Sample records for physics based simulation

  1. Simulation of the Physics of Flight

    ERIC Educational Resources Information Center

    Lane, W. Brian

    2013-01-01

    Computer simulations continue to prove to be a valuable tool in physics education. Based on the needs of an Aviation Physics course, we developed the PHYSics of FLIght Simulator (PhysFliS), which numerically solves Newton's second law for an airplane in flight based on standard aerodynamics relationships. The simulation can be used to pique…

  2. Simbios: an NIH national center for physics-based simulation of biological structures.

    PubMed

    Delp, Scott L; Ku, Joy P; Pande, Vijay S; Sherman, Michael A; Altman, Russ B

    2012-01-01

    Physics-based simulation provides a powerful framework for understanding biological form and function. Simulations can be used by biologists to study macromolecular assemblies and by clinicians to design treatments for diseases. Simulations help biomedical researchers understand the physical constraints on biological systems as they engineer novel drugs, synthetic tissues, medical devices, and surgical interventions. Although individual biomedical investigators make outstanding contributions to physics-based simulation, the field has been fragmented. Applications are typically limited to a single physical scale, and individual investigators usually must create their own software. These conditions created a major barrier to advancing simulation capabilities. In 2004, we established a National Center for Physics-Based Simulation of Biological Structures (Simbios) to help integrate the field and accelerate biomedical research. In 6 years, Simbios has become a vibrant national center, with collaborators in 16 states and eight countries. Simbios focuses on problems at both the molecular scale and the organismal level, with a long-term goal of uniting these in accurate multiscale simulations.

  3. Simbios: an NIH national center for physics-based simulation of biological structures

    PubMed Central

    Delp, Scott L; Ku, Joy P; Pande, Vijay S; Sherman, Michael A

    2011-01-01

    Physics-based simulation provides a powerful framework for understanding biological form and function. Simulations can be used by biologists to study macromolecular assemblies and by clinicians to design treatments for diseases. Simulations help biomedical researchers understand the physical constraints on biological systems as they engineer novel drugs, synthetic tissues, medical devices, and surgical interventions. Although individual biomedical investigators make outstanding contributions to physics-based simulation, the field has been fragmented. Applications are typically limited to a single physical scale, and individual investigators usually must create their own software. These conditions created a major barrier to advancing simulation capabilities. In 2004, we established a National Center for Physics-Based Simulation of Biological Structures (Simbios) to help integrate the field and accelerate biomedical research. In 6 years, Simbios has become a vibrant national center, with collaborators in 16 states and eight countries. Simbios focuses on problems at both the molecular scale and the organismal level, with a long-term goal of uniting these in accurate multiscale simulations. PMID:22081222

  4. Enriching Triangle Mesh Animations with Physically Based Simulation.

    PubMed

    Li, Yijing; Xu, Hongyi; Barbic, Jernej

    2017-10-01

    We present a system to combine arbitrary triangle mesh animations with physically based Finite Element Method (FEM) simulation, enabling control over the combination both in space and time. The input is a triangle mesh animation obtained using any method, such as keyframed animation, character rigging, 3D scanning, or geometric shape modeling. The input may be non-physical, crude or even incomplete. The user provides weights, specified using a minimal user interface, for how much physically based simulation should be allowed to modify the animation in any region of the model, and in time. Our system then computes a physically-based animation that is constrained to the input animation to the amount prescribed by these weights. This permits smoothly turning physics on and off over space and time, making it possible for the output to strictly follow the input, to evolve purely based on physically based simulation, and anything in between. Achieving such results requires a careful combination of several system components. We propose and analyze these components, including proper automatic creation of simulation meshes (even for non-manifold and self-colliding undeformed triangle meshes), converting triangle mesh animations into animations of the simulation mesh, and resolving collisions and self-collisions while following the input.

  5. Simulation-Based Performance Assessment: An Innovative Approach to Exploring Understanding of Physical Science Concepts

    ERIC Educational Resources Information Center

    Gale, Jessica; Wind, Stefanie; Koval, Jayma; Dagosta, Joseph; Ryan, Mike; Usselman, Marion

    2016-01-01

    This paper illustrates the use of simulation-based performance assessment (PA) methodology in a recent study of eighth-grade students' understanding of physical science concepts. A set of four simulation-based PA tasks were iteratively developed to assess student understanding of an array of physical science concepts, including net force,…

  6. Toward Inverse Control of Physics-Based Sound Synthesis

    NASA Astrophysics Data System (ADS)

    Pfalz, A.; Berdahl, E.

    2017-05-01

    Long Short-Term Memory networks (LSTMs) can be trained to realize inverse control of physics-based sound synthesizers. Physics-based sound synthesizers simulate the laws of physics to produce output sound according to input gesture signals. When a user's gestures are measured in real time, she or he can use them to control physics-based sound synthesizers, thereby creating simulated virtual instruments. An intriguing question is how to program a computer to learn to play such physics-based models. This work demonstrates that LSTMs can be trained to accomplish this inverse control task with four physics-based sound synthesizers.

  7. Constraint methods that accelerate free-energy simulations of biomolecules.

    PubMed

    Perez, Alberto; MacCallum, Justin L; Coutsias, Evangelos A; Dill, Ken A

    2015-12-28

    Atomistic molecular dynamics simulations of biomolecules are critical for generating narratives about biological mechanisms. The power of atomistic simulations is that these are physics-based methods that satisfy Boltzmann's law, so they can be used to compute populations, dynamics, and mechanisms. But physical simulations are computationally intensive and do not scale well to the sizes of many important biomolecules. One way to speed up physical simulations is by coarse-graining the potential function. Another way is to harness structural knowledge, often by imposing spring-like restraints. But harnessing external knowledge in physical simulations is problematic because knowledge, data, or hunches have errors, noise, and combinatoric uncertainties. Here, we review recent principled methods for imposing restraints to speed up physics-based molecular simulations that promise to scale to larger biomolecules and motions.

  8. Optical simulation of flying targets using physically based renderer

    NASA Astrophysics Data System (ADS)

    Cheng, Ye; Zheng, Quan; Peng, Junkai; Lv, Pin; Zheng, Changwen

    2018-02-01

    The simulation of aerial flying targets is widely needed in many fields. This paper proposes a physically based method for optical simulation of flying targets. In the first step, three-dimensional target models are built and the motion speed and direction are defined. Next, the material of the outward appearance of a target is also simulated. Then the illumination conditions are defined. After all definitions are given, all settings are encoded in a description file. Finally, simulated results are generated by Monte Carlo ray tracing in a physically based renderer. Experiments show that this method is able to simulate materials, lighting and motion blur for flying targets, and it can generate convincing and highquality simulation results.

  9. A physics-based algorithm for real-time simulation of electrosurgery procedures in minimally invasive surgery.

    PubMed

    Lu, Zhonghua; Arikatla, Venkata S; Han, Zhongqing; Allen, Brian F; De, Suvranu

    2014-12-01

    High-frequency electricity is used in the majority of surgical interventions. However, modern computer-based training and simulation systems rely on physically unrealistic models that fail to capture the interplay of the electrical, mechanical and thermal properties of biological tissue. We present a real-time and physically realistic simulation of electrosurgery by modelling the electrical, thermal and mechanical properties as three iteratively solved finite element models. To provide subfinite-element graphical rendering of vaporized tissue, a dual-mesh dynamic triangulation algorithm based on isotherms is proposed. The block compressed row storage (BCRS) structure is shown to be critical in allowing computationally efficient changes in the tissue topology due to vaporization. We have demonstrated our physics-based electrosurgery cutting algorithm through various examples. Our matrix manipulation algorithms designed for topology changes have shown low computational cost. Our simulator offers substantially greater physical fidelity compared to previous simulators that use simple geometry-based heat characterization. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Developing iPad-Based Physics Simulations That Can Help People Learn Newtonian Physics Concepts

    ERIC Educational Resources Information Center

    Lee, Young-Jin

    2015-01-01

    The aims of this study are: (1) to develop iPad-based computer simulations called iSimPhysics that can help people learn Newtonian physics concepts; and (2) to assess its educational benefits and pedagogical usefulness. To facilitate learning, iSimPhysics visualizes abstract physics concepts, and allows for conducting a series of computer…

  11. Preduction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation

    DTIC Science & Technology

    2016-08-02

    PREDICTION OF VEHICLE MOBILITY ON LARGE-SCALE SOFT- SOIL TERRAIN MAPS USING PHYSICS-BASED SIMULATION Tamer M. Wasfy, Paramsothy Jayakumar, Dave...NRMM • Objectives • Soft Soils • Review of Physics-Based Soil Models • MBD/DEM Modeling Formulation – Joint & Contact Constraints – DEM Cohesive... Soil Model • Cone Penetrometer Experiment • Vehicle- Soil Model • Vehicle Mobility DOE Procedure • Simulation Results • Concluding Remarks 2UNCLASSIFIED

  12. The Effect of Metacognitive Training and Prompting on Learning Success in Simulation-Based Physics Learning

    ERIC Educational Resources Information Center

    Moser, Stephanie; Zumbach, Joerg; Deibl, Ines

    2017-01-01

    Computer-based simulations are of particular interest to physics learning because they allow learners to actively manipulate graphical visualizations of complex phenomena. However, learning with simulations requires supportive elements to scaffold learners' activities. Thus, our motivation was to investigate whether direct or indirect…

  13. Using the PhysX engine for physics-based virtual surgery with force feedback.

    PubMed

    Maciel, Anderson; Halic, Tansel; Lu, Zhonghua; Nedel, Luciana P; De, Suvranu

    2009-09-01

    The development of modern surgical simulators is highly challenging, as they must support complex simulation environments. The demand for higher realism in such simulators has driven researchers to adopt physics-based models, which are computationally very demanding. This poses a major problem, since real-time interactions must permit graphical updates of 30 Hz and a much higher rate of 1 kHz for force feedback (haptics). Recently several physics engines have been developed which offer multi-physics simulation capabilities, including rigid and deformable bodies, cloth and fluids. While such physics engines provide unique opportunities for the development of surgical simulators, their higher latencies, compared to what is necessary for real-time graphics and haptics, offer significant barriers to their use in interactive simulation environments. In this work, we propose solutions to this problem and demonstrate how a multimodal surgical simulation environment may be developed based on NVIDIA's PhysX physics library. Hence, models that are undergoing relatively low-frequency updates in PhysX can exist in an environment that demands much higher frequency updates for haptics. We use a collision handling layer to interface between the physical response provided by PhysX and the haptic rendering device to provide both real-time tissue response and force feedback. Our simulator integrates a bimanual haptic interface for force feedback and per-pixel shaders for graphics realism in real time. To demonstrate the effectiveness of our approach, we present the simulation of the laparoscopic adjustable gastric banding (LAGB) procedure as a case study. To develop complex and realistic surgical trainers with realistic organ geometries and tissue properties demands stable physics-based deformation methods, which are not always compatible with the interaction level required for such trainers. We have shown that combining different modelling strategies for behaviour, collision and graphics is possible and desirable. Such multimodal environments enable suitable rates to simulate the major steps of the LAGB procedure.

  14. Physics-based approach to haptic display

    NASA Technical Reports Server (NTRS)

    Brown, J. Michael; Colgate, J. Edward

    1994-01-01

    This paper addresses the implementation of complex multiple degree of freedom virtual environments for haptic display. We suggest that a physics based approach to rigid body simulation is appropriate for hand tool simulation, but that currently available simulation techniques are not sufficient to guarantee successful implementation. We discuss the desirable features of a virtual environment simulation, specifically highlighting the importance of stability guarantees.

  15. Computational studies of physical properties of Nb-Si based alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ouyang, Lizhi

    2015-04-16

    The overall goal is to provide physical properties data supplementing experiments for thermodynamic modeling and other simulations such as phase filed simulation for microstructure and continuum simulations for mechanical properties. These predictive computational modeling and simulations may yield insights that can be used to guide materials design, processing, and manufacture. Ultimately, they may lead to usable Nb-Si based alloy which could play an important role in current plight towards greener energy. The main objectives of the proposed projects are: (1) developing a first principles method based supercell approach for calculating thermodynamic and mechanic properties of ordered crystals and disordered latticesmore » including solid solution; (2) application of the supercell approach to Nb-Si base alloy to compute physical properties data that can be used for thermodynamic modeling and other simulations to guide the optimal design of Nb-Si based alloy.« less

  16. Physics-based simulations of the impacts forest management practices have on hydrologic response

    Treesearch

    Adrianne Carr; Keith Loague

    2012-01-01

    The impacts of logging on near-surface hydrologic response at the catchment and watershed scales were examined quantitatively using numerical simulation. The simulations were conducted with the Integrated Hydrology Model (InHM) for the North Fork of Caspar Creek Experimental Watershed, located near Fort Bragg, California. InHM is a comprehensive physics-based...

  17. Coherent tools for physics-based simulation and characterization of noise in semiconductor devices oriented to nonlinear microwave circuit CAD

    NASA Astrophysics Data System (ADS)

    Riah, Zoheir; Sommet, Raphael; Nallatamby, Jean C.; Prigent, Michel; Obregon, Juan

    2004-05-01

    We present in this paper a set of coherent tools for noise characterization and physics-based analysis of noise in semiconductor devices. This noise toolbox relies on a low frequency noise measurement setup with special high current capabilities thanks to an accurate and original calibration. It relies also on a simulation tool based on the drift diffusion equations and the linear perturbation theory, associated with the Green's function technique. This physics-based noise simulator has been implemented successfully in the Scilab environment and is specifically dedicated to HBTs. Some results are given and compared to those existing in the literature.

  18. Physically Based Modeling and Simulation with Dynamic Spherical Volumetric Simplex Splines

    PubMed Central

    Tan, Yunhao; Hua, Jing; Qin, Hong

    2009-01-01

    In this paper, we present a novel computational modeling and simulation framework based on dynamic spherical volumetric simplex splines. The framework can handle the modeling and simulation of genus-zero objects with real physical properties. In this framework, we first develop an accurate and efficient algorithm to reconstruct the high-fidelity digital model of a real-world object with spherical volumetric simplex splines which can represent with accuracy geometric, material, and other properties of the object simultaneously. With the tight coupling of Lagrangian mechanics, the dynamic volumetric simplex splines representing the object can accurately simulate its physical behavior because it can unify the geometric and material properties in the simulation. The visualization can be directly computed from the object’s geometric or physical representation based on the dynamic spherical volumetric simplex splines during simulation without interpolation or resampling. We have applied the framework for biomechanic simulation of brain deformations, such as brain shifting during the surgery and brain injury under blunt impact. We have compared our simulation results with the ground truth obtained through intra-operative magnetic resonance imaging and the real biomechanic experiments. The evaluations demonstrate the excellent performance of our new technique. PMID:20161636

  19. Expanded Processing Techniques for EMI Systems

    DTIC Science & Technology

    2012-07-01

    possible to perform better target detection using physics-based algorithms and the entire data set, rather than simulating a simpler data set and mapping...possible to perform better target detection using physics-based algorithms and the entire data set, rather than simulating a simpler data set and...54! Figure 4.25: Plots of simulated MetalMapper data for two oblate spheroidal targets

  20. Event-driven simulation in SELMON: An overview of EDSE

    NASA Technical Reports Server (NTRS)

    Rouquette, Nicolas F.; Chien, Steve A.; Charest, Leonard, Jr.

    1992-01-01

    EDSE (event-driven simulation engine), a model-based event-driven simulator implemented for SELMON, a tool for sensor selection and anomaly detection in real-time monitoring is described. The simulator is used in conjunction with a causal model to predict future behavior of the model from observed data. The behavior of the causal model is interpreted as equivalent to the behavior of the physical system being modeled. An overview of the functionality of the simulator and the model-based event-driven simulation paradigm on which it is based is provided. Included are high-level descriptions of the following key properties: event consumption and event creation, iterative simulation, synchronization and filtering of monitoring data from the physical system. Finally, how EDSE stands with respect to the relevant open issues of discrete-event and model-based simulation is discussed.

  1. Simulation-Based Training for Colonoscopy

    PubMed Central

    Preisler, Louise; Svendsen, Morten Bo Søndergaard; Nerup, Nikolaj; Svendsen, Lars Bo; Konge, Lars

    2015-01-01

    Abstract The aim of this study was to create simulation-based tests with credible pass/fail standards for 2 different fidelities of colonoscopy models. Only competent practitioners should perform colonoscopy. Reliable and valid simulation-based tests could be used to establish basic competency in colonoscopy before practicing on patients. Twenty-five physicians (10 consultants with endoscopic experience and 15 fellows with very little endoscopic experience) were tested on 2 different simulator models: a virtual-reality simulator and a physical model. Tests were repeated twice on each simulator model. Metrics with discriminatory ability were identified for both modalities and reliability was determined. The contrasting-groups method was used to create pass/fail standards and the consequences of these were explored. The consultants significantly performed faster and scored higher than the fellows on both the models (P < 0.001). Reliability analysis showed Cronbach α = 0.80 and 0.87 for the virtual-reality and the physical model, respectively. The established pass/fail standards failed one of the consultants (virtual-reality simulator) and allowed one fellow to pass (physical model). The 2 tested simulations-based modalities provided reliable and valid assessments of competence in colonoscopy and credible pass/fail standards were established for both the tests. We propose to use these standards in simulation-based training programs before proceeding to supervised training on patients. PMID:25634177

  2. Investigation of resistance switching in SiO x RRAM cells using a 3D multi-scale kinetic Monte Carlo simulator

    NASA Astrophysics Data System (ADS)

    Sadi, Toufik; Mehonic, Adnan; Montesi, Luca; Buckwell, Mark; Kenyon, Anthony; Asenov, Asen

    2018-02-01

    We employ an advanced three-dimensional (3D) electro-thermal simulator to explore the physics and potential of oxide-based resistive random-access memory (RRAM) cells. The physical simulation model has been developed recently, and couples a kinetic Monte Carlo study of electron and ionic transport to the self-heating phenomenon while accounting carefully for the physics of vacancy generation and recombination, and trapping mechanisms. The simulation framework successfully captures resistance switching, including the electroforming, set and reset processes, by modeling the dynamics of conductive filaments in the 3D space. This work focuses on the promising yet less studied RRAM structures based on silicon-rich silica (SiO x ) RRAMs. We explain the intrinsic nature of resistance switching of the SiO x layer, analyze the effect of self-heating on device performance, highlight the role of the initial vacancy distributions acting as precursors for switching, and also stress the importance of using 3D physics-based models to capture accurately the switching processes. The simulation work is backed by experimental studies. The simulator is useful for improving our understanding of the little-known physics of SiO x resistive memory devices, as well as other oxide-based RRAM systems (e.g. transition metal oxide RRAMs), offering design and optimization capabilities with regard to the reliability and variability of memory cells.

  3. Effects of Learning Support in Simulation-Based Physics Learning

    ERIC Educational Resources Information Center

    Chang, Kuo-En; Chen, Yu-Lung; Lin, He-Yan; Sung, Yao-Ting

    2008-01-01

    This paper describes the effects of learning support on simulation-based learning in three learning models: experiment prompting, a hypothesis menu, and step guidance. A simulation learning system was implemented based on these three models, and the differences between simulation-based learning and traditional laboratory learning were explored in…

  4. Physics-based statistical model and simulation method of RF propagation in urban environments

    DOEpatents

    Pao, Hsueh-Yuan; Dvorak, Steven L.

    2010-09-14

    A physics-based statistical model and simulation/modeling method and system of electromagnetic wave propagation (wireless communication) in urban environments. In particular, the model is a computationally efficient close-formed parametric model of RF propagation in an urban environment which is extracted from a physics-based statistical wireless channel simulation method and system. The simulation divides the complex urban environment into a network of interconnected urban canyon waveguides which can be analyzed individually; calculates spectral coefficients of modal fields in the waveguides excited by the propagation using a database of statistical impedance boundary conditions which incorporates the complexity of building walls in the propagation model; determines statistical parameters of the calculated modal fields; and determines a parametric propagation model based on the statistical parameters of the calculated modal fields from which predictions of communications capability may be made.

  5. Assessing the detail needed to capture rainfall-runoff dynamics with physics-based hydrologic response simulation

    USGS Publications Warehouse

    Mirus, B.B.; Ebel, B.A.; Heppner, C.S.; Loague, K.

    2011-01-01

    Concept development simulation with distributed, physics-based models provides a quantitative approach for investigating runoff generation processes across environmental conditions. Disparities within data sets employed to design and parameterize boundary value problems used in heuristic simulation inevitably introduce various levels of bias. The objective was to evaluate the impact of boundary value problem complexity on process representation for different runoff generation mechanisms. The comprehensive physics-based hydrologic response model InHM has been employed to generate base case simulations for four well-characterized catchments. The C3 and CB catchments are located within steep, forested environments dominated by subsurface stormflow; the TW and R5 catchments are located in gently sloping rangeland environments dominated by Dunne and Horton overland flows. Observational details are well captured within all four of the base case simulations, but the characterization of soil depth, permeability, rainfall intensity, and evapotranspiration differs for each. These differences are investigated through the conversion of each base case into a reduced case scenario, all sharing the same level of complexity. Evaluation of how individual boundary value problem characteristics impact simulated runoff generation processes is facilitated by quantitative analysis of integrated and distributed responses at high spatial and temporal resolution. Generally, the base case reduction causes moderate changes in discharge and runoff patterns, with the dominant process remaining unchanged. Moderate differences between the base and reduced cases highlight the importance of detailed field observations for parameterizing and evaluating physics-based models. Overall, similarities between the base and reduced cases indicate that the simpler boundary value problems may be useful for concept development simulation to investigate fundamental controls on the spectrum of runoff generation mechanisms. Copyright 2011 by the American Geophysical Union.

  6. Effectiveness of a Brief Intervention Using Process-Based Mental Simulations in Promoting Muscular Strength in Physical Education

    ERIC Educational Resources Information Center

    Koka, Andre

    2017-01-01

    This study examined the effectiveness of a brief theory-based intervention on muscular strength among adolescents in a physical education setting. The intervention adopted a process-based mental simulation technique. The self-reported frequency of practising for and actual levels of abdominal muscular strength/endurance as one component of…

  7. Update of global TC simulations using a variable resolution non-hydrostatic model

    NASA Astrophysics Data System (ADS)

    Park, S. H.

    2017-12-01

    Using in a variable resolution meshes in MPAS during 2017 summer., Tropical cyclone (TC) forecasts are simulated. Two physics suite are tested to explore performance and bias of each physics suite for TC forecasting. A WRF physics suite is selected from experience on weather forecasting and CAM (Community Atmosphere Model) physics is taken from a AMIP type climate simulation. Based on the last year results from CAM5 physical parameterization package and comparing with WRF physics, we investigated a issue with intensity bias using updated version of CAM physics (CAM6). We also compared these results with coupled version of TC simulations. During this talk, TC structure will be compared specially around of boundary layer and investigate their relationship between TC intensity and different physics package.

  8. Impact of detector simulation in particle physics collider experiments

    NASA Astrophysics Data System (ADS)

    Daniel Elvira, V.

    2017-06-01

    Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.

  9. An Example-Based Brain MRI Simulation Framework.

    PubMed

    He, Qing; Roy, Snehashis; Jog, Amod; Pham, Dzung L

    2015-02-21

    The simulation of magnetic resonance (MR) images plays an important role in the validation of image analysis algorithms such as image segmentation, due to lack of sufficient ground truth in real MR images. Previous work on MRI simulation has focused on explicitly modeling the MR image formation process. However, because of the overwhelming complexity of MR acquisition these simulations must involve simplifications and approximations that can result in visually unrealistic simulated images. In this work, we describe an example-based simulation framework, which uses an "atlas" consisting of an MR image and its anatomical models derived from the hard segmentation. The relationships between the MR image intensities and its anatomical models are learned using a patch-based regression that implicitly models the physics of the MR image formation. Given the anatomical models of a new brain, a new MR image can be simulated using the learned regression. This approach has been extended to also simulate intensity inhomogeneity artifacts based on the statistical model of training data. Results show that the example based MRI simulation method is capable of simulating different image contrasts and is robust to different choices of atlas. The simulated images resemble real MR images more than simulations produced by a physics-based model.

  10. A methodology for the rigorous verification of plasma simulation codes

    NASA Astrophysics Data System (ADS)

    Riva, Fabio

    2016-10-01

    The methodology used to assess the reliability of numerical simulation codes constitutes the Verification and Validation (V&V) procedure. V&V is composed by two separate tasks: the verification, which is a mathematical issue targeted to assess that the physical model is correctly solved, and the validation, which determines the consistency of the code results, and therefore of the physical model, with experimental data. In the present talk we focus our attention on the verification, which in turn is composed by the code verification, targeted to assess that a physical model is correctly implemented in a simulation code, and the solution verification, that quantifies the numerical error affecting a simulation. Bridging the gap between plasma physics and other scientific domains, we introduced for the first time in our domain a rigorous methodology for the code verification, based on the method of manufactured solutions, as well as a solution verification based on the Richardson extrapolation. This methodology was applied to GBS, a three-dimensional fluid code based on a finite difference scheme, used to investigate the plasma turbulence in basic plasma physics experiments and in the tokamak scrape-off layer. Overcoming the difficulty of dealing with a numerical method intrinsically affected by statistical noise, we have now generalized the rigorous verification methodology to simulation codes based on the particle-in-cell algorithm, which are employed to solve Vlasov equation in the investigation of a number of plasma physics phenomena.

  11. Simulation-based Education for Endoscopic Third Ventriculostomy: A Comparison Between Virtual and Physical Training Models.

    PubMed

    Breimer, Gerben E; Haji, Faizal A; Bodani, Vivek; Cunningham, Melissa S; Lopez-Rios, Adriana-Lucia; Okrainec, Allan; Drake, James M

    2017-02-01

    The relative educational benefits of virtual reality (VR) and physical simulation models for endoscopic third ventriculostomy (ETV) have not been evaluated "head to head." To compare and identify the relative utility of a physical and VR ETV simulation model for use in neurosurgical training. Twenty-three neurosurgical residents and 3 fellows performed an ETV on both a physical and VR simulation model. Trainees rated the models using 5-point Likert scales evaluating the domains of anatomy, instrument handling, procedural content, and the overall fidelity of the simulation. Paired t tests were performed for each domain's mean overall score and individual items. The VR model has relative benefits compared with the physical model with respect to realistic representation of intraventricular anatomy at the foramen of Monro (4.5, standard deviation [SD] = 0.7 vs 4.1, SD = 0.6; P = .04) and the third ventricle floor (4.4, SD = 0.6 vs 4.0, SD = 0.9; P = .03), although the overall anatomy score was similar (4.2, SD = 0.6 vs 4.0, SD = 0.6; P = .11). For overall instrument handling and procedural content, the physical simulator outperformed the VR model (3.7, SD = 0.8 vs 4.5; SD = 0.5, P < .001 and 3.9; SD = 0.8 vs 4.2, SD = 0.6; P = .02, respectively). Overall task fidelity across the 2 simulators was not perceived as significantly different. Simulation model selection should be based on educational objectives. Training focused on learning anatomy or decision-making for anatomic cues may be aided with the VR simulation model. A focus on developing manual dexterity and technical skills using endoscopic equipment in the operating room may be better learned on the physical simulation model. Copyright © 2016 by the Congress of Neurological Surgeons

  12. A survey of simulators for palpation training.

    PubMed

    Zhang, Yan; Phillips, Roger; Ward, James; Pisharody, Sandhya

    2009-01-01

    Palpation is a widely used diagnostic method in medical practice. The sensitivity of palpation is highly dependent upon the skill of clinicians, which is often difficult to master. There is a need of simulators in palpation training. This paper summarizes important work and the latest achievements in simulation for palpation training. Three types of simulators; physical models, Virtual Reality (VR) based simulations, and hybrid (computerized and physical) simulators, are surveyed. Comparisons among different kinds of simulators are presented.

  13. Physics-based animation of large-scale splashing liquids, elastoplastic solids, and model-reduced flow

    NASA Astrophysics Data System (ADS)

    Gerszewski, Daniel James

    Physical simulation has become an essential tool in computer animation. As the use of visual effects increases, the need for simulating real-world materials increases. In this dissertation, we consider three problems in physics-based animation: large-scale splashing liquids, elastoplastic material simulation, and dimensionality reduction techniques for fluid simulation. Fluid simulation has been one of the greatest successes of physics-based animation, generating hundreds of research papers and a great many special effects over the last fifteen years. However, the animation of large-scale, splashing liquids remains challenging. We show that a novel combination of unilateral incompressibility, mass-full FLIP, and blurred boundaries is extremely well-suited to the animation of large-scale, violent, splashing liquids. Materials that incorporate both plastic and elastic deformations, also referred to as elastioplastic materials, are frequently encountered in everyday life. Methods for animating such common real-world materials are useful for effects practitioners and have been successfully employed in films. We describe a point-based method for animating elastoplastic materials. Our primary contribution is a simple method for computing the deformation gradient for each particle in the simulation. Given the deformation gradient, we can apply arbitrary constitutive models and compute the resulting elastic forces. Our method has two primary advantages: we do not store or compare to an initial rest configuration and we work directly with the deformation gradient. The first advantage avoids poor numerical conditioning and the second naturally leads to a multiplicative model of deformation appropriate for finite deformations. One of the most significant drawbacks of physics-based animation is that ever-higher fidelity leads to an explosion in the number of degrees of freedom. This problem leads us to the consideration of dimensionality reduction techniques. We present several enhancements to model-reduced fluid simulation that allow improved simulation bases and two-way solid-fluid coupling. Specifically, we present a basis enrichment scheme that allows us to combine data-driven or artistically derived bases with more general analytic bases derived from Laplacian Eigenfunctions. Additionally, we handle two-way solid-fluid coupling in a time-splitting fashion---we alternately timestep the fluid and rigid body simulators, while taking into account the effects of the fluid on the rigid bodies and vice versa. We employ the vortex panel method to handle solid-fluid coupling and use dynamic pressure to compute the effect of the fluid on rigid bodies. Taken together, these contributions have advanced the state-of-the art in physics-based animation and are practical enough to be used in production pipelines.

  14. The Design and Semi-Physical Simulation Test of Fault-Tolerant Controller for Aero Engine

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Zhang, Xin; Zhang, Tianhong

    2017-11-01

    A new fault-tolerant control method for aero engine is proposed, which can accurately diagnose the sensor fault by Kalman filter banks and reconstruct the signal by real-time on-board adaptive model combing with a simplified real-time model and an improved Kalman filter. In order to verify the feasibility of the method proposed, a semi-physical simulation experiment has been carried out. Besides the real I/O interfaces, controller hardware and the virtual plant model, semi-physical simulation system also contains real fuel system. Compared with the hardware-in-the-loop (HIL) simulation, semi-physical simulation system has a higher degree of confidence. In order to meet the needs of semi-physical simulation, a rapid prototyping controller with fault-tolerant control ability based on NI CompactRIO platform is designed and verified on the semi-physical simulation test platform. The result shows that the controller can realize the aero engine control safely and reliably with little influence on controller performance in the event of fault on sensor.

  15. Evaluating crown fire rate of spread predictions from physics-based models

    Treesearch

    C. M. Hoffman; J. Ziegler; J. Canfield; R. R. Linn; W. Mell; C. H. Sieg; F. Pimont

    2015-01-01

    Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate...

  16. A multi-institutional study using simulation to teach cardiopulmonary physical examination and diagnosis skills to physician assistant students.

    PubMed

    Multak, Nina; Newell, Karen; Spear, Sherrie; Scalese, Ross J; Issenberg, S Barry

    2015-06-01

    Research demonstrates limitations in the ability of health care trainees/practitioners, including physician assistants (PAs), to identify important cardiopulmonary examination findings and diagnose corresponding conditions. Studies also show that simulation-based training leads to improved performance and that these skills can transfer to real patients. This study evaluated the effectiveness of a newly developed curriculum incorporating simulation with deliberate practice for teaching cardiopulmonary physical examination/bedside diagnosis skills in the PA population. This multi-institutional study used a pretest/posttest design. Participants, PA students from 4 different programs, received a standardized curriculum including instructor-led activities interspersed among small-group/independent self-study time. Didactic sessions and independent study featured practice with the "Harvey" simulator and use of specially developed computer-based multimedia tutorials. Preintervention: participants completed demographic questionnaires, rated self-confidence, and underwent baseline evaluation of knowledge and cardiopulmonary physical examination skills. Students logged self-study time using various learning resources. Postintervention: students again rated self-confidence and underwent repeat cognitive/performance testing using equivalent written/simulator-based assessments. Physician assistant students (N = 56) demonstrated significant gains in knowledge, cardiac examination technique, recognition of total cardiac findings, identification of key auscultatory findings (extra heart sounds, systolic/diastolic murmurs), and the ability to make correct diagnoses. Learner self-confidence also improved significantly. This study demonstrated the effectiveness of a simulation-based curriculum for teaching essential physical examination/bedside diagnosis skills to PA students. Its results reinforce those of similar/previous research, which suggest that simulation-based training is most effective under certain educational conditions. Future research will include subgroup analyses/correlation of other variables to explore best features/uses of simulation technology for training PAs.

  17. VLP Simulation: An Interactive Simple Virtual Model to Encourage Geoscience Skill about Volcano

    NASA Astrophysics Data System (ADS)

    Hariyono, E.; Liliasari; Tjasyono, B.; Rosdiana, D.

    2017-09-01

    The purpose of this study was to describe physics students predicting skills after following the geoscience learning using VLP (Volcano Learning Project) simulation. This research was conducted to 24 physics students at one of the state university in East Java-Indonesia. The method used is the descriptive analysis based on students’ answers related to predicting skills about volcanic activity. The results showed that the learning by using VLP simulation was very potential to develop physics students predicting skills. Students were able to explain logically about volcanic activity and they have been able to predict the potential eruption that will occur based on the real data visualization. It can be concluded that the VLP simulation is very suitable for physics student requirements in developing geosciences skill and recommended as an alternative media to educate the society in an understanding of volcanic phenomena.

  18. A Comparative Study on Real Lab and Simulation Lab in Communication Engineering from Students' Perspectives

    ERIC Educational Resources Information Center

    Balakrishnan, B.; Woods, P. C.

    2013-01-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised…

  19. Stochastic Human Exposure and Dose Simulation Model for Pesticides

    EPA Science Inventory

    SHEDS-Pesticides (Stochastic Human Exposure and Dose Simulation Model for Pesticides) is a physically-based stochastic model developed to quantify exposure and dose of humans to multimedia, multipathway pollutants. Probabilistic inputs are combined in physical/mechanistic algorit...

  20. Microstructurally Based Cross-slip Mechanisms and Their Effects on Dislocation Microstructure Evolution in fcc Crystals

    DTIC Science & Technology

    2015-01-01

    still necessary. One such model that could bridge this gap is discrete dis- location dynamics ( DDD ) simulations, in which both the time- and length-scale...limitations from atomic simulations are greatly reduced. Over the past two decades, two-dimen- sional (2D) and three-dimensional (3D) DDD methods have...dislocation ensem- bles according to physics-based rules [27–34]. The physics that can be incorporated in DDD simulations can range http://dx.doi.org

  1. A novel medical image data-based multi-physics simulation platform for computational life sciences.

    PubMed

    Neufeld, Esra; Szczerba, Dominik; Chavannes, Nicolas; Kuster, Niels

    2013-04-06

    Simulating and modelling complex biological systems in computational life sciences requires specialized software tools that can perform medical image data-based modelling, jointly visualize the data and computational results, and handle large, complex, realistic and often noisy anatomical models. The required novel solvers must provide the power to model the physics, biology and physiology of living tissue within the full complexity of the human anatomy (e.g. neuronal activity, perfusion and ultrasound propagation). A multi-physics simulation platform satisfying these requirements has been developed for applications including device development and optimization, safety assessment, basic research, and treatment planning. This simulation platform consists of detailed, parametrized anatomical models, a segmentation and meshing tool, a wide range of solvers and optimizers, a framework for the rapid development of specialized and parallelized finite element method solvers, a visualization toolkit-based visualization engine, a Python scripting interface for customized applications, a coupling framework, and more. Core components are cross-platform compatible and use open formats. Several examples of applications are presented: hyperthermia cancer treatment planning, tumour growth modelling, evaluating the magneto-haemodynamic effect as a biomarker and physics-based morphing of anatomical models.

  2. Implementing a modeling software for animated protein-complex interactions using a physics simulation library.

    PubMed

    Ueno, Yutaka; Ito, Shuntaro; Konagaya, Akihiko

    2014-12-01

    To better understand the behaviors and structural dynamics of proteins within a cell, novel software tools are being developed that can create molecular animations based on the findings of structural biology. This study proposes our method developed based on our prototypes to detect collisions and examine the soft-body dynamics of molecular models. The code was implemented with a software development toolkit for rigid-body dynamics simulation and a three-dimensional graphics library. The essential functions of the target software system included the basic molecular modeling environment, collision detection in the molecular models, and physical simulations of the movement of the model. Taking advantage of recent software technologies such as physics simulation modules and interpreted scripting language, the functions required for accurate and meaningful molecular animation were implemented efficiently.

  3. Basic Guidelines to Introduce Electric Circuit Simulation Software in a General Physics Course

    ERIC Educational Resources Information Center

    Moya, A. A.

    2018-01-01

    The introduction of electric circuit simulation software for undergraduate students in a general physics course is proposed in order to contribute to the constructive learning of electric circuit theory. This work focuses on the lab exercises based on dc, transient and ac analysis in electric circuits found in introductory physics courses, and…

  4. Physically-Based Modelling and Real-Time Simulation of Fluids.

    NASA Astrophysics Data System (ADS)

    Chen, Jim Xiong

    1995-01-01

    Simulating physically realistic complex fluid behaviors presents an extremely challenging problem for computer graphics researchers. Such behaviors include the effects of driving boats through water, blending differently colored fluids, rain falling and flowing on a terrain, fluids interacting in a Distributed Interactive Simulation (DIS), etc. Such capabilities are useful in computer art, advertising, education, entertainment, and training. We present a new method for physically-based modeling and real-time simulation of fluids in computer graphics and dynamic virtual environments. By solving the 2D Navier -Stokes equations using a CFD method, we map the surface into 3D using the corresponding pressures in the fluid flow field. This achieves realistic real-time fluid surface behaviors by employing the physical governing laws of fluids but avoiding extensive 3D fluid dynamics computations. To complement the surface behaviors, we calculate fluid volume and external boundary changes separately to achieve full 3D general fluid flow. To simulate physical activities in a DIS, we introduce a mechanism which uses a uniform time scale proportional to the clock-time and variable time-slicing to synchronize physical models such as fluids in the networked environment. Our approach can simulate many different fluid behaviors by changing the internal or external boundary conditions. It can model different kinds of fluids by varying the Reynolds number. It can simulate objects moving or floating in fluids. It can also produce synchronized general fluid flows in a DIS. Our model can serve as a testbed to simulate many other fluid phenomena which have never been successfully modeled previously.

  5. Physics-based simulation models for EBSD: advances and challenges

    NASA Astrophysics Data System (ADS)

    Winkelmann, A.; Nolze, G.; Vos, M.; Salvat-Pujol, F.; Werner, W. S. M.

    2016-02-01

    EBSD has evolved into an effective tool for microstructure investigations in the scanning electron microscope. The purpose of this contribution is to give an overview of various simulation approaches for EBSD Kikuchi patterns and to discuss some of the underlying physical mechanisms.

  6. Development of IR imaging system simulator

    NASA Astrophysics Data System (ADS)

    Xiang, Xinglang; He, Guojing; Dong, Weike; Dong, Lu

    2017-02-01

    To overcome the disadvantages of the tradition semi-physical simulation and injection simulation equipment in the performance evaluation of the infrared imaging system (IRIS), a low-cost and reconfigurable IRIS simulator, which can simulate the realistic physical process of infrared imaging, is proposed to test and evaluate the performance of the IRIS. According to the theoretical simulation framework and the theoretical models of the IRIS, the architecture of the IRIS simulator is constructed. The 3D scenes are generated and the infrared atmospheric transmission effects are simulated using OGRE technology in real-time on the computer. The physical effects of the IRIS are classified as the signal response characteristic, modulation transfer characteristic and noise characteristic, and they are simulated on the single-board signal processing platform based on the core processor FPGA in real-time using high-speed parallel computation method.

  7. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model.

    PubMed

    Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A

    2017-09-15

    In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Model-assisted probability of detection of flaws in aluminum blocks using polynomial chaos expansions

    NASA Astrophysics Data System (ADS)

    Du, Xiaosong; Leifsson, Leifur; Grandin, Robert; Meeker, William; Roberts, Ronald; Song, Jiming

    2018-04-01

    Probability of detection (POD) is widely used for measuring reliability of nondestructive testing (NDT) systems. Typically, POD is determined experimentally, while it can be enhanced by utilizing physics-based computational models in combination with model-assisted POD (MAPOD) methods. With the development of advanced physics-based methods, such as ultrasonic NDT testing, the empirical information, needed for POD methods, can be reduced. However, performing accurate numerical simulations can be prohibitively time-consuming, especially as part of stochastic analysis. In this work, stochastic surrogate models for computational physics-based measurement simulations are developed for cost savings of MAPOD methods while simultaneously ensuring sufficient accuracy. The stochastic surrogate is used to propagate the random input variables through the physics-based simulation model to obtain the joint probability distribution of the output. The POD curves are then generated based on those results. Here, the stochastic surrogates are constructed using non-intrusive polynomial chaos (NIPC) expansions. In particular, the NIPC methods used are the quadrature, ordinary least-squares (OLS), and least-angle regression sparse (LARS) techniques. The proposed approach is demonstrated on the ultrasonic testing simulation of a flat bottom hole flaw in an aluminum block. The results show that the stochastic surrogates have at least two orders of magnitude faster convergence on the statistics than direct Monte Carlo sampling (MCS). Moreover, the evaluation of the stochastic surrogate models is over three orders of magnitude faster than the underlying simulation model for this case, which is the UTSim2 model.

  9. A physical-based gas-surface interaction model for rarefied gas flow simulation

    NASA Astrophysics Data System (ADS)

    Liang, Tengfei; Li, Qi; Ye, Wenjing

    2018-01-01

    Empirical gas-surface interaction models, such as the Maxwell model and the Cercignani-Lampis model, are widely used as the boundary condition in rarefied gas flow simulations. The accuracy of these models in the prediction of macroscopic behavior of rarefied gas flows is less satisfactory in some cases especially the highly non-equilibrium ones. Molecular dynamics simulation can accurately resolve the gas-surface interaction process at atomic scale, and hence can predict accurate macroscopic behavior. They are however too computationally expensive to be applied in real problems. In this work, a statistical physical-based gas-surface interaction model, which complies with the basic relations of boundary condition, is developed based on the framework of the washboard model. In virtue of its physical basis, this new model is capable of capturing some important relations/trends for which the classic empirical models fail to model correctly. As such, the new model is much more accurate than the classic models, and in the meantime is more efficient than MD simulations. Therefore, it can serve as a more accurate and efficient boundary condition for rarefied gas flow simulations.

  10. Learning from avatars: Learning assistants practice physics pedagogy in a classroom simulator

    NASA Astrophysics Data System (ADS)

    Chini, Jacquelyn J.; Straub, Carrie L.; Thomas, Kevin H.

    2016-06-01

    [This paper is part of the Focused Collection on Preparing and Supporting University Physics Educators.] Undergraduate students are increasingly being used to support course transformations that incorporate research-based instructional strategies. While such students are typically selected based on strong content knowledge and possible interest in teaching, they often do not have previous pedagogical training. The current training models make use of real students or classmates role playing as students as the test subjects. We present a new environment for facilitating the practice of physics pedagogy skills, a highly immersive mixed-reality classroom simulator, and assess its effectiveness for undergraduate physics learning assistants (LAs). LAs prepared, taught, and reflected on a lesson about motion graphs for five highly interactive computer generated student avatars in the mixed-reality classroom simulator. To assess the effectiveness of the simulator for this population, we analyzed the pedagogical skills LAs intended to practice and exhibited during their lessons and explored LAs' descriptions of their experiences with the simulator. Our results indicate that the classroom simulator created a safe, effective environment for LAs to practice a variety of skills, such as questioning styles and wait time. Additionally, our analysis revealed areas for improvement in our preparation of LAs and use of the simulator. We conclude with a summary of research questions this environment could facilitate.

  11. UNRES server for physics-based coarse-grained simulations and prediction of protein structure, dynamics and thermodynamics.

    PubMed

    Czaplewski, Cezary; Karczynska, Agnieszka; Sieradzan, Adam K; Liwo, Adam

    2018-04-30

    A server implementation of the UNRES package (http://www.unres.pl) for coarse-grained simulations of protein structures with the physics-based UNRES model, coined a name UNRES server, is presented. In contrast to most of the protein coarse-grained models, owing to its physics-based origin, the UNRES force field can be used in simulations, including those aimed at protein-structure prediction, without ancillary information from structural databases; however, the implementation includes the possibility of using restraints. Local energy minimization, canonical molecular dynamics simulations, replica exchange and multiplexed replica exchange molecular dynamics simulations can be run with the current UNRES server; the latter are suitable for protein-structure prediction. The user-supplied input includes protein sequence and, optionally, restraints from secondary-structure prediction or small x-ray scattering data, and simulation type and parameters which are selected or typed in. Oligomeric proteins, as well as those containing D-amino-acid residues and disulfide links can be treated. The output is displayed graphically (minimized structures, trajectories, final models, analysis of trajectory/ensembles); however, all output files can be downloaded by the user. The UNRES server can be freely accessed at http://unres-server.chem.ug.edu.pl.

  12. Field-Scale Evaluation of Infiltration Parameters From Soil Texture for Hydrologic Analysis

    NASA Astrophysics Data System (ADS)

    Springer, Everett P.; Cundy, Terrance W.

    1987-02-01

    Recent interest in predicting soil hydraulic properties from simple physical properties such as texture has major implications in the parameterization of physically based models of surface runoff. This study was undertaken to (1) compare, on a field scale, soil hydraulic parameters predicted from texture to those derived from field measurements and (2) compare simulated overland flow response using these two parameter sets. The parameters for the Green-Ampt infiltration equation were obtained from field measurements and using texture-based predictors for two agricultural fields, which were mapped as single soil units. Results of the analyses were that (1) the mean and variance of the field-based parameters were not preserved by the texture-based estimates, (2) spatial and cross correlations between parameters were induced by the texture-based estimation procedures, (3) the overland flow simulations using texture-based parameters were significantly different than those from field-based parameters, and (4) simulations using field-measured hydraulic conductivities and texture-based storage parameters were very close to simulations using only field-based parameters.

  13. VERAIn

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simunovic, Srdjan

    2015-02-16

    CASL's modeling and simulation technology, the Virtual Environment for Reactor Applications (VERA), incorporates coupled physics and science-based models, state-of-the-art numerical methods, modern computational science, integrated uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs), single-effect experiments, and integral tests. The computational simulation component of VERA is the VERA Core Simulator (VERA-CS). The core simulator is the specific collection of multi-physics computer codes used to model and deplete a LWR core over multiple cycles. The core simulator has a single common input file that drives all of the different physics codes. The parser code, VERAIn, converts VERAmore » Input into an XML file that is used as input to different VERA codes.« less

  14. Physics-Based Fragment Acceleration Modeling for Pressurized Tank Burst Risk Assessments

    NASA Technical Reports Server (NTRS)

    Manning, Ted A.; Lawrence, Scott L.

    2014-01-01

    As part of comprehensive efforts to develop physics-based risk assessment techniques for space systems at NASA, coupled computational fluid and rigid body dynamic simulations were carried out to investigate the flow mechanisms that accelerate tank fragments in bursting pressurized vessels. Simulations of several configurations were compared to analyses based on the industry-standard Baker explosion model, and were used to formulate an improved version of the model. The standard model, which neglects an external fluid, was found to agree best with simulation results only in configurations where the internal-to-external pressure ratio is very high and fragment curvature is small. The improved model introduces terms that accommodate an external fluid and better account for variations based on circumferential fragment count. Physics-based analysis was critical in increasing the model's range of applicability. The improved tank burst model can be used to produce more accurate risk assessments of space vehicle failure modes that involve high-speed debris, such as exploding propellant tanks and bursting rocket engines.

  15. Biological Visualization, Imaging and Simulation(Bio-VIS) at NASA Ames Research Center: Developing New Software and Technology for Astronaut Training and Biology Research in Space

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey

    2003-01-01

    The Bio- Visualization, Imaging and Simulation (BioVIS) Technology Center at NASA's Ames Research Center is dedicated to developing and applying advanced visualization, computation and simulation technologies to support NASA Space Life Sciences research and the objectives of the Fundamental Biology Program. Research ranges from high resolution 3D cell imaging and structure analysis, virtual environment simulation of fine sensory-motor tasks, computational neuroscience and biophysics to biomedical/clinical applications. Computer simulation research focuses on the development of advanced computational tools for astronaut training and education. Virtual Reality (VR) and Virtual Environment (VE) simulation systems have become important training tools in many fields from flight simulation to, more recently, surgical simulation. The type and quality of training provided by these computer-based tools ranges widely, but the value of real-time VE computer simulation as a method of preparing individuals for real-world tasks is well established. Astronauts routinely use VE systems for various training tasks, including Space Shuttle landings, robot arm manipulations and extravehicular activities (space walks). Currently, there are no VE systems to train astronauts for basic and applied research experiments which are an important part of many missions. The Virtual Glovebox (VGX) is a prototype VE system for real-time physically-based simulation of the Life Sciences Glovebox where astronauts will perform many complex tasks supporting research experiments aboard the International Space Station. The VGX consists of a physical display system utilizing duel LCD projectors and circular polarization to produce a desktop-sized 3D virtual workspace. Physically-based modeling tools (Arachi Inc.) provide real-time collision detection, rigid body dynamics, physical properties and force-based controls for objects. The human-computer interface consists of two magnetic tracking devices (Ascention Inc.) attached to instrumented gloves (Immersion Inc.) which co-locate the user's hands with hand/forearm representations in the virtual workspace. Force-feedback is possible in a work volume defined by a Phantom Desktop device (SensAble inc.). Graphics are written in OpenGL. The system runs on a 2.2 GHz Pentium 4 PC. The prototype VGX provides astronauts and support personnel with a real-time physically-based VE system to simulate basic research tasks both on Earth and in the microgravity of Space. The immersive virtual environment of the VGX also makes it a useful tool for virtual engineering applications including CAD development, procedure design and simulation of human-system systems in a desktop-sized work volume.

  16. Analysis of GEANT4 Physics List Properties in the 12 GeV MOLLER Simulation Framework

    NASA Astrophysics Data System (ADS)

    Haufe, Christopher; Moller Collaboration

    2013-10-01

    To determine the validity of new physics beyond the scope of the electroweak theory, nuclear physicists across the globe have been collaborating on future endeavors that will provide the precision needed to confirm these speculations. One of these is the MOLLER experiment - a low-energy particle experiment that will utilize the 12 GeV upgrade of Jefferson Lab's CEBAF accelerator. The motivation of this experiment is to measure the parity-violating asymmetry of scattered polarized electrons off unpolarized electrons in a liquid hydrogen target. This measurement would allow for a more precise determination of the electron's weak charge and weak mixing angle. While still in its planning stages, the MOLLER experiment requires a detailed simulation framework in order to determine how the project should be run in the future. The simulation framework for MOLLER, called ``remoll'', is written in GEANT4 code. As a result, the simulation can utilize a number of GEANT4 coded physics lists that provide the simulation with a number of particle interaction constraints based off of different particle physics models. By comparing these lists with one another using the data-analysis application ROOT, the most optimal physics list for the MOLLER simulation can be determined and implemented. This material is based upon work supported by the National Science Foundation under Grant No. 714001.

  17. Study on photon transport problem based on the platform of molecular optical simulation environment.

    PubMed

    Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie

    2010-01-01

    As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (SP(n)), and physical measurement to verify the performance of our study method on both accuracy and efficiency.

  18. Study on Photon Transport Problem Based on the Platform of Molecular Optical Simulation Environment

    PubMed Central

    Peng, Kuan; Gao, Xinbo; Liang, Jimin; Qu, Xiaochao; Ren, Nunu; Chen, Xueli; Ma, Bin; Tian, Jie

    2010-01-01

    As an important molecular imaging modality, optical imaging has attracted increasing attention in the recent years. Since the physical experiment is usually complicated and expensive, research methods based on simulation platforms have obtained extensive attention. We developed a simulation platform named Molecular Optical Simulation Environment (MOSE) to simulate photon transport in both biological tissues and free space for optical imaging based on noncontact measurement. In this platform, Monte Carlo (MC) method and the hybrid radiosity-radiance theorem are used to simulate photon transport in biological tissues and free space, respectively, so both contact and noncontact measurement modes of optical imaging can be simulated properly. In addition, a parallelization strategy for MC method is employed to improve the computational efficiency. In this paper, we study the photon transport problems in both biological tissues and free space using MOSE. The results are compared with Tracepro, simplified spherical harmonics method (S P n), and physical measurement to verify the performance of our study method on both accuracy and efficiency. PMID:20445737

  19. Basic guidelines to introduce electric circuit simulation software in a general physics course

    NASA Astrophysics Data System (ADS)

    Moya, A. A.

    2018-05-01

    The introduction of electric circuit simulation software for undergraduate students in a general physics course is proposed in order to contribute to the constructive learning of electric circuit theory. This work focuses on the lab exercises based on dc, transient and ac analysis in electric circuits found in introductory physics courses, and shows how students can use the simulation software to do simple activities associated with a lab exercise itself and with related topics. By introducing electric circuit simulation programs in a general physics course as a brief activitiy complementing lab exercise, students develop basic skills in using simulation software, improve their knowledge on the topology of electric circuits and perceive that the technology contributes to their learning, all without reducing the time spent on the actual content of the course.

  20. Development of a physically-based planar inductors VHDL-AMS model for integrated power converter design

    NASA Astrophysics Data System (ADS)

    Ammouri, Aymen; Ben Salah, Walid; Khachroumi, Sofiane; Ben Salah, Tarek; Kourda, Ferid; Morel, Hervé

    2014-05-01

    Design of integrated power converters needs prototype-less approaches. Specific simulations are required for investigation and validation process. Simulation relies on active and passive device models. Models of planar devices, for instance, are still not available in power simulator tools. There is, thus, a specific limitation during the simulation process of integrated power systems. The paper focuses on the development of a physically-based planar inductor model and its validation inside a power converter during transient switching. The planar inductor model remains a complex device to model, particularly when the skin, the proximity and the parasitic capacitances effects are taken into account. Heterogeneous simulation scheme, including circuit and device models, is successfully implemented in VHDL-AMS language and simulated in Simplorer platform. The mixed simulation results has been favorably tested and compared with practical measurements. It is found that the multi-domain simulation results and measurements data are in close agreement.

  1. Simulated Patients in Physical Therapy Education: Systematic Review and Meta-Analysis.

    PubMed

    Pritchard, Shane A; Blackstock, Felicity C; Nestel, Debra; Keating, Jenny L

    2016-09-01

    Traditional models of physical therapy clinical education are experiencing unprecedented pressures. Simulation-based education with simulated (standardized) patients (SPs) is one alternative that has significant potential value, and implementation is increasing globally. However, no review evaluating the effects of SPs on professional (entry-level) physical therapy education is available. The purpose of this study was to synthesize and critically appraise the findings of empirical studies evaluating the contribution of SPs to entry-level physical therapy education, compared with no SP interaction or an alternative education strategy, on any outcome relevant to learning. A systematic search was conducted of Ovid MEDLINE, PubMed, AMED, ERIC, and CINAHL Plus databases and reference lists of included articles, relevant reviews, and gray literature up to May 2015. Articles reporting quantitative or qualitative data evaluating the contribution of SPs to entry-level physical therapy education were included. Two reviewers independently extracted study characteristics, intervention details, and quantitative and qualitative evaluation data from the 14 articles that met the eligibility criteria. Pooled random-effects meta-analysis indicated that replacing up to 25% of authentic patient-based physical therapist practice with SP-based education results in comparable competency (mean difference=1.55/100; 95% confidence interval=-1.08, 4.18; P=.25). Thematic analysis of qualitative data indicated that students value learning with SPs. Assumptions were made to enable pooling of data, and the search strategy was limited to English. Simulated patients appear to have an effect comparable to that of alternative educational strategies on development of physical therapy clinical practice competencies and serve a valuable role in entry-level physical therapy education. However, available research lacks the rigor required for confidence in findings. Given the potential advantages for students, high-quality studies that include an economic analysis should be conducted. © 2016 American Physical Therapy Association.

  2. Linking Statistically- and Physically-Based Models for Improved Streamflow Simulation in Gaged and Ungaged Areas

    NASA Astrophysics Data System (ADS)

    Lafontaine, J.; Hay, L.; Archfield, S. A.; Farmer, W. H.; Kiang, J. E.

    2014-12-01

    The U.S. Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the continental US. The portion of the NHM located within the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperative (GCPO LCC) is being used to test the feasibility of improving streamflow simulations in gaged and ungaged watersheds by linking statistically- and physically-based hydrologic models. The GCPO LCC covers part or all of 12 states and 5 sub-geographies, totaling approximately 726,000 km2, and is centered on the lower Mississippi Alluvial Valley. A total of 346 USGS streamgages in the GCPO LCC region were selected to evaluate the performance of this new calibration methodology for the period 1980 to 2013. Initially, the physically-based models are calibrated to measured streamflow data to provide a baseline for comparison. An enhanced calibration procedure then is used to calibrate the physically-based models in the gaged and ungaged areas of the GCPO LCC using statistically-based estimates of streamflow. For this application, the calibration procedure is adjusted to address the limitations of the statistically generated time series to reproduce measured streamflow in gaged basins, primarily by incorporating error and bias estimates. As part of this effort, estimates of uncertainty in the model simulations are also computed for the gaged and ungaged watersheds.

  3. An integrated algorithm for hypersonic fluid-thermal-structural numerical simulation

    NASA Astrophysics Data System (ADS)

    Li, Jia-Wei; Wang, Jiang-Feng

    2018-05-01

    In this paper, a fluid-structural-thermal integrated method is presented based on finite volume method. A unified integral equations system is developed as the control equations for physical process of aero-heating and structural heat transfer. The whole physical field is discretized by using an up-wind finite volume method. To demonstrate its capability, the numerical simulation of Mach 6.47 flow over stainless steel cylinder shows a good agreement with measured values, and this method dynamically simulates the objective physical processes. Thus, the integrated algorithm proves to be efficient and reliable.

  4. PhET: Interactive Simulations for Teaching and Learning Physics

    NASA Astrophysics Data System (ADS)

    Perkins, Katherine; Adams, Wendy; Dubson, Michael; Finkelstein, Noah; Reid, Sam; Wieman, Carl; LeMaster, Ron

    2006-01-01

    The Physics Education Technology (PhET) project creates useful simulations for teaching and learning physics and makes them freely available from the PhET website (http://phet.colorado.edu). The simulations (sims) are animated, interactive, and game-like environments in which students learn through exploration. In these sims, we emphasize the connections between real-life phenomena and the underlying science, and seek to make the visual and conceptual models of expert physicists accessible to students. We use a research-based approach in our design—incorporating findings from prior research and our own testing to create sims that support student engagement with and understanding of physics concepts.

  5. A Physics-driven Neural Networks-based Simulation System (PhyNNeSS) for multimodal interactive virtual environments involving nonlinear deformable objects

    PubMed Central

    De, Suvranu; Deo, Dhannanjay; Sankaranarayanan, Ganesh; Arikatla, Venkata S.

    2012-01-01

    Background While an update rate of 30 Hz is considered adequate for real time graphics, a much higher update rate of about 1 kHz is necessary for haptics. Physics-based modeling of deformable objects, especially when large nonlinear deformations and complex nonlinear material properties are involved, at these very high rates is one of the most challenging tasks in the development of real time simulation systems. While some specialized solutions exist, there is no general solution for arbitrary nonlinearities. Methods In this work we present PhyNNeSS - a Physics-driven Neural Networks-based Simulation System - to address this long-standing technical challenge. The first step is an off-line pre-computation step in which a database is generated by applying carefully prescribed displacements to each node of the finite element models of the deformable objects. In the next step, the data is condensed into a set of coefficients describing neurons of a Radial Basis Function network (RBFN). During real-time computation, these neural networks are used to reconstruct the deformation fields as well as the interaction forces. Results We present realistic simulation examples from interactive surgical simulation with real time force feedback. As an example, we have developed a deformable human stomach model and a Penrose-drain model used in the Fundamentals of Laparoscopic Surgery (FLS) training tool box. Conclusions A unique computational modeling system has been developed that is capable of simulating the response of nonlinear deformable objects in real time. The method distinguishes itself from previous efforts in that a systematic physics-based pre-computational step allows training of neural networks which may be used in real time simulations. We show, through careful error analysis, that the scheme is scalable, with the accuracy being controlled by the number of neurons used in the simulation. PhyNNeSS has been integrated into SoFMIS (Software Framework for Multimodal Interactive Simulation) for general use. PMID:22629108

  6. Multigrid accelerated simulations for Twisted Mass fermions

    NASA Astrophysics Data System (ADS)

    Bacchio, Simone; Alexandrou, Constantia; Finkerath, Jacob

    2018-03-01

    Simulations at physical quark masses are affected by the critical slowing down of the solvers. Multigrid preconditioning has proved to deal effectively with this problem. Multigrid accelerated simulations at the physical value of the pion mass are being performed to generate Nf = 2 and Nf = 2 + 1 + 1 gauge ensembles using twisted mass fermions. The adaptive aggregation-based domain decomposition multigrid solver, referred to as DD-αAMG method, is employed for these simulations. Our simulation strategy consists of an hybrid approach of different solvers, involving the Conjugate Gradient (CG), multi-mass-shift CG and DD-αAMG solvers. We present an analysis of the multigrid performance during the simulations discussing the stability of the method. This significant speeds up the Hybrid Monte Carlo simulation by more than a factor 4 at physical pion mass compared to the usage of the CG solver.

  7. An Intelligent and Interactive Simulation and Tutoring Environment for Exploring and Learning Simple Machines

    NASA Astrophysics Data System (ADS)

    Myneni, Lakshman Sundeep

    Students in middle school science classes have difficulty mastering physics concepts such as energy and work, taught in the context of simple machines. Moreover, students' naive conceptions of physics often remain unchanged after completing a science class. To address this problem, I developed an intelligent tutoring system, called the Virtual Physics System (ViPS), which coaches students through problem solving with one class of simple machines, pulley systems. The tutor uses a unique cognitive based approach to teaching simple machines, and includes innovations in three areas. (1) It employs a teaching strategy that focuses on highlighting links among concepts of the domain that are essential for conceptual understanding yet are seldom learned by students. (2) Concepts are taught through a combination of effective human tutoring techniques (e.g., hinting) and simulations. (3) For each student, the system identifies which misconceptions he or she has, from a common set of student misconceptions gathered from domain experts, and tailors tutoring to match the correct line of scientific reasoning regarding the misconceptions. ViPS was implemented as a platform on which students can design and simulate pulley system experiments, integrated with a constraint-based tutor that intervenes when students make errors during problem solving to teach them and to help them. ViPS has a web-based client-server architecture, and has been implemented using Java technologies. ViPS is different from existing physics simulations and tutoring systems due to several original features. (1). It is the first system to integrate a simulation based virtual experimentation platform with an intelligent tutoring component. (2) It uses a novel approach, based on Bayesian networks, to help students construct correct pulley systems for experimental simulation. (3) It identifies student misconceptions based on a novel decision tree applied to student pretest scores, and tailors tutoring to individual students based on detected misconceptions. ViPS has been evaluated through usability and usefulness experiments with undergraduate engineering students taking their first college-level engineering physics course and undergraduate pre-service teachers taking their first college-level physics course. These experiments demonstrated that ViPS is highly usable and effective. Students using ViPS reduced their misconceptions, and students conducting virtual experiments in ViPS learned more than students who conducted experiments with physical pulley systems. Interestingly, it was also found that college students exhibited many of the same misconceptions that have been identified in middle school students.

  8. Constraining physical parameters of ultra-fast outflows in PDS 456 with Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Hagino, K.; Odaka, H.; Done, C.; Gandhi, P.; Takahashi, T.

    2014-07-01

    Deep absorption lines with extremely high velocity of ˜0.3c observed in PDS 456 spectra strongly indicate the existence of ultra-fast outflows (UFOs). However, the launching and acceleration mechanisms of UFOs are still uncertain. One possible way to solve this is to constrain physical parameters as a function of distance from the source. In order to study the spatial dependence of parameters, it is essential to adopt 3-dimensional Monte Carlo simulations that treat radiation transfer in arbitrary geometry. We have developed a new simulation code of X-ray radiation reprocessed in AGN outflow. Our code implements radiative transfer in 3-dimensional biconical disk wind geometry, based on Monte Carlo simulation framework called MONACO (Watanabe et al. 2006, Odaka et al. 2011). Our simulations reproduce FeXXV and FeXXVI absorption features seen in the spectra. Also, broad Fe emission lines, which reflects the geometry and viewing angle, is successfully reproduced. By comparing the simulated spectra with Suzaku data, we obtained constraints on physical parameters. We discuss launching and acceleration mechanisms of UFOs in PDS 456 based on our analysis.

  9. Physics-based interactive volume manipulation for sharing surgical process.

    PubMed

    Nakao, Megumi; Minato, Kotaro

    2010-05-01

    This paper presents a new set of techniques by which surgeons can interactively manipulate patient-specific volumetric models for sharing surgical process. To handle physical interaction between the surgical tools and organs, we propose a simple surface-constraint-based manipulation algorithm to consistently simulate common surgical manipulations such as grasping, holding and retraction. Our computation model is capable of simulating soft-tissue deformation and incision in real time. We also present visualization techniques in order to rapidly visualize time-varying, volumetric information on the deformed image. This paper demonstrates the success of the proposed methods in enabling the simulation of surgical processes, and the ways in which this simulation facilitates preoperative planning and rehearsal.

