutron contains electric charges, nobody, as far as I know, has tried to apply electromagnetism to the nuclear interaction. The electrostatic and magnetic interactions are completely neglected except for a mean Coulomb repulsion. As it is well known, there is an attraction between an electric charge and a neutral conductor. In the neutron, the positive charges are repelled and the negative charges attracted by a nearbymore » proton. There is a net attraction explaining quantitatively the so-called strong force as it is shown in this paper. In the deuteron, the magnetic repulsion equilibrates the electrostatically induced neutron-proton attraction. The experimental value (- 2.2 MeV) is surrounded by - 1.6 MeV and - 2.5 MeV, depending on the calculation method. No arbitrary fitting parameter is used, only physical constants: it is a true ab initio calculation. The theoretical ratio between nuclear and chemical energies has been found to be (m{sub p}/m{sub e}{alpha}), proving that the usual assumption that the electromagnetic interaction is too feeble to predict the nuclear interaction is incorrect.« less

  11. The Effects Of Physical And Biological Cohesion On Bedforms

    NASA Astrophysics Data System (ADS)

    Parsons, D. R.; Schindler, R.; Baas, J.; Hope, J. A.; Malarkey, J.; Paterson, D. M.; Peakall, J.; Manning, A. J.; Ye, L.; Aspden, R.; Alan, D.; Bass, S. J.

    2014-12-01

    Most coastal sediments consist of complex mixtures of cohesionless sands, physically-cohesive clays and extra cellular polymeric substances (EPS) that impart biological cohesion. Yet, our ability to predict bedform dimensions in these substrates is reliant on predictions based exclusively on cohesionless sand. We present findings from the COHBED project - which explicitly examines how bedform dynamics are modified by natural cohesion. Our experimental results show that for ripples, height and length are inversely proportional to initial clay content and bedforms take longer to appear, with no ripples when clay content exceeds 18%. When clay is replaced by EPS the development time and time of first appearance of ripples both increase by two orders of magnitude, with no bedforms above 0.125% EPS. For dunes, height and length are also inversely proportional to initial substrate clay content, resulting in a transition from dunes to ripples normally associated with velocity decreases. Addition of low EPS concentrations into the substrate results in yet smaller bedforms at the same clay contents and at high EPS concentrations, biological cohesion supersedes all electrostatic bonding, and bedform size is no longer related to mud content. The contrast in physical and biological cohesion effects on bedform development result from the disparity between inter-particle electrostatic bonding of clay particles and EPS grain coating and strands that physically link sediments together, which effects winnowing rates as bedforms evolve. These findings have wide ranging implications for bedform predictions in both modern and ancient environments. Coupling of biological and morphological processes not only requires an understanding of how bedform dimensions influence biota and habitat, but also how benthic species can modify bedform dimensions. Consideration of both aspects provides a means in which fluid dynamics, sediment transport and ecosystem energetics can be linked to yield improved predictions of morphological and habitat adjustment.

  12. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  13. Nonlocal electrostatics in ionic liquids: The key to an understanding of the screening decay length and screened interactions.

    PubMed

    Kjellander, Roland

    2016-09-28

    Screened electrostatic interactions in ionic liquids are investigated by means of exact statistical mechanical analysis combined with physical arguments that enhance the transparency and conceptual accessibility of the analysis and results. The constituent ions and immersed particles in the liquid can have arbitrary shapes and any internal charge distributions. The decay of the screened electrostatic potential and the free energy of interaction in ionic liquids can be exponentially damped oscillatory (like in molten simple salts) as well as plain exponential and long-ranged (like in dilute electrolyte solutions). Both behaviors are in agreement with the exact statistical mechanical analysis and reasons for their appearances are investigated. Exact but surprisingly simple expressions for the decay parameter κ of the screened electrostatics are obtained, which replace the classical expression for the Debye-Hückel parameter κ DH (the reciprocal Debye length). The expressions are applicable both for cases with plain exponential and oscillatory behaviors. The key importance of nonlocal electrostatics is thereby demonstrated explicitly. Dielectric properties of ionic liquids and other electrolytes are investigated, in particular the static dielectric function ϵ̃(k) and some effective relative permittivities (E r eff and E r ∗ ), which take roles that the dielectric constant ε r has for polar liquids consisting of electroneutral molecules. The dielectric constant in the latter case, which is the limit of ϵ̃(k) when the wave number k → 0, can be expressed solely in terms of dipolar features of the molecules. In contrast to this, the effective dielectric permittivities of ionic liquids have contributions also from quadrupolar, octupolar, and higher multipolar features of the constituent ions. The "dielectric constant" of electrolytes does not exist since ϵ̃(k)→∞ when k → 0, a well-known effect of perfect screening. The effective relative permittivities, E r eff , and E r ∗ of ionic liquids are obtained from the non-diverging part of ϵ̃(k), but not as a k → 0 limit. Influences of ion associations, especially pairing, are investigated for screened electrostatics and these permittivities. A general, multipolar expansion of ϵ̃(k) is derived and used to analyze dielectric properties of ionic liquids and other electrolytes.

  14. Nonlocal electrostatics in ionic liquids: The key to an understanding of the screening decay length and screened interactions

    NASA Astrophysics Data System (ADS)

    Kjellander, Roland

    2016-09-01

    Screened electrostatic interactions in ionic liquids are investigated by means of exact statistical mechanical analysis combined with physical arguments that enhance the transparency and conceptual accessibility of the analysis and results. The constituent ions and immersed particles in the liquid can have arbitrary shapes and any internal charge distributions. The decay of the screened electrostatic potential and the free energy of interaction in ionic liquids can be exponentially damped oscillatory (like in molten simple salts) as well as plain exponential and long-ranged (like in dilute electrolyte solutions). Both behaviors are in agreement with the exact statistical mechanical analysis and reasons for their appearances are investigated. Exact but surprisingly simple expressions for the decay parameter κ of the screened electrostatics are obtained, which replace the classical expression for the Debye-Hückel parameter κDH (the reciprocal Debye length). The expressions are applicable both for cases with plain exponential and oscillatory behaviors. The key importance of nonlocal electrostatics is thereby demonstrated explicitly. Dielectric properties of ionic liquids and other electrolytes are investigated, in particular the static dielectric function ɛ ˜ ( k ) and some effective relative permittivities ( Er eff and Er ∗ ), which take roles that the dielectric constant ɛr has for polar liquids consisting of electroneutral molecules. The dielectric constant in the latter case, which is the limit of ɛ ˜ ( k ) when the wave number k → 0, can be expressed solely in terms of dipolar features of the molecules. In contrast to this, the effective dielectric permittivities of ionic liquids have contributions also from quadrupolar, octupolar, and higher multipolar features of the constituent ions. The "dielectric constant" of electrolytes does not exist since ɛ ˜ ( k ) → ∞ when k → 0, a well-known effect of perfect screening. The effective relative permittivities, Er eff , and Er ∗ of ionic liquids are obtained from the non-diverging part of ɛ ˜ ( k ) , but not as a k → 0 limit. Influences of ion associations, especially pairing, are investigated for screened electrostatics and these permittivities. A general, multipolar expansion of ɛ ˜ ( k ) is derived and used to analyze dielectric properties of ionic liquids and other electrolytes.

  15. PandASoft: Open Source Instructional Laboratory Administration Software

    NASA Astrophysics Data System (ADS)

    Gay, P. L.; Braasch, P.; Synkova, Y. N.

    2004-12-01

    PandASoft (Physics and Astronomy Software) is software for organizing and archiving a department's teaching resources and materials. An easy to use, secure interface allows faculty and staff to explore equipment inventories, see what laboratory experiments are available, find handouts, and track what has been used in different classes in the past. Divided into five sections: classes, equipment, laboratories, links, and media, its database cross links materials, allowing users to see what labs are used with which classes, what media and equipment are used with which labs, or simply what equipment is lurking in which room. Written in PHP and MySQL, this software can be installed on any UNIX / Linux platform, including Macintosh OS X. It is designed to allow users to easily customize the headers, footers and colors to blend with existing sites - no programming experience required. While initial data input is labor intensive, the system will save time later by allowing users to quickly answer questions related to what is in inventory, where it is located, how many are in stock, and where online they can learn more. It will also provide a central location for storing PDFs of handouts, and links to applets and cool sites at other universities. PandASoft comes with over 100 links to online resources pre-installed. We would like to thank Dr. Wolfgang Rueckner and the Harvard University Science Center for providing computers and resources for this project.

  16. SIRTF Tools for DIRT

    NASA Astrophysics Data System (ADS)

    Pound, M. W.; Wolfire, M. G.; Amarnath, N. S.

    2004-07-01

    The Dust InfraRed ToolBox (DIRT - a part of the Web Infrared ToolShed, or WITS {http://dustem.astro.umd.edu}) is a Java applet for modeling astrophysical processes in circumstellar shells around young and evolved stars. DIRT has been used by the astrophysics community for about 5 years. Users can automatically and efficiently search grids of pre-calculated models to fit their data. A large set of physical parameters and dust types are included in the model database, which contains over 500,000 models. We are adding new functionality to DIRT to support new missions like SIRTF and SOFIA. A new Instrument module allows for plotting of the model points convolved with the spatial and spectral responses of the selected instrument. This lets users better fit data from specific instruments. Currently, we have implemented modules for the Infrared Array Camera (IRAC) and Multiband Imaging Photometer (MIPS) on SIRTF. The models are based on the dust radiation transfer code of Wolfire & Cassinelli (1986) which accounts for multiple grain sizes and compositions. The model outputs are averaged over the instrument bands using the same weighting (νFν = constant) as the SIRTF data pipeline which allows the SIRTF data products to be compared directly with the model database. This work was supported in part by a NASA AISRP grant NAG 5-10751 and the SIRTF Legacy Science Program provided by NASA through an award issued by JPL under NASA contract 1407.

  17. 3Drefine: an interactive web server for efficient protein structure refinement.

    PubMed

    Bhattacharya, Debswapna; Nowotny, Jackson; Cao, Renzhi; Cheng, Jianlin

    2016-07-08

    3Drefine is an interactive web server for consistent and computationally efficient protein structure refinement with the capability to perform web-based statistical and visual analysis. The 3Drefine refinement protocol utilizes iterative optimization of hydrogen bonding network combined with atomic-level energy minimization on the optimized model using a composite physics and knowledge-based force fields for efficient protein structure refinement. The method has been extensively evaluated on blind CASP experiments as well as on large-scale and diverse benchmark datasets and exhibits consistent improvement over the initial structure in both global and local structural quality measures. The 3Drefine web server allows for convenient protein structure refinement through a text or file input submission, email notification, provided example submission and is freely available without any registration requirement. The server also provides comprehensive analysis of submissions through various energy and statistical feedback and interactive visualization of multiple refined models through the JSmol applet that is equipped with numerous protein model analysis tools. The web server has been extensively tested and used by many users. As a result, the 3Drefine web server conveniently provides a useful tool easily accessible to the community. The 3Drefine web server has been made publicly available at the URL: http://sysbio.rnet.missouri.edu/3Drefine/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Molecular basis of proton uptake in single and double mutants of cytochrome c oxidase

    NASA Astrophysics Data System (ADS)

    Henry, Rowan M.; Caplan, David; Fadda, Elisa; Pomès, Régis

    2011-06-01

    Cytochrome c oxidase, the terminal enzyme of the respiratory chain, utilizes the reduction of dioxygen into water to pump protons across the mitochondrial inner membrane. The principal pathway of proton uptake into the enzyme, the D channel, is a 2.5 nm long channel-like cavity named after a conserved, negatively charged aspartic acid (D) residue thought to help recruiting protons to its entrance (D132 in the first subunit of the S. sphaeroides enzyme). The single-point mutation of D132 to asparagine (N), a neutral residue, abolishes enzyme activity. Conversely, replacing conserved N139, one-third into the D channel, by D, induces a decoupled phenotype, whereby oxygen reduction proceeds but not proton pumping. Intriguingly, the double mutant D132N/N139D, which conserves the charge of the D channel, restores the wild-type phenotype. We use molecular dynamics simulations and electrostatic calculations to examine the structural and physical basis for the coupling of proton pumping and oxygen chemistry in single and double N139D mutants. The potential of mean force for the conformational isomerization of N139 and N139D side chains reveals the presence of three rotamers, one of which faces the channel entrance. This out-facing conformer is metastable in the wild-type and in the N139D single mutant, but predominant in the double mutant thanks to the loss of electrostatic repulsion with the carboxylate group of D132. The effects of mutations and conformational isomerization on the pKa of E286, an essential proton-shuttling residue located at the top of the D channel, are shown to be consistent with the electrostatic control of proton pumping proposed recently (Fadda et al 2008 Biochim. Biophys. Acta 1777 277-84). Taken together, these results suggest that preserving the spatial distribution of charges at the entrance of the D channel is necessary to guarantee both the uptake and the relay of protons to the active site of the enzyme. These findings highlight the interplay of long-range electrostatic forces and local structural fluctuations in the control of proton movement and provide a physical explanation for the restoration of proton pumping activity in the double mutant.