  10. Improving Computational Efficiency of Prediction in Model-Based Prognostics Using the Unscented Transform

    NASA Technical Reports Server (NTRS)

    Daigle, Matthew John; Goebel, Kai Frank

    2010-01-01

    Model-based prognostics captures system knowledge in the form of physics-based models of components, and how they fail, in order to obtain accurate predictions of end of life (EOL). EOL is predicted based on the estimated current state distribution of a component and expected profiles of future usage. In general, this requires simulations of the component using the underlying models. In this paper, we develop a simulation-based prediction methodology that achieves computational efficiency by performing only the minimal number of simulations needed in order to accurately approximate the mean and variance of the complete EOL distribution. This is performed through the use of the unscented transform, which predicts the means and covariances of a distribution passed through a nonlinear transformation. In this case, the EOL simulation acts as that nonlinear transformation. In this paper, we review the unscented transform, and describe how this concept is applied to efficient EOL prediction. As a case study, we develop a physics-based model of a solenoid valve, and perform simulation experiments to demonstrate improved computational efficiency without sacrificing prediction accuracy.

  11. Are Simulation Stethoscopes a Useful Adjunct for Emergency Residents' Training on High-fidelity Mannequins?

    PubMed

    Warrington, Steven J; Beeson, Michael S; Fire, Frank L

    2013-05-01

    Emergency medicine residents use simulation training for many reasons, such as gaining experience with critically ill patients and becoming familiar with disease processes. Residents frequently criticize simulation training using current high-fidelity mannequins due to the poor quality of physical exam findings present, such as auscultatory findings, as it may lead them down an alternate diagnostic or therapeutic pathway. Recently wireless remote programmed stethoscopes (simulation stethoscopes) have been developed that allow wireless transmission of any sound to a stethoscope receiver, which improves the fidelity of a physical examination and the simulation case. Following institutional review committee approval, 14 PGY1-3 emergency medicine residents were assessed during 2 simulation-based cases using pre-defined scoring anchors on multiple actions, such as communication skills and treatment decisions (Appendix 1). Each case involved a patient presenting with dyspnea requiring management based off physical examination findings. One case was a patient with exacerbation of heart failure, while the other was a patient with a tension pneumothorax. Each resident was randomized into a case associated with the simulation stethoscope. Following the cases residents were asked to fill out an evaluation questionnaire. Residents perceived the most realistic physical exam findings on those associated with the case using the simulation stethoscope (13/14, 93%). Residents also preferred the simulation stethoscope as an adjunct to the case (13/14, 93%), and they rated the simulation stethoscope case to have significantly more realistic auscultatory findings (4.4/5 vs. 3.0/5 difference of means 1.4, p=0.0007). Average scores of residents were significantly better in the simulation stethoscope-associated case (2.5/3 vs. 2.3/3 difference of means 0.2, p=0.04). There was no considerable difference in the total time taken per case. A simulation stethoscope may be a useful adjunct to current emergency medicine simulation-based training. Residents both preferred the use of the simulation stethoscope and perceived physical exam findings to be more realistic, leading to improved fidelity. Potential sources of bias include the small population, narrow scoring range, and the lack of blinding. Further research, focusing on use for resident assessment and clinical significance with a larger population and blinding of graders, is needed.

  12. Are Simulation Stethoscopes a Useful Adjunct for Emergency Residents' Training on High-fidelity Mannequins?

    PubMed Central

    Beeson, Michael S.; Fire, Frank L.

    2013-01-01

    Introduction: Emergency medicine residents use simulation training for many reasons, such as gaining experience with critically ill patients and becoming familiar with disease processes. Residents frequently criticize simulation training using current high-fidelity mannequins due to the poor quality of physical exam findings present, such as auscultatory findings, as it may lead them down an alternate diagnostic or therapeutic pathway. Recently wireless remote programmed stethoscopes (simulation stethoscopes) have been developed that allow wireless transmission of any sound to a stethoscope receiver, which improves the fidelity of a physical examination and the simulation case. Methods: Following institutional review committee approval, 14 PGY1-3 emergency medicine residents were assessed during 2 simulation-based cases using pre-defined scoring anchors on multiple actions, such as communication skills and treatment decisions (Appendix 1). Each case involved a patient presenting with dyspnea requiring management based off physical examination findings. One case was a patient with exacerbation of heart failure, while the other was a patient with a tension pneumothorax. Each resident was randomized into a case associated with the simulation stethoscope. Following the cases residents were asked to fill out an evaluation questionnaire. Results: Residents perceived the most realistic physical exam findings on those associated with the case using the simulation stethoscope (13/14, 93%). Residents also preferred the simulation stethoscope as an adjunct to the case (13/14, 93%), and they rated the simulation stethoscope case to have significantly more realistic auscultatory findings (4.4/5 vs. 3.0/5 difference of means 1.4, p=0.0007). Average scores of residents were significantly better in the simulation stethoscope-associated case (2.5/3 vs. 2.3/3 difference of means 0.2, p=0.04). There was no considerable difference in the total time taken per case. Conclusion: A simulation stethoscope may be a useful adjunct to current emergency medicine simulation-based training. Residents both preferred the use of the simulation stethoscope and perceived physical exam findings to be more realistic, leading to improved fidelity. Potential sources of bias include the small population, narrow scoring range, and the lack of blinding. Further research, focusing on use for resident assessment and clinical significance with a larger population and blinding of graders, is needed. PMID:23687548

  13. Physically-Based Probabilistic Seismic Hazard Analysis Using Broad-Band Ground Motion Simulation: a Case Study for Prince Islands Fault, Marmara Sea

    NASA Astrophysics Data System (ADS)

    Mert, A.

    2016-12-01

    The main motivation of this study is the impending occurrence of a catastrophic earthquake along the Prince Island Fault (PIF) in Marmara Sea and the disaster risk around Marmara region, especially in İstanbul. This study provides the results of a physically-based Probabilistic Seismic Hazard Analysis (PSHA) methodology, using broad-band strong ground motion simulations, for sites within the Marmara region, Turkey, due to possible large earthquakes throughout the PIF segments in the Marmara Sea. The methodology is called physically-based because it depends on the physical processes of earthquake rupture and wave propagation to simulate earthquake ground motion time histories. We include the effects of all considerable magnitude earthquakes. To generate the high frequency (0.5-20 Hz) part of the broadband earthquake simulation, the real small magnitude earthquakes recorded by local seismic array are used as an Empirical Green's Functions (EGF). For the frequencies below 0.5 Hz the simulations are obtained using by Synthetic Green's Functions (SGF) which are synthetic seismograms calculated by an explicit 2D/3D elastic finite difference wave propagation routine. Using by a range of rupture scenarios for all considerable magnitude earthquakes throughout the PIF segments we provide a hazard calculation for frequencies 0.1-20 Hz. Physically based PSHA used here follows the same procedure of conventional PSHA except that conventional PSHA utilizes point sources or a series of point sources to represent earthquakes and this approach utilizes full rupture of earthquakes along faults. Further, conventional PSHA predicts ground-motion parameters using by empirical attenuation relationships, whereas this approach calculates synthetic seismograms for all magnitude earthquakes to obtain ground-motion parameters. PSHA results are produced for 2%, 10% and 50% hazards for all studied sites in Marmara Region.

  14. Tsunami Early Warning via a Physics-Based Simulation Pipeline

    NASA Astrophysics Data System (ADS)

    Wilson, J. M.; Rundle, J. B.; Donnellan, A.; Ward, S. N.; Komjathy, A.

    2017-12-01

    Through independent efforts, physics-based simulations of earthquakes, tsunamis, and atmospheric signatures of these phenomenon have been developed. With the goal of producing tsunami forecasts and early warning tools for at-risk regions, we join these three spheres to create a simulation pipeline. The Virtual Quake simulator can produce thousands of years of synthetic seismicity on large, complex fault geometries, as well as the expected surface displacement in tsunamigenic regions. These displacements are used as initial conditions for tsunami simulators, such as Tsunami Squares, to produce catalogs of potential tsunami scenarios with probabilities. Finally, these tsunami scenarios can act as input for simulations of associated ionospheric total electron content, signals which can be detected by GNSS satellites for purposes of early warning in the event of a real tsunami. We present the most recent developments in this project.

  15. School physics teacher class management, laboratory practice, student engagement, critical thinking, cooperative learning and use of simulations effects on student performance

    NASA Astrophysics Data System (ADS)

    Riaz, Muhammad

    The purpose of this study was to examine how simulations in physics class, class management, laboratory practice, student engagement, critical thinking, cooperative learning, and use of simulations predicted the percentage of students achieving a grade point average of B or higher and their academic performance as reported by teachers in secondary school physics classes. The target population consisted of secondary school physics teachers who were members of Science Technology, Engineeering and,Mathematics Teachers of New York City (STEMteachersNYC) and American Modeling Teachers Association (AMTA). They used simulations in their physics classes in the 2013 and 2014 school years. Subjects for this study were volunteers. A survey was constructed based on a literature review. Eighty-two physics teachers completed the survey about instructional practice in physics. All respondents were anonymous. Classroom management was the only predictor of the percent of students achieving a grade point average of B or higher in high school physics class. Cooperative learning, use of simulations, and student engagement were predictors of teacher's views of student academic performance in high school physics class. All other variables -- class management, laboratory practice, critical thinking, and teacher self-efficacy -- were not predictors of teacher's views of student academic performance in high school physics class. The implications of these findings were discussed and recommendations for physics teachers to improve student learning were presented.

  16. Teaching Physics Using PhET Simulations

    ERIC Educational Resources Information Center

    Wieman, C. E.; Adams, W. K.; Loeblein, P.; Perkins, K. K.

    2010-01-01

    PhET Interactive Simulations (sims) are now being widely used in teaching physics and chemistry. Sims can be used in many different educational settings, including lecture, individual or small group inquiry activities, homework, and lab. Here we will highlight a few ways to use them in teaching, based on our research and experiences using them in…

  17. Realistic natural atmospheric phenomena and weather effects for interactive virtual environments

    NASA Astrophysics Data System (ADS)

    McLoughlin, Leigh

    Clouds and the weather are important aspects of any natural outdoor scene, but existing dynamic techniques within computer graphics only offer the simplest of cloud representations. The problem that this work looks to address is how to provide a means of simulating clouds and weather features such as precipitation, that are suitable for virtual environments. Techniques for cloud simulation are available within the area of meteorology, but numerical weather prediction systems are computationally expensive, give more numerical accuracy than we require for graphics and are restricted to the laws of physics. Within computer graphics, we often need to direct and adjust physical features or to bend reality to meet artistic goals, which is a key difference between the subjects of computer graphics and physical science. Pure physically-based simulations, however, evolve their solutions according to pre-set rules and are notoriously difficult to control. The challenge then is for the solution to be computationally lightweight and able to be directed in some measure while at the same time producing believable results. This work presents a lightweight physically-based cloud simulation scheme that simulates the dynamic properties of cloud formation and weather effects. The system simulates water vapour, cloud water, cloud ice, rain, snow and hail. The water model incorporates control parameters and the cloud model uses an arbitrary vertical temperature profile, with a tool described to allow the user to define this. The result of this work is that clouds can now be simulated in near real-time complete with precipitation. The temperature profile and tool then provide a means of directing the resulting formation..

  18. An investigation of the use of microcomputer-based laboratory simulations in promoting conceptual understanding in secondary physics instruction

    NASA Astrophysics Data System (ADS)

    Tomshaw, Stephen G.

    Physics education research has shown that students bring alternate conceptions to the classroom which can be quite resistant to traditional instruction methods (Clement, 1982; Halloun & Hestenes, 1985; McDermott, 1991). Microcomputer-based laboratory (MBL) experiments that employ an active-engagement strategy have been shown to improve student conceptual understanding in high school and introductory university physics courses (Thornton & Sokoloff, 1998). These (MBL) experiments require a specialized computer interface, type-specific sensors (e.g. motion detectors, force probes, accelerometers), and specialized software in addition to the standard physics experimental apparatus. Tao and Gunstone (1997) have shown that computer simulations used in an active engagement environment can also lead to conceptual change. This study investigated 69 secondary physics students' use of computer simulations of MBL activities in place of the hands-on MBL laboratory activities. The average normalized gain in students' conceptual understanding was measured using the Force and Motion Conceptual Evaluation (FMCE). Student attitudes towards physics and computers were probed using the Views About Science Survey (VASS) and the Computer Attitude Scale (CAS). While it may be possible to obtain an equivalent level of conceptual understanding using computer simulations in combination with an active-engagement environment, this study found no significant gains in students' conceptual understanding ( = -0.02) after they completed a series of nine simulated experiments from the Tools for Scientific Thinking curriculum (Thornton & Sokoloff, 1990). The absence of gains in conceptual understanding may indicate that either the simulations were ineffective in promoting conceptual change or problems with the implementation of the treatment inhibited its effectiveness. There was a positive shift in students' attitudes towards physics in the VASS dimensions of structure and reflective thinking, while there was a negative shift in students' attitudes towards computers in the CAS subscales of anxiety and usefulness. The negative shift in attitudes towards computers may be due to the additional time and work required by the students to perform the simulation experiments with no apparent reward in terms of their physics grade. Suggestions for future research include a qualitative element to observe student interactions and alternate formats for the simulations themselves.

  19. 2nd Annual Invited Experts Meeting on Simulation-Based Medical Training

    DTIC Science & Technology

    2005-12-01

    medicine, government, and regulatory officials with medical simulation and patient safety experts. In 2005, TATRC continued its support of this effort...standardized patients allow students to interact with “actors” specifically trained to present their medical histories, simulate physical symptoms, and...simulation-based medical training benefits all of us, as follows: • Patients benefit from improved health outcomes and reduced errors and deaths

  20. The effect of improving task representativeness on capturing nurses’ risk assessment judgements: a comparison of written case simulations and physical simulations

    PubMed Central

    2013-01-01

    Background The validity of studies describing clinicians’ judgements based on their responses to paper cases is questionable, because - commonly used - paper case simulations only partly reflect real clinical environments. In this study we test whether paper case simulations evoke similar risk assessment judgements to the more realistic simulated patients used in high fidelity physical simulations. Methods 97 nurses (34 experienced nurses and 63 student nurses) made dichotomous assessments of risk of acute deterioration on the same 25 simulated scenarios in both paper case and physical simulation settings. Scenarios were generated from real patient cases. Measures of judgement ‘ecology’ were derived from the same case records. The relationship between nurses’ judgements, actual patient outcomes (i.e. ecological criteria), and patient characteristics were described using the methodology of judgement analysis. Logistic regression models were constructed to calculate Lens Model Equation parameters. Parameters were then compared between the modeled paper-case and physical-simulation judgements. Results Participants had significantly less achievement (ra) judging physical simulations than when judging paper cases. They used less modelable knowledge (G) with physical simulations than with paper cases, while retaining similar cognitive control and consistency on repeated patients. Respiration rate, the most important cue for predicting patient risk in the ecological model, was weighted most heavily by participants. Conclusions To the extent that accuracy in judgement analysis studies is a function of task representativeness, improving task representativeness via high fidelity physical simulations resulted in lower judgement performance in risk assessments amongst nurses when compared to paper case simulations. Lens Model statistics could prove useful when comparing different options for the design of simulations used in clinical judgement analysis. The approach outlined may be of value to those designing and evaluating clinical simulations as part of education and training strategies aimed at improving clinical judgement and reasoning. PMID:23718556

  1. A Physics-Based Engineering Approach to Predict the Cross Section for Advanced SRAMs

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhou, Wanting; Liu, Huihua

    2012-12-01

    This paper presents a physics-based engineering approach to estimate the heavy ion induced upset cross section for 6T SRAM cells from layout and technology parameters. The new approach calculates the effects of radiation with junction photocurrent, which is derived based on device physics. The new and simple approach handles the problem by using simple SPICE simulations. At first, the approach uses a standard SPICE program on a typical PC to predict the SPICE-simulated curve of the collected charge vs. its affected distance from the drain-body junction with the derived junction photocurrent. And then, the SPICE-simulated curve is used to calculate the heavy ion induced upset cross section with a simple model, which considers that the SEU cross section of a SRAM cell is more related to a “radius of influence” around a heavy ion strike than to the physical size of a diffusion node in the layout for advanced SRAMs in nano-scale process technologies. The calculated upset cross section based on this method is in good agreement with the test results for 6T SRAM cells processed using 90 nm process technology.

  2. QuVis interactive simulations: tools to support quantum mechanics instruction

    NASA Astrophysics Data System (ADS)

    Kohnle, Antje

    2015-04-01

    Quantum mechanics holds a fascination for many students, but its mathematical complexity and counterintuitive results can present major barriers. The QuVis Quantum Mechanics Visualization Project (www.st-andrews.ac.uk/physics/quvis) aims to overcome these issues through the development and evaluation of interactive simulations with accompanying activities for the learning and teaching of quantum mechanics. Over 90 simulations are now available on the QuVis website. One collection of simulations is embedded in the Institute of Physics Quantum Physics website (quantumphysics.iop.org), which consists of freely available resources for an introductory course in quantum mechanics starting from two-level systems. Simulations support model-building by reducing complexity, focusing on fundamental ideas and making the invisible visible. They promote engaged exploration, sense-making and linking of multiple representations, and include high levels of interactivity and direct feedback. Simulations are research-based and evaluation with students informs all stages of the development process. Simulations are iteratively refined using student feedback in individual observation sessions and in-class trials. Evaluation has shown that the simulations can help students learn quantum mechanics concepts at both the introductory and advanced undergraduate level and that students perceive simulations to be beneficial to their learning. Recent activity includes the launch of a new collection of HTML5 simulations that run on both desktop and tablet-based devices and the introduction of a goal and reward structure in simulations through the inclusion of challenges. This presentation will give an overview of the QuVis resources, highlight recent work and outline future plans. QuVis is supported by the UK Institute of Physics, the UK Higher Education Academy and the University of St Andrews.

  3. Ultracold-atom quantum simulator for attosecond science

    NASA Astrophysics Data System (ADS)

    Sala, Simon; Förster, Johann; Saenz, Alejandro

    2017-01-01

    A quantum simulator based on ultracold optically trapped atoms for simulating the physics of atoms and molecules in ultrashort intense laser fields is introduced. The slowing down by about 13 orders of magnitude allows one to watch in slow motion the tunneling and recollision processes that form the heart of attosecond science. The extreme flexibility of the simulator promises a deeper understanding of strong-field physics, especially for many-body systems beyond the reach of classical computers. The quantum simulator can experimentally straightforwardly be realized and is shown to recover the ionization characteristics of atoms in the different regimes of laser-matter interaction.

  4. Impact of detector simulation in particle physics collider experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elvira, V. Daniel

    Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less

  5. Impact of detector simulation in particle physics collider experiments

    DOE PAGES

    Elvira, V. Daniel

    2017-06-01

    Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less

  6. Novel high-fidelity realistic explosion damage simulation for urban environments

    NASA Astrophysics Data System (ADS)

    Liu, Xiaoqing; Yadegar, Jacob; Zhu, Youding; Raju, Chaitanya; Bhagavathula, Jaya

    2010-04-01

    Realistic building damage simulation has a significant impact in modern modeling and simulation systems especially in diverse panoply of military and civil applications where these simulation systems are widely used for personnel training, critical mission planning, disaster management, etc. Realistic building damage simulation should incorporate accurate physics-based explosion models, rubble generation, rubble flyout, and interactions between flying rubble and their surrounding entities. However, none of the existing building damage simulation systems sufficiently faithfully realize the criteria of realism required for effective military applications. In this paper, we present a novel physics-based high-fidelity and runtime efficient explosion simulation system to realistically simulate destruction to buildings. In the proposed system, a family of novel blast models is applied to accurately and realistically simulate explosions based on static and/or dynamic detonation conditions. The system also takes account of rubble pile formation and applies a generic and scalable multi-component based object representation to describe scene entities and highly scalable agent-subsumption architecture and scheduler to schedule clusters of sequential and parallel events. The proposed system utilizes a highly efficient and scalable tetrahedral decomposition approach to realistically simulate rubble formation. Experimental results demonstrate that the proposed system has the capability to realistically simulate rubble generation, rubble flyout and their primary and secondary impacts on surrounding objects including buildings, constructions, vehicles and pedestrians in clusters of sequential and parallel damage events.

  7. Hydrological modelling in forested systems | Science ...

    EPA Pesticide Factsheets

    This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological processes. The focus of this chapter is on process-based models and approaches, specifically 'forest hydrology models'; that is, physically based simulation tools that quantify compartments of the forest hydrological cycle. Physically based models can be considered those that describe the conservation of mass, momentum and/or energy. The purpose of this chapter is to provide a brief overview of forest hydrology modeling approaches for answering important global research and management questions. The focus of this chapter is on process-based models and approaches, specifically “forest hydrology models”, i.e., physically-based simulation tools that quantify compartments of the forest hydrological cycle.

  8. Developing model asphalt systems using molecular simulation : final model.

    DOT National Transportation Integrated Search

    2009-09-01

    Computer based molecular simulations have been used towards developing simple mixture compositions whose : physical properties resemble those of real asphalts. First, Monte Carlo simulations with the OPLS all-atom force : field were used to predict t...

  9. Rob Guglielmetti | NREL

    Science.gov Websites

    2009. Rob's areas of expertise are daylighting, physically based lighting simulation, the integration of lighting simulation with whole-building energy simulations, and high-dynamic range imaging. He has simulation, and high-dynamic range imaging. Rob is an advisory member of the Illuminating Engineering Society

  10. Virtual environments simulation in research reactor

    NASA Astrophysics Data System (ADS)

    Muhamad, Shalina Bt. Sheik; Bahrin, Muhammad Hannan Bin

    2017-01-01

    Virtual reality based simulations are interactive and engaging. It has the useful potential in improving safety training. Virtual reality technology can be used to train workers who are unfamiliar with the physical layout of an area. In this study, a simulation program based on the virtual environment at research reactor was developed. The platform used for virtual simulation is 3DVia software for which it's rendering capabilities, physics for movement and collision and interactive navigation features have been taken advantage of. A real research reactor was virtually modelled and simulated with the model of avatars adopted to simulate walking. Collision detection algorithms were developed for various parts of the 3D building and avatars to restrain the avatars to certain regions of the virtual environment. A user can control the avatar to move around inside the virtual environment. Thus, this work can assist in the training of personnel, as in evaluating the radiological safety of the research reactor facility.

  11. Dynamical simulation priors for human motion tracking.

    PubMed

    Vondrak, Marek; Sigal, Leonid; Jenkins, Odest Chadwicke

    2013-01-01

    We propose a simulation-based dynamical motion prior for tracking human motion from video in presence of physical ground-person interactions. Most tracking approaches to date have focused on efficient inference algorithms and/or learning of prior kinematic motion models; however, few can explicitly account for the physical plausibility of recovered motion. Here, we aim to recover physically plausible motion of a single articulated human subject. Toward this end, we propose a full-body 3D physical simulation-based prior that explicitly incorporates a model of human dynamics into the Bayesian filtering framework. We consider the motion of the subject to be generated by a feedback “control loop” in which Newtonian physics approximates the rigid-body motion dynamics of the human and the environment through the application and integration of interaction forces, motor forces, and gravity. Interaction forces prevent physically impossible hypotheses, enable more appropriate reactions to the environment (e.g., ground contacts), and are produced from detected human-environment collisions. Motor forces actuate the body, ensure that proposed pose transitions are physically feasible, and are generated using a motion controller. For efficient inference in the resulting high-dimensional state space, we utilize an exemplar-based control strategy that reduces the effective search space of motor forces. As a result, we are able to recover physically plausible motion of human subjects from monocular and multiview video. We show, both quantitatively and qualitatively, that our approach performs favorably with respect to Bayesian filtering methods with standard motion priors.

  12. The evolving energy budget of accretionary wedges

    NASA Astrophysics Data System (ADS)

    McBeck, Jessica; Cooke, Michele; Maillot, Bertrand; Souloumiac, Pauline

    2017-04-01

    The energy budget of evolving accretionary systems reveals how deformational processes partition energy as faults slip, topography uplifts, and layer-parallel shortening produces distributed off-fault deformation. The energy budget provides a quantitative framework for evaluating the energetic contribution or consumption of diverse deformation mechanisms. We investigate energy partitioning in evolving accretionary prisms by synthesizing data from physical sand accretion experiments and numerical accretion simulations. We incorporate incremental strain fields and cumulative force measurements from two suites of experiments to design numerical simulations that represent accretionary wedges with stronger and weaker detachment faults. One suite of the physical experiments includes a basal glass bead layer and the other does not. Two physical experiments within each suite implement different boundary conditions (stable base versus moving base configuration). Synthesizing observations from the differing base configurations reduces the influence of sidewall friction because the force vector produced by sidewall friction points in opposite directions depending on whether the base is fixed or moving. With the numerical simulations, we calculate the energy budget at two stages of accretion: at the maximum force preceding the development of the first thrust pair, and at the minimum force following the development of the pair. To identify the appropriate combination of material and fault properties to apply in the simulations, we systematically vary the Young's modulus and the fault static and dynamic friction coefficients in numerical accretion simulations, and identify the set of parameters that minimizes the misfit between the normal force measured on the physical backwall and the numerically simulated force. Following this derivation of the appropriate material and fault properties, we calculate the components of the work budget in the numerical simulations and in the simulated increments of the physical experiments. The work budget components of the physical experiments are determined from backwall force measurements and incremental velocity fields calculated via digital image correlation. Comparison of the energy budget preceding and following the development of the first thrust pair quantifies the tradeoff of work done in distributed deformation and work expended in frictional slip due to the development of the first backthrust and forethrust. In both the numerical and physical experiments, after the pair develops internal work decreases at the expense of frictional work, which increases. Despite the increase in frictional work, the total external work of the system decreases, revealing that accretion faulting leads to gains in efficiency. Comparison of the energy budget of the accretion experiments and simulations with the strong and weak detachments indicate that when the detachment is strong, the total energy consumed in frictional sliding and internal deformation is larger than when the detachment is relatively weak.

  13. Design of a Modular Monolithic Implicit Solver for Multi-Physics Applications

    NASA Technical Reports Server (NTRS)

    Carton De Wiart, Corentin; Diosady, Laslo T.; Garai, Anirban; Burgess, Nicholas; Blonigan, Patrick; Ekelschot, Dirk; Murman, Scott M.

    2018-01-01

    The design of a modular multi-physics high-order space-time finite-element framework is presented together with its extension to allow monolithic coupling of different physics. One of the main objectives of the framework is to perform efficient high- fidelity simulations of capsule/parachute systems. This problem requires simulating multiple physics including, but not limited to, the compressible Navier-Stokes equations, the dynamics of a moving body with mesh deformations and adaptation, the linear shell equations, non-re effective boundary conditions and wall modeling. The solver is based on high-order space-time - finite element methods. Continuous, discontinuous and C1-discontinuous Galerkin methods are implemented, allowing one to discretize various physical models. Tangent and adjoint sensitivity analysis are also targeted in order to conduct gradient-based optimization, error estimation, mesh adaptation, and flow control, adding another layer of complexity to the framework. The decisions made to tackle these challenges are presented. The discussion focuses first on the "single-physics" solver and later on its extension to the monolithic coupling of different physics. The implementation of different physics modules, relevant to the capsule/parachute system, are also presented. Finally, examples of coupled computations are presented, paving the way to the simulation of the full capsule/parachute system.

  14. An activity theory perspective of how scenario-based simulations support learning: a descriptive analysis.

    PubMed

    Battista, Alexis

    2017-01-01

    The dominant frameworks for describing how simulations support learning emphasize increasing access to structured practice and the provision of feedback which are commonly associated with skills-based simulations. By contrast, studies examining student participants' experiences during scenario-based simulations suggest that learning may also occur through participation. However, studies directly examining student participation during scenario-based simulations are limited. This study examined the types of activities student participants engaged in during scenario-based simulations and then analyzed their patterns of activity to consider how participation may support learning. Drawing from Engeström's first-, second-, and third-generation activity systems analysis, an in-depth descriptive analysis was conducted. The study drew from multiple qualitative methods, namely narrative, video, and activity systems analysis, to examine student participants' activities and interaction patterns across four video-recorded simulations depicting common motivations for using scenario-based simulations (e.g., communication, critical patient management). The activity systems analysis revealed that student participants' activities encompassed three clinically relevant categories, including (a) use of physical clinical tools and artifacts, (b) social interactions, and (c) performance of structured interventions. Role assignment influenced participants' activities and the complexity of their engagement. Importantly, participants made sense of the clinical situation presented in the scenario by reflexively linking these three activities together. Specifically, student participants performed structured interventions, relying upon the use of physical tools, clinical artifacts, and social interactions together with interactions between students, standardized patients, and other simulated participants to achieve their goals. When multiple student participants were present, such as in a team-based scenario, they distributed the workload to achieve their goals. The findings suggest that student participants learned as they engaged in these scenario-based simulations when they worked to make sense of the patient's clinical presentation. The findings may provide insight into how student participants' meaning-making efforts are mediated by the cultural artifacts (e.g., physical clinical tools) they access, the social interactions they engage in, the structured interventions they perform, and the roles they are assigned. The findings also highlight the complex and emergent properties of scenario-based simulations as well as how activities are nested. Implications for learning, instructional design, and assessment are discussed.

  15. Measurement and Simulation of the Variation in Proton-Induced Energy Deposition in Large Silicon Diode Arrays

    NASA Technical Reports Server (NTRS)

    Howe, Christina L.; Weller, Robert A.; Reed, Robert A.; Sierawski, Brian D.; Marshall, Paul W.; Marshall, Cheryl J.; Mendenhall, Marcus H.; Schrimpf, Ronald D.

    2007-01-01

    The proton induced charge deposition in a well characterized silicon P-i-N focal plane array is analyzed with Monte Carlo based simulations. These simulations include all physical processes, together with pile up, to accurately describe the experimental data. Simulation results reveal important high energy events not easily detected through experiment due to low statistics. The effects of each physical mechanism on the device response is shown for a single proton energy as well as a full proton space flux.

  16. ASSESSMENT OF TWO PHYSICALLY BASED WATERSHED MODELS BASED ON THEIR PERFORMANCES OF SIMULATING SEDIMENT MOVEMENT OVER SMALL WATERSHEDS

    EPA Science Inventory


    Abstract: Two physically based and deterministic models, CASC2-D and KINEROS are evaluated and compared for their performances on modeling sediment movement on a small agricultural watershed over several events. Each model has different conceptualization of a watershed. CASC...

  17. ASSESSMENT OF TWO PHYSICALLY-BASED WATERSHED MODELS BASED ON THEIR PERFORMANCES OF SIMULATING WATER AND SEDIMENT MOVEMENT

    EPA Science Inventory

    Two physically based watershed models, GSSHA and KINEROS-2 are evaluated and compared for their performances on modeling flow and sediment movement. Each model has a different watershed conceptualization. GSSHA divides the watershed into cells, and flow and sediments are routed t...

  18. Using computer simulations to facilitate conceptual understanding of electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Lee, Yu-Fen

    This study investigated the use of computer simulations to facilitate conceptual understanding in physics. The use of computer simulations in the present study was grounded in a conceptual framework drawn from findings related to the use of computer simulations in physics education. To achieve the goal of effective utilization of computers for physics education, I first reviewed studies pertaining to computer simulations in physics education categorized by three different learning frameworks and studies comparing the effects of different simulation environments. My intent was to identify the learning context and factors for successful use of computer simulations in past studies and to learn from the studies which did not obtain a significant result. Based on the analysis of reviewed literature, I proposed effective approaches to integrate computer simulations in physics education. These approaches are consistent with well established education principles such as those suggested by How People Learn (Bransford, Brown, Cocking, Donovan, & Pellegrino, 2000). The research based approaches to integrated computer simulations in physics education form a learning framework called Concept Learning with Computer Simulations (CLCS) in the current study. The second component of this study was to examine the CLCS learning framework empirically. The participants were recruited from a public high school in Beijing, China. All participating students were randomly assigned to two groups, the experimental (CLCS) group and the control (TRAD) group. Research based computer simulations developed by the physics education research group at University of Colorado at Boulder were used to tackle common conceptual difficulties in learning electromagnetic induction. While interacting with computer simulations, CLCS students were asked to answer reflective questions designed to stimulate qualitative reasoning and explanation. After receiving model reasoning online, students were asked to submit their revised answers electronically. Students in the TRAD group were not granted access to the CLCS material and followed their normal classroom routine. At the end of the study, both the CLCS and TRAD students took a post-test. Questions on the post-test were divided into "what" questions, "how" questions, and an open response question. Analysis of students' post-test performance showed mixed results. While the TRAD students scored higher on the "what" questions, the CLCS students scored higher on the "how" questions and the one open response questions. This result suggested that more TRAD students knew what kinds of conditions may or may not cause electromagnetic induction without understanding how electromagnetic induction works. Analysis of the CLCS students' learning also suggested that frequent disruption and technical trouble might pose threats to the effectiveness of the CLCS learning framework. Despite the mixed results of students' post-test performance, the CLCS learning framework revealed some limitations to promote conceptual understanding in physics. Improvement can be made by providing students with background knowledge necessary to understand model reasoning and incorporating the CLCS learning framework with other learning frameworks to promote integration of various physics concepts. In addition, the reflective questions in the CLCS learning framework may be refined to better address students' difficulties. Limitations of the study, as well as suggestions for future research, are also presented in this study.

  19. Validation of a small-animal PET simulation using GAMOS: a GEANT4-based framework

    NASA Astrophysics Data System (ADS)

    Cañadas, M.; Arce, P.; Rato Mendes, P.

    2011-01-01

    Monte Carlo-based modelling is a powerful tool to help in the design and optimization of positron emission tomography (PET) systems. The performance of these systems depends on several parameters, such as detector physical characteristics, shielding or electronics, whose effects can be studied on the basis of realistic simulated data. The aim of this paper is to validate a comprehensive study of the Raytest ClearPET small-animal PET scanner using a new Monte Carlo simulation platform which has been developed at CIEMAT (Madrid, Spain), called GAMOS (GEANT4-based Architecture for Medicine-Oriented Simulations). This toolkit, based on the GEANT4 code, was originally designed to cover multiple applications in the field of medical physics from radiotherapy to nuclear medicine, but has since been applied by some of its users in other fields of physics, such as neutron shielding, space physics, high energy physics, etc. Our simulation model includes the relevant characteristics of the ClearPET system, namely, the double layer of scintillator crystals in phoswich configuration, the rotating gantry, the presence of intrinsic radioactivity in the crystals or the storage of single events for an off-line coincidence sorting. Simulated results are contrasted with experimental acquisitions including studies of spatial resolution, sensitivity, scatter fraction and count rates in accordance with the National Electrical Manufacturers Association (NEMA) NU 4-2008 protocol. Spatial resolution results showed a discrepancy between simulated and measured values equal to 8.4% (with a maximum FWHM difference over all measurement directions of 0.5 mm). Sensitivity results differ less than 1% for a 250-750 keV energy window. Simulated and measured count rates agree well within a wide range of activities, including under electronic saturation of the system (the measured peak of total coincidences, for the mouse-sized phantom, was 250.8 kcps reached at 0.95 MBq mL-1 and the simulated peak was 247.1 kcps at 0.87 MBq mL-1). Agreement better than 3% was obtained in the scatter fraction comparison study. We also measured and simulated a mini-Derenzo phantom obtaining images with similar quality using iterative reconstruction methods. We concluded that the overall performance of the simulation showed good agreement with the measured results and validates the GAMOS package for PET applications. Furthermore, its ease of use and flexibility recommends it as an excellent tool to optimize design features or image reconstruction techniques.

  20. From MetroII to Metronomy, Designing Contract-based Function-Architecture Co-simulation Framework for Timing Verification of Cyber-Physical Systems

    DTIC Science & Technology

    2015-03-13

    A. Lee. “A Programming Model for Time - Synchronized Distributed Real- Time Systems”. In: Proceedings of Real Time and Em- bedded Technology and Applications Symposium. 2007, pp. 259–268. ...From MetroII to Metronomy, Designing Contract-based Function-Architecture Co-simulation Framework for Timing Verification of Cyber-Physical Systems...the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data

  1. Petascale Kinetic Simulations in Space Sciences: New Simulations and Data Discovery Techniques and Physics Results

    NASA Astrophysics Data System (ADS)

    Karimabadi, Homa

    2012-03-01

    Recent advances in simulation technology and hardware are enabling breakthrough science where many longstanding problems can now be addressed for the first time. In this talk, we focus on kinetic simulations of the Earth's magnetosphere and magnetic reconnection process which is the key mechanism that breaks the protective shield of the Earth's dipole field, allowing the solar wind to enter the Earth's magnetosphere. This leads to the so-called space weather where storms on the Sun can affect space-borne and ground-based technological systems on Earth. The talk will consist of three parts: (a) overview of a new multi-scale simulation technique where each computational grid is updated based on its own unique timestep, (b) Presentation of a new approach to data analysis that we refer to as Physics Mining which entails combining data mining and computer vision algorithms with scientific visualization to extract physics from the resulting massive data sets. (c) Presentation of several recent discoveries in studies of space plasmas including the role of vortex formation and resulting turbulence in magnetized plasmas.

  2. Moose: An Open-Source Framework to Enable Rapid Development of Collaborative, Multi-Scale, Multi-Physics Simulation Tools

    NASA Astrophysics Data System (ADS)

    Slaughter, A. E.; Permann, C.; Peterson, J. W.; Gaston, D.; Andrs, D.; Miller, J.

    2014-12-01

    The Idaho National Laboratory (INL)-developed Multiphysics Object Oriented Simulation Environment (MOOSE; www.mooseframework.org), is an open-source, parallel computational framework for enabling the solution of complex, fully implicit multiphysics systems. MOOSE provides a set of computational tools that scientists and engineers can use to create sophisticated multiphysics simulations. Applications built using MOOSE have computed solutions for chemical reaction and transport equations, computational fluid dynamics, solid mechanics, heat conduction, mesoscale materials modeling, geomechanics, and others. To facilitate the coupling of diverse and highly-coupled physical systems, MOOSE employs the Jacobian-free Newton-Krylov (JFNK) method when solving the coupled nonlinear systems of equations arising in multiphysics applications. The MOOSE framework is written in C++, and leverages other high-quality, open-source scientific software packages such as LibMesh, Hypre, and PETSc. MOOSE uses a "hybrid parallel" model which combines both shared memory (thread-based) and distributed memory (MPI-based) parallelism to ensure efficient resource utilization on a wide range of computational hardware. MOOSE-based applications are inherently modular, which allows for simulation expansion (via coupling of additional physics modules) and the creation of multi-scale simulations. Any application developed with MOOSE supports running (in parallel) any other MOOSE-based application. Each application can be developed independently, yet easily communicate with other applications (e.g., conductivity in a slope-scale model could be a constant input, or a complete phase-field micro-structure simulation) without additional code being written. This method of development has proven effective at INL and expedites the development of sophisticated, sustainable, and collaborative simulation tools.

  3. Are Physics-Based Simulators Ready for Prime Time? Comparisons of RSQSim with UCERF3 and Observations.

    NASA Astrophysics Data System (ADS)

    Milner, K. R.; Shaw, B. E.; Gilchrist, J. J.; Jordan, T. H.

    2017-12-01

    Probabilistic seismic hazard analysis (PSHA) is typically performed by combining an earthquake rupture forecast (ERF) with a set of empirical ground motion prediction equations (GMPEs). ERFs have typically relied on observed fault slip rates and scaling relationships to estimate the rate of large earthquakes on pre-defined fault segments, either ignoring or relying on expert opinion to set the rates of multi-fault or multi-segment ruptures. Version 3 of the Uniform California Earthquake Rupture Forecast (UCERF3) is a significant step forward, replacing expert opinion and fault segmentation with an inversion approach that matches observations better than prior models while incorporating multi-fault ruptures. UCERF3 is a statistical model, however, and doesn't incorporate the physics of earthquake nucleation, rupture propagation, and stress transfer. We examine the feasibility of replacing UCERF3, or components therein, with physics-based rupture simulators such as the Rate-State Earthquake Simulator (RSQSim), developed by Dieterich & Richards-Dinger (2010). RSQSim simulations on the UCERF3 fault system produce catalogs of seismicity that match long term rates on major faults, and produce remarkable agreement with UCERF3 when carried through to PSHA calculations. Averaged over a representative set of sites, the RSQSim-UCERF3 hazard-curve differences are comparable to the small differences between UCERF3 and its predecessor, UCERF2. The hazard-curve agreement between the empirical and physics-based models provides substantial support for the PSHA methodology. RSQSim catalogs include many complex multi-fault ruptures, which we compare with the UCERF3 rupture-plausibility metrics as well as recent observations. Complications in generating physically plausible kinematic descriptions of multi-fault ruptures have thus far prevented us from using UCERF3 in the CyberShake physics-based PSHA platform, which replaces GMPEs with deterministic ground motion simulations. RSQSim produces full slip/time histories that can be directly implemented as sources in CyberShake, without relying on the conditional hypocenter and slip distributions needed for the UCERF models. We also compare RSQSim with time-dependent PSHA calculations based on multi-fault renewal models.

  4. 1D-Var multilayer assimilation of X-band SAR data into a detailed snowpack model

    NASA Astrophysics Data System (ADS)

    Phan, X. V.; Ferro-Famil, L.; Gay, M.; Durand, Y.; Dumont, M.; Morin, S.; Allain, S.; D'Urso, G.; Girard, A.

    2014-10-01

    The structure and physical properties of a snowpack and their temporal evolution may be simulated using meteorological data and a snow metamorphism model. Such an approach may meet limitations related to potential divergences and accumulated errors, to a limited spatial resolution, to wind or topography-induced local modulations of the physical properties of a snow cover, etc. Exogenous data are then required in order to constrain the simulator and improve its performance over time. Synthetic-aperture radars (SARs) and, in particular, recent sensors provide reflectivity maps of snow-covered environments with high temporal and spatial resolutions. The radiometric properties of a snowpack measured at sufficiently high carrier frequencies are known to be tightly related to some of its main physical parameters, like its depth, snow grain size and density. SAR acquisitions may then be used, together with an electromagnetic backscattering model (EBM) able to simulate the reflectivity of a snowpack from a set of physical descriptors, in order to constrain a physical snowpack model. In this study, we introduce a variational data assimilation scheme coupling TerraSAR-X radiometric data into the snowpack evolution model Crocus. The physical properties of a snowpack, such as snow density and optical diameter of each layer, are simulated by Crocus, fed by the local reanalysis of meteorological data (SAFRAN) at a French Alpine location. These snowpack properties are used as inputs of an EBM based on dense media radiative transfer (DMRT) theory, which simulates the total backscattering coefficient of a dry snow medium at X and higher frequency bands. After evaluating the sensitivity of the EBM to snowpack parameters, a 1D-Var data assimilation scheme is implemented in order to minimize the discrepancies between EBM simulations and observations obtained from TerraSAR-X acquisitions by modifying the physical parameters of the Crocus-simulated snowpack. The algorithm then re-initializes Crocus with the modified snowpack physical parameters, allowing it to continue the simulation of snowpack evolution, with adjustments based on remote sensing information. This method is evaluated using multi-temporal TerraSAR-X images acquired over the specific site of the Argentière glacier (Mont-Blanc massif, French Alps) to constrain the evolution of Crocus. Results indicate that X-band SAR data can be taken into account to modify the evolution of snowpack simulated by Crocus.

  5. Simulation-based reasoning about the physical propagation of fault effects

    NASA Technical Reports Server (NTRS)

    Feyock, Stefan; Li, Dalu

    1990-01-01

    The research described deals with the effects of faults on complex physical systems, with particular emphasis on aircraft and spacecraft systems. Given that a malfunction has occurred and been diagnosed, the goal is to determine how that fault will propagate to other subsystems, and what the effects will be on vehicle functionality. In particular, the use of qualitative spatial simulation to determine the physical propagation of fault effects in 3-D space is described.

  6. [Implementation of bedside training and advanced objective structured clinical examination (OSCE) trial to learn and confirm about pharmacy clinical skills].

    PubMed

    Tokunaga, Jin; Takamura, Norito; Ogata, Kenji; Setoguchi, Nao; Sato, Keizo

    2013-01-01

    Bedside training for fourth-year students, as well as seminars in hospital pharmacy (vital sign seminars) for fifth-year students at the Department of Pharmacy of Kyushu University of Health and Welfare have been implemented using patient training models and various patient simulators. The introduction of simulation-based pharmaceutical education, where no patients are present, promotes visually, aurally, and tactilely simulated learning regarding the evaluation of vital signs and implementation of physical assessment when disease symptoms are present or adverse effects occur. A patient simulator also promotes the creation of training programs for emergency and critical care, with which basic as well as advanced life support can be practiced. In addition, an advanced objective structured clinical examination (OSCE) trial has been implemented to evaluate skills regarding vital signs and physical assessments. Pharmacists are required to examine vital signs and conduct physical assessment from a pharmaceutical point of view. The introduction of these pharmacy clinical skills will improve the efficacy of drugs, work for the prevention or early detection of adverse effects, and promote the appropriate use of drugs. It is considered that simulation-based pharmaceutical education is essential to understand physical assessment, and such education will ideally be applied and developed according to on-site practices.

  7. A simulation model for analysing brain structure deformations.

    PubMed

    Di Bona, Sergio; Lutzemberger, Ludovico; Salvetti, Ovidio

    2003-12-21

    Recent developments of medical software applications--from the simulation to the planning of surgical operations--have revealed the need for modelling human tissues and organs, not only from a geometric point of view but also from a physical one, i.e. soft tissues, rigid body, viscoelasticity, etc. This has given rise to the term 'deformable objects', which refers to objects with a morphology, a physical and a mechanical behaviour of their own and that reflects their natural properties. In this paper, we propose a model, based upon physical laws, suitable for the realistic manipulation of geometric reconstructions of volumetric data taken from MR and CT scans. In particular, a physically based model of the brain is presented that is able to simulate the evolution of different nature pathological intra-cranial phenomena such as haemorrhages, neoplasm, haematoma, etc and to describe the consequences that are caused by their volume expansions and the influences they have on the anatomical and neuro-functional structures of the brain.

  8. Real-time physics-based 3D biped character animation using an inverted pendulum model.

    PubMed

    Tsai, Yao-Yang; Lin, Wen-Chieh; Cheng, Kuangyou B; Lee, Jehee; Lee, Tong-Yee

    2010-01-01

    We present a physics-based approach to generate 3D biped character animation that can react to dynamical environments in real time. Our approach utilizes an inverted pendulum model to online adjust the desired motion trajectory from the input motion capture data. This online adjustment produces a physically plausible motion trajectory adapted to dynamic environments, which is then used as the desired motion for the motion controllers to track in dynamics simulation. Rather than using Proportional-Derivative controllers whose parameters usually cannot be easily set, our motion tracking adopts a velocity-driven method which computes joint torques based on the desired joint angular velocities. Physically correct full-body motion of the 3D character is computed in dynamics simulation using the computed torques and dynamical model of the character. Our experiments demonstrate that tracking motion capture data with real-time response animation can be achieved easily. In addition, physically plausible motion style editing, automatic motion transition, and motion adaptation to different limb sizes can also be generated without difficulty.

  9. Network Interventions on Physical Activity in an Afterschool Program: An Agent-Based Social Network Study

    PubMed Central

    Zhang, Jun; Shoham, David A.; Tesdahl, Eric

    2015-01-01

    Objectives. We studied simulated interventions that leveraged social networks to increase physical activity in children. Methods. We studied a real-world social network of 81 children (average age = 7.96 years) who lived in low socioeconomic status neighborhoods, and attended public schools and 1 of 2 structured afterschool programs. The sample was ethnically diverse, and 44% were overweight or obese. We used social network analysis and agent-based modeling simulations to test whether implementing a network intervention would increase children’s physical activity. We tested 3 intervention strategies. Results. The intervention that targeted opinion leaders was effective in increasing the average level of physical activity across the entire network. However, the intervention that targeted the most sedentary children was the best at increasing their physical activity levels. Conclusions. Which network intervention to implement depends on whether the goal is to shift the entire distribution of physical activity or to influence those most adversely affected by low physical activity. Agent-based modeling could be an important complement to traditional project planning tools, analogous to sample size and power analyses, to help researchers design more effective interventions for increasing children’s physical activity. PMID:25689202

  10. Assessment of Robotic Patient Simulators for Training in Manual Physical Therapy Examination Techniques

    PubMed Central

    Ishikawa, Shun; Okamoto, Shogo; Isogai, Kaoru; Akiyama, Yasuhiro; Yanagihara, Naomi; Yamada, Yoji

    2015-01-01

    Robots that simulate patients suffering from joint resistance caused by biomechanical and neural impairments are used to aid the training of physical therapists in manual examination techniques. However, there are few methods for assessing such robots. This article proposes two types of assessment measures based on typical judgments of clinicians. One of the measures involves the evaluation of how well the simulator presents different severities of a specified disease. Experienced clinicians were requested to rate the simulated symptoms in terms of severity, and the consistency of their ratings was used as a performance measure. The other measure involves the evaluation of how well the simulator presents different types of symptoms. In this case, the clinicians were requested to classify the simulated resistances in terms of symptom type, and the average ratios of their answers were used as performance measures. For both types of assessment measures, a higher index implied higher agreement among the experienced clinicians that subjectively assessed the symptoms based on typical symptom features. We applied these two assessment methods to a patient knee robot and achieved positive appraisals. The assessment measures have potential for use in comparing several patient simulators for training physical therapists, rather than as absolute indices for developing a standard. PMID:25923719

  11. A comparative study on real lab and simulation lab in communication engineering from students' perspectives

    NASA Astrophysics Data System (ADS)

    Balakrishnan, B.; Woods, P. C.

    2013-05-01

    Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised concerns among educators on the merits and shortcomings of both physical and simulation labs; at the same time, many arguments have been raised on the differences of both labs. Investigating the effectiveness of both labs is complicated, as there are multiple factors that should be considered. In view of this challenge, a study on students' perspectives on their experience related to key aspects on engineering laboratory exercise was conducted. In this study, the Visual Auditory Read and Kinetic model was utilised to measure the students' cognitive styles. The investigation was done through a survey among participants from Multimedia University, Malaysia. The findings revealed that there are significant differences for most of the aspects in physical and simulation labs.

  12. Simulation experience enhances physical therapist student confidence in managing a patient in the critical care environment.

    PubMed

    Ohtake, Patricia J; Lazarus, Marcilene; Schillo, Rebecca; Rosen, Michael

    2013-02-01

    Rehabilitation of patients in critical care environments improves functional outcomes. This finding has led to increased implementation of intensive care unit (ICU) rehabilitation programs, including early mobility, and an associated increased demand for physical therapists practicing in ICUs. Unfortunately, many physical therapists report being inadequately prepared to work in this high-risk environment. Simulation provides focused, deliberate practice in safe, controlled learning environments and may be a method to initiate academic preparation of physical therapists for ICU practice. The purpose of this study was to examine the effect of participation in simulation-based management of a patient with critical illness in an ICU setting on levels of confidence and satisfaction in physical therapist students. A one-group, pretest-posttest, quasi-experimental design was used. Physical therapist students (N=43) participated in a critical care simulation experience requiring technical (assessing bed mobility and pulmonary status), behavioral (patient and interprofessional communication), and cognitive (recognizing a patient status change and initiating appropriate responses) skill performance. Student confidence and satisfaction were surveyed before and after the simulation experience. Students' confidence in their technical, behavioral, and cognitive skill performance increased from "somewhat confident" to "confident" following the critical care simulation experience. Student satisfaction was highly positive, with strong agreement the simulation experience was valuable, reinforced course content, and was a useful educational tool. Limitations of the study were the small sample from one university and a control group was not included. Incorporating a simulated, interprofessional critical care experience into a required clinical course improved physical therapist student confidence in technical, behavioral, and cognitive performance measures and was associated with high student satisfaction. Using simulation, students were introduced to the critical care environment, which may increase interest in working in this practice area.

  13. Assessing the Effects of Data Compression in Simulations Using Physically Motivated Metrics

    DOE PAGES

    Laney, Daniel; Langer, Steven; Weber, Christopher; ...

    2014-01-01

    This paper examines whether lossy compression can be used effectively in physics simulations as a possible strategy to combat the expected data-movement bottleneck in future high performance computing architectures. We show that, for the codes and simulations we tested, compression levels of 3–5X can be applied without causing significant changes to important physical quantities. Rather than applying signal processing error metrics, we utilize physics-based metrics appropriate for each code to assess the impact of compression. We evaluate three different simulation codes: a Lagrangian shock-hydrodynamics code, an Eulerian higher-order hydrodynamics turbulence modeling code, and an Eulerian coupled laser-plasma interaction code. Wemore » compress relevant quantities after each time-step to approximate the effects of tightly coupled compression and study the compression rates to estimate memory and disk-bandwidth reduction. We find that the error characteristics of compression algorithms must be carefully considered in the context of the underlying physics being modeled.« less

  14. Astronomical Simulations Using Visual Python

    NASA Astrophysics Data System (ADS)

    Cobb, Michael L.

    2007-05-01

    The Physics and Engineering Physics Department at Southeast Missouri State University has adopted the “Matter and Interactions I Modern Mechanics” text by Chabay and Sherwood for our calculus based introductory physics course. We have fully integrated the use of modeling and simulations by using the Visual Python language also know as VPython. This powerful, high level, object orientated language with full three dimensional, stereo graphics has stimulated both my students and myself to find wider applications for our new found skills. We have successfully modeled gravitational resonances in planetary rings, galaxy collisions, and planetary orbits around binary star systems. This talk will provide a quick overview of VPython and demonstrate the various simulations.

  15. Self-consistent core-pedestal transport simulations with neural network accelerated models

    DOE PAGES

    Meneghini, Orso; Smith, Sterling P.; Snyder, Philip B.; ...

    2017-07-12

    Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflowmore » that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. Finally, the NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.« less

  16. Self-consistent core-pedestal transport simulations with neural network accelerated models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meneghini, Orso; Smith, Sterling P.; Snyder, Philip B.

    Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflowmore » that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. Finally, the NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.« less

  17. Self-consistent core-pedestal transport simulations with neural network accelerated models

    NASA Astrophysics Data System (ADS)

    Meneghini, O.; Smith, S. P.; Snyder, P. B.; Staebler, G. M.; Candy, J.; Belli, E.; Lao, L.; Kostuk, M.; Luce, T.; Luda, T.; Park, J. M.; Poli, F.

    2017-08-01

    Fusion whole device modeling simulations require comprehensive models that are simultaneously physically accurate, fast, robust, and predictive. In this paper we describe the development of two neural-network (NN) based models as a means to perform a snon-linear multivariate regression of theory-based models for the core turbulent transport fluxes, and the pedestal structure. Specifically, we find that a NN-based approach can be used to consistently reproduce the results of the TGLF and EPED1 theory-based models over a broad range of plasma regimes, and with a computational speedup of several orders of magnitudes. These models are then integrated into a predictive workflow that allows prediction with self-consistent core-pedestal coupling of the kinetic profiles within the last closed flux surface of the plasma. The NN paradigm is capable of breaking the speed-accuracy trade-off that is expected of traditional numerical physics models, and can provide the missing link towards self-consistent coupled core-pedestal whole device modeling simulations that are physically accurate and yet take only seconds to run.

  18. The Application of SNiPER to the JUNO Simulation

    NASA Astrophysics Data System (ADS)

    Lin, Tao; Zou, Jiaheng; Li, Weidong; Deng, Ziyan; Fang, Xiao; Cao, Guofu; Huang, Xingtao; You, Zhengyun; JUNO Collaboration

    2017-10-01

    The JUNO (Jiangmen Underground Neutrino Observatory) is a multipurpose neutrino experiment which is designed to determine neutrino mass hierarchy and precisely measure oscillation parameters. As one of the important systems, the JUNO offline software is being developed using the SNiPER software. In this proceeding, we focus on the requirements of JUNO simulation and present the working solution based on the SNiPER. The JUNO simulation framework is in charge of managing event data, detector geometries and materials, physics processes, simulation truth information etc. It glues physics generator, detector simulation and electronics simulation modules together to achieve a full simulation chain. In the implementation of the framework, many attractive characteristics of the SNiPER have been used, such as dynamic loading, flexible flow control, multiple event management and Python binding. Furthermore, additional efforts have been made to make both detector and electronics simulation flexible enough to accommodate and optimize different detector designs. For the Geant4-based detector simulation, each sub-detector component is implemented as a SNiPER tool which is a dynamically loadable and configurable plugin. So it is possible to select the detector configuration at runtime. The framework provides the event loop to drive the detector simulation and interacts with the Geant4 which is implemented as a passive service. All levels of user actions are wrapped into different customizable tools, so that user functions can be easily extended by just adding new tools. The electronics simulation has been implemented by following an event driven scheme. The SNiPER task component is used to simulate data processing steps in the electronics modules. The electronics and trigger are synchronized by triggered events containing possible physics signals. The JUNO simulation software has been released and is being used by the JUNO collaboration to do detector design optimization, event reconstruction algorithm development and physics sensitivity studies.

  19. Use of Heuristics to Facilitate Scientific Discovery Learning in a Simulation Learning Environment in a Physics Domain

    ERIC Educational Resources Information Center

    Veermans, Koen; van Joolingen, Wouter; de Jong, Ton

    2006-01-01

    This article describes a study into the role of heuristic support in facilitating discovery learning through simulation-based learning. The study compares the use of two such learning environments in the physics domain of collisions. In one learning environment (implicit heuristics) heuristics are only used to provide the learner with guidance…

  20. Proceedings of the workshop on physics at current accelerators and supercolliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hewett, J L; White, A R; Zeppenfeld, D

    1993-06-02

    This report contains papers from the workshop on SSC physics. The topics of these papers include: electroweak physics; electroweak symmetry breaking; heavy flavors; searches for new phenomena; strong interactions and full acceptance physics; and event simulation. These paper have been cataloged separately on the data base.

  1. Interactive physically-based sound simulation

    NASA Astrophysics Data System (ADS)

    Raghuvanshi, Nikunj

    The realization of interactive, immersive virtual worlds requires the ability to present a realistic audio experience that convincingly compliments their visual rendering. Physical simulation is a natural way to achieve such realism, enabling deeply immersive virtual worlds. However, physically-based sound simulation is very computationally expensive owing to the high-frequency, transient oscillations underlying audible sounds. The increasing computational power of desktop computers has served to reduce the gap between required and available computation, and it has become possible to bridge this gap further by using a combination of algorithmic improvements that exploit the physical, as well as perceptual properties of audible sounds. My thesis is a step in this direction. My dissertation concentrates on developing real-time techniques for both sub-problems of sound simulation: synthesis and propagation. Sound synthesis is concerned with generating the sounds produced by objects due to elastic surface vibrations upon interaction with the environment, such as collisions. I present novel techniques that exploit human auditory perception to simulate scenes with hundreds of sounding objects undergoing impact and rolling in real time. Sound propagation is the complementary problem of modeling the high-order scattering and diffraction of sound in an environment as it travels from source to listener. I discuss my work on a novel numerical acoustic simulator (ARD) that is hundred times faster and consumes ten times less memory than a high-accuracy finite-difference technique, allowing acoustic simulations on previously-intractable spaces, such as a cathedral, on a desktop computer. Lastly, I present my work on interactive sound propagation that leverages my ARD simulator to render the acoustics of arbitrary static scenes for multiple moving sources and listener in real time, while accounting for scene-dependent effects such as low-pass filtering and smooth attenuation behind obstructions, reverberation, scattering from complex geometry and sound focusing. This is enabled by a novel compact representation that takes a thousand times less memory than a direct scheme, thus reducing memory footprints to fit within available main memory. To the best of my knowledge, this is the only technique and system in existence to demonstrate auralization of physical wave-based effects in real-time on large, complex 3D scenes.

  2. Physical Processes and Applications of the Monte Carlo Radiative Energy Deposition (MRED) Code

    NASA Astrophysics Data System (ADS)

    Reed, Robert A.; Weller, Robert A.; Mendenhall, Marcus H.; Fleetwood, Daniel M.; Warren, Kevin M.; Sierawski, Brian D.; King, Michael P.; Schrimpf, Ronald D.; Auden, Elizabeth C.

    2015-08-01

    MRED is a Python-language scriptable computer application that simulates radiation transport. It is the computational engine for the on-line tool CRÈME-MC. MRED is based on c++ code from Geant4 with additional Fortran components to simulate electron transport and nuclear reactions with high precision. We provide a detailed description of the structure of MRED and the implementation of the simulation of physical processes used to simulate radiation effects in electronic devices and circuits. Extensive discussion and references are provided that illustrate the validation of models used to implement specific simulations of relevant physical processes. Several applications of MRED are summarized that demonstrate its ability to predict and describe basic physical phenomena associated with irradiation of electronic circuits and devices. These include effects from single particle radiation (including both direct ionization and indirect ionization effects), dose enhancement effects, and displacement damage effects. MRED simulations have also helped to identify new single event upset mechanisms not previously observed by experiment, but since confirmed, including upsets due to muons and energetic electrons.

  3. Final Report for The Creation of a Physics-based Ground-effect Model, Phase 2 - Inclusion of the Effects of Wind, Stratification, and Shear into the New Ground Effect Model

    NASA Technical Reports Server (NTRS)

    Sarpkaya, Turgut

    2006-01-01

    The reduction of the separation of the leading and following aircrafts is desirable to enhance the airport capacity provided that there is a physics-based operational model applicable to all regions of the flight domain (out of ground effect, OGE; near ground effect, NGE; and in ground effect, IGE) and that the quality of the quantitative input from the measurements of the prevailing atmospheric conditions and the quality of the total airport operations regarding the safety and the sound interpretation of the prevailing conditions match the quality of the analysis and numerical simulations. In the absence of an analytical solution, the physics of the flow is best expressed by a mathematical model based on numerical simulations, field and laboratory experiments, and heuristic reasoning. This report deals with the creation of a sound physics-based real-time IGE model of the aircraft wake vortices subjected to crosswind, stratification and shear.

  4. A Software Toolkit to Study Systematic Uncertainties of the Physics Models of the Geant4 Simulation Package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genser, Krzysztof; Hatcher, Robert; Kelsey, Michael

    The Geant4 simulation toolkit is used to model interactions between particles and matter. Geant4 employs a set of validated physics models that span a wide range of interaction energies. These models rely on measured cross-sections and phenomenological models with the physically motivated parameters that are tuned to cover many application domains. To study what uncertainties are associated with the Geant4 physics models we have designed and implemented a comprehensive, modular, user-friendly software toolkit that allows the variation of one or more parameters of one or more Geant4 physics models involved in simulation studies. It also enables analysis of multiple variantsmore » of the resulting physics observables of interest in order to estimate the uncertainties associated with the simulation model choices. Based on modern event-processing infrastructure software, the toolkit offers a variety of attractive features, e.g. exible run-time con gurable work ow, comprehensive bookkeeping, easy to expand collection of analytical components. Design, implementation technology, and key functionalities of the toolkit are presented in this paper and illustrated with selected results.« less

  5. The Predictive Value of Ultrasound Learning Curves Across Simulated and Clinical Settings.

    PubMed

    Madsen, Mette E; Nørgaard, Lone N; Tabor, Ann; Konge, Lars; Ringsted, Charlotte; Tolsgaard, Martin G

    2017-01-01

    The aim of the study was to explore whether learning curves on a virtual-reality (VR) sonographic simulator can be used to predict subsequent learning curves on a physical mannequin and learning curves during clinical training. Twenty midwives completed a simulation-based training program in transvaginal sonography. The training was conducted on a VR simulator as well as on a physical mannequin. A subgroup of 6 participants underwent subsequent clinical training. During each of the 3 steps, the participants' performance was assessed using instruments with established validity evidence, and they advanced to the next level only after attaining predefined levels of performance. The number of repetitions and time needed to achieve predefined performance levels were recorded along with the performance scores in each setting. Finally, the outcomes were correlated across settings. A good correlation was found between time needed to achieve predefined performance levels on the VR simulator and the physical mannequin (Pearson correlation coefficient .78; P < .001). Performance scores on the VR simulator correlated well to the clinical performance scores (Pearson correlation coefficient .81; P = .049). No significant correlations were found between numbers of attempts needed to reach proficiency across the 3 different settings. A post hoc analysis found that the 50% fastest trainees at reaching proficiency during simulation-based training received higher clinical performance scores compared to trainees with scores placing them among the 50% slowest (P = .025). Performances during simulation-based sonography training may predict performance in related tasks and subsequent clinical learning curves. © 2016 by the American Institute of Ultrasound in Medicine.

  6. Comparisons between physics-based, engineering, and statistical learning models for outdoor sound propagation.

    PubMed

    Hart, Carl R; Reznicek, Nathan J; Wilson, D Keith; Pettit, Chris L; Nykaza, Edward T

    2016-05-01

    Many outdoor sound propagation models exist, ranging from highly complex physics-based simulations to simplified engineering calculations, and more recently, highly flexible statistical learning methods. Several engineering and statistical learning models are evaluated by using a particular physics-based model, namely, a Crank-Nicholson parabolic equation (CNPE), as a benchmark. Narrowband transmission loss values predicted with the CNPE, based upon a simulated data set of meteorological, boundary, and source conditions, act as simulated observations. In the simulated data set sound propagation conditions span from downward refracting to upward refracting, for acoustically hard and soft boundaries, and low frequencies. Engineering models used in the comparisons include the ISO 9613-2 method, Harmonoise, and Nord2000 propagation models. Statistical learning methods used in the comparisons include bagged decision tree regression, random forest regression, boosting regression, and artificial neural network models. Computed skill scores are relative to sound propagation in a homogeneous atmosphere over a rigid ground. Overall skill scores for the engineering noise models are 0.6%, -7.1%, and 83.8% for the ISO 9613-2, Harmonoise, and Nord2000 models, respectively. Overall skill scores for the statistical learning models are 99.5%, 99.5%, 99.6%, and 99.6% for bagged decision tree, random forest, boosting, and artificial neural network regression models, respectively.

  7. Dshell++: A Component Based, Reusable Space System Simulation Framework

    NASA Technical Reports Server (NTRS)

    Lim, Christopher S.; Jain, Abhinandan

    2009-01-01

    This paper describes the multi-mission Dshell++ simulation framework for high fidelity, physics-based simulation of spacecraft, robotic manipulation and mobility systems. Dshell++ is a C++/Python library which uses modern script driven object-oriented techniques to allow component reuse and a dynamic run-time interface for complex, high-fidelity simulation of spacecraft and robotic systems. The goal of the Dshell++ architecture is to manage the inherent complexity of physicsbased simulations while supporting component model reuse across missions. The framework provides several features that support a large degree of simulation configurability and usability.