  19. Coordinated Research Program in Pulsed Power Physics.

    DTIC Science & Technology

    1984-12-20

    heated array of Inductive energy storage is attractive in pulsed power 375-/am-diameter thoriated tungsten filaments. At a flia- applications because of...control system electrostatical- ly. It is positioned 0.6 cm above the control grid. The grids and cathode are connected to external power supplies through...energy storage density becomes even larger (by a factor of - 10). One should note that these comparisons do not account for power supplies , cooling

  20. Energy harvesting from human motion: materials and techniques.

    PubMed

    Invernizzi, F; Dulio, S; Patrini, M; Guizzetti, G; Mustarelli, P

    2016-10-10

    Energy harvesting from human motion is a research field under rapid development. In this tutorial review we address the main physical and physico-chemical processes which can lead to energy generation, including electromagnetism, piezoelectricity, and electrostatic generation. Emphasis is put on the relationships among material properties and device efficiency. Some new and relatively less known approaches, such as triboelectric nanogeneration (TENG) and reverse electrowetting (REWOD), are reported in more detail.

  1. Status of the Electroforming Shield Design (ESD) project

    NASA Technical Reports Server (NTRS)

    Fletcher, R. E.

    1977-01-01

    The utilization of a digital computer to augment electrodeposition/electroforming processes in which nonconducting shielding controls local cathodic current distribution is reported. The primary underlying philosophy of the physics of electrodeposition was presented. The technical approach taken to analytically simulate electrolytic tank variables was also included. A FORTRAN computer program has been developed and implemented. The program utilized finite element techniques and electrostatic theory to simulate electropotential fields and ionic transport.

  2. Electrical interactions in the cell: Asymmetric screening in a watery antiverse.

    PubMed

    Doerr, T P; Yu, Yi-Kuo

    2014-05-01

    The problem of electrostatics in biomolecular systems presents an excellent opportunity for cross-disciplinary science and a context in which fundamental physics is called for to answer complex questions. Due to the large density in biological cells of charged biomacromolecules such as protein factors and DNA, it is challenging to understand quantitatively the electric forces in these systems. Two questions are especially puzzling. First, how is it that such a dense system of charged molecules does not simply aggregate in random and non-functional ways? Second, since some mechanism apparently prevents such aggregation, how is it that binding of biomolecules still occurs so reliably? Recognizing the role of water as a universal solvent in living systems is key to understanding these questions. We present a simplified physical model in which water is regarded as a medium of high dielectric constant that nevertheless exhibits the key features essential for answering the two questions presented. The answer to the first question lies in the strong screening ability of water, which reduces the energy scale of the electrostatic interactions. Furthermore, our model reveals the existence of asymmetric screening, a pronounced asymmetry between the screening for a system with like charges and that for a system with opposite charges, and this provides an answer to the second question.

  3. Electrical interactions in the cell: Asymmetric screening in a watery antiverse

    PubMed Central

    Doerr, T. P.; Yu, Yi-Kuo

    2014-01-01

    The problem of electrostatics in biomolecular systems presents an excellent opportunity for cross-disciplinary science and a context in which fundamental physics is called for to answer complex questions. Due to the large density in biological cells of charged biomacromolecules such as protein factors and DNA, it is challenging to understand quantitatively the electric forces in these systems. Two questions are especially puzzling. First, how is it that such a dense system of charged molecules does not simply aggregate in random and non-functional ways? Second, since some mechanism apparently prevents such aggregation, how is it that binding of biomolecules still occurs so reliably? Recognizing the role of water as a universal solvent in living systems is key to understanding these questions. We present a simplified physical model in which water is regarded as a medium of high dielectric constant that nevertheless exhibits the key features essential for answering the two questions presented. The answer to the first question lies in the strong screening ability of water, which reduces the energy scale of the electrostatic interactions. Furthermore, our model reveals the existence of asymmetric screening, a pronounced asymmetry between the screening for a system with like charges and that for a system with opposite charges, and this provides an answer to the second question. PMID:25125701

  4. Metriplectic Gyrokinetics and Discretization Methods for the Landau Collision Integral

    NASA Astrophysics Data System (ADS)

    Hirvijoki, Eero; Burby, Joshua W.; Kraus, Michael

    2017-10-01

    We present two important results for the kinetic theory and numerical simulation of warm plasmas: 1) We provide a metriplectic formulation of collisional electrostatic gyrokinetics that is fully consistent with the First and Second Laws of Thermodynamics. 2) We provide a metriplectic temporal and velocity-space discretization for the particle phase-space Landau collision integral that satisfies the conservation of energy, momentum, and particle densities to machine precision, as well as guarantees the existence of numerical H-theorem. The properties are demonstrated algebraically. These two result have important implications: 1) Numerical methods addressing the Vlasov-Maxwell-Landau system of equations, or its reduced gyrokinetic versions, should start from a metriplectic formulation to preserve the fundamental physical principles also at the discrete level. 2) The plasma physics community should search for a metriplectic reduction theory that would serve a similar purpose as the existing Lagrangian and Hamiltonian reduction theories do in gyrokinetics. The discovery of metriplectic formulation of collisional electrostatic gyrokinetics is strong evidence in favor of such theory and, if uncovered, the theory would be invaluable in constructing reduced plasma models. Supported by U.S. DOE Contract Nos. DE-AC02-09-CH11466 (EH) and DE-AC05-06OR23100 (JWB) and by European Union's Horizon 2020 research and innovation Grant No. 708124 (MK).

  5. Contact electrification of insulating materials

    NASA Astrophysics Data System (ADS)

    Lacks, Daniel J.; Mohan Sankaran, R.

    2011-11-01

    The electrostatic charge that is generated when two materials are contacted or rubbed and then separated is a well-known physical process that has been studied for more than 2500 years. Contact electrification occurs in many contexts, both natural and technological. For example, in dust storms the collisions between particles lead to electrostatic charging and in extreme cases, extraordinary lightning displays. In electrophotography, toner particles are intentionally charged to guide their deposition in well-defined patterns. Despite such a long history and so many important consequences, a fundamental understanding of the mechanism behind contact electrification remains elusive. An open question is what type of species are transferred between the surfaces to generate charge—experiments suggest various species ranging from electrons to ions to nanoscopic bits of material, and theoretical work suggests that non-equilibrium states may play an important role. Another open question is the contact electrification that occurs when two insulating materials with identical physical properties touch—since there is no apparent driving force, it is not clear why charge transfer occurs. A third open question involves granular systems—models and experiments have shown that a particle-size dependence for the charging often exists. In this review, we discuss the fundamental aspects of contact electrification and highlight recent research efforts aimed at understanding these open questions.

  6. Kelvin Probe Force Microscopy in liquid using Electrochemical Force Microscopy

    DOE PAGES

    Collins, Liam; Jesse, Stephen; Kilpatrick, J.; ...

    2015-01-19

    Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid-gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe-sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q watermore » and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias- and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.« less

  7. Extending the Solvation-Layer Interface Condition Continum Electrostatic Model to a Linearized Poisson-Boltzmann Solvent.

    PubMed

    Molavi Tabrizi, Amirhossein; Goossens, Spencer; Mehdizadeh Rahimi, Ali; Cooper, Christopher D; Knepley, Matthew G; Bardhan, Jaydeep P

    2017-06-13

    We extend the linearized Poisson-Boltzmann (LPB) continuum electrostatic model for molecular solvation to address charge-hydration asymmetry. Our new solvation-layer interface condition (SLIC)/LPB corrects for first-shell response by perturbing the traditional continuum-theory interface conditions at the protein-solvent and the Stern-layer interfaces. We also present a GPU-accelerated treecode implementation capable of simulating large proteins, and our results demonstrate that the new model exhibits significant accuracy improvements over traditional LPB models, while reducing the number of fitting parameters from dozens (atomic radii) to just five parameters, which have physical meanings related to first-shell water behavior at an uncharged interface. In particular, atom radii in the SLIC model are not optimized but uniformly scaled from their Lennard-Jones radii. Compared to explicit-solvent free-energy calculations of individual atoms in small molecules, SLIC/LPB is significantly more accurate than standard parametrizations (RMS error 0.55 kcal/mol for SLIC, compared to RMS error of 3.05 kcal/mol for standard LPB). On parametrizing the electrostatic model with a simple nonpolar component for total molecular solvation free energies, our model predicts octanol/water transfer free energies with an RMS error 1.07 kcal/mol. A more detailed assessment illustrates that standard continuum electrostatic models reproduce total charging free energies via a compensation of significant errors in atomic self-energies; this finding offers a window into improving the accuracy of Generalized-Born theories and other coarse-grained models. Most remarkably, the SLIC model also reproduces positive charging free energies for atoms in hydrophobic groups, whereas standard PB models are unable to generate positive charging free energies regardless of the parametrized radii. The GPU-accelerated solver is freely available online, as is a MATLAB implementation.

  8. Uncovering Specific Electrostatic Interactions in the Denatured States of Proteins

    PubMed Central

    Shen, Jana K.

    2010-01-01

    The stability and folding of proteins are modulated by energetically significant interactions in the denatured state that is in equilibrium with the native state. These interactions remain largely invisible to current experimental techniques, however, due to the sparse population and conformational heterogeneity of the denatured-state ensemble under folding conditions. Molecular dynamics simulations using physics-based force fields can in principle offer atomistic details of the denatured state. However, practical applications are plagued with the lack of rigorous means to validate microscopic information and deficiencies in force fields and solvent models. This study presents a method based on coupled titration and molecular dynamics sampling of the denatured state starting from the extended sequence under native conditions. The resulting denatured-state pKas allow for the prediction of experimental observables such as pH- and mutation-induced stability changes. I show the capability and use of the method by investigating the electrostatic interactions in the denatured states of wild-type and K12M mutant of NTL9 protein. This study shows that the major errors in electrostatics can be identified by validating the titration properties of the fragment peptides derived from the sequence of the intact protein. Consistent with experimental evidence, our simulations show a significantly depressed pKa for Asp8 in the denatured state of wild-type, which is due to a nonnative interaction between Asp8 and Lys12. Interestingly, the simulation also shows a nonnative interaction between Asp8 and Glu48 in the denatured state of the mutant. I believe the presented method is general and can be applied to extract and validate microscopic electrostatics of the entire folding energy landscape. PMID:20682271

  9. Electrostatically screened, voltage-controlled electrostatic chuck

    DOEpatents

    Klebanoff, Leonard Elliott

    2001-01-01

    Employing an electrostatically screened, voltage-controlled electrostatic chuck particularly suited for holding wafers and masks in sub-atmospheric operations will significantly reduce the likelihood of contaminant deposition on the substrates. The electrostatic chuck includes (1) an insulator block having a outer perimeter and a planar surface adapted to support the substrate and comprising at least one electrode (typically a pair of electrodes that are embedded in the insulator block), (2) a source of voltage that is connected to the at least one electrode, (3) a support base to which the insulator block is attached, and (4) a primary electrostatic shield ring member that is positioned around the outer perimeter of the insulator block. The electrostatic chuck permits control of the voltage of the lithographic substrate; in addition, it provides electrostatic shielding of the stray electric fields issuing from the sides of the electrostatic chuck. The shielding effectively prevents electric fields from wrapping around to the upper or front surface of the substrate, thereby eliminating electrostatic particle deposition.

  10. Kirlian Photography as a Teaching Tool of Physics

    NASA Astrophysics Data System (ADS)

    Terrel, Andy; Thacker, Beth Ann, , Dr.

    2002-10-01

    There are a number of groups across the country working on redesigning introductory physics courses by incorporating physics education research, modeling, and making the courses appeal to students in broader fields. We spent the summer exploring Kirlian photography, a subject that can be understood by students with a basic comprehension of electrostatics but is still questioned by many people in other fields. Kirlian photography's applications have captivated alternative medicine but still requires research from both physics and biology to understand if it has potential as medical tool. We used a simple setup to reproduce the physics that has been done to see if it could be used in an educational setting. I will demonstrate how Kirlian photography can be explained by physics but also how the topic still needs research to completely understand its possible biological applications. By incorporating such a topic into a curriculum, one is able to teach students to explore supposed supernatural phenomena scientifically and to promote research among undergraduate students.

  11. Study on the shrinkage behavior and conductivity of silver microwires during electrostatic field assisted sintering

    NASA Astrophysics Data System (ADS)

    Shangguan, Lei; Ma, Liuhong; Li, Mengke; Peng, Wei; Zhong, Yinghui; Su, Yufeng; Duan, Zhiyong

    2018-05-01

    An electrostatic field was applied to sintering Ag microwires to achieve a more compact structure and better conductivity. The shrinkage behavior of Ag microwires shows anisotropy, since bigger particle sizes, less micropores and smoother surfaces were observed in the direction of the electrostatic field in comparsion with the direction perpendicular to the electrostatic field, and the shrinkage rate of Ag microwires in the direction of electrostatic field improves about 2.4% with the electrostatic field intensity of 800 V cm‑1. The electrostatic field assisted sintering model of Ag microwires is proposed according to thermal diffuse dynamics analysis and experimental research. Moreover, the grain size of Ag microwres sintered with electrostatic field increases with the electrostatic field intensity and reaches 113 nm when the electrostatic field intensity is 800 V cm‑1, and the resistivity decreases to 2.07  ×  10‑8 Ω m as well. This method may overcome the restriction of metal wires which fabricated by the pseudoplastic metal nanoparticle fluid and be used as interconnects in nanoimprint lithography.