  8. An evaluation of transport mode shift policies on transport-related physical activity through simulations based on random forests.

    PubMed

    Brondeel, Ruben; Kestens, Yan; Chaix, Basile

    2017-10-23

    Physical inactivity is widely recognized as one of the leading causes of mortality, and transport accounts for a large part of people's daily physical activity. This study develops a simulation approach to evaluate the impact of the Ile-de-France Urban Mobility Plan (2010-2020) on physical activity, under the hypothesis that the intended transport mode shifts are realized. Based on the Global Transport Survey (2010, n = 21,332) and on the RECORD GPS Study (2012-2013, n = 229) from the French capital region of Paris (Ile-de-France), a simulation method was designed and tested. The simulation method used accelerometer data and random forest models to predict the impact of the transport mode shifts anticipated in the Mobility Plan on transport-related moderate-to-vigorous physical activity (T-MVPA). The transport mode shifts include less private motorized trips in favor of more public transport, walking, and biking trips. The simulation model indicated a mean predicted increase of 2 min per day of T-MVPA, in case the intended transport mode shifts in the Ile-de-France Urban Mobility Plan were realized. The positive effect of the transport mode shifts on T-MVPA would, however, be larger for people with a higher level of education. This heterogeneity in the positive effect would further increase the existing inequality in transport-related physical activity by educational level. The method presented in this paper showed a significant increase in transport-related physical activity in case the intended mode shifts in the Ile-de-France Urban Mobility Plan were realized. This simulation method could be applied on other important health outcomes, such as exposure to noise or air pollution, making it a useful tool to anticipate the health impact of transport interventions or policies.

  9. Quantified, Interactive Simulation of AMCW ToF Camera Including Multipath Effects

    PubMed Central

    Lambers, Martin; Kolb, Andreas

    2017-01-01

    In the last decade, Time-of-Flight (ToF) range cameras have gained increasing popularity in robotics, automotive industry, and home entertainment. Despite technological developments, ToF cameras still suffer from error sources such as multipath interference or motion artifacts. Thus, simulation of ToF cameras, including these artifacts, is important to improve camera and algorithm development. This paper presents a physically-based, interactive simulation technique for amplitude modulated continuous wave (AMCW) ToF cameras, which, among other error sources, includes single bounce indirect multipath interference based on an enhanced image-space approach. The simulation accounts for physical units down to the charge level accumulated in sensor pixels. Furthermore, we present the first quantified comparison for ToF camera simulators. We present bidirectional reference distribution function (BRDF) measurements for selected, purchasable materials in the near-infrared (NIR) range, craft real and synthetic scenes out of these materials and quantitatively compare the range sensor data. PMID:29271888

  10. Advanced Simulation of Coupled Earthquake and Tsunami Events

    NASA Astrophysics Data System (ADS)

    Behrens, Joern

    2013-04-01

    Tsunami-Earthquakes represent natural catastrophes threatening lives and well-being of societies in a solitary and unexpected extreme event as tragically demonstrated in Sumatra (2004), Samoa (2009), Chile (2010), or Japan (2011). Both phenomena are consequences of the complex system of interactions of tectonic stress, fracture mechanics, rock friction, rupture dynamics, fault geometry, ocean bathymetry, and coastline geometry. The ASCETE project forms an interdisciplinary research consortium that couples the most advanced simulation technologies for earthquake rupture dynamics and tsunami propagation to understand the fundamental conditions of tsunami generation. We report on the latest research results in physics-based dynamic rupture and tsunami wave propagation simulation, using unstructured and adaptive meshes with continuous and discontinuous Galerkin discretization approaches. Coupling both simulation tools - the physics-based dynamic rupture simulation and the hydrodynamic tsunami wave propagation - will give us the possibility to conduct highly realistic studies of the interaction of rupture dynamics and tsunami impact characteristics.

  11. Quantified, Interactive Simulation of AMCW ToF Camera Including Multipath Effects.

    PubMed

    Bulczak, David; Lambers, Martin; Kolb, Andreas

    2017-12-22

    In the last decade, Time-of-Flight (ToF) range cameras have gained increasing popularity in robotics, automotive industry, and home entertainment. Despite technological developments, ToF cameras still suffer from error sources such as multipath interference or motion artifacts. Thus, simulation of ToF cameras, including these artifacts, is important to improve camera and algorithm development. This paper presents a physically-based, interactive simulation technique for amplitude modulated continuous wave (AMCW) ToF cameras, which, among other error sources, includes single bounce indirect multipath interference based on an enhanced image-space approach. The simulation accounts for physical units down to the charge level accumulated in sensor pixels. Furthermore, we present the first quantified comparison for ToF camera simulators. We present bidirectional reference distribution function (BRDF) measurements for selected, purchasable materials in the near-infrared (NIR) range, craft real and synthetic scenes out of these materials and quantitatively compare the range sensor data.

  12. Engineering uses of physics-based ground motion simulations

    USGS Publications Warehouse

    Baker, Jack W.; Luco, Nicolas; Abrahamson, Norman A.; Graves, Robert W.; Maechling, Phillip J.; Olsen, Kim B.

    2014-01-01

    This paper summarizes validation methodologies focused on enabling ground motion simulations to be used with confidence in engineering applications such as seismic hazard analysis and dynmaic analysis of structural and geotechnical systems. Numberical simullation of ground motion from large erthquakes, utilizing physics-based models of earthquake rupture and wave propagation, is an area of active research in the earth science community. Refinement and validatoin of these models require collaboration between earthquake scientists and engineering users, and testing/rating methodolgies for simulated ground motions to be used with confidence in engineering applications. This paper provides an introduction to this field and an overview of current research activities being coordinated by the Souther California Earthquake Center (SCEC). These activities are related both to advancing the science and computational infrastructure needed to produce ground motion simulations, as well as to engineering validation procedures. Current research areas and anticipated future achievements are also discussed.

  13. Design and development of Building energy simulation Software for prefabricated cabin type of industrial building (PCES)

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Li, Ri Yi

    2018-06-01

    Building energy simulation is an important supporting tool for green building design and building energy consumption assessment, At present, Building energy simulation software can't meet the needs of energy consumption analysis and cabinet level micro environment control design of prefabricated building. thermal physical model of prefabricated building is proposed in this paper, based on the physical model, the energy consumption calculation software of prefabricated cabin building(PCES) is developed. we can achieve building parameter setting, energy consumption simulation and building thermal process and energy consumption analysis by PCES.

  14. The Monash University Interactive Simple Climate Model

    NASA Astrophysics Data System (ADS)

    Dommenget, D.

    2013-12-01

    The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 2000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system and solve some puzzles. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.

  15. Physically based probabilistic seismic hazard analysis using broadband ground motion simulation: a case study for the Prince Islands Fault, Marmara Sea

    NASA Astrophysics Data System (ADS)

    Mert, Aydin; Fahjan, Yasin M.; Hutchings, Lawrence J.; Pınar, Ali

    2016-08-01

    The main motivation for this study was the impending occurrence of a catastrophic earthquake along the Prince Island Fault (PIF) in the Marmara Sea and the disaster risk around the Marmara region, especially in Istanbul. This study provides the results of a physically based probabilistic seismic hazard analysis (PSHA) methodology, using broadband strong ground motion simulations, for sites within the Marmara region, Turkey, that may be vulnerable to possible large earthquakes throughout the PIF segments in the Marmara Sea. The methodology is called physically based because it depends on the physical processes of earthquake rupture and wave propagation to simulate earthquake ground motion time histories. We included the effects of all considerable-magnitude earthquakes. To generate the high-frequency (0.5-20 Hz) part of the broadband earthquake simulation, real, small-magnitude earthquakes recorded by a local seismic array were used as empirical Green's functions. For the frequencies below 0.5 Hz, the simulations were obtained by using synthetic Green's functions, which are synthetic seismograms calculated by an explicit 2D /3D elastic finite difference wave propagation routine. By using a range of rupture scenarios for all considerable-magnitude earthquakes throughout the PIF segments, we produced a hazard calculation for frequencies of 0.1-20 Hz. The physically based PSHA used here followed the same procedure as conventional PSHA, except that conventional PSHA utilizes point sources or a series of point sources to represent earthquakes, and this approach utilizes the full rupture of earthquakes along faults. Furthermore, conventional PSHA predicts ground motion parameters by using empirical attenuation relationships, whereas this approach calculates synthetic seismograms for all magnitudes of earthquakes to obtain ground motion parameters. PSHA results were produced for 2, 10, and 50 % hazards for all sites studied in the Marmara region.

  16. Inquiry-Based Whole-Class Teaching with Computer Simulations in Physics

    ERIC Educational Resources Information Center

    Rutten, Nico; van der Veen, Jan T.; van Joolingen, Wouter R.

    2015-01-01

    In this study we investigated the pedagogical context of whole-class teaching with computer simulations. We examined relations between the attitudes and learning goals of teachers and their students regarding the use of simulations in whole-class teaching, and how teachers implement these simulations in their teaching practices. We observed…

  17. Modeling of carbonate reservoir variable secondary pore space based on CT images

    NASA Astrophysics Data System (ADS)

    Nie, X.; Nie, S.; Zhang, J.; Zhang, C.; Zhang, Z.

    2017-12-01

    Digital core technology has brought convenience to us, and X-ray CT scanning is one of the most common way to obtain 3D digital cores. However, it can only provide the original information of the only samples being scanned, and we can't modify the porosity of the scanned cores. For numerical rock physical simulations, a series of cores with variable porosities are needed to determine the relationship between the physical properties and porosity. In carbonate rocks, the secondary pore space including dissolution pores, caves and natural fractures is the key reservoir space, which makes the study of carbonate secondary porosity very important. To achieve the variation of porosities in one rock sample, based on CT scanned digital cores, according to the physical and chemical properties of carbonate rocks, several mathematical methods are chosen to simulate the variation of secondary pore space. We use the erosion and dilation operations of mathematical morphology method to simulate the pore space changes of dissolution pores and caves. We also use the Fractional Brownian Motion model to generate natural fractures with different widths and angles in digital cores to simulate fractured carbonate rocks. The morphological opening-and-closing operations in mathematical morphology method are used to simulate distribution of fluid in the pore space. The established 3D digital core models with different secondary porosities and water saturation status can be used in the study of the physical property numerical simulations of carbonate reservoir rocks.

  18. Simulation of 100-300 GHz solid-state harmonic sources

    NASA Technical Reports Server (NTRS)

    Zybura, Michael F.; Jones, J. Robert; Jones, Stephen H.; Tait, Gregory B.

    1995-01-01

    Accurate and efficient simulations of the large-signal time-dependent characteristics of second-harmonic Transferred Electron Oscillators (TEO's) and Heterostructure Barrier Varactor (HBV) frequency triplers have been obtained. This is accomplished by using a novel and efficient harmonic-balance circuit analysis technique which facilitates the integration of physics-based hydrodynamic device simulators. The integrated hydrodynamic device/harmonic-balance circuit simulators allow TEO and HBV circuits to be co-designed from both a device and a circuit point of view. Comparisons have been made with published experimental data for both TEO's and HBV's. For TEO's, excellent correlation has been obtained at 140 GHz and 188 GHz in second-harmonic operation. Excellent correlation has also been obtained for HBV frequency triplers operating near 200 GHz. For HBV's, both a lumped quasi-static equivalent circuit model and the hydrodynamic device simulator have been linked to the harmonic-balance circuit simulator. This comparison illustrates the importance of representing active devices with physics-based numerical device models rather than analytical device models.

  19. A Model-Based Approach for Bridging Virtual and Physical Sensor Nodes in a Hybrid Simulation Framework

    PubMed Central

    Mozumdar, Mohammad; Song, Zhen Yu; Lavagno, Luciano; Sangiovanni-Vincentelli, Alberto L.

    2014-01-01

    The Model Based Design (MBD) approach is a popular trend to speed up application development of embedded systems, which uses high-level abstractions to capture functional requirements in an executable manner, and which automates implementation code generation. Wireless Sensor Networks (WSNs) are an emerging very promising application area for embedded systems. However, there is a lack of tools in this area, which would allow an application developer to model a WSN application by using high level abstractions, simulate it mapped to a multi-node scenario for functional analysis, and finally use the refined model to automatically generate code for different WSN platforms. Motivated by this idea, in this paper we present a hybrid simulation framework that not only follows the MBD approach for WSN application development, but also interconnects a simulated sub-network with a physical sub-network and then allows one to co-simulate them, which is also known as Hardware-In-the-Loop (HIL) simulation. PMID:24960083

  20. An efficient surrogate-based simulation-optimization method for calibrating a regional MODFLOW model

    NASA Astrophysics Data System (ADS)

    Chen, Mingjie; Izady, Azizallah; Abdalla, Osman A.

    2017-01-01

    Simulation-optimization method entails a large number of model simulations, which is computationally intensive or even prohibitive if the model simulation is extremely time-consuming. Statistical models have been examined as a surrogate of the high-fidelity physical model during simulation-optimization process to tackle this problem. Among them, Multivariate Adaptive Regression Splines (MARS), a non-parametric adaptive regression method, is superior in overcoming problems of high-dimensions and discontinuities of the data. Furthermore, the stability and accuracy of MARS model can be improved by bootstrap aggregating methods, namely, bagging. In this paper, Bagging MARS (BMARS) method is integrated to a surrogate-based simulation-optimization framework to calibrate a three-dimensional MODFLOW model, which is developed to simulate the groundwater flow in an arid hardrock-alluvium region in northwestern Oman. The physical MODFLOW model is surrogated by the statistical model developed using BMARS algorithm. The surrogate model, which is fitted and validated using training dataset generated by the physical model, can approximate solutions rapidly. An efficient Sobol' method is employed to calculate global sensitivities of head outputs to input parameters, which are used to analyze their importance for the model outputs spatiotemporally. Only sensitive parameters are included in the calibration process to further improve the computational efficiency. Normalized root mean square error (NRMSE) between measured and simulated heads at observation wells is used as the objective function to be minimized during optimization. The reasonable history match between the simulated and observed heads demonstrated feasibility of this high-efficient calibration framework.

  1. Inferring mass in complex scenes by mental simulation.

    PubMed

    Hamrick, Jessica B; Battaglia, Peter W; Griffiths, Thomas L; Tenenbaum, Joshua B

    2016-12-01

    After observing a collision between two boxes, you can immediately tell which is empty and which is full of books based on how the boxes moved. People form rich perceptions about the physical properties of objects from their interactions, an ability that plays a crucial role in learning about the physical world through our experiences. Here, we present three experiments that demonstrate people's capacity to reason about the relative masses of objects in naturalistic 3D scenes. We find that people make accurate inferences, and that they continue to fine-tune their beliefs over time. To explain our results, we propose a cognitive model that combines Bayesian inference with approximate knowledge of Newtonian physics by estimating probabilities from noisy physical simulations. We find that this model accurately predicts judgments from our experiments, suggesting that the same simulation mechanism underlies both peoples' predictions and inferences about the physical world around them. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. How to assess the impact of a physical parameterization in simulations of moist convection?

    NASA Astrophysics Data System (ADS)

    Grabowski, Wojciech

    2017-04-01

    A numerical model capable in simulating moist convection (e.g., cloud-resolving model or large-eddy simulation model) consists of a fluid flow solver combined with required representations (i.e., parameterizations) of physical processes. The later typically include cloud microphysics, radiative transfer, and unresolved turbulent transport. Traditional approaches to investigate impacts of such parameterizations on convective dynamics involve parallel simulations with different parameterization schemes or with different scheme parameters. Such methodologies are not reliable because of the natural variability of a cloud field that is affected by the feedback between the physics and dynamics. For instance, changing the cloud microphysics typically leads to a different realization of the cloud-scale flow, and separating dynamical and microphysical impacts is difficult. This presentation will present a novel modeling methodology, the piggybacking, that allows studying the impact of a physical parameterization on cloud dynamics with confidence. The focus will be on the impact of cloud microphysics parameterization. Specific examples of the piggybacking approach will include simulations concerning the hypothesized deep convection invigoration in polluted environments, the validity of the saturation adjustment in modeling condensation in moist convection, and separation of physical impacts from statistical uncertainty in simulations applying particle-based Lagrangian microphysics, the super-droplet method.

  3. Development of a contrast phantom for active millimeter-wave imaging systems

    NASA Astrophysics Data System (ADS)

    Barber, Jeffrey; Weatherall, James C.; Brauer, Carolyn S.; Smith, Barry T.

    2011-06-01

    As the development of active millimeter wave imaging systems continues, it is necessary to validate materials that simulate the expected response of explosives. While physics-based models have been used to develop simulants, it is desirable to image both the explosive and simulant together in a controlled fashion in order to demonstrate success. To this end, a millimeter wave contrast phantom has been created to calibrate image grayscale while controlling the configuration of the explosive and simulant such that direct comparison of their respective returns can be performed. The physics of the phantom are described, with millimeter wave images presented to show successful development of the phantom and simulant validation at GHz frequencies.

  4. Machine Learning and Deep Learning Models to Predict Runoff Water Quantity and Quality

    NASA Astrophysics Data System (ADS)

    Bradford, S. A.; Liang, J.; Li, W.; Murata, T.; Simunek, J.

    2017-12-01

    Contaminants can be rapidly transported at the soil surface by runoff to surface water bodies. Physically-based models, which are based on the mathematical description of main hydrological processes, are key tools for predicting surface water impairment. Along with physically-based models, data-driven models are becoming increasingly popular for describing the behavior of hydrological and water resources systems since these models can be used to complement or even replace physically based-models. In this presentation we propose a new data-driven model as an alternative to a physically-based overland flow and transport model. First, we have developed a physically-based numerical model to simulate overland flow and contaminant transport (the HYDRUS-1D overland flow module). A large number of numerical simulations were carried out to develop a database containing information about the impact of various input parameters (weather patterns, surface topography, vegetation, soil conditions, contaminants, and best management practices) on runoff water quantity and quality outputs. This database was used to train data-driven models. Three different methods (Neural Networks, Support Vector Machines, and Recurrence Neural Networks) were explored to prepare input- output functional relations. Results demonstrate the ability and limitations of machine learning and deep learning models to predict runoff water quantity and quality.

  5. Physical and digital simulations for IVA robotics

    NASA Technical Reports Server (NTRS)

    Hinman, Elaine; Workman, Gary L.

    1992-01-01

    Space based materials processing experiments can be enhanced through the use of IVA robotic systems. A program to determine requirements for the implementation of robotic systems in a microgravity environment and to develop some preliminary concepts for acceleration control of small, lightweight arms has been initiated with the development of physical and digital simulation capabilities. The physical simulation facilities incorporate a robotic workcell containing a Zymark Zymate II robot instrumented for acceleration measurements, which is able to perform materials transfer functions while flying on NASA's KC-135 aircraft during parabolic manuevers to simulate reduced gravity. Measurements of accelerations occurring during the reduced gravity periods will be used to characterize impacts of robotic accelerations in a microgravity environment in space. Digital simulations are being performed with TREETOPS, a NASA developed software package which is used for the dynamic analysis of systems with a tree topology. Extensive use of both simulation tools will enable the design of robotic systems with enhanced acceleration control for use in the space manufacturing environment.

  6. First-order exchange coefficient coupling for simulating surface water-groundwater interactions: Parameter sensitivity and consistency with a physics-based approach

    USGS Publications Warehouse

    Ebel, B.A.; Mirus, B.B.; Heppner, C.S.; VanderKwaak, J.E.; Loague, K.

    2009-01-01

    Distributed hydrologic models capable of simulating fully-coupled surface water and groundwater flow are increasingly used to examine problems in the hydrologic sciences. Several techniques are currently available to couple the surface and subsurface; the two most frequently employed approaches are first-order exchange coefficients (a.k.a., the surface conductance method) and enforced continuity of pressure and flux at the surface-subsurface boundary condition. The effort reported here examines the parameter sensitivity of simulated hydrologic response for the first-order exchange coefficients at a well-characterized field site using the fully coupled Integrated Hydrology Model (InHM). This investigation demonstrates that the first-order exchange coefficients can be selected such that the simulated hydrologic response is insensitive to the parameter choice, while simulation time is considerably reduced. Alternatively, the ability to choose a first-order exchange coefficient that intentionally decouples the surface and subsurface facilitates concept-development simulations to examine real-world situations where the surface-subsurface exchange is impaired. While the parameters comprising the first-order exchange coefficient cannot be directly estimated or measured, the insensitivity of the simulated flow system to these parameters (when chosen appropriately) combined with the ability to mimic actual physical processes suggests that the first-order exchange coefficient approach can be consistent with a physics-based framework. Copyright ?? 2009 John Wiley & Sons, Ltd.

  7. Template-Based Geometric Simulation of Flexible Frameworks

    PubMed Central

    Wells, Stephen A.; Sartbaeva, Asel

    2012-01-01

    Specialised modelling and simulation methods implementing simplified physical models are valuable generators of insight. Template-based geometric simulation is a specialised method for modelling flexible framework structures made up of rigid units. We review the background, development and implementation of the method, and its applications to the study of framework materials such as zeolites and perovskites. The “flexibility window” property of zeolite frameworks is a particularly significant discovery made using geometric simulation. Software implementing geometric simulation of framework materials, “GASP”, is freely available to researchers. PMID:28817055

  8. A Method for Combining Experimentation and Molecular Dynamics Simulation to Improve Cohesive Zone Models for Metallic Microstructures

    NASA Technical Reports Server (NTRS)

    Hochhalter, J. D.; Glaessgen, E. H.; Ingraffea, A. R.; Aquino, W. A.

    2009-01-01

    Fracture processes within a material begin at the nanometer length scale at which the formation, propagation, and interaction of fundamental damage mechanisms occur. Physics-based modeling of these atomic processes quickly becomes computationally intractable as the system size increases. Thus, a multiscale modeling method, based on the aggregation of fundamental damage processes occurring at the nanoscale within a cohesive zone model, is under development and will enable computationally feasible and physically meaningful microscale fracture simulation in polycrystalline metals. This method employs atomistic simulation to provide an optimization loop with an initial prediction of a cohesive zone model (CZM). This initial CZM is then applied at the crack front region within a finite element model. The optimization procedure iterates upon the CZM until the finite element model acceptably reproduces the near-crack-front displacement fields obtained from experimental observation. With this approach, a comparison can be made between the original CZM predicted by atomistic simulation and the converged CZM that is based on experimental observation. Comparison of the two CZMs gives insight into how atomistic simulation scales.

  9. Biomechanical testing simulation of a cadaver spine specimen: development and evaluation study.

    PubMed

    Ahn, Hyung Soo; DiAngelo, Denis J

    2007-05-15

    This article describes a computer model of the cadaver cervical spine specimen and virtual biomechanical testing. To develop a graphics-oriented, multibody model of a cadaver cervical spine and to build a virtual laboratory simulator for the biomechanical testing using physics-based dynamic simulation techniques. Physics-based computer simulations apply the laws of physics to solid bodies with defined material properties. This technique can be used to create a virtual simulator for the biomechanical testing of a human cadaver spine. An accurate virtual model and simulation would complement tissue-based in vitro studies by providing a consistent test bed with minimal variability and by reducing cost. The geometry of cervical vertebrae was created from computed tomography images. Joints linking adjacent vertebrae were modeled as a triple-joint complex, comprised of intervertebral disc joints in the anterior region, 2 facet joints in the posterior region, and the surrounding ligament structure. A virtual laboratory simulation of an in vitro testing protocol was performed to evaluate the model responses during flexion, extension, and lateral bending. For kinematic evaluation, the rotation of motion segment unit, coupling behaviors, and 3-dimensional helical axes of motion were analyzed. The simulation results were in correlation with the findings of in vitro tests and published data. For kinetic evaluation, the forces of the intervertebral discs and facet joints of each segment were determined and visually animated. This methodology produced a realistic visualization of in vitro experiment, and allowed for the analyses of the kinematics and kinetics of the cadaver cervical spine. With graphical illustrations and animation features, this modeling technique has provided vivid and intuitive information.

  10. Physical Principle for Generation of Randomness

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2009-01-01

    A physical principle (more precisely, a principle that incorporates mathematical models used in physics) has been conceived as the basis of a method of generating randomness in Monte Carlo simulations. The principle eliminates the need for conventional random-number generators. The Monte Carlo simulation method is among the most powerful computational methods for solving high-dimensional problems in physics, chemistry, economics, and information processing. The Monte Carlo simulation method is especially effective for solving problems in which computational complexity increases exponentially with dimensionality. The main advantage of the Monte Carlo simulation method over other methods is that the demand on computational resources becomes independent of dimensionality. As augmented by the present principle, the Monte Carlo simulation method becomes an even more powerful computational method that is especially useful for solving problems associated with dynamics of fluids, planning, scheduling, and combinatorial optimization. The present principle is based on coupling of dynamical equations with the corresponding Liouville equation. The randomness is generated by non-Lipschitz instability of dynamics triggered and controlled by feedback from the Liouville equation. (In non-Lipschitz dynamics, the derivatives of solutions of the dynamical equations are not required to be bounded.)

  11. Electro-thermo-optical simulation of vertical-cavity surface-emitting lasers

    NASA Astrophysics Data System (ADS)

    Smagley, Vladimir Anatolievich

    Three-dimensional electro-thermal simulator based on the double-layer approximation for the active region was coupled to optical gain and optical field numerical simulators to provide a self-consistent steady-state solution of VCSEL current-voltage and current-output power characteristics. Methodology of VCSEL modeling had been established and applied to model a standard 850-nm VCSEL based on GaAs-active region and a novel intracavity-contacted 400-nm GaN-based VCSEL. Results of GaAs VCSEL simulation were in a good agreement with experiment. Correlations between current injection and radiative mode profiles have been observed. Physical sub-models of transport, optical gain and cavity optical field were developed. Carrier transport through DBRs was studied. Problem of optical fields in VCSEL cavity was treated numerically by the effective frequency method. All the sub-models were connected through spatially inhomogeneous rate equation system. It was shown that the conventional uncoupled analysis of every separate physical phenomenon would be insufficient to describe VCSEL operation.

  12. Physically-based in silico light sheet microscopy for visualizing fluorescent brain models

    PubMed Central

    2015-01-01

    Background We present a physically-based computational model of the light sheet fluorescence microscope (LSFM). Based on Monte Carlo ray tracing and geometric optics, our method simulates the operational aspects and image formation process of the LSFM. This simulated, in silico LSFM creates synthetic images of digital fluorescent specimens that can resemble those generated by a real LSFM, as opposed to established visualization methods producing visually-plausible images. We also propose an accurate fluorescence rendering model which takes into account the intrinsic characteristics of fluorescent dyes to simulate the light interaction with fluorescent biological specimen. Results We demonstrate first results of our visualization pipeline to a simplified brain tissue model reconstructed from the somatosensory cortex of a young rat. The modeling aspects of the LSFM units are qualitatively analysed, and the results of the fluorescence model were quantitatively validated against the fluorescence brightness equation and characteristic emission spectra of different fluorescent dyes. AMS subject classification Modelling and simulation PMID:26329404

  13. Particle physics and polyedra proximity calculation for hazard simulations in large-scale industrial plants

    NASA Astrophysics Data System (ADS)

    Plebe, Alice; Grasso, Giorgio

    2016-12-01

    This paper describes a system developed for the simulation of flames inside an open-source 3D computer graphic software, Blender, with the aim of analyzing in virtual reality scenarios of hazards in large-scale industrial plants. The advantages of Blender are of rendering at high resolution the very complex structure of large industrial plants, and of embedding a physical engine based on smoothed particle hydrodynamics. This particle system is used to evolve a simulated fire. The interaction of this fire with the components of the plant is computed using polyhedron separation distance, adopting a Voronoi-based strategy that optimizes the number of feature distance computations. Results on a real oil and gas refining industry are presented.

  14. Towards Interactive Medical Content Delivery Between Simulated Body Sensor Networks and Practical Data Center.

    PubMed

    Shi, Xiaobo; Li, Wei; Song, Jeungeun; Hossain, M Shamim; Mizanur Rahman, Sk Md; Alelaiwi, Abdulhameed

    2016-10-01

    With the development of IoT (Internet of Thing), big data analysis and cloud computing, traditional medical information system integrates with these new technologies. The establishment of cloud-based smart healthcare application gets more and more attention. In this paper, semi-physical simulation technology is applied to cloud-based smart healthcare system. The Body sensor network (BSN) of system transmit has two ways of data collection and transmission. The one is using practical BSN to collect data and transmitting it to the data center. The other is transmitting real medical data to practical data center by simulating BSN. In order to transmit real medical data to practical data center by simulating BSN under semi-physical simulation environment, this paper designs an OPNET packet structure, defines a gateway node model between simulating BSN and practical data center and builds a custom protocol stack. Moreover, this paper conducts a large amount of simulation on the real data transmission through simulation network connecting with practical network. The simulation result can provides a reference for parameter settings of fully practical network and reduces the cost of devices and personnel involved.

  15. Training Knowledge Bots for Physics-Based Simulations Using Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Wong, Jay Ming

    2014-01-01

    Millions of complex physics-based simulations are required for design of an aerospace vehicle. These simulations are usually performed by highly trained and skilled analysts, who execute, monitor, and steer each simulation. Analysts rely heavily on their broad experience that may have taken 20-30 years to accumulate. In addition, the simulation software is complex in nature, requiring significant computational resources. Simulations of system of systems become even more complex and are beyond human capacity to effectively learn their behavior. IBM has developed machines that can learn and compete successfully with a chess grandmaster and most successful jeopardy contestants. These machines are capable of learning some complex problems much faster than humans can learn. In this paper, we propose using artificial neural network to train knowledge bots to identify the idiosyncrasies of simulation software and recognize patterns that can lead to successful simulations. We examine the use of knowledge bots for applications of computational fluid dynamics (CFD), trajectory analysis, commercial finite-element analysis software, and slosh propellant dynamics. We will show that machine learning algorithms can be used to learn the idiosyncrasies of computational simulations and identify regions of instability without including any additional information about their mathematical form or applied discretization approaches.

  16. An Empirical Model-based MOE for Friction Reduction by Slot-Ejected Polymer Solutions in an Aqueous Environment

    DTIC Science & Technology

    2007-12-21

    of hydrodynamics and the physical characteristics of the polymers. The physics models include both analytical models and numerical simulations ...the experimental observations. The numerical simulations also succeed in replicating some experimental measurements. However, there is still no...become quite significant. 4.5 Documentation The complete model is coded in MatLab . In the model, all units are cgs, so distances are in

  17. Analysis and Simulation of Far-Field Seismic Data from the Source Physics Experiment

    DTIC Science & Technology

    2012-09-01

    ANALYSIS AND SIMULATION OF FAR-FIELD SEISMIC DATA FROM THE SOURCE PHYSICS EXPERIMENT Arben Pitarka, Robert J. Mellors, Arthur J. Rodgers, Sean...Security Site (NNSS) provides new data for investigating the excitation and propagation of seismic waves generated by buried explosions. A particular... seismic model. The 3D seismic model includes surface topography. It is based on regional geological data, with material properties constrained by shallow

  18. A study of swing-curve physics in diffraction-based overlay

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Kaustuve; den Boef, Arie; Storms, Greet; van Heijst, Joost; Noot, Marc; An, Kevin; Park, Noh-Kyoung; Jeon, Se-Ra; Oh, Nang-Lyeom; McNamara, Elliott; van de Mast, Frank; Oh, SeungHwa; Lee, Seung Yoon; Hwang, Chan; Lee, Kuntack

    2016-03-01

    With the increase of process complexity in advanced nodes, the requirements of process robustness in overlay metrology continues to tighten. Especially with the introduction of newer materials in the film-stack along with typical stack variations (thickness, optical properties, profile asymmetry etc.), the signal formation physics in diffraction-based overlay (DBO) becomes an important aspect to apply in overlay metrology target and recipe selection. In order to address the signal formation physics, an effort is made towards studying the swing-curve phenomena through wavelength and polarizations on production stacks using simulations as well as experimental technique using DBO. The results provide a wealth of information on target and recipe selection for robustness. Details from simulation and measurements will be reported in this technical publication.

  19. Simplified Physics Based Models Research Topical Report on Task #2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Srikanta; Ganesh, Priya

    We present a simplified-physics based approach, where only the most important physical processes are modeled, to develop and validate simplified predictive models of CO2 sequestration in deep saline formation. The system of interest is a single vertical well injecting supercritical CO2 into a 2-D layered reservoir-caprock system with variable layer permeabilities. We use a set of well-designed full-physics compositional simulations to understand key processes and parameters affecting pressure propagation and buoyant plume migration. Based on these simulations, we have developed correlations for dimensionless injectivity as a function of the slope of fractional-flow curve, variance of layer permeability values, and themore » nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. Similar correlations are also developed to predict the average pressure within the injection reservoir, and the pressure buildup within the caprock.« less

  20. Analysis of physics-based preconditioning for single-phase subchannel equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansel, J. E.; Ragusa, J. C.; Allu, S.

    2013-07-01

    The (single-phase) subchannel approximations are used throughout nuclear engineering to provide an efficient flow simulation because the computational burden is much smaller than for computational fluid dynamics (CFD) simulations, and empirical relations have been developed and validated to provide accurate solutions in appropriate flow regimes. Here, the subchannel equations have been recast in a residual form suitable for a multi-physics framework. The Eigen spectrum of the Jacobian matrix, along with several potential physics-based preconditioning approaches, are evaluated, and the the potential for improved convergence from preconditioning is assessed. The physics-based preconditioner options include several forms of reduced equations that decouplemore » the subchannels by neglecting crossflow, conduction, and/or both turbulent momentum and energy exchange between subchannels. Eigen-scopy analysis shows that preconditioning moves clusters of eigenvalues away from zero and toward one. A test problem is run with and without preconditioning. Without preconditioning, the solution failed to converge using GMRES, but application of any of the preconditioners allowed the solution to converge. (authors)« less

  1. Passive simulation of the nonlinear port-Hamiltonian modeling of a Rhodes Piano

    NASA Astrophysics Data System (ADS)

    Falaize, Antoine; Hélie, Thomas

    2017-03-01

    This paper deals with the time-domain simulation of an electro-mechanical piano: the Fender Rhodes. A simplified description of this multi-physical system is considered. It is composed of a hammer (nonlinear mechanical component), a cantilever beam (linear damped vibrating component) and a pickup (nonlinear magneto-electronic transducer). The approach is to propose a power-balanced formulation of the complete system, from which a guaranteed-passive simulation is derived to generate physically-based realistic sound synthesis. Theses issues are addressed in four steps. First, a class of Port-Hamiltonian Systems is introduced: these input-to-output systems fulfill a power balance that can be decomposed into conservative, dissipative and source parts. Second, physical models are proposed for each component and are recast in the port-Hamiltonian formulation. In particular, a finite-dimensional model of the cantilever beam is derived, based on a standard modal decomposition applied to the Euler-Bernoulli model. Third, these systems are interconnected, providing a nonlinear finite-dimensional Port-Hamiltonian System of the piano. Fourth, a passive-guaranteed numerical method is proposed. This method is built to preserve the power balance in the discrete-time domain, and more precisely, its decomposition structured into conservative, dissipative and source parts. Finally, simulations are performed for a set of physical parameters, based on empirical but realistic values. They provide a variety of audio signals which are perceptively relevant and qualitatively similar to some signals measured on a real instrument.

  2. gemcWeb: A Cloud Based Nuclear Physics Simulation Software

    NASA Astrophysics Data System (ADS)

    Markelon, Sam

    2017-09-01

    gemcWeb allows users to run nuclear physics simulations from the web. Being completely device agnostic, scientists can run simulations from anywhere with an Internet connection. Having a full user system, gemcWeb allows users to revisit and revise their projects, and share configurations and results with collaborators. gemcWeb is based on simulation software gemc, which is based on standard GEant4. gemcWeb requires no C++, gemc, or GEant4 knowledge. Using a simple but powerful GUI allows users to configure their project from geometries and configurations stored on the deployment server. Simulations are then run on the server, with results being posted to the user, and then securely stored. Python based and open-source, the main version of gemcWeb is hosted internally at Jefferson National Labratory and used by the CLAS12 and Electron-Ion Collider Project groups. However, as the software is open-source, and hosted as a GitHub repository, an instance can be deployed on the open web, or any institution's intra-net. An instance can be configured to host experiments specific to an institution, and the code base can be modified by any individual or group. Special thanks to: Maurizio Ungaro, PhD., creator of gemc; Markus Diefenthaler, PhD., advisor; and Kyungseon Joo, PhD., advisor.

  3. Evaluating the Cognitive Consequences of Playing "Portal" for a Short Duration

    ERIC Educational Resources Information Center

    Adams, Deanne M.; Pilegard, Celeste; Mayer, Richard E.

    2016-01-01

    Learning physics often requires overcoming common misconceptions based on naïve interpretations of observations in the everyday world. One proposed way to help learners build appropriate physics intuitions is to expose them to computer simulations in which motion is based on Newtonian principles. In addition, playing video games that require…

  4. Lumped Parameter Models for Predicting Nitrogen Transport in Lower Coastal Plain Watersheds

    Treesearch

    Devendra M. Amatya; George M. Chescheir; Glen P. Fernandez; R. Wayne Skaggs; F. Birgand; J.W. Gilliam

    2003-01-01

    hl recent years physically based comprehensive disfributed watershed scale hydrologic/water quality models have been developed and applied 10 evaluate cumulative effects of land arld water management practices on receiving waters, Although fhesc complex physically based models are capable of simulating the impacts ofthese changes in large watersheds, they are often...

  5. Multiple Teaching Approaches, Teaching Sequence and Concept Retention in High School Physics Education

    ERIC Educational Resources Information Center

    Fogarty, Ian; Geelan, David

    2013-01-01

    Students in 4 Canadian high school physics classes completed instructional sequences in two key physics topics related to motion--Straight Line Motion and Newton's First Law. Different sequences of laboratory investigation, teacher explanation (lecture) and the use of computer-based scientific visualizations (animations and simulations) were…

  6. Integrating physically based simulators with Event Detection Systems: Multi-site detection approach.

    PubMed

    Housh, Mashor; Ohar, Ziv

    2017-03-01

    The Fault Detection (FD) Problem in control theory concerns of monitoring a system to identify when a fault has occurred. Two approaches can be distinguished for the FD: Signal processing based FD and Model-based FD. The former concerns of developing algorithms to directly infer faults from sensors' readings, while the latter uses a simulation model of the real-system to analyze the discrepancy between sensors' readings and expected values from the simulation model. Most contamination Event Detection Systems (EDSs) for water distribution systems have followed the signal processing based FD, which relies on analyzing the signals from monitoring stations independently of each other, rather than evaluating all stations simultaneously within an integrated network. In this study, we show that a model-based EDS which utilizes a physically based water quality and hydraulics simulation models, can outperform the signal processing based EDS. We also show that the model-based EDS can facilitate the development of a Multi-Site EDS (MSEDS), which analyzes the data from all the monitoring stations simultaneously within an integrated network. The advantage of the joint analysis in the MSEDS is expressed by increased detection accuracy (higher true positive alarms and fewer false alarms) and shorter detection time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. An enhanced lumped element electrical model of a double barrier memristive device

    NASA Astrophysics Data System (ADS)

    Solan, Enver; Dirkmann, Sven; Hansen, Mirko; Schroeder, Dietmar; Kohlstedt, Hermann; Ziegler, Martin; Mussenbrock, Thomas; Ochs, Karlheinz

    2017-05-01

    The massive parallel approach of neuromorphic circuits leads to effective methods for solving complex problems. It has turned out that resistive switching devices with a continuous resistance range are potential candidates for such applications. These devices are memristive systems—nonlinear resistors with memory. They are fabricated in nanotechnology and hence parameter spread during fabrication may aggravate reproducible analyses. This issue makes simulation models of memristive devices worthwhile. Kinetic Monte-Carlo simulations based on a distributed model of the device can be used to understand the underlying physical and chemical phenomena. However, such simulations are very time-consuming and neither convenient for investigations of whole circuits nor for real-time applications, e.g. emulation purposes. Instead, a concentrated model of the device can be used for both fast simulations and real-time applications, respectively. We introduce an enhanced electrical model of a valence change mechanism (VCM) based double barrier memristive device (DBMD) with a continuous resistance range. This device consists of an ultra-thin memristive layer sandwiched between a tunnel barrier and a Schottky-contact. The introduced model leads to very fast simulations by using usual circuit simulation tools while maintaining physically meaningful parameters. Kinetic Monte-Carlo simulations based on a distributed model and experimental data have been utilized as references to verify the concentrated model.

  8. Learning from physics-based earthquake simulators: a minimal approach

    NASA Astrophysics Data System (ADS)

    Artale Harris, Pietro; Marzocchi, Warner; Melini, Daniele

    2017-04-01

    Physics-based earthquake simulators are aimed to generate synthetic seismic catalogs of arbitrary length, accounting for fault interaction, elastic rebound, realistic fault networks, and some simple earthquake nucleation process like rate and state friction. Through comparison of synthetic and real catalogs seismologists can get insights on the earthquake occurrence process. Moreover earthquake simulators can be used to to infer some aspects of the statistical behavior of earthquakes within the simulated region, by analyzing timescales not accessible through observations. The develoment of earthquake simulators is commonly led by the approach "the more physics, the better", pushing seismologists to go towards simulators more earth-like. However, despite the immediate attractiveness, we argue that this kind of approach makes more and more difficult to understand which physical parameters are really relevant to describe the features of the seismic catalog at which we are interested. For this reason, here we take an opposite minimal approach and analyze the behavior of a purposely simple earthquake simulator applied to a set of California faults. The idea is that a simple model may be more informative than a complex one for some specific scientific objectives, because it is more understandable. The model has three main components: the first one is a realistic tectonic setting, i.e., a fault dataset of California; the other two components are quantitative laws for earthquake generation on each single fault, and the Coulomb Failure Function for modeling fault interaction. The final goal of this work is twofold. On one hand, we aim to identify the minimum set of physical ingredients that can satisfactorily reproduce the features of the real seismic catalog, such as short-term seismic cluster, and to investigate on the hypothetical long-term behavior, and faults synchronization. On the other hand, we want to investigate the limits of predictability of the model itself.

  9. Optimization for high-dose-rate brachytherapy of cervical cancer with adaptive simulated annealing and gradient descent.

    PubMed

    Yao, Rui; Templeton, Alistair K; Liao, Yixiang; Turian, Julius V; Kiel, Krystyna D; Chu, James C H

    2014-01-01

    To validate an in-house optimization program that uses adaptive simulated annealing (ASA) and gradient descent (GD) algorithms and investigate features of physical dose and generalized equivalent uniform dose (gEUD)-based objective functions in high-dose-rate (HDR) brachytherapy for cervical cancer. Eight Syed/Neblett template-based cervical cancer HDR interstitial brachytherapy cases were used for this study. Brachytherapy treatment plans were first generated using inverse planning simulated annealing (IPSA). Using the same dwell positions designated in IPSA, plans were then optimized with both physical dose and gEUD-based objective functions, using both ASA and GD algorithms. Comparisons were made between plans both qualitatively and based on dose-volume parameters, evaluating each optimization method and objective function. A hybrid objective function was also designed and implemented in the in-house program. The ASA plans are higher on bladder V75% and D2cc (p=0.034) and lower on rectum V75% and D2cc (p=0.034) than the IPSA plans. The ASA and GD plans are not significantly different. The gEUD-based plans have higher homogeneity index (p=0.034), lower overdose index (p=0.005), and lower rectum gEUD and normal tissue complication probability (p=0.005) than the physical dose-based plans. The hybrid function can produce a plan with dosimetric parameters between the physical dose-based and gEUD-based plans. The optimized plans with the same objective value and dose-volume histogram could have different dose distributions. Our optimization program based on ASA and GD algorithms is flexible on objective functions, optimization parameters, and can generate optimized plans comparable with IPSA. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  10. The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals: Dietary Module Version 1: Technical Manual

    EPA Pesticide Factsheets

    SHEDS - Multimedia is EPA's premier physically-based, probabilistic model, that can simulate cumulative or aggregate exposures for a population across a variety of multimedia, multipathway environmental chemicals.

  11. A physics-based earthquake simulator and its application to seismic hazard assessment in Calabria (Southern Italy) region

    USGS Publications Warehouse

    Console, Rodolfo; Nardi, Anna; Carluccio, Roberto; Murru, Maura; Falcone, Giuseppe; Parsons, Thomas E.

    2017-01-01

    The use of a newly developed earthquake simulator has allowed the production of catalogs lasting 100 kyr and containing more than 100,000 events of magnitudes ≥4.5. The model of the fault system upon which we applied the simulator code was obtained from the DISS 3.2.0 database, selecting all the faults that are recognized on the Calabria region, for a total of 22 fault segments. The application of our simulation algorithm provides typical features in time, space and magnitude behavior of the seismicity, which can be compared with those of the real observations. The results of the physics-based simulator algorithm were compared with those obtained by an alternative method using a slip-rate balanced technique. Finally, as an example of a possible use of synthetic catalogs, an attenuation law has been applied to all the events reported in the synthetic catalog for the production of maps showing the exceedance probability of given values of PGA on the territory under investigation.

  12. Construction material processed using lunar simulant in various environments

    NASA Technical Reports Server (NTRS)

    Chase, Stan; Ocallaghan-Hay, Bridget; Housman, Ralph; Kindig, Michael; King, John; Montegrande, Kevin; Norris, Raymond; Vanscotter, Ryan; Willenborg, Jonathan; Staubs, Harry

    1995-01-01

    The manufacture of construction materials from locally available resources in space is an important first step in the establishment of lunar and planetary bases. The objective of the CoMPULSIVE (Construction Material Processed Using Lunar Simulant In Various Environments) experiment is to develop a procedure to produce construction materials by sintering or melting Johnson Space Center Simulant 1 (JSC-1) lunar soil simulant in both earth-based (1-g) and microgravity (approximately 0-g) environments. The characteristics of the resultant materials will be tested to determine its physical and mechanical properties. The physical characteristics include: crystalline, thermal, and electrical properties. The mechanical properties include: compressive tensile, and flexural strengths. The simulant, placed in a sealed graphite crucible, will be heated using a high temperature furnace. The crucible will then be cooled by radiative and forced convective means. The core furnace element consists of space qualified quartz-halogen incandescent lamps with focusing mirrors. Sample temperatures of up to 2200 C are attainable using this heating method.

  13. Dynamic rupture scenarios from Sumatra to Iceland - High-resolution earthquake source physics on natural fault systems

    NASA Astrophysics Data System (ADS)

    Gabriel, A. A.; Madden, E. H.; Ulrich, T.; Wollherr, S.

    2016-12-01

    Capturing the observed complexity of earthquake sources in dynamic rupture simulations may require: non-linear fault friction, thermal and fluid effects, heterogeneous fault stress and strength initial conditions, fault curvature and roughness, on- and off-fault non-elastic failure. All of these factors have been independently shown to alter dynamic rupture behavior and thus possibly influence the degree of realism attainable via simulated ground motions. In this presentation we will show examples of high-resolution earthquake scenarios, e.g. based on the 2004 Sumatra-Andaman Earthquake and a potential rupture of the Husavik-Flatey fault system in Northern Iceland. The simulations combine a multitude of representations of source complexity at the necessary spatio-temporal resolution enabled by excellent scalability on modern HPC systems. Such simulations allow an analysis of the dominant factors impacting earthquake source physics and ground motions given distinct tectonic settings or distinct focuses of seismic hazard assessment. Across all simulations, we find that fault geometry concurrently with the regional background stress state provide a first order influence on source dynamics and the emanated seismic wave field. The dynamic rupture models are performed with SeisSol, a software package based on an ADER-Discontinuous Galerkin scheme for solving the spontaneous dynamic earthquake rupture problem with high-order accuracy in space and time. Use of unstructured tetrahedral meshes allows for a realistic representation of the non-planar fault geometry, subsurface structure and bathymetry. The results presented highlight the fact that modern numerical methods are essential to further our understanding of earthquake source physics and complement both physic-based ground motion research and empirical approaches in seismic hazard analysis.

  14. Dynamic rupture scenarios from Sumatra to Iceland - High-resolution earthquake source physics on natural fault systems

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice-Agnes; Madden, Elizabeth H.; Ulrich, Thomas; Wollherr, Stephanie

    2017-04-01

    Capturing the observed complexity of earthquake sources in dynamic rupture simulations may require: non-linear fault friction, thermal and fluid effects, heterogeneous fault stress and fault strength initial conditions, fault curvature and roughness, on- and off-fault non-elastic failure. All of these factors have been independently shown to alter dynamic rupture behavior and thus possibly influence the degree of realism attainable via simulated ground motions. In this presentation we will show examples of high-resolution earthquake scenarios, e.g. based on the 2004 Sumatra-Andaman Earthquake, the 1994 Northridge earthquake and a potential rupture of the Husavik-Flatey fault system in Northern Iceland. The simulations combine a multitude of representations of source complexity at the necessary spatio-temporal resolution enabled by excellent scalability on modern HPC systems. Such simulations allow an analysis of the dominant factors impacting earthquake source physics and ground motions given distinct tectonic settings or distinct focuses of seismic hazard assessment. Across all simulations, we find that fault geometry concurrently with the regional background stress state provide a first order influence on source dynamics and the emanated seismic wave field. The dynamic rupture models are performed with SeisSol, a software package based on an ADER-Discontinuous Galerkin scheme for solving the spontaneous dynamic earthquake rupture problem with high-order accuracy in space and time. Use of unstructured tetrahedral meshes allows for a realistic representation of the non-planar fault geometry, subsurface structure and bathymetry. The results presented highlight the fact that modern numerical methods are essential to further our understanding of earthquake source physics and complement both physic-based ground motion research and empirical approaches in seismic hazard analysis.

  15. A New Simulation Framework for the Electron-Ion Collider

    NASA Astrophysics Data System (ADS)

    Arrington, John

    2017-09-01

    Last year, a collaboration between Physics Division and High-Energy Physics at Argonne was formed to enable significantly broader contributions to the development of the Electron-Ion Collider. This includes efforts in accelerator R&D, theory, simulations, and detector R&D. I will give a brief overview of the status of these efforts, with emphasis on the aspects aimed at enabling the community to more easily become involved in evaluation of physics, detectors, and details of spectrometer designs. We have put together a new, easy-to-use simulation framework using flexible software tools. The goal is to enable detailed simulations to evaluate detector performance and compare detector designs. In addition, a common framework capable of providing detailed simulations of different spectrometer designs will allow for fully consistent evaluations of the physics reach of different spectrometer designs or detector systems for a variety of physics channels. In addition, new theory efforts will provide self-consistent models of GPDs (including QCD evolution) and TMDs in nucleons and light nuclei, as well as providing more detailed physics input for the evaluation of some new observables. This material is based upon work supported by Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract DE-AC02-06CH11357.

  16. Steel Alloy Hot Roll Simulations and Through-Thickness Variation Using Dislocation Density-Based Modeling

    NASA Astrophysics Data System (ADS)

    Jansen Van Rensburg, G. J.; Kok, S.; Wilke, D. N.

    2017-10-01

    Different roll pass reduction schedules have different effects on the through-thickness properties of hot-rolled metal slabs. In order to assess or improve a reduction schedule using the finite element method, a material model is required that captures the relevant deformation mechanisms and physics. The model should also report relevant field quantities to assess variations in material state through the thickness of a simulated rolled metal slab. In this paper, a dislocation density-based material model with recrystallization is presented and calibrated on the material response of a high-strength low-alloy steel. The model has the ability to replicate and predict material response to a fair degree thanks to the physically motivated mechanisms it is built on. An example study is also presented to illustrate the possible effect different reduction schedules could have on the through-thickness material state and the ability to assess these effects based on finite element simulations.

  17. Simulation Based Earthquake Forecasting with RSQSim

    NASA Astrophysics Data System (ADS)

    Gilchrist, J. J.; Jordan, T. H.; Dieterich, J. H.; Richards-Dinger, K. B.

    2016-12-01

    We are developing a physics-based forecasting model for earthquake ruptures in California. We employ the 3D boundary element code RSQSim to generate synthetic catalogs with millions of events that span up to a million years. The simulations incorporate rate-state fault constitutive properties in complex, fully interacting fault systems. The Unified California Earthquake Rupture Forecast Version 3 (UCERF3) model and data sets are used for calibration of the catalogs and specification of fault geometry. Fault slip rates match the UCERF3 geologic slip rates and catalogs are tuned such that earthquake recurrence matches the UCERF3 model. Utilizing the Blue Waters Supercomputer, we produce a suite of million-year catalogs to investigate the epistemic uncertainty in the physical parameters used in the simulations. In particular, values of the rate- and state-friction parameters a and b, the initial shear and normal stress, as well as the earthquake slip speed, are varied over several simulations. In addition to testing multiple models with homogeneous values of the physical parameters, the parameters a, b, and the normal stress are varied with depth as well as in heterogeneous patterns across the faults. Cross validation of UCERF3 and RSQSim is performed within the SCEC Collaboratory for Interseismic Simulation and Modeling (CISM) to determine the affect of the uncertainties in physical parameters observed in the field and measured in the lab, on the uncertainties in probabilistic forecasting. We are particularly interested in the short-term hazards of multi-event sequences due to complex faulting and multi-fault ruptures.

  18. A new physics-based modeling approach for tsunami-ionosphere coupling

    NASA Astrophysics Data System (ADS)

    Meng, X.; Komjathy, A.; Verkhoglyadova, O. P.; Yang, Y.-M.; Deng, Y.; Mannucci, A. J.

    2015-06-01

    Tsunamis can generate gravity waves propagating upward through the atmosphere, inducing total electron content (TEC) disturbances in the ionosphere. To capture this process, we have implemented tsunami-generated gravity waves into the Global Ionosphere-Thermosphere Model (GITM) to construct a three-dimensional physics-based model WP (Wave Perturbation)-GITM. WP-GITM takes tsunami wave properties, including the wave height, wave period, wavelength, and propagation direction, as inputs and time-dependently characterizes the responses of the upper atmosphere between 100 km and 600 km altitudes. We apply WP-GITM to simulate the ionosphere above the West Coast of the United States around the time when the tsunami associated with the March 2011 Tohuku-Oki earthquke arrived. The simulated TEC perturbations agree with Global Positioning System observations reasonably well. For the first time, a fully self-consistent and physics-based model has reproduced the GPS-observed traveling ionospheric signatures of an actual tsunami event.

  19. Task-based image quality assessment in radiation therapy: initial characterization and demonstration with CT simulation images

    NASA Astrophysics Data System (ADS)

    Dolly, Steven R.; Anastasio, Mark A.; Yu, Lifeng; Li, Hua

    2017-03-01

    In current radiation therapy practice, image quality is still assessed subjectively or by utilizing physically-based metrics. Recently, a methodology for objective task-based image quality (IQ) assessment in radiation therapy was proposed by Barrett et al.1 In this work, we present a comprehensive implementation and evaluation of this new IQ assessment methodology. A modular simulation framework was designed to perform an automated, computer-simulated end-to-end radiation therapy treatment. A fully simulated framework was created that utilizes new learning-based stochastic object models (SOM) to obtain known organ boundaries, generates a set of images directly from the numerical phantoms created with the SOM, and automates the image segmentation and treatment planning steps of a radiation therapy work ow. By use of this computational framework, therapeutic operating characteristic (TOC) curves can be computed and the area under the TOC curve (AUTOC) can be employed as a figure-of-merit to guide optimization of different components of the treatment planning process. The developed computational framework is employed to optimize X-ray CT pre-treatment imaging. We demonstrate that use of the radiation therapy-based-based IQ measures lead to different imaging parameters than obtained by use of physical-based measures.

  20. Computer Based Collaborative Problem Solving for Introductory Courses in Physics

    NASA Astrophysics Data System (ADS)

    Ilie, Carolina; Lee, Kevin

    2010-03-01

    We discuss collaborative problem solving computer-based recitation style. The course is designed by Lee [1], and the idea was proposed before by Christian, Belloni and Titus [2,3]. The students find the problems on a web-page containing simulations (physlets) and they write the solutions on an accompanying worksheet after discussing it with a classmate. Physlets have the advantage of being much more like real-world problems than textbook problems. We also compare two protocols for web-based instruction using simulations in an introductory physics class [1]. The inquiry protocol allowed students to control input parameters while the worked example protocol did not. We will discuss which of the two methods is more efficient in relation to Scientific Discovery Learning and Cognitive Load Theory. 1. Lee, Kevin M., Nicoll, Gayle and Brooks, Dave W. (2004). ``A Comparison of Inquiry and Worked Example Web-Based Instruction Using Physlets'', Journal of Science Education and Technology 13, No. 1: 81-88. 2. Christian, W., and Belloni, M. (2001). Physlets: Teaching Physics With Interactive Curricular Material, Prentice Hall, Englewood Cliffs, NJ. 3. Christian,W., and Titus,A. (1998). ``Developing web-based curricula using Java Physlets.'' Computers in Physics 12: 227--232.

  1. Numerical simulation of hot-melt extrusion processes for amorphous solid dispersions using model-based melt viscosity.

    PubMed

    Bochmann, Esther S; Steffens, Kristina E; Gryczke, Andreas; Wagner, Karl G

    2018-03-01

    Simulation of HME processes is a valuable tool for increased process understanding and ease of scale-up. However, the experimental determination of all required input parameters is tedious, namely the melt rheology of the amorphous solid dispersion (ASD) in question. Hence, a procedure to simplify the application of hot-melt extrusion (HME) simulation for forming amorphous solid dispersions (ASD) is presented. The commercial 1D simulation software Ludovic ® was used to conduct (i) simulations using a full experimental data set of all input variables including melt rheology and (ii) simulations using model-based melt viscosity data based on the ASDs glass transition and the physical properties of polymeric matrix only. Both types of HME computation were further compared to experimental HME results. Variation in physical properties (e.g. heat capacity, density) and several process characteristics of HME (residence time distribution, energy consumption) among the simulations and experiments were evaluated. The model-based melt viscosity was calculated by using the glass transition temperature (T g ) of the investigated blend and the melt viscosity of the polymeric matrix by means of a T g -viscosity correlation. The results of measured melt viscosity and model-based melt viscosity were similar with only few exceptions, leading to similar HME simulation outcomes. At the end, the experimental effort prior to HME simulation could be minimized and the procedure enables a good starting point for rational development of ASDs by means of HME. As model excipients, Vinylpyrrolidone-vinyl acetate copolymer (COP) in combination with various APIs (carbamazepine, dipyridamole, indomethacin, and ibuprofen) or polyethylene glycol (PEG 1500) as plasticizer were used to form the ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Real-time simulation for intra-operative navigation in robotic surgery. Using a mass spring system for a basic study of organ deformation.

    PubMed

    Kawamura, Kazuya; Kobayashi, Yo; Fujie, Masakatsu G

    2007-01-01

    Medical technology has advanced with the introduction of robot technology, making previous medical treatments that were very difficult far more possible. However, operation of a surgical robot demands substantial training and continual practice on the part of the surgeon because it requires difficult techniques that are different from those of traditional surgical procedures. We focused on a simulation technology based on the physical characteristics of organs. In this research, we proposed the development of surgical simulation, based on a physical model, for intra-operative navigation by a surgeon. In this paper, we describe the design of our system, in particular our organ deformation calculator. The proposed simulation system consists of an organ deformation calculator and virtual slave manipulators. We obtained adequate experimental results of a target node at a nearby point of interaction, because this point ensures better accuracy for our simulation model. The next research step would be to focus on a surgical environment in which internal organ models would be integrated into a slave simulation system.

  3. The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals: Residential Module Version 4: User Guide, June 2012

    EPA Pesticide Factsheets

    SHEDS - Multimedia is EPA's premier physically-based, probabilistic model, that can simulate cumulative or aggregate exposures for a population across a variety of multimedia, multipathway environmental chemicals.

  4. The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals: Residential Module Version 4: Technical Manual, May 2012

    EPA Pesticide Factsheets

    SHEDS - Multimedia is EPA's premier physically-based, probabilistic model, that can simulate cumulative or aggregate exposures for a population across a variety of multimedia, multipathway environmental chemicals.

  5. The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals: Dietary Module Version 1: User Guide, June 2012

    EPA Pesticide Factsheets

    SHEDS - Multimedia is EPA's premier physically-based, probabilistic model, that can simulate cumulative or aggregate exposures for a population across a variety of multimedia, multipathway environmental chemicals.

  6. Assessing cardiac physical examination skills using simulation technology and real patients: a comparison study.

    PubMed

    Hatala, Rose; Issenberg, S Barry; Kassen, Barry; Cole, Gary; Bacchus, C Maria; Scalese, Ross J

    2008-06-01

    High-stakes assessments of doctors' physical examination skills often employ standardised patients (SPs) who lack physical abnormalities. Simulation technology provides additional opportunities to assess these skills by mimicking physical abnormalities. The current study examined the relationship between internists' cardiac physical examination competence as assessed with simulation technology compared with that assessed with real patients (RPs). The cardiac physical examination skills and bedside diagnostic accuracy of 28 internists were assessed during an objective structured clinical examination (OSCE). The OSCE included 3 modalities of cardiac patients: RPs with cardiac abnormalities; SPs combined with computer-based, audio-video simulations of auscultatory abnormalities, and a cardiac patient simulator (CPS) manikin. Four cardiac diagnoses and their associated cardiac findings were matched across modalities. At each station, 2 examiners independently rated a participant's physical examination technique and global clinical competence. Two investigators separately scored diagnostic accuracy. Inter-rater reliability between examiners for global ratings (GRs) ranged from 0.75-0.78 for the different modalities. Although there was no significant difference between participants' mean GRs for each modality, the correlations between participants' performances on each modality were low to modest: RP versus SP, r = 0.19; RP versus CPS, r = 0.22; SP versus CPS, r = 0.57 (P < 0.01). Methodological limitations included variability between modalities in the components contributing to examiners' GRs, a paucity of objective outcome measures and restricted case sampling. No modality provided a clear 'gold standard' for the assessment of cardiac physical examination competence. These limitations need to be addressed before determining the optimal patient modality for high-stakes assessment purposes.

  7. Geant4-DNA track-structure simulations for gold nanoparticles: The importance of electron discrete models in nanometer volumes.

    PubMed

    Sakata, Dousatsu; Kyriakou, Ioanna; Okada, Shogo; Tran, Hoang N; Lampe, Nathanael; Guatelli, Susanna; Bordage, Marie-Claude; Ivanchenko, Vladimir; Murakami, Koichi; Sasaki, Takashi; Emfietzoglou, Dimitris; Incerti, Sebastien

    2018-05-01

    Gold nanoparticles (GNPs) are known to enhance the absorbed dose in their vicinity following photon-based irradiation. To investigate the therapeutic effectiveness of GNPs, previous Monte Carlo simulation studies have explored GNP dose enhancement using mostly condensed-history models. However, in general, such models are suitable for macroscopic volumes and for electron energies above a few hundred electron volts. We have recently developed, for the Geant4-DNA extension of the Geant4 Monte Carlo simulation toolkit, discrete physics models for electron transport in gold which include the description of the full atomic de-excitation cascade. These models allow event-by-event simulation of electron tracks in gold down to 10 eV. The present work describes how such specialized physics models impact simulation-based studies on GNP-radioenhancement in a context of x-ray radiotherapy. The new discrete physics models are compared to the Geant4 Penelope and Livermore condensed-history models, which are being widely used for simulation-based NP radioenhancement studies. An ad hoc Geant4 simulation application has been developed to calculate the absorbed dose in liquid water around a GNP and its radioenhancement, caused by secondary particles emitted from the GNP itself, when irradiated with a monoenergetic electron beam. The effect of the new physics models is also quantified in the calculation of secondary particle spectra, when originating in the GNP and when exiting from it. The new physics models show similar backscattering coefficients with the existing Geant4 Livermore and Penelope models in large volumes for 100 keV incident electrons. However, in submicron sized volumes, only the discrete models describe the high backscattering that should still be present around GNPs at these length scales. Sizeable differences (mostly above a factor of 2) are also found in the radial distribution of absorbed dose and secondary particles between the new and the existing Geant4 models. The degree to which these differences are due to intrinsic limitations of the condensed-history models or to differences in the underling scattering cross sections requires further investigation. Improved physics models for gold are necessary to better model the impact of GNPs in radiotherapy via Monte Carlo simulations. We implemented discrete electron transport models for gold in Geant4 that is applicable down to 10 eV including the modeling of the full de-excitation cascade. It is demonstrated that the new model has a significant positive impact on particle transport simulations in gold volumes with submicron dimensions compared to the existing Livermore and Penelope condensed-history models of Geant4. © 2018 American Association of Physicists in Medicine.

  8. A physics based method for combining multiple anatomy models with application to medical simulation.

    PubMed

    Zhu, Yanong; Magee, Derek; Ratnalingam, Rishya; Kessel, David

    2009-01-01

    We present a physics based approach to the construction of anatomy models by combining components from different sources; different image modalities, protocols, and patients. Given an initial anatomy, a mass-spring model is generated which mimics the physical properties of the solid anatomy components. This helps maintain valid spatial relationships between the components, as well as the validity of their shapes. Combination can be either replacing/modifying an existing component, or inserting a new component. The external forces that deform the model components to fit the new shape are estimated from Gradient Vector Flow and Distance Transform maps. We demonstrate the applicability and validity of the described approach in the area of medical simulation, by showing the processes of non-rigid surface alignment, component replacement, and component insertion.

  9. An Agent-Based Modeling Framework and Application for the Generic Nuclear Fuel Cycle

    NASA Astrophysics Data System (ADS)

    Gidden, Matthew J.

    Key components of a novel methodology and implementation of an agent-based, dynamic nuclear fuel cycle simulator, Cyclus , are presented. The nuclear fuel cycle is a complex, physics-dependent supply chain. To date, existing dynamic simulators have not treated constrained fuel supply, time-dependent, isotopic-quality based demand, or fuel fungibility particularly well. Utilizing an agent-based methodology that incorporates sophisticated graph theory and operations research techniques can overcome these deficiencies. This work describes a simulation kernel and agents that interact with it, highlighting the Dynamic Resource Exchange (DRE), the supply-demand framework at the heart of the kernel. The key agent-DRE interaction mechanisms are described, which enable complex entity interaction through the use of physics and socio-economic models. The translation of an exchange instance to a variant of the Multicommodity Transportation Problem, which can be solved feasibly or optimally, follows. An extensive investigation of solution performance and fidelity is then presented. Finally, recommendations for future users of Cyclus and the DRE are provided.