  12. Introduction to Plasma Physics

    NASA Astrophysics Data System (ADS)

    Gurnett, Donald A.; Bhattacharjee, Amitava

    2017-03-01

    Preface; 1. Introduction; 2. Characteristic parameters of a plasma; 3. Single particle motions; 4. Waves in a cold plasma; 5. Kinetic theory and the moment equations; 6. Magnetohydrodynamics; 7. MHD equilibria and stability; 8. Discontinuities and shock waves; 9. Electrostatic waves in a hot unmagnetized plasma; 10. Waves in a hot magnetized plasma; 11. Nonlinear effects; 12. Collisional processes; Appendix A. Symbols; Appendix B. Useful trigonometric identities; Appendix C. Vector differential operators; Appendix D. Vector calculus identities; Index.

  13. Wind tunnel simulation of Martian sand storms

    NASA Technical Reports Server (NTRS)

    Greeley, R.

    1980-01-01

    The physics and geological relationships of particles driven by the wind under near Martian conditions were examined in the Martian Surface Wind Tunnel. Emphasis was placed on aeolian activity as a planetary process. Threshold speeds, rates of erosion, trajectories of windblown particles, and flow fields over various landforms were among the factors considered. Results of experiments on particles thresholds, rates of erosion, and the effects of electrostatics on particles in the aeolian environment are presented.

  14. The USRA workshop report: Electrostatic fog dispersal

    NASA Technical Reports Server (NTRS)

    Davis, M. H. (Editor)

    1983-01-01

    The Workshop was held at the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, on February 1-2, 1983. The Workshop was attended by seventeen experts in the scientific fields of fog and cloud physics, charged-particle electrodynamics, atmospheric turbulence, atmospheric electricity, and electro-gasdynamics. The major objective of the Workshop was to assess the scientific merits and scientific basis of the proposed system and to assess its potential for operational application.

  15. Crime scene units: a look to the future

    NASA Astrophysics Data System (ADS)

    Baldwin, Hayden B.

    1999-02-01

    The scientific examination of physical evidence is well recognized as a critical element in conducting successful criminal investigations and prosecutions. The forensic science field is an ever changing discipline. With the arrival of DNA, new processing techniques for latent prints, portable lasers, and electro-static dust print lifters, and training of evidence technicians has become more important than ever. These scientific and technology breakthroughs have increased the possibility of collecting and analyzing physical evidence that was never possible before. The problem arises with the collection of physical evidence from the crime scene not from the analysis of the evidence. The need for specialized units in the processing of all crime scenes is imperative. These specialized units, called crime scene units, should be trained and equipped to handle all forms of crime scenes. The crime scenes units would have the capability to professionally evaluate and collect pertinent physical evidence from the crime scenes.

  16. Intertwining evidence- and model-based reasoning in physics sensemaking: An example from electrostatics

    NASA Astrophysics Data System (ADS)

    Russ, Rosemary S.; Odden, Tor Ole B.

    2017-12-01

    Our field has long valued the goal of teaching students not just the facts of physics, but also the thinking and reasoning skills of professional physicists. The complexity inherent in scientific reasoning demands that we think carefully about how we conceptualize for ourselves, enact in our classes, and encourage in our students the relationship between the multifaceted practices of professional science. The current study draws on existing research in the philosophy of science and psychology to advocate for intertwining two important aspects of scientific reasoning: using evidence from experimentation and modeling. We present a case from an undergraduate physics course to illustrate how these aspects can be intertwined productively and describe specific ways in which these aspects of reasoning can mutually reinforce one another in student learning. We end by discussing implications for this work for instruction in introductory physics courses and for research on scientific reasoning at the undergraduate level.

  17. Harmonic field in knotted space

    NASA Astrophysics Data System (ADS)

    Duan, Xiuqing; Yao, Zhenwei

    2018-04-01

    Knotted fields enrich a variety of physical phenomena, ranging from fluid flows, electromagnetic fields, to textures of ordered media. Maxwell's electrostatic equations, whose vacuum solution is mathematically known as a harmonic field, provide an ideal setting to explore the role of domain topology in determining physical fields in confined space. In this work, we show the uniqueness of a harmonic field in knotted tubes, and reduce the construction of a harmonic field to a Neumann boundary value problem. By analyzing the harmonic field in typical knotted tubes, we identify the torsion driven transition from bipolar to vortex patterns. We also analogously extend our discussion to the organization of liquid crystal textures in knotted tubes. These results further our understanding about the general role of topology in shaping a physical field in confined space, and may find applications in the control of physical fields by manipulation of surface topology.

  18. A mathematical model for predicting photo-induced voltage and photostriction of PLZT with coupled multi-physics fields and its application

    NASA Astrophysics Data System (ADS)

    Huang, J. H.; Wang, X. J.; Wang, J.

    2016-02-01

    The primary purpose of this paper is to propose a mathematical model of PLZT ceramic with coupled multi-physics fields, e.g. thermal, electric, mechanical and light field. To this end, the coupling relationships of multi-physics fields and the mechanism of some effects resulting in the photostrictive effect are analyzed theoretically, based on which a mathematical model considering coupled multi-physics fields is established. According to the analysis and experimental results, the mathematical model can explain the hysteresis phenomenon and the variation trend of the photo-induced voltage very well and is in agreement with the experimental curves. In addition, the PLZT bimorph is applied as an energy transducer for a photovoltaic-electrostatic hybrid actuated micromirror, and the relation of the rotation angle and the photo-induced voltage is discussed based on the novel photostrictive mathematical model.

  19. WebGLORE: a Web service for Grid LOgistic REgression

    PubMed Central

    Jiang, Wenchao; Li, Pinghao; Wang, Shuang; Wu, Yuan; Xue, Meng; Ohno-Machado, Lucila; Jiang, Xiaoqian

    2013-01-01

    WebGLORE is a free web service that enables privacy-preserving construction of a global logistic regression model from distributed datasets that are sensitive. It only transfers aggregated local statistics (from participants) through Hypertext Transfer Protocol Secure to a trusted server, where the global model is synthesized. WebGLORE seamlessly integrates AJAX, JAVA Applet/Servlet and PHP technologies to provide an easy-to-use web service for biomedical researchers to break down policy barriers during information exchange. Availability and implementation: http://dbmi-engine.ucsd.edu/webglore3/. WebGLORE can be used under the terms of GNU general public license as published by the Free Software Foundation. Contact: x1jiang@ucsd.edu PMID:24072732

  20. ASERA: A Spectrum Eye Recognition Assistant

    NASA Astrophysics Data System (ADS)

    Yuan, Hailong; Zhang, Haotong; Zhang, Yanxia; Lei, Yajuan; Dong, Yiqiao; Zhao, Yongheng

    2018-04-01

    ASERA, ASpectrum Eye Recognition Assistant, aids in quasar spectral recognition and redshift measurement and can also be used to recognize various types of spectra of stars, galaxies and AGNs (Active Galactic Nucleus). This interactive software allows users to visualize observed spectra, superimpose template spectra from the Sloan Digital Sky Survey (SDSS), and interactively access related spectral line information. ASERA is an efficient and user-friendly semi-automated toolkit for the accurate classification of spectra observed by LAMOST (the Large Sky Area Multi-object Fiber Spectroscopic Telescope) and is available as a standalone Java application and as a Java applet. The software offers several functions, including wavelength and flux scale settings, zoom in and out, redshift estimation, and spectral line identification.

  1. Protein electrostatics: a review of the equations and methods used to model electrostatic equations in biomolecules--applications in biotechnology.

    PubMed

    Neves-Petersen, Maria Teresa; Petersen, Steffen B

    2003-01-01

    The molecular understanding of the initial interaction between a protein and, e.g., its substrate, a surface or an inhibitor is essentially an understanding of the role of electrostatics in intermolecular interactions. When studying biomolecules it is becoming increasingly evident that electrostatic interactions play a role in folding, conformational stability, enzyme activity and binding energies as well as in protein-protein interactions. In this chapter we present the key basic equations of electrostatics necessary to derive the equations used to model electrostatic interactions in biomolecules. We will also address how to solve such equations. This chapter is divided into two major sections. In the first part we will review the basic Maxwell equations of electrostatics equations called the Laws of Electrostatics that combined will result in the Poisson equation. This equation is the starting point of the Poisson-Boltzmann (PB) equation used to model electrostatic interactions in biomolecules. Concepts as electric field lines, equipotential surfaces, electrostatic energy and when can electrostatics be applied to study interactions between charges will be addressed. In the second part we will arrive at the electrostatic equations for dielectric media such as a protein. We will address the theory of dielectrics and arrive at the Poisson equation for dielectric media and at the PB equation, the main equation used to model electrostatic interactions in biomolecules (e.g., proteins, DNA). It will be shown how to compute forces and potentials in a dielectric medium. In order to solve the PB equation we will present the continuum electrostatic models, namely the Tanford-Kirkwood and the modified Tandord-Kirkwood methods. Priority will be given to finding the protonation state of proteins prior to solving the PB equation. We also present some methods that can be used to map and study the electrostatic potential distribution on the molecular surface of proteins. The combination of graphical visualisation of the electrostatic fields combined with knowledge about the location of key residues on the protein surface allows us to envision atomic models for enzyme function. Finally, we exemplify the use of some of these methods on the enzymes of the lipase family.

  2. Investigation of Electrostatic Accelerometer in HUST for Space Science Missions

    NASA Astrophysics Data System (ADS)

    Bai, Yanzheng; Hu, Ming; Li, Gui; Liu, Li; Qu, Shaobo; Wu, Shuchao; Zhou, Zebing

    2014-05-01

    High-precision electrostatic accelerometers are significant payload in CHAMP, GRACE and GOCE gravity missions to measure the non-gravitational forces. In our group, space electrostatic accelerometer and inertial sensor based on the capacitive sensors and electrostatic control technique has been investigated for space science research in China such as testing of equivalence principle (TEPO), searching non-Newtonian force in micrometer range, satellite Earth's field recovery and so on. In our group, a capacitive position sensor with a resolution of 10-7pF/Hz1/2 and the μV/Hz1/2 level electrostatic actuator are developed. The fiber torsion pendulum facility is adopt to measure the parameters of the electrostatic controlled inertial sensor such as the resolution, and the electrostatic stiffness, the cross couple between different DOFs. Meanwhile, high voltage suspension and free fall methods are applied to verify the function of electrostatic accelerometer. Last, the engineering model of electrostatic accelerometer has been developed and tested successfully in space and preliminary results are present.

  3. Electrostatic-Force-Assisted Dispensing Printing to Construct High-Aspect-Ratio of 0.79 Electrodes on a Textured Surface with Improved Adhesion and Contact Resistivity

    PubMed Central

    Shin, Dong-Youn; Yoo, Sung-Soo; Song, Hee-eun; Tak, Hyowon; Byun, Doyoung

    2015-01-01

    As a novel route to construct fine and abnormally high-aspect-ratio electrodes with excellent adhesion and reduced contact resistivity on a textured surface, an electrostatic-force-assisted dispensing printing technique is reported and compared with conventional dispensing and electrohydrodynamic jet printing techniques. The electrostatic force applied between a silver paste and the textured surface of a crystalline silicon solar cell wafer significantly improves the physical adhesion of the electrodes, whereas those fabricated using a conventional dispensing printing technique peel off with a silver paste containing 2 wt% of a fluorosurfactant. Moreover, the contact resistivity and dimensionless deviation of total resistance are significantly reduced from 2.19 ± 1.53 mΩ·cm2 to 0.98 ± 0.92 mΩ·cm2 and from 0.10 to 0.03, respectively. By utilizing electrodes with an abnormally high-aspect-ratio of 0.79 (the measured thickness and width are 30.4 μm and 38.3 μm, respectively), the cell efficiency is 17.2% on a polycrystalline silicon solar cell with an emitter sheet resistance of 60 Ω/sq. This cell efficiency is considerably higher than previously reported values obtained using a conventional electrohydrodynamic jet printing technique, by +0.48–3.5%p. PMID:26576857

  4. Development And Testing Of The Inertial Electrostatic Confinement Diffusion Thruster

    NASA Technical Reports Server (NTRS)

    Becnel, Mark D.; Polzin, Kurt A.

    2013-01-01

    The Inertial Electrostatic Confinement (IEC) diffusion thruster is an experiment in active development that takes advantage of physical phenomenon that occurs during operation of an IEC device. The IEC device has been proposed as a fusion reactor design that relies on traditional electrostatic ion acceleration and is typically arranged in a spherical geometry. The design incorporates two radially-symmetric spherical electrodes. Often the inner electrode utilizes a grid of wire shaped in a sphere with a radius 15 to 50 percent of the radius of the outer electrode. The inner electrode traditionally has 90 percent or more transparency to allow particles (ions) to pass to the center of the spheres and collide/recombine in the dense plasma core at r=0. When operating the IEC, an unsteady plasma leak is typically observed passing out one of the gaps in the lattice grid of the inner electrode. The IED diffusion thruster is based upon the idea that this plasma leak can be used for propulsive purposes. The IEC diffusion thruster utilizes the radial symmetry found in the IEC device. A cylindrical configuration is employed here as it will produce a dense core of plasma the length of the cylindrical grid while promoting the plasma leak to exhaust through an electromagnetic nozzle at one end of the apparatus. A proof-of-concept IEC diffusion thruster is operational and under testing using argon as propellant (Figure 1).

  5. Cigarette Smoke Cadmium Breakthrough from Traditional Filters: Implications for Exposure

    PubMed Central

    Pappas, R. Steven; Fresquez, Mark R.; Watson, Clifford H.

    2015-01-01

    Cadmium, a carcinogenic metal, is highly toxic to renal, skeletal, nervous, respiratory, and cardiovascular systems. Accurate and precise quantification of mainstream smoke cadmium levels in cigarette smoke is important because of exposure concerns. The two most common trapping techniques for collecting mainstream tobacco smoke particulate for analysis are glass fiber filters and electrostatic precipitators. We observed that a significant portion of total cadmium passed through standard glass fiber filters that are used to trap particulate matter. We therefore developed platinum traps to collect the cadmium that passed through the filters and tested a variety of cigarettes with different physical parameters for quantities of cadmium that passed though the filters. We found less than 1% cadmium passed through electrostatic precipitators. In contrast, cadmium that passed through 92 mm glass fiber filters on a rotary smoking machine was significantly higher, ranging from 3.5% to 22.9% of total smoke cadmium deliveries. Cadmium passed through 44 mm filters typically used on linear smoking machines to an even greater degree, ranging from 13.6% to 30.4% of the total smoke cadmium deliveries. Differences in the cadmium that passed through from the glass fiber filters and electrostatic precipitator could be explained in part if cadmium resides in the smaller mainstream smoke aerosol particle sizes. Differences in particle size distribution could have toxicological implications and could help explain the pulmonary and cardiovascular cadmium uptake in smokers. PMID:25313385

  6. Electrostatic powder coatings of pristine graphene: A new approach for coating of granular and fibril substrates

    NASA Astrophysics Data System (ADS)

    Nine, Md J.; Kabiri, Shervin; Tung, Tran Thanh; Tran, Diana N. H.; Losic, Dusan

    2018-05-01

    The use of pristine graphene (pG) based on solution processed coating technologies is often limited by their poor dispersibility in water and organic solvents which prevents to achieve the best performing properties of pG in coating applications. To address these limitations, we developed a dispersant-free coating approach of pG based on their intrinsic solid-lubricity and interlayer electrostatic interactions. The "rotating drum" method was established to provide suitable conditions for electrostatic deposition of pG-powder which is demonstrated on two model substrates with granular and fibril morphologies (urea and acrylic fibers) to improve their physical and electrical properties. The results showed that the pG coating enables to minimize moisture induced caking tendency of commercial urea prills at a relative humidity (RH) of 85% (higher than critical humidity) exhibiting greater moisture rejection ability (∼2 times higher than uncoated urea) and to improve their anti-abrasive properties. The pG-powder coating applied on nonconductive acrylic fibers provides a stable conductive layer (∼0.8 ± 0.1 kΩ/sq) which made them suitable for using in wearable electronics, sensors and electromagnetic interference (EMI) shielding. The developed coating method for pG-powder based on "rotating drum" is generic, simple, eco-friendly, low-cost, and scalable for broad range of coating applications.

  7. Measurements of electrostatic double layer potentials with atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Giamberardino, Jason

    The aim of this thesis is to provide a thorough description of the development of theory and experiment pertaining to the electrostatic double layer (EDL) in aqueous electrolytic systems. The EDL is an important physical element of many systems and its behavior has been of interest to scientists for many decades. Because many areas of science and engineering move to test, build, and understand systems at smaller and smaller scales, this work focuses on nanoscopic experimental investigations of the EDL. In that vein, atomic force microscopy (AFM) will be introduced and discussed as a tool for making high spatial resolution measurements of the solid-liquid interface, culminating in a description of the development of a method for completely characterizing the EDL. This thesis first explores, in a semi-historical fashion, the development of the various models and theories that are used to describe the electrostatic double layer. Later, various experimental techniques and ideas are addressed as ways to make measurements of interesting characteristics of the EDL. Finally, a newly developed approach to measuring the EDL system with AFM is introduced. This approach relies on both implementation of existing theoretical models with slight modifications as well as a unique experimental measurement scheme. The model proposed clears up previous ambiguities in definitions of various parameters pertaining to measurements of the EDL and also can be used to fully characterize the system in a way not yet demonstrated.

  8. Electrostatics in protein–protein docking

    PubMed Central

    Heifetz, Alexander; Katchalski-Katzir, Ephraim; Eisenstein, Miriam

    2002-01-01

    A novel geometric-electrostatic docking algorithm is presented, which tests and quantifies the electrostatic complementarity of the molecular surfaces together with the shape complementarity. We represent each molecule to be docked as a grid of complex numbers, storing information regarding the shape of the molecule in the real part and information regarding the electrostatic character of the molecule in the imaginary part. The electrostatic descriptors are derived from the electrostatic potential of the molecule. Thus, the electrostatic character of the molecule is represented as patches of positive, neutral, or negative values. The potential for each molecule is calculated only once and stored as potential spheres adequate for exhaustive rotation/translation scans. The geometric-electrostatic docking algorithm is applied to 17 systems, starting form the structures of the unbound molecules. The results—in terms of the complementarity scores of the nearly correct solutions, their ranking in the lists of sorted solutions, and their statistical uniqueness—are compared with those of geometric docking, showing that the inclusion of electrostatic complementarity in docking is very important, in particular in docking of unbound structures. Based on our results, we formulate several "good electrostatic docking rules": The geometric-electrostatic docking procedure is more successful than geometric docking when the potential patches are large and when the potential extends away from the molecular surface and protrudes into the solvent. In contrast, geometric docking is recommended when the electrostatic potential around the molecules to be docked appears homogenous, that is, with a similar sign all around the molecule. PMID:11847280

  9. Electrostatic potential map modelling with COSY Infinity

    NASA Astrophysics Data System (ADS)

    Maloney, J. A.; Baartman, R.; Planche, T.; Saminathan, S.

    2016-06-01

    COSY Infinity (Makino and Berz, 2005) is a differential-algebra based simulation code which allows accurate calculation of transfer maps to arbitrary order. COSY's existing internal procedures were modified to allow electrostatic elements to be specified using an array of field potential data from the midplane. Additionally, a new procedure was created allowing electrostatic elements and their fringe fields to be specified by an analytic function. This allows greater flexibility in accurately modelling electrostatic elements and their fringe fields. Applied examples of these new procedures are presented including the modelling of a shunted electrostatic multipole designed with OPERA, a spherical electrostatic bender, and the effects of different shaped apertures in an electrostatic beam line.

  10. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding.

    PubMed

    Tsai, Min-Yeh; Zheng, Weihua; Balamurugan, D; Schafer, Nicholas P; Kim, Bobby L; Cheung, Margaret S; Wolynes, Peter G

    2016-01-01

    While being long in range and therefore weakly specific, electrostatic interactions are able to modulate the stability and folding landscapes of some proteins. The relevance of electrostatic forces for steering the docking of proteins to each other is widely acknowledged, however, the role of electrostatics in establishing specifically funneled landscapes and their relevance for protein structure prediction are still not clear. By introducing Debye-Hückel potentials that mimic long-range electrostatic forces into the Associative memory, Water mediated, Structure, and Energy Model (AWSEM), a transferable protein model capable of predicting tertiary structures, we assess the effects of electrostatics on the landscapes of thirteen monomeric proteins and four dimers. For the monomers, we find that adding electrostatic interactions does not improve structure prediction. Simulations of ribosomal protein S6 show, however, that folding stability depends monotonically on electrostatic strength. The trend in predicted melting temperatures of the S6 variants agrees with experimental observations. Electrostatic effects can play a range of roles in binding. The binding of the protein complex KIX-pKID is largely assisted by electrostatic interactions, which provide direct charge-charge stabilization of the native state and contribute to the funneling of the binding landscape. In contrast, for several other proteins, including the DNA-binding protein FIS, electrostatics causes frustration in the DNA-binding region, which favors its binding with DNA but not with its protein partner. This study highlights the importance of long-range electrostatics in functional responses to problems where proteins interact with their charged partners, such as DNA, RNA, as well as membranes. © 2015 The Protein Society.

  11. Effects of dielectric inhomogeneity on electrostatic twist rigidity of a helical biomolecule in Debye-Hückel regime

    NASA Astrophysics Data System (ADS)

    Rezaie-Dereshgi, Amir; Mohammad-Rafiee, Farshid

    2018-04-01

    The electrostatic interactions play a crucial role in biological systems. Here we consider an impermeable dielectric molecule in the solvent with a different dielectric constant. The electrostatic free energy in the problem is studied in the Debye-Hückel regime using the analytical Green function that is calculated in the paper. Using this electrostatic free energy, we study the electrostatic contribution to the twist rigidity of a double stranded helical molecule such as a DNA and an actin filament. The dependence of the electrostatic twist rigidity of the molecule to the dielectric inhomogeneity, structural parameters, and the salt concentration is studied. It is shown that, depending on the parameters, the electrostatic twist rigidity could be positive or negative.

  12. Assessment and control of electrostatic charges. [hazards to space missions

    NASA Technical Reports Server (NTRS)

    Barrett, M.

    1974-01-01

    The experience is described of NASA and DOD with electrostatic problems, generation mechanisms, and type of electrostatic hazards. Guidelines for judging possible effects of electrostatic charges on space missions are presented along with mathematical formulas and definitions.

  13. Modulating capacitive response of MoS2 flake by controlled nanostructuring through focused laser irradiation.

    PubMed

    Rani, Renu; Kundu, Anirban; Balal, Mohammad; Sheet, Goutam; Hazra, Kiran Shankar

    2018-08-24

    Unlike graphene nanostructures, various physical properties of nanostructured MoS 2 have remained unexplored due to the lack of established fabrication routes. Herein, we have reported unique electrostatic properties of MoS 2 nanostructures, fabricated in a controlled manner of different geometries on 2D flake by using focused laser irradiation technique. Electrostatic force microscopy has been carried out on MoS 2 nanostructures by varying tip bias voltage and lift height. The analysis depicts no contrast flip in phase image of the patterned nanostructure due to the absence of free surface charges. However, prominent change in phase shift at the patterned area is observed. Such contrast changes signify the capacitive interaction between tip and nanostructures at varying tip bias voltage and lift height, irrespective of their shape and size. Such unperturbed capacitive behavior of the MoS 2 nanostructures offer modulation of capacitance in periodic array on 2D MoS 2 flake for potential application in capacitive devices.

  14. Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport

    DOE PAGES

    Zhang, Yingjie; Hellebusch, Daniel J.; Bronstein, Noah D.; ...

    2016-06-21

    The sensitivity of semiconductor photodetectors is limited by photocarrier recombination during the carrier transport process. We developed a new photoactive material that reduces recombination by physically separating hole and electron charge carriers. This material has a specific detectivity (the ability to detect small signals) of 5 × 10 17 Jones, the highest reported in visible and infrared detectors at room temperature, and 4-5 orders of magnitude higher than that of commercial single-crystal silicon detectors. The material was fabricated by sintering chloride-capped CdTe nanocrystals into polycrystalline films, where Cl selectively segregates into grain boundaries acting as n-type dopants. Photogenerated electrons concentratemore » in and percolate along the grain boundaries - a network of energy valleys, while holes are confined in the grain interiors. This electrostatic field-assisted carrier separation and percolation mechanism enables an unprecedented photoconductive gain of 10 10 e - per photon, and allows for effective control of the device response speed by active carrier quenching.« less

  15. The physics of W transport illuminated by recent progress in W density diagnostics at ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Odstrcil, T.; Pütterich, T.; Angioni, C.; Bilato, R.; Gude, A.; Odstrcil, M.; ASDEX Upgrade Team; the EUROfusion MST1 Team

    2018-01-01

    Due to the high mass and charge of the heavy ions, centrifugal and electrostatic forces cause a significant variation in their poloidal density. The impact of these forces on the poloidal density profile of tungsten was investigated utilizing the detailed two-dimensional SXR emissivity profiles from the ASDEX Upgrade tokamak. The perturbation in the electrostatic potential generated by magnetic trapping of the non-thermal ions from neutral beam injection was found to be responsible for significant changes in the poloidal distribution of tungsten ions. An excellent match with the results from fast particle modeling was obtained, validating the model for the poloidal fast particle distribution. Additionally, an enhancement of the neoclassical transport due to an outboard side impurity localization was measured in the experiment when analyzing the tungsten flux between sawtooth crashes. A qualitative match with neoclassical modeling was found, demonstrating the possibility of minimizing neoclassical transport by an optimization of the poloidal asymmetry profile of the impurity.