  10. Physics-based scoring of protein-ligand interactions: explicit polarizability, quantum mechanics and free energies.

    PubMed

    Bryce, Richard A

    2011-04-01

    The ability to accurately predict the interaction of a ligand with its receptor is a key limitation in computer-aided drug design approaches such as virtual screening and de novo design. In this article, we examine current strategies for a physics-based approach to scoring of protein-ligand affinity, as well as outlining recent developments in force fields and quantum chemical techniques. We also consider advances in the development and application of simulation-based free energy methods to study protein-ligand interactions. Fuelled by recent advances in computational algorithms and hardware, there is the opportunity for increased integration of physics-based scoring approaches at earlier stages in computationally guided drug discovery. Specifically, we envisage increased use of implicit solvent models and simulation-based scoring methods as tools for computing the affinities of large virtual ligand libraries. Approaches based on end point simulations and reference potentials allow the application of more advanced potential energy functions to prediction of protein-ligand binding affinities. Comprehensive evaluation of polarizable force fields and quantum mechanical (QM)/molecular mechanical and QM methods in scoring of protein-ligand interactions is required, particularly in their ability to address challenging targets such as metalloproteins and other proteins that make highly polar interactions. Finally, we anticipate increasingly quantitative free energy perturbation and thermodynamic integration methods that are practical for optimization of hits obtained from screened ligand libraries.

  11. Petascale computation of multi-physics seismic simulations

    NASA Astrophysics Data System (ADS)

    Gabriel, Alice-Agnes; Madden, Elizabeth H.; Ulrich, Thomas; Wollherr, Stephanie; Duru, Kenneth C.

    2017-04-01

    Capturing the observed complexity of earthquake sources in concurrence with seismic wave propagation simulations is an inherently multi-scale, multi-physics problem. In this presentation, we present simulations of earthquake scenarios resolving high-detail dynamic rupture evolution and high frequency ground motion. The simulations combine a multitude of representations of model complexity; such as non-linear fault friction, thermal and fluid effects, heterogeneous fault stress and fault strength initial conditions, fault curvature and roughness, on- and off-fault non-elastic failure to capture dynamic rupture behavior at the source; and seismic wave attenuation, 3D subsurface structure and bathymetry impacting seismic wave propagation. Performing such scenarios at the necessary spatio-temporal resolution requires highly optimized and massively parallel simulation tools which can efficiently exploit HPC facilities. Our up to multi-PetaFLOP simulations are performed with SeisSol (www.seissol.org), an open-source software package based on an ADER-Discontinuous Galerkin (DG) scheme solving the seismic wave equations in velocity-stress formulation in elastic, viscoelastic, and viscoplastic media with high-order accuracy in time and space. Our flux-based implementation of frictional failure remains free of spurious oscillations. Tetrahedral unstructured meshes allow for complicated model geometry. SeisSol has been optimized on all software levels, including: assembler-level DG kernels which obtain 50% peak performance on some of the largest supercomputers worldwide; an overlapping MPI-OpenMP parallelization shadowing the multiphysics computations; usage of local time stepping; parallel input and output schemes and direct interfaces to community standard data formats. All these factors enable aim to minimise the time-to-solution. The results presented highlight the fact that modern numerical methods and hardware-aware optimization for modern supercomputers are essential to further our understanding of earthquake source physics and complement both physic-based ground motion research and empirical approaches in seismic hazard analysis. Lastly, we will conclude with an outlook on future exascale ADER-DG solvers for seismological applications.

  12. RELAP-7 Level 2 Milestone Report: Demonstration of a Steady State Single Phase PWR Simulation with RELAP-7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Andrs; Ray Berry; Derek Gaston

    The document contains the simulation results of a steady state model PWR problem with the RELAP-7 code. The RELAP-7 code is the next generation nuclear reactor system safety analysis code being developed at Idaho National Laboratory (INL). The code is based on INL's modern scientific software development framework - MOOSE (Multi-Physics Object-Oriented Simulation Environment). This report summarizes the initial results of simulating a model steady-state single phase PWR problem using the current version of the RELAP-7 code. The major purpose of this demonstration simulation is to show that RELAP-7 code can be rapidly developed to simulate single-phase reactor problems. RELAP-7more » is a new project started on October 1st, 2011. It will become the main reactor systems simulation toolkit for RISMC (Risk Informed Safety Margin Characterization) and the next generation tool in the RELAP reactor safety/systems analysis application series (the replacement for RELAP5). The key to the success of RELAP-7 is the simultaneous advancement of physical models, numerical methods, and software design while maintaining a solid user perspective. Physical models include both PDEs (Partial Differential Equations) and ODEs (Ordinary Differential Equations) and experimental based closure models. RELAP-7 will eventually utilize well posed governing equations for multiphase flow, which can be strictly verified. Closure models used in RELAP5 and newly developed models will be reviewed and selected to reflect the progress made during the past three decades. RELAP-7 uses modern numerical methods, which allow implicit time integration, higher order schemes in both time and space, and strongly coupled multi-physics simulations. RELAP-7 is written with object oriented programming language C++. Its development follows modern software design paradigms. The code is easy to read, develop, maintain, and couple with other codes. Most importantly, the modern software design allows the RELAP-7 code to evolve with time. RELAP-7 is a MOOSE-based application. MOOSE (Multiphysics Object-Oriented Simulation Environment) is a framework for solving computational engineering problems in a well-planned, managed, and coordinated way. By leveraging millions of lines of open source software packages, such as PETSC (a nonlinear solver developed at Argonne National Laboratory) and LibMesh (a Finite Element Analysis package developed at University of Texas), MOOSE significantly reduces the expense and time required to develop new applications. Numerical integration methods and mesh management for parallel computation are provided by MOOSE. Therefore RELAP-7 code developers only need to focus on physics and user experiences. By using the MOOSE development environment, RELAP-7 code is developed by following the same modern software design paradigms used for other MOOSE development efforts. There are currently over 20 different MOOSE based applications ranging from 3-D transient neutron transport, detailed 3-D transient fuel performance analysis, to long-term material aging. Multi-physics and multiple dimensional analyses capabilities can be obtained by coupling RELAP-7 and other MOOSE based applications and by leveraging with capabilities developed by other DOE programs. This allows restricting the focus of RELAP-7 to systems analysis-type simulations and gives priority to retain and significantly extend RELAP5's capabilities.« less

  13. Palpation Simulator of Beating Aorta for Cardiovascular Surgery Training

    NASA Astrophysics Data System (ADS)

    Yamamoto, Yasuhiro; Nakao, Megumi; Kuroda, Tomohiro; Oyama, Hiroshi; Komori, Masaru; Matsuda, Tetsuya; Sakaguchi, Genichi; Komeda, Masashi; Takahashi, Takashi

    In field of cardiovascular surgeries, palpation of aorta plays important roles in decision of surgical site.This paper develops palpation simulator of aorta based on a finite element based physical model.The proposed model calculates soft tissue deformation according to the affection of inner pressure and the operation of a surgeon.The proposed method is implemented on a prototype with dual PHANToM device.Experimental results confirmed our model achieves real time simulation of the surgical palpation.

  14. Interventional radiology virtual simulator for liver biopsy.

    PubMed

    Villard, P F; Vidal, F P; ap Cenydd, L; Holbrey, R; Pisharody, S; Johnson, S; Bulpitt, A; John, N W; Bello, F; Gould, D

    2014-03-01

    Training in Interventional Radiology currently uses the apprenticeship model, where clinical and technical skills of invasive procedures are learnt during practice in patients. This apprenticeship training method is increasingly limited by regulatory restrictions on working hours, concerns over patient risk through trainees' inexperience and the variable exposure to case mix and emergencies during training. To address this, we have developed a computer-based simulation of visceral needle puncture procedures. A real-time framework has been built that includes: segmentation, physically based modelling, haptics rendering, pseudo-ultrasound generation and the concept of a physical mannequin. It is the result of a close collaboration between different universities, involving computer scientists, clinicians, clinical engineers and occupational psychologists. The technical implementation of the framework is a robust and real-time simulation environment combining a physical platform and an immersive computerized virtual environment. The face, content and construct validation have been previously assessed, showing the reliability and effectiveness of this framework, as well as its potential for teaching visceral needle puncture. A simulator for ultrasound-guided liver biopsy has been developed. It includes functionalities and metrics extracted from cognitive task analysis. This framework can be useful during training, particularly given the known difficulties in gaining significant practice of core skills in patients.

  15. Technical skills measurement based on a cyber-physical system for endovascular surgery simulation.

    PubMed

    Tercero, Carlos; Kodama, Hirokatsu; Shi, Chaoyang; Ooe, Katsutoshi; Ikeda, Seiichi; Fukuda, Toshio; Arai, Fumihito; Negoro, Makoto; Kwon, Guiryong; Najdovski, Zoran

    2013-09-01

    Quantification of medical skills is a challenge, particularly simulator-based training. In the case of endovascular intervention, it is desirable that a simulator accurately recreates the morphology and mechanical characteristics of the vasculature while enabling scoring. For this purpose, we propose a cyber-physical system composed of optical sensors for a catheter's body motion encoding, a magnetic tracker for motion capture of an operator's hands, and opto-mechatronic sensors for measuring the interaction of the catheter tip with the vasculature model wall. Two pilot studies were conducted for measuring technical skills, one for distinguishing novices from experts and the other for measuring unnecessary motion. The proficiency levels were measurable between expert and novice and also between individual novice users. The results enabled scoring of the user's proficiency level, using sensitivity, reaction time, time to complete a task and respect for tissue integrity as evaluation criteria. Additionally, unnecessary motion was also measurable. The development of cyber-physical simulators for other domains of medicine depend on the study of photoelastic materials for human tissue modelling, and enables quantitative evaluation of skills using surgical instruments and a realistic representation of human tissue. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Cardiorespiratory endurance evaluation using heart rate analysis during ski simulator exercise and the Harvard step test in elementary school students.

    PubMed

    Lee, Hyo Taek; Roh, Hyo Lyun; Kim, Yoon Sang

    2016-01-01

    [Purpose] Efficient management using exercise programs with various benefits should be provided by educational institutions for children in their growth phase. We analyzed the heart rates of children during ski simulator exercise and the Harvard step test to evaluate the cardiopulmonary endurance by calculating their post-exercise recovery rate. [Subjects and Methods] The subjects (n = 77) were categorized into a normal weight and an overweight/obesity group by body mass index. They performed each exercise for 3 minutes. The cardiorespiratory endurance was calculated using the Physical Efficiency Index formula. [Results] The ski simulator and Harvard step test showed that there was a significant difference in the heart rates of the 2 body mass index-based groups at each minute. The normal weight and the ski-simulator group had higher Physical Efficiency Index levels. [Conclusion] This study showed that a simulator exercise can produce a cumulative load even when performed at low intensity, and can be effectively utilized as exercise equipment since it resulted in higher Physical Efficiency Index levels than the Harvard step test. If schools can increase sport durability by stimulating students' interests, the ski simulator exercise can be used in programs designed to improve and strengthen students' physical fitness.

  17. Use of Simulation Learning Experiences in Physical Therapy Entry-to-Practice Curricula: A Systematic Review

    PubMed Central

    Carnahan, Heather; Herold, Jodi

    2015-01-01

    ABSTRACT Purpose: To review the literature on simulation-based learning experiences and to examine their potential to have a positive impact on physiotherapy (PT) learners' knowledge, skills, and attitudes in entry-to-practice curricula. Method: A systematic literature search was conducted in the MEDLINE, CINAHL, Embase Classic+Embase, Scopus, and Web of Science databases, using keywords such as physical therapy, simulation, education, and students. Results: A total of 820 abstracts were screened, and 23 articles were included in the systematic review. While there were few randomized controlled trials with validated outcome measures, some discoveries about simulation can positively affect the design of the PT entry-to-practice curricula. Using simulators to provide specific output feedback can help students learn specific skills. Computer simulations can also augment students' learning experience. Human simulation experiences in managing the acute patient in the ICU are well received by students, positively influence their confidence, and decrease their anxiety. There is evidence that simulated learning environments can replace a portion of a full-time 4-week clinical rotation without impairing learning. Conclusions: Simulation-based learning activities are being effectively incorporated into PT curricula. More rigorously designed experimental studies that include a cost–benefit analysis are necessary to help curriculum developers make informed choices in curriculum design. PMID:25931672

  18. The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals: Dietary Module Version 1: Quick Start Guide, May 2012

    EPA Pesticide Factsheets

    SHEDS - Multimedia is EPA's premier physically-based, probabilistic model, that can simulate cumulative or aggregate exposures for a population across a variety of multimedia, multipathway environmental chemicals.

  19. Combined PEST and Trial-Error approach to improve APEX calibration

    USDA-ARS?s Scientific Manuscript database

    The Agricultural Policy Environmental eXtender (APEX), a physically-based hydrologic model that simulates management impacts on the environment for small watersheds, requires improved understanding of the input parameters for improved simulations. However, most previously published studies used the ...

  20. The Stochastic Human Exposure and Dose Simulation Model for Multimedia, Multipathway Chemicals: Residential Module Version 4: Quick Start Guide, April 2012

    EPA Pesticide Factsheets

    SHEDS - Multimedia is EPA's premier physically-based, probabilistic model, that can simulate cumulative or aggregate exposures for a population across a variety of multimedia, multipathway environmental chemicals.

  1. Neutron Source Facility Training Simulator Based on EPICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Young Soo; Wei, Thomas Y.; Vilim, Richard B.

    A plant operator training simulator is developed for training the plant operators as well as for design verification of plant control system (PCS) and plant protection system (PPS) for the Kharkov Institute of Physics and Technology Neutron Source Facility. The simulator provides the operator interface for the whole plant including the sub-critical assembly coolant loop, target coolant loop, secondary coolant loop, and other facility systems. The operator interface is implemented based on Experimental Physics and Industrial Control System (EPICS), which is a comprehensive software development platform for distributed control systems. Since its development at Argonne National Laboratory, it has beenmore » widely adopted in the experimental physics community, e.g. for control of accelerator facilities. This work is the first implementation for a nuclear facility. The main parts of the operator interface are the plant control panel and plant protection panel. The development involved implementation of process variable database, sequence logic, and graphical user interface (GUI) for the PCS and PPS utilizing EPICS and related software tools, e.g. sequencer for sequence logic, and control system studio (CSS-BOY) for graphical use interface. For functional verification of the PCS and PPS, a plant model is interfaced, which is a physics-based model of the facility coolant loops implemented as a numerical computer code. The training simulator is tested and demonstrated its effectiveness in various plant operation sequences, e.g. start-up, shut-down, maintenance, and refueling. It was also tested for verification of the plant protection system under various trip conditions.« less

  2. Simulation of the hybrid and steady state advanced operating modes in ITER

    NASA Astrophysics Data System (ADS)

    Kessel, C. E.; Giruzzi, G.; Sips, A. C. C.; Budny, R. V.; Artaud, J. F.; Basiuk, V.; Imbeaux, F.; Joffrin, E.; Schneider, M.; Murakami, M.; Luce, T.; St. John, Holger; Oikawa, T.; Hayashi, N.; Takizuka, T.; Ozeki, T.; Na, Y.-S.; Park, J. M.; Garcia, J.; Tucillo, A. A.

    2007-09-01

    Integrated simulations are performed to establish a physics basis, in conjunction with present tokamak experiments, for the operating modes in the International Thermonuclear Experimental Reactor (ITER). Simulations of the hybrid mode are done using both fixed and free-boundary 1.5D transport evolution codes including CRONOS, ONETWO, TSC/TRANSP, TOPICS and ASTRA. The hybrid operating mode is simulated using the GLF23 and CDBM05 energy transport models. The injected powers are limited to the negative ion neutral beam, ion cyclotron and electron cyclotron heating systems. Several plasma parameters and source parameters are specified for the hybrid cases to provide a comparison of 1.5D core transport modelling assumptions, source physics modelling assumptions, as well as numerous peripheral physics modelling. Initial results indicate that very strict guidelines will need to be imposed on the application of GLF23, for example, to make useful comparisons. Some of the variations among the simulations are due to source models which vary widely among the codes used. In addition, there are a number of peripheral physics models that should be examined, some of which include fusion power production, bootstrap current, treatment of fast particles and treatment of impurities. The hybrid simulations project to fusion gains of 5.6-8.3, βN values of 2.1-2.6 and fusion powers ranging from 350 to 500 MW, under the assumptions outlined in section 3. Simulations of the steady state operating mode are done with the same 1.5D transport evolution codes cited above, except the ASTRA code. In these cases the energy transport model is more difficult to prescribe, so that energy confinement models will range from theory based to empirically based. The injected powers include the same sources as used for the hybrid with the possible addition of lower hybrid. The simulations of the steady state mode project to fusion gains of 3.5-7, βN values of 2.3-3.0 and fusion powers of 290 to 415 MW, under the assumptions described in section 4. These simulations will be presented and compared with particular focus on the resulting temperature profiles, source profiles and peripheral physics profiles. The steady state simulations are at an early stage and are focused on developing a range of safety factor profiles with 100% non-inductive current.

  3. Physical environment virtualization for human activities recognition

    NASA Astrophysics Data System (ADS)

    Poshtkar, Azin; Elangovan, Vinayak; Shirkhodaie, Amir; Chan, Alex; Hu, Shuowen

    2015-05-01

    Human activity recognition research relies heavily on extensive datasets to verify and validate performance of activity recognition algorithms. However, obtaining real datasets are expensive and highly time consuming. A physics-based virtual simulation can accelerate the development of context based human activity recognition algorithms and techniques by generating relevant training and testing videos simulating diverse operational scenarios. In this paper, we discuss in detail the requisite capabilities of a virtual environment to aid as a test bed for evaluating and enhancing activity recognition algorithms. To demonstrate the numerous advantages of virtual environment development, a newly developed virtual environment simulation modeling (VESM) environment is presented here to generate calibrated multisource imagery datasets suitable for development and testing of recognition algorithms for context-based human activities. The VESM environment serves as a versatile test bed to generate a vast amount of realistic data for training and testing of sensor processing algorithms. To demonstrate the effectiveness of VESM environment, we present various simulated scenarios and processed results to infer proper semantic annotations from the high fidelity imagery data for human-vehicle activity recognition under different operational contexts.

  4. Large eddy simulation of forest canopy flow for wildland fire modeling

    Treesearch

    Eric Mueller; William Mell; Albert Simeoni

    2014-01-01

    Large eddy simulation (LES) based computational fluid dynamics (CFD) simulators have obtained increasing attention in the wildland fire research community, as these tools allow the inclusion of important driving physics. However, due to the complexity of the models, individual aspects must be isolated and tested rigorously to ensure meaningful results. As wind is a...

  5. Design and Application of Interactive Simulations in Problem-Solving in University-Level Physics Education

    ERIC Educational Resources Information Center

    Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel

    2016-01-01

    In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving…

  6. A Novel Approach to Visualizing Dark Matter Simulations.

    PubMed

    Kaehler, R; Hahn, O; Abel, T

    2012-12-01

    In the last decades cosmological N-body dark matter simulations have enabled ab initio studies of the formation of structure in the Universe. Gravity amplified small density fluctuations generated shortly after the Big Bang, leading to the formation of galaxies in the cosmic web. These calculations have led to a growing demand for methods to analyze time-dependent particle based simulations. Rendering methods for such N-body simulation data usually employ some kind of splatting approach via point based rendering primitives and approximate the spatial distributions of physical quantities using kernel interpolation techniques, common in SPH (Smoothed Particle Hydrodynamics)-codes. This paper proposes three GPU-assisted rendering approaches, based on a new, more accurate method to compute the physical densities of dark matter simulation data. It uses full phase-space information to generate a tetrahedral tessellation of the computational domain, with mesh vertices defined by the simulation's dark matter particle positions. Over time the mesh is deformed by gravitational forces, causing the tetrahedral cells to warp and overlap. The new methods are well suited to visualize the cosmic web. In particular they preserve caustics, regions of high density that emerge, when several streams of dark matter particles share the same location in space, indicating the formation of structures like sheets, filaments and halos. We demonstrate the superior image quality of the new approaches in a comparison with three standard rendering techniques for N-body simulation data.

  7. Best Practices in Physics-Based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations

    NASA Astrophysics Data System (ADS)

    Dalguer, Luis A.; Fukushima, Yoshimitsu; Irikura, Kojiro; Wu, Changjiang

    2017-09-01

    Inspired by the first workshop on Best Practices in Physics-Based Fault Rupture Models for Seismic Hazard Assessment of Nuclear Installations (BestPSHANI) conducted by the International Atomic Energy Agency (IAEA) on 18-20 November, 2015 in Vienna (http://www-pub.iaea.org/iaeameetings/50896/BestPSHANI), this PAGEOPH topical volume collects several extended articles from this workshop as well as several new contributions. A total of 17 papers have been selected on topics ranging from the seismological aspects of earthquake cycle simulations for source-scaling evaluation, seismic source characterization, source inversion and ground motion modeling (based on finite fault rupture using dynamic, kinematic, stochastic and empirical Green's functions approaches) to the engineering application of simulated ground motion for the analysis of seismic response of structures. These contributions include applications to real earthquakes and description of current practice to assess seismic hazard in terms of nuclear safety in low seismicity areas, as well as proposals for physics-based hazard assessment for critical structures near large earthquakes. Collectively, the papers of this volume highlight the usefulness of physics-based models to evaluate and understand the physical causes of observed and empirical data, as well as to predict ground motion beyond the range of recorded data. Relevant importance is given on the validation and verification of the models by comparing synthetic results with observed data and empirical models.

  8. Sol-Gel Application for Consolidating Stone: An Example of Project-Based Learning in a Physical Chemistry Lab

    ERIC Educational Resources Information Center

    de los Santos, Desiree´ M.; Montes, Antonio; Sa´nchez-Coronilla, Antonio; Navas, Javier

    2014-01-01

    A Project Based Learning (PBL) methodology was used in the practical laboratories of the Advanced Physical Chemistry department. The project type proposed simulates "real research" focusing on sol-gel synthesis and the application of the obtained sol as a stone consolidant. Students were divided into small groups (2 to 3 students) to…

  9. Faculty development through simulation-based education in physical therapist education.

    PubMed

    Greenwood, Kristin Curry; Ewell, Sara B

    2018-01-01

    The use of simulation-based education (SBE) in health professions, such as physical therapy, requires faculty to expand their teaching practice and development. The impact of this teaching on the individual faculty member, and how their teaching process changes or develops, is not fully understood. The purpose of this study was to explore individual physical therapist faculty members' experience with SBE and how those experiences may have transformed their teaching practice to answer the research questions: How do physical therapist faculty develop through including SBE and are there commonalities among educators? An interpretive phenomenological analysis approach was used with a small sample of subjects who participated in three individual semi-structured interviews. Interview questions were created through the lens of transformative learning theory to allow faculty transformations to be uncovered. A two-step thematic coding process was conducted across participants to identify commonalities of faculty experiences with SBE in physical therapist education. Credibility and trustworthiness were achieved through member checking and expert external review. Thematic findings were validated with transcript excerpts and research field notes. Eight physical therapist faculty members (25% male) with a range of 3 to 16 years of incorporating SBE shared their individual experiences. Four common themes related to faculty development were identified across the participants. Themes identified are the following: faculty strengthen their professional identity as physical therapists, faculty are affected by their introduction and training with simulation, faculty develop their interprofessional education through SBE, and faculty experiences with SBE facilitate professional growth. Physical therapist educators had similarities in their experiences with SBE that transformed their teaching practice and professional development. This study provides insight into what physical therapist faculty may experience when adopting SBE.

  10. Automatic 3D virtual scenes modeling for multisensors simulation

    NASA Astrophysics Data System (ADS)

    Latger, Jean; Le Goff, Alain; Cathala, Thierry; Larive, Mathieu

    2006-05-01

    SEDRIS that stands for Synthetic Environment Data Representation and Interchange Specification is a DoD/DMSO initiative in order to federate and make interoperable 3D mocks up in the frame of virtual reality and simulation. This paper shows an original application of SEDRIS concept for research physical multi sensors simulation, when SEDRIS is more classically known for training simulation. CHORALE (simulated Optronic Acoustic Radar battlefield) is used by the French DGA/DCE (Directorate for Test and Evaluation of the French Ministry of Defense) to perform multi-sensors simulations. CHORALE enables the user to create virtual and realistic multi spectral 3D scenes, and generate the physical signal received by a sensor, typically an IR sensor. In the scope of this CHORALE workshop, French DGA has decided to introduce a SEDRIS based new 3D terrain modeling tool that enables to create automatically 3D databases, directly usable by the physical sensor simulation CHORALE renderers. This AGETIM tool turns geographical source data (including GIS facilities) into meshed geometry enhanced with the sensor physical extensions, fitted to the ray tracing rendering of CHORALE, both for the infrared, electromagnetic and acoustic spectrum. The basic idea is to enhance directly the 2D source level with the physical data, rather than enhancing the 3D meshed level, which is more efficient (rapid database generation) and more reliable (can be generated many times, changing some parameters only). The paper concludes with the last current evolution of AGETIM in the scope mission rehearsal for urban war using sensors. This evolution includes indoor modeling for automatic generation of inner parts of buildings.

  11. Modeling and Simulation in Support of Testing and Evaluation

    DTIC Science & Technology

    1997-03-01

    contains standardized automated test methodology, synthetic stimuli and environments based on TECOM Ground Truth data and physics . The VPG is a distributed...Systems Acquisition Management (FSAM) coursebook , Defense Systems Management College, January 1994. Crocker, Charles M. “Application of the Simulation

  12. Application of identified sensitive physical parameters in reducing the uncertainty of numerical simulation

    NASA Astrophysics Data System (ADS)

    Sun, Guodong; Mu, Mu

    2016-04-01

    An important source of uncertainty, which then causes further uncertainty in numerical simulations, is that residing in the parameters describing physical processes in numerical models. There are many physical parameters in numerical models in the atmospheric and oceanic sciences, and it would cost a great deal to reduce uncertainties in all physical parameters. Therefore, finding a subset of these parameters, which are relatively more sensitive and important parameters, and reducing the errors in the physical parameters in this subset would be a far more efficient way to reduce the uncertainties involved in simulations. In this context, we present a new approach based on the conditional nonlinear optimal perturbation related to parameter (CNOP-P) method. The approach provides a framework to ascertain the subset of those relatively more sensitive and important parameters among the physical parameters. The Lund-Potsdam-Jena (LPJ) dynamical global vegetation model was utilized to test the validity of the new approach. The results imply that nonlinear interactions among parameters play a key role in the uncertainty of numerical simulations in arid and semi-arid regions of China compared to those in northern, northeastern and southern China. The uncertainties in the numerical simulations were reduced considerably by reducing the errors of the subset of relatively more sensitive and important parameters. The results demonstrate that our approach not only offers a new route to identify relatively more sensitive and important physical parameters but also that it is viable to then apply "target observations" to reduce the uncertainties in model parameters.

  13. Coupling of a distributed stakeholder-built system dynamics socio-economic model with SAHYSMOD for sustainable soil salinity management. Part 2: Model coupling and application

    NASA Astrophysics Data System (ADS)

    Inam, Azhar; Adamowski, Jan; Prasher, Shiv; Halbe, Johannes; Malard, Julien; Albano, Raffaele

    2017-08-01

    Many simulation models focus on simulating a single physical process and do not constitute balanced representations of the physical, social and economic components of a system. The present study addresses this challenge by integrating a physical (P) model (SAHYSMOD) with a group (stakeholder) built system dynamics model (GBSDM) through a component modeling approach based on widely applied tools such as MS Excel, Python and Visual Basic for Applications (VBA). The coupled model (P-GBSDM) was applied to test soil salinity management scenarios (proposed by stakeholders) for the Haveli region of the Rechna Doab Basin in Pakistan. Scenarios such as water banking, vertical drainage, canal lining, and irrigation water reallocation were simulated with the integrated model. Spatiotemporal maps and economic and environmental trade-off criteria were used to examine the effectiveness of the selected management scenarios. After 20 years of simulation, canal lining reduced soil salinity by 22% but caused an initial reduction of 18% in farm income, which requires an initial investment from the government. The government-sponsored Salinity Control and Reclamation Project (SCARP) is a short-term policy that resulted in a 37% increase in water availability with a 12% increase in farmer income. However, it showed detrimental effects on soil salinity in the long term, with a 21% increase in soil salinity due to secondary salinization. The new P-GBSDM was shown to be an effective platform for engaging stakeholders and simulating their proposed management policies while taking into account socioeconomic considerations. This was not possible using the physically based SAHYSMOD model alone.

  14. The introduction and effectiveness of simulation-based learning in medical education.

    PubMed

    Nara, Nobuo; Beppu, Masashi; Tohda, Shuji; Suzuki, Toshiya

    2009-01-01

    To contribute to reforming the medical education system in Japan, we visited overseas medical schools and observed the methods utilized in medical education. We visited 28 medical schools and five institutes in the United States, Europe, Australia and Asia in 2008. We met deans and specialists in medical affairs and observed the medical schools' facilities. Among the several effective educational methods used in overseas medical schools, simulation-based learning was being used in all that we visited. Simulation-based learning is used to promote medical students' mastery of communication skills, medical interviewing, physical examination and basic clinical procedures. Students and tutors both recognize the effectiveness of simulation-based learning in medical education. In contrast to overseas medical schools, simulation-based learning is not common in Japan. There remain many barriers to introduce simulation-based education in Japan, such as a shortage of medical tutors, staff, mannequins and budget. However, enhancing the motivation of tutors is likely the most important factor to facilitate simulation-based education in Japanese medical schools to become common place.

  15. In situ measurement and modeling of biomechanical response of human cadaveric soft tissues for physics-based surgical simulation.

    PubMed

    Lim, Yi-Je; Deo, Dhanannjay; Singh, Tejinder P; Jones, Daniel B; De, Suvranu

    2009-06-01

    Development of a laparoscopic surgery simulator that delivers high-fidelity visual and haptic (force) feedback, based on the physical models of soft tissues, requires the use of empirical data on the mechanical behavior of intra-abdominal organs under the action of external forces. As experiments on live human patients present significant risks, the use of cadavers presents an alternative. We present techniques of measuring and modeling the mechanical response of human cadaveric tissue for the purpose of developing a realistic model. The major contribution of this paper is the development of physics-based models of soft tissues that range from linear elastic models to nonlinear viscoelastic models which are efficient for application within the framework of a real-time surgery simulator. To investigate the in situ mechanical, static, and dynamic properties of intra-abdominal organs, we have developed a high-precision instrument by retrofitting a robotic device from Sensable Technologies (position resolution of 0.03 mm) with a six-axis Nano 17 force-torque sensor from ATI Industrial Automation (force resolution of 1/1,280 N along each axis), and used it to apply precise displacement stimuli and record the force response of liver and stomach of ten fresh human cadavers. The mean elastic modulus of liver and stomach is estimated as 5.9359 kPa and 1.9119 kPa, respectively over the range of indentation depths tested. We have also obtained the parameters of a quasilinear viscoelastic (QLV) model to represent the nonlinear viscoelastic behavior of the cadaver stomach and liver over a range of indentation depths and speeds. The models are found to have an excellent goodness of fit (with R (2) > 0.99). The data and models presented in this paper together with additional ones based on the principles presented in this paper would result in realistic physics-based surgical simulators.

  16. A theoretical study on tunneling based biosensor having a redox-active monolayer using physics based simulation

    NASA Astrophysics Data System (ADS)

    Kim, Kyoung Yeon; Lee, Won Cheol; Yun, Jun Yeon; Lee, Youngeun; Choi, Seoungwook; Jin, Seonghoon; Park, Young June

    2018-01-01

    We developed a numerical simulator to model the operation of a tunneling based biosensor which has a redox-active monolayer. The simulator takes a realistic device structure as a simulation domain, and it employs the drift-diffusion equation for ion transport, the non-equilibrium Green's function formalism for electron tunneling, and the Ramo-Shockley theorem for accurate calculation of non-faradaic current. We also accounted for the buffer reaction and the immobilized peptide layer. For efficient transient simulation, the implicit time integration scheme is employed where the solution at each time step is obtained from the coupled Newton-Raphson method. As an application, we studied the operation of a recently fabricated reference-electrode free biosensor in various bias conditions and confirmed the effect of buffer reaction and the current flowing mechanism. Using the simulator, we also found a strategy to maximize the sensitivity of the tunneling based sensor.

  17. Spectrum simulation in DTSA-II.

    PubMed

    Ritchie, Nicholas W M

    2009-10-01

    Spectrum simulation is a useful practical and pedagogical tool. Particularly with complex samples or trace constituents, a simulation can help to understand the limits of the technique and the instrument parameters for the optimal measurement. DTSA-II, software for electron probe microanalysis, provides both easy to use and flexible tools for simulating common and less common sample geometries and materials. Analytical models based on (rhoz) curves provide quick simulations of simple samples. Monte Carlo models based on electron and X-ray transport provide more sophisticated models of arbitrarily complex samples. DTSA-II provides a broad range of simulation tools in a framework with many different interchangeable physical models. In addition, DTSA-II provides tools for visualizing, comparing, manipulating, and quantifying simulated and measured spectra.

  18. A multi-scale ''soil water structure'' model based on the pedostructure concept

    NASA Astrophysics Data System (ADS)

    Braudeau, E.; Mohtar, R. H.; El Ghezal, N.; Crayol, M.; Salahat, M.; Martin, P.

    2009-02-01

    Current soil water models do not take into account the internal organization of the soil medium and, a fortiori, the physical interaction between the water film surrounding the solid particles of the soil structure, and the surface charges of this structure. In that sense they empirically deal with the physical soil properties that are all generated from this soil water-structure interaction. As a result, the thermodynamic state of the soil water medium, which constitutes the local physical conditions, namely the pedo-climate, for biological and geo-chemical processes in soil, is not defined in these models. The omission of soil structure from soil characterization and modeling does not allow for coupling disciplinary models for these processes with soil water models. This article presents a soil water structure model, Kamel®, which was developed based on a new paradigm in soil physics where the hierarchical soil structure is taken into account allowing for defining its thermodynamic properties. After a review of soil physics principles which forms the basis of the paradigm, we describe the basic relationships and functionality of the model. Kamel® runs with a set of 15 soil input parameters, the pedohydral parameters, which are parameters of the physically-based equations of four soil characteristic curves that can be measured in the laboratory. For cases where some of these parameters are not available, we show how to estimate these parameters from commonly available soil information using published pedotransfer functions. A published field experimental study on the dynamics of the soil moisture profile following a pounded infiltration rainfall event was used as an example to demonstrate soil characterization and Kamel® simulations. The simulated soil moisture profile for a period of 60 days showed very good agreement with experimental field data. Simulations using input data calculated from soil texture and pedotransfer functions were also generated and compared to simulations of the more ideal characterization. The later comparison illustrates how Kamel® can be used and adapt to any case of soil data availability. As physically based model on soil structure, it may be used as a standard reference to evaluate other soil-water models and also pedotransfer functions at a given location or agronomical situation.

  19. Treb-Bot: Development and Use of a Trebuchet Simulator

    NASA Astrophysics Data System (ADS)

    Constans, Eric; Constans, Aileen

    2015-09-01

    The trebuchet has quickly become a favorite project for physics and engineering teachers seeking to provide students with a simple, but spectacular, hands-on design project that can be applied to the study of projectile motion, rotational motion, and the law of conservation of energy. While there have been free trebuchet simulators and range calculators available online for several years, these have been limited to simple designs. Other simulators are available for a fee, precluding practical use in introductory courses. With this in mind, one of the authors developed a free web-based trebuchet simulation that can be found at http://www.benchtophybrid.com/TB_index.html. This simulation, named Treb-Bot, is designed to be visually appealing to high school students and includes simulations of trebuchet designs that are unavailable elsewhere on the web. The website was successfully field-tested by a group of Advanced Placement Physics 1 students.

  20. Physical and Mathematical Questions on Signal Processing in Multibase Phase Direction Finders

    NASA Astrophysics Data System (ADS)

    Denisov, V. P.; Dubinin, D. V.; Meshcheryakov, A. A.

    2018-02-01

    Questions on improving the accuracy of multiple-base phase direction finders by rejecting anomalously large errors in the process of resolving the measurement ambiguities are considered. A physical basis is derived and calculated relationships characterizing the efficiency of the proposed solutions are obtained. Results of a computer simulation of a three-base direction finder are analyzed, along with field measurements of a three-base direction finder along near-ground paths.

  1. Volcano Modelling and Simulation gateway (VMSg): A new web-based framework for collaborative research in physical modelling and simulation of volcanic phenomena

    NASA Astrophysics Data System (ADS)

    Esposti Ongaro, T.; Barsotti, S.; de'Michieli Vitturi, M.; Favalli, M.; Longo, A.; Nannipieri, L.; Neri, A.; Papale, P.; Saccorotti, G.

    2009-12-01

    Physical and numerical modelling is becoming of increasing importance in volcanology and volcanic hazard assessment. However, new interdisciplinary problems arise when dealing with complex mathematical formulations, numerical algorithms and their implementations on modern computer architectures. Therefore new frameworks are needed for sharing knowledge, software codes, and datasets among scientists. Here we present the Volcano Modelling and Simulation gateway (VMSg, accessible at http://vmsg.pi.ingv.it), a new electronic infrastructure for promoting knowledge growth and transfer in the field of volcanological modelling and numerical simulation. The new web portal, developed in the framework of former and ongoing national and European projects, is based on a dynamic Content Manager System (CMS) and was developed to host and present numerical models of the main volcanic processes and relationships including magma properties, magma chamber dynamics, conduit flow, plume dynamics, pyroclastic flows, lava flows, etc. Model applications, numerical code documentation, simulation datasets as well as model validation and calibration test-cases are also part of the gateway material.

  2. Analytic expressions for the black-sky and white-sky albedos of the cosine lobe model.

    PubMed

    Goodin, Christopher

    2013-05-01

    The cosine lobe model is a bidirectional reflectance distribution function (BRDF) that is commonly used in computer graphics to model specular reflections. The model is both simple and physically plausible, but physical quantities such as albedo have not been related to the parameterization of the model. In this paper, analytic expressions for calculating the black-sky and white-sky albedos from the cosine lobe BRDF model with integer exponents will be derived, to the author's knowledge for the first time. These expressions for albedo can be used to place constraints on physics-based simulations of radiative transfer such as high-fidelity ray-tracing simulations.

  3. Simulation of Plasma Jet Merger and Liner Formation within the PLX- α Project

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Chen, Hsin-Chiang; Shih, Wen; Hsu, Scott

    2015-11-01

    Detailed numerical studies of the propagation and merger of high Mach number argon plasma jets and the formation of plasma liners have been performed using the newly developed method of Lagrangian particles (LP). The LP method significantly improves accuracy and mathematical rigor of common particle-based numerical methods such as smooth particle hydrodynamics while preserving their main advantages compared to grid-based methods. A brief overview of the LP method will be presented. The Lagrangian particle code implements main relevant physics models such as an equation of state for argon undergoing atomic physics transformation, radiation losses in thin optical limit, and heat conduction. Simulations of the merger of two plasma jets are compared with experimental data from past PLX experiments. Simulations quantify the effect of oblique shock waves, ionization, and radiation processes on the jet merger process. Results of preliminary simulations of future PLX- alpha experiments involving the ~ π / 2 -solid-angle plasma-liner configuration with 9 guns will also be presented. Partially supported by ARPA-E's ALPHA program.

  4. ME(SSY)**2: Monte Carlo Code for Star Cluster Simulations

    NASA Astrophysics Data System (ADS)

    Freitag, Marc Dewi

    2013-02-01

    ME(SSY)**2 stands for “Monte-carlo Experiments with Spherically SYmmetric Stellar SYstems." This code simulates the long term evolution of spherical clusters of stars; it was devised specifically to treat dense galactic nuclei. It is based on the pioneering Monte Carlo scheme proposed by Hénon in the 70's and includes all relevant physical ingredients (2-body relaxation, stellar mass spectrum, collisions, tidal disruption, ldots). It is basically a Monte Carlo resolution of the Fokker-Planck equation. It can cope with any stellar mass spectrum or velocity distribution. Being a particle-based method, it also allows one to take stellar collisions into account in a very realistic way. This unique code, featuring most important physical processes, allows million particle simulations, spanning a Hubble time, in a few CPU days on standard personal computers and provides a wealth of data only rivalized by N-body simulations. The current version of the software requires the use of routines from the "Numerical Recipes in Fortran 77" (http://www.nrbook.com/a/bookfpdf.php).

  5. Conditional Probabilities of Large Earthquake Sequences in California from the Physics-based Rupture Simulator RSQSim

    NASA Astrophysics Data System (ADS)

    Gilchrist, J. J.; Jordan, T. H.; Shaw, B. E.; Milner, K. R.; Richards-Dinger, K. B.; Dieterich, J. H.

    2017-12-01

    Within the SCEC Collaboratory for Interseismic Simulation and Modeling (CISM), we are developing physics-based forecasting models for earthquake ruptures in California. We employ the 3D boundary element code RSQSim (Rate-State Earthquake Simulator of Dieterich & Richards-Dinger, 2010) to generate synthetic catalogs with tens of millions of events that span up to a million years each. This code models rupture nucleation by rate- and state-dependent friction and Coulomb stress transfer in complex, fully interacting fault systems. The Uniform California Earthquake Rupture Forecast Version 3 (UCERF3) fault and deformation models are used to specify the fault geometry and long-term slip rates. We have employed the Blue Waters supercomputer to generate long catalogs of simulated California seismicity from which we calculate the forecasting statistics for large events. We have performed probabilistic seismic hazard analysis with RSQSim catalogs that were calibrated with system-wide parameters and found a remarkably good agreement with UCERF3 (Milner et al., this meeting). We build on this analysis, comparing the conditional probabilities of sequences of large events from RSQSim and UCERF3. In making these comparisons, we consider the epistemic uncertainties associated with the RSQSim parameters (e.g., rate- and state-frictional parameters), as well as the effects of model-tuning (e.g., adjusting the RSQSim parameters to match UCERF3 recurrence rates). The comparisons illustrate how physics-based rupture simulators might assist forecasters in understanding the short-term hazards of large aftershocks and multi-event sequences associated with complex, multi-fault ruptures.

  6. Two types of physical inconsistency to avoid with quantile mapping: a case study with relative humidity over North America.

    NASA Astrophysics Data System (ADS)

    Grenier, P.

    2017-12-01

    Statistical post-processing techniques aim at generating plausible climate scenarios from climate simulations and observation-based reference products. These techniques are generally not physically-based, and consequently they remedy the problem of simulation biases at the risk of generating physical inconsistency (PI). Although this concern is often emphasized, it is rarely addressed quantitatively. Here, PI generated by quantile mapping (QM), a technique widely used in climatological and hydrological applications, is investigated using relative humidity (RH) and its parent variables, namely specific humidity (SH), temperature and pressure. PI is classified into two types: 1) inadequate value for an individual variable (e.g. RH > 100 %), and 2) breaking of an inter-variable relationship. Scenarios built for this study correspond to twelve sites representing a variety of climate types over North America. Data used are an ensemble of ten 3-hourly global (CMIP5) and regional (CORDEX-NAM) simulations, as well as the CFSR reanalysis. PI of type 1 is discussed in terms of frequency of occurrence and amplitude of unphysical cases for RH and SH variables. PI of type 2 is investigated with heuristic proxies designed to directly compare the physical inconsistency problem with the initial bias problem. Finally, recommendations are provided for an appropriate use of QM given the potential to generate physical inconsistency of types 1 and 2.

  7. The management submodel of the Wind Erosion Prediction System

    USDA-ARS?s Scientific Manuscript database

    The Wind Erosion Prediction System (WEPS) is a process-based, daily time-step, computer model that predicts soil erosion via simulation of the physical processes controlling wind erosion. WEPS is comprised of several individual modules (submodels) that reflect different sets of physical processes, ...

  8. Simulated western spruce budworm defoliation reduces torching and crowning potential: A sensitivity analysis using a physics-based fire model

    Treesearch

    Gregory M. Cohn; Russell A. Parsons; Emily K. Heyerdahl; Daniel G. Gavin; Aquila Flower

    2014-01-01

    The widespread, native defoliator western spruce budworm (Choristoneura occidentalis Freeman) reduces canopy fuels, which might affect the potential for surface fires to torch (ignite the crowns of individual trees) or crown (spread between tree crowns). However, the effects of defoliation on fire behaviour are poorly understood. We used a physics-based fire model to...

  9. Physical mechanism and numerical simulation of the inception of the lightning upward leader

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Qingmin; Lu Xinchang; Shi Wei

    2012-12-15

    The upward leader is a key physical process of the leader progression model of lightning shielding. The inception mechanism and criterion of the upward leader need further understanding and clarification. Based on leader discharge theory, this paper proposes the critical electric field intensity of the stable upward leader (CEFISUL) and characterizes it by the valve electric field intensity on the conductor surface, E{sub L}, which is the basis of a new inception criterion for the upward leader. Through numerical simulation under various physical conditions, we verified that E{sub L} is mainly related to the conductor radius, and data fitting yieldsmore » the mathematical expression of E{sub L}. We further establish a computational model for lightning shielding performance of the transmission lines based on the proposed CEFISUL criterion, which reproduces the shielding failure rate of typical UHV transmission lines. The model-based calculation results agree well with the statistical data from on-site operations, which show the effectiveness and validity of the CEFISUL criterion.« less

  10. Two Web-Based Laboratories of the FisL@bs Network: Hooke's and Snell's Laws

    ERIC Educational Resources Information Center

    de la Torre, L.; Sanchez, J.; Dormido, S.; Sanchez, J. P.; Yuste, M.; Carreras, C.

    2011-01-01

    FisL@bs is a network of remote and virtual laboratories for physics university education via the Internet that offers students the possibility of performing hands-on experiments in different fields of physics in two ways: simulation and real remote operation. This paper gives a detailed account of a novel way in physics in which distance learning…

  11. Scalable Methods for Uncertainty Quantification, Data Assimilation and Target Accuracy Assessment for Multi-Physics Advanced Simulation of Light Water Reactors

    NASA Astrophysics Data System (ADS)

    Khuwaileh, Bassam

    High fidelity simulation of nuclear reactors entails large scale applications characterized with high dimensionality and tremendous complexity where various physics models are integrated in the form of coupled models (e.g. neutronic with thermal-hydraulic feedback). Each of the coupled modules represents a high fidelity formulation of the first principles governing the physics of interest. Therefore, new developments in high fidelity multi-physics simulation and the corresponding sensitivity/uncertainty quantification analysis are paramount to the development and competitiveness of reactors achieved through enhanced understanding of the design and safety margins. Accordingly, this dissertation introduces efficient and scalable algorithms for performing efficient Uncertainty Quantification (UQ), Data Assimilation (DA) and Target Accuracy Assessment (TAA) for large scale, multi-physics reactor design and safety problems. This dissertation builds upon previous efforts for adaptive core simulation and reduced order modeling algorithms and extends these efforts towards coupled multi-physics models with feedback. The core idea is to recast the reactor physics analysis in terms of reduced order models. This can be achieved via identifying the important/influential degrees of freedom (DoF) via the subspace analysis, such that the required analysis can be recast by considering the important DoF only. In this dissertation, efficient algorithms for lower dimensional subspace construction have been developed for single physics and multi-physics applications with feedback. Then the reduced subspace is used to solve realistic, large scale forward (UQ) and inverse problems (DA and TAA). Once the elite set of DoF is determined, the uncertainty/sensitivity/target accuracy assessment and data assimilation analysis can be performed accurately and efficiently for large scale, high dimensional multi-physics nuclear engineering applications. Hence, in this work a Karhunen-Loeve (KL) based algorithm previously developed to quantify the uncertainty for single physics models is extended for large scale multi-physics coupled problems with feedback effect. Moreover, a non-linear surrogate based UQ approach is developed, used and compared to performance of the KL approach and brute force Monte Carlo (MC) approach. On the other hand, an efficient Data Assimilation (DA) algorithm is developed to assess information about model's parameters: nuclear data cross-sections and thermal-hydraulics parameters. Two improvements are introduced in order to perform DA on the high dimensional problems. First, a goal-oriented surrogate model can be used to replace the original models in the depletion sequence (MPACT -- COBRA-TF - ORIGEN). Second, approximating the complex and high dimensional solution space with a lower dimensional subspace makes the sampling process necessary for DA possible for high dimensional problems. Moreover, safety analysis and design optimization depend on the accurate prediction of various reactor attributes. Predictions can be enhanced by reducing the uncertainty associated with the attributes of interest. Accordingly, an inverse problem can be defined and solved to assess the contributions from sources of uncertainty; and experimental effort can be subsequently directed to further improve the uncertainty associated with these sources. In this dissertation a subspace-based gradient-free and nonlinear algorithm for inverse uncertainty quantification namely the Target Accuracy Assessment (TAA) has been developed and tested. The ideas proposed in this dissertation were first validated using lattice physics applications simulated using SCALE6.1 package (Pressurized Water Reactor (PWR) and Boiling Water Reactor (BWR) lattice models). Ultimately, the algorithms proposed her were applied to perform UQ and DA for assembly level (CASL progression problem number 6) and core wide problems representing Watts Bar Nuclear 1 (WBN1) for cycle 1 of depletion (CASL Progression Problem Number 9) modeled via simulated using VERA-CS which consists of several multi-physics coupled models. The analysis and algorithms developed in this dissertation were encoded and implemented in a newly developed tool kit algorithms for Reduced Order Modeling based Uncertainty/Sensitivity Estimator (ROMUSE).

  12. A new infant hybrid respiratory simulator: preliminary evaluation based on clinical data.

    PubMed

    Stankiewicz, Barbara; Pałko, Krzysztof J; Darowski, Marek; Zieliński, Krzysztof; Kozarski, Maciej

    2017-11-01

    A new hybrid (numerical-physical) simulator of the respiratory system, designed to simulate spontaneous and artificial/assisted ventilation of preterm and full-term infants underwent preliminary evaluation. A numerical, seven-compartmental model of the respiratory system mechanics allows the operator to simulate global and peripheral obstruction and restriction of the lungs. The physical part of the simulator is a piston-based construction of impedance transformer. LabVIEW real-time software coordinates the work of both parts of the simulator and its interaction with a ventilator. Using clinical data, five groups of "artificial infants" were examined: healthy full-term infants, very low-birth-weight preterm infants successfully (VLBW) and unsuccessfully extubated (VLBWun) and extremely low-birth-weight preterm infants without (ELBW) and with bronchopulmonary dysplasia (ELBW_BPD). Pressure-controlled ventilation was simulated to measure peak inspiratory pressure, mean airway pressure, total (patient + endotracheal tube) airway resistance (R), total dynamic compliance of the respiratory system (C), and total work of breathing by the ventilator (WOB). The differences between simulation and clinical parameters were not significant. High correlation coefficients between both types of data were obtained for R, C, and WOB (γ R  = 0.99, P < 0.0005; γ C  = 0.85, P < 0.005; γ WOB  = 0.96, P < 0.05, respectively). Thus, the simulator accurately reproduces infant respiratory system mechanics.

  13. Introducing Multisensor Satellite Radiance-Based Evaluation for Regional Earth System Modeling

    NASA Technical Reports Server (NTRS)

    Matsui, T.; Santanello, J.; Shi, J. J.; Tao, W.-K.; Wu, D.; Peters-Lidard, C.; Kemp, E.; Chin, M.; Starr, D.; Sekiguchi, M.; hide

    2014-01-01

    Earth System modeling has become more complex, and its evaluation using satellite data has also become more difficult due to model and data diversity. Therefore, the fundamental methodology of using satellite direct measurements with instrumental simulators should be addressed especially for modeling community members lacking a solid background of radiative transfer and scattering theory. This manuscript introduces principles of multisatellite, multisensor radiance-based evaluation methods for a fully coupled regional Earth System model: NASA-Unified Weather Research and Forecasting (NU-WRF) model. We use a NU-WRF case study simulation over West Africa as an example of evaluating aerosol-cloud-precipitation-land processes with various satellite observations. NU-WRF-simulated geophysical parameters are converted to the satellite-observable raw radiance and backscatter under nearly consistent physics assumptions via the multisensor satellite simulator, the Goddard Satellite Data Simulator Unit. We present varied examples of simple yet robust methods that characterize forecast errors and model physics biases through the spatial and statistical interpretation of various satellite raw signals: infrared brightness temperature (Tb) for surface skin temperature and cloud top temperature, microwave Tb for precipitation ice and surface flooding, and radar and lidar backscatter for aerosol-cloud profiling simultaneously. Because raw satellite signals integrate many sources of geophysical information, we demonstrate user-defined thresholds and a simple statistical process to facilitate evaluations, including the infrared-microwave-based cloud types and lidar/radar-based profile classifications.

  14. A preliminary Monte Carlo study for the treatment head of a carbon-ion radiotherapy facility using TOPAS

    NASA Astrophysics Data System (ADS)

    Liu, Hongdong; Zhang, Lian; Chen, Zhi; Liu, Xinguo; Dai, Zhongying; Li, Qiang; Xu, Xie George

    2017-09-01

    In medical physics it is desirable to have a Monte Carlo code that is less complex, reliable yet flexible for dose verification, optimization, and component design. TOPAS is a newly developed Monte Carlo simulation tool which combines extensive radiation physics libraries available in Geant4 code, easyto-use geometry and support for visualization. Although TOPAS has been widely tested and verified in simulations of proton therapy, there has been no reported application for carbon ion therapy. To evaluate the feasibility and accuracy of TOPAS simulations for carbon ion therapy, a licensed TOPAS code (version 3_0_p1) was used to carry out a dosimetric study of therapeutic carbon ions. Results of depth dose profile based on different physics models have been obtained and compared with the measurements. It is found that the G4QMD model is at least as accurate as the TOPAS default BIC physics model for carbon ions, but when the energy is increased to relatively high levels such as 400 MeV/u, the G4QMD model shows preferable performance. Also, simulations of special components used in the treatment head at the Institute of Modern Physics facility was conducted to investigate the Spread-Out dose distribution in water. The physical dose in water of SOBP was found to be consistent with the aim of the 6 cm ridge filter.

  15. Digital system for structural dynamics simulation

    NASA Technical Reports Server (NTRS)

    Krauter, A. I.; Lagace, L. J.; Wojnar, M. K.; Glor, C.

    1982-01-01

    State-of-the-art digital hardware and software for the simulation of complex structural dynamic interactions, such as those which occur in rotating structures (engine systems). System were incorporated in a designed to use an array of processors in which the computation for each physical subelement or functional subsystem would be assigned to a single specific processor in the simulator. These node processors are microprogrammed bit-slice microcomputers which function autonomously and can communicate with each other and a central control minicomputer over parallel digital lines. Inter-processor nearest neighbor communications busses pass the constants which represent physical constraints and boundary conditions. The node processors are connected to the six nearest neighbor node processors to simulate the actual physical interface of real substructures. Computer generated finite element mesh and force models can be developed with the aid of the central control minicomputer. The control computer also oversees the animation of a graphics display system, disk-based mass storage along with the individual processing elements.

  16. The Trick Simulation Toolkit: A NASA/Open source Framework for Running Time Based Physics Models

    NASA Technical Reports Server (NTRS)

    Penn, John M.; Lin, Alexander S.

    2016-01-01

    This paper describes the design and use at of the Trick Simulation Toolkit, a simulation development environment for creating high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. It describes Trick's design goals and how the development environment attempts to achieve those goals. It describes how Trick is used in some of the many training and engineering simulations at NASA. Finally it describes the Trick NASA/Open source project on Github.

  17. The new car following model considering vehicle dynamics influence and numerical simulation

    NASA Astrophysics Data System (ADS)

    Sun, Dihua; Liu, Hui; Zhang, Geng; Zhao, Min

    2015-12-01

    In this paper, the car following model is investigated by considering the vehicle dynamics in a cyber physical view. In fact, that driving is a typical cyber physical process which couples the cyber aspect of the vehicles' information and driving decision tightly with the dynamics and physics of the vehicles and traffic environment. However, the influence from the physical (vehicle) view was been ignored in the previous car following models. In order to describe the car following behavior more reasonably in real traffic, a new car following model by considering vehicle dynamics (for short, D-CFM) is proposed. In this paper, we take the full velocity difference (FVD) car following model as a case. The stability condition is given on the base of the control theory. The analytical method and numerical simulation results show that the new models can describe the evolution of traffic congestion. The simulations also show vehicles with a more actual acceleration of starting process than early models.

  18. Security Analysis of Smart Grid Cyber Physical Infrastructures Using Modeling and Game Theoretic Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Sheldon, Frederick T.

    Cyber physical computing infrastructures typically consist of a number of sites are interconnected. Its operation critically depends both on cyber components and physical components. Both types of components are subject to attacks of different kinds and frequencies, which must be accounted for the initial provisioning and subsequent operation of the infrastructure via information security analysis. Information security analysis can be performed using game theory implemented in dynamic Agent Based Game Theoretic (ABGT) simulations. Such simulations can be verified with the results from game theory analysis and further used to explore larger scale, real world scenarios involving multiple attackers, defenders, andmore » information assets. We concentrated our analysis on the electric sector failure scenarios and impact analyses by the NESCOR Working Group Study, From the Section 5 electric sector representative failure scenarios; we extracted the four generic failure scenarios and grouped them into three specific threat categories (confidentiality, integrity, and availability) to the system. These specific failure scenarios serve as a demonstration of our simulation. The analysis using our ABGT simulation demonstrates how to model the electric sector functional domain using a set of rationalized game theoretic rules decomposed from the failure scenarios in terms of how those scenarios might impact the cyber physical infrastructure network with respect to CIA.« less

  19. A compact physical model for the simulation of pNML-based architectures

    NASA Astrophysics Data System (ADS)

    Turvani, G.; Riente, F.; Plozner, E.; Schmitt-Landsiedel, D.; Breitkreutz-v. Gamm, S.

    2017-05-01

    Among emerging technologies, perpendicular Nanomagnetic Logic (pNML) seems to be very promising because of its capability of combining logic and memory onto the same device, scalability, 3D-integration and low power consumption. Recently, Full Adder (FA) structures clocked by a global magnetic field have been experimentally demonstrated and detailed characterizations of the switching process governing the domain wall (DW) nucleation probability Pnuc and time tnuc have been performed. However, the design of pNML architectures represent a crucial point in the study of this technology; this can have a remarkable impact on the reliability of pNML structures. Here, we present a compact model developed in VHDL which enables to simulate complex pNML architectures while keeping into account critical physical parameters. Therefore, such parameters have been extracted from the experiments, fitted by the corresponding physical equations and encapsulated into the proposed model. Within this, magnetic structures are decomposed into a few basic elements (nucleation centers, nanowires, inverters etc.) represented by the according physical description. To validate the model, we redesigned a FA and compared our simulation results to the experiment. With this compact model of pNML devices we have envisioned a new methodology which makes it possible to simulate and test the physical behavior of complex architectures with very low computational costs.

  20. Variability in soil-water retention properties and implications for physics-based simulation of landslide early warning criteria

    USGS Publications Warehouse

    Thomas, Matthew A.; Mirus, Benjamin B.; Collins, Brian D.; Lu, Ning; Godt, Jonathan W.

    2018-01-01

    Rainfall-induced shallow landsliding is a persistent hazard to human life and property. Despite the observed connection between infiltration through the unsaturated zone and shallow landslide initiation, there is considerable uncertainty in how estimates of unsaturated soil-water retention properties affect slope stability assessment. This source of uncertainty is critical to evaluating the utility of physics-based hydrologic modeling as a tool for landslide early warning. We employ a numerical model of variably saturated groundwater flow parameterized with an ensemble of texture-, laboratory-, and field-based estimates of soil-water retention properties for an extensively monitored landslide-prone site in the San Francisco Bay Area, CA, USA. Simulations of soil-water content, pore-water pressure, and the resultant factor of safety show considerable variability across and within these different parameter estimation techniques. In particular, we demonstrate that with the same permeability structure imposed across all simulations, the variability in soil-water retention properties strongly influences predictions of positive pore-water pressure coincident with widespread shallow landsliding. We also find that the ensemble of soil-water retention properties imposes an order-of-magnitude and nearly two-fold variability in seasonal and event-scale landslide susceptibility, respectively. Despite the reduced factor of safety uncertainty during wet conditions, parameters that control the dry end of the soil-water retention function markedly impact the ability of a hydrologic model to capture soil-water content dynamics observed in the field. These results suggest that variability in soil-water retention properties should be considered for objective physics-based simulation of landslide early warning criteria.

  1. Impact of Simulator-Based Instruction on Diagramming in Geometrical Optics by Introductory Physics Students.

    ERIC Educational Resources Information Center

    Reiner, Miriam; And Others

    1995-01-01

    Observations of high school physics students in an instructional experiment with an interactive learning environment in geometrical optics indicated that students in the Optics Dynagrams Project went through major conceptual developments as reflected in the diagrams they constructed. (Author/MKR)

  2. Interference, focusing and excitation of ultracold atoms

    NASA Astrophysics Data System (ADS)

    Kandes, M. C.; Fahy, B. M.; Williams, S. R.; Tally, C. H., IV; Bromley, M. W. J.

    2011-05-01

    One of the pressing technological challenges in atomic physics is to go orders-of-magnitude beyond the limits of photon-based optics by harnessing the wave-nature of dilute clouds of ultracold atoms. We have developed parallelised algorithms to perform numerical calculations of the Gross-Pitaevskii equation in up to three dimensions and with up to three components to simulate Bose-Einstein condensates. A wide-ranging array of the physics associated with atom optics-based systems will be presented including BEC-based Sagnac interferometry in circular waveguides, the focusing of BECs using Laguerre-Gauss beams, and the interactions between BECs and Ince-Gaussian laser beams and their potential applications. One of the pressing technological challenges in atomic physics is to go orders-of-magnitude beyond the limits of photon-based optics by harnessing the wave-nature of dilute clouds of ultracold atoms. We have developed parallelised algorithms to perform numerical calculations of the Gross-Pitaevskii equation in up to three dimensions and with up to three components to simulate Bose-Einstein condensates. A wide-ranging array of the physics associated with atom optics-based systems will be presented including BEC-based Sagnac interferometry in circular waveguides, the focusing of BECs using Laguerre-Gauss beams, and the interactions between BECs and Ince-Gaussian laser beams and their potential applications. Performed on computational resources via NSF grants PHY-0970127, CHE-0947087 and DMS-0923278.

  3. A New 3D Multi-fluid Model: A Study of Kinetic Effects and Variations of Physical Conditions in the Cometary Coma

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M.; Toth, G.; Tenishev, V.; Fougere, N.; Jia, X.; Rubin, M.; Huang, Z.; Hansen, K.; Gombosi, T.; Bieler, A.

    2016-12-01

    Physics-based numerical coma models are desirable whether to interpret the spacecraft observations of the inner coma or to compare with the ground-based observations of the outer coma. In this work, we develop a multi-neutral-fluid model based on the BATS-R-US code of the University of Michigan, which is capable of computing both the inner and outer coma and simulating time-variable phenomena. It treats H2O, OH, H2, O, and H as separate fluids and each fluid has its own velocity and temperature, with collisions coupling all fluids together. The self-consistent collisional interactions decrease the velocity differences, re-distribute the excess energy deposited by chemical reactions among all species, and account for the varying heating efficiency under various physical conditions. Recognizing that the fluid approach has limitations in capturing all of the correct physics for certain applications, especially for very low density environment, we applied our multi-fluid coma model to comet 67P/Churyumov-Gerasimenko at various heliocentric distances and demonstrated that it yields comparable results to the Direct Simulation Monte Carlo (DSMC) model, which is based on a kinetic approach that is valid under these conditions. Therefore, our model may be a powerful alternative to the particle-based model, especially for some computationally intensive simulations. In addition, by running the model with several combinations of production rates and heliocentric distances, we characterize the cometary H2O expansion speeds and demonstrate the nonlinear dependencies of production rate and heliocentric distance. Our results are also compared to previous modeling work and remote observations, which serve as further validation of our model.

  4. Decision Manifold Approximation for Physics-Based Simulations

    NASA Technical Reports Server (NTRS)

    Wong, Jay Ming; Samareh, Jamshid A.

    2016-01-01

    With the recent surge of success in big-data driven deep learning problems, many of these frameworks focus on the notion of architecture design and utilizing massive databases. However, in some scenarios massive sets of data may be difficult, and in some cases infeasible, to acquire. In this paper we discuss a trajectory-based framework that quickly learns the underlying decision manifold of binary simulation classifications while judiciously selecting exploratory target states to minimize the number of required simulations. Furthermore, we draw particular attention to the simulation prediction application idealized to the case where failures in simulations can be predicted and avoided, providing machine intelligence to novice analysts. We demonstrate this framework in various forms of simulations and discuss its efficacy.

  5. The Umbra Simulation and Integration Framework Applied to Emergency Response Training

    NASA Technical Reports Server (NTRS)

    Hamilton, Paul Lawrence; Britain, Robert

    2010-01-01

    The Mine Emergency Response Interactive Training Simulation (MERITS) is intended to prepare personnel to manage an emergency in an underground coal mine. The creation of an effective training environment required realistic emergent behavior in response to simulation events and trainee interventions, exploratory modification of miner behavior rules, realistic physics, and incorporation of legacy code. It also required the ability to add rich media to the simulation without conflicting with normal desktop security settings. Our Umbra Simulation and Integration Framework facilitated agent-based modeling of miners and rescuers and made it possible to work with subject matter experts to quickly adjust behavior through script editing, rather than through lengthy programming and recompilation. Integration of Umbra code with the WebKit browser engine allowed the use of JavaScript-enabled local web pages for media support. This project greatly extended the capabilities of Umbra in support of training simulations and has implications for simulations that combine human behavior, physics, and rich media.

  6. Virtual suturing simulation based on commodity physics engine for medical learning.

    PubMed

    Choi, Kup-Sze; Chan, Sze-Ho; Pang, Wai-Man

    2012-06-01

    Development of virtual-reality medical applications is usually a complicated and labour intensive task. This paper explores the feasibility of using commodity physics engine to develop a suturing simulator prototype for manual skills training in the fields of nursing and medicine, so as to enjoy the benefits of rapid development and hardware-accelerated computation. In the prototype, spring-connected boxes of finite dimension are used to simulate soft tissues, whereas needle and thread are modelled with chained segments. Spherical joints are used to simulate suture's flexibility and to facilitate thread cutting. An algorithm is developed to simulate needle insertion and thread advancement through the tissue. Two-handed manipulations and force feedback are enabled with two haptic devices. Experiments on the closure of a wound show that the prototype is able to simulate suturing procedures at interactive rates. The simulator is also used to study a curvature-adaptive suture modelling technique. Issues and limitations of the proposed approach and future development are discussed.

  7. Internet Based Simulations of Debris Dispersion of Shuttle Launch

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    The debris dispersion model (which dispersion model?) is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models are useful in understanding the complexity of launch and range operations. Modeling and simulation in this area mainly focuses on orbital dynamics and range safety concepts, including destruct limits, telemetry and tracking, and population risk. Particle explosion modeling is the process of simulating an explosion by breaking the rocket into many pieces. The particles are scattered throughout their motion using the laws of physics eventually coming to rest. The size of the foot print explains the type of explosion and distribution of the particles. The shuttle launch and range operations in this paper are discussed based on the operations of the Kennedy Space Center, Florida, USA. Java 3D graphics provides geometric and visual content with suitable modeling behaviors of Shuttle launches.

  8. PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems.

    PubMed

    Ghaffarizadeh, Ahmadreza; Heiland, Randy; Friedman, Samuel H; Mumenthaler, Shannon M; Macklin, Paul

    2018-02-01

    Many multicellular systems problems can only be understood by studying how cells move, grow, divide, interact, and die. Tissue-scale dynamics emerge from systems of many interacting cells as they respond to and influence their microenvironment. The ideal "virtual laboratory" for such multicellular systems simulates both the biochemical microenvironment (the "stage") and many mechanically and biochemically interacting cells (the "players" upon the stage). PhysiCell-physics-based multicellular simulator-is an open source agent-based simulator that provides both the stage and the players for studying many interacting cells in dynamic tissue microenvironments. It builds upon a multi-substrate biotransport solver to link cell phenotype to multiple diffusing substrates and signaling factors. It includes biologically-driven sub-models for cell cycling, apoptosis, necrosis, solid and fluid volume changes, mechanics, and motility "out of the box." The C++ code has minimal dependencies, making it simple to maintain and deploy across platforms. PhysiCell has been parallelized with OpenMP, and its performance scales linearly with the number of cells. Simulations up to 105-106 cells are feasible on quad-core desktop workstations; larger simulations are attainable on single HPC compute nodes. We demonstrate PhysiCell by simulating the impact of necrotic core biomechanics, 3-D geometry, and stochasticity on the dynamics of hanging drop tumor spheroids and ductal carcinoma in situ (DCIS) of the breast. We demonstrate stochastic motility, chemical and contact-based interaction of multiple cell types, and the extensibility of PhysiCell with examples in synthetic multicellular systems (a "cellular cargo delivery" system, with application to anti-cancer treatments), cancer heterogeneity, and cancer immunology. PhysiCell is a powerful multicellular systems simulator that will be continually improved with new capabilities and performance improvements. It also represents a significant independent code base for replicating results from other simulation platforms. The PhysiCell source code, examples, documentation, and support are available under the BSD license at http://PhysiCell.MathCancer.org and http://PhysiCell.sf.net.

  9. A unified dislocation density-dependent physical-based constitutive model for cold metal forming

    NASA Astrophysics Data System (ADS)

    Schacht, K.; Motaman, A. H.; Prahl, U.; Bleck, W.

    2017-10-01

    Dislocation-density-dependent physical-based constitutive models of metal plasticity while are computationally efficient and history-dependent, can accurately account for varying process parameters such as strain, strain rate and temperature; different loading modes such as continuous deformation, creep and relaxation; microscopic metallurgical processes; and varying chemical composition within an alloy family. Since these models are founded on essential phenomena dominating the deformation, they have a larger range of usability and validity. Also, they are suitable for manufacturing chain simulations since they can efficiently compute the cumulative effect of the various manufacturing processes by following the material state through the entire manufacturing chain and also interpass periods and give a realistic prediction of the material behavior and final product properties. In the physical-based constitutive model of cold metal plasticity introduced in this study, physical processes influencing cold and warm plastic deformation in polycrystalline metals are described using physical/metallurgical internal variables such as dislocation density and effective grain size. The evolution of these internal variables are calculated using adequate equations that describe the physical processes dominating the material behavior during cold plastic deformation. For validation, the model is numerically implemented in general implicit isotropic elasto-viscoplasticity algorithm as a user-defined material subroutine (UMAT) in ABAQUS/Standard and used for finite element simulation of upsetting tests and a complete cold forging cycle of case hardenable MnCr steel family.

  10. On validating remote sensing simulations using coincident real data

    NASA Astrophysics Data System (ADS)

    Wang, Mingming; Yao, Wei; Brown, Scott; Goodenough, Adam; van Aardt, Jan

    2016-05-01

    The remote sensing community often requires data simulation, either via spectral/spatial downsampling or through virtual, physics-based models, to assess systems and algorithms. The Digital Imaging and Remote Sensing Image Generation (DIRSIG) model is one such first-principles, physics-based model for simulating imagery for a range of modalities. Complex simulation of vegetation environments subsequently has become possible, as scene rendering technology and software advanced. This in turn has created questions related to the validity of such complex models, with potential multiple scattering, bidirectional distribution function (BRDF), etc. phenomena that could impact results in the case of complex vegetation scenes. We selected three sites, located in the Pacific Southwest domain (Fresno, CA) of the National Ecological Observatory Network (NEON). These sites represent oak savanna, hardwood forests, and conifer-manzanita-mixed forests. We constructed corresponding virtual scenes, using airborne LiDAR and imaging spectroscopy data from NEON, ground-based LiDAR data, and field-collected spectra to characterize the scenes. Imaging spectroscopy data for these virtual sites then were generated using the DIRSIG simulation environment. This simulated imagery was compared to real AVIRIS imagery (15m spatial resolution; 12 pixels/scene) and NEON Airborne Observation Platform (AOP) data (1m spatial resolution; 180 pixels/scene). These tests were performed using a distribution-comparison approach for select spectral statistics, e.g., established the spectra's shape, for each simulated versus real distribution pair. The initial comparison results of the spectral distributions indicated that the shapes of spectra between the virtual and real sites were closely matched.

  11. Improved Estimation of Orbits and Physical Properties of Objects in GEO

    NASA Astrophysics Data System (ADS)

    Bradley, B.; Axelrad, P.

    2013-09-01

    Orbital debris is a major concern for satellite operators, both commercial and military. Debris in the geosynchronous (GEO) belt is of particular concern because this unique region is such a valuable, limited resource, and, from the ground we cannot reliably track and characterize GEO objects smaller than 1 meter in diameter. Space-based space surveillance (SBSS) is required to observe GEO objects without weather restriction and with improved viewing geometry. SBSS satellites have thus far been placed in Sun-synchronous orbits. This paper investigates the benefits to GEO orbit determination (including the estimation of mass, area, and shape) that arises from placing observing satellites in geosynchronous transfer orbit (GTO) and a sub-GEO orbit. Recently, several papers have reported on simulation studies to estimate orbits and physical properties; however, these studies use simulated objects and ground-based measurements, often with dense and long data arcs. While this type of simulation provides valuable insight into what is possible, as far as state estimation goes, it is not a very realistic observing scenario and thus may not yield meaningful accuracies. Our research improves upon simulations published to date by utilizing publicly available ephemerides for the WAAS satellites (Anik F1R and Galaxy 15), accurate at the meter level. By simulating and deliberately degrading right ascension and declination observations, consistent with these ephemerides, a realistic assessment of the achievable orbit determination accuracy using GTO and sub-GEO SBSS platforms is performed. Our results show that orbit accuracy is significantly improved as compared to a Sun-synchronous platform. Physical property estimation is also performed using simulated astrometric and photometric data taken from GTO and sub-GEO sensors. Simulations of SBSS-only as well as combined SBSS and ground-based observation tracks are used to study the improvement in area, mass, and shape estimation gained by the proposed systems. Again our work improves upon previous research by investigating realistic observation scheduling scenarios to gain insight into achievable accuracies.

  12. A high-resolution physically-based global flood hazard map

    NASA Astrophysics Data System (ADS)

    Kaheil, Y.; Begnudelli, L.; McCollum, J.

    2016-12-01

    We present the results from a physically-based global flood hazard model. The model uses a physically-based hydrologic model to simulate river discharges, and 2D hydrodynamic model to simulate inundation. The model is set up such that it allows the application of large-scale flood hazard through efficient use of parallel computing. For hydrology, we use the Hillslope River Routing (HRR) model. HRR accounts for surface hydrology using Green-Ampt parameterization. The model is calibrated against observed discharge data from the Global Runoff Data Centre (GRDC) network, among other publicly-available datasets. The parallel-computing framework takes advantage of the river network structure to minimize cross-processor messages, and thus significantly increases computational efficiency. For inundation, we implemented a computationally-efficient 2D finite-volume model with wetting/drying. The approach consists of simulating flood along the river network by forcing the hydraulic model with the streamflow hydrographs simulated by HRR, and scaled up to certain return levels, e.g. 100 years. The model is distributed such that each available processor takes the next simulation. Given an approximate criterion, the simulations are ordered from most-demanding to least-demanding to ensure that all processors finalize almost simultaneously. Upon completing all simulations, the maximum envelope of flood depth is taken to generate the final map. The model is applied globally, with selected results shown from different continents and regions. The maps shown depict flood depth and extent at different return periods. These maps, which are currently available at 3 arc-sec resolution ( 90m) can be made available at higher resolutions where high resolution DEMs are available. The maps can be utilized by flood risk managers at the national, regional, and even local levels to further understand their flood risk exposure, exercise certain measures of mitigation, and/or transfer the residual risk financially through flood insurance programs.

  13. Simulation of Radiation Damage to Neural Cells with the Geant4-DNA Toolkit

    NASA Astrophysics Data System (ADS)

    Bayarchimeg, Lkhagvaa; Batmunkh, Munkhbaatar; Belov, Oleg; Lkhagva, Oidov

    2018-02-01

    To help in understanding the physical and biological mechanisms underlying effects of cosmic and therapeutic types of radiation on the central nervous system (CNS), we have developed an original neuron application based on the Geant4 Monte Carlo simulation toolkit, in particular on its biophysical extension Geant4-DNA. The applied simulation technique provides a tool for the simulation of physical, physico-chemical and chemical processes (e.g. production of water radiolysis species in the vicinity of neurons) in realistic geometrical model of neural cells exposed to ionizing radiation. The present study evaluates the microscopic energy depositions and water radiolysis species yields within a detailed structure of a selected neuron taking into account its soma, dendrites, axon and spines following irradiation with carbon and iron ions.

  14. Evaluating a Novel Instructional Sequence for Conceptual Change in Physics Using Interactive Simulations

    ERIC Educational Resources Information Center

    Fan, Xinxin; Geelan, David; Gillies, Robyn

    2018-01-01

    This study investigated the effectiveness of a novel inquiry-based instructional sequence using interactive simulations for supporting students' development of conceptual understanding, inquiry process skills and confidence in learning. The study, conducted in Beijing, involved two teachers and 117 students in four classes. The teachers…

  15. Use of Fuzzy rainfall-runoff predictions for claypan watersheds with conservation buffers in Northeast Missouri

    USDA-ARS?s Scientific Manuscript database

    Despite increased interest in watershed scale model simulations, literature lacks application of long-term data in fuzzy logic simulations and comparing outputs with physically based models such as APEX (Agricultural Policy Environmental eXtender). The objective of this study was to develop a fuzzy...

  16. Spatial Evaluation and Verification of Earthquake Simulators

    NASA Astrophysics Data System (ADS)

    Wilson, John Max; Yoder, Mark R.; Rundle, John B.; Turcotte, Donald L.; Schultz, Kasey W.

    2017-06-01

    In this paper, we address the problem of verifying earthquake simulators with observed data. Earthquake simulators are a class of computational simulations which attempt to mirror the topological complexity of fault systems on which earthquakes occur. In addition, the physics of friction and elastic interactions between fault elements are included in these simulations. Simulation parameters are adjusted so that natural earthquake sequences are matched in their scaling properties. Physically based earthquake simulators can generate many thousands of years of simulated seismicity, allowing for a robust capture of the statistical properties of large, damaging earthquakes that have long recurrence time scales. Verification of simulations against current observed earthquake seismicity is necessary, and following past simulator and forecast model verification methods, we approach the challenges in spatial forecast verification to simulators; namely, that simulator outputs are confined to the modeled faults, while observed earthquake epicenters often occur off of known faults. We present two methods for addressing this discrepancy: a simplistic approach whereby observed earthquakes are shifted to the nearest fault element and a smoothing method based on the power laws of the epidemic-type aftershock (ETAS) model, which distributes the seismicity of each simulated earthquake over the entire test region at a decaying rate with epicentral distance. To test these methods, a receiver operating characteristic plot was produced by comparing the rate maps to observed m>6.0 earthquakes in California since 1980. We found that the nearest-neighbor mapping produced poor forecasts, while the ETAS power-law method produced rate maps that agreed reasonably well with observations.

  17. Magician Simulator. A Realistic Simulator for Heterogenous Teams of Autonomous Robots

    DTIC Science & Technology

    2011-01-18

    IMU, and LIDAR systems for identifying and tracking mobile OOI at long range (>20m), providing early warnings and allowing neutralization from a... LIDAR and Computer Vision template-based feature tracking approaches. Mapping was solved through Multi-Agent particle-filter based Simultaneous...Locali- zation and Mapping ( SLAM ). Our system contains two maps, a physical map and an influence map (location of hostile OOI, explored and unexplored

  18. Li-ion synaptic transistor for low power analog computing

    DOE PAGES

    Fuller, Elliot J.; Gabaly, Farid El; Leonard, Francois; ...

    2016-11-22

    Nonvolatile redox transistors (NVRTs) based upon Li-ion battery materials are demonstrated as memory elements for neuromorphic computer architectures with multi-level analog states, “write” linearity, low-voltage switching, and low power dissipation. Simulations of back propagation using the device properties reach ideal classification accuracy. Finally, physics-based simulations predict energy costs per “write” operation of <10 aJ when scaled to 200 nm × 200 nm.

  19. Comparison of Two Conceptually Different Physically-based Hydrological Models - Looking Beyond Streamflows

    NASA Astrophysics Data System (ADS)

    Rousseau, A. N.; Álvarez; Yu, X.; Savary, S.; Duffy, C.

    2015-12-01

    Most physically-based hydrological models simulate to various extents the relevant watershed processes occurring at different spatiotemporal scales. These models use different physical domain representations (e.g., hydrological response units, discretized control volumes) and numerical solution techniques (e.g., finite difference method, finite element method) as well as a variety of approximations for representing the physical processes. Despite the fact that several models have been developed so far, very few inter-comparison studies have been conducted to check beyond streamflows whether different modeling approaches could simulate in a similar fashion the other processes at the watershed scale. In this study, PIHM (Qu and Duffy, 2007), a fully coupled, distributed model, and HYDROTEL (Fortin et al., 2001; Turcotte et al., 2003, 2007), a pseudo-coupled, semi-distributed model, were compared to check whether the models could corroborate observed streamflows while equally representing other processes as well such as evapotranspiration, snow accumulation/melt or infiltration, etc. For this study, the Young Womans Creek watershed, PA, was used to compare: streamflows (channel routing), actual evapotranspiration, snow water equivalent (snow accumulation and melt), infiltration, recharge, shallow water depth above the soil surface (surface flow), lateral flow into the river (surface and subsurface flow) and height of the saturated soil column (subsurface flow). Despite a lack of observed data for contrasting most of the simulated processes, it can be said that the two models can be used as simulation tools for streamflows, actual evapotranspiration, infiltration, lateral flows into the river, and height of the saturated soil column. However, each process presents particular differences as a result of the physical parameters and the modeling approaches used by each model. Potentially, these differences should be object of further analyses to definitively confirm or reject modeling hypotheses.

  20. Simulation-Based Joint Estimation of Body Deformation and Elasticity Parameters for Medical Image Analysis

    PubMed Central

    Foskey, Mark; Niethammer, Marc; Krajcevski, Pavel; Lin, Ming C.

    2014-01-01

    Estimation of tissue stiffness is an important means of noninvasive cancer detection. Existing elasticity reconstruction methods usually depend on a dense displacement field (inferred from ultrasound or MR images) and known external forces. Many imaging modalities, however, cannot provide details within an organ and therefore cannot provide such a displacement field. Furthermore, force exertion and measurement can be difficult for some internal organs, making boundary forces another missing parameter. We propose a general method for estimating elasticity and boundary forces automatically using an iterative optimization framework, given the desired (target) output surface. During the optimization, the input model is deformed by the simulator, and an objective function based on the distance between the deformed surface and the target surface is minimized numerically. The optimization framework does not depend on a particular simulation method and is therefore suitable for different physical models. We show a positive correlation between clinical prostate cancer stage (a clinical measure of severity) and the recovered elasticity of the organ. Since the surface correspondence is established, our method also provides a non-rigid image registration, where the quality of the deformation fields is guaranteed, as they are computed using a physics-based simulation. PMID:22893381

  1. Dynamically adaptive data-driven simulation of extreme hydrological flows

    NASA Astrophysics Data System (ADS)

    Kumar Jain, Pushkar; Mandli, Kyle; Hoteit, Ibrahim; Knio, Omar; Dawson, Clint

    2018-02-01

    Hydrological hazards such as storm surges, tsunamis, and rainfall-induced flooding are physically complex events that are costly in loss of human life and economic productivity. Many such disasters could be mitigated through improved emergency evacuation in real-time and through the development of resilient infrastructure based on knowledge of how systems respond to extreme events. Data-driven computational modeling is a critical technology underpinning these efforts. This investigation focuses on the novel combination of methodologies in forward simulation and data assimilation. The forward geophysical model utilizes adaptive mesh refinement (AMR), a process by which a computational mesh can adapt in time and space based on the current state of a simulation. The forward solution is combined with ensemble based data assimilation methods, whereby observations from an event are assimilated into the forward simulation to improve the veracity of the solution, or used to invert for uncertain physical parameters. The novelty in our approach is the tight two-way coupling of AMR and ensemble filtering techniques. The technology is tested using actual data from the Chile tsunami event of February 27, 2010. These advances offer the promise of significantly transforming data-driven, real-time modeling of hydrological hazards, with potentially broader applications in other science domains.

  2. Remediating Physics Misconceptions Using an Analogy-Based Computer Tutor. Draft.

    ERIC Educational Resources Information Center

    Murray, Tom; And Others

    Described is a computer tutor designed to help students gain a qualitative understanding of important physics concepts. The tutor simulates a teaching strategy called "bridging analogies" that previous research has demonstrated to be successful in one-on-one tutoring and written explanation studies. The strategy is designed to remedy…

  3. Computer-Based Physics: An Anthology.

    ERIC Educational Resources Information Center

    Blum, Ronald, Ed.

    Designed to serve as a guide for integrating interactive problem-solving or simulating computers into a college-level physics course, this anthology contains nine articles each of which includes an introduction, a student manual, and a teacher's guide. Among areas covered in the articles are the computerized reduction of data to a Gaussian…

  4. Schematic driven silicon photonics design

    NASA Astrophysics Data System (ADS)

    Chrostowski, Lukas; Lu, Zeqin; Flückiger, Jonas; Pond, James; Klein, Jackson; Wang, Xu; Li, Sarah; Tai, Wei; Hsu, En Yao; Kim, Chan; Ferguson, John; Cone, Chris

    2016-03-01

    Electronic circuit designers commonly start their design process with a schematic, namely an abstract representation of the physical circuit. In integrated photonics on the other hand, it is very common for the design to begin at the physical component level. In order to build large integrated photonic systems, it is crucial to design using a schematic-driven approach. This includes simulations based on schematics, schematic-driven layout, layout versus schematic verification, and post-layout simulations. This paper describes such a design framework implemented using Mentor Graphics and Lumerical Solutions design tools. In addition, we describe challenges in silicon photonics related to manufacturing, and how these can be taken into account in simulations and how these impact circuit performance.

  5. Spatio-temporal Eigenvector Filtering: Application on Bioenergy Crop Impacts

    NASA Astrophysics Data System (ADS)

    Wang, M.; Kamarianakis, Y.; Georgescu, M.

    2017-12-01

    A suite of 10-year ensemble-based simulations was conducted to investigate the hydroclimatic impacts due to large-scale deployment of perennial bioenergy crops across the continental United States. Given the large size of the simulated dataset (about 60Tb), traditional hierarchical spatio-temporal statistical modelling cannot be implemented for the evaluation of physics parameterizations and biofuel impacts. In this work, we propose a filtering algorithm that takes into account the spatio-temporal autocorrelation structure of the data while avoiding spatial confounding. This method is used to quantify the robustness of simulated hydroclimatic impacts associated with bioenergy crops to alternative physics parameterizations and observational datasets. Results are evaluated against those obtained from three alternative Bayesian spatio-temporal specifications.

  6. Flash Floods Simulation Using a Physical based hydrological Model at the Eastern Nile Basin: Case studies; Wadi Assiut, Egypt and Wadi Gumara, Lake Tana, Ethiopia.

    NASA Astrophysics Data System (ADS)

    Saber, M.; Sefelnasr, A.; Yilmaz, K. K.

    2015-12-01

    Flash flood is a natural hydrological phenomenon which affects many regions of the world. The behavior and effect of this phenomenon is different from one region to the other regions depending on several issues such as climatology and hydrological and topographical conditions at the target regions. Wadi assiut, Egypt as arid environment, and Gumara catchment, Lake Tana, Ethiopia, as humid conditions have been selected for application. The main target of this work is to simulate flash floods at both catchments considering the difference between them on the flash flood behaviors based on the variability of both of them. In order to simulate the flash floods, remote sensing data and a physical-based distributed hydrological model, Hydro-BEAM-WaS (Hydrological River Basin Environmental Assessment Model incorporating Wadi System) have been integrated used in this work. Based on the simulation results of flash floods in these regions, it was found that the time to reach the maximum peak is very short and consequently the warning time is very short as well. It was found that the flash floods starts from zero flow in arid environment, but on the contrary in humid arid, it starts from Base flow which is changeable based on the simulated events. Distribution maps of flash floods showing the vulnerable regions of these selected areas have been developed. Consequently, some mitigation strategies relying on this study have been introduced. The proposed methodology can be applied effectively for flash flood forecasting at different climate regions, however the paucity of observational data.

  7. Next-Generation NATO Reference Mobility Model (NRMM) Development (Developpement de la nouvella generation du modele de mobilite de reference de l’OTAN (NRMM))

    DTIC Science & Technology

    2018-01-01

    Profile Database E-17 Attachment 2: NRMM Data Input Requirements E-25 Attachment 3: General Physics -Based Model Data Input Requirements E-28...E-15 Figure E-11 Examples of Unique Surface Types E-20 Figure E-12 Correlating Physical Testing with Simulation E-21 Figure E-13 Simplified Tire...Table 10-8 Scoring Values 10-19 Table 10-9 Accuracy – Physics -Based 10-20 Table 10-10 Accuracy – Validation Through Measurement 10-22 Table 10-11

  8. Validation and upgrading of physically based mathematical models

    NASA Technical Reports Server (NTRS)

    Duval, Ronald

    1992-01-01

    The validation of the results of physically-based mathematical models against experimental results was discussed. Systematic techniques are used for: (1) isolating subsets of the simulator mathematical model and comparing the response of each subset to its experimental response for the same input conditions; (2) evaluating the response error to determine whether it is the result of incorrect parameter values, incorrect structure of the model subset, or unmodeled external effects of cross coupling; and (3) modifying and upgrading the model and its parameter values to determine the most physically appropriate combination of changes.

  9. Quasi-dynamic earthquake fault systems with rheological heterogeneity

    NASA Astrophysics Data System (ADS)

    Brietzke, G. B.; Hainzl, S.; Zoeller, G.; Holschneider, M.

    2009-12-01

    Seismic risk and hazard estimates mostly use pure empirical, stochastic models of earthquake fault systems tuned specifically to the vulnerable areas of interest. Although such models allow for reasonable risk estimates, such models cannot allow for physical statements of the described seismicity. In contrary such empirical stochastic models, physics based earthquake fault systems models allow for a physical reasoning and interpretation of the produced seismicity and system dynamics. Recently different fault system earthquake simulators based on frictional stick-slip behavior have been used to study effects of stress heterogeneity, rheological heterogeneity, or geometrical complexity on earthquake occurrence, spatial and temporal clustering of earthquakes, and system dynamics. Here we present a comparison of characteristics of synthetic earthquake catalogs produced by two different formulations of quasi-dynamic fault system earthquake simulators. Both models are based on discretized frictional faults embedded in an elastic half-space. While one (1) is governed by rate- and state-dependent friction with allowing three evolutionary stages of independent fault patches, the other (2) is governed by instantaneous frictional weakening with scheduled (and therefore causal) stress transfer. We analyze spatial and temporal clustering of events and characteristics of system dynamics by means of physical parameters of the two approaches.

  10. Physics-Based Preconditioning of a Compressible Flow Solver for Large-Scale Simulations of Additive Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Weston, Brian; Nourgaliev, Robert; Delplanque, Jean-Pierre

    2017-11-01

    We present a new block-based Schur complement preconditioner for simulating all-speed compressible flow with phase change. The conservation equations are discretized with a reconstructed Discontinuous Galerkin method and integrated in time with fully implicit time discretization schemes. The resulting set of non-linear equations is converged using a robust Newton-Krylov framework. Due to the stiffness of the underlying physics associated with stiff acoustic waves and viscous material strength effects, we solve for the primitive-variables (pressure, velocity, and temperature). To enable convergence of the highly ill-conditioned linearized systems, we develop a physics-based preconditioner, utilizing approximate block factorization techniques to reduce the fully-coupled 3×3 system to a pair of reduced 2×2 systems. We demonstrate that our preconditioned Newton-Krylov framework converges on very stiff multi-physics problems, corresponding to large CFL and Fourier numbers, with excellent algorithmic and parallel scalability. Results are shown for the classic lid-driven cavity flow problem as well as for 3D laser-induced phase change. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Theory-Based Interventions Combining Mental Simulation and Planning Techniques to Improve Physical Activity: Null Results from Two Randomized Controlled Trials.

    PubMed

    Meslot, Carine; Gauchet, Aurélie; Allenet, Benoît; François, Olivier; Hagger, Martin S

    2016-01-01

    Interventions to assist individuals in initiating and maintaining regular participation in physical activity are not always effective. Psychological and behavioral theories advocate the importance of both motivation and volition in interventions to change health behavior. Interventions adopting self-regulation strategies that foster motivational and volitional components may, therefore, have utility in promoting regular physical activity participation. We tested the efficacy of an intervention adopting motivational (mental simulation) and volitional (implementation intentions) components to promote a regular physical activity in two studies. Study 1 adopted a cluster randomized design in which participants ( n = 92) were allocated to one of three conditions: mental simulation plus implementation intention, implementation intention only, or control. Study 2 adopted a 2 (mental simulation vs. no mental simulation) × 2 (implementation intention vs. no implementation intention) randomized controlled design in which fitness center attendees ( n = 184) were randomly allocated one of four conditions: mental simulation only, implementation intention only, combined, or control. Physical activity behavior was measured by self-report (Study 1) or fitness center attendance (Study 2) at 4- (Studies 1 and 2) and 19- (Study 2 only) week follow-up periods. Findings revealed no statistically significant main or interactive effects of the mental simulation and implementation intention conditions on physical activity outcomes in either study. Findings are in contrast to previous research which has found pervasive effects for both intervention strategies. Findings are discussed in light of study limitations including the relatively small sample sizes, particularly for Study 1, deviations in the operationalization of the intervention components from previous research and the lack of a prompt for a goal intention. Future research should focus on ensuring uniformity in the format of the intervention components, test the effects of each component alone and in combination using standardized measures across multiple samples, and systematically explore effects of candidate moderators.

  12. Theory-Based Interventions Combining Mental Simulation and Planning Techniques to Improve Physical Activity: Null Results from Two Randomized Controlled Trials

    PubMed Central

    Meslot, Carine; Gauchet, Aurélie; Allenet, Benoît; François, Olivier; Hagger, Martin S.

    2016-01-01

    Interventions to assist individuals in initiating and maintaining regular participation in physical activity are not always effective. Psychological and behavioral theories advocate the importance of both motivation and volition in interventions to change health behavior. Interventions adopting self-regulation strategies that foster motivational and volitional components may, therefore, have utility in promoting regular physical activity participation. We tested the efficacy of an intervention adopting motivational (mental simulation) and volitional (implementation intentions) components to promote a regular physical activity in two studies. Study 1 adopted a cluster randomized design in which participants (n = 92) were allocated to one of three conditions: mental simulation plus implementation intention, implementation intention only, or control. Study 2 adopted a 2 (mental simulation vs. no mental simulation) × 2 (implementation intention vs. no implementation intention) randomized controlled design in which fitness center attendees (n = 184) were randomly allocated one of four conditions: mental simulation only, implementation intention only, combined, or control. Physical activity behavior was measured by self-report (Study 1) or fitness center attendance (Study 2) at 4- (Studies 1 and 2) and 19- (Study 2 only) week follow-up periods. Findings revealed no statistically significant main or interactive effects of the mental simulation and implementation intention conditions on physical activity outcomes in either study. Findings are in contrast to previous research which has found pervasive effects for both intervention strategies. Findings are discussed in light of study limitations including the relatively small sample sizes, particularly for Study 1, deviations in the operationalization of the intervention components from previous research and the lack of a prompt for a goal intention. Future research should focus on ensuring uniformity in the format of the intervention components, test the effects of each component alone and in combination using standardized measures across multiple samples, and systematically explore effects of candidate moderators. PMID:27899904

  13. Nonequilibrium radiative hypersonic flow simulation

    NASA Astrophysics Data System (ADS)

    Shang, J. S.; Surzhikov, S. T.

    2012-08-01

    Nearly all the required scientific disciplines for computational hypersonic flow simulation have been developed on the framework of gas kinetic theory. However when high-temperature physical phenomena occur beneath the molecular and atomic scales, the knowledge of quantum physics and quantum chemical-physics becomes essential. Therefore the most challenging topics in computational simulation probably can be identified as the chemical-physical models for a high-temperature gaseous medium. The thermal radiation is also associated with quantum transitions of molecular and electronic states. The radiative energy exchange is characterized by the mechanisms of emission, absorption, and scattering. In developing a simulation capability for nonequilibrium radiation, an efficient numerical procedure is equally important both for solving the radiative transfer equation and for generating the required optical data via the ab-initio approach. In computational simulation, the initial values and boundary conditions are paramount for physical fidelity. Precise information at the material interface of ablating environment requires more than just a balance of the fluxes across the interface but must also consider the boundary deformation. The foundation of this theoretic development shall be built on the eigenvalue structure of the governing equations which can be described by Reynolds' transport theorem. Recent innovations for possible aerospace vehicle performance enhancement via an electromagnetic effect appear to be very attractive. The effectiveness of this mechanism is dependent strongly on the degree of ionization of the flow medium, the consecutive interactions of fluid dynamics and electrodynamics, as well as an externally applied magnetic field. Some verified research results in this area will be highlighted. An assessment of all these most recent advancements in nonequilibrium modeling of chemical kinetics, chemical-physics kinetics, ablation, radiative exchange, computational algorithms, and the aerodynamic-electromagnetic interaction are summarized and delineated. The critical basic research areas for physic-based hypersonic flow simulation should become self-evident through the present discussion. Nevertheless intensive basic research efforts must be sustained in these areas for fundamental knowledge and future technology advancement.

  14. e-Learning development in medical physics and engineering

    PubMed Central

    Tabakov, S

    2008-01-01

    Medical Physics and Engineering was among the first professions to develop and apply e-Learning (e-L). The profession provides excellent background for application of simulations and other e-L materials. The paper describes several layers for e-L development: Programming specific simulations; Building e-L modules; Development of e-L web-based programmes. The paper shows examples from these layers and outlines their specificities. At the end, the newest e-L development (project EMITEL) is briefly introduced and the necessity of a regularly updated list of e-L activities is emphasised. PMID:21614312

  15. Assessing the applicability of WRF optimal parameters under the different precipitation simulations in the Greater Beijing Area

    NASA Astrophysics Data System (ADS)

    Di, Zhenhua; Duan, Qingyun; Wang, Chen; Ye, Aizhong; Miao, Chiyuan; Gong, Wei

    2018-03-01

    Forecasting skills of the complex weather and climate models have been improved by tuning the sensitive parameters that exert the greatest impact on simulated results based on more effective optimization methods. However, whether the optimal parameter values are still work when the model simulation conditions vary, which is a scientific problem deserving of study. In this study, a highly-effective optimization method, adaptive surrogate model-based optimization (ASMO), was firstly used to tune nine sensitive parameters from four physical parameterization schemes of the Weather Research and Forecasting (WRF) model to obtain better summer precipitation forecasting over the Greater Beijing Area in China. Then, to assess the applicability of the optimal parameter values, simulation results from the WRF model with default and optimal parameter values were compared across precipitation events, boundary conditions, spatial scales, and physical processes in the Greater Beijing Area. The summer precipitation events from 6 years were used to calibrate and evaluate the optimal parameter values of WRF model. Three boundary data and two spatial resolutions were adopted to evaluate the superiority of the calibrated optimal parameters to default parameters under the WRF simulations with different boundary conditions and spatial resolutions, respectively. Physical interpretations of the optimal parameters indicating how to improve precipitation simulation results were also examined. All the results showed that the optimal parameters obtained by ASMO are superior to the default parameters for WRF simulations for predicting summer precipitation in the Greater Beijing Area because the optimal parameters are not constrained by specific precipitation events, boundary conditions, and spatial resolutions. The optimal values of the nine parameters were determined from 127 parameter samples using the ASMO method, which showed that the ASMO method is very highly-efficient for optimizing WRF model parameters.

  16. Detection and Attribution of Simulated Climatic Extreme Events and Impacts: High Sensitivity to Bias Correction

    NASA Astrophysics Data System (ADS)

    Sippel, S.; Otto, F. E. L.; Forkel, M.; Allen, M. R.; Guillod, B. P.; Heimann, M.; Reichstein, M.; Seneviratne, S. I.; Kirsten, T.; Mahecha, M. D.

    2015-12-01

    Understanding, quantifying and attributing the impacts of climatic extreme events and variability is crucial for societal adaptation in a changing climate. However, climate model simulations generated for this purpose typically exhibit pronounced biases in their output that hinders any straightforward assessment of impacts. To overcome this issue, various bias correction strategies are routinely used to alleviate climate model deficiencies most of which have been criticized for physical inconsistency and the non-preservation of the multivariate correlation structure. We assess how biases and their correction affect the quantification and attribution of simulated extremes and variability in i) climatological variables and ii) impacts on ecosystem functioning as simulated by a terrestrial biosphere model. Our study demonstrates that assessments of simulated climatic extreme events and impacts in the terrestrial biosphere are highly sensitive to bias correction schemes with major implications for the detection and attribution of these events. We introduce a novel ensemble-based resampling scheme based on a large regional climate model ensemble generated by the distributed weather@home setup[1], which fully preserves the physical consistency and multivariate correlation structure of the model output. We use extreme value statistics to show that this procedure considerably improves the representation of climatic extremes and variability. Subsequently, biosphere-atmosphere carbon fluxes are simulated using a terrestrial ecosystem model (LPJ-GSI) to further demonstrate the sensitivity of ecosystem impacts to the methodology of bias correcting climate model output. We find that uncertainties arising from bias correction schemes are comparable in magnitude to model structural and parameter uncertainties. The present study consists of a first attempt to alleviate climate model biases in a physically consistent way and demonstrates that this yields improved simulations of climate extremes and associated impacts. [1] http://www.climateprediction.net/weatherathome/

  17. Physical habitat simulation system reference manual: version II

    USGS Publications Warehouse

    Milhous, Robert T.; Updike, Marlys A.; Schneider, Diane M.

    1989-01-01

    There are four major components of a stream system that determine the productivity of the fishery (Karr and Dudley 1978). These are: (1) flow regime, (2) physical habitat structure (channel form, substrate distribution, and riparian vegetation), (3) water quality (including temperature), and (4) energy inputs from the watershed (sediments, nutrients, and organic matter). The complex interaction of these components determines the primary production, secondary production, and fish population of the stream reach. The basic components and interactions needed to simulate fish populations as a function of management alternatives are illustrated in Figure I.1. The assessment process utilizes a hierarchical and modular approach combined with computer simulation techniques. The modular components represent the "building blocks" for the simulation. The quality of the physical habitat is a function of flow and, therefore, varies in quality and quantity over the range of the flow regime. The conceptual framework of the Incremental Methodology and guidelines for its application are described in "A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology" (Bovee 1982). Simulation of physical habitat is accomplished using the physical structure of the stream and streamflow. The modification of physical habitat by temperature and water quality is analyzed separately from physical habitat simulation. Temperature in a stream varies with the seasons, local meteorological conditions, stream network configuration, and the flow regime; thus, the temperature influences on habitat must be analysed on a stream system basis. Water quality under natural conditions is strongly influenced by climate and the geological materials, with the result that there is considerable natural variation in water quality. When we add the activities of man, the possible range of water quality possibilities becomes rather large. Consequently, water quality must also be analysed on a stream system basis. Such analysis is outside the scope of this manual, which concentrates on simulation of physical habitat based on depth, velocity, and a channel index. The results form PHABSIM can be used alone or by using a series of habitat time series programs that have been developed to generate monthly or daily habitat time series from the Weighted Usable Area versus streamflow table resulting from the habitat simulation programs and streamflow time series data. Monthly and daily streamflow time series may be obtained from USGS gages near the study site or as the output of river system management models.

  18. Parameterized reduced-order models using hyper-dual numbers.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fike, Jeffrey A.; Brake, Matthew Robert

    2013-10-01

    The goal of most computational simulations is to accurately predict the behavior of a real, physical system. Accurate predictions often require very computationally expensive analyses and so reduced order models (ROMs) are commonly used. ROMs aim to reduce the computational cost of the simulations while still providing accurate results by including all of the salient physics of the real system in the ROM. However, real, physical systems often deviate from the idealized models used in simulations due to variations in manufacturing or other factors. One approach to this issue is to create a parameterized model in order to characterize themore » effect of perturbations from the nominal model on the behavior of the system. This report presents a methodology for developing parameterized ROMs, which is based on Craig-Bampton component mode synthesis and the use of hyper-dual numbers to calculate the derivatives necessary for the parameterization.« less

  19. Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes

    PubMed Central

    Pakhotin, I P; Drozdov, A Y; Shprits, Y Y; Boynton, R J; Subbotin, D A; Balikhin, M A

    2014-01-01

    This study presents a fusion of data-driven and physics-driven methodologies of energetic electron flux forecasting in the outer radiation belt. Data-driven NARMAX (Nonlinear AutoRegressive Moving Averages with eXogenous inputs) model predictions for geosynchronous orbit fluxes have been used as an outer boundary condition to drive the physics-based Versatile Electron Radiation Belt (VERB) code, to simulate energetic electron fluxes in the outer radiation belt environment. The coupled system has been tested for three extended time periods totalling several weeks of observations. The time periods involved periods of quiet, moderate, and strong geomagnetic activity and captured a range of dynamics typical of the radiation belts. The model has successfully simulated energetic electron fluxes for various magnetospheric conditions. Physical mechanisms that may be responsible for the discrepancies between the model results and observations are discussed. PMID:26167432

  20. Transactive Control of Commercial Building HVAC Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corbin, Charles D.; Makhmalbaf, Atefe; Huang, Sen

    This document details the development and testing of market-based transactive controls for building heating, ventilating and air conditioning (HVAC) systems. These controls are intended to serve the purposes of reducing electricity use through conservation, reducing peak building electric demand, and providing demand flexibility to assist with power system operations. This report is the summary of the first year of work conducted under Phase 1 of the Clean Energy and Transactive Campus Project. The methods and techniques described here were first investigated in simulation, and then subsequently deployed to a physical testbed on the Pacific Northwest National Laboratory (PNNL) campus formore » validation. In this report, we describe the models and control algorithms we have developed, testing of the control algorithms in simulation, and deployment to a physical testbed. Results from physical experiments support previous simulation findings, and provide insights for further improvement.« less

  1. Updates to the Generation of Physics Data Inputs for MAMMOTH Simulations of the Transient Reactor Test Facility - FY2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortensi, Javier; Baker, Benjamin Allen; Schunert, Sebastian

    The INL is currently evolving the modeling and simulation (M&S) capability that will enable improved core operation as well as design and analysis of TREAT experiments. This M&S capability primarily uses MAMMOTH, a reactor physics application being developed under Multi-physics Object Oriented Simulation Environment (MOOSE) framework. MAMMOTH allows the coupling of a number of other MOOSE-based applications. This second year of work has been devoted to the generation of a deterministic reference solution for the full core, the preparation of anisotropic diffusion coefficients, the testing of the SPH equivalence method, and the improvement of the control rod modeling. In addition,more » this report includes the progress made in the modeling of the M8 core configuration and experiment vehicle since January of this year.« less

  2. Comparison of Nonlinear Random Response Using Equivalent Linearization and Numerical Simulation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Muravyov, Alexander A.

    2000-01-01

    A recently developed finite-element-based equivalent linearization approach for the analysis of random vibrations of geometrically nonlinear multiple degree-of-freedom structures is validated. The validation is based on comparisons with results from a finite element based numerical simulation analysis using a numerical integration technique in physical coordinates. In particular, results for the case of a clamped-clamped beam are considered for an extensive load range to establish the limits of validity of the equivalent linearization approach.

  3. Physically-based modelling of high magnitude torrent events with uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Wing-Yuen Chow, Candace; Ramirez, Jorge; Zimmermann, Markus; Keiler, Margreth

    2017-04-01

    High magnitude torrent events are associated with the rapid propagation of vast quantities of water and available sediment downslope where human settlements may be established. Assessing the vulnerability of built structures to these events is a part of consequence analysis, where hazard intensity is related to the degree of loss sustained. The specific contribution of the presented work describes a procedure simulate these damaging events by applying physically-based modelling and to include uncertainty information about the simulated results. This is a first step in the development of vulnerability curves based on several intensity parameters (i.e. maximum velocity, sediment deposition depth and impact pressure). The investigation process begins with the collection, organization and interpretation of detailed post-event documentation and photograph-based observation data of affected structures in three sites that exemplify the impact of highly destructive mudflows and flood occurrences on settlements in Switzerland. Hazard intensity proxies are then simulated with the physically-based FLO-2D model (O'Brien et al., 1993). Prior to modelling, global sensitivity analysis is conducted to support a better understanding of model behaviour, parameterization and the quantification of uncertainties (Song et al., 2015). The inclusion of information describing the degree of confidence in the simulated results supports the credibility of vulnerability curves developed with the modelled data. First, key parameters are identified and selected based on literature review. Truncated a priori ranges of parameter values were then defined by expert solicitation. Local sensitivity analysis is performed based on manual calibration to provide an understanding of the parameters relevant to the case studies of interest. Finally, automated parameter estimation is performed to comprehensively search for optimal parameter combinations and associated values, which are evaluated using the observed data collected in the first stage of the investigation. O'Brien, J.S., Julien, P.Y., Fullerton, W. T., 1993. Two-dimensional water flood and mudflow simulation. Journal of Hydraulic Engineering 119(2): 244-261.
 Song, X., Zhang, J., Zhan, C., Xuan, Y., Ye, M., Xu C., 2015. Global sensitivity analysis in hydrological modeling: Review of concepts, methods, theoretical frameworks, Journal of Hydrology 523: 739-757.

  4. Reviews

    NASA Astrophysics Data System (ADS)

    2006-01-01

    WE RECOMMEND GLX Xplorer Datalogger This hand-held device offers great portability and robustness. Theoretical Concepts in Physics A first-rate reference tool for physics teachers. Do Your Ears Pop in Space? This little gem gives a personal insight into space travel. Full Moon A collection of high-quality photographs from the Apollo missions. The Genius of Science A collection of memories from leading 20th-century physicists. The Simple Science of Flight An excellent source of facts and figures about flight. SUREHigherPhysics This simulation-based software complies with Higher physics. Interactive Physics A programme that makes building simulations quick and easy. WORTH A LOOK Astronomical Enigmas This guide to enigmas could be a little shorter. HANDLE WITH CARE Standing-wave machine This is basically a standing-wave generator with a built-in strobe. WEB WATCH Sounds Amazing is a fantastic site, aimed at Key Stage 4 pupils, for learning about sound and waves.

  5. Comparison of a Conceptual Groundwater Model and Physically Based Groundwater Mode

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zammit, C.; Griffiths, J.; Moore, C.; Woods, R. A.

    2017-12-01

    Groundwater is a vital resource for human activities including agricultural practice and urban water demand. Hydrologic modelling is an important way to study groundwater recharge, movement and discharge, and its response to both human activity and climate change. To understand the groundwater hydrologic processes nationally in New Zealand, we have developed a conceptually based groundwater flow model, which is fully integrated into a national surface-water model (TopNet), and able to simulate groundwater recharge, movement, and interaction with surface water. To demonstrate the capability of this groundwater model (TopNet-GW), we applied the model to an irrigated area with water shortage and pollution problems in the upper Ruamahanga catchment in Great Wellington Region, New Zealand, and compared its performance with a physically-based groundwater model (MODFLOW). The comparison includes river flow at flow gauging sites, and interaction between groundwater and river. Results showed that the TopNet-GW produced similar flow and groundwater interaction patterns as the MODFLOW model, but took less computation time. This shows the conceptually-based groundwater model has the potential to simulate national groundwater process, and could be used as a surrogate for the more physically based model.

  6. Efficient physics-based tracking of heart surface motion for beating heart surgery robotic systems.

    PubMed

    Bogatyrenko, Evgeniya; Pompey, Pascal; Hanebeck, Uwe D

    2011-05-01

    Tracking of beating heart motion in a robotic surgery system is required for complex cardiovascular interventions. A heart surface motion tracking method is developed, including a stochastic physics-based heart surface model and an efficient reconstruction algorithm. The algorithm uses the constraints provided by the model that exploits the physical characteristics of the heart. The main advantage of the model is that it is more realistic than most standard heart models. Additionally, no explicit matching between the measurements and the model is required. The application of meshless methods significantly reduces the complexity of physics-based tracking. Based on the stochastic physical model of the heart surface, this approach considers the motion of the intervention area and is robust to occlusions and reflections. The tracking algorithm is evaluated in simulations and experiments on an artificial heart. Providing higher accuracy than the standard model-based methods, it successfully copes with occlusions and provides high performance even when all measurements are not available. Combining the physical and stochastic description of the heart surface motion ensures physically correct and accurate prediction. Automatic initialization of the physics-based cardiac motion tracking enables system evaluation in a clinical environment.

  7. Structure and structure-preserving algorithms for plasma physics

    NASA Astrophysics Data System (ADS)

    Morrison, P. J.

    2016-10-01

    Conventional simulation studies of plasma physics are based on numerically solving the underpinning differential (or integro-differential) equations. Usual algorithms in general do not preserve known geometric structure of the physical systems, such as the local energy-momentum conservation law, Casimir invariants, and the symplectic structure (Poincaré invariants). As a consequence, numerical errors may accumulate coherently with time and long-term simulation results may be unreliable. Recently, a series of geometric algorithms that preserve the geometric structures resulting from the Hamiltonian and action principle (HAP) form of theoretical models in plasma physics have been developed by several authors. The superiority of these geometric algorithms has been demonstrated with many test cases. For example, symplectic integrators for guiding-center dynamics have been constructed to preserve the noncanonical symplectic structures and bound the energy-momentum errors for all simulation time-steps; variational and symplectic algorithms have been discovered and successfully applied to the Vlasov-Maxwell system, MHD, and other magnetofluid equations as well. Hamiltonian truncations of the full Vlasov-Maxwell system have opened the field of discrete gyrokinetics and led to the GEMPIC algorithm. The vision that future numerical capabilities in plasma physics should be based on structure-preserving geometric algorithms will be presented. It will be argued that the geometric consequences of HAP form and resulting geometric algorithms suitable for plasma physics studies cannot be adapted from existing mathematical literature but, rather, need to be discovered and worked out by theoretical plasma physicists. The talk will review existing HAP structures of plasma physics for a variety of models, and how they have been adapted for numerical implementation. Supported by DOE DE-FG02-04ER-54742.

  8. What Can We Learn from a Simple Physics-Based Earthquake Simulator?

    NASA Astrophysics Data System (ADS)

    Artale Harris, Pietro; Marzocchi, Warner; Melini, Daniele

    2018-03-01

    Physics-based earthquake simulators are becoming a popular tool to investigate on the earthquake occurrence process. So far, the development of earthquake simulators is commonly led by the approach "the more physics, the better". However, this approach may hamper the comprehension of the outcomes of the simulator; in fact, within complex models, it may be difficult to understand which physical parameters are the most relevant to the features of the seismic catalog at which we are interested. For this reason, here, we take an opposite approach and analyze the behavior of a purposely simple earthquake simulator applied to a set of California faults. The idea is that a simple simulator may be more informative than a complex one for some specific scientific objectives, because it is more understandable. Our earthquake simulator has three main components: the first one is a realistic tectonic setting, i.e., a fault data set of California; the second is the application of quantitative laws for earthquake generation on each single fault, and the last is the fault interaction modeling through the Coulomb Failure Function. The analysis of this simple simulator shows that: (1) the short-term clustering can be reproduced by a set of faults with an almost periodic behavior, which interact according to a Coulomb failure function model; (2) a long-term behavior showing supercycles of the seismic activity exists only in a markedly deterministic framework, and quickly disappears introducing a small degree of stochasticity on the recurrence of earthquakes on a fault; (3) faults that are strongly coupled in terms of Coulomb failure function model are synchronized in time only in a marked deterministic framework, and as before, such a synchronization disappears introducing a small degree of stochasticity on the recurrence of earthquakes on a fault. Overall, the results show that even in a simple and perfectly known earthquake occurrence world, introducing a small degree of stochasticity may blur most of the deterministic time features, such as long-term trend and synchronization among nearby coupled faults.

  9. A meta-model based approach for rapid formability estimation of continuous fibre reinforced components

    NASA Astrophysics Data System (ADS)

    Zimmerling, Clemens; Dörr, Dominik; Henning, Frank; Kärger, Luise

    2018-05-01

    Due to their high mechanical performance, continuous fibre reinforced plastics (CoFRP) become increasingly important for load bearing structures. In many cases, manufacturing CoFRPs comprises a forming process of textiles. To predict and optimise the forming behaviour of a component, numerical simulations are applied. However, for maximum part quality, both the geometry and the process parameters must match in mutual regard, which in turn requires numerous numerically expensive optimisation iterations. In both textile and metal forming, a lot of research has focused on determining optimum process parameters, whilst regarding the geometry as invariable. In this work, a meta-model based approach on component level is proposed, that provides a rapid estimation of the formability for variable geometries based on pre-sampled, physics-based draping data. Initially, a geometry recognition algorithm scans the geometry and extracts a set of doubly-curved regions with relevant geometry parameters. If the relevant parameter space is not part of an underlying data base, additional samples via Finite-Element draping simulations are drawn according to a suitable design-table for computer experiments. Time saving parallel runs of the physical simulations accelerate the data acquisition. Ultimately, a Gaussian Regression meta-model is built from the data base. The method is demonstrated on a box-shaped generic structure. The predicted results are in good agreement with physics-based draping simulations. Since evaluations of the established meta-model are numerically inexpensive, any further design exploration (e.g. robustness analysis or design optimisation) can be performed in short time. It is expected that the proposed method also offers great potential for future applications along virtual process chains: For each process step along the chain, a meta-model can be set-up to predict the impact of design variations on manufacturability and part performance. Thus, the method is considered to facilitate a lean and economic part and process design under consideration of manufacturing effects.

  10. Extended Hamiltonian approach to continuous tempering

    NASA Astrophysics Data System (ADS)

    Gobbo, Gianpaolo; Leimkuhler, Benedict J.

    2015-06-01

    We introduce an enhanced sampling simulation technique based on continuous tempering, i.e., on continuously varying the temperature of the system under investigation. Our approach is mathematically straightforward, being based on an extended Hamiltonian formulation in which an auxiliary degree of freedom, determining the effective temperature, is coupled to the physical system. The physical system and its temperature evolve continuously in time according to the equations of motion derived from the extended Hamiltonian. Due to the Hamiltonian structure, it is easy to show that a particular subset of the configurations of the extended system is distributed according to the canonical ensemble for the physical system at the correct physical temperature.

  11. Integrated Predictive Tools for Customizing Microstructure and Material Properties of Additively Manufactured Aerospace Components

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radhakrishnan, Balasubramaniam; Fattebert, Jean-Luc; Gorti, Sarma B.

    Additive Manufacturing (AM) refers to a process by which digital three-dimensional (3-D) design data is converted to build up a component by depositing material layer-by-layer. United Technologies Corporation (UTC) is currently involved in fabrication and certification of several AM aerospace structural components made from aerospace materials. This is accomplished by using optimized process parameters determined through numerous design-of-experiments (DOE)-based studies. Certification of these components is broadly recognized as a significant challenge, with long lead times, very expensive new product development cycles and very high energy consumption. Because of these challenges, United Technologies Research Center (UTRC), together with UTC business unitsmore » have been developing and validating an advanced physics-based process model. The specific goal is to develop a physics-based framework of an AM process and reliably predict fatigue properties of built-up structures as based on detailed solidification microstructures. Microstructures are predicted using process control parameters including energy source power, scan velocity, deposition pattern, and powder properties. The multi-scale multi-physics model requires solution and coupling of governing physics that will allow prediction of the thermal field and enable solution at the microstructural scale. The state-of-the-art approach to solve these problems requires a huge computational framework and this kind of resource is only available within academia and national laboratories. The project utilized the parallel phase-fields codes at Oak Ridge National Laboratory (ORNL) and Lawrence Livermore National Laboratory (LLNL), along with the high-performance computing (HPC) capabilities existing at the two labs to demonstrate the simulation of multiple dendrite growth in threedimensions (3-D). The LLNL code AMPE was used to implement the UTRC phase field model that was previously developed for a model binary alloy, and the simulation results were compared against the UTRC simulation results, followed by extension of the UTRC model to simulate multiple dendrite growth in 3-D. The ORNL MEUMAPPS code was used to simulate dendritic growth in a model ternary alloy with the same equilibrium solidification range as the Ni-base alloy 718 using realistic model parameters, including thermodynamic integration with a Calphad based model for the ternary alloy. Implementation of the UTRC model in AMPE met with several numerical and parametric issues that were resolved and good comparison between the simulation results obtained by the two codes was demonstrated for two dimensional (2-D) dendrites. 3-D dendrite growth was then demonstrated with the AMPE code using nondimensional parameters obtained in 2-D simulations. Multiple dendrite growth in 2-D and 3-D were demonstrated using ORNL’s MEUMAPPS code using simple thermal boundary conditions. MEUMAPPS was then modified to incorporate the complex, time-dependent thermal boundary conditions obtained by UTRC’s thermal modeling of single track AM experiments to drive the phase field simulations. The results were in good agreement with UTRC’s experimental measurements.« less

  12. Improving Simulations of Extreme Flows by Coupling a Physically-based Hydrologic Model with a Machine Learning Model

    NASA Astrophysics Data System (ADS)

    Mohammed, K.; Islam, A. S.; Khan, M. J. U.; Das, M. K.

    2017-12-01

    With the large number of hydrologic models presently available along with the global weather and geographic datasets, streamflows of almost any river in the world can be easily modeled. And if a reasonable amount of observed data from that river is available, then simulations of high accuracy can sometimes be performed after calibrating the model parameters against those observed data through inverse modeling. Although such calibrated models can succeed in simulating the general trend or mean of the observed flows very well, more often than not they fail to adequately simulate the extreme flows. This causes difficulty in tasks such as generating reliable projections of future changes in extreme flows due to climate change, which is obviously an important task due to floods and droughts being closely connected to people's lives and livelihoods. We propose an approach where the outputs of a physically-based hydrologic model are used as an input to a machine learning model to try and better simulate the extreme flows. To demonstrate this offline-coupling approach, the Soil and Water Assessment Tool (SWAT) was selected as the physically-based hydrologic model, the Artificial Neural Network (ANN) as the machine learning model and the Ganges-Brahmaputra-Meghna (GBM) river system as the study area. The GBM river system, located in South Asia, is the third largest in the world in terms of freshwater generated and forms the largest delta in the world. The flows of the GBM rivers were simulated separately in order to test the performance of this proposed approach in accurately simulating the extreme flows generated by different basins that vary in size, climate, hydrology and anthropogenic intervention on stream networks. Results show that by post-processing the simulated flows of the SWAT models with ANN models, simulations of extreme flows can be significantly improved. The mean absolute errors in simulating annual maximum/minimum daily flows were minimized from 4967 cusecs to 1294 cusecs for Ganges, from 5695 cusecs to 2115 cusecs for Brahmaputra and from 689 cusecs to 321 cusecs for Meghna. Using this approach, simulations of hydrologic variables other than streamflow can also be improved given that a decent amount of observed data for that variable is available.

  13. Simulation Credibility: Advances in Verification, Validation, and Uncertainty Quantification

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B. (Editor); Eklund, Dean R.; Romero, Vicente J.; Pearce, Jeffrey A.; Keim, Nicholas S.

    2016-01-01

    Decision makers and other users of simulations need to know quantified simulation credibility to make simulation-based critical decisions and effectively use simulations, respectively. The credibility of a simulation is quantified by its accuracy in terms of uncertainty, and the responsibility of establishing credibility lies with the creator of the simulation. In this volume, we present some state-of-the-art philosophies, principles, and frameworks. The contributing authors involved in this publication have been dedicated to advancing simulation credibility. They detail and provide examples of key advances over the last 10 years in the processes used to quantify simulation credibility: verification, validation, and uncertainty quantification. The philosophies and assessment methods presented here are anticipated to be useful to other technical communities conducting continuum physics-based simulations; for example, issues related to the establishment of simulation credibility in the discipline of propulsion are discussed. We envision that simulation creators will find this volume very useful to guide and assist them in quantitatively conveying the credibility of their simulations.

  14. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology.

    PubMed

    Herranz, Raul; Anken, Ralf; Boonstra, Johannes; Braun, Markus; Christianen, Peter C M; de Geest, Maarten; Hauslage, Jens; Hilbig, Reinhard; Hill, Richard J A; Lebert, Michael; Medina, F Javier; Vagt, Nicole; Ullrich, Oliver; van Loon, Jack J W A; Hemmersbach, Ruth

    2013-01-01

    Research in microgravity is indispensable to disclose the impact of gravity on biological processes and organisms. However, research in the near-Earth orbit is severely constrained by the limited number of flight opportunities. Ground-based simulators of microgravity are valuable tools for preparing spaceflight experiments, but they also facilitate stand-alone studies and thus provide additional and cost-efficient platforms for gravitational research. The various microgravity simulators that are frequently used by gravitational biologists are based on different physical principles. This comparative study gives an overview of the most frequently used microgravity simulators and demonstrates their individual capacities and limitations. The range of applicability of the various ground-based microgravity simulators for biological specimens was carefully evaluated by using organisms that have been studied extensively under the conditions of real microgravity in space. In addition, current heterogeneous terminology is discussed critically, and recommendations are given for appropriate selection of adequate simulators and consistent use of nomenclature.

  15. Using Multi-scale Dynamic Rupture Models to Improve Ground Motion Estimates: ALCF-2 Early Science Program Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ely, Geoffrey P.

    2013-10-31

    This project uses dynamic rupture simulations to investigate high-frequency seismic energy generation. The relevant phenomena (frictional breakdown, shear heating, effective normal-stress fluctuations, material damage, etc.) controlling rupture are strongly interacting and span many orders of magnitude in spatial scale, requiring highresolution simulations that couple disparate physical processes (e.g., elastodynamics, thermal weakening, pore-fluid transport, and heat conduction). Compounding the computational challenge, we know that natural faults are not planar, but instead have roughness that can be approximated by power laws potentially leading to large, multiscale fluctuations in normal stress. The capacity to perform 3D rupture simulations that couple these processes willmore » provide guidance for constructing appropriate source models for high-frequency ground motion simulations. The improved rupture models from our multi-scale dynamic rupture simulations will be used to conduct physicsbased (3D waveform modeling-based) probabilistic seismic hazard analysis (PSHA) for California. These calculation will provide numerous important seismic hazard results, including a state-wide extended earthquake rupture forecast with rupture variations for all significant events, a synthetic seismogram catalog for thousands of scenario events and more than 5000 physics-based seismic hazard curves for California.« less

  16. Ship electric propulsion simulator based on networking technology

    NASA Astrophysics Data System (ADS)

    Zheng, Huayao; Huang, Xuewu; Chen, Jutao; Lu, Binquan

    2006-11-01

    According the new ship building tense, a novel electric propulsion simulator (EPS) had been developed in Marine Simulation Center of SMU. The architecture, software function and FCS network technology of EPS and integrated power system (IPS) were described. In allusion to the POD propeller in ship, a special physical model was built. The POD power was supplied from the simulative 6.6 kV Medium Voltage Main Switchboard, its control could be realized in local or remote mode. Through LAN, the simulated feature information of EPS will pass to the physical POD model, which would reflect the real thruster working status in different sea conditions. The software includes vessel-propeller math module, thruster control system, distribution and emergency integrated management, double closed loop control system, vessel static water resistance and dynamic software; instructor main control software. The monitor and control system is realized by real time data collection system and CAN bus technology. During the construction, most devices such as monitor panels and intelligent meters, are developed in lab which were based on embedded microcomputer system with CAN interface to link the network. They had also successfully used in practice and would be suitable for the future demands of digitalization ship.

  17. A Study into the Impact of Physical Structures on the Runway Velocity Field at the Atlantic City International Airport

    NASA Astrophysics Data System (ADS)

    King, David, Jr.; Manson, Russell; Trout, Joseph; Decicco, Nicholas; Rios, Manny

    2015-04-01

    Wake vortices are generated by airplanes in flight. These vortices decay slowly and may persist for several minutes after their creation. These vortices and associated smaller scale turbulent structures present a hazard to incoming flights. It is for this reason that incoming flights are timed to arrive after these vortices have dissipated. Local weather conditions, mainly prevailing winds, can affect the transport and evolution of these vortices; therefore, there is a need to fully understand localized wind patterns at the airport-sized mircoscale. Here we have undertaken a computational investigation into the impacts of localized wind flows and physical structures on the velocity field at Atlantic City International Airport. The simulations are undertaken in OpenFOAM, an open source computational fluid dynamics software package, using an optimized geometric mesh of the airport. Initial conditions for the simulations are based on historical data with the option to run simulations based on projected weather conditions imported from the Weather Research & Forcasting (WRF) Model. Sub-grid scale turbulence is modeled using a Large Eddy Simulation (LES) approach. The initial results gathered from the WRF Model simulations and historical weather data analysis are presented elsewhere.

  18. CaloGAN: Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks

    NASA Astrophysics Data System (ADS)

    Paganini, Michela; de Oliveira, Luke; Nachman, Benjamin

    2018-01-01

    The precise modeling of subatomic particle interactions and propagation through matter is paramount for the advancement of nuclear and particle physics searches and precision measurements. The most computationally expensive step in the simulation pipeline of a typical experiment at the Large Hadron Collider (LHC) is the detailed modeling of the full complexity of physics processes that govern the motion and evolution of particle showers inside calorimeters. We introduce CaloGAN, a new fast simulation technique based on generative adversarial networks (GANs). We apply these neural networks to the modeling of electromagnetic showers in a longitudinally segmented calorimeter and achieve speedup factors comparable to or better than existing full simulation techniques on CPU (100 ×-1000 × ) and even faster on GPU (up to ˜105× ). There are still challenges for achieving precision across the entire phase space, but our solution can reproduce a variety of geometric shower shape properties of photons, positrons, and charged pions. This represents a significant stepping stone toward a full neural network-based detector simulation that could save significant computing time and enable many analyses now and in the future.

  19. An in-depth analysis of temperature effect on DIBL in UTBB FD SOI MOSFETs based on experimental data, numerical simulations and analytical models

    NASA Astrophysics Data System (ADS)

    Pereira, A. S. N.; de Streel, G.; Planes, N.; Haond, M.; Giacomini, R.; Flandre, D.; Kilchytska, V.

    2017-02-01

    The Drain Induced Barrier Lowering (DIBL) behavior in Ultra-Thin Body and Buried oxide (UTBB) transistors is investigated in details in the temperature range up to 150 °C, for the first time to the best of our knowledge. The analysis is based on experimental data, physical device simulation, compact model (SPICE) simulation and previously published models. Contrary to MASTAR prediction, experiments reveal DIBL increase with temperature. Physical device simulations of different thin-film fully-depleted (FD) devices outline the generality of such behavior. SPICE simulations, with UTSOI DK2.4 model, only partially adhere to experimental trends. Several analytic models available in the literature are assessed for DIBL vs. temperature prediction. Although being the closest to experiments, Fasarakis' model overestimates DIBL(T) dependence for shortest devices and underestimates it for upsized gate lengths frequently used in ultra-low-voltage (ULV) applications. This model is improved in our work, by introducing a temperature-dependent inversion charge at threshold. The improved model shows very good agreement with experimental data, with high gain in precision for the gate lengths under test.

  20. Pattern dependence in high-speed Q-modulated distributed feedback laser.

    PubMed

    Zhu, Hongli; Xia, Yimin; He, Jian-Jun

    2015-05-04

    We investigate the pattern dependence in high speed Q-modulated distributed feedback laser based on its complete physical structure and material properties. The structure parameters of the gain section as well as the modulation and phase sections are all taken into account in the simulations based on an integrated traveling wave model. Using this model, we show that an example Q-modulated DFB laser can achieve an extinction ratio of 6.8dB with a jitter of 4.7ps and a peak intensity fluctuation of less than 15% for 40Gbps RZ modulation signal. The simulation method is proved very useful for the complex laser structure design and high speed performance optimization, as well as for providing physical insight of the operation mechanism.