  16. Electrostatic attraction of coupled Wigner crystals: finite temperature effects.

    PubMed

    Lau, A W; Pincus, P; Levine, D; Fertig, H A

    2001-05-01

    In this paper we present a unified physical picture for the electrostatic attraction between two coupled planar Wigner crystals at finite temperature. This model may facilitate our conceptual understanding of counterion-mediated attractions between (highly) similarly charged planes. By adopting an elastic theory, we show that the total attractive force between them can be (approximately) decomposed into a short-ranged and a long-ranged component. They are evaluated below the melting temperature of the Wigner crystals. In particular, we analyze the temperature dependence of the short-ranged attraction, arising from ground-state configuration, and we argue that thermal fluctuations may drastically reduce its strength. Also, the long-range force agrees exactly with that based on the charge-fluctuation approach. Furthermore, we take quantum contributions to the long-ranged (fluctuation-induced) attraction into account and show how the fractional power law, which scales as d(-7/2) for large interplanar distance d at zero temperature, crosses over to the classical regime d(-3) via an intermediate regime of d(-2).

  17. MMS Observations of Ion-Scale Magnetic Island in the Magnetosheath Turbulent Plasma

    NASA Technical Reports Server (NTRS)

    Huang, S. Y.; Sahraoui, F.; Retino, A.; Contel, O. Le; Yuan, Z. G.; Chasapis, A.; Aunai, N.; Breuillard, H.; Deng, X. H.; Zhou, M.; hide

    2016-01-01

    In this letter, first observations of ion-scale magnetic island from the Magnetospheric Multiscale mission in the magnetosheath turbulent plasma are presented. The magnetic island is characterized by bipolar variation of magnetic fields with magnetic field compression, strong core field, density depletion, and strong currents dominated by the parallel component to the local magnetic field. The estimated size of magnetic island is about 8 di, where di is the ion inertial length. Distinct particle behaviors and wave activities inside and at the edges of the magnetic island are observed: parallel electron beam accompanied with electrostatic solitary waves and strong electromagnetic lower hybrid drift waves inside the magnetic island and bidirectional electron beams, whistler waves, weak electromagnetic lower hybrid drift waves, and strong broadband electrostatic noise at the edges of the magnetic island. Our observations demonstrate that highly dynamical, strong wave activities and electron-scale physics occur within ion-scale magnetic islands in the magnetosheath turbulent plasma..

  18. Ultrasensitive photodetectors exploiting electrostatic trapping and percolation transport

    PubMed Central

    Zhang, Yingjie; Hellebusch, Daniel J.; Bronstein, Noah D.; Ko, Changhyun; Ogletree, D. Frank; Salmeron, Miquel; Alivisatos, A. Paul

    2016-01-01

    The sensitivity of semiconductor photodetectors is limited by photocarrier recombination during the carrier transport process. We developed a new photoactive material that reduces recombination by physically separating hole and electron charge carriers. This material has a specific detectivity (the ability to detect small signals) of 5 × 1017 Jones, the highest reported in visible and infrared detectors at room temperature, and 4–5 orders of magnitude higher than that of commercial single-crystal silicon detectors. The material was fabricated by sintering chloride-capped CdTe nanocrystals into polycrystalline films, where Cl selectively segregates into grain boundaries acting as n-type dopants. Photogenerated electrons concentrate in and percolate along the grain boundaries—a network of energy valleys, while holes are confined in the grain interiors. This electrostatic field-assisted carrier separation and percolation mechanism enables an unprecedented photoconductive gain of 1010 e− per photon, and allows for effective control of the device response speed by active carrier quenching. PMID:27323904

  19. Edge resonant fluctuations and particle transport in a reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Möller, A.

    1998-12-01

    Electrostatic fluctuations are measured in the Extrap T2 reversed-field pinch [J. R. Drake et al., in Plasma Physics and Controlled Nuclear Fusion Research 1996 (International Atomic Energy Agency, Vienna, 1997), Vol. 2, pp. 193-199] using a Langmuir probe array. The electrostatic fluctuation, driven particle transport ΓnΦ is derived and found to constitute a large fraction of the total particle transport. The spectral density of all measured quantities exhibits a peak in the frequency range 100-250 kHz, which originates from fluctuations that are resonant close to the edge [n=-(40-80)]. This peak contains only about 10-20% of the total fluctuation power, but is shown to dominate ΓnΦ. The main reason for this is the high toroidal mode number as compared with internally resonant magnetohydrodynamic fluctuations. The edge resonant fluctuations also features a higher coherence (γ=0.5) and close to 90° phase shift between density and potential fluctuations.

  20. Structure and stability of charged colloid-nanoparticle mixtures

    NASA Astrophysics Data System (ADS)

    Weight, Braden M.; Denton, Alan R.

    2018-03-01

    Physical properties of colloidal materials can be modified by addition of nanoparticles. Within a model of like-charged mixtures of particles governed by effective electrostatic interactions, we explore the influence of charged nanoparticles on the structure and thermodynamic phase stability of charge-stabilized colloidal suspensions. Focusing on salt-free mixtures of particles of high size and charge asymmetry, interacting via repulsive Yukawa effective pair potentials, we perform molecular dynamics simulations and compute radial distribution functions and static structure factors. Analysis of these structural properties indicates that increasing the charge and concentration of nanoparticles progressively weakens correlations between charged colloids. We show that addition of charged nanoparticles to a suspension of like-charged colloids can induce a colloidal crystal to melt and can facilitate aggregation of a fluid suspension due to attractive van der Waals interactions. We attribute the destabilizing influence of charged nanoparticles to enhanced screening of electrostatic interactions, which weakens repulsion between charged colloids. This interpretation is consistent with recent predictions of an effective interaction theory of charged colloid-nanoparticle mixtures.

  1. A new, simple electrostatic-acoustic hybrid levitator

    NASA Technical Reports Server (NTRS)

    Lierke, E. G.; Loeb, H.; Gross, D.

    1990-01-01

    Battelle has developed a hybrid levitator by combining the known single-axis acoustic standing wave levitator with a coaxial DC electric field. The resulting Coulomb forces on the charged liquid or solid sample support its weight and, together with the acoustic force, center the sample. Liquid samples with volumes approximately less than 100 micro-liters are deployed from a syringe reservoir into the acoustic pressure node. The sample is charged using a miniature high voltage power supply (approximately less than 20 kV) connected to the syringe needle. As the electric field, generated by a second miniature power supply, is increased, the acoustic intensity is reduced. The combination of both fields allows stable levitation of samples larger than either single technique could position on the ground. Decreasing the acoustic intensity reduces acoustic convection and sample deformation. Neither the electrostatic nor the acoustic field requires sample position sensing or active control. The levitator, now used for static and dynamic fluid physics investigations on the ground, can be easily modified for space operations.

  2. Carbon Nanotube/Conductive Additive/Space Durable Polymer Nanocomposite Films for Electrostatic Charge Dissipation

    NASA Technical Reports Server (NTRS)

    Smith, Joseph G., Jr.; Watson, Kent A.; Delozier, Donavon M.; Connell, John W.

    2003-01-01

    Thin film membranes of space environmentally stable polymeric materials possessing low color/solar absorptivity (alpha) are of interest for potential applications on Gossamer spacecraft. In addition to these properties, sufficient electrical conductivity is required in order to dissipate electrostatic charge (ESC) build-up brought about by the charged orbital environment. One approach to achieve sufficient electrical conductivity for ESC mitigation is the incorporation of single wall carbon nanotubes (SWNTs). However, when the SWNTs are dispersed throughout the polymer matrix, the nanocomposite films tend to be significantly darker than the pristine material resulting in a higher alpha. The incorporation of conductive additives in combination with a decreased loading level of SWNTs is one approach for improving alpha while retaining conductivity. Taken individually, the low loading level of conductive additives and SWNTs is insufficient in achieving the percolation level necessary for electrical conductivity. When added simultaneously to the film, conductivity is achieved through a synergistic effect. The chemistry, physical, and mechanical properties of the nanocomposite films will be presented.

  3. Vertical Silicon Nanowire Field Effect Transistors with Nanoscale Gate-All-Around

    NASA Astrophysics Data System (ADS)

    Guerfi, Youssouf; Larrieu, Guilhem

    2016-04-01

    Nanowires are considered building blocks for the ultimate scaling of MOS transistors, capable of pushing devices until the most extreme boundaries of miniaturization thanks to their physical and geometrical properties. In particular, nanowires' suitability for forming a gate-all-around (GAA) configuration confers to the device an optimum electrostatic control of the gate over the conduction channel and then a better immunity against the short channel effects (SCE). In this letter, a large-scale process of GAA vertical silicon nanowire (VNW) MOSFETs is presented. A top-down approach is adopted for the realization of VNWs with an optimum reproducibility followed by thin layer engineering at nanoscale. Good overall electrical performances were obtained, with excellent electrostatic behavior (a subthreshold slope (SS) of 95 mV/dec and a drain induced barrier lowering (DIBL) of 25 mV/V) for a 15-nm gate length. Finally, a first demonstration of dual integration of n-type and p-type VNW transistors for the realization of CMOS inverter is proposed.

  4. A stochastic reaction-diffusion model for protein aggregation on DNA

    NASA Astrophysics Data System (ADS)

    Voulgarakis, Nikolaos K.

    Vital functions of DNA, such as transcription and packaging, depend on the proper clustering of proteins on the double strand. The present study investigates how the interplay between DNA allostery and electrostatic interactions affects protein clustering. The statistical analysis of a simple but transparent computational model reveals two major consequences of this interplay. First, depending on the protein and salt concentration, protein filaments exhibit a bimodal DNA stiffening and softening behavior. Second, within a certain domain of the control parameters, electrostatic interactions can cause energetic frustration that forces proteins to assemble in rigid spiral configurations. Such spiral filaments might trigger both positive and negative supercoiling, which can ultimately promote gene compaction and regulate the promoter. It has been experimentally shown that bacterial histone-like proteins assemble in similar spiral patterns and/or exhibit the same bimodal behavior. The proposed model can, thus, provide computational insights into the physical mechanisms used by proteins to control the mechanical properties of the DNA.

  5. Combined effect of moisture and electrostatic charges on powder flow

    NASA Astrophysics Data System (ADS)

    Rescaglio, Antonella; Schockmel, Julien; Vandewalle, Nicolas; Lumay, Geoffroy

    2017-06-01

    It is well known in industrial applications involving powders and granular materials that the relative air humidity and the presence of electrostatic charges influence drastically the material flowing properties. The relative air humidity induces the formation of capillary bridges and modify the grain surface conductivity. The presence of capillary bridges produces cohesive forces. On the other hand, the apparition of electrostatic charges due to the triboelectric effect at the contacts between the grains and at the contacts between the grains and the container produces electrostatic forces. Therefore, in many cases, the powder cohesiveness is the result of the interplay between capillary and electrostatic forces. Unfortunately, the triboelectric effect is still poorly understood, in particular inside a granular material. Moreover, reproducible electrostatic measurements are difficult to perform. We developed an experimental device to measures the ability of a powder to charge electrostatically during a flow in contact with a selected material. Both electrostatic and flow measurements have been performed in different hygrometric conditions. The correlation between the powder electrostatic properties, the hygrometry and the flowing behavior are analyzed.

  6. Electrostatic spraying in the chemical control of Triozoida limbata (Enderlein) (Hemiptera: Triozidae) in guava trees (Psidium guajava L.).

    PubMed

    Tavares, Rafael M; Cunha, João Par; Alves, Thales C; Bueno, Mariana R; Silva, Sérgio M; Zandonadi, César Hs

    2017-06-01

    Owing to the difficulty in reaching targets during pesticide applications on guava trees, it is important to evaluate new technologies that may improve pest management. In electrostatic spraying, an electric force is added to the droplets to control their movements such that they are efficiently directed to the target. The present study evaluated the performance of electrostatic and non-electrostatic spraying in the control of the guava psyllid, the deposition of the spray mixture on the leaves and the losses to the soil. The deposition of the spray mixture was up to 2 times greater when using electrostatic spraying in comparison with non-electrostatic application. The losses of the spray mixture to the soil were up to 4 times smaller with the electrostatic spraying. Electrostatic spraying had better control of the psyllid. It was possible to reduce the volume rate of application with electrostatic spraying without adversely affecting the control of the guava psyllid. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Using Common Graphics Paradigms Implemented in a Java Applet to Represent Complex Scheduling Requirements

    NASA Technical Reports Server (NTRS)

    Jaap, John; Meyer, Patrick; Davis, Elizabeth

    1997-01-01

    The experiments planned for the International Space Station promise to be complex, lengthy and diverse. The scarcity of the space station resources will cause significant competition for resources between experiments. The scheduling job facing the Space Station mission planning software requires a concise and comprehensive description of the experiments' requirements (to ensure a valid schedule) and a good description of the experiments' flexibility (to effectively utilize available resources). In addition, the continuous operation of the station, the wide geographic dispersion of station users, and the budgetary pressure to reduce operations manpower make a low-cost solution mandatory. A graphical representation of the scheduling requirements for station payloads implemented via an Internet-based application promises to be an elegant solution that addresses all of these issues. The graphical representation of experiment requirements permits a station user to describe his experiment by defining "activities" and "sequences of activities". Activities define the resource requirements (with alternatives) and other quantitative constraints of tasks to be performed. Activities definitions use an "outline" graphics paradigm. Sequences define the time relationships between activities. Sequences may also define time relationships with activities of other payloads or space station systems. Sequences of activities are described by a "network" graphics paradigm. The bulk of this paper will describe the graphical approach to representing requirements and provide examples that show the ease and clarity with which complex requirements can be represented. A Java applet, to run in a web browser, is being developed to support the graphical representation of payload scheduling requirements. Implementing the entry and editing of requirements via the web solves the problems introduced by the geographic dispersion of users. Reducing manpower is accomplished by developing a concise representation which eliminates the misunderstanding possible with verbose representations and which captures the complete requirements and flexibility of the experiments.