  1. A simplified DEM-CFD approach for pebble bed reactor simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Ji, W.

    In pebble bed reactors (PBR's), the pebble flow and the coolant flow are coupled with each other through coolant-pebble interactions. Approaches with different fidelities have been proposed to simulate similar phenomena. Coupled Discrete Element Method-Computational Fluid Dynamics (DEM-CFD) approaches are widely studied and applied in these problems due to its good balance between efficiency and accuracy. In this work, based on the symmetry of the PBR geometry, a simplified 3D-DEM/2D-CFD approach is proposed to speed up the DEM-CFD simulation without significant loss of accuracy. Pebble flow is simulated by a full 3-D DEM, while the coolant flow field is calculatedmore » with a 2-D CFD simulation by averaging variables along the annular direction in the cylindrical geometry. Results show that this simplification can greatly enhance the efficiency for cylindrical core, which enables further inclusion of other physics such as thermal and neutronic effect in the multi-physics simulations for PBR's. (authors)« less

  2. A Goddard Multi-Scale Modeling System with Unified Physics

    NASA Technical Reports Server (NTRS)

    Tao, W.K.; Anderson, D.; Atlas, R.; Chern, J.; Houser, P.; Hou, A.; Lang, S.; Lau, W.; Peters-Lidard, C.; Kakar, R.; hide

    2008-01-01

    Numerical cloud resolving models (CRMs), which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that CRMs agree with observations in simulating various types of clouds and cloud systems from different geographic locations. Cloud resolving models now provide statistical information useful for developing more realistic physically based parameterizations for climate models and numerical weather prediction models. It is also expected that Numerical Weather Prediction (NWP) and regional scale model can be run in grid size similar to cloud resolving model through nesting technique. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a szrper-parameterization or multi-scale modeling -framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign can provide initial conditions as well as validation through utilizing the Earth Satellite simulators. At Goddard, we have developed a multi-scale modeling system with unified physics. The modeling system consists a coupled GCM-CRM (or MMF); a state-of-the-art weather research forecast model (WRF) and a cloud-resolving model (Goddard Cumulus Ensemble model). In these models, the same microphysical schemes (2ICE, several 3ICE), radiation (including explicitly calculated cloud optical properties), and surface models are applied. In addition, a comprehensive unified Earth Satellite simulator has been developed at GSFC, which is designed to fully utilize the multi-scale modeling system. A brief review of the multi-scale modeling system with unified physics/simulator and examples is presented in this article.

  3. Development and Testing of an Automatic Transmission Shift Schedule Algorithm for Vehicle Simulation (SAE Paper 2015-01-1142)

    EPA Science Inventory

    The Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) modeling tool was created by EPA to estimate greenhouse gas (GHG) emissions of light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle type...

  4. Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kibaek

    2017-01-01

    We describe the ignition of an explosive crystal of gamma-phase RDX due to a thermal hot spot with reactive molecular dynamics (RMD), with first-principles trained, reactive force field based molecular potentials that represents an extremely complex reaction network. The RMD simulation is analyzed by sorting molecular product fragments into high and low molecular weight groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation has a single temperature and stress state for the mixture. The continuum simulation that mirrors the atomistic simulation allows us to study the atomistic simulation in the familiar physical chemistry framework and provides an essential, continuum/atomistic link.

  5. Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Dali; Yuan, Fengming; Hernandez, Benjamin

    Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less

  6. Virtual Observation System for Earth System Model: An Application to ACME Land Model Simulations

    DOE PAGES

    Wang, Dali; Yuan, Fengming; Hernandez, Benjamin; ...

    2017-01-01

    Investigating and evaluating physical-chemical-biological processes within an Earth system model (EMS) can be very challenging due to the complexity of both model design and software implementation. A virtual observation system (VOS) is presented to enable interactive observation of these processes during system simulation. Based on advance computing technologies, such as compiler-based software analysis, automatic code instrumentation, and high-performance data transport, the VOS provides run-time observation capability, in-situ data analytics for Earth system model simulation, model behavior adjustment opportunities through simulation steering. A VOS for a terrestrial land model simulation within the Accelerated Climate Modeling for Energy model is also presentedmore » to demonstrate the implementation details and system innovations.« less

  7. Fast estimation of first-order scattering in a medical x-ray computed tomography scanner using a ray-tracing technique.

    PubMed

    Liu, Xin

    2014-01-01

    This study describes a deterministic method for simulating the first-order scattering in a medical computed tomography scanner. The method was developed based on a physics model of x-ray photon interactions with matter and a ray tracing technique. The results from simulated scattering were compared to the ones from an actual scattering measurement. Two phantoms with homogeneous and heterogeneous material distributions were used in the scattering simulation and measurement. It was found that the simulated scatter profile was in agreement with the measurement result, with an average difference of 25% or less. Finally, tomographic images with artifacts caused by scatter were corrected based on the simulated scatter profiles. The image quality improved significantly.

  8. Design and Application of Interactive Simulations in Problem-Solving in University-Level Physics Education

    NASA Astrophysics Data System (ADS)

    Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel

    2016-08-01

    In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving teaching materials and assess their effectiveness in improving students' ability to solve problems in university-level physics. Firstly, we analyze the effect of using simulation-based materials in the development of students' skills in employing procedures that are typically used in the scientific method of problem-solving. We found that a significant percentage of the experimental students used expert-type scientific procedures such as qualitative analysis of the problem, making hypotheses, and analysis of results. At the end of the course, only a minority of the students persisted with habits based solely on mathematical equations. Secondly, we compare the effectiveness in terms of problem-solving of the experimental group students with the students who are taught conventionally. We found that the implementation of the problem-solving strategy improved experimental students' results regarding obtaining a correct solution from the academic point of view, in standard textbook problems. Thirdly, we explore students' satisfaction with simulation-based problem-solving teaching materials and we found that the majority appear to be satisfied with the methodology proposed and took on a favorable attitude to learning problem-solving. The research was carried out among first-year Engineering Degree students.

  9. Assimilating the ICE-6G_C Reconstruction of the Latest Quaternary Ice Age Cycle Into Numerical Simulations of the Laurentide and Fennoscandian Ice Sheets

    NASA Astrophysics Data System (ADS)

    Stuhne, G. R.; Peltier, W. R.

    2017-12-01

    We analyze the effects of nudging 100 kyr numerical simulations of the Laurentide and Fennoscandian ice sheets toward the glacial isostatic adjustment-based (GIA-based) ICE-6G_C reconstruction of the most recent ice age cycle. Starting with the ice physics approximations of the PISM ice sheet model and the SeaRISE simulation protocols, we incorporate nudging at characteristic time scales, τf, through anomalous mass balance terms in the ice mass conservation equation. As should be expected, these mass balances exhibit physically unrealistic details arising from pure GIA-based reconstruction geometry when nudging is very strong (τf=20 years for North America), while weakly nudged (τf=1,000 years) solutions deviate from ICE-6G_C sufficiently to degrade its observational fit quality. For reasonable intermediate time scales (τf=100 years and 200 years), we perturbatively analyze nudged ice dynamics as a superposition of "leading-order smoothing" that diffuses ICE-6G_C in a physically and observationally consistent manner and "higher-order" deviations arising, for instance, from biases in the time dependence of surface climate boundary conditions. Based upon the relative deviations between respective nudged simulations in which these biases follow surface temperature from ice cores and eustatic sea level from marine sediment cores, we compute "ice core climate adjustments" that suggest how local paleoclimate observations may be applied to the systematic refinement of ICE-6G_C. Our results are consistent with a growing body of evidence suggesting that the geographical origins of Meltwater Pulse 1B (MWP1b) may lie primarily in North America as opposed to Antarctica (as reconstructed in ICE-6G_C).

  10. plasmaFoam: An OpenFOAM framework for computational plasma physics and chemistry

    NASA Astrophysics Data System (ADS)

    Venkattraman, Ayyaswamy; Verma, Abhishek Kumar

    2016-09-01

    As emphasized in the 2012 Roadmap for low temperature plasmas (LTP), scientific computing has emerged as an essential tool for the investigation and prediction of the fundamental physical and chemical processes associated with these systems. While several in-house and commercial codes exist, with each having its own advantages and disadvantages, a common framework that can be developed by researchers from all over the world will likely accelerate the impact of computational studies on advances in low-temperature plasma physics and chemistry. In this regard, we present a finite volume computational toolbox to perform high-fidelity simulations of LTP systems. This framework, primarily based on the OpenFOAM solver suite, allows us to enhance our understanding of multiscale plasma phenomenon by performing massively parallel, three-dimensional simulations on unstructured meshes using well-established high performance computing tools that are widely used in the computational fluid dynamics community. In this talk, we will present preliminary results obtained using the OpenFOAM-based solver suite with benchmark three-dimensional simulations of microplasma devices including both dielectric and plasma regions. We will also discuss the future outlook for the solver suite.

  11. Simulating industrial plasma reactors - A fresh perspective

    NASA Astrophysics Data System (ADS)

    Mohr, Sebastian; Rahimi, Sara; Tennyson, Jonathan; Ansell, Oliver; Patel, Jash

    2016-09-01

    A key goal of the presented research project PowerBase is to produce new integration schemes which enable the manufacturability of 3D integrated power smart systems with high precision TSV etched features. The necessary high aspect ratio etch is performed via the BOSCH process. Investigations in industrial research are often use trial and improvement experimental methods. Simulations provide an alternative way to study the influence of external parameters on the final product, whilst also giving insights into the physical processes. This presentation investigates the process of simulating an industrial ICP reactor used over high power (up to 2x5 kW) and pressure (up to 200 mTorr) ranges, analysing the specific procedures to achieve a compromise between physical correctness and computational speed, while testing commonly made assumptions. This includes, for example, the effect of different physical models and the inclusion of different gas phase and surface reactions with the aim of accurately predicting the dependence of surface rates and profiles on external parameters in SF6 and C4F8 discharges. This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under Grant Agreement No. 662133 PowerBase.

  12. Simulations of string vibrations with boundary conditions of third kind using the functional transformation method

    NASA Astrophysics Data System (ADS)

    Trautmann, L.; Petrausch, S.; Bauer, M.

    2005-09-01

    The functional transformation method (FTM) is an established mathematical method for accurate simulation of multidimensional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics. It is a frequency-domain method based on the decomposition into eigenvectors and eigenfrequencies of the underlying physical problem. In this article, the FTM is applied to real-time simulations of vibrating strings which are ideally fixed at one end while the fixing at the other end is modeled by a frequency-dependent input impedance. Thus, boundary conditions of third kind are applied to the model at the end fixed with the input impedance. It is shown that accurate and stable simulations are achieved with nearly the same computational cost as with strings ideally fixed at both ends.

  13. Experimental study and simulation of space charge stimulated discharge

    NASA Astrophysics Data System (ADS)

    Noskov, M. D.; Malinovski, A. S.; Cooke, C. M.; Wright, K. A.; Schwab, A. J.

    2002-11-01

    The electrical discharge of volume distributed space charge in poly(methylmethacrylate) (PMMA) has been investigated both experimentally and by computer simulation. The experimental space charge was implanted in dielectric samples by exposure to a monoenergetic electron beam of 3 MeV. Electrical breakdown through the implanted space charge region within the sample was initiated by a local electric field enhancement applied to the sample surface. A stochastic-deterministic dynamic model for electrical discharge was developed and used in a computer simulation of these breakdowns. The model employs stochastic rules to describe the physical growth of the discharge channels, and deterministic laws to describe the electric field, the charge, and energy dynamics within the discharge channels and the dielectric. Simulated spatial-temporal and current characteristics of the expanding discharge structure during physical growth are quantitatively compared with the experimental data to confirm the discharge model. It was found that a single fixed set of physically based dielectric parameter values was adequate to simulate the complete family of experimental space charge discharges in PMMA. It is proposed that such a set of parameters also provides a useful means to quantify the breakdown properties of other dielectrics.

  14. Fast Physically Accurate Rendering of Multimodal Signatures of Distributed Fracture in Heterogeneous Materials.

    PubMed

    Visell, Yon

    2015-04-01

    This paper proposes a fast, physically accurate method for synthesizing multimodal, acoustic and haptic, signatures of distributed fracture in quasi-brittle heterogeneous materials, such as wood, granular media, or other fiber composites. Fracture processes in these materials are challenging to simulate with existing methods, due to the prevalence of large numbers of disordered, quasi-random spatial degrees of freedom, representing the complex physical state of a sample over the geometric volume of interest. Here, I develop an algorithm for simulating such processes, building on a class of statistical lattice models of fracture that have been widely investigated in the physics literature. This algorithm is enabled through a recently published mathematical construction based on the inverse transform method of random number sampling. It yields a purely time domain stochastic jump process representing stress fluctuations in the medium. The latter can be readily extended by a mean field approximation that captures the averaged constitutive (stress-strain) behavior of the material. Numerical simulations and interactive examples demonstrate the ability of these algorithms to generate physically plausible acoustic and haptic signatures of fracture in complex, natural materials interactively at audio sampling rates.

  15. The Trick Simulation Toolkit: A NASA/Opensource Framework for Running Time Based Physics Models

    NASA Technical Reports Server (NTRS)

    Penn, John M.

    2016-01-01

    The Trick Simulation Toolkit is a simulation development environment used to create high fidelity training and engineering simulations at the NASA Johnson Space Center and many other NASA facilities. Its purpose is to generate a simulation executable from a collection of user-supplied models and a simulation definition file. For each Trick-based simulation, Trick automatically provides job scheduling, numerical integration, the ability to write and restore human readable checkpoints, data recording, interactive variable manipulation, a run-time interpreter, and many other commonly needed capabilities. This allows simulation developers to concentrate on their domain expertise and the algorithms and equations of their models. Also included in Trick are tools for plotting recorded data and various other supporting utilities and libraries. Trick is written in C/C++ and Java and supports both Linux and MacOSX computer operating systems. This paper describes Trick's design and use at NASA Johnson Space Center.

  16. Method for simulating discontinuous physical systems

    DOEpatents

    Baty, Roy S.; Vaughn, Mark R.

    2001-01-01

    The mathematical foundations of conventional numerical simulation of physical systems provide no consistent description of the behavior of such systems when subjected to discontinuous physical influences. As a result, the numerical simulation of such problems requires ad hoc encoding of specific experimental results in order to address the behavior of such discontinuous physical systems. In the present invention, these foundations are replaced by a new combination of generalized function theory and nonstandard analysis. The result is a class of new approaches to the numerical simulation of physical systems which allows the accurate and well-behaved simulation of discontinuous and other difficult physical systems, as well as simpler physical systems. Applications of this new class of numerical simulation techniques to process control, robotics, and apparatus design are outlined.

  17. Simulating the Impact of Crime on African-American Women’s Physical Activity and Obesity

    PubMed Central

    Powell-Wiley, Tiffany M.; Wong, Michelle S.; Adu-Brimpong, Joel; Brown, Shawn T.; Hertenstein, Daniel L.; Zenkov, Eli; Ferguson, Marie C; Thomas, Samantha; Sampson, Dana; Ahuja, Chaarushi; Rivers, Joshua; Lee, Bruce Y.

    2017-01-01

    Objective The objective of this study was to quantify the impact of crime on physical activity location accessibility, leisure-time physical activity (LTPA) and obesity among African-American women. Methods We developed an agent-based model, in 2016, representing resource-limited Washington, DC communities and their populations to simulate the impact of crime on LTPA and obesity among African-American women under different circumstances. Results Data analysis conducted between 2016 and 2017 found that in the baseline scenario, African-American women have a 25% probability of exercising. Reducing crime so more physical activity locations are accessible (increasing from 10% to 50%) decreases the annual rise in obesity prevalence by 2.69%. Increasing the probability of African-American women to exercise to 37.5%, further increases the impact of reducing crime on obesity (2.91% annual decrease in obesity prevalence). Conclusions Our simulations show that crime may serve as a barrier to LTPA. Reducing crime and increasing propensity to exercise through multilevel interventions (i.e. economic development initiatives to increase time available for physical activity and subsidized health care) may promote greater than linear declines in obesity prevalence. Crime prevention strategies alone can help prevent obesity, but combining such efforts with other ways to encourage physical activity can yield even greater benefits. PMID:29086471

  18. Superficial Tunica Albuginea Rupture as Initial Starting Point of Peyronie's Disease: A Topic for Interdisciplinary Consideration

    PubMed Central

    Bayerl, Manfred

    2015-01-01

    Peyronie's disease is a connective tissue disorder in the soft tissue of the penis. The underlying cause of Peyronie's disease is not well understood but is thought to be caused by trauma or injury to the penis during sexual intercourse. The purpose of the interdisciplinary cooperation between urological surgery and physics is the development of a physical simulation tool in order to give prognosis of possible tunica albuginea fibre rupture at a certain degree of deviation of the penis. For our group the first challenge was to translate the human organ of the penis into a physical model. Starting and marginal parameters had to be defined, whereby some of them had to be based on assumption, as physical data of the human living tissue have rarely been measured up to now. The algorithm and its dependencies had to be developed. This paper is a first step of a three-dimensional mathematical-physical simulation with the assumption of a 100% filled rigid penis. The calculation gives proof of the hypothesis that the fibre-load-angle of the penis is less than 12 degrees. Thus physical simulation is able to provide the surgeon with a simple instrument to calculate and forecast the risk of the individual patient. PMID:25648614

  19. Simulating the Impact of Crime on African American Women's Physical Activity and Obesity.

    PubMed

    Powell-Wiley, Tiffany M; Wong, Michelle S; Adu-Brimpong, Joel; Brown, Shawn T; Hertenstein, Daniel L; Zenkov, Eli; Ferguson, Marie C; Thomas, Samantha; Sampson, Dana; Ahuja, Chaarushi; Rivers, Joshua; Lee, Bruce Y

    2017-12-01

    The objective of this study was to quantify the impact of crime on physical activity location accessibility, leisure-time physical activity (LTPA), and obesity among African American women. An agent-based model was developed in 2016 to represent resource-limited Washington, DC, communities and their populations to simulate the impact of crime on LTPA and obesity among African American women under different circumstances. Data analysis conducted between 2016 and 2017 found that in the baseline scenario, African American women had a 25% probability of exercising. Reducing crime so more physical activity locations were accessible (increasing from 10% to 50%) decreased the annual rise in obesity prevalence by 2.69%. Increasing the probability of African American women to exercise to 37.5% further increased the impact of reducing crime on obesity (2.91% annual decrease in obesity prevalence). These simulations showed that crime may serve as a barrier to LTPA. Reducing crime and increasing propensity to exercise through multilevel interventions (i.e., economic development initiatives to increase time available for physical activity and subsidized health care) may promote greater than linear declines in obesity prevalence. Crime prevention strategies alone can help prevent obesity, but combining such efforts with other ways to encourage physical activity can yield even greater benefits. © 2017 The Obesity Society.

  20. Ground-Based Facilities for Simulation of Microgravity: Organism-Specific Recommendations for Their Use, and Recommended Terminology

    PubMed Central

    Anken, Ralf; Boonstra, Johannes; Braun, Markus; Christianen, Peter C.M.; de Geest, Maarten; Hauslage, Jens; Hilbig, Reinhard; Hill, Richard J.A.; Lebert, Michael; Medina, F. Javier; Vagt, Nicole; Ullrich, Oliver

    2013-01-01

    Abstract Research in microgravity is indispensable to disclose the impact of gravity on biological processes and organisms. However, research in the near-Earth orbit is severely constrained by the limited number of flight opportunities. Ground-based simulators of microgravity are valuable tools for preparing spaceflight experiments, but they also facilitate stand-alone studies and thus provide additional and cost-efficient platforms for gravitational research. The various microgravity simulators that are frequently used by gravitational biologists are based on different physical principles. This comparative study gives an overview of the most frequently used microgravity simulators and demonstrates their individual capacities and limitations. The range of applicability of the various ground-based microgravity simulators for biological specimens was carefully evaluated by using organisms that have been studied extensively under the conditions of real microgravity in space. In addition, current heterogeneous terminology is discussed critically, and recommendations are given for appropriate selection of adequate simulators and consistent use of nomenclature. Key Words: 2-D clinostat—3-D clinostat—Gravity—Magnetic levitation—Random positioning machine—Simulated microgravity—Space biology. Astrobiology 13, 1–17. PMID:23252378

  1. Theoretical Technology Research for the International Solar Terrestrial Physics (ISTP) Program

    NASA Technical Reports Server (NTRS)

    Ashour-Abdalla, Maha; Curtis, Steve (Technical Monitor)

    2002-01-01

    During the last four years the UCLA (University of California, Los Angeles) IGPP (Institute of Geophysics and Planetary Physics) Space Plasma Simulation Group has continued its theoretical effort to develop a Mission Oriented Theory (MOT) for the International Solar Terrestrial Physics (ISTP) program. This effort has been based on a combination of approaches: analytical theory, large-scale kinetic (LSK) calculations, global magnetohydrodynamic (MHD) simulations and self-consistent plasma kinetic (SCK) simulations. These models have been used to formulate a global interpretation of local measurements made by the ISTP spacecraft. The regions of applications of the MOT cover most of the magnetosphere: solar wind, low- and high- latitude magnetospheric boundary, near-Earth and distant magnetotail, and auroral region. Most recent investigations include: plasma processes in the electron foreshock, response of the magnetospheric cusp, particle entry in the magnetosphere, sources of observed distribution functions in the magnetotail, transport of oxygen ions, self-consistent evolution of the magnetotail, substorm studies, effects of explosive reconnection, and auroral acceleration simulations. A complete list of the activities completed under the grant follow.

  2. CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences

    NASA Technical Reports Server (NTRS)

    Slotnick, Jeffrey; Khodadoust, Abdollah; Alonso, Juan; Darmofal, David; Gropp, William; Lurie, Elizabeth; Mavriplis, Dimitri

    2014-01-01

    This report documents the results of a study to address the long range, strategic planning required by NASA's Revolutionary Computational Aerosciences (RCA) program in the area of computational fluid dynamics (CFD), including future software and hardware requirements for High Performance Computing (HPC). Specifically, the "Vision 2030" CFD study is to provide a knowledge-based forecast of the future computational capabilities required for turbulent, transitional, and reacting flow simulations across a broad Mach number regime, and to lay the foundation for the development of a future framework and/or environment where physics-based, accurate predictions of complex turbulent flows, including flow separation, can be accomplished routinely and efficiently in cooperation with other physics-based simulations to enable multi-physics analysis and design. Specific technical requirements from the aerospace industrial and scientific communities were obtained to determine critical capability gaps, anticipated technical challenges, and impediments to achieving the target CFD capability in 2030. A preliminary development plan and roadmap were created to help focus investments in technology development to help achieve the CFD vision in 2030.

  3. PNNL Report on the Development of Bench-scale CFD Simulations for Gas Absorption across a Wetted Wall Column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chao; Xu, Zhijie; Lai, Canhai

    This report is prepared for the demonstration of hierarchical prediction of carbon capture efficiency of a solvent-based absorption column. A computational fluid dynamics (CFD) model is first developed to simulate the core phenomena of solvent-based carbon capture, i.e., the CO2 physical absorption and chemical reaction, on a simplified geometry of wetted wall column (WWC) at bench scale. Aqueous solutions of ethanolamine (MEA) are commonly selected as a CO2 stream scrubbing liquid. CO2 is captured by both physical and chemical absorption using highly CO2 soluble and reactive solvent, MEA, during the scrubbing process. In order to provide confidence bound on themore » computational predictions of this complex engineering system, a hierarchical calibration and validation framework is proposed. The overall goal of this effort is to provide a mechanism-based predictive framework with confidence bound for overall mass transfer coefficient of the wetted wall column (WWC) with statistical analyses of the corresponding WWC experiments with increasing physical complexity.« less

  4. Analysis of the 20th November 2003 Extreme Geomagnetic Storm using CTIPe Model and GNSS Data

    NASA Astrophysics Data System (ADS)

    Fernandez-Gomez, I.; Borries, C.; Codrescu, M.

    2016-12-01

    The ionospheric instabilities produced by solar activity generate disturbances in ionospheric density (ionospheric storms) with important terrestrial consequences such as disrupting communications and positioning. During the 20th November 2003 extreme geomagnetic storm, significant perturbations were produced in the ionosphere - thermosphere system. In this work, we replicate how this system responded to the onset of this particular storm, using the Coupled Thermosphere Ionosphere Plasmasphere electrodynamics physics based model. CTIPe simulates the changes in the neutral winds, temperature, composition and electron densities. Although modelling the ionosphere under this conditions is a challenging task due to energy flow uncertainties, the model reproduces some of the storm features necessary to interpret the physical mechanisms behind the Total Electron Content (TEC) increase and the dramatic changes in composition during this event.Corresponding effects are observed in the TEC simulations from other physics based models and from observations derived from Global Navigation Satellite System (GNSS) and ground-based measurements.The study illustrates the necessity of using both, measurements and models, to have a complete understanding of the processes that are most likely responsible for the observed effects.

  5. A Fast Monte Carlo Simulation for the International Linear Collider Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furse, D.; /Georgia Tech

    2005-12-15

    The following paper contains details concerning the motivation for, implementation and performance of a Java-based fast Monte Carlo simulation for a detector designed to be used in the International Linear Collider. This simulation, presently included in the SLAC ILC group's org.lcsim package, reads in standard model or SUSY events in STDHEP file format, stochastically simulates the blurring in physics measurements caused by intrinsic detector error, and writes out an LCIO format file containing a set of final particles statistically similar to those that would have found by a full Monte Carlo simulation. In addition to the reconstructed particles themselves, descriptionsmore » of the calorimeter hit clusters and tracks that these particles would have produced are also included in the LCIO output. These output files can then be put through various analysis codes in order to characterize the effectiveness of a hypothetical detector at extracting relevant physical information about an event. Such a tool is extremely useful in preliminary detector research and development, as full simulations are extremely cumbersome and taxing on processor resources; a fast, efficient Monte Carlo can facilitate and even make possible detector physics studies that would be very impractical with the full simulation by sacrificing what is in many cases inappropriate attention to detail for valuable gains in time required for results.« less

  6. An Empirical Polarizable Force Field Based on the Classical Drude Oscillator Model: Development History and Recent Applications

    PubMed Central

    2016-01-01

    Molecular mechanics force fields that explicitly account for induced polarization represent the next generation of physical models for molecular dynamics simulations. Several methods exist for modeling induced polarization, and here we review the classical Drude oscillator model, in which electronic degrees of freedom are modeled by charged particles attached to the nuclei of their core atoms by harmonic springs. We describe the latest developments in Drude force field parametrization and application, primarily in the last 15 years. Emphasis is placed on the Drude-2013 polarizable force field for proteins, DNA, lipids, and carbohydrates. We discuss its parametrization protocol, development history, and recent simulations of biologically interesting systems, highlighting specific studies in which induced polarization plays a critical role in reproducing experimental observables and understanding physical behavior. As the Drude oscillator model is computationally tractable and available in a wide range of simulation packages, it is anticipated that use of these more complex physical models will lead to new and important discoveries of the physical forces driving a range of chemical and biological phenomena. PMID:26815602

  7. Estimation of Sonic Fatigue by Reduced-Order Finite Element Based Analyses

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Przekop, Adam

    2006-01-01

    A computationally efficient, reduced-order method is presented for prediction of sonic fatigue of structures exhibiting geometrically nonlinear response. A procedure to determine the nonlinear modal stiffness using commercial finite element codes allows the coupled nonlinear equations of motion in physical degrees of freedom to be transformed to a smaller coupled system of equations in modal coordinates. The nonlinear modal system is first solved using a computationally light equivalent linearization solution to determine if the structure responds to the applied loading in a nonlinear fashion. If so, a higher fidelity numerical simulation in modal coordinates is undertaken to more accurately determine the nonlinear response. Comparisons of displacement and stress response obtained from the reduced-order analyses are made with results obtained from numerical simulation in physical degrees-of-freedom. Fatigue life predictions from nonlinear modal and physical simulations are made using the rainflow cycle counting method in a linear cumulative damage analysis. Results computed for a simple beam structure under a random acoustic loading demonstrate the effectiveness of the approach and compare favorably with results obtained from the solution in physical degrees-of-freedom.

  8. A generic framework for individual-based modelling and physical-biological interaction

    PubMed Central

    2018-01-01

    The increased availability of high-resolution ocean data globally has enabled more detailed analyses of physical-biological interactions and their consequences to the ecosystem. We present IBMlib, which is a versatile, portable and computationally effective framework for conducting Lagrangian simulations in the marine environment. The purpose of the framework is to handle complex individual-level biological models of organisms, combined with realistic 3D oceanographic model of physics and biogeochemistry describing the environment of the organisms without assumptions about spatial or temporal scales. The open-source framework features a minimal robust interface to facilitate the coupling between individual-level biological models and oceanographic models, and we provide application examples including forward/backward simulations, habitat connectivity calculations, assessing ocean conditions, comparison of physical circulation models, model ensemble runs and recently posterior Eulerian simulations using the IBMlib framework. We present the code design ideas behind the longevity of the code, our implementation experiences, as well as code performance benchmarking. The framework may contribute substantially to progresses in representing, understanding, predicting and eventually managing marine ecosystems. PMID:29351280

  9. Possibilities of the ErgoScope high fidelity work simulator in skill assessment, skill development and vocational aptitude tests of physically disabled persons.

    PubMed

    Izsó, Lajos; Székely, Ildikó; Dános, László

    2015-01-01

    The aim of this paper - based on the extensive experiences of the authors gained by using one particular work simulator - is to present some promising possibilities of the application of this (and any other similar) work simulator in the field of skill assessment, skill development and vocational aptitude tests of physically disabled persons. During skill assessment and development, as parts of the therapy, the focus is on the disabled functions. During vocational aptitude tests, however, the focus is already on the functions that remained intact and therefore can be the basis of returning to work. Some factual examples are provided to realize the proposed possibilities in practice.

  10. Numerical Simulation of Selecting Model Scale of Cable in Wind Tunnel Test

    NASA Astrophysics Data System (ADS)

    Huang, Yifeng; Yang, Jixin

    The numerical simulation method based on computational Fluid Dynamics (CFD) provides a possible alternative means of physical wind tunnel test. Firstly, the correctness of the numerical simulation method is validated by one certain example. In order to select the minimum length of the cable as to a certain diameter in the numerical wind tunnel tests, the numerical wind tunnel tests based on CFD are carried out on the cables with several different length-diameter ratios (L/D). The results show that, when the L/D reaches to 18, the drag coefficient is stable essentially.

  11. A model framework for actuation and sensing of ionic polymer-metal composites: prospective on frequency and shear response through simulation tools

    NASA Astrophysics Data System (ADS)

    Stalbaum, Tyler; Shen, Qi; Kim, Kwang J.

    2017-04-01

    Ionic polymer-metal composite (IPMC) is a promising material for soft-robotic actuator and sensor applications. This material system offers large deformation response for low input voltage and has an aptitude for operation in hydrated environments. Researchers have been developing IPMC actuators and sensors for applications with examples of self-sensing actuators, artificial fish fins and biomimicry of other aquatic lifeforms, and in medical operations such as in guided catheter devices. IPMCs have been developed in a range of geometric configurations, with tube or cylindrical and flat-plate rectangular as the most common shapes. Several mathematical and physics-based models have been developed for describing the transduction effects of IPMCs. In this work, the underlying theories of electromechanical and mechanoelectrical transduction in IPMCs are discussed, and simulated results of frequency response and shear response are presented. A model backbone is utilized which is primarily based on ion-transport and charge dynamics within the polymer membrane. The electromechanical model, that is with an IPMC as an actuator, is caused when an electric field is applied across the membrane causing ionic migration and swelling in the polymer membrane, which is based on the Poisson-Nernst-Planck equations and solid mechanics models. The mechanoelectric model is similar in underlying physics; however, the primary mechanisms of transduction are of different significance, where anion concentrations are as important as cations. COMSOL Multiphysics is utilized for simulations. Example applications of the modeling framework are presented. The simulated results provide additional support for the underlying physics theories discussed.

  12. Modeling and Simulation of Shuttle Launch and Range Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge; Thirumalainambi, Rajkumar

    2004-01-01

    The simulation and modeling test bed is based on a mockup of a space flight operations control suitable to experiment physical, procedural, software, hardware and psychological aspects of space flight operations. The test bed consists of a weather expert system to advise on the effect of weather to the launch operations. It also simulates toxic gas dispersion model, impact of human health risk, debris dispersion model in 3D visualization. Since all modeling and simulation is based on the internet, it could reduce the cost of operations of launch and range safety by conducting extensive research before a particular launch. Each model has an independent decision making module to derive the best decision for launch.

  13. Trident: A Universal Tool for Generating Synthetic Absorption Spectra from Astrophysical Simulations

    NASA Astrophysics Data System (ADS)

    Hummels, Cameron B.; Smith, Britton D.; Silvia, Devin W.

    2017-09-01

    Hydrodynamical simulations are increasingly able to accurately model physical systems on stellar, galactic, and cosmological scales; however, the utility of these simulations is often limited by our ability to directly compare them with the data sets produced by observers: spectra, photometry, etc. To address this problem, we have created trident, a Python-based open-source tool for post-processing hydrodynamical simulations to produce synthetic absorption spectra and related data. trident can (I) create absorption-line spectra for any trajectory through a simulated data set mimicking both background quasar and down-the-barrel configurations; (II) reproduce the spectral characteristics of common instruments like the Cosmic Origins Spectrograph; (III) operate across the ultraviolet, optical, and infrared using customizable absorption-line lists; (IV) trace simulated physical structures directly to spectral features; (v) approximate the presence of ion species absent from the simulation outputs; (VI) generate column density maps for any ion; and (vii) provide support for all major astrophysical hydrodynamical codes. trident was originally developed to aid in the interpretation of observations of the circumgalactic medium and intergalactic medium, but it remains a general tool applicable in other contexts.

  14. A dental public health approach based on computational mathematics: Monte Carlo simulation of childhood dental decay.

    PubMed

    Tennant, Marc; Kruger, Estie

    2013-02-01

    This study developed a Monte Carlo simulation approach to examining the prevalence and incidence of dental decay using Australian children as a test environment. Monte Carlo simulation has been used for a half a century in particle physics (and elsewhere); put simply, it is the probability for various population-level outcomes seeded randomly to drive the production of individual level data. A total of five runs of the simulation model for all 275,000 12-year-olds in Australia were completed based on 2005-2006 data. Measured on average decayed/missing/filled teeth (DMFT) and DMFT of highest 10% of sample (Sic10) the runs did not differ from each other by more than 2% and the outcome was within 5% of the reported sampled population data. The simulations rested on the population probabilities that are known to be strongly linked to dental decay, namely, socio-economic status and Indigenous heritage. Testing the simulated population found DMFT of all cases where DMFT<>0 was 2.3 (n = 128,609) and DMFT for Indigenous cases only was 1.9 (n = 13,749). In the simulation population the Sic25 was 3.3 (n = 68,750). Monte Carlo simulations were created in particle physics as a computational mathematical approach to unknown individual-level effects by resting a simulation on known population-level probabilities. In this study a Monte Carlo simulation approach to childhood dental decay was built, tested and validated. © 2013 FDI World Dental Federation.

  15. Physics Computing '92: Proceedings of the 4th International Conference

    NASA Astrophysics Data System (ADS)

    de Groot, Robert A.; Nadrchal, Jaroslav

    1993-04-01

    The Table of Contents for the book is as follows: * Preface * INVITED PAPERS * Ab Initio Theoretical Approaches to the Structural, Electronic and Vibrational Properties of Small Clusters and Fullerenes: The State of the Art * Neural Multigrid Methods for Gauge Theories and Other Disordered Systems * Multicanonical Monte Carlo Simulations * On the Use of the Symbolic Language Maple in Physics and Chemistry: Several Examples * Nonequilibrium Phase Transitions in Catalysis and Population Models * Computer Algebra, Symmetry Analysis and Integrability of Nonlinear Evolution Equations * The Path-Integral Quantum Simulation of Hydrogen in Metals * Digital Optical Computing: A New Approach of Systolic Arrays Based on Coherence Modulation of Light and Integrated Optics Technology * Molecular Dynamics Simulations of Granular Materials * Numerical Implementation of a K.A.M. Algorithm * Quasi-Monte Carlo, Quasi-Random Numbers and Quasi-Error Estimates * What Can We Learn from QMC Simulations * Physics of Fluctuating Membranes * Plato, Apollonius, and Klein: Playing with Spheres * Steady States in Nonequilibrium Lattice Systems * CONVODE: A REDUCE Package for Differential Equations * Chaos in Coupled Rotators * Symplectic Numerical Methods for Hamiltonian Problems * Computer Simulations of Surfactant Self Assembly * High-dimensional and Very Large Cellular Automata for Immunological Shape Space * A Review of the Lattice Boltzmann Method * Electronic Structure of Solids in the Self-interaction Corrected Local-spin-density Approximation * Dedicated Computers for Lattice Gauge Theory Simulations * Physics Education: A Survey of Problems and Possible Solutions * Parallel Computing and Electronic-Structure Theory * High Precision Simulation Techniques for Lattice Field Theory * CONTRIBUTED PAPERS * Case Study of Microscale Hydrodynamics Using Molecular Dynamics and Lattice Gas Methods * Computer Modelling of the Structural and Electronic Properties of the Supported Metal Catalysis * Ordered Particle Simulations for Serial and MIMD Parallel Computers * "NOLP" -- Program Package for Laser Plasma Nonlinear Optics * Algorithms to Solve Nonlinear Least Square Problems * Distribution of Hydrogen Atoms in Pd-H Computed by Molecular Dynamics * A Ray Tracing of Optical System for Protein Crystallography Beamline at Storage Ring-SIBERIA-2 * Vibrational Properties of a Pseudobinary Linear Chain with Correlated Substitutional Disorder * Application of the Software Package Mathematica in Generalized Master Equation Method * Linelist: An Interactive Program for Analysing Beam-foil Spectra * GROMACS: A Parallel Computer for Molecular Dynamics Simulations * GROMACS Method of Virial Calculation Using a Single Sum * The Interactive Program for the Solution of the Laplace Equation with the Elimination of Singularities for Boundary Functions * Random-Number Generators: Testing Procedures and Comparison of RNG Algorithms * Micro-TOPIC: A Tokamak Plasma Impurities Code * Rotational Molecular Scattering Calculations * Orthonormal Polynomial Method for Calibrating of Cryogenic Temperature Sensors * Frame-based System Representing Basis of Physics * The Role of Massively Data-parallel Computers in Large Scale Molecular Dynamics Simulations * Short-range Molecular Dynamics on a Network of Processors and Workstations * An Algorithm for Higher-order Perturbation Theory in Radiative Transfer Computations * Hydrostochastics: The Master Equation Formulation of Fluid Dynamics * HPP Lattice Gas on Transputers and Networked Workstations * Study on the Hysteresis Cycle Simulation Using Modeling with Different Functions on Intervals * Refined Pruning Techniques for Feed-forward Neural Networks * Random Walk Simulation of the Motion of Transient Charges in Photoconductors * The Optical Hysteresis in Hydrogenated Amorphous Silicon * Diffusion Monte Carlo Analysis of Modern Interatomic Potentials for He * A Parallel Strategy for Molecular Dynamics Simulations of Polar Liquids on Transputer Arrays * Distribution of Ions Reflected on Rough Surfaces * The Study of Step Density Distribution During Molecular Beam Epitaxy Growth: Monte Carlo Computer Simulation * Towards a Formal Approach to the Construction of Large-scale Scientific Applications Software * Correlated Random Walk and Discrete Modelling of Propagation through Inhomogeneous Media * Teaching Plasma Physics Simulation * A Theoretical Determination of the Au-Ni Phase Diagram * Boson and Fermion Kinetics in One-dimensional Lattices * Computational Physics Course on the Technical University * Symbolic Computations in Simulation Code Development and Femtosecond-pulse Laser-plasma Interaction Studies * Computer Algebra and Integrated Computing Systems in Education of Physical Sciences * Coordinated System of Programs for Undergraduate Physics Instruction * Program Package MIRIAM and Atomic Physics of Extreme Systems * High Energy Physics Simulation on the T_Node * The Chapman-Kolmogorov Equation as Representation of Huygens' Principle and the Monolithic Self-consistent Numerical Modelling of Lasers * Authoring System for Simulation Developments * Molecular Dynamics Study of Ion Charge Effects in the Structure of Ionic Crystals * A Computational Physics Introductory Course * Computer Calculation of Substrate Temperature Field in MBE System * Multimagnetical Simulation of the Ising Model in Two and Three Dimensions * Failure of the CTRW Treatment of the Quasicoherent Excitation Transfer * Implementation of a Parallel Conjugate Gradient Method for Simulation of Elastic Light Scattering * Algorithms for Study of Thin Film Growth * Algorithms and Programs for Physics Teaching in Romanian Technical Universities * Multicanonical Simulation of 1st order Transitions: Interface Tension of the 2D 7-State Potts Model * Two Numerical Methods for the Calculation of Periodic Orbits in Hamiltonian Systems * Chaotic Behavior in a Probabilistic Cellular Automata? * Wave Optics Computing by a Networked-based Vector Wave Automaton * Tensor Manipulation Package in REDUCE * Propagation of Electromagnetic Pulses in Stratified Media * The Simple Molecular Dynamics Model for the Study of Thermalization of the Hot Nucleon Gas * Electron Spin Polarization in PdCo Alloys Calculated by KKR-CPA-LSD Method * Simulation Studies of Microscopic Droplet Spreading * A Vectorizable Algorithm for the Multicolor Successive Overrelaxation Method * Tetragonality of the CuAu I Lattice and Its Relation to Electronic Specific Heat and Spin Susceptibility * Computer Simulation of the Formation of Metallic Aggregates Produced by Chemical Reactions in Aqueous Solution * Scaling in Growth Models with Diffusion: A Monte Carlo Study * The Nucleus as the Mesoscopic System * Neural Network Computation as Dynamic System Simulation * First-principles Theory of Surface Segregation in Binary Alloys * Data Smooth Approximation Algorithm for Estimating the Temperature Dependence of the Ice Nucleation Rate * Genetic Algorithms in Optical Design * Application of 2D-FFT in the Study of Molecular Exchange Processes by NMR * Advanced Mobility Model for Electron Transport in P-Si Inversion Layers * Computer Simulation for Film Surfaces and its Fractal Dimension * Parallel Computation Techniques and the Structure of Catalyst Surfaces * Educational SW to Teach Digital Electronics and the Corresponding Text Book * Primitive Trinomials (Mod 2) Whose Degree is a Mersenne Exponent * Stochastic Modelisation and Parallel Computing * Remarks on the Hybrid Monte Carlo Algorithm for the ∫4 Model * An Experimental Computer Assisted Workbench for Physics Teaching * A Fully Implicit Code to Model Tokamak Plasma Edge Transport * EXPFIT: An Interactive Program for Automatic Beam-foil Decay Curve Analysis * Mapping Technique for Solving General, 1-D Hamiltonian Systems * Freeway Traffic, Cellular Automata, and Some (Self-Organizing) Criticality * Photonuclear Yield Analysis by Dynamic Programming * Incremental Representation of the Simply Connected Planar Curves * Self-convergence in Monte Carlo Methods * Adaptive Mesh Technique for Shock Wave Propagation * Simulation of Supersonic Coronal Streams and Their Interaction with the Solar Wind * The Nature of Chaos in Two Systems of Ordinary Nonlinear Differential Equations * Considerations of a Window-shopper * Interpretation of Data Obtained by RTP 4-Channel Pulsed Radar Reflectometer Using a Multi Layer Perceptron * Statistics of Lattice Bosons for Finite Systems * Fractal Based Image Compression with Affine Transformations * Algorithmic Studies on Simulation Codes for Heavy-ion Reactions * An Energy-Wise Computer Simulation of DNA-Ion-Water Interactions Explains the Abnormal Structure of Poly[d(A)]:Poly[d(T)] * Computer Simulation Study of Kosterlitz-Thouless-Like Transitions * Problem-oriented Software Package GUN-EBT for Computer Simulation of Beam Formation and Transport in Technological Electron-Optical Systems * Parallelization of a Boundary Value Solver and its Application in Nonlinear Dynamics * The Symbolic Classification of Real Four-dimensional Lie Algebras * Short, Singular Pulses Generation by a Dye Laser at Two Wavelengths Simultaneously * Quantum Monte Carlo Simulations of the Apex-Oxygen-Model * Approximation Procedures for the Axial Symmetric Static Einstein-Maxwell-Higgs Theory * Crystallization on a Sphere: Parallel Simulation on a Transputer Network * FAMULUS: A Software Product (also) for Physics Education * MathCAD vs. FAMULUS -- A Brief Comparison * First-principles Dynamics Used to Study Dissociative Chemisorption * A Computer Controlled System for Crystal Growth from Melt * A Time Resolved Spectroscopic Method for Short Pulsed Particle Emission * Green's Function Computation in Radiative Transfer Theory * Random Search Optimization Technique for One-criteria and Multi-criteria Problems * Hartley Transform Applications to Thermal Drift Elimination in Scanning Tunneling Microscopy * Algorithms of Measuring, Processing and Interpretation of Experimental Data Obtained with Scanning Tunneling Microscope * Time-dependent Atom-surface Interactions * Local and Global Minima on Molecular Potential Energy Surfaces: An Example of N3 Radical * Computation of Bifurcation Surfaces * Symbolic Computations in Quantum Mechanics: Energies in Next-to-solvable Systems * A Tool for RTP Reactor and Lamp Field Design * Modelling of Particle Spectra for the Analysis of Solid State Surface * List of Participants

  16. India-based neutrino observatory (INO): Physics reach and status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Indumathi, D.

    We present a review of the physics reach and current status of the proposed India-based Neutrino Observatory (INO). We briefly outline details of the INO location and the present status of detector development. We then present the physics goals and simulation studies of the main detector, the magnetised Iron Calorimeter (ICAL) detector, to be housed in INO. The ICAL detector would make precision measurements of neutrino oscillation parameters with atmospheric neutrinos including a measurement of the neutrino mass hierarchy. Additional synergies with other experiments due to the complete insensitivity of ICAL to the CP phase are also discussed.

  17. A Method for Functional Task Alignment Analysis of an Arthrocentesis Simulator.

    PubMed

    Adams, Reid A; Gilbert, Gregory E; Buckley, Lisa A; Nino Fong, Rodolfo; Fuentealba, I Carmen; Little, Erika L

    2018-05-16

    During simulation-based education, simulators are subjected to procedures composed of a variety of tasks and processes. Simulators should functionally represent a patient in response to the physical action of these tasks. The aim of this work was to describe a method for determining whether a simulator does or does not have sufficient functional task alignment (FTA) to be used in a simulation. Potential performance checklist items were gathered from published arthrocentesis guidelines and aggregated into a performance checklist using Lawshe's method. An expert panel used this performance checklist and an FTA analysis questionnaire to evaluate a simulator's ability to respond to the physical actions required by the performance checklist. Thirteen items, from a pool of 39, were included on the performance checklist. Experts had mixed reviews of the simulator's FTA and its suitability for use in simulation. Unexpectedly, some positive FTA was found for several tasks where the simulator lacked functionality. By developing a detailed list of specific tasks required to complete a clinical procedure, and surveying experts on the simulator's response to those actions, educators can gain insight into the simulator's clinical accuracy and suitability. Unexpected of positive FTA ratings of function deficits suggest that further revision of the survey method is required.

  18. Influence of mesh structure on 2D full shallow water equations and SCS Curve Number simulation of rainfall/runoff events

    NASA Astrophysics Data System (ADS)

    Caviedes-Voullième, Daniel; García-Navarro, Pilar; Murillo, Javier

    2012-07-01

    SummaryHydrological simulation of rain-runoff processes is often performed with lumped models which rely on calibration to generate storm hydrographs and study catchment response to rain. In this paper, a distributed, physically-based numerical model is used for runoff simulation in a mountain catchment. This approach offers two advantages. The first is that by using shallow-water equations for runoff flow, there is less freedom to calibrate routing parameters (as compared to, for example, synthetic hydrograph methods). The second, is that spatial distributions of water depth and velocity can be obtained. Furthermore, interactions among the various hydrological processes can be modeled in a physically-based approach which may depend on transient and spatially distributed factors. On the other hand, the undertaken numerical approach relies on accurate terrain representation and mesh selection, which also affects significantly the computational cost of the simulations. Hence, we investigate the response of a gauged catchment with this distributed approach. The methodology consists of analyzing the effects that the mesh has on the simulations by using a range of meshes. Next, friction is applied to the model and the response to variations and interaction with the mesh is studied. Finally, a first approach with the well-known SCS Curve Number method is studied to evaluate its behavior when coupled with a shallow-water model for runoff flow. The results show that mesh selection is of great importance, since it may affect the results in a magnitude as large as physical factors, such as friction. Furthermore, results proved to be less sensitive to roughness spatial distribution than to mesh properties. Finally, the results indicate that SCS-CN may not be suitable for simulating hydrological processes together with a shallow-water model.

  19. A new physical model with multilayer architecture for facial expression animation using dynamic adaptive mesh.

    PubMed

    Zhang, Yu; Prakash, Edmond C; Sung, Eric

    2004-01-01

    This paper presents a new physically-based 3D facial model based on anatomical knowledge which provides high fidelity for facial expression animation while optimizing the computation. Our facial model has a multilayer biomechanical structure, incorporating a physically-based approximation to facial skin tissue, a set of anatomically-motivated facial muscle actuators, and underlying skull structure. In contrast to existing mass-spring-damper (MSD) facial models, our dynamic skin model uses the nonlinear springs to directly simulate the nonlinear visco-elastic behavior of soft tissue and a new kind of edge repulsion spring is developed to prevent collapse of the skin model. Different types of muscle models have been developed to simulate distribution of the muscle force applied on the skin due to muscle contraction. The presence of the skull advantageously constrain the skin movements, resulting in more accurate facial deformation and also guides the interactive placement of facial muscles. The governing dynamics are computed using a local semi-implicit ODE solver. In the dynamic simulation, an adaptive refinement automatically adapts the local resolution at which potential inaccuracies are detected depending on local deformation. The method, in effect, ensures the required speedup by concentrating computational time only where needed while ensuring realistic behavior within a predefined error threshold. This mechanism allows more pleasing animation results to be produced at a reduced computational cost.

  20. Hierarchical optimization for neutron scattering problems

    DOE PAGES

    Bao, Feng; Archibald, Rick; Bansal, Dipanshu; ...

    2016-03-14

    In this study, we present a scalable optimization method for neutron scattering problems that determines confidence regions of simulation parameters in lattice dynamics models used to fit neutron scattering data for crystalline solids. The method uses physics-based hierarchical dimension reduction in both the computational simulation domain and the parameter space. We demonstrate for silicon that after a few iterations the method converges to parameters values (interatomic force-constants) computed with density functional theory simulations.

  1. Hierarchical optimization for neutron scattering problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Feng; Archibald, Rick; Bansal, Dipanshu

    In this study, we present a scalable optimization method for neutron scattering problems that determines confidence regions of simulation parameters in lattice dynamics models used to fit neutron scattering data for crystalline solids. The method uses physics-based hierarchical dimension reduction in both the computational simulation domain and the parameter space. We demonstrate for silicon that after a few iterations the method converges to parameters values (interatomic force-constants) computed with density functional theory simulations.

  2. Distributed Web-Based Expert System for Launch Operations

    NASA Technical Reports Server (NTRS)

    Bardina, Jorge E.; Thirumalainambi, Rajkumar

    2005-01-01

    The simulation and modeling of launch operations is based on a representation of the organization of the operations suitable to experiment of the physical, procedural, software, hardware and psychological aspects of space flight operations. The virtual test bed consists of a weather expert system to advice on the effect of weather to the launch operations. It also simulates toxic gas dispersion model, and the risk impact on human health. Since all modeling and simulation is based on the internet, it could reduce the cost of operations of launch and range safety by conducting extensive research before a particular launch. Each model has an independent decision making module to derive the best decision for launch.

  3. Capturing readiness to learn and collaboration as explored with an interprofessional simulation scenario: A mixed-methods research study.

    PubMed

    Rossler, Kelly L; Kimble, Laura P

    2016-01-01

    Didactic lecture does not lend itself to teaching interprofessional collaboration. High-fidelity human patient simulation with a focus on clinical situations/scenarios is highly conducive to interprofessional education. Consequently, a need for research supporting the incorporation of interprofessional education with high-fidelity patient simulation based technology exists. The purpose of this study was to explore readiness for interprofessional learning and collaboration among pre-licensure health professions students participating in an interprofessional education human patient simulation experience. Using a mixed methods convergent parallel design, a sample of 53 pre-licensure health professions students enrolled in nursing, respiratory therapy, health administration, and physical therapy programs within a college of health professions participated in high-fidelity human patient simulation experiences. Perceptions of interprofessional learning and collaboration were measured with the revised Readiness for Interprofessional Learning Scale (RIPLS) and the Health Professional Collaboration Scale (HPCS). Focus groups were conducted during the simulation post-briefing to obtain qualitative data. Statistical analysis included non-parametric, inferential statistics. Qualitative data were analyzed using a phenomenological approach. Pre- and post-RIPLS demonstrated pre-licensure health professions students reported significantly more positive attitudes about readiness for interprofessional learning post-simulation in the areas of team work and collaboration, negative professional identity, and positive professional identity. Post-simulation HPCS revealed pre-licensure nursing and health administration groups reported greater health collaboration during simulation than physical therapy students. Qualitative analysis yielded three themes: "exposure to experiential learning," "acquisition of interactional relationships," and "presence of chronology in role preparation." Quantitative and qualitative data converged around the finding that physical therapy students had less positive perceptions of the experience because they viewed physical therapy practice as occurring one-on-one rather than in groups. Findings support that pre-licensure students are ready to engage in interprofessional education through exposure to an experiential format such as high-fidelity human patient simulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Providing Interactive Access to Cave Geology for All Students, Regardless of Physical Ability

    NASA Astrophysics Data System (ADS)

    Atchison, C. `; Stredney, D.; Hittle, B.; Irving, K.; Toomey, R. S., III; Lemon, N. N.; Price, A.; Kerwin, T.

    2013-12-01

    Based on an identified need to accommodate students with mobility impairments in field-based instructional experiences, this presentation will discuss current efforts to promote participation, broaden diversity, and impart a historical perspective in the geosciences through the use of an interactive virtual environment. Developed through the integration of emerging simulation technologies, this prototypical virtual environment is created from LIDAR data of the Historic Tour route of Mammoth Cave National Park. The educational objectives of the simulation focus on four primary locations within the tour route that provide evidence of the hydrologic impact on the cave and karst formation. The overall objective is to provide a rich experience of a geological field-based learning for all students, regardless of their physical abilities. Employing a virtual environment that interchangeably uses two and three-dimensional representation of geoscience content, this synthetic field-based cave and karst module will provide an opportunity to assess the effectiveness in engaging the student community, and its efficacy in the curriculum when used as an alternative representation of a traditional field experience. The expected outcome is that based on the level of interactivity, the simulated environment will provide adequate pedagogical representation for content transfer without the need for physical experience in the uncontrolled field environment. Additionally, creating such an environment will impact all able-bodied students by providing supplemental resources that can both precede a traditional field experience and allow for students to re-examine a field site long after a the field experience, in both current formal and informal educational settings.

  5. Physical Models and Virtual Reality Simulators in Otolaryngology.

    PubMed

    Javia, Luv; Sardesai, Maya G

    2017-10-01

    The increasing role of simulation in the medical education of future otolaryngologists has followed suit with other surgical disciplines. Simulators make it possible for the resident to explore and learn in a safe and less stressful environment. The various subspecialties in otolaryngology use physical simulators and virtual-reality simulators. Although physical simulators allow the operator to make direct contact with its components, virtual-reality simulators allow the operator to interact with an environment that is computer generated. This article gives an overview of the various types of physical simulators and virtual-reality simulators used in otolaryngology that have been reported in the literature. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Entangling spin-spin interactions of ions in individually controlled potential wells

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew; Colombe, Yves; Brown, Kenton; Knill, Emanuel; Leibfried, Dietrich; Wineland, David

    2014-03-01

    Physical systems that cannot be modeled with classical computers appear in many different branches of science, including condensed-matter physics, statistical mechanics, high-energy physics, atomic physics and quantum chemistry. Despite impressive progress on the control and manipulation of various quantum systems, implementation of scalable devices for quantum simulation remains a formidable challenge. As one approach to scalability in simulation, here we demonstrate an elementary building-block of a configurable quantum simulator based on atomic ions. Two ions are trapped in separate potential wells that can individually be tailored to emulate a number of different spin-spin couplings mediated by the ions' Coulomb interaction together with classical laser and microwave fields. We demonstrate deterministic tuning of this interaction by independent control of the local wells and emulate a particular spin-spin interaction to entangle the internal states of the two ions with 0.81(2) fidelity. Extension of the building-block demonstrated here to a 2D-network, which ion-trap micro-fabrication processes enable, may provide a new quantum simulator architecture with broad flexibility in designing and scaling the arrangement of ions and their mutual interactions. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), ONR, and the NIST Quantum Information Program.

  7. Simulation of Atmospheric-Entry Capsules in the Subsonic Regime

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Childs, Robert E.; Garcia, Joseph A.

    2015-01-01

    The accuracy of Computational Fluid Dynamics predictions of subsonic capsule aerodynamics is examined by comparison against recent NASA wind-tunnel data at high-Reynolds-number flight conditions. Several aspects of numerical and physical modeling are considered, including inviscid numerical scheme, mesh adaptation, rough-wall modeling, rotation and curvature corrections for eddy-viscosity models, and Detached-Eddy Simulations of the unsteady wake. All of these are considered in isolation against relevant data where possible. The results indicate that an improved predictive capability is developed by considering physics-based approaches and validating the results against flight-relevant experimental data.

  8. Physical Simulation of a Prolonged Plasma-Plume Exposure of a Space Debris Object

    NASA Astrophysics Data System (ADS)

    Shuvalov, V. A.; Gorev, N. B.; Tokmak, N. A.; Kochubei, G. S.

    2018-05-01

    A methodology has been developed for the physical (laboratory) simulation of the prolonged exposure of a space debris object to high-energy ions of a plasma plume for removing the object into low-Earth orbit with its subsequent burning in the Earth's atmosphere. The methodology is based on the equivalence criteria of two modes of exposure (in the Earth's ionosphere and in the setup) and the procedure for accelerated resource tests in terms of the sputtering of the space debris material and its deceleration by a plasma jet in the Earth's ionosphere.

  9. Contributions of numerical simulation data bases to the physics, modeling and measurement of turbulence

    NASA Technical Reports Server (NTRS)

    Moin, Parviz; Spalart, Philippe R.

    1987-01-01

    The use of simulation data bases for the examination of turbulent flows is an effective research tool. Studies of the structure of turbulence have been hampered by the limited number of probes and the impossibility of measuring all desired quantities. Also, flow visualization is confined to the observation of passive markers with limited field of view and contamination caused by time-history effects. Computer flow fields are a new resource for turbulence research, providing all the instantaneous flow variables in three-dimensional space. Simulation data bases also provide much-needed information for phenomenological turbulence modeling. Three dimensional velocity and pressure fields from direct simulations can be used to compute all the terms in the transport equations for the Reynolds stresses and the dissipation rate. However, only a few, geometrically simple flows have been computed by direct numerical simulation, and the inventory of simulation does not fully address the current modeling needs in complex turbulent flows. The availability of three-dimensional flow fields also poses challenges in developing new techniques for their analysis, techniques based on experimental methods, some of which are used here for the analysis of direct-simulation data bases in studies of the mechanics of turbulent flows.

  10. Integrating non-colocated well and geophysical data to capture subsurface heterogeneity at an aquifer recharge and recovery site

    NASA Astrophysics Data System (ADS)

    Gottschalk, Ian P.; Hermans, Thomas; Knight, Rosemary; Caers, Jef; Cameron, David A.; Regnery, Julia; McCray, John E.

    2017-12-01

    Geophysical data have proven to be very useful for lithological characterization. However, quantitatively integrating the information gained from acquiring geophysical data generally requires colocated lithological and geophysical data for constructing a rock-physics relationship. In this contribution, the issue of integrating noncolocated geophysical and lithological data is addressed, and the results are applied to simulate groundwater flow in a heterogeneous aquifer in the Prairie Waters Project North Campus aquifer recharge site, Colorado. Two methods of constructing a rock-physics transform between electrical resistivity tomography (ERT) data and lithology measurements are assessed. In the first approach, a maximum likelihood estimation (MLE) is used to fit a bimodal lognormal distribution to horizontal crosssections of the ERT resistivity histogram. In the second approach, a spatial bootstrap is applied to approximate the rock-physics relationship. The rock-physics transforms provide soft data for multiple point statistics (MPS) simulations. Subsurface models are used to run groundwater flow and tracer test simulations. Each model's uncalibrated, predicted breakthrough time is evaluated based on its agreement with measured subsurface travel time values from infiltration basins to selected groundwater recovery wells. We find that incorporating geophysical information into uncalibrated flow models reduces the difference with observed values, as compared to flow models without geophysical information incorporated. The integration of geophysical data also narrows the variance of predicted tracer breakthrough times substantially. Accuracy is highest and variance is lowest in breakthrough predictions generated by the MLE-based rock-physics transform. Calibrating the ensemble of geophysically constrained models would help produce a suite of realistic flow models for predictive purposes at the site. We find that the success of breakthrough predictions is highly sensitive to the definition of the rock-physics transform; it is therefore important to model this transfer function accurately.

  11. Integration of Advanced Probabilistic Analysis Techniques with Multi-Physics Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetiner, Mustafa Sacit; none,; Flanagan, George F.

    2014-07-30

    An integrated simulation platform that couples probabilistic analysis-based tools with model-based simulation tools can provide valuable insights for reactive and proactive responses to plant operating conditions. The objective of this work is to demonstrate the benefits of a partial implementation of the Small Modular Reactor (SMR) Probabilistic Risk Assessment (PRA) Detailed Framework Specification through the coupling of advanced PRA capabilities and accurate multi-physics plant models. Coupling a probabilistic model with a multi-physics model will aid in design, operations, and safety by providing a more accurate understanding of plant behavior. This represents the first attempt at actually integrating these two typesmore » of analyses for a control system used for operations, on a faster than real-time basis. This report documents the development of the basic communication capability to exchange data with the probabilistic model using Reliability Workbench (RWB) and the multi-physics model using Dymola. The communication pathways from injecting a fault (i.e., failing a component) to the probabilistic and multi-physics models were successfully completed. This first version was tested with prototypic models represented in both RWB and Modelica. First, a simple event tree/fault tree (ET/FT) model was created to develop the software code to implement the communication capabilities between the dynamic-link library (dll) and RWB. A program, written in C#, successfully communicates faults to the probabilistic model through the dll. A systems model of the Advanced Liquid-Metal Reactor–Power Reactor Inherently Safe Module (ALMR-PRISM) design developed under another DOE project was upgraded using Dymola to include proper interfaces to allow data exchange with the control application (ConApp). A program, written in C+, successfully communicates faults to the multi-physics model. The results of the example simulation were successfully plotted.« less

  12. Capstone: A Geometry-Centric Platform to Enable Physics-Based Simulation and Design of Systems

    DTIC Science & Technology

    2015-10-05

    foundation for the air-vehicle early design tool DaVinci being developed by CREATETM-AV project to enable development of associative models of air...CREATETM-AV solvers Kestrel [11] and Helios [16,17]. Furthermore, it is the foundation for the CREATETM-AV’s DaVinci [9] tool that provides a... Tools and Environments (CREATETM) program [6] aimed at developing a suite of high- performance physics-based computational tools addressing the needs

  13. Physics of epi-thermal boron neutron capture therapy (epi-thermal BNCT).

    PubMed

    Seki, Ryoichi; Wakisaka, Yushi; Morimoto, Nami; Takashina, Masaaki; Koizumi, Masahiko; Toki, Hiroshi; Fukuda, Mitsuhiro

    2017-12-01

    The physics of epi-thermal neutrons in the human body is discussed in the effort to clarify the nature of the unique radiologic properties of boron neutron capture therapy (BNCT). This discussion leads to the computational method of Monte Carlo simulation in BNCT. The method is discussed through two examples based on model phantoms. The physics is kept at an introductory level in the discussion in this tutorial review.

  14. Development of a Space Radiation Monte-Carlo Computer Simulation Based on the FLUKE and Root Codes

    NASA Technical Reports Server (NTRS)

    Pinsky, L. S.; Wilson, T. L.; Ferrari, A.; Sala, Paola; Carminati, F.; Brun, R.

    2001-01-01

    The radiation environment in space is a complex problem to model. Trying to extrapolate the projections of that environment into all areas of the internal spacecraft geometry is even more daunting. With the support of our CERN colleagues, our research group in Houston is embarking on a project to develop a radiation transport tool that is tailored to the problem of taking the external radiation flux incident on any particular spacecraft and simulating the evolution of that flux through a geometrically accurate model of the spacecraft material. The output will be a prediction of the detailed nature of the resulting internal radiation environment within the spacecraft as well as its secondary albedo. Beyond doing the physics transport of the incident flux, the software tool we are developing will provide a self-contained stand-alone object-oriented analysis and visualization infrastructure. It will also include a graphical user interface and a set of input tools to facilitate the simulation of space missions in terms of nominal radiation models and mission trajectory profiles. The goal of this project is to produce a code that is considerably more accurate and user-friendly than existing Monte-Carlo-based tools for the evaluation of the space radiation environment. Furthermore, the code will be an essential complement to the currently existing analytic codes in the BRYNTRN/HZETRN family for the evaluation of radiation shielding. The code will be directly applicable to the simulation of environments in low earth orbit, on the lunar surface, on planetary surfaces (including the Earth) and in the interplanetary medium such as on a transit to Mars (and even in the interstellar medium). The software will include modules whose underlying physics base can continue to be enhanced and updated for physics content, as future data become available beyond the timeframe of the initial development now foreseen. This future maintenance will be available from the authors of FLUKA as part of their continuing efforts to support the users of the FLUKA code within the particle physics community. In keeping with the spirit of developing an evolving physics code, we are planning as part of this project, to participate in the efforts to validate the core FLUKA physics in ground-based accelerator test runs. The emphasis of these test runs will be the physics of greatest interest in the simulation of the space radiation environment. Such a tool will be of great value to planners, designers and operators of future space missions, as well as for the design of the vehicles and habitats to be used on such missions. It will also be of aid to future experiments of various kinds that may be affected at some level by the ambient radiation environment, or in the analysis of hybrid experiment designs that have been discussed for space-based astronomy and astrophysics. The tool will be of value to the Life Sciences personnel involved in the prediction and measurement of radiation doses experienced by the crewmembers on such missions. In addition, the tool will be of great use to the planners of experiments to measure and evaluate the space radiation environment itself. It can likewise be useful in the analysis of safe havens, hazard migration plans, and NASA's call for new research in composites and to NASA engineers modeling the radiation exposure of electronic circuits. This code will provide an important complimentary check on the predictions of analytic codes such as BRYNTRN/HZETRN that are presently used for many similar applications, and which have shortcomings that are more easily overcome with Monte Carlo type simulations. Finally, it is acknowledged that there are similar efforts based around the use of the GEANT4 Monte-Carlo transport code currently under development at CERN. It is our intention to make our software modular and sufficiently flexible to allow the parallel use of either FLUKA or GEANT4 as the physics transport engine.

  15. Grounded Learning Experience: Helping Students Learn Physics through Visuo-Haptic Priming and Instruction

    NASA Astrophysics Data System (ADS)

    Huang, Shih-Chieh Douglas

    In this dissertation, I investigate the effects of a grounded learning experience on college students' mental models of physics systems. The grounded learning experience consisted of a priming stage and an instruction stage, and within each stage, one of two different types of visuo-haptic representation was applied: visuo-gestural simulation (visual modality and gestures) and visuo-haptic simulation (visual modality, gestures, and somatosensory information). A pilot study involving N = 23 college students examined how using different types of visuo-haptic representation in instruction affected people's mental model construction for physics systems. Participants' abilities to construct mental models were operationalized through their pretest-to-posttest gain scores for a basic physics system and their performance on a transfer task involving an advanced physics system. Findings from this pilot study revealed that, while both simulations significantly improved participants' mental modal construction for physics systems, visuo-haptic simulation was significantly better than visuo-gestural simulation. In addition, clinical interviews suggested that participants' mental model construction for physics systems benefited from receiving visuo-haptic simulation in a tutorial prior to the instruction stage. A dissertation study involving N = 96 college students examined how types of visuo-haptic representation in different applications support participants' mental model construction for physics systems. Participant's abilities to construct mental models were again operationalized through their pretest-to-posttest gain scores for a basic physics system and their performance on a transfer task involving an advanced physics system. Participants' physics misconceptions were also measured before and after the grounded learning experience. Findings from this dissertation study not only revealed that visuo-haptic simulation was significantly more effective in promoting mental model construction and remedying participants' physics misconceptions than visuo-gestural simulation, they also revealed that visuo-haptic simulation was more effective during the priming stage than during the instruction stage. Interestingly, the effects of visuo-haptic simulation in priming and visuo-haptic simulation in instruction on participants' pretest-to-posttest gain scores for a basic physics system appeared additive. These results suggested that visuo-haptic simulation is effective in physics learning, especially when it is used during the priming stage.

  16. Physics-Based Modeling of Electric Operation, Heat Transfer, and Scrap Melting in an AC Electric Arc Furnace

    NASA Astrophysics Data System (ADS)

    Opitz, Florian; Treffinger, Peter

    2016-04-01

    Electric arc furnaces (EAF) are complex industrial plants whose actual behavior depends upon numerous factors. Due to its energy intensive operation, the EAF process has always been subject to optimization efforts. For these reasons, several models have been proposed in literature to analyze and predict different modes of operation. Most of these models focused on the processes inside the vessel itself. The present paper introduces a dynamic, physics-based model of a complete EAF plant which consists of the four subsystems vessel, electric system, electrode regulation, and off-gas system. Furthermore the solid phase is not treated to be homogenous but a simple spatial discretization is employed. Hence it is possible to simulate the energy input by electric arcs and fossil fuel burners depending on the state of the melting progress. The model is implemented in object-oriented, equation-based language Modelica. The simulation results are compared to literature data.

  17. The Design and Evaluation of a Simulation-Based Behavior Change Intervention for Individuals with Type 2 Diabetes

    ERIC Educational Resources Information Center

    Gibson, Bryan Smith

    2012-01-01

    This dissertation describes a line of research that addresses translational research questions related to the use of computerized simulation to affect the knowledge, beliefs, motivation and self-management behaviors of individuals with chronic disease. The specific research projects focus on type 2 diabetes (T2DM) and physical activity as…

  18. Laptops and Diesel Generators: Introducing PhET Simulations to Teachers in Uganda

    ERIC Educational Resources Information Center

    McKagan, Sam

    2010-01-01

    This article describes workshops for high school physics teachers in Uganda on inquiry-based teaching and PhET simulations. I hope it increases awareness of the conditions teachers face in developing countries and inspires others to give similar workshops. This work demonstrates what is possible with some concerted, but not extraordinary, effort.

  19. A physically-based channel-modeling framework integrating HEC-RAS sediment transport capabilities and the USDA-ARS bank-stability and toe-erosion model (BSTEM)

    USDA-ARS?s Scientific Manuscript database

    Classical, one-dimensional, mobile bed, sediment-transport models simulate vertical channel adjustment, raising or lowering cross-section node elevations to simulate erosion or deposition. This approach does not account for bank erosion processes including toe scour and mass failure. In many systems...

  20. Short-Term Forecasts Using NU-WRF for the Winter Olympics 2018

    NASA Technical Reports Server (NTRS)

    Srikishen, Jayanthi; Case, Jonathan L.; Petersen, Walter A.; Iguchi, Takamichi; Tao, Wei-Kuo; Zavodsky, Bradley T.; Molthan, Andrew

    2017-01-01

    The NASA Unified-Weather Research and Forecasting model (NU-WRF) will be included for testing and evaluation in the forecast demonstration project (FDP) of the International Collaborative Experiment -PyeongChang 2018 Olympic and Paralympic (ICE-POP) Winter Games. An international array of radar and supporting ground based observations together with various forecast and now-cast models will be operational during ICE-POP. In conjunction with personnel from NASA's Goddard Space Flight Center, the NASA Short-term Prediction Research and Transition (SPoRT) Center is developing benchmark simulations for a real-time NU-WRF configuration to run during the FDP. ICE-POP observational datasets will be used to validate model simulations and investigate improved model physics and performance for prediction of snow events during the research phase (RDP) of the project The NU-WRF model simulations will also support NASA Global Precipitation Measurement (GPM) Mission ground-validation physical and direct validation activities in relation to verifying, testing and improving satellite-based snowfall retrieval algorithms over complex terrain.

  1. Object-Oriented/Data-Oriented Design of a Direct Simulation Monte Carlo Algorithm

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.

    2014-01-01

    Over the past decade, there has been much progress towards improved phenomenological modeling and algorithmic updates for the direct simulation Monte Carlo (DSMC) method, which provides a probabilistic physical simulation of gas Rows. These improvements have largely been based on the work of the originator of the DSMC method, Graeme Bird. Of primary importance are improved chemistry, internal energy, and physics modeling and a reduction in time to solution. These allow for an expanded range of possible solutions In altitude and velocity space. NASA's current production code, the DSMC Analysis Code (DAC), is well-established and based on Bird's 1994 algorithms written in Fortran 77 and has proven difficult to upgrade. A new DSMC code is being developed in the C++ programming language using object-oriented and data-oriented design paradigms to facilitate the inclusion of the recent improvements and future development activities. The development efforts on the new code, the Multiphysics Algorithm with Particles (MAP), are described, and performance comparisons are made with DAC.

  2. Modeling and simulation of dust behaviors behind a moving vehicle

    NASA Astrophysics Data System (ADS)

    Wang, Jingfang

    Simulation of physically realistic complex dust behaviors is a difficult and attractive problem in computer graphics. A fast, interactive and visually convincing model of dust behaviors behind moving vehicles is very useful in computer simulation, training, education, art, advertising, and entertainment. In my dissertation, an experimental interactive system has been implemented for the simulation of dust behaviors behind moving vehicles. The system includes physically-based models, particle systems, rendering engines and graphical user interface (GUI). I have employed several vehicle models including tanks, cars, and jeeps to test and simulate in different scenarios and conditions. Calm weather, winding condition, vehicle turning left or right, and vehicle simulation controlled by users from the GUI are all included. I have also tested the factors which play against the physical behaviors and graphics appearances of the dust particles through GUI or off-line scripts. The simulations are done on a Silicon Graphics Octane station. The animation of dust behaviors is achieved by physically-based modeling and simulation. The flow around a moving vehicle is modeled using computational fluid dynamics (CFD) techniques. I implement a primitive variable and pressure-correction approach to solve the three dimensional incompressible Navier Stokes equations in a volume covering the moving vehicle. An alternating- direction implicit (ADI) method is used for the solution of the momentum equations, with a successive-over- relaxation (SOR) method for the solution of the Poisson pressure equation. Boundary conditions are defined and simplified according to their dynamic properties. The dust particle dynamics is modeled using particle systems, statistics, and procedure modeling techniques. Graphics and real-time simulation techniques, such as dynamics synchronization, motion blur, blending, and clipping have been employed in the rendering to achieve realistic appearing dust behaviors. In addition, I introduce a temporal smoothing technique to eliminate the jagged effect caused by large simulation time. Several algorithms are used to speed up the simulation. For example, pre-calculated tables and display lists are created to replace some of the most commonly used functions, scripts and processes. The performance study shows that both time and space costs of the algorithms are linear in the number of particles in the system. On a Silicon Graphics Octane, three vehicles with 20,000 particles run at 6-8 frames per second on average. This speed does not include the extra calculations of convergence of the numerical integration for fluid dynamics which usually takes about 4-5 minutes to achieve steady state.

  3. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems.

    PubMed

    Mahadevan, Vijay S; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul

    2014-08-06

    An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.

  4. A Physics-Based Vibrotactile Feedback Library for Collision Events.

    PubMed

    Park, Gunhyuk; Choi, Seungmoon

    2017-01-01

    We present PhysVib: a software solution on the mobile platform extending an open-source physics engine in a multi-rate rendering architecture for automatic vibrotactile feedback upon collision events. PhysVib runs concurrently with a physics engine at a low update rate and generates vibrotactile feedback commands at a high update rate based on the simulation results of the physics engine using an exponentially-decaying sinusoidal model. We demonstrate through a user study that this vibration model is more appropriate to our purpose in terms of perceptual quality than more complex models based on sound synthesis. We also evaluated the perceptual performance of PhysVib by comparing eight vibrotactile rendering methods. Experimental results suggested that PhysVib enables more realistic vibrotactile feedback than the other methods as to perceived similarity to the visual events. PhysVib is an effective solution for providing physically plausible vibrotactile responses while reducing application development time to great extent.

  5. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems

    PubMed Central

    Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; Jain, Rajeev; Obabko, Aleksandr; Smith, Michael; Fischer, Paul

    2014-01-01

    An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in order to reduce the overall numerical uncertainty while leveraging available computational resources. The coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework. PMID:24982250

  6. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE PAGES

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin; ...

    2016-04-01

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Furthermore, numerical simulations demonstrating the efficiency ofmore » JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  7. A simple quantum mechanical treatment of scattering in nanoscale transistors

    NASA Astrophysics Data System (ADS)

    Venugopal, R.; Paulsson, M.; Goasguen, S.; Datta, S.; Lundstrom, M. S.

    2003-05-01

    We present a computationally efficient, two-dimensional quantum mechanical simulation scheme for modeling dissipative electron transport in thin body, fully depleted, n-channel, silicon-on-insulator transistors. The simulation scheme, which solves the nonequilibrium Green's function equations self consistently with Poisson's equation, treats the effect of scattering using a simple approximation inspired by the "Büttiker probes," often used in mesoscopic physics. It is based on an expansion of the active device Hamiltonian in decoupled mode space. Simulation results are used to highlight quantum effects, discuss the physics of scattering and to relate the quantum mechanical quantities used in our model to experimentally measured low field mobilities. Additionally, quantum boundary conditions are rigorously derived and the effects of strong off-equilibrium transport are examined. This paper shows that our approximate treatment of scattering, is an efficient and useful simulation method for modeling electron transport in nanoscale, silicon-on-insulator transistors.

  8. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Steven; Berrill, Mark; Clarno, Kevin

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Furthermore, numerical simulations demonstrating the efficiency ofmore » JFNK and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  9. An assessment of coupling algorithms for nuclear reactor core physics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, Steven, E-mail: hamiltonsp@ornl.gov; Berrill, Mark, E-mail: berrillma@ornl.gov; Clarno, Kevin, E-mail: clarnokt@ornl.gov

    This paper evaluates the performance of multiphysics coupling algorithms applied to a light water nuclear reactor core simulation. The simulation couples the k-eigenvalue form of the neutron transport equation with heat conduction and subchannel flow equations. We compare Picard iteration (block Gauss–Seidel) to Anderson acceleration and multiple variants of preconditioned Jacobian-free Newton–Krylov (JFNK). The performance of the methods are evaluated over a range of energy group structures and core power levels. A novel physics-based approximation to a Jacobian-vector product has been developed to mitigate the impact of expensive on-line cross section processing steps. Numerical simulations demonstrating the efficiency of JFNKmore » and Anderson acceleration relative to standard Picard iteration are performed on a 3D model of a nuclear fuel assembly. Both criticality (k-eigenvalue) and critical boron search problems are considered.« less

  10. Determination of the mechanical and physical properties of cartilage by coupling poroelastic-based finite element models of indentation with artificial neural networks.

    PubMed

    Arbabi, Vahid; Pouran, Behdad; Campoli, Gianni; Weinans, Harrie; Zadpoor, Amir A

    2016-03-21

    One of the most widely used techniques to determine the mechanical properties of cartilage is based on indentation tests and interpretation of the obtained force-time or displacement-time data. In the current computational approaches, one needs to simulate the indentation test with finite element models and use an optimization algorithm to estimate the mechanical properties of cartilage. The modeling procedure is cumbersome, and the simulations need to be repeated for every new experiment. For the first time, we propose a method for fast and accurate estimation of the mechanical and physical properties of cartilage as a poroelastic material with the aid of artificial neural networks. In our study, we used finite element models to simulate the indentation for poroelastic materials with wide combinations of mechanical and physical properties. The obtained force-time curves are then divided into three parts: the first two parts of the data is used for training and validation of an artificial neural network, while the third part is used for testing the trained network. The trained neural network receives the force-time curves as the input and provides the properties of cartilage as the output. We observed that the trained network could accurately predict the properties of cartilage within the range of properties for which it was trained. The mechanical and physical properties of cartilage could therefore be estimated very fast, since no additional finite element modeling is required once the neural network is trained. The robustness of the trained artificial neural network in determining the properties of cartilage based on noisy force-time data was assessed by introducing noise to the simulated force-time data. We found that the training procedure could be optimized so as to maximize the robustness of the neural network against noisy force-time data. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A Toolkit to Study Sensitivity of the Geant4 Predictions to the Variations of the Physics Model Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fields, Laura; Genser, Krzysztof; Hatcher, Robert

    Geant4 is the leading detector simulation toolkit used in high energy physics to design detectors and to optimize calibration and reconstruction software. It employs a set of carefully validated physics models to simulate interactions of particles with matter across a wide range of interaction energies. These models, especially the hadronic ones, rely largely on directly measured cross-sections and phenomenological predictions with physically motivated parameters estimated by theoretical calculation or measurement. Because these models are tuned to cover a very wide range of possible simulation tasks, they may not always be optimized for a given process or a given material. Thismore » raises several critical questions, e.g. how sensitive Geant4 predictions are to the variations of the model parameters, or what uncertainties are associated with a particular tune of a Geant4 physics model, or a group of models, or how to consistently derive guidance for Geant4 model development and improvement from a wide range of available experimental data. We have designed and implemented a comprehensive, modular, user-friendly software toolkit to study and address such questions. It allows one to easily modify parameters of one or several Geant4 physics models involved in the simulation, and to perform collective analysis of multiple variants of the resulting physics observables of interest and comparison against a variety of corresponding experimental data. Based on modern event-processing infrastructure software, the toolkit offers a variety of attractive features, e.g. flexible run-time configurable workflow, comprehensive bookkeeping, easy to expand collection of analytical components. Design, implementation technology, and key functionalities of the toolkit are presented and illustrated with results obtained with Geant4 key hadronic models.« less

  12. Multi-objective optimisation and decision-making of space station logistics strategies

    NASA Astrophysics Data System (ADS)

    Zhu, Yue-he; Luo, Ya-zhong

    2016-10-01

    Space station logistics strategy optimisation is a complex engineering problem with multiple objectives. Finding a decision-maker-preferred compromise solution becomes more significant when solving such a problem. However, the designer-preferred solution is not easy to determine using the traditional method. Thus, a hybrid approach that combines the multi-objective evolutionary algorithm, physical programming, and differential evolution (DE) algorithm is proposed to deal with the optimisation and decision-making of space station logistics strategies. A multi-objective evolutionary algorithm is used to acquire a Pareto frontier and help determine the range parameters of the physical programming. Physical programming is employed to convert the four-objective problem into a single-objective problem, and a DE algorithm is applied to solve the resulting physical programming-based optimisation problem. Five kinds of objective preference are simulated and compared. The simulation results indicate that the proposed approach can produce good compromise solutions corresponding to different decision-makers' preferences.

  13. The effect of gas physics on the halo mass function

    NASA Astrophysics Data System (ADS)

    Stanek, R.; Rudd, D.; Evrard, A. E.

    2009-03-01

    Cosmological tests based on cluster counts require accurate calibration of the space density of massive haloes, but most calibrations to date have ignored complex gas physics associated with halo baryons. We explore the sensitivity of the halo mass function to baryon physics using two pairs of gas-dynamic simulations that are likely to bracket the true behaviour. Each pair consists of a baseline model involving only gravity and shock heating, and a refined physics model aimed at reproducing the observed scaling of the hot, intracluster gas phase. One pair consists of billion-particle resimulations of the original 500h-1Mpc Millennium Simulation of Springel et al., run with the smoothed particle hydrodynamics (SPH) code GADGET-2 and using a refined physics treatment approximated by pre-heating (PH) at high redshift. The other pair are high-resolution simulations from the adaptive-mesh refinement code ART, for which the refined treatment includes cooling, star formation and supernova feedback (CSF). We find that, although the mass functions of the gravity-only (GO) treatments are consistent with the recent calibration of Tinker et al. (2008), both pairs of simulations with refined baryon physics show significant deviations. Relative to the GO case, the masses of ~1014h-1Msolar haloes in the PH and CSF treatments are shifted by the averages of -15 +/- 1 and +16 +/- 2 per cent, respectively. These mass shifts cause ~30 per cent deviations in number density relative to the Tinker function, significantly larger than the 5 per cent statistical uncertainty of that calibration.

  14. Development of Educational Materials to Enhance Students‧ Motivation using the ODE Physics Engine

    NASA Astrophysics Data System (ADS)

    Demura, Kosei

    This paper presents educational materials, a simulator and a textbook, using the Open Dynamics Engine (ODE) . ODE is an open source, fast, robust and industrial quality library for a real-time and interactive simulation of rigid body dynamics. ODE is suitable for developing educational materials. However, there had been no book which introduced how to use ODE to make simulators written in Japanese. Thus I wrote a textbook which gave basic robotics and how to make simulators based on ODE. Students are able to tackle the subject with interest using the textbook and the simulators.

  15. The Challenge of Grounding Planning in Simulation with an Interactive Model Development Environment

    NASA Technical Reports Server (NTRS)

    Clement, Bradley J.; Frank, Jeremy D.; Chachere, John M.; Smith, Tristan B.; Swanson, Keith J.

    2011-01-01

    A principal obstacle to fielding automated planning systems is the difficulty of modeling. Physical systems are modeled conventionally based on specification documents and the modeler's understanding of the system. Thus, the model is developed in a way that is disconnected from the system's actual behavior and is vulnerable to manual error. Another obstacle to fielding planners is testing and validation. For a space mission, generated plans must be validated often by translating them into command sequences that are run in a simulation testbed. Testing in this way is complex and onerous because of the large number of possible plans and states of the spacecraft. Though, if used as a source of domain knowledge, the simulator can ease validation. This paper poses a challenge: to ground planning models in the system physics represented by simulation. A proposed, interactive model development environment illustrates the integration of planning and simulation to meet the challenge. This integration reveals research paths for automated model construction and validation.

  16. Alternative modeling methods for plasma-based Rf ion sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veitzer, Seth A., E-mail: veitzer@txcorp.com; Kundrapu, Madhusudhan, E-mail: madhusnk@txcorp.com; Stoltz, Peter H., E-mail: phstoltz@txcorp.com

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H{sup −} source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. Inmore » particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H{sup −} ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models for the SNS source and present simulation results demonstrating plasma evolution over many Rf periods for different plasma temperatures. We perform the calculations in parallel, on unstructured meshes, using finite-volume solvers in order to obtain results in reasonable time.« less

  17. Alternative modeling methods for plasma-based Rf ion sources.

    PubMed

    Veitzer, Seth A; Kundrapu, Madhusudhan; Stoltz, Peter H; Beckwith, Kristian R C

    2016-02-01

    Rf-driven ion sources for accelerators and many industrial applications benefit from detailed numerical modeling and simulation of plasma characteristics. For instance, modeling of the Spallation Neutron Source (SNS) internal antenna H(-) source has indicated that a large plasma velocity is induced near bends in the antenna where structural failures are often observed. This could lead to improved designs and ion source performance based on simulation and modeling. However, there are significant separations of time and spatial scales inherent to Rf-driven plasma ion sources, which makes it difficult to model ion sources with explicit, kinetic Particle-In-Cell (PIC) simulation codes. In particular, if both electron and ion motions are to be explicitly modeled, then the simulation time step must be very small, and total simulation times must be large enough to capture the evolution of the plasma ions, as well as extending over many Rf periods. Additional physics processes such as plasma chemistry and surface effects such as secondary electron emission increase the computational requirements in such a way that even fully parallel explicit PIC models cannot be used. One alternative method is to develop fluid-based codes coupled with electromagnetics in order to model ion sources. Time-domain fluid models can simulate plasma evolution, plasma chemistry, and surface physics models with reasonable computational resources by not explicitly resolving electron motions, which thereby leads to an increase in the time step. This is achieved by solving fluid motions coupled with electromagnetics using reduced-physics models, such as single-temperature magnetohydrodynamics (MHD), extended, gas dynamic, and Hall MHD, and two-fluid MHD models. We show recent results on modeling the internal antenna H(-) ion source for the SNS at Oak Ridge National Laboratory using the fluid plasma modeling code USim. We compare demonstrate plasma temperature equilibration in two-temperature MHD models for the SNS source and present simulation results demonstrating plasma evolution over many Rf periods for different plasma temperatures. We perform the calculations in parallel, on unstructured meshes, using finite-volume solvers in order to obtain results in reasonable time.

  18. Gypsies in the palace: Experimentalist's view on the use of 3-D physics-based simulation of hillslope hydrological response

    USGS Publications Warehouse

    James, A.L.; McDonnell, Jeffery J.; Tromp-Van Meerveld, I.; Peters, N.E.

    2010-01-01

    As a fundamental unit of the landscape, hillslopes are studied for their retention and release of water and nutrients across a wide range of ecosystems. The understanding of these near-surface processes is relevant to issues of runoff generation, groundwater-surface water interactions, catchment export of nutrients, dissolved organic carbon, contaminants (e.g. mercury) and ultimately surface water health. We develop a 3-D physics-based representation of the Panola Mountain Research Watershed experimental hillslope using the TOUGH2 sub-surface flow and transport simulator. A recent investigation of sub-surface flow within this experimental hillslope has generated important knowledge of threshold rainfall-runoff response and its relation to patterns of transient water table development. This work has identified components of the 3-D sub-surface, such as bedrock topography, that contribute to changing connectivity in saturated zones and the generation of sub-surface stormflow. Here, we test the ability of a 3-D hillslope model (both calibrated and uncalibrated) to simulate forested hillslope rainfall-runoff response and internal transient sub-surface stormflow dynamics. We also provide a transparent illustration of physics-based model development, issues of parameterization, examples of model rejection and usefulness of data types (e.g. runoff, mean soil moisture and transient water table depth) to the model enterprise. Our simulations show the inability of an uncalibrated model based on laboratory and field characterization of soil properties and topography to successfully simulate the integrated hydrological response or the distributed water table within the soil profile. Although not an uncommon result, the failure of the field-based characterized model to represent system behaviour is an important challenge that continues to vex scientists at many scales. We focus our attention particularly on examining the influence of bedrock permeability, soil anisotropy and drainable porosity on the development of patterns of transient groundwater and sub-surface flow. Internal dynamics of transient water table development prove to be essential in determining appropriate model parameterization. ?? 2010 John Wiley & Sons, Ltd.

  19. Software-In-the-Loop based Modeling and Simulation of Unmanned Semi-submersible Vehicle for Performance Verification of Autonomous Navigation

    NASA Astrophysics Data System (ADS)

    Lee, Kwangkook; Jeong, Mijin; Kim, Dong Hun

    2017-12-01

    Since an unmanned semi-submersible is mainly used for the purpose of carrying out dangerous missions in the sea, it is possible to work in a region where it is difficult to access due to safety reasons. In this study, an USV hull design was determined using Myring hull profile, and reinforcement work was performed by designing and implementing inner stiffener member for 3D printing. In order to simulate a sea state 5.0 or more at sea, which is difficult to implement in practice, a regular and irregular wave equation was implemented in Matlab / Simulink. We performed modeling and simulation of semi - submersible simulation based on DMWorks considering the rolling motion in wave. To verify and improve unpredicted errors, we implemented a numeric and physical simulation model of the USV based on software-in-the-loop (SIL) method. This simulation allows shipbuilders to participate in new value-added markets such as engineering, procurement, construction, installation, commissioning, operation, and maintenance for the USV.

  20. AGR-1 Thermocouple Data Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeff Einerson

    2012-05-01

    This report documents an effort to analyze measured and simulated data obtained in the Advanced Gas Reactor (AGR) fuel irradiation test program conducted in the INL's Advanced Test Reactor (ATR) to support the Next Generation Nuclear Plant (NGNP) R&D program. The work follows up on a previous study (Pham and Einerson, 2010), in which statistical analysis methods were applied for AGR-1 thermocouple data qualification. The present work exercises the idea that, while recognizing uncertainties inherent in physics and thermal simulations of the AGR-1 test, results of the numerical simulations can be used in combination with the statistical analysis methods tomore » further improve qualification of measured data. Additionally, the combined analysis of measured and simulation data can generate insights about simulation model uncertainty that can be useful for model improvement. This report also describes an experimental control procedure to maintain fuel target temperature in the future AGR tests using regression relationships that include simulation results. The report is organized into four chapters. Chapter 1 introduces the AGR Fuel Development and Qualification program, AGR-1 test configuration and test procedure, overview of AGR-1 measured data, and overview of physics and thermal simulation, including modeling assumptions and uncertainties. A brief summary of statistical analysis methods developed in (Pham and Einerson 2010) for AGR-1 measured data qualification within NGNP Data Management and Analysis System (NDMAS) is also included for completeness. Chapters 2-3 describe and discuss cases, in which the combined use of experimental and simulation data is realized. A set of issues associated with measurement and modeling uncertainties resulted from the combined analysis are identified. This includes demonstration that such a combined analysis led to important insights for reducing uncertainty in presentation of AGR-1 measured data (Chapter 2) and interpretation of simulation results (Chapter 3). The statistics-based simulation-aided experimental control procedure described for the future AGR tests is developed and demonstrated in Chapter 4. The procedure for controlling the target fuel temperature (capsule peak or average) is based on regression functions of thermocouple readings and other relevant parameters and accounting for possible changes in both physical and thermal conditions and in instrument performance.« less

  1. Real-Time Climate Simulations in the Interactive 3D Game Universe Sandbox ²

    NASA Astrophysics Data System (ADS)

    Goldenson, N. L.

    2014-12-01

    Exploration in an open-ended computer game is an engaging way to explore climate and climate change. Everyone can explore physical models with real-time visualization in the educational simulator Universe Sandbox ² (universesandbox.com/2), which includes basic climate simulations on planets. I have implemented a time-dependent, one-dimensional meridional heat transport energy balance model to run and be adjustable in real time in the midst of a larger simulated system. Universe Sandbox ² is based on the original game - at its core a gravity simulator - with other new physically-based content for stellar evolution, and handling collisions between bodies. Existing users are mostly science enthusiasts in informal settings. We believe that this is the first climate simulation to be implemented in a professionally developed computer game with modern 3D graphical output in real time. The type of simple climate model we've adopted helps us depict the seasonal cycle and the more drastic changes that come from changing the orbit or other external forcings. Users can alter the climate as the simulation is running by altering the star(s) in the simulation, dragging to change orbits and obliquity, adjusting the climate simulation parameters directly or changing other properties like CO2 concentration that affect the model parameters in representative ways. Ongoing visuals of the expansion and contraction of sea ice and snow-cover respond to the temperature calculations, and make it accessible to explore a variety of scenarios and intuitive to understand the output. Variables like temperature can also be graphed in real time. We balance computational constraints with the ability to capture the physical phenomena we wish to visualize, giving everyone access to a simple open-ended meridional energy balance climate simulation to explore and experiment with. The software lends itself to labs at a variety of levels about climate concepts including seasons, the Greenhouse effect, reservoirs and flows, albedo feedback, Snowball Earth, climate sensitivity, and model experiment design. Climate calculations are extended to Mars with some modifications to the Earth climate component, and could be used in lessons about the Mars atmosphere, and exploring scenarios of Mars climate history.

  2. Statistically Modeling I-V Characteristics of CNT-FET with LASSO

    NASA Astrophysics Data System (ADS)

    Ma, Dongsheng; Ye, Zuochang; Wang, Yan

    2017-08-01

    With the advent of internet of things (IOT), the need for studying new material and devices for various applications is increasing. Traditionally we build compact models for transistors on the basis of physics. But physical models are expensive and need a very long time to adjust for non-ideal effects. As the vision for the application of many novel devices is not certain or the manufacture process is not mature, deriving generalized accurate physical models for such devices is very strenuous, whereas statistical modeling is becoming a potential method because of its data oriented property and fast implementation. In this paper, one classical statistical regression method, LASSO, is used to model the I-V characteristics of CNT-FET and a pseudo-PMOS inverter simulation based on the trained model is implemented in Cadence. The normalized relative mean square prediction error of the trained model versus experiment sample data and the simulation results show that the model is acceptable for digital circuit static simulation. And such modeling methodology can extend to general devices.

  3. A new 3D multi-fluid model: a study of kinetic effects and variations of physical conditions in the cometary coma

    NASA Astrophysics Data System (ADS)

    Shou, Yinsi; Combi, Michael R.; Toth, Gabor; Huang, Zhenguang; Jia, Xianzhe; Fougere, Nicolas; Tenishev, Valeriy; Gombosi, T. I.; Hansen, Kenneth C.; Bieler, Andre

    2016-10-01

    Physics-based numerical coma models are desirable whether to interpret the spacecraft observations of the inner coma or to compare with the ground-based observations of the outer coma. In this work, we develop a multi-neutral-fluid model based on BATS-R-US in the University of Michigan's SWMF (Space Weather Modeling Framework), which is capable of computing both the inner and the outer coma and simulating time-variable phenomena. It treats H2O, OH, H2, O, and H as separate fluids and each fluid has its own velocity and temperature, with collisions coupling all fluids together. The self-consistent collisional interactions decrease the velocity differences, re-distribute the excess energy deposited by chemical reactions among all species, and account for the varying heating efficiency under various physical conditions. Recognizing that the fluid approach has limitations in capturing all of the correct physics for certain applications, especially for very low density environment, we applied our multi-fluid coma model to comet 67P/Churyumov-Gerasimenko (CG) at various heliocentric distances and demonstrated that it is able to yield comparable results as the Direct Simulation Monte Carlo (DSMC) model, which is based on a kinetic approach that is valid under these conditions. Therefore, our model may be a powerful alternative to the particle-based model, especially for some computationally intensive simulations. In addition, by running the model with several combinations of production rates and heliocentric distances, we can characterize the cometary H2O expansion speeds and demonstrate the nonlinear effect of production rates or photochemical heating. Our results are also compared to previous modeling work (e.g., Bockelee-Morvan & Crovisier 1987) and remote observations (e.g., Tseng et al. 2007), which serve as further validation of our model. This work has been partially supported by grant NNX14AG84G from the NASA Planetary Atmospheres Program, and US Rosetta contracts JPL #1266313, JPL #1266314 and JPL #1286489.

  4. Model for intensity calculation in electron guns

    NASA Astrophysics Data System (ADS)

    Doyen, O.; De Conto, J. M.; Garnier, J. P.; Lefort, M.; Richard, N.

    2007-04-01

    The calculation of the current in an electron gun structure is one of the main investigations involved in the electron gun physics understanding. In particular, various simulation codes exist but often present some important discrepancies with experiments. Moreover, those differences cannot be reduced because of the lack of physical information in these codes. We present a simple physical three-dimensional model, valid for all kinds of gun geometries. This model presents a better precision than all the other simulation codes and models encountered and allows the real understanding of the electron gun physics. It is based only on the calculation of the Laplace electric field at the cathode, the use of the classical Child-Langmuir's current density, and a geometrical correction to this law. Finally, the intensity versus voltage characteristic curve can be precisely described with only a few physical parameters. Indeed, we have showed that only the shape of the electric field at the cathode without beam, and a distance of an equivalent infinite planar diode gap, govern mainly the electron gun current generation.

  5. Modelling of the Thermo-Physical and Physical Properties for Solidification of Al-Alloys

    NASA Astrophysics Data System (ADS)

    Saunders, N.; Li, X.; Miodownik, A. P.; Schillé, J.-P.

    The thermo-physical and physical properties of the liquid and solid phases are critical components in casting simulations. Such properties include the fraction solid transformed, enthalpy release, thermal conductivity, volume and density, all as a function of temperature. Due to the difficulty in experimentally determining such properties at solidification temperatures, little information exists for multi-component alloys. As part of the development of a new computer program for modelling of materials properties (JMatPro) extensive work has been carried out on the development of sound, physically based models for these properties. Wide ranging results will presented for Al-based alloys, which will include more detailed information concerning the density change of the liquid that intrinsically occurs during solidification due to its change in composition.

  6. Web-Based Computational Chemistry Education with CHARMMing I: Lessons and Tutorial

    PubMed Central

    Miller, Benjamin T.; Singh, Rishi P.; Schalk, Vinushka; Pevzner, Yuri; Sun, Jingjun; Miller, Carrie S.; Boresch, Stefan; Ichiye, Toshiko; Brooks, Bernard R.; Woodcock, H. Lee

    2014-01-01

    This article describes the development, implementation, and use of web-based “lessons” to introduce students and other newcomers to computer simulations of biological macromolecules. These lessons, i.e., interactive step-by-step instructions for performing common molecular simulation tasks, are integrated into the collaboratively developed CHARMM INterface and Graphics (CHARMMing) web user interface (http://www.charmming.org). Several lessons have already been developed with new ones easily added via a provided Python script. In addition to CHARMMing's new lessons functionality, web-based graphical capabilities have been overhauled and are fully compatible with modern mobile web browsers (e.g., phones and tablets), allowing easy integration of these advanced simulation techniques into coursework. Finally, one of the primary objections to web-based systems like CHARMMing has been that “point and click” simulation set-up does little to teach the user about the underlying physics, biology, and computational methods being applied. In response to this criticism, we have developed a freely available tutorial to bridge the gap between graphical simulation setup and the technical knowledge necessary to perform simulations without user interface assistance. PMID:25057988

  7. Web-based computational chemistry education with CHARMMing I: Lessons and tutorial.

    PubMed

    Miller, Benjamin T; Singh, Rishi P; Schalk, Vinushka; Pevzner, Yuri; Sun, Jingjun; Miller, Carrie S; Boresch, Stefan; Ichiye, Toshiko; Brooks, Bernard R; Woodcock, H Lee

    2014-07-01

    This article describes the development, implementation, and use of web-based "lessons" to introduce students and other newcomers to computer simulations of biological macromolecules. These lessons, i.e., interactive step-by-step instructions for performing common molecular simulation tasks, are integrated into the collaboratively developed CHARMM INterface and Graphics (CHARMMing) web user interface (http://www.charmming.org). Several lessons have already been developed with new ones easily added via a provided Python script. In addition to CHARMMing's new lessons functionality, web-based graphical capabilities have been overhauled and are fully compatible with modern mobile web browsers (e.g., phones and tablets), allowing easy integration of these advanced simulation techniques into coursework. Finally, one of the primary objections to web-based systems like CHARMMing has been that "point and click" simulation set-up does little to teach the user about the underlying physics, biology, and computational methods being applied. In response to this criticism, we have developed a freely available tutorial to bridge the gap between graphical simulation setup and the technical knowledge necessary to perform simulations without user interface assistance.

  8. Application of Microsoft's ActiveX and DirectX technologies to the visulization of physical system dynamics

    NASA Astrophysics Data System (ADS)

    Mann, Christopher; Narasimhamurthi, Natarajan

    1998-08-01

    This paper discusses a specific implementation of a web and complement based simulation systems. The overall simulation container is implemented within a web page viewed with Microsoft's Internet Explorer 4.0 web browser. Microsoft's ActiveX/Distributed Component Object Model object interfaces are used in conjunction with the Microsoft DirectX graphics APIs to provide visualization functionality for the simulation. The MathWorks' Matlab computer aided control system design program is used as an ActiveX automation server to provide the compute engine for the simulations.

  9. SIGNUM: A Matlab, TIN-based landscape evolution model

    NASA Astrophysics Data System (ADS)

    Refice, A.; Giachetta, E.; Capolongo, D.

    2012-08-01

    Several numerical landscape evolution models (LEMs) have been developed to date, and many are available as open source codes. Most are written in efficient programming languages such as Fortran or C, but often require additional code efforts to plug in to more user-friendly data analysis and/or visualization tools to ease interpretation and scientific insight. In this paper, we present an effort to port a common core of accepted physical principles governing landscape evolution directly into a high-level language and data analysis environment such as Matlab. SIGNUM (acronym for Simple Integrated Geomorphological Numerical Model) is an independent and self-contained Matlab, TIN-based landscape evolution model, built to simulate topography development at various space and time scales. SIGNUM is presently capable of simulating hillslope processes such as linear and nonlinear diffusion, fluvial incision into bedrock, spatially varying surface uplift which can be used to simulate changes in base level, thrust and faulting, as well as effects of climate changes. Although based on accepted and well-known processes and algorithms in its present version, it is built with a modular structure, which allows to easily modify and upgrade the simulated physical processes to suite virtually any user needs. The code is conceived as an open-source project, and is thus an ideal tool for both research and didactic purposes, thanks to the high-level nature of the Matlab environment and its popularity among the scientific community. In this paper the simulation code is presented together with some simple examples of surface evolution, and guidelines for development of new modules and algorithms are proposed.

  10. Development of a high resolution voxelised head phantom for medical physics applications.

    PubMed

    Giacometti, V; Guatelli, S; Bazalova-Carter, M; Rosenfeld, A B; Schulte, R W

    2017-01-01

    Computational anthropomorphic phantoms have become an important investigation tool for medical imaging and dosimetry for radiotherapy and radiation protection. The development of computational phantoms with realistic anatomical features contribute significantly to the development of novel methods in medical physics. For many applications, it is desirable that such computational phantoms have a real-world physical counterpart in order to verify the obtained results. In this work, we report the development of a voxelised phantom, the HIGH_RES_HEAD, modelling a paediatric head based on the commercial phantom 715-HN (CIRS). HIGH_RES_HEAD is unique for its anatomical details and high spatial resolution (0.18×0.18mm 2 pixel size). The development of such a phantom was required to investigate the performance of a new proton computed tomography (pCT) system, in terms of detector technology and image reconstruction algorithms. The HIGH_RES_HEAD was used in an ad-hoc Geant4 simulation modelling the pCT system. The simulation application was previously validated with respect to experimental results. When compared to a standard spatial resolution voxelised phantom of the same paediatric head, it was shown that in pCT reconstruction studies, the use of the HIGH_RES_HEAD translates into a reduction from 2% to 0.7% of the average relative stopping power difference between experimental and simulated results thus improving the overall quality of the head phantom simulation. The HIGH_RES_HEAD can also be used for other medical physics applications such as treatment planning studies. A second version of the voxelised phantom was created that contains a prototypic base of skull tumour and surrounding organs at risk. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. The AGORA High-resolution Galaxy Simulations Comparison Project II: Isolated disk test

    DOE PAGES

    Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain; ...

    2016-12-20

    Using an isolated Milky Way-mass galaxy simulation, we compare results from 9 state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly-formed stellar clump mass functions show more significant variation (difference by up to a factor of ~3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low density region, and between more diffusive and less diffusive schemes in the high density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Lastly, our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less

  12. The AGORA High-resolution Galaxy Simulations Comparison Project II: Isolated disk test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain

    Using an isolated Milky Way-mass galaxy simulation, we compare results from 9 state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly-formed stellar clump mass functions show more significant variation (difference by up to a factor of ~3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low density region, and between more diffusive and less diffusive schemes in the high density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Lastly, our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less

  13. THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. II. ISOLATED DISK TEST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain

    Using an isolated Milky Way-mass galaxy simulation, we compare results from nine state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt–Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly formed stellar clump mass functions show more significant variation (difference by up to a factor of ∼3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low-density region, and between more diffusive and less diffusive schemes in the high-density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less

  14. Lumped versus distributed thermoregulatory control: results from a three-dimensional dynamic model.

    PubMed

    Werner, J; Buse, M; Foegen, A

    1989-01-01

    In this study we use a three-dimensional model of the human thermal system, the spatial grid of which is 0.5 ... 1.0 cm. The model is based on well-known physical heat-transfer equations, and all parameters of the passive system have definite physical values. According to the number of substantially different areas and organs, 54 spatially different values are attributed to each physical parameter. Compatibility of simulation and experiment was achieved solely on the basis of physical considerations and physiological basic data. The equations were solved using a modification of the alternating direction implicit method. On the basis of this complex description of the passive system close to reality, various lumped and distributed parameter control equations were tested for control of metabolic heat production, blood flow and sweat production. The simplest control equations delivering results on closed-loop control compatible with experimental evidence were determined. It was concluded that it is essential to take into account the spatial distribution of heat production, blood flow and sweat production, and that at least for control of shivering, distributed controller gains different from the pattern of distribution of muscle tissue are required. For sweat production this is not so obvious, so that for simulation of sweating control after homogeneous heat load a lumped parameter control may be justified. Based on these conclusions three-dimensional temperature profiles for cold and heat load and the dynamics for changes of the environmental conditions were computed. In view of the exact simulation of the passive system and the compatibility with experimentally attainable variables there is good evidence that those values extrapolated by the simulation are adequately determined. The model may be used both for further analysis of the real thermoregulatory mechanisms and for special applications in environmental and clinical health care.

  15. Finding the Missing Physics: Simulating Polydisperse Polymer Melts

    NASA Astrophysics Data System (ADS)

    Rorrer, Nichoals; Dorgan, John

    2014-03-01

    A Monte Carlo algorithm has been developed to model polydisperse polymer melts. For the first time, this enables the specification of a predetermined molecular weight distribution for lattice based simulations. It is demonstrated how to map an arbitrary probability distributions onto a discrete number of chains residing on an fcc lattice. The resulting algorithm is able to simulate a wide variety of behaviors for polydisperse systems including confinement effects, shear flow, and parabolic flow. The dynamic version of the algorithm accurately captures Rouse dynamics for short polymer chains, and reptation-like dynamics for longer chain lengths.1 When polydispersity is introduced, smaller Rouse times and broadened the transition between different scaling regimes are observed. Rouse times also decrease under confinement for both polydisperse and monodisperse systems and chain length dependent migration effects are observed. The steady-state version of the algorithm enables the simulation of flow and when polydisperse systems are subject to parabolic (Poiseulle) flow, a migration phenomenon based on chain length is again present. These and other phenomena highlight the importance of including polydispersity in obtaining physically realistic simulations of polymeric melts. 1. Dorgan, J.R.; Rorrer, N.A.; Maupin, C.M., Macromolecules 2012, 45(21), 8833-8840. Work funded by the Fluid Dynamics program of the National Science Foundation under grant CBET-1067707.

  16. Stochastic optimization of GeantV code by use of genetic algorithms

    DOE PAGES

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; ...

    2017-10-01

    GeantV is a complex system based on the interaction of different modules needed for detector simulation, which include transport of particles in fields, physics models simulating their interactions with matter and a geometrical modeler library for describing the detector and locating the particles and computing the path length to the current volume boundary. The GeantV project is recasting the classical simulation approach to get maximum benefit from SIMD/MIMD computational architectures and highly massive parallel systems. This involves finding the appropriate balance between several aspects influencing computational performance (floating-point performance, usage of off-chip memory bandwidth, specification of cache hierarchy, etc.) andmore » handling a large number of program parameters that have to be optimized to achieve the best simulation throughput. This optimization task can be treated as a black-box optimization problem, which requires searching the optimum set of parameters using only point-wise function evaluations. Here, the goal of this study is to provide a mechanism for optimizing complex systems (high energy physics particle transport simulations) with the help of genetic algorithms and evolution strategies as tuning procedures for massive parallel simulations. One of the described approaches is based on introducing a specific multivariate analysis operator that could be used in case of resource expensive or time consuming evaluations of fitness functions, in order to speed-up the convergence of the black-box optimization problem.« less

  17. Stochastic optimization of GeantV code by use of genetic algorithms

    NASA Astrophysics Data System (ADS)

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Behera, S. P.; Brun, R.; Canal, P.; Carminati, F.; Cosmo, G.; Duhem, L.; Elvira, D.; Folger, G.; Gheata, A.; Gheata, M.; Goulas, I.; Hariri, F.; Jun, S. Y.; Konstantinov, D.; Kumawat, H.; Ivantchenko, V.; Lima, G.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.

    2017-10-01

    GeantV is a complex system based on the interaction of different modules needed for detector simulation, which include transport of particles in fields, physics models simulating their interactions with matter and a geometrical modeler library for describing the detector and locating the particles and computing the path length to the current volume boundary. The GeantV project is recasting the classical simulation approach to get maximum benefit from SIMD/MIMD computational architectures and highly massive parallel systems. This involves finding the appropriate balance between several aspects influencing computational performance (floating-point performance, usage of off-chip memory bandwidth, specification of cache hierarchy, etc.) and handling a large number of program parameters that have to be optimized to achieve the best simulation throughput. This optimization task can be treated as a black-box optimization problem, which requires searching the optimum set of parameters using only point-wise function evaluations. The goal of this study is to provide a mechanism for optimizing complex systems (high energy physics particle transport simulations) with the help of genetic algorithms and evolution strategies as tuning procedures for massive parallel simulations. One of the described approaches is based on introducing a specific multivariate analysis operator that could be used in case of resource expensive or time consuming evaluations of fitness functions, in order to speed-up the convergence of the black-box optimization problem.

  18. Stochastic optimization of GeantV code by use of genetic algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amadio, G.; Apostolakis, J.; Bandieramonte, M.

    GeantV is a complex system based on the interaction of different modules needed for detector simulation, which include transport of particles in fields, physics models simulating their interactions with matter and a geometrical modeler library for describing the detector and locating the particles and computing the path length to the current volume boundary. The GeantV project is recasting the classical simulation approach to get maximum benefit from SIMD/MIMD computational architectures and highly massive parallel systems. This involves finding the appropriate balance between several aspects influencing computational performance (floating-point performance, usage of off-chip memory bandwidth, specification of cache hierarchy, etc.) andmore » handling a large number of program parameters that have to be optimized to achieve the best simulation throughput. This optimization task can be treated as a black-box optimization problem, which requires searching the optimum set of parameters using only point-wise function evaluations. Here, the goal of this study is to provide a mechanism for optimizing complex systems (high energy physics particle transport simulations) with the help of genetic algorithms and evolution strategies as tuning procedures for massive parallel simulations. One of the described approaches is based on introducing a specific multivariate analysis operator that could be used in case of resource expensive or time consuming evaluations of fitness functions, in order to speed-up the convergence of the black-box optimization problem.« less

  19. Ground-based simulation of telepresence for materials science experiments. [remote viewing and control of processes aboard Space Station

    NASA Technical Reports Server (NTRS)

    Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce

    1989-01-01

    A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.

  20. Carbon nanotube thin film strain sensor models assembled using nano- and micro-scale imaging

    NASA Astrophysics Data System (ADS)

    Lee, Bo Mi; Loh, Kenneth J.; Yang, Yuan-Sen

    2017-07-01

    Nanomaterial-based thin films, particularly those based on carbon nanotubes (CNT), have brought forth tremendous opportunities for designing next-generation strain sensors. However, their strain sensing properties can vary depending on fabrication method, post-processing treatment, and types of CNTs and polymers employed. The objective of this study was to derive a CNT-based thin film strain sensor model using inputs from nano-/micro-scale experimental measurements of nanotube physical properties. This study began with fabricating ultra-low-concentration CNT-polymer thin films, followed by imaging them using atomic force microscopy. Image processing was employed for characterizing CNT dispersed shapes, lengths, and other physical attributes, and results were used for building five different types of thin film percolation-based models. Numerical simulations were conducted to assess how the morphology of dispersed CNTs in its 2D matrix affected bulk film electrical and electromechanical (strain sensing) properties. The simulation results showed that CNT morphology had a significant impact on strain sensing performance.

  1. Overview of the CLIC detector and its physics potential

    NASA Astrophysics Data System (ADS)

    Ström, Rickard

    2017-12-01

    The CLIC detector and physics study (CLICdp) is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC). CLIC is a high-energy electron-positron collider under development, aiming for centre-of-mass energies from a few hundred GeV to 3 TeV. In addition to physics studies based on full Monte Carlo simulations of signal and background processes, CLICdp performs cuttingedge hardware R&D. In this contribution CLICdp will present recent results from physics prospect studies, emphasising Higgs studies. Additionally the new CLIC detector model and the recently updated CLIC baseline staging scenario will be presented.

  2. Active tensor magnetic gradiometer system final report for Project MM–1514

    USGS Publications Warehouse

    Smith, David V.; Phillips, Jeffrey D.; Hutton, S. Raymond

    2014-01-01

    An interactive computer simulation program, based on physical models of system sensors, platform geometry, Earth environment, and spheroidal magnetically-permeable targets, was developed to generate synthetic magnetic field data from a conceptual tensor magnetic gradiometer system equipped with an active primary field generator. The system sensors emulate the prototype tensor magnetic gradiometer system (TMGS) developed under a separate contract for unexploded ordnance (UXO) detection and classification. Time-series data from different simulation scenarios were analyzed to recover physical dimensions of the target source. Helbig-Euler simulations were run with rectangular and rod-like source bodies to determine whether such a system could separate the induced component of the magnetization from the remanent component for each target. This report concludes with an engineering assessment of a practical system design.

  3. Data base on physical observations of near-Earth asteroids and establishment of a network to coordinate observations of newly discovered near-Earth asteroids

    NASA Technical Reports Server (NTRS)

    Davis, D. R.; Chapman, C. R.; Campins, H.

    1990-01-01

    This program consists of two tasks: (1) development of a data base of physical observations of near-earth asteroids and establishment of a network to coordinate observations of newly discovered earth-approaching asteroids; and (2) a simulation of the surface of low-activity comets. Significant progress was made on task one and, and task two was completed during the period covered by this progress report.

  4. Numerical Simulation of Electrical Properties of Carbonate Reservoir Rocks Using µCT Images

    NASA Astrophysics Data System (ADS)

    Colgin, J.; Niu, Q.; Zhang, C.; Zhang, F.

    2017-12-01

    Digital rock physics involves the modern microscopic imaging of geomaterials, digitalization of the microstructure, and numerical simulation of physical properties of rocks. This physics-based approach can give important insight into understanding properties of reservoir rocks, and help reveal the link between intrinsic rock properties and macroscopic geophysical responses. The focus of this study is the simulation of the complex conductivity of carbonate reservoir rocks using reconstructed 3D rock structures from high-resolution X-ray micro computed tomography (µCT). Carbonate core samples with varying lithofacies and pore structures from the Cambro-Ordovician Arbuckle Group and the Upper Pennsylvanian Lansing-Kansas City Group in Kansas are used in this study. The wide variations in pore geometry and connectivity of these samples were imaged using µCT. A two-phase segmentation method was used to reconstruct a digital rock of solid particles and pores. We then calculate the effective electrical conductivity of the digital rock volume using a pore-scale numerical approach. The complex conductivity of geomaterials is influenced by the electrical properties and geometry of each phase, i.e., the solid and fluid phases. In addition, the electrical double layer that forms between the solid and fluid phases can also affect the effective conductivity of the material. In the numerical modeling, the influence of the electrical double layer is quantified by a complex surface conductance and converted to an apparent volumetric complex conductivity of either solid particles or pore fluid. The effective complex conductivity resulting from numerical simulations based on µCT images will be compared to results from laboratory experiments on equivalent rock samples. The imaging and digital segmentation method, assumptions in the numerical simulation, and trends as compared to laboratory results will be discussed. This study will help us understand how microscale physics affects macroscale electrical conductivity in porous media.

  5. A Review of Computational Methods in Materials Science: Examples from Shock-Wave and Polymer Physics

    PubMed Central

    Steinhauser, Martin O.; Hiermaier, Stefan

    2009-01-01

    This review discusses several computational methods used on different length and time scales for the simulation of material behavior. First, the importance of physical modeling and its relation to computer simulation on multiscales is discussed. Then, computational methods used on different scales are shortly reviewed, before we focus on the molecular dynamics (MD) method. Here we survey in a tutorial-like fashion some key issues including several MD optimization techniques. Thereafter, computational examples for the capabilities of numerical simulations in materials research are discussed. We focus on recent results of shock wave simulations of a solid which are based on two different modeling approaches and we discuss their respective assets and drawbacks with a view to their application on multiscales. Then, the prospects of computer simulations on the molecular length scale using coarse-grained MD methods are covered by means of examples pertaining to complex topological polymer structures including star-polymers, biomacromolecules such as polyelectrolytes and polymers with intrinsic stiffness. This review ends by highlighting new emerging interdisciplinary applications of computational methods in the field of medical engineering where the application of concepts of polymer physics and of shock waves to biological systems holds a lot of promise for improving medical applications such as extracorporeal shock wave lithotripsy or tumor treatment. PMID:20054467

  6. Computer simulation of surface and film processes

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.; Halicioglu, M. T.

    1983-01-01

    Adequate computer methods, based on interactions between discrete particles, provide information leading to an atomic level understanding of various physical processes. The success of these simulation methods, however, is related to the accuracy of the potential energy function representing the interactions among the particles. The development of a potential energy function for crystalline SiO2 forms that can be employed in lengthy computer modelling procedures was investigated. In many of the simulation methods which deal with discrete particles, semiempirical two body potentials were employed to analyze energy and structure related properties of the system. Many body interactions are required for a proper representation of the total energy for many systems. Many body interactions for simulations based on discrete particles are discussed.

  7. Simplified predictive models for CO 2 sequestration performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Srikanta; Ganesh, Priya; Schuetter, Jared

    CO2 sequestration in deep saline formations is increasingly being considered as a viable strategy for the mitigation of greenhouse gas emissions from anthropogenic sources. In this context, detailed numerical simulation based models are routinely used to understand key processes and parameters affecting pressure propagation and buoyant plume migration following CO2 injection into the subsurface. As these models are data and computation intensive, the development of computationally-efficient alternatives to conventional numerical simulators has become an active area of research. Such simplified models can be valuable assets during preliminary CO2 injection project screening, serve as a key element of probabilistic system assessmentmore » modeling tools, and assist regulators in quickly evaluating geological storage projects. We present three strategies for the development and validation of simplified modeling approaches for CO2 sequestration in deep saline formations: (1) simplified physics-based modeling, (2) statisticallearning based modeling, and (3) reduced-order method based modeling. In the first category, a set of full-physics compositional simulations is used to develop correlations for dimensionless injectivity as a function of the slope of the CO2 fractional-flow curve, variance of layer permeability values, and the nature of vertical permeability arrangement. The same variables, along with a modified gravity number, can be used to develop a correlation for the total storage efficiency within the CO2 plume footprint. Furthermore, the dimensionless average pressure buildup after the onset of boundary effects can be correlated to dimensionless time, CO2 plume footprint, and storativity contrast between the reservoir and caprock. In the second category, statistical “proxy models” are developed using the simulation domain described previously with two approaches: (a) classical Box-Behnken experimental design with a quadratic response surface, and (b) maximin Latin Hypercube sampling (LHS) based design with a multidimensional kriging metamodel fit. For roughly the same number of simulations, the LHS-based metamodel yields a more robust predictive model, as verified by a k-fold cross-validation approach (with data split into training and test sets) as well by validation with an independent dataset. In the third category, a reduced-order modeling procedure is utilized that combines proper orthogonal decomposition (POD) for reducing problem dimensionality with trajectory-piecewise linearization (TPWL) in order to represent system response at new control settings from a limited number of training runs. Significant savings in computational time are observed with reasonable accuracy from the PODTPWL reduced-order model for both vertical and horizontal well problems – which could be important in the context of history matching, uncertainty quantification and optimization problems. The simplified physics and statistical learning based models are also validated using an uncertainty analysis framework. Reference cumulative distribution functions of key model outcomes (i.e., plume radius and reservoir pressure buildup) generated using a 97-run full-physics simulation are successfully validated against the CDF from 10,000 sample probabilistic simulations using the simplified models. The main contribution of this research project is the development and validation of a portfolio of simplified modeling approaches that will enable rapid feasibility and risk assessment for CO2 sequestration in deep saline formations.« less

  8. Fast Photon Monte Carlo for Water Cherenkov Detectors

    NASA Astrophysics Data System (ADS)

    Latorre, Anthony; Seibert, Stanley

    2012-03-01

    We present Chroma, a high performance optical photon simulation for large particle physics detectors, such as the water Cerenkov far detector option for LBNE. This software takes advantage of the CUDA parallel computing platform to propagate photons using modern graphics processing units. In a computer model of a 200 kiloton water Cerenkov detector with 29,000 photomultiplier tubes, Chroma can propagate 2.5 million photons per second, around 200 times faster than the same simulation with Geant4. Chroma uses a surface based approach to modeling geometry which offers many benefits over a solid based modelling approach which is used in other simulations like Geant4.

  9. Performance studies of the P barANDA planar GEM-tracking detector in physics simulations

    NASA Astrophysics Data System (ADS)

    Divani Veis, Nazila; Firoozabadi, Mohammad M.; Karabowicz, Radoslaw; Maas, Frank; Saito, Takehiko R.; Voss, Bernd; ̅PANDA Gem-Tracker Subgroup

    2018-03-01

    The P barANDA experiment will be installed at the future facility for antiproton and ion research (FAIR) in Darmstadt, Germany, to study events from the annihilation of protons and antiprotons. The P barANDA detectors can cover a wide physics program about baryon spectroscopy and nucleon structure as well as the study of hadrons and hypernuclear physics including the study of excited hyperon states. One very specific feature of most hyperon ground states is the long decay length of several centimeters in the forward direction. The central tracking detectors of the P barANDA setup are not sufficiently optimized for these long decay lengths. Therefore, using a set of the planar GEM-tracking detectors in the forward region of interest can improve the results in the hyperon physics-benchmark channel. The current conceptual designed P barANDA GEM-tracking stations contribute the measurement of the particles emitted in the polar angles between about 2 to 22 degrees. For this designed detector performance and acceptance, studies have been performed using one of the important hyperonic decay channel p bar p → Λ bar Λ → p bar pπ+π- in physics simulations. The simulations were carried out using the PandaRoot software packages based on the FairRoot framework.

  10. Materials used to simulate physical properties of human skin.

    PubMed

    Dąbrowska, A K; Rotaru, G-M; Derler, S; Spano, F; Camenzind, M; Annaheim, S; Stämpfli, R; Schmid, M; Rossi, R M

    2016-02-01

    For many applications in research, material development and testing, physical skin models are preferable to the use of human skin, because more reliable and reproducible results can be obtained. This article gives an overview of materials applied to model physical properties of human skin to encourage multidisciplinary approaches for more realistic testing and improved understanding of skin-material interactions. The literature databases Web of Science, PubMed and Google Scholar were searched using the terms 'skin model', 'skin phantom', 'skin equivalent', 'synthetic skin', 'skin substitute', 'artificial skin', 'skin replica', and 'skin model substrate.' Articles addressing material developments or measurements that include the replication of skin properties or behaviour were analysed. It was found that the most common materials used to simulate skin are liquid suspensions, gelatinous substances, elastomers, epoxy resins, metals and textiles. Nano- and micro-fillers can be incorporated in the skin models to tune their physical properties. While numerous physical skin models have been reported, most developments are research field-specific and based on trial-and-error methods. As the complexity of advanced measurement techniques increases, new interdisciplinary approaches are needed in future to achieve refined models which realistically simulate multiple properties of human skin. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Numerical Simulations of Spacecraft Charging: Selected Applications

    NASA Astrophysics Data System (ADS)

    Moulton, J. D.; Delzanno, G. L.; Meierbachtol, C.; Svyatskiy, D.; Vernon, L.; Borovsky, J.; Thomsen, M. F.

    2016-12-01

    The electrical charging of spacecraft due to bombarding charged particles affects their performance and operation. We study this charging using CPIC, a particle-in-cell code specifically designed for studying plasma-material interactions. CPIC is based on multi-block curvilinear meshes, resulting in near-optimal computational performance while maintaining geometric accuracy. It is interfaced to a mesh generator that creates a computational mesh conforming to complex objects like a spacecraft. Relevant plasma parameters can be imported from the SHIELDS framework (currently under development at LANL), which simulates geomagnetic storms and substorms in the Earth's magnetosphere. Selected physics results will be presented, together with an overview of the code. The physics results include spacecraft-charging simulations with geometry representative of the Van Allen Probes spacecraft, focusing on the conditions that can lead to significant spacecraft charging events. Second, results from a recent study that investigates the conditions for which a high-power (>keV) electron beam could be emitted from a magnetospheric spacecraft will be presented. The latter study proposes a spacecraft-charging mitigation strategy based on the plasma contactor technology that might allow beam experiments to operate in the low-density magnetosphere. High-power electron beams could be used for instance to establish magnetic-field-line connectivity between ionosphere and magnetosphere and help solving long-standing questions in ionospheric/magnetospheric physics.

  12. IR characteristic simulation of city scenes based on radiosity model

    NASA Astrophysics Data System (ADS)

    Xiong, Xixian; Zhou, Fugen; Bai, Xiangzhi; Yu, Xiyu

    2013-09-01

    Reliable modeling for thermal infrared (IR) signatures of real-world city scenes is required for signature management of civil and military platforms. Traditional modeling methods generally assume that scene objects are individual entities during the physical processes occurring in infrared range. However, in reality, the physical scene involves convective and conductive interactions between objects as well as the radiations interactions between objects. A method based on radiosity model describes these complex effects. It has been developed to enable an accurate simulation for the radiance distribution of the city scenes. Firstly, the physical processes affecting the IR characteristic of city scenes were described. Secondly, heat balance equations were formed on the basis of combining the atmospheric conditions, shadow maps and the geometry of scene. Finally, finite difference method was used to calculate the kinetic temperature of object surface. A radiosity model was introduced to describe the scattering effect of radiation between surface elements in the scene. By the synthesis of objects radiance distribution in infrared range, we could obtain the IR characteristic of scene. Real infrared images and model predictions were shown and compared. The results demonstrate that this method can realistically simulate the IR characteristic of city scenes. It effectively displays the infrared shadow effects and the radiation interactions between objects in city scenes.

  13. RF Wave Simulation Using the MFEM Open Source FEM Package

    NASA Astrophysics Data System (ADS)

    Stillerman, J.; Shiraiwa, S.; Bonoli, P. T.; Wright, J. C.; Green, D. L.; Kolev, T.

    2016-10-01

    A new plasma wave simulation environment based on the finite element method is presented. MFEM, a scalable open-source FEM library, is used as the basis for this capability. MFEM allows for assembling an FEM matrix of arbitrarily high order in a parallel computing environment. A 3D frequency domain RF physics layer was implemented using a python wrapper for MFEM and a cold collisional plasma model was ported. This physics layer allows for defining the plasma RF wave simulation model without user knowledge of the FEM weak-form formulation. A graphical user interface is built on πScope, a python-based scientific workbench, such that a user can build a model definition file interactively. Benchmark cases have been ported to this new environment, with results being consistent with those obtained using COMSOL multiphysics, GENRAY, and TORIC/TORLH spectral solvers. This work is a first step in bringing to bear the sophisticated computational tool suite that MFEM provides (e.g., adaptive mesh refinement, solver suite, element types) to the linear plasma-wave interaction problem, and within more complicated integrated workflows, such as coupling with core spectral solver, or incorporating additional physics such as an RF sheath potential model or kinetic effects. USDoE Awards DE-FC02-99ER54512, DE-FC02-01ER54648.

  14. Measurements and simulations analysing the noise behaviour of grating-based X-ray phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Weber, T.; Bartl, P.; Durst, J.; Haas, W.; Michel, T.; Ritter, A.; Anton, G.