  8. Phased development of a web-based PACS viewer

    NASA Astrophysics Data System (ADS)

    Gidron, Yoad; Shani, Uri; Shifrin, Mark

    2000-05-01

    The Web browser is an excellent environment for the rapid development of an effective and inexpensive PACS viewer. In this paper we will share our experience in developing a browser-based viewer, from the inception and prototype stages to its current state of maturity. There are many operational advantages to a browser-based viewer, even when native viewers already exist in the system (with multiple and/or high resolution screens): (1) It can be used on existing personal workstations throughout the hospital. (2) It is easy to make the service available from physician's homes. (3) The viewer is extremely portable and platform independent. There is a wide variety of means available for implementing the browser- based viewer. Each file sent to the client by the server can perform some end-user or client/server interaction. These means range from HTML (for HyperText Markup Language) files, through Java Script, to Java applets. Some data types may also invoke plug-in code in the client, although this would reduce the portability of the viewer, it would provide the needed efficiency in critical places. On the server side the range of means is also very rich: (1) A set of files: html, Java Script, Java applets, etc. (2) Extensions of the server via cgi-bin programs, (3) Extensions of the server via servlets, (4) Any other helper application residing and working with the server to access the DICOM archive. The viewer architecture consists of two basic parts: The first part performs query and navigation through the DICOM archive image folders. The second part does the image access and display. While the first part deals with low data traffic, it involves many database transactions. The second part is simple as far as access transactions are concerned, but requires much more data traffic and display functions. Our web-based viewer has gone through three development stages characterized by the complexity of the means and tools employed on both client and server sides.

  9. Concept for room temperature single-spin tunneling force microscopy with atomic spatial resolution

    NASA Astrophysics Data System (ADS)

    Payne, Adam

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy (AFM) system noise. The results show that the approach could provide single-spin measurement of electrically isolated defect states with atomic spatial resolution at room temperature.

  10. Atomic-resolution single-spin magnetic resonance detection concept based on tunneling force microscopy

    NASA Astrophysics Data System (ADS)

    Payne, A.; Ambal, K.; Boehme, C.; Williams, C. C.

    2015-05-01

    A study of a force detected single-spin magnetic resonance measurement concept with atomic spatial resolution is presented. The method is based upon electrostatic force detection of spin-selection rule controlled single-electron tunneling between two electrically isolated paramagnetic states. Single-spin magnetic resonance detection is possible by measuring the force detected tunneling charge noise on and off spin resonance. Simulation results of this charge noise, based upon physical models of the tunneling and spin physics, are directly compared to measured atomic force microscopy system noise. The results show that the approach could provide single-spin measurement of electrically isolated qubit states with atomic spatial resolution at room temperature.

  11. Final Report 8201, October 1982.

    DTIC Science & Technology

    1982-10-01

    probabilities for electrostatic fine structure transitions in lithium -like, beryllium-like, and boron-like ions of high nuclear charge. Relativistic effects...and Argon Gases by Lithium Projectiles," with F. K. Chen, G. Lapicki, R. Laubert, S. B. Elston, and R. S. Peterson, Physics Lett. 60A, 292 (1977...in the Lithium - like Ions A1 10*, Sill+, and S13+ ,’ with H. H. Haselton, R. S. Thoe, P. N. Griffin, J. R. Nowat, D. J. Pegg, and R. Peterson

  12. Quantum simulation of a Fermi-Hubbard model using a semiconductor quantum dot array.

    PubMed

    Hensgens, T; Fujita, T; Janssen, L; Li, Xiao; Van Diepen, C J; Reichl, C; Wegscheider, W; Das Sarma, S; Vandersypen, L M K

    2017-08-02

    Interacting fermions on a lattice can develop strong quantum correlations, which are the cause of the classical intractability of many exotic phases of matter. Current efforts are directed towards the control of artificial quantum systems that can be made to emulate the underlying Fermi-Hubbard models. Electrostatically confined conduction-band electrons define interacting quantum coherent spin and charge degrees of freedom that allow all-electrical initialization of low-entropy states and readily adhere to the Fermi-Hubbard Hamiltonian. Until now, however, the substantial electrostatic disorder of the solid state has meant that only a few attempts at emulating Fermi-Hubbard physics on solid-state platforms have been made. Here we show that for gate-defined quantum dots this disorder can be suppressed in a controlled manner. Using a semi-automated and scalable set of experimental tools, we homogeneously and independently set up the electron filling and nearest-neighbour tunnel coupling in a semiconductor quantum dot array so as to simulate a Fermi-Hubbard system. With this set-up, we realize a detailed characterization of the collective Coulomb blockade transition, which is the finite-size analogue of the interaction-driven Mott metal-to-insulator transition. As automation and device fabrication of semiconductor quantum dots continue to improve, the ideas presented here will enable the investigation of the physics of ever more complex many-body states using quantum dots.

  13. Solid-gate control of insulator to 2D metal transition at SrTiO3 surface

    NASA Astrophysics Data System (ADS)

    Schulman, Alejandro; Stoliar, Pablo; Kitoh, Ai; Rozenberg, Marcelo; Inoue, Isao H.

    As miniaturization of the semiconductor transistor approaches its limit, semiconductor industries are facing a major challenge to extend information processing beyond what can be attainable by conventional Si-based transistors. Innovative combinations of new materials and new processing platforms are desired. Recent discovery of the 2D electron gas (2DEG) at the surface of SrTiO3 (STO) and its electrostatic control, have carried it to the top of promising materials to be utilized in innovative devices. We report an electrostatic control of the carrier density of the 2DEG formed at the channel of bilayer-gated STO field-effect devices. By applying a gate electric field at room temperature, its highly insulating channel exhibits a transition to metallic one. This transition is accompanied by non-monotonic voltage-gain transfer characteristic with both negative and positive slope regions and unexpected enhancement of the sheet carrier density. We will introduce a numerical model to rationalize the observed features in terms of the established physics of field-effect transistors and the physics of percolation. Furthermore, we have found a clear signature of a Kondo effect that arises due to the interaction between the dilute 2DEG and localized Ti 3d orbitals originated by oxygen vacancies near the channel. On leave from CIC nanoGUNE, Spain.

  14. The effect of controlled release of PDGF-BB from heparin-conjugated electrospun PCL/gelatin scaffolds on cellular bioactivity and infiltration

    PubMed Central

    Lee, Jongman; Yoo, James J.; Atala, Anthony; Lee, Sang Jin

    2013-01-01

    Heparin-conjugated electrospun poly(ε-caprolactone) (PCL)/gelatin scaffolds were developed to provide controlled release of platelet-derived growth factor-BB (PDGF-BB) and allow prolonged bioactivity of this molecule. A mixture of PCL and gelatin was electrospun into three different morphologies. Next, heparin molecules were conjugated to the reactive surface of the scaffolds. This heparin-conjugated scaffold allowed the immobilization of PDGF-BB via electrostatic interaction. In vitro PDGF-BB release profiles indicated that passive physical adsorption of PDGF-BB to non-heparinized scaffolds resulted in an initial burst release of PDGF-BB within 5 days, which then leveled off. However, electrostatic interaction between PDGF-BB and the heparin-conjugated scaffolds gave rise to a sustained release of PDGF-BB over the course of 20 days without an initial burst. Moreover, PDGF-BB that was strongly bound to the heparin-conjugated scaffolds enhanced smooth muscle cell (SMC) proliferation. In addition, scaffolds composed of 3.0 µm diameter fibers that were immobilized with PDGF-BB accelerated SMC infiltration into the scaffold when compared to scaffolds composed of smaller diameter fibers or scaffolds that did not release PDGF-BB. We concluded that the combination of the large pore structure in the scaffolds and the heparin-mediated delivery of PDGF-BB provided the most effective cellular interactions through synergistic physical and chemical cues. PMID:22770570

  15. PREFACE: 13th International Conference on Electrostatics

    NASA Astrophysics Data System (ADS)

    Taylor, D. Martin

    2011-06-01

    Electrostatics 2011 was held in the city of Bangor which is located in North West Wales in an area of outstanding natural beauty close to the Snowdonia mountain range and bordering the Irish Sea. The history of the area goes back into the mists of times, but a continuous technological thread can be traced from the stone- and bronze-age craftsmen, who inhabited the area several thousand years ago, via the civil engineering and fortifications of the Romans and Edward I of England, through Marconi's long-wave trans-Atlantic transmitter near Caernarfon to the conference host. The School of Electronic Engineering at Bangor University has contributed much to the discipline of Electrostatics not only in teaching and research but also in supporting industry. It was a great pleasure for me, therefore, to have the pleasure of welcoming the world's experts in Electrostatics to Bangor in April 2011. In my preface to the Proceedings of Electrostatics 1999, I reported that almost 90 papers were presented. Interestingly, a similar number were presented in 2011 testifying to the importance and endurance of the subject. The all-embracing nature of electrostatics is captured in the pictorial depiction used for the conference logo: a hand-held plasma ball with its close link to gaseous discharges and the superimposed Antarctic aurora highlighting the featured conference themes of atmospheric, planetary and environmental electrostatics. Leading these themes were three invited contributions, the first by Giles Harrison who delivered the Bill Bright Memorial Lecture 'Fair weather atmospheric electricity', Carlos Calle on 'The electrostatic environments of Mars and the Moon' and Istvan Berta on 'Lightning protection - challenges, solutions and questionable steps in the 21st century'. Leading other key sessions were invited papers by Atsushi Ohsawa on 'Statistical analysis of fires and explosions attributed to static electricity over the last 50 years in Japanese industry' and Antonio Ramos on 'Electrohydrodynamic pumping in microsystems'. Of the papers submitted for publication 69 passed through the thorough review process and I take this opportunity to warmly thank the reviewers for their constructive criticism and rapid turnaround which has allowed the Proceedings to be delivered to the publisher on time. It is a pleasure also to thank members of the International Advisory Panel, and the Organizing and Programme Committees for their guidance and suggestions and especially Claire Garland and her team at the Institute of Physics for their support, all of which ensured a successful and enjoyable conference. Special thanks are due to Jeremy Smallwood for organising the pre-conference workshop, to Tom Jones, Martin Glor and Dave Swenson for their highly informative and educational contributions at the workshop, to CST for organising the simulation workshop, and to CST and JCI Chilworth for their much appreciated sponsorship of the conference. I am sure you will enjoy reading this record of Electrostatics 2011, covering as it does the wide range of subjects upon which static electricity impinges. Especially important is the development of electrostatic-based methods for reducing atmospheric pollution. In this context it is interesting to see how Masuda's work on the surface-discharge-based Boxer charger, first reported over 30 years ago, has now developed into dielectric barrier discharge (DBD) systems for the removal of noxious molecules from industrial and vehicle exhaust gases. Thanks to our hard working conference chairman, Paul Holdstock, the conference retained its now well-established reputation for providing a friendly, sociable atmosphere for discussing the newest developments in this important scientific area. Finally, my sincere thanks go to all the presenters and to all those who attended and contributed to another successful conference. Professor D. Martin TaylorProceedings EditorBangor, May 2011

  16. The physics of pollinator attraction.

    PubMed

    Moyroud, Edwige; Glover, Beverley J

    2017-10-01

    Contents 350 I. 350 II. 350 III. 352 IV. 353 V. 353 353 References 354 SUMMARY: This Tansley Insight focuses on recent advances in our understanding of how flowers manipulate physical forces to attract animal pollinators and ensure reproductive success. Research has traditionally explored the role of chemical pigments and volatile organic compounds as cues for pollinators, but recent reports have demonstrated the importance of physical and structural means of pollinator attraction. Here we explore the role of petal microstructure in influencing floral light capture and optics, analysing colour, gloss and polarization effects. We discuss the interaction between flower, pollinator and gravity, and how petal surface structure can influence that interaction. Finally, we consider the role of electrostatic forces in pollen transfer and pollinator attraction. We conclude that this new interdisciplinary field is evolving rapidly. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  17. Electrostatic complementarity at protein/protein interfaces.

    PubMed

    McCoy, A J; Chandana Epa, V; Colman, P M

    1997-05-02

    Calculation of the electrostatic potential of protein-protein complexes has led to the general assertion that protein-protein interfaces display "charge complementarity" and "electrostatic complementarity". In this study, quantitative measures for these two terms are developed and used to investigate protein-protein interfaces in a rigorous manner. Charge complementarity (CC) was defined using the correlation of charges on nearest neighbour atoms at the interface. All 12 protein-protein interfaces studied had insignificantly small CC values. Therefore, the term charge complementarity is not appropriate for the description of protein-protein interfaces when used in the sense measured by CC. Electrostatic complementarity (EC) was defined using the correlation of surface electrostatic potential at protein-protein interfaces. All twelve protein-protein interfaces studied had significant EC values, and thus the assertion that protein-protein association involves surfaces with complementary electrostatic potential was substantially confirmed. The term electrostatic complementarity can therefore be used to describe protein-protein interfaces when used in the sense measured by EC. Taken together, the results for CC and EC demonstrate the relevance of the long-range effects of charges, as described by the electrostatic potential at the binding interface. The EC value did not partition the complexes by type such as antigen-antibody and proteinase-inhibitor, as measures of the geometrical complementarity at protein-protein interfaces have done. The EC value was also not directly related to the number of salt bridges in the interface, and neutralisation of these salt bridges showed that other charges also contributed significantly to electrostatic complementarity and electrostatic interactions between the proteins. Electrostatic complementarity as defined by EC was extended to investigate the electrostatic similarity at the surface of influenza virus neuraminidase where the epitopes of two monoclonal antibodies, NC10 and NC41, overlap. Although NC10 and NC41 both have quite high values of EC for their interaction with neuraminidase, the similarity in electrostatic potential generated by the two on the overlapping region of the epitopes is insignificant. Thus, it is possible for two antibodies to recognise the electrostatic surface of a protein in dissimilar ways.

  18. Electrostatic forces in planetary rings

    NASA Technical Reports Server (NTRS)

    Goertz, C. K.; Shan, Linhua; Havnes, O.

    1988-01-01

    The average charge on a particle in a particle-plasma cloud, the plasma potential inside the cloud, and the Coulomb force acting on the particle are calculated. The net repulsive electrostatic force on a particle depends on the plasma density, temperature, density of particles, particle size, and the gradient of the particle density. In a uniformly dense ring the electrostatic repulsion is zero. It is also shown that the electrostatic force acts like a pressure force, that even a collisionless ring can be stable against gravitational collapse, and that a finite ring thickness does not necessarily imply a finite velocity dispersion. A simple criterion for the importance of electrostatic forces in planetary rings is derived which involves the calculation of the vertical ring thickness which would result if only electrostatic repulsion were responsible for the finite ring thickness. Electrostatic forces are entirely negligible in the main rings of Saturn and the E and G rings. They may also be negligible in the F ring. However, the Uranian rings and Jupiter's ring seem to be very much influenced by electrostatic repulsion. In fact, electrostatic forces could support a Jovian ring which is an order of magnitude more dense than observed.

  19. Electrostatic design and beam transport for a folded tandem electrostatic quadrupole accelerator facility for accelerator-based boron neutron capture therapy.

    PubMed

    Vento, V Thatar; Bergueiro, J; Cartelli, D; Valda, A A; Kreiner, A J

    2011-12-01

    Within the frame of an ongoing project to develop a folded Tandem-Electrostatic-Quadrupole (TESQ) accelerator facility for Accelerator-Based Boron Neutron Capture Therapy (AB-BNCT), we discuss here the electrostatic design of the machine, including the accelerator tubes with electrostatic quadrupoles and the simulations for the transport and acceleration of a high intensity beam. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. The Stiffness Variation of a Micro-Ring Driven by a Traveling Piecewise-Electrode

    PubMed Central

    Li, Yingjie; Yu, Tao; Hu, Yuh-Chung

    2014-01-01

    In the practice of electrostatically actuated micro devices; the electrostatic force is implemented by sequentially actuated piecewise-electrodes which result in a traveling distributed electrostatic force. However; such force was modeled as a traveling concentrated electrostatic force in literatures. This article; for the first time; presents an analytical study on the stiffness variation of microstructures driven by a traveling piecewise electrode. The analytical model is based on the theory of shallow shell and uniform electrical field. The traveling electrode not only applies electrostatic force on the circular-ring but also alters its dynamical characteristics via the negative electrostatic stiffness. It is known that; when a structure is subjected to a traveling constant force; its natural mode will be resonated as the traveling speed approaches certain critical speeds; and each natural mode refers to exactly one critical speed. However; for the case of a traveling electrostatic force; the number of critical speeds is more than that of the natural modes. This is due to the fact that the traveling electrostatic force makes the resonant frequencies of the forward and backward traveling waves of the circular-ring different. Furthermore; the resonance and stability can be independently controlled by the length of the traveling electrode; though the driving voltage and traveling speed of the electrostatic force alter the dynamics and stabilities of microstructures. This paper extends the fundamental insights into the electromechanical behavior of microstructures driven by electrostatic forces as well as the future development of MEMS/NEMS devices with electrostatic actuation and sensing. PMID:25230308

  1. The stiffness variation of a micro-ring driven by a traveling piecewise-electrode.

    PubMed

    Li, Yingjie; Yu, Tao; Hu, Yuh-Chung

    2014-09-16

    In the practice of electrostatically actuated micro devices; the electrostatic force is implemented by sequentially actuated piecewise-electrodes which result in a traveling distributed electrostatic force. However; such force was modeled as a traveling concentrated electrostatic force in literatures. This article; for the first time; presents an analytical study on the stiffness variation of microstructures driven by a traveling piecewise electrode. The analytical model is based on the theory of shallow shell and uniform electrical field. The traveling electrode not only applies electrostatic force on the circular-ring but also alters its dynamical characteristics via the negative electrostatic stiffness. It is known that; when a structure is subjected to a traveling constant force; its natural mode will be resonated as the traveling speed approaches certain critical speeds; and each natural mode refers to exactly one critical speed. However; for the case of a traveling electrostatic force; the number of critical speeds is more than that of the natural modes. This is due to the fact that the traveling electrostatic force makes the resonant frequencies of the forward and backward traveling waves of the circular-ring different. Furthermore; the resonance and stability can be independently controlled by the length of the traveling electrode; though the driving voltage and traveling speed of the electrostatic force alter the dynamics and stabilities of microstructures. This paper extends the fundamental insights into the electromechanical behavior of microstructures driven by electrostatic forces as well as the future development of MEMS/NEMS devices with electrostatic actuation and sensing.

  2. Steady-State Ion Beam Modeling with MICHELLE

    NASA Astrophysics Data System (ADS)

    Petillo, John

    2003-10-01

    There is a need to efficiently model ion beam physics for ion implantation, chemical vapor deposition, and ion thrusters. Common to all is the need for three-dimensional (3D) simulation of volumetric ion sources, ion acceleration, and optics, with the ability to model charge exchange of the ion beam with a background neutral gas. The two pieces of physics stand out as significant are the modeling of the volumetric source and charge exchange. In the MICHELLE code, the method for modeling the plasma sheath in ion sources assumes that the electron distribution function is a Maxwellian function of electrostatic potential over electron temperature. Charge exchange is the process by which a neutral background gas with a "fast" charged particle streaming through exchanges its electron with the charged particle. An efficient method for capturing this is essential, and the model presented is based on semi-empirical collision cross section functions. This appears to be the first steady-state 3D algorithm of its type to contain multiple generations of charge exchange, work with multiple species and multiple charge state beam/source particles simultaneously, take into account the self-consistent space charge effects, and track the subsequent fast neutral particles. The solution used by MICHELLE is to combine finite element analysis with particle-in-cell (PIC) methods. The basic physics model is based on the equilibrium steady-state application of the electrostatic particle-in-cell (PIC) approximation employing a conformal computational mesh. The foundation stems from the same basic model introduced in codes such as EGUN. Here, Poisson's equation is used to self-consistently include the effects of space charge on the fields, and the relativistic Lorentz equation is used to integrate the particle trajectories through those fields. The presentation will consider the complexity of modeling ion thrusters.

  3. Inertial electrostatic confinement as a power source for electric propulsion

    NASA Technical Reports Server (NTRS)

    Miley, G. H.; Burton, R.; Javedani, J.; Yamamoto, Y.; Satsangi, A; Gu, Y.; Heck, P.; Nebel, R.; Schulze, N.; Christensen, J.

    1993-01-01

    The potential use of an INERTIAL ELECTROSTATIC CONFINEMENT (IEC) power source for space propulsion has previously been suggested by the authors and others. In the past, these discussions have generally followed the charged-particle electric-discharge engine (QED) concept proposed by Bussard, in which the IEC is used to generate an electron beam which vaporizes liquid hydrogen for use as a propellant. However, an alternate approach is considered, using the IEC to drive a 'conventional' electric thruster unit. This has the advantage of building on the rapidly developing technology for such thrusters, which operate at higher specific impulse. Key issues related to this approach include the continued successful development of the physics and engineering of the IEC unit, as well as the development of efficient step-down dc voltage transformers. The IEC operates by radial injection of energetic ions into a spherical vessel. A very high ion density is created in a small core region at the center of the vessel, resulting in extremely high fusion power density in the core. Experiments at the U. of Illinois in small IEC devices (is less than 60 cm. dia.) demonstrated much of the basic physics underlying this concept, e.g. producing 10(exp 6) D-D neutrons/sec steady-state with deuterium gas flow injection. The ultimate goal is to increase the power densities by several orders of magnitude and to convert to D-He-3 injection. If successful, such an experiment would represent a milestone proof-of-principle device for eventual space power use. Further discussion of IEC physics and status are presented with a description of the overall propulsion system and estimated performance.

  4. Inertial electrostatic confinement as a power source for electric propulsion

    NASA Technical Reports Server (NTRS)

    Miley, George H.; Burton, R.; Javedani, J.; Yamamoto, Y.; Satsangi, A.; Gu, Y.; Heck, P.; Nebel, R.; Schulze, N.; Christensen, J.

    1993-01-01

    The potential use of an Inertial Electrostatic Confinement (IEC) power source for space propulsion has previously been suggested by the authors and others. In the past, these discussions have generally followed the charged-particle electric-discharge engine (QED) concept proposed by Bussard, in which the IEC is used to generate an electron beam which vaporizes liquid hydrogen for use as a propellant. However, in the present study, we consider an alternate approach, using the IEC to drive a conventional electric thruster unit. This has the advantage of building on the rapidly developing technology for such thrusters, which operate at higher specific impulse. Key issues related to this approach include the continued successful development of the physics and engineering of the IEC unit, as well as the development of efficient step-down dc voltage transformers. The IEC operates by radial injection of energetic ions into a spherical vessel. A very high ion density is created in a small core region at the center of the vessel, resulting in extremely high fusion power density in the core. Present experiments at the U. of Illinois in small IEC devices (less than 60-cm. dia.) have demonstrated much of the basic physics underlying this concept, e.g. producing approximately 10(exp 6) D-D neutrons/sec steady-state with deuterium gas flow injection. The ultimate goal is to increase the power densities by several orders of magnitude and to convert to D-He-3 injection. If successful, such an experiment would represent a milestone proof-of-principle device for eventual space power use. Further discussion of IEC physics and status will be presented with a description of the overall propulsion system and estimated performance.

  5. 21 CFR 892.1630 - Electrostatic x-ray imaging system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Electrostatic x-ray imaging system. 892.1630... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1630 Electrostatic x-ray imaging system. (a) Identification. An electrostatic x-ray imaging system is a device intended for medical...

  6. 21 CFR 892.1630 - Electrostatic x-ray imaging system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Electrostatic x-ray imaging system. 892.1630... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1630 Electrostatic x-ray imaging system. (a) Identification. An electrostatic x-ray imaging system is a device intended for medical...

  7. 3D visualization of molecular structures in the MOGADOC database

    NASA Astrophysics Data System (ADS)

    Vogt, Natalja; Popov, Evgeny; Rudert, Rainer; Kramer, Rüdiger; Vogt, Jürgen

    2010-08-01

    The MOGADOC database (Molecular Gas-Phase Documentation) is a powerful tool to retrieve information about compounds which have been studied in the gas-phase by electron diffraction, microwave spectroscopy and molecular radio astronomy. Presently the database contains over 34,500 bibliographic references (from the beginning of each method) for about 10,000 inorganic, organic and organometallic compounds and structural data (bond lengths, bond angles, dihedral angles, etc.) for about 7800 compounds. Most of the implemented molecular structures are given in a three-dimensional (3D) presentation. To create or edit and visualize the 3D images of molecules, new tools (special editor and Java-based 3D applet) were developed. Molecular structures in internal coordinates were converted to those in Cartesian coordinates.

  8. The Data Acquisition System of the Stockholm Educational Air Shower Array

    NASA Astrophysics Data System (ADS)

    Hofverberg, P.; Johansson, H.; Pearce, M.; Rydstrom, S.; Wikstrom, C.

    2005-12-01

    The Stockholm Educational Air Shower Array (SEASA) project is deploying an array of plastic scintillator detector stations on school roofs in the Stockholm area. Signals from GPS satellites are used to time synchronise signals from the widely separated detector stations, allowing cosmic ray air showers to be identified and studied. A low-cost and highly scalable data acquisition system has been produced using embedded Linux processors which communicate station data to a central server running a MySQL database. Air shower data can be visualised in real-time using a Java-applet client. It is also possible to query the database and manage detector stations from the client. In this paper, the design and performance of the system are described

  9. Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach

    NASA Astrophysics Data System (ADS)

    Rubinstein, A.; Sabirianov, R. F.; Mei, W. N.; Namavar, F.; Khoynezhad, A.

    2010-08-01

    Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.

  10. Effect of the ordered interfacial water layer in protein complex formation: A nonlocal electrostatic approach.

    PubMed

    Rubinstein, A; Sabirianov, R F; Mei, W N; Namavar, F; Khoynezhad, A

    2010-08-01

    Using a nonlocal electrostatic approach that incorporates the short-range structure of the contacting media, we evaluated the electrostatic contribution to the energy of the complex formation of two model proteins. In this study, we have demonstrated that the existence of an ordered interfacial water layer at the protein-solvent interface reduces the charging energy of the proteins in the aqueous solvent, and consequently increases the electrostatic contribution to the protein binding (change in free energy upon the complex formation of two proteins). This is in contrast with the finding of the continuum electrostatic model, which suggests that electrostatic interactions are not strong enough to compensate for the unfavorable desolvation effects.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, J. D.

    The virtual-casing principle is used in plasma physics to convert a Biot–Savart integration over a current distribution into a surface integral over a surface that encloses the current. In many circumstances, use of virtual casing can significantly speed up the computation of magnetic fields. In this paper, a virtual-casing principle is derived for a general vector field with arbitrary divergence and curl. This form of the virtual-casing principle is thus applicable to both magnetostatic fields and electrostatic fields. The result is then related to Helmholtz's theorem.

  12. Dynamical Generation of Quasi-Stationary Alfvenic Double Layers and Charge Holes and Unified Theory of Quasi-Static and Alfvenic Auroral Arc Formation

    NASA Astrophysics Data System (ADS)

    Song, Y.; Lysak, R. L.

    2015-12-01

    Parallel E-fields play a crucial role for the acceleration of charged particles, creating discrete aurorae. However, once the parallel electric fields are produced, they will disappear right away, unless the electric fields can be continuously generated and sustained for a fairly long time. Thus, the crucial question in auroral physics is how to generate such a powerful and self-sustained parallel electric fields which can effectively accelerate charge particles to high energy during a fairly long time. We propose that nonlinear interaction of incident and reflected Alfven wave packets in inhomogeneous auroral acceleration region can produce quasi-stationary non-propagating electromagnetic plasma structures, such as Alfvenic double layers (DLs) and Charge Holes. Such Alfvenic quasi-static structures often constitute powerful high energy particle accelerators. The Alfvenic DL consists of localized self-sustained powerful electrostatic electric fields nested in a low density cavity and surrounded by enhanced magnetic and mechanical stresses. The enhanced magnetic and velocity fields carrying the free energy serve as a local dynamo, which continuously create the electrostatic parallel electric field for a fairly long time. The generated parallel electric fields will deepen the seed low density cavity, which then further quickly boosts the stronger parallel electric fields creating both Alfvenic and quasi-static discrete aurorae. The parallel electrostatic electric field can also cause ion outflow, perpendicular ion acceleration and heating, and may excite Auroral Kilometric Radiation.

  13. On the physical origin of blue-shifted hydrogen bonds.

    PubMed

    Li, Xiaosong; Liu, Lei; Schlegel, H Bernhard

    2002-08-14

    For blue-shifted hydrogen-bonded systems, the hydrogen stretching frequency increases rather than decreases on complexation. In computations at various levels of theory, the blue-shift in the archetypical system, F(3)C-H.FH, is reproduced at the Hartree-Fock level, indicating that electron correlation is not the primary cause. Calculations also demonstrate that a blue-shift does not require either a carbon center or the absence of a lone pair on the proton donor, because F(3)Si-H.OH(2), F(2)NH.FH, F(2)PH.NH(3), and F(2)PH.OH(2) have substantial blue-shifts. Orbital interactions are shown to lengthen the X-H bond and lower its vibrational frequency, and thus cannot be the source of the blue-shift. In the F(3)CH.FH system, the charge redistribution in F(3)CH can be reproduced very well by replacing the FH with a simple dipole, which suggests that the interactions are predominantly electrostatic. When modeled with a point charge for the proton acceptor, attractive electrostatic interactions elongate the F(3)C-H, while repulsive interactions shorten it. At the equilibrium geometry of a hydrogen-bonded complex, the electrostatic attraction between the dipole moments of the proton donor and proton acceptor must be balanced by the Pauli repulsion between the two fragments. In the absence of orbital interactions that cause bond elongation, this repulsive interaction leads to compression of the X-H bond and a blue-shift in its vibrational frequency.

  14. Tribo-charging properties of waste plastic granules in process of tribo-electrostatic separation.

    PubMed

    Li, Jia; Wu, Guiqing; Xu, Zhenming

    2015-01-01

    Plastic products can be found everywhere in people's daily life. With the consistent growth of plastic consumption, more and more plastic waste is generated. Considering the stable chemical and physics characteristics of plastic, regular waste management methods are not suitable for recycling economic strategy of each government, which has become a serious environmental problem. Recycling plastic waste is considered to be the best way to treat it, because it cannot only deduce the waste but also save the energy to produce new virgin plastic. Tribo-electrostatic separation is strongly recommended for plastic separation as it can preserve the original properties of plastic and has little additional pollution. In this study, plastic granules are generated by crushing plastic waste in waste electric and electronic equipment. The tribo-charging properties of plastic waste were studied by vibrating tribo-charging and cyclone tribo-charging. The triboelectric series obtained by vibrating was: (-)-PE-PS-PC-PVC-ABS-PP-(+), while the triboelectric series obtained by cyclone was (-)-PE-PS-PC-PVC-ABS-PP-(+). Further, the cyclone charging was more effective and stable than vibrating charging. The impact factors experiments showed that small particle size was better changed than large ones and were more suitable recycled by tribo-electrostatic separation. High relative humidity was identified as impede charging effect. The results of this study will help defining the operating parameters of subsequent separator. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. TBI server: a web server for predicting ion effects in RNA folding.

    PubMed

    Zhu, Yuhong; He, Zhaojian; Chen, Shi-Jie

    2015-01-01

    Metal ions play a critical role in the stabilization of RNA structures. Therefore, accurate prediction of the ion effects in RNA folding can have a far-reaching impact on our understanding of RNA structure and function. Multivalent ions, especially Mg²⁺, are essential for RNA tertiary structure formation. These ions can possibly become strongly correlated in the close vicinity of RNA surface. Most of the currently available software packages, which have widespread success in predicting ion effects in biomolecular systems, however, do not explicitly account for the ion correlation effect. Therefore, it is important to develop a software package/web server for the prediction of ion electrostatics in RNA folding by including ion correlation effects. The TBI web server http://rna.physics.missouri.edu/tbi_index.html provides predictions for the total electrostatic free energy, the different free energy components, and the mean number and the most probable distributions of the bound ions. A novel feature of the TBI server is its ability to account for ion correlation and ion distribution fluctuation effects. By accounting for the ion correlation and fluctuation effects, the TBI server is a unique online tool for computing ion-mediated electrostatic properties for given RNA structures. The results can provide important data for in-depth analysis for ion effects in RNA folding including the ion-dependence of folding stability, ion uptake in the folding process, and the interplay between the different energetic components.

  16. Image charge models for accurate construction of the electrostatic self-energy of 3D layered nanostructure devices.

    PubMed

    Barker, John R; Martinez, Antonio

    2018-04-04

    Efficient analytical image charge models are derived for the full spatial variation of the electrostatic self-energy of electrons in semiconductor nanostructures that arises from dielectric mismatch using semi-classical analysis. The methodology provides a fast, compact and physically transparent computation for advanced device modeling. The underlying semi-classical model for the self-energy has been established and validated during recent years and depends on a slight modification of the macroscopic static dielectric constants for individual homogeneous dielectric regions. The model has been validated for point charges as close as one interatomic spacing to a sharp interface. A brief introduction to image charge methodology is followed by a discussion and demonstration of the traditional failure of the methodology to derive the electrostatic potential at arbitrary distances from a source charge. However, the self-energy involves the local limit of the difference between the electrostatic Green functions for the full dielectric heterostructure and the homogeneous equivalent. It is shown that high convergence may be achieved for the image charge method for this local limit. A simple re-normalisation technique is introduced to reduce the number of image terms to a minimum. A number of progressively complex 3D models are evaluated analytically and compared with high precision numerical computations. Accuracies of 1% are demonstrated. Introducing a simple technique for modeling the transition of the self-energy between disparate dielectric structures we generate an analytical model that describes the self-energy as a function of position within the source, drain and gated channel of a silicon wrap round gate field effect transistor on a scale of a few nanometers cross-section. At such scales the self-energies become large (typically up to ~100 meV) close to the interfaces as well as along the channel. The screening of a gated structure is shown to reduce the self-energy relative to un-gated nanowires.

  17. Image charge models for accurate construction of the electrostatic self-energy of 3D layered nanostructure devices

    NASA Astrophysics Data System (ADS)

    Barker, John R.; Martinez, Antonio

    2018-04-01

    Efficient analytical image charge models are derived for the full spatial variation of the electrostatic self-energy of electrons in semiconductor nanostructures that arises from dielectric mismatch using semi-classical analysis. The methodology provides a fast, compact and physically transparent computation for advanced device modeling. The underlying semi-classical model for the self-energy has been established and validated during recent years and depends on a slight modification of the macroscopic static dielectric constants for individual homogeneous dielectric regions. The model has been validated for point charges as close as one interatomic spacing to a sharp interface. A brief introduction to image charge methodology is followed by a discussion and demonstration of the traditional failure of the methodology to derive the electrostatic potential at arbitrary distances from a source charge. However, the self-energy involves the local limit of the difference between the electrostatic Green functions for the full dielectric heterostructure and the homogeneous equivalent. It is shown that high convergence may be achieved for the image charge method for this local limit. A simple re-normalisation technique is introduced to reduce the number of image terms to a minimum. A number of progressively complex 3D models are evaluated analytically and compared with high precision numerical computations. Accuracies of 1% are demonstrated. Introducing a simple technique for modeling the transition of the self-energy between disparate dielectric structures we generate an analytical model that describes the self-energy as a function of position within the source, drain and gated channel of a silicon wrap round gate field effect transistor on a scale of a few nanometers cross-section. At such scales the self-energies become large (typically up to ~100 meV) close to the interfaces as well as along the channel. The screening of a gated structure is shown to reduce the self-energy relative to un-gated nanowires.

  18. Active Site Detection by Spatial Conformity and Electrostatic Analysis—Unravelling a Proteolytic Function in Shrimp Alkaline Phosphatase

    PubMed Central

    Chakraborty, Sandeep; Minda, Renu; Salaye, Lipika; Bhattacharjee, Swapan K.; Rao, Basuthkar J.

    2011-01-01

    Computational methods are increasingly gaining importance as an aid in identifying active sites. Mostly these methods tend to have structural information that supplement sequence conservation based analyses. Development of tools that compute electrostatic potentials has further improved our ability to better characterize the active site residues in proteins. We have described a computational methodology for detecting active sites based on structural and electrostatic conformity - C ata L ytic A ctive S ite P rediction (CLASP). In our pipelined model, physical 3D signature of any particular enzymatic function as defined by its active sites is used to obtain spatially congruent matches. While previous work has revealed that catalytic residues have large pKa deviations from standard values, we show that for a given enzymatic activity, electrostatic potential difference (PD) between analogous residue pairs in an active site taken from different proteins of the same family are similar. False positives in spatially congruent matches are further pruned by PD analysis where cognate pairs with large deviations are rejected. We first present the results of active site prediction by CLASP for two enzymatic activities - β-lactamases and serine proteases, two of the most extensively investigated enzymes. The results of CLASP analysis on motifs extracted from Catalytic Site Atlas (CSA) are also presented in order to demonstrate its ability to accurately classify any protein, putative or otherwise, with known structure. The source code and database is made available at www.sanchak.com/clasp/. Subsequently, we probed alkaline phosphatases (AP), one of the well known promiscuous enzymes, for additional activities. Such a search has led us to predict a hitherto unknown function of shrimp alkaline phosphatase (SAP), where the protein acts as a protease. Finally, we present experimental evidence of the prediction by CLASP by showing that SAP indeed has protease activity in vitro. PMID:22174814

  19. Electrostatic particle trap for ion beam sputter deposition

    DOEpatents

    Vernon, Stephen P.; Burkhart, Scott C.

    2002-01-01

    A method and apparatus for the interception and trapping of or reflection of charged particulate matter generated in ion beam sputter deposition. The apparatus involves an electrostatic particle trap which generates electrostatic fields in the vicinity of the substrate on which target material is being deposited. The electrostatic particle trap consists of an array of electrode surfaces, each maintained at an electrostatic potential, and with their surfaces parallel or perpendicular to the surface of the substrate. The method involves interception and trapping of or reflection of charged particles achieved by generating electrostatic fields in the vicinity of the substrate, and configuring the fields to force the charged particulate material away from the substrate. The electrostatic charged particle trap enables prevention of charged particles from being deposited on the substrate thereby enabling the deposition of extremely low defect density films, such as required for reflective masks of an extreme ultraviolet lithography (EUVL) system.

  20. Impact of electrostatic and conventional sprayers characteristics on dispersion of barrier spray

    USDA-ARS?s Scientific Manuscript database

    A study was conducted to analyze the performance of three electrostatic (Electrolon BP-2.5TM, Spectrum Electrostatic 4010, and Spectrum Electrostatic head on a Stihl 420) and two conventional (Buffalo Turbine CSM2 and Stihl 420) sprayers for barrier sprays to suppress an adult mosquito population in...

Top