    2011-08-01

    In the last decades, phase-contrast imaging using a Talbot-Lau grating interferometer is possible even with a low-brilliance X-ray source. With the potential of increasing the soft-tissue contrast, this method is on its way into medical imaging. For this purpose, the knowledge of the underlying physics of this technique is necessary.With this paper, we would like to contribute to the understanding of grating-based phase-contrast imaging by presenting results on measurements and simulations regarding the noise behaviour of the differential phases.These measurements were done using a microfocus X-ray tube with a hybrid, photon-counting, semiconductor Medipix2 detector. The additional simulations were performed by our in-house developed phase-contrast simulation tool “SPHINX”, combining both wave and particle contributions of the simulated photons.The results obtained by both of these methods show the same behaviour. Increasing the number of photons leads to a linear decrease of the standard deviation of the phase. The number of used phase steps has no influence on the standard deviation, if the total number of photons is held constant.Furthermore, the probability density function (pdf) of the reconstructed differential phases was analysed. It turned out that the so-called von Mises distribution is the physically correct pdf, which was also confirmed by measurements.This information advances the understanding of grating-based phase-contrast imaging and can be used to improve image quality.

  15. NRV web knowledge base on low-energy nuclear physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karpov, V., E-mail: karpov@jinr.ru; Denikin, A. S.; Alekseev, A. P.

    Principles underlying the organization and operation of the NRV web knowledge base on low-energy nuclear physics (http://nrv.jinr.ru) are described. This base includes a vast body of digitized experimental data on the properties of nuclei and on cross sections for nuclear reactions that is combined with a wide set of interconnected computer programs for simulating complex nuclear dynamics, which work directly in the browser of a remote user. Also, the current situation in the realms of application of network information technologies in nuclear physics is surveyed. The potential of the NRV knowledge base is illustrated in detail by applying it tomore » the example of an analysis of the fusion of nuclei that is followed by the decay of the excited compound nucleus formed.« less

  16. Flight Dynamic Model Exchange using XML

    NASA Technical Reports Server (NTRS)

    Jackson, E. Bruce; Hildreth, Bruce L.

    2002-01-01

    The AIAA Modeling and Simulation Technical Committee has worked for several years to develop a standard by which the information needed to develop physics-based models of aircraft can be specified. The purpose of this standard is to provide a well-defined set of information, definitions, data tables and axis systems so that cooperating organizations can transfer a model from one simulation facility to another with maximum efficiency. This paper proposes using an application of the eXtensible Markup Language (XML) to implement the AIAA simulation standard. The motivation and justification for using a standard such as XML is discussed. Necessary data elements to be supported are outlined. An example of an aerodynamic model as an XML file is given. This example includes definition of independent and dependent variables for function tables, definition of key variables used to define the model, and axis systems used. The final steps necessary for implementation of the standard are presented. Software to take an XML-defined model and import/export it to/from a given simulation facility is discussed, but not demonstrated. That would be the next step in final implementation of standards for physics-based aircraft dynamic models.

  17. Massively parallel simulator of optical coherence tomography of inhomogeneous turbid media.

    PubMed

    Malektaji, Siavash; Lima, Ivan T; Escobar I, Mauricio R; Sherif, Sherif S

    2017-10-01

    An accurate and practical simulator for Optical Coherence Tomography (OCT) could be an important tool to study the underlying physical phenomena in OCT such as multiple light scattering. Recently, many researchers have investigated simulation of OCT of turbid media, e.g., tissue, using Monte Carlo methods. The main drawback of these earlier simulators is the long computational time required to produce accurate results. We developed a massively parallel simulator of OCT of inhomogeneous turbid media that obtains both Class I diffusive reflectivity, due to ballistic and quasi-ballistic scattered photons, and Class II diffusive reflectivity due to multiply scattered photons. This Monte Carlo-based simulator is implemented on graphic processing units (GPUs), using the Compute Unified Device Architecture (CUDA) platform and programming model, to exploit the parallel nature of propagation of photons in tissue. It models an arbitrary shaped sample medium as a tetrahedron-based mesh and uses an advanced importance sampling scheme. This new simulator speeds up simulations of OCT of inhomogeneous turbid media by about two orders of magnitude. To demonstrate this result, we have compared the computation times of our new parallel simulator and its serial counterpart using two samples of inhomogeneous turbid media. We have shown that our parallel implementation reduced simulation time of OCT of the first sample medium from 407 min to 92 min by using a single GPU card, to 12 min by using 8 GPU cards and to 7 min by using 16 GPU cards. For the second sample medium, the OCT simulation time was reduced from 209 h to 35.6 h by using a single GPU card, and to 4.65 h by using 8 GPU cards, and to only 2 h by using 16 GPU cards. Therefore our new parallel simulator is considerably more practical to use than its central processing unit (CPU)-based counterpart. Our new parallel OCT simulator could be a practical tool to study the different physical phenomena underlying OCT, or to design OCT systems with improved performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Source characterization of underground explosions from hydrodynamic-to-elastic coupling simulations

    NASA Astrophysics Data System (ADS)

    Chiang, A.; Pitarka, A.; Ford, S. R.; Ezzedine, S. M.; Vorobiev, O.

    2017-12-01

    A major improvement in ground motion simulation capabilities for underground explosion monitoring during the first phase of the Source Physics Experiment (SPE) is the development of a wave propagation solver that can propagate explosion generated non-linear near field ground motions to the far-field. The calculation is done using a hybrid modeling approach with a one-way hydrodynamic-to-elastic coupling in three dimensions where near-field motions are computed using GEODYN-L, a Lagrangian hydrodynamics code, and then passed to WPP, an elastic finite-difference code for seismic waveform modeling. The advancement in ground motion simulation capabilities gives us the opportunity to assess moment tensor inversion of a realistic volumetric source with near-field effects in a controlled setting, where we can evaluate the recovered source properties as a function of modeling parameters (i.e. velocity model) and can provide insights into previous source studies on SPE Phase I chemical shots and other historical nuclear explosions. For example the moment tensor inversion of far-field SPE seismic data demonstrated while vertical motions are well-modeled using existing velocity models large misfits still persist in predicting tangential shear wave motions from explosions. One possible explanation we can explore is errors and uncertainties from the underlying Earth model. Here we investigate the recovered moment tensor solution, particularly on the non-volumetric component, by inverting far-field ground motions simulated from physics-based explosion source models in fractured material, where the physics-based source models are based on the modeling of SPE-4P, SPE-5 and SPE-6 near-field data. The hybrid modeling approach provides new prospects in modeling explosion source and understanding the uncertainties associated with it.

  19. Exploring the impact of forcing error characteristics on physically based snow simulations within a global sensitivity analysis framework

    NASA Astrophysics Data System (ADS)

    Raleigh, M. S.; Lundquist, J. D.; Clark, M. P.

    2015-07-01

    Physically based models provide insights into key hydrologic processes but are associated with uncertainties due to deficiencies in forcing data, model parameters, and model structure. Forcing uncertainty is enhanced in snow-affected catchments, where weather stations are scarce and prone to measurement errors, and meteorological variables exhibit high variability. Hence, there is limited understanding of how forcing error characteristics affect simulations of cold region hydrology and which error characteristics are most important. Here we employ global sensitivity analysis to explore how (1) different error types (i.e., bias, random errors), (2) different error probability distributions, and (3) different error magnitudes influence physically based simulations of four snow variables (snow water equivalent, ablation rates, snow disappearance, and sublimation). We use the Sobol' global sensitivity analysis, which is typically used for model parameters but adapted here for testing model sensitivity to coexisting errors in all forcings. We quantify the Utah Energy Balance model's sensitivity to forcing errors with 1 840 000 Monte Carlo simulations across four sites and five different scenarios. Model outputs were (1) consistently more sensitive to forcing biases than random errors, (2) generally less sensitive to forcing error distributions, and (3) critically sensitive to different forcings depending on the relative magnitude of errors. For typical error magnitudes found in areas with drifting snow, precipitation bias was the most important factor for snow water equivalent, ablation rates, and snow disappearance timing, but other forcings had a more dominant impact when precipitation uncertainty was due solely to gauge undercatch. Additionally, the relative importance of forcing errors depended on the model output of interest. Sensitivity analysis can reveal which forcing error characteristics matter most for hydrologic modeling.

  20. Multimode marine engine room simulation system based on field bus technology

    NASA Astrophysics Data System (ADS)

    Zheng, Huayao; Deng, Linlin; Guo, Yi

    2003-09-01

    Developing multi mode MER (Marine Engine Room) Labs is the main work in Marine Simulation Center, which is the key lab of Communication Ministry of China. It includes FPP (Fixed Pitch Propeller) and CPP (Controllable Pitch Propeller) mode MER simulation systems, integrated electrical propulsion mode MER simulation system, physical mode MER lab, etc. FPP mode simulation system, which was oriented to large container ship, had been completed since 1999, and got second level of Shanghai Municipal Science and Technical Progress award. This paper mainly introduces the recent development and achievements of Marine Simulation Center. Based on the Lon Works field bus, the structure characteristics and control strategies of completely distributed intelligent control network are discussed. The experiment mode of multi-nodes field bus detection and control system is described. Besides, intelligent fault diagnosis technology about some mechatronics integration control systems explored is also involved.

  1. Physical models and primary design of reactor based slow positron source at CMRR

    NASA Astrophysics Data System (ADS)

    Wang, Guanbo; Li, Rundong; Qian, Dazhi; Yang, Xin

    2018-07-01

    Slow positron facilities are widely used in material science. A high intensity slow positron source is now at the design stage based on the China Mianyang Research Reactor (CMRR). This paper describes the physical models and our primary design. We use different computer programs or mathematical formula to simulate different physical process, and validate them by proper experiments. Considering the feasibility, we propose a primary design, containing a cadmium shield, a honeycomb arranged W tubes assembly, electrical lenses, and a solenoid. It is planned to be vertically inserted in the Si-doping channel. And the beam intensity is expected to be 5 ×109

  2. Relaunch of the Interactive Plasma Physics Educational Experience (IPPEX)

    NASA Astrophysics Data System (ADS)

    Dominguez, A.; Rusaitis, L.; Zwicker, A.; Stotler, D. P.

    2015-11-01

    In the late 1990's PPPL's Science Education Department developed an innovative online site called the Interactive Plasma Physics Educational Experience (IPPEX). It featured (among other modules) two Java based applications which simulated tokamak physics: A steady state tokamak (SST) and a time dependent tokamak (TDT). The physics underlying the SST and the TDT are based on the ASPECT code which is a global power balance code developed to evaluate the performance of fusion reactor designs. We have relaunched the IPPEX site with updated modules and functionalities: The site itself is now dynamic on all platforms. The graphic design of the site has been modified to current standards. The virtual tokamak programming has been redone in Javascript, taking advantage of the speed and compactness of the code. The GUI of the tokamak has been completely redesigned, including more intuitive representations of changes in the plasma, e.g., particles moving along magnetic field lines. The use of GPU accelerated computation provides accurate and smooth visual representations of the plasma. We will present the current version of IPPEX as well near term plans of incorporating real time NSTX-U data into the simulation.

  3. Task and vehicle dynamics based assessment of motion cueing requirements

    DOT National Transportation Integrated Search

    2004-08-16

    One significant difference between real and simulated flight on the ground are the stimuli or cues provided to the pilot. Due to physical and/or cost constraints, it is nearly impossible to match all the cues experienced in the air in ground-based si...

  4. PREFACE: New trends in Computer Simulations in Physics and not only in physics

    NASA Astrophysics Data System (ADS)

    Shchur, Lev N.; Krashakov, Serge A.

    2016-02-01

    In this volume we have collected papers based on the presentations given at the International Conference on Computer Simulations in Physics and beyond (CSP2015), held in Moscow, September 6-10, 2015. We hope that this volume will be helpful and scientifically interesting for readers. The Conference was organized for the first time with the common efforts of the Moscow Institute for Electronics and Mathematics (MIEM) of the National Research University Higher School of Economics, the Landau Institute for Theoretical Physics, and the Science Center in Chernogolovka. The name of the Conference emphasizes the multidisciplinary nature of computational physics. Its methods are applied to the broad range of current research in science and society. The choice of venue was motivated by the multidisciplinary character of the MIEM. It is a former independent university, which has recently become the part of the National Research University Higher School of Economics. The Conference Computer Simulations in Physics and beyond (CSP) is planned to be organized biannually. This year's Conference featured 99 presentations, including 21 plenary and invited talks ranging from the analysis of Irish myths with recent methods of statistical physics, to computing with novel quantum computers D-Wave and D-Wave2. This volume covers various areas of computational physics and emerging subjects within the computational physics community. Each section was preceded by invited talks presenting the latest algorithms and methods in computational physics, as well as new scientific results. Both parallel and poster sessions paid special attention to numerical methods, applications and results. For all the abstracts presented at the conference please follow the link http://csp2015.ac.ru/files/book5x.pdf

  5. Hybrid modeling of nitrate fate in large catchments using fuzzy-rules

    NASA Astrophysics Data System (ADS)

    van der Heijden, Sven; Haberlandt, Uwe

    2010-05-01

    Especially for nutrient balance simulations, physically based ecohydrological modeling needs an abundance of measured data and model parameters, which for large catchments all too often are not available in sufficient spatial or temporal resolution or are simply unknown. For efficient large-scale studies it is thus beneficial to have methods at one's disposal which are parsimonious concerning the number of model parameters and the necessary input data. One such method is fuzzy-rule based modeling, which compared to other machine-learning techniques has the advantages to produce models (the fuzzy-rules) which are physically interpretable to a certain extent, and to allow the explicit introduction of expert knowledge through pre-defined rules. The study focuses on the application of fuzzy-rule based modeling for nitrate simulation in large catchments, in particular concerning decision support. Fuzzy-rule based modeling enables the generation of simple, efficient, easily understandable models with nevertheless satisfactory accuracy for problems of decision support. The chosen approach encompasses a hybrid metamodeling, which includes the generation of fuzzy-rules with data originating from physically based models as well as a coupling with a physically based water balance model. For the generation of the needed training data and also as coupled water balance model the ecohydrological model SWAT is employed. The conceptual model divides the nitrate pathway into three parts. The first fuzzy-module calculates nitrate leaching with the percolating water from soil surface to groundwater, the second module simulates groundwater passage, and the final module replaces the in-stream processes. The aim of this modularization is to create flexibility for using each of the modules on its own, for changing or completely replacing it. For fuzzy-rule based modeling this can explicitly mean that the re-training of one of the modules with newly available data will be possible without problem, while the module assembly does not have to be modified. Apart from the concept of hybrid metamodeling first results are presented for the fuzzy-module for nitrate passage through the unsaturated zone.

  6. PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems

    PubMed Central

    Ghaffarizadeh, Ahmadreza; Mumenthaler, Shannon M.

    2018-01-01

    Many multicellular systems problems can only be understood by studying how cells move, grow, divide, interact, and die. Tissue-scale dynamics emerge from systems of many interacting cells as they respond to and influence their microenvironment. The ideal “virtual laboratory” for such multicellular systems simulates both the biochemical microenvironment (the “stage”) and many mechanically and biochemically interacting cells (the “players” upon the stage). PhysiCell—physics-based multicellular simulator—is an open source agent-based simulator that provides both the stage and the players for studying many interacting cells in dynamic tissue microenvironments. It builds upon a multi-substrate biotransport solver to link cell phenotype to multiple diffusing substrates and signaling factors. It includes biologically-driven sub-models for cell cycling, apoptosis, necrosis, solid and fluid volume changes, mechanics, and motility “out of the box.” The C++ code has minimal dependencies, making it simple to maintain and deploy across platforms. PhysiCell has been parallelized with OpenMP, and its performance scales linearly with the number of cells. Simulations up to 105-106 cells are feasible on quad-core desktop workstations; larger simulations are attainable on single HPC compute nodes. We demonstrate PhysiCell by simulating the impact of necrotic core biomechanics, 3-D geometry, and stochasticity on the dynamics of hanging drop tumor spheroids and ductal carcinoma in situ (DCIS) of the breast. We demonstrate stochastic motility, chemical and contact-based interaction of multiple cell types, and the extensibility of PhysiCell with examples in synthetic multicellular systems (a “cellular cargo delivery” system, with application to anti-cancer treatments), cancer heterogeneity, and cancer immunology. PhysiCell is a powerful multicellular systems simulator that will be continually improved with new capabilities and performance improvements. It also represents a significant independent code base for replicating results from other simulation platforms. The PhysiCell source code, examples, documentation, and support are available under the BSD license at http://PhysiCell.MathCancer.org and http://PhysiCell.sf.net. PMID:29474446

  7. The role of simulation in neurosurgery.

    PubMed

    Rehder, Roberta; Abd-El-Barr, Muhammad; Hooten, Kristopher; Weinstock, Peter; Madsen, Joseph R; Cohen, Alan R

    2016-01-01

    In an era of residency duty-hour restrictions, there has been a recent effort to implement simulation-based training methods in neurosurgery teaching institutions. Several surgical simulators have been developed, ranging from physical models to sophisticated virtual reality systems. To date, there is a paucity of information describing the clinical benefits of existing simulators and the assessment strategies to help implement them into neurosurgical curricula. Here, we present a systematic review of the current models of simulation and discuss the state-of-the-art and future directions for simulation in neurosurgery. Retrospective literature review. Multiple simulators have been developed for neurosurgical training, including those for minimally invasive procedures, vascular, skull base, pediatric, tumor resection, functional neurosurgery, and spine surgery. The pros and cons of existing systems are reviewed. Advances in imaging and computer technology have led to the development of different simulation models to complement traditional surgical training. Sophisticated virtual reality (VR) simulators with haptic feedback and impressive imaging technology have provided novel options for training in neurosurgery. Breakthrough training simulation using 3D printing technology holds promise for future simulation practice, proving high-fidelity patient-specific models to complement residency surgical learning.

  8. Co-Simulation Platform For Characterizing Cyber Attacks in Cyber Physical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadi, Mohammad A. H.; Ali, Mohammad Hassan; Dasgupta, Dipankar

    Smart grid is a complex cyber physical system containing a numerous and variety of sources, devices, controllers and loads. Communication/Information infrastructure is the backbone of the smart grid system where different grid components are connected with each other through this structure. Therefore, the drawbacks of the information technology related issues are also becoming a part of the smart grid. Further, smart grid is also vulnerable to the grid related disturbances. For such a dynamic system, disturbance and intrusion detection is a paramount issue. This paper presents a Simulink and OPNET based co-simulated test bed to carry out a cyber-intrusion inmore » a cyber-network for modern power systems and smart grid. The effect of the cyber intrusion on the physical power system is also presented. The IEEE 30 bus power system model is used to demonstrate the effectiveness of the simulated testbed. The experiments were performed by disturbing the circuit breakers reclosing time through a cyber-attack in the cyber network. Different disturbance situations in the proposed test system are considered and the results indicate the effectiveness of the proposed co-simulated scheme.« less

  9. A synthetic GMPE based on deterministic simulated ground motion data obtained from dynamic rupture models

    NASA Astrophysics Data System (ADS)

    Dalguer, L. A.; Baumann, C.; Cauzzi, C.

    2013-12-01

    Empirical ground motion prediction in the very near-field and for large magnitudes is often based on extrapolation of ground motion prediction equations (GMPEs) outside the range where they are well constrained by recorded data. With empirical GMPEs it is also difficult to capture source-dominated ground motion patterns, such as the effects of velocity pulses induced by subshear and supershear rupture directivity, buried and surface-rupturing, hanging-wall and foot-wall, weak shallow layers, complex geometry faults and stress drop. A way to cope at least in part with these shortcomings is to augment the calibration datasets with synthetic ground motions. To this aim, physics-based dynamic rupture models - where the physical bases involved in the fault rupture are explicitly considered - appear to be a suitable approach to produce synthetic ground motions. In this contribution, we first perform an assessment of a database of synthetic ground motions generated by a suite of dynamic rupture simulations to verify compatibility of the peak ground amplitudes with current GMPEs. The synthetic data-set is composed by 360 earthquake scenarios with moment magnitudes in the range of 5.5-7, for three mechanisms of faulting (reverse, normal and strike-slip) and for both buried faults and surface rupturing faults. Second, we parameterise the synthetic dataset through a GMPE. For this purpose, we identify the basic functional forms by analyzing the variation of the synthetic peak ground motions and spectral ordinates as a function of different explanatory variables related to the earthquake source characteristics, in order to account for some of the source effects listed above. We argue that this study provides basic guidelines for the developments of future GMPEs including data from physics-based numerical simulations.

  10. A Review of Hypersonics Aerodynamics, Aerothermodynamics and Plasmadynamics Activities within NASA's Fundamental Aeronautics Program

    NASA Technical Reports Server (NTRS)

    Salas, Manuel D.

    2007-01-01

    The research program of the aerodynamics, aerothermodynamics and plasmadynamics discipline of NASA's Hypersonic Project is reviewed. Details are provided for each of its three components: 1) development of physics-based models of non-equilibrium chemistry, surface catalytic effects, turbulence, transition and radiation; 2) development of advanced simulation tools to enable increased spatial and time accuracy, increased geometrical complexity, grid adaptation, increased physical-processes complexity, uncertainty quantification and error control; and 3) establishment of experimental databases from ground and flight experiments to develop better understanding of high-speed flows and to provide data to validate and guide the development of simulation tools.

  11. Coupling Schemes for Multiphysics Reactor Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijay Mahadeven; Jean Ragusa

    2007-11-01

    This report documents the progress of the student Vijay S. Mahadevan from the Nuclear Engineering Department of Texas A&M University over the summer of 2007 during his visit to the INL. The purpose of his visit was to investigate the physics-based preconditioned Jacobian-free Newton-Krylov method applied to physics relevant to nuclear reactor simulation. To this end he studied two test problems that represented reaction-diffusion and advection-reaction. These two test problems will provide the basis for future work in which neutron diffusion, nonlinear heat conduction, and a twophase flow model will be tightly coupled to provide an accurate model of amore » BWR core.« less

  12. Modeling and Simulation of - and Silicon Germanium-Base Bipolar Transistors Operating at a Wide Range of Temperatures.

    NASA Astrophysics Data System (ADS)

    Shaheed, M. Reaz

    1995-01-01

    Higher speed at lower cost and at low power consumption is a driving force for today's semiconductor technology. Despite a substantial effort toward achieving this goal via alternative technologies such as III-V compounds, silicon technology still dominates mainstream electronics. Progress in silicon technology will continue for some time with continual scaling of device geometry. However, there are foreseeable limits on achievable device performance, reliability and scaling for room temperature technologies. Thus, reduced temperature operation is commonly viewed as a means for continuing the progress towards higher performance. Although silicon CMOS will be the first candidate for low temperature applications, bipolar devices will be used in a hybrid fashion, as line drivers or in limited critical path elements. Silicon -germanium-base bipolar transistors look especially attractive for low-temperature bipolar applications. At low temperatures, various new physical phenomena become important in determining device behavior. Carrier freeze-out effects which are negligible at room temperature, become of crucial importance for analyzing the low temperature device characteristics. The conventional Pearson-Bardeen model of activation energy, used for calculation of carrier freeze-out, is based on an incomplete picture of the physics that takes place and hence, leads to inaccurate results at low temperatures. Plasma -induced bandgap narrowing becomes more pronounced in device characteristics at low temperatures. Even with modern numerical simulators, this effect is not well modeled or simulated. In this dissertation, improved models for such physical phenomena are presented. For accurate simulation of carrier freeze-out, the Pearson-Bardeen model has been extended to include the temperature dependence of the activation energy. The extraction of the model is based on the rigorous, first-principle theoretical calculations available in the literature. The new model is shown to provide consistently accurate values for base sheet resistance for both Si- and SiGe-base transistors over a wide range of temperatures. A model for plasma-induced bandgap narrowing suitable for implementation in a numerical simulator has been developed. The appropriate method of incorporating this model in a drift -diffusion solver is described. The importance of including this model for low temperature simulation is demonstrated. With these models in place, the enhanced simulator has been used for evaluating and designing the Si- and SiGe-base bipolar transistors. Silicon-germanium heterojunction bipolar transistors offer significant performance and cost advantages over conventional technologies in the production of integrated circuits for communications, computer and transportation applications. Their high frequency performance at low cost, will find widespread use in the currently exploding wireless communication market. However, the high performance SiGe-base transistors are prone to have a low common-emitter breakdown voltage. In this dissertation, a modification in the collector design is proposed for improving the breakdown voltage without sacrificing the high frequency performance. A comprehensive simulation study of p-n-p SiGe-base transistors has been performed. Different figures of merit such as drive current, current gain, cut -off frequency and Early voltage were compared between a graded germanium profile and an abrupt germanium profile. The differences in the performance level between the two profiles diminishes as the base width is scaled down.

  13. Kinematic and Dynamic Source Rupture Scenario for Potential Megathrust Event along the Southernmost Ryukyu Trench

    NASA Astrophysics Data System (ADS)

    Lin, T. C.; Hu, F.; Chen, X.; Lee, S. J.; Hung, S. H.

    2017-12-01

    Kinematic source model is widely used for the simulation of an earthquake, because of its simplicity and ease of application. On the other hand, dynamic source model is a more complex but important tool that can help us to understand the physics of earthquake initiation, propagation, and healing. In this study, we focus on the southernmost Ryukyu Trench which is extremely close to northern Taiwan. Interseismic GPS data in northeast Taiwan shows a pattern of strain accumulation, which suggests the maximum magnitude of a potential future earthquake in this area is probably about magnitude 8.7. We develop dynamic rupture models for the hazard estimation of the potential megathrust event based on the kinematic rupture scenarios which are inverted using the interseismic GPS data. Besides, several kinematic source rupture scenarios with different characterized slip patterns are also considered to constrain the dynamic rupture process better. The initial stresses and friction properties are tested using the trial-and-error method, together with the plate coupling and tectonic features. An analysis of the dynamic stress field associated with the slip prescribed in the kinematic models can indicate possible inconsistencies with physics of faulting. Furthermore, the dynamic and kinematic rupture models are considered to simulate the ground shaking from based on 3-D spectral-element method. We analyze ShakeMap and ShakeMovie from the simulation results to evaluate the influence over the island between different source models. A dispersive tsunami-propagation simulation is also carried out to evaluate the maximum tsunami wave height along the coastal areas of Taiwan due to coseismic seafloor deformation of different source models. The results of this numerical simulation study can provide a physically-based information of megathrust earthquake scenario for the emergency response agency to take the appropriate action before the really big one happens.

  14. Biomechanically based simulation of brain deformations for intraoperative image correction: coupling of elastic and fluid models

    NASA Astrophysics Data System (ADS)

    Hagemann, Alexander; Rohr, Karl; Stiehl, H. Siegfried

    2000-06-01

    In order to improve the accuracy of image-guided neurosurgery, different biomechanical models have been developed to correct preoperative images w.r.t. intraoperative changes like brain shift or tumor resection. All existing biomechanical models simulate different anatomical structures by using either appropriate boundary conditions or by spatially varying material parameter values, while assuming the same physical model for all anatomical structures. In general, this leads to physically implausible results, especially in the case of adjacent elastic and fluid structures. Therefore, we propose a new approach which allows to couple different physical models. In our case, we simulate rigid, elastic, and fluid regions by using the appropriate physical description for each material, namely either the Navier equation or the Stokes equation. To solve the resulting differential equations, we derive a linear matrix system for each region by applying the finite element method (FEM). Thereafter, the linear matrix systems are linked together, ending up with one overall linear matrix system. Our approach has been tested using synthetic as well as tomographic images. It turns out from experiments, that the integrated treatment of rigid, elastic, and fluid regions significantly improves the prediction results in comparison to a pure linear elastic model.

  15. Fusion of Optimized Indicators from Advanced Driver Assistance Systems (ADAS) for Driver Drowsiness Detection

    PubMed Central

    Daza, Iván G.; Bergasa, Luis M.; Bronte, Sebastián; Yebes, J. Javier; Almazán, Javier; Arroyo, Roberto

    2014-01-01

    This paper presents a non-intrusive approach for monitoring driver drowsiness using the fusion of several optimized indicators based on driver physical and driving performance measures, obtained from ADAS (Advanced Driver Assistant Systems) in simulated conditions. The paper is focused on real-time drowsiness detection technology rather than on long-term sleep/awake regulation prediction technology. We have developed our own vision system in order to obtain robust and optimized driver indicators able to be used in simulators and future real environments. These indicators are principally based on driver physical and driving performance skills. The fusion of several indicators, proposed in the literature, is evaluated using a neural network and a stochastic optimization method to obtain the best combination. We propose a new method for ground-truth generation based on a supervised Karolinska Sleepiness Scale (KSS). An extensive evaluation of indicators, derived from trials over a third generation simulator with several test subjects during different driving sessions, was performed. The main conclusions about the performance of single indicators and the best combinations of them are included, as well as the future works derived from this study. PMID:24412904

  16. Pre-Test CFD for the Design and Execution of the Enhanced Injection and Mixing Project at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Axdahl, Erik L.; Cabell, Karen F.

    2014-01-01

    With the increasing costs of physics experiments and simultaneous increase in availability and maturity of computational tools it is not surprising that computational fluid dynamics (CFD) is playing an increasingly important role, not only in post-test investigations, but also in the early stages of experimental planning. This paper describes a CFD-based effort executed in close collaboration between computational fluid dynamicists and experimentalists to develop a virtual experiment during the early planning stages of the Enhanced Injection and Mixing project at NASA Langley Research Center. This projects aims to investigate supersonic combustion ramjet (scramjet) fuel injection and mixing physics, improve the understanding of underlying physical processes, and develop enhancement strategies and functional relationships relevant to flight Mach numbers greater than 8. The purpose of the virtual experiment was to provide flow field data to aid in the design of the experimental apparatus and the in-stream rake probes, to verify the nonintrusive measurements based on NO-PLIF, and to perform pre-test analysis of quantities obtainable from the experiment and CFD. The approach also allowed for the joint team to develop common data processing and analysis tools, and to test research ideas. The virtual experiment consisted of a series of Reynolds-averaged simulations (RAS). These simulations included the facility nozzle, the experimental apparatus with a baseline strut injector, and the test cabin. Pure helium and helium-air mixtures were used to determine the efficacy of different inert gases to model hydrogen injection. The results of the simulations were analyzed by computing mixing efficiency, total pressure recovery, and stream thrust potential. As the experimental effort progresses, the simulation results will be compared with the experimental data to calibrate the modeling constants present in the CFD and validate simulation fidelity. CFD will also be used to investigate different injector concepts, improve understanding of the flow structure and flow physics, and develop functional relationships. Both RAS and large eddy simulations (LES) are planned for post-test analysis of the experimental data.

  17. Special Issue on Uncertainty Quantification in Multiscale System Design and Simulation

    DOE PAGES

    Wang, Yan; Swiler, Laura

    2017-09-07

    The importance of uncertainty has been recognized in various modeling, simulation, and analysis applications, where inherent assumptions and simplifications affect the accuracy of model predictions for physical phenomena. As model predictions are now heavily relied upon for simulation-based system design, which includes new materials, vehicles, mechanical and civil structures, and even new drugs, wrong model predictions could potentially cause catastrophic consequences. Therefore, uncertainty and associated risks due to model errors should be quantified to support robust systems engineering.

  18. Simulation of secondary emission calorimeter for future colliders

    NASA Astrophysics Data System (ADS)

    Yetkin, E. A.; Yetkin, T.; Ozok, F.; Iren, E.; Erduran, M. N.

    2018-03-01

    We present updated results from a simulation study of a conceptual sampling electromagnetic calorimeter based on secondary electron emission process. We implemented the secondary electron emission process in Geant4 as a user physics list and produced the energy spectrum and yield of secondary electrons. The energy resolution of the SEE calorimeter was σ/E = (41%) GeV1/2/√E and the response linearity to electromagnetic showers was to within 1.5%. The simulation results were also compared with a traditional scintillator calorimeter.

  19. Special Issue on Uncertainty Quantification in Multiscale System Design and Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan; Swiler, Laura

    The importance of uncertainty has been recognized in various modeling, simulation, and analysis applications, where inherent assumptions and simplifications affect the accuracy of model predictions for physical phenomena. As model predictions are now heavily relied upon for simulation-based system design, which includes new materials, vehicles, mechanical and civil structures, and even new drugs, wrong model predictions could potentially cause catastrophic consequences. Therefore, uncertainty and associated risks due to model errors should be quantified to support robust systems engineering.

  20. Multiscale simulation of molecular processes in cellular environments.

    PubMed

    Chiricotto, Mara; Sterpone, Fabio; Derreumaux, Philippe; Melchionna, Simone

    2016-11-13

    We describe the recent advances in studying biological systems via multiscale simulations. Our scheme is based on a coarse-grained representation of the macromolecules and a mesoscopic description of the solvent. The dual technique handles particles, the aqueous solvent and their mutual exchange of forces resulting in a stable and accurate methodology allowing biosystems of unprecedented size to be simulated.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  1. An extensive coronagraphic simulation applied to LBT

    NASA Astrophysics Data System (ADS)

    Vassallo, D.; Carolo, E.; Farinato, J.; Bergomi, M.; Bonavita, M.; Carlotti, A.; D'Orazi, V.; Greggio, D.; Magrin, D.; Mesa, D.; Pinna, E.; Puglisi, A.; Stangalini, M.; Verinaud, C.; Viotto, V.

    2016-08-01

    In this article we report the results of a comprehensive simulation program aimed at investigating coronagraphic capabilities of SHARK-NIR, a camera selected to proceed to the final design phase at Large Binocular Telescope. For the purpose, we developed a dedicated simulation tool based on physical optics propagation. The code propagates wavefronts through SHARK optical train in an end-to-end fashion and can implement any kind of coronagraph. Detection limits can be finally computed, exploring a wide range of Strehl values and observing conditions.

  2. Design and Implementation of a Quadruped Bionic Robot Based on Virtual Prototype Technology

    NASA Astrophysics Data System (ADS)

    Wang, Li

    2017-10-01

    Design out a quadruped bionic robot with nine degrees of freedom. Conduct virtual assembly and trotting gait simulation on the robot by using NX software. Present the angular velocity and angular displacement curves of the diagonal two legs’ hip joints and knee joints, thus to instruct the practical assemble and control of the robot. The fact that the movement effect of the physical model is consistent with the simulation verifies the validity and practicability of virtual assembly and motion simulation. both.

  3. Regionalization of subsurface stormflow parameters of hydrologic models: Up-scaling from physically based numerical simulations at hillslope scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Melkamu; Ye, Sheng; Li, Hongyi

    2014-07-19

    Subsurface stormflow is an important component of the rainfall-runoff response, especially in steep forested regions. However; its contribution is poorly represented in current generation of land surface hydrological models (LSMs) and catchment-scale rainfall-runoff models. The lack of physical basis of common parameterizations precludes a priori estimation (i.e. without calibration), which is a major drawback for prediction in ungauged basins, or for use in global models. This paper is aimed at deriving physically based parameterizations of the storage-discharge relationship relating to subsurface flow. These parameterizations are derived through a two-step up-scaling procedure: firstly, through simulations with a physically based (Darcian) subsurfacemore » flow model for idealized three dimensional rectangular hillslopes, accounting for within-hillslope random heterogeneity of soil hydraulic properties, and secondly, through subsequent up-scaling to the catchment scale by accounting for between-hillslope and within-catchment heterogeneity of topographic features (e.g., slope). These theoretical simulation results produced parameterizations of the storage-discharge relationship in terms of soil hydraulic properties, topographic slope and their heterogeneities, which were consistent with results of previous studies. Yet, regionalization of the resulting storage-discharge relations across 50 actual catchments in eastern United States, and a comparison of the regionalized results with equivalent empirical results obtained on the basis of analysis of observed streamflow recession curves, revealed a systematic inconsistency. It was found that the difference between the theoretical and empirically derived results could be explained, to first order, by climate in the form of climatic aridity index. This suggests a possible codependence of climate, soils, vegetation and topographic properties, and suggests that subsurface flow parameterization needed for ungauged locations must account for both the physics of flow in heterogeneous landscapes, and the co-dependence of soil and topographic properties with climate, including possibly the mediating role of vegetation.« less

  4. Photoresist and stochastic modeling

    NASA Astrophysics Data System (ADS)

    Hansen, Steven G.

    2018-01-01

    Analysis of physical modeling results can provide unique insights into extreme ultraviolet stochastic variation, which augment, and sometimes refute, conclusions based on physical intuition and even wafer experiments. Simulations verify the primacy of "imaging critical" counting statistics (photons, electrons, and net acids) and the image/blur-dependent dose sensitivity in describing the local edge or critical dimension variation. But the failure of simple counting when resist thickness is varied highlights a limitation of this exact analytical approach, so a calibratable empirical model offers useful simplicity and convenience. Results presented here show that a wide range of physical simulation results can be well matched by an empirical two-parameter model based on blurred image log-slope (ILS) for lines/spaces and normalized ILS for holes. These results are largely consistent with a wide range of published experimental results; however, there is some disagreement with the recently published dataset of De Bisschop. The present analysis suggests that the origin of this model failure is an unexpected blurred ILS:dose-sensitivity relationship failure in that resist process. It is shown that a photoresist mechanism based on high photodecomposable quencher loading and high quencher diffusivity can give rise to pitch-dependent blur, which may explain the discrepancy.

  5. MOOSE: A PARALLEL COMPUTATIONAL FRAMEWORK FOR COUPLED SYSTEMS OF NONLINEAR EQUATIONS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Hansen; C. Newman; D. Gaston

    Systems of coupled, nonlinear partial di?erential equations often arise in sim- ulation of nuclear processes. MOOSE: Multiphysics Ob ject Oriented Simulation Environment, a parallel computational framework targeted at solving these systems is presented. As opposed to traditional data / ?ow oriented com- putational frameworks, MOOSE is instead founded on mathematics based on Jacobian-free Newton Krylov (JFNK). Utilizing the mathematical structure present in JFNK, physics are modularized into “Kernels” allowing for rapid production of new simulation tools. In addition, systems are solved fully cou- pled and fully implicit employing physics based preconditioning allowing for a large amount of ?exibility even withmore » large variance in time scales. Background on the mathematics, an inspection of the structure of MOOSE and several rep- resentative solutions from applications built on the framework are presented.« less

  6. Trident: A Universal Tool for Generating Synthetic Absorption Spectra from Astrophysical Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummels, Cameron B.; Smith, Britton D.; Silvia, Devin W.

    Hydrodynamical simulations are increasingly able to accurately model physical systems on stellar, galactic, and cosmological scales; however, the utility of these simulations is often limited by our ability to directly compare them with the data sets produced by observers: spectra, photometry, etc. To address this problem, we have created trident, a Python-based open-source tool for post-processing hydrodynamical simulations to produce synthetic absorption spectra and related data. trident can (i) create absorption-line spectra for any trajectory through a simulated data set mimicking both background quasar and down-the-barrel configurations; (ii) reproduce the spectral characteristics of common instruments like the Cosmic Origins Spectrograph;more » (iii) operate across the ultraviolet, optical, and infrared using customizable absorption-line lists; (iv) trace simulated physical structures directly to spectral features; (v) approximate the presence of ion species absent from the simulation outputs; (vi) generate column density maps for any ion; and (vii) provide support for all major astrophysical hydrodynamical codes. trident was originally developed to aid in the interpretation of observations of the circumgalactic medium and intergalactic medium, but it remains a general tool applicable in other contexts.« less

  7. Subgrid-scale Condensation Modeling for Entropy-based Large Eddy Simulations of Clouds

    NASA Astrophysics Data System (ADS)

    Kaul, C. M.; Schneider, T.; Pressel, K. G.; Tan, Z.

    2015-12-01

    An entropy- and total water-based formulation of LES thermodynamics, such as that used by the recently developed code PyCLES, is advantageous from physical and numerical perspectives. However, existing closures for subgrid-scale thermodynamic fluctuations assume more traditional choices for prognostic thermodynamic variables, such as liquid potential temperature, and are not directly applicable to entropy-based modeling. Since entropy and total water are generally nonlinearly related to diagnosed quantities like temperature and condensate amounts, neglecting their small-scale variability can lead to bias in simulation results. Here we present the development of a subgrid-scale condensation model suitable for use with entropy-based thermodynamic formulations.

  8. A simulation-based approach for estimating premining water quality: Red Mountain Creek, Colorado

    USGS Publications Warehouse

    Runkel, Robert L.; Kimball, Briant A; Walton-Day, Katherine; Verplanck, Philip L.

    2007-01-01

    Regulatory agencies are often charged with the task of setting site-specific numeric water quality standards for impaired streams. This task is particularly difficult for streams draining highly mineralized watersheds with past mining activity. Baseline water quality data obtained prior to mining are often non-existent and application of generic water quality standards developed for unmineralized watersheds is suspect given the geology of most watersheds affected by mining. Various approaches have been used to estimate premining conditions, but none of the existing approaches rigorously consider the physical and geochemical processes that ultimately determine instream water quality. An approach based on simulation modeling is therefore proposed herein. The approach utilizes synoptic data that provide spatially-detailed profiles of concentration, streamflow, and constituent load along the study reach. This field data set is used to calibrate a reactive stream transport model that considers the suite of physical and geochemical processes that affect constituent concentrations during instream transport. A key input to the model is the quality and quantity of waters entering the study reach. This input is based on chemical analyses available from synoptic sampling and observed increases in streamflow along the study reach. Given the calibrated model, additional simulations are conducted to estimate premining conditions. In these simulations, the chemistry of mining-affected sources is replaced with the chemistry of waters that are thought to be unaffected by mining (proximal, premining analogues). The resultant simulations provide estimates of premining water quality that reflect both the reduced loads that were present prior to mining and the processes that affect these loads as they are transported downstream. This simulation-based approach is demonstrated using data from Red Mountain Creek, Colorado, a small stream draining a heavily-mined watershed. Model application to the premining problem for Red Mountain Creek is based on limited field reconnaissance and chemical analyses; additional field work and analyses may be needed to develop definitive, quantitative estimates of premining water quality.

  9. Prediction of shallow landslide occurrence: Validation of a physically-based approach through a real case study.

    PubMed

    Schilirò, Luca; Montrasio, Lorella; Scarascia Mugnozza, Gabriele

    2016-11-01

    In recent years, physically-based numerical models have frequently been used in the framework of early-warning systems devoted to rainfall-induced landslide hazard monitoring and mitigation. For this reason, in this work we describe the potential of SLIP (Shallow Landslides Instability Prediction), a simplified physically-based model for the analysis of shallow landslide occurrence. In order to test the reliability of this model, a back analysis of recent landslide events occurred in the study area (located SW of Messina, northeastern Sicily, Italy) on October 1st, 2009 was performed. The simulation results have been compared with those obtained for the same event by using TRIGRS, another well-established model for shallow landslide prediction. Afterwards, a simulation over a 2-year span period has been performed for the same area, with the aim of evaluating the performance of SLIP as early warning tool. The results confirm the good predictive capability of the model, both in terms of spatial and temporal prediction of the instability phenomena. For this reason, we recommend an operating procedure for the real-time definition of shallow landslide triggering scenarios at the catchment scale, which is based on the use of SLIP calibrated through a specific multi-methodological approach. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, J; Park, S; Jeong, J

    Purpose: In particle therapy and radiobiology, the investigation of mechanisms leading to the death of target cancer cells induced by ionising radiation is an active field of research. Recently, several studies based on Monte Carlo simulation codes have been initiated in order to simulate physical interactions of ionising particles at cellular scale and in DNA. Geant4-DNA is the one of them; it is an extension of the general purpose Geant4 Monte Carlo simulation toolkit for the simulation of physical interactions at sub-micrometre scale. In this study, we present Geant4-DNA Monte Carlo simulations for the prediction of DNA strand breakage usingmore » a geometrical modelling of DNA structure. Methods: For the simulation of DNA strand breakage, we developed a specific DNA geometrical structure. This structure consists of DNA components, such as the deoxynucleotide pairs, the DNA double helix, the nucleosomes and the chromatin fibre. Each component is made of water because the cross sections models currently available in Geant4-DNA for protons apply to liquid water only. Also, at the macroscopic-scale, protons were generated with various energies available for proton therapy at the National Cancer Center, obtained using validated proton beam simulations developed in previous studies. These multi-scale simulations were combined for the validation of Geant4-DNA in radiobiology. Results: In the double helix structure, the deposited energy in a strand allowed to determine direct DNA damage from physical interaction. In other words, the amount of dose and frequency of damage in microscopic geometries was related to direct radiobiological effect. Conclusion: In this report, we calculated the frequency of DNA strand breakage using Geant4- DNA physics processes for liquid water. This study is now on-going in order to develop geometries which use realistic DNA material, instead of liquid water. This will be tested as soon as cross sections for DNA material become available in Geant4-DNA.« less

  11. Design and implementation of an internet-based electrical engineering laboratory.

    PubMed

    He, Zhenlei; Shen, Zhangbiao; Zhu, Shanan

    2014-09-01

    This paper describes an internet-based electrical engineering laboratory (IEE-Lab) with virtual and physical experiments at Zhejiang University. In order to synthesize the advantages of both experiment styles, the IEE-Lab is come up with Client/Server/Application framework and combines the virtual and physical experiments. The design and workflow of IEE-Lab are introduced. The analog electronic experiment is taken as an example to show Flex plug-in design, data communication based on XML (Extensible Markup Language), experiment simulation modeled by Modelica and control terminals' design. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  12. Two Formal Gas Models For Multi-Agent Sweeping and Obstacle Avoidance

    NASA Technical Reports Server (NTRS)

    Kerr, Wesley; Spears, Diana; Spears, William; Thayer, David

    2004-01-01

    The task addressed here is a dynamic search through a bounded region, while avoiding multiple large obstacles, such as buildings. In the case of limited sensors and communication, maintaining spatial coverage - especially after passing the obstacles - is a challenging problem. Here, we investigate two physics-based approaches to solving this task with multiple simulated mobile robots, one based on artificial forces and the other based on the kinetic theory of gases. The desired behavior is achieved with both methods, and a comparison is made between them. Because both approaches are physics-based, formal assurances about the multi-robot behavior are straightforward, and are included in the paper.

  13. Image-Based Reconstruction and Analysis of Dynamic Scenes in a Landslide Simulation Facility

    NASA Astrophysics Data System (ADS)

    Scaioni, M.; Crippa, J.; Longoni, L.; Papini, M.; Zanzi, L.

    2017-12-01

    The application of image processing and photogrammetric techniques to dynamic reconstruction of landslide simulations in a scaled-down facility is described. Simulations are also used here for active-learning purpose: students are helped understand how physical processes happen and which kinds of observations may be obtained from a sensor network. In particular, the use of digital images to obtain multi-temporal information is presented. On one side, using a multi-view sensor set up based on four synchronized GoPro 4 Black® cameras, a 4D (3D spatial position and time) reconstruction of the dynamic scene is obtained through the composition of several 3D models obtained from dense image matching. The final textured 4D model allows one to revisit in dynamic and interactive mode a completed experiment at any time. On the other side, a digital image correlation (DIC) technique has been used to track surface point displacements from the image sequence obtained from the camera in front of the simulation facility. While the 4D model may provide a qualitative description and documentation of the experiment running, DIC analysis output quantitative information such as local point displacements and velocities, to be related to physical processes and to other observations. All the hardware and software equipment adopted for the photogrammetric reconstruction has been based on low-cost and open-source solutions.

  14. Learning from Avatars: Learning Assistants Practice Physics Pedagogy in a Classroom Simulator

    ERIC Educational Resources Information Center

    Chini, Jacquelyn J.; Straub, Carrie L.; Thomas, Kevin H.

    2016-01-01

    Undergraduate students are increasingly being used to support course transformations that incorporate research-based instructional strategies. While such students are typically selected based on strong content knowledge and possible interest in teaching, they often do not have previous pedagogical training. The current training models make use of…

  15. Initial Development of a Quadcopter Simulation Environment for Auralization

    NASA Technical Reports Server (NTRS)

    Christian, Andrew; Lawrence, Joseph

    2016-01-01

    This paper describes a recently created computer simulation of quadcopter flight dynamics for the NASA DELIVER project. The goal of this effort is to produce a simulation that includes a number of physical effects that are not usually found in other dynamics simulations (e.g., those used for flight controller development). These effects will be shown to have a significant impact on the fidelity of auralizations - entirely synthetic time-domain predictions of sound - based on this simulation when compared to a recording. High-fidelity auralizations are an important precursor to human subject tests that seek to understand the impact of vehicle configurations on noise and annoyance.

  16. Computer Simulations to Support Science Instruction and Learning: A critical review of the literature

    NASA Astrophysics Data System (ADS)

    Smetana, Lara Kathleen; Bell, Randy L.

    2012-06-01

    Researchers have explored the effectiveness of computer simulations for supporting science teaching and learning during the past four decades. The purpose of this paper is to provide a comprehensive, critical review of the literature on the impact of computer simulations on science teaching and learning, with the goal of summarizing what is currently known and providing guidance for future research. We report on the outcomes of 61 empirical studies dealing with the efficacy of, and implications for, computer simulations in science instruction. The overall findings suggest that simulations can be as effective, and in many ways more effective, than traditional (i.e. lecture-based, textbook-based and/or physical hands-on) instructional practices in promoting science content knowledge, developing process skills, and facilitating conceptual change. As with any other educational tool, the effectiveness of computer simulations is dependent upon the ways in which they are used. Thus, we outline specific research-based guidelines for best practice. Computer simulations are most effective when they (a) are used as supplements; (b) incorporate high-quality support structures; (c) encourage student reflection; and (d) promote cognitive dissonance. Used appropriately, computer simulations involve students in inquiry-based, authentic science explorations. Additionally, as educational technologies continue to evolve, advantages such as flexibility, safety, and efficiency deserve attention.

  17. Assessing the CAM5 Physics Suite in the WRF-Chem Model: Implementation, Resolution Sensitivity, and a First Evaluation for a Regional Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Po-Lun; Rasch, Philip J.; Fast, Jerome D.

    A suite of physical parameterizations (deep and shallow convection, turbulent boundary layer, aerosols, cloud microphysics, and cloud fraction) from the global climate model Community Atmosphere Model version 5.1 (CAM5) has been implemented in the regional model Weather Research and Forecasting with chemistry (WRF-Chem). A downscaling modeling framework with consistent physics has also been established in which both global and regional simulations use the same emissions and surface fluxes. The WRF-Chem model with the CAM5 physics suite is run at multiple horizontal resolutions over a domain encompassing the northern Pacific Ocean, northeast Asia, and northwest North America for April 2008 whenmore » the ARCTAS, ARCPAC, and ISDAC field campaigns took place. These simulations are evaluated against field campaign measurements, satellite retrievals, and ground-based observations, and are compared with simulations that use a set of common WRF-Chem Parameterizations. This manuscript describes the implementation of the CAM5 physics suite in WRF-Chem provides an overview of the modeling framework and an initial evaluation of the simulated meteorology, clouds, and aerosols, and quantifies the resolution dependence of the cloud and aerosol parameterizations. We demonstrate that some of the CAM5 biases, such as high estimates of cloud susceptibility to aerosols and the underestimation of aerosol concentrations in the Arctic, can be reduced simply by increasing horizontal resolution. We also show that the CAM5 physics suite performs similarly to a set of parameterizations commonly used in WRF-Chem, but produces higher ice and liquid water condensate amounts and near-surface black carbon concentration. Further evaluations that use other mesoscale model parameterizations and perform other case studies are needed to infer whether one parameterization consistently produces results more consistent with observations.« less

  18. Embedding Research in a Field-Based Module through Peer Review and Assessment for Learning

    ERIC Educational Resources Information Center

    Nicholson, Dawn T.

    2011-01-01

    A case study is presented of embedding research in a final year undergraduate, field-based, physical geography module. The approach is holistic, whereby research-based learning activities simulate the full life cycle of research from inception through to peer review and publication. The learning, teaching and assessment strategy emphasizes the…

  19. The Effect of Basis Selection on Static and Random Acoustic Response Prediction Using a Nonlinear Modal Simulation

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Przekop, Adam

    2005-01-01

    An investigation of the effect of basis selection on geometric nonlinear response prediction using a reduced-order nonlinear modal simulation is presented. The accuracy is dictated by the selection of the basis used to determine the nonlinear modal stiffness. This study considers a suite of available bases including bending modes only, bending and membrane modes, coupled bending and companion modes, and uncoupled bending and companion modes. The nonlinear modal simulation presented is broadly applicable and is demonstrated for nonlinear quasi-static and random acoustic response of flat beam and plate structures with isotropic material properties. Reduced-order analysis predictions are compared with those made using a numerical simulation in physical degrees-of-freedom to quantify the error associated with the selected modal bases. Bending and membrane responses are separately presented to help differentiate the bases.

  20. Simulation tools for analyzer-based x-ray phase contrast imaging system with a conventional x-ray source

    NASA Astrophysics Data System (ADS)

    Caudevilla, Oriol; Zhou, Wei; Stoupin, Stanislav; Verman, Boris; Brankov, J. G.

    2016-09-01

    Analyzer-based X-ray phase contrast imaging (ABI) belongs to a broader family of phase-contrast (PC) X-ray imaging modalities. Unlike the conventional X-ray radiography, which measures only X-ray absorption, in PC imaging one can also measures the X-rays deflection induced by the object refractive properties. It has been shown that refraction imaging provides better contrast when imaging the soft tissue, which is of great interest in medical imaging applications. In this paper, we introduce a simulation tool specifically designed to simulate the analyzer-based X-ray phase contrast imaging system with a conventional polychromatic X-ray source. By utilizing ray tracing and basic physical principles of diffraction theory our simulation tool can predicting the X-ray beam profile shape, the energy content, the total throughput (photon count) at the detector. In addition we can evaluate imaging system point-spread function for various system configurations.

  1. Effects of linking a soil-water-balance model with a groundwater-flow model

    USGS Publications Warehouse

    Stanton, Jennifer S.; Ryter, Derek W.; Peterson, Steven M.

    2013-01-01

    A previously published regional groundwater-flow model in north-central Nebraska was sequentially linked with the recently developed soil-water-balance (SWB) model to analyze effects to groundwater-flow model parameters and calibration results. The linked models provided a more detailed spatial and temporal distribution of simulated recharge based on hydrologic processes, improvement of simulated groundwater-level changes and base flows at specific sites in agricultural areas, and a physically based assessment of the relative magnitude of recharge for grassland, nonirrigated cropland, and irrigated cropland areas. Root-mean-squared (RMS) differences between the simulated and estimated or measured target values for the previously published model and linked models were relatively similar and did not improve for all types of calibration targets. However, without any adjustment to the SWB-generated recharge, the RMS difference between simulated and estimated base-flow target values for the groundwater-flow model was slightly smaller than for the previously published model, possibly indicating that the volume of recharge simulated by the SWB code was closer to actual hydrogeologic conditions than the previously published model provided. Groundwater-level and base-flow hydrographs showed that temporal patterns of simulated groundwater levels and base flows were more accurate for the linked models than for the previously published model at several sites, particularly in agricultural areas.

  2. Performance of protein-structure predictions with the physics-based UNRES force field in CASP11.

    PubMed

    Krupa, Paweł; Mozolewska, Magdalena A; Wiśniewska, Marta; Yin, Yanping; He, Yi; Sieradzan, Adam K; Ganzynkowicz, Robert; Lipska, Agnieszka G; Karczyńska, Agnieszka; Ślusarz, Magdalena; Ślusarz, Rafał; Giełdoń, Artur; Czaplewski, Cezary; Jagieła, Dawid; Zaborowski, Bartłomiej; Scheraga, Harold A; Liwo, Adam

    2016-11-01

    Participating as the Cornell-Gdansk group, we have used our physics-based coarse-grained UNited RESidue (UNRES) force field to predict protein structure in the 11th Community Wide Experiment on the Critical Assessment of Techniques for Protein Structure Prediction (CASP11). Our methodology involved extensive multiplexed replica exchange simulations of the target proteins with a recently improved UNRES force field to provide better reproductions of the local structures of polypeptide chains. All simulations were started from fully extended polypeptide chains, and no external information was included in the simulation process except for weak restraints on secondary structure to enable us to finish each prediction within the allowed 3-week time window. Because of simplified UNRES representation of polypeptide chains, use of enhanced sampling methods, code optimization and parallelization and sufficient computational resources, we were able to treat, for the first time, all 55 human prediction targets with sizes from 44 to 595 amino acid residues, the average size being 251 residues. Complete structures of six single-domain proteins were predicted accurately, with the highest accuracy being attained for the T0769, for which the CαRMSD was 3.8 Å for 97 residues of the experimental structure. Correct structures were also predicted for 13 domains of multi-domain proteins with accuracy comparable to that of the best template-based modeling methods. With further improvements of the UNRES force field that are now underway, our physics-based coarse-grained approach to protein-structure prediction will eventually reach global prediction capacity and, consequently, reliability in simulating protein structure and dynamics that are important in biochemical processes. Freely available on the web at http://www.unres.pl/ CONTACT: has5@cornell.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. Linking statistically-and physically-based models for improved streamflow simulation in gaged and ungaged watersheds

    Treesearch

    Jacob LaFontaine; Lauren Hay; Stacey Archfield; William Farmer; Julie Kiang

    2016-01-01

    The U.S. Geological Survey (USGS) has developed a National Hydrologic Model (NHM) to support coordinated, comprehensive and consistent hydrologic model development, and facilitate the application of hydrologic simulations within the continental US. The portion of the NHM located within the Gulf Coastal Plains and Ozarks Landscape Conservation Cooperative (GCPO LCC) is...

  4. Validation of Tendril TrueHome Using Software-to-Software Comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maguire, Jeffrey B; Horowitz, Scott G; Moore, Nathan

    This study performed comparative evaluation of EnergyPlus version 8.6 and Tendril TrueHome, two physics-based home energy simulation models, to identify differences in energy consumption predictions between the two programs and resolve discrepancies between them. EnergyPlus is considered a benchmark, best-in-class software tool for building energy simulation. This exercise sought to improve both software tools through additional evaluation/scrutiny.

  5. Simulated water budget of a small forested watershed in the continental/maritime hydroclimatic region of the United States

    Treesearch

    Liang Wei; Timothy E. Link; Andrew T. Hudak; John D. Marshall; Kathleen L. Kavanagh; John T. Abatzoglou; Hang Zhou; Robert E. Pangle; Gerald N. Flerchinger

    2016-01-01

    Annual streamflows have decreased across mountain watersheds in the Pacific Northwest of the United States over the last ~70 years; however, in some watersheds, observed annual flows have increased. Physically based models are useful tools to reveal the combined effects of climate and vegetation on long-term water balances by explicitly simulating the internal...

  6. From Newton's Second Law to Huygens's Principle: Visualizing Waves in a Large Array of Masses Joined by Springs

    ERIC Educational Resources Information Center

    Dolinko, A. E.

    2009-01-01

    By simulating the dynamics of a bidimensional array of springs and masses, the propagation of conveniently generated waves is visualized. The simulation is exclusively based on Newton's second law and was made to provide insight into the physics of wave propagation. By controlling parameters such as the magnitude of the mass and the elastic…

  7. LMSS drive simulator for multipath propagation

    NASA Technical Reports Server (NTRS)

    Vishakantaiah, Praveen; Vogel, Wolfhard J.

    1989-01-01

    A three-dimensional drive simulator for the prediction of Land Mobile Satellite Service (LMSS) multipath propagation was developed. It is based on simple physical and geometrical rules and can be used to evaluate effects of scatterer numbers and positions, receiving antenna pattern, and satellite frequency and position. It is shown that scatterers close to the receiver have the most effect and that directive antennas suppress multipath interference.

  8. A Low-Power Thermal-Based Sensor System for Low Air Flow Detection

    PubMed Central

    Arifuzzman, AKM; Haider, Mohammad Rafiqul; Allison, David B.

    2016-01-01

    Being able to rapidly detect a low air flow rate with high accuracy is essential for various applications in the automotive and biomedical industries. We have developed a thermal-based low air flow sensor with a low-power sensor readout for biomedical applications. The thermal-based air flow sensor comprises a heater and three pairs of temperature sensors that sense temperature differences due to laminar air flow. The thermal-based flow sensor was designed and simulated by using laminar flow, heat transfer in solids and fluids physics in COMSOL MultiPhysics software. The proposed sensor can detect air flow as low as 0.0064 m/sec. The readout circuit is based on a current- controlled ring oscillator in which the output frequency of the ring oscillator is proportional to the temperature differences of the sensors. The entire readout circuit was designed and simulated by using a 130-nm standard CMOS process. The sensor circuit features a small area and low-power consumption of about 22.6 µW with an 800 mV power supply. In the simulation, the output frequency of the ring oscillator and the change in thermistor resistance showed a high linearity with an R2 value of 0.9987. The low-power dissipation, high linearity and small dimensions of the proposed flow sensor and circuit make the system highly suitable for biomedical applications. PMID:28435186

  9. Development of a Robust and Efficient Parallel Solver for Unsteady Turbomachinery Flows

    NASA Technical Reports Server (NTRS)

    West, Jeff; Wright, Jeffrey; Thakur, Siddharth; Luke, Ed; Grinstead, Nathan

    2012-01-01

    The traditional design and analysis practice for advanced propulsion systems relies heavily on expensive full-scale prototype development and testing. Over the past decade, use of high-fidelity analysis and design tools such as CFD early in the product development cycle has been identified as one way to alleviate testing costs and to develop these devices better, faster and cheaper. In the design of advanced propulsion systems, CFD plays a major role in defining the required performance over the entire flight regime, as well as in testing the sensitivity of the design to the different modes of operation. Increased emphasis is being placed on developing and applying CFD models to simulate the flow field environments and performance of advanced propulsion systems. This necessitates the development of next generation computational tools which can be used effectively and reliably in a design environment. The turbomachinery simulation capability presented here is being developed in a computational tool called Loci-STREAM [1]. It integrates proven numerical methods for generalized grids and state-of-the-art physical models in a novel rule-based programming framework called Loci [2] which allows: (a) seamless integration of multidisciplinary physics in a unified manner, and (b) automatic handling of massively parallel computing. The objective is to be able to routinely simulate problems involving complex geometries requiring large unstructured grids and complex multidisciplinary physics. An immediate application of interest is simulation of unsteady flows in rocket turbopumps, particularly in cryogenic liquid rocket engines. The key components of the overall methodology presented in this paper are the following: (a) high fidelity unsteady simulation capability based on Detached Eddy Simulation (DES) in conjunction with second-order temporal discretization, (b) compliance with Geometric Conservation Law (GCL) in order to maintain conservative property on moving meshes for second-order time-stepping scheme, (c) a novel cloud-of-points interpolation method (based on a fast parallel kd-tree search algorithm) for interfaces between turbomachinery components in relative motion which is demonstrated to be highly scalable, and (d) demonstrated accuracy and parallel scalability on large grids (approx 250 million cells) in full turbomachinery geometries.

  10. Modeling and simulation challenges pursued by the Consortium for Advanced Simulation of Light Water Reactors (CASL)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turinsky, Paul J., E-mail: turinsky@ncsu.edu; Kothe, Douglas B., E-mail: kothe@ornl.gov

    The Consortium for the Advanced Simulation of Light Water Reactors (CASL), the first Energy Innovation Hub of the Department of Energy, was established in 2010 with the goal of providing modeling and simulation (M&S) capabilities that support and accelerate the improvement of nuclear energy's economic competitiveness and the reduction of spent nuclear fuel volume per unit energy, and all while assuring nuclear safety. To accomplish this requires advances in M&S capabilities in radiation transport, thermal-hydraulics, fuel performance and corrosion chemistry. To focus CASL's R&D, industry challenge problems have been defined, which equate with long standing issues of the nuclear powermore » industry that M&S can assist in addressing. To date CASL has developed a multi-physics “core simulator” based upon pin-resolved radiation transport and subchannel (within fuel assembly) thermal-hydraulics, capitalizing on the capabilities of high performance computing. CASL's fuel performance M&S capability can also be optionally integrated into the core simulator, yielding a coupled multi-physics capability with untapped predictive potential. Material models have been developed to enhance predictive capabilities of fuel clad creep and growth, along with deeper understanding of zirconium alloy clad oxidation and hydrogen pickup. Understanding of corrosion chemistry (e.g., CRUD formation) has evolved at all scales: micro, meso and macro. CFD R&D has focused on improvement in closure models for subcooled boiling and bubbly flow, and the formulation of robust numerical solution algorithms. For multiphysics integration, several iterative acceleration methods have been assessed, illuminating areas where further research is needed. Finally, uncertainty quantification and data assimilation techniques, based upon sampling approaches, have been made more feasible for practicing nuclear engineers via R&D on dimensional reduction and biased sampling. Industry adoption of CASL's evolving M&S capabilities, which is in progress, will assist in addressing long-standing and future operational and safety challenges of the nuclear industry. - Highlights: • Complexity of physics based modeling of light water reactor cores being addressed. • Capability developed to help address problems that have challenged the nuclear power industry. • Simulation capabilities that take advantage of high performance computing developed.« less

  11. The Influence of Using Momentum and Impulse Computer Simulation to Senior High School Students’ Concept Mastery

    NASA Astrophysics Data System (ADS)

    Kaniawati, I.; Samsudin, A.; Hasopa, Y.; Sutrisno, A. D.; Suhendi, E.

    2016-08-01

    This research is based on students’ lack of mastery of physics abstract concepts. Thus, this study aims to improve senior high school students’ mastery of momentum and impulse concepts with the use of computer simulation. To achieve these objectives, the research method employed was pre experimental design with one group pre-test post-test. A total of 36 science students of grade 11 in one of public senior high school in Bandung became the sample in this study. The instruments utilized to determine the increase of students’ concept mastery were pretest and posttest in the form of multiple choices. After using computer simulations in physics learning, students’ mastery of momentum and impulse concept has increased as indicated by the normalized gain of 0.64 with the medium category.

  12. Influence of urban shapes on environmental noise: a case study in Aracaju-Brazil.

    PubMed

    Guedes, Italo C Montalvão; Bertoli, Stelamaris R; Zannin, Paulo H T

    2011-12-15

    This paper discusses the results of a study about the influence of urban shapes on environmental noise in the city of Aracaju (Brazil). The study, which involved in situ measurements and acoustic simulations using SoundPLAN software, began with an analysis of the current acoustic scenario, followed by the creation and simulation of hypothetical scenarios in as yet unoccupied sectors of the region under study. The acoustic modeling and simulations were based on measurements of equivalent-continuous sound pressure level, LAeq, and vehicle flow data, and on the region's geometrics. The results reveal that the physical characteristics of the urban shape, such as construction density, the existence of open spaces, and the shape and physical position of buildings exert a significant influence on environmental noise. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. MOOSE: A parallel computational framework for coupled systems of nonlinear equations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Derek Gaston; Chris Newman; Glen Hansen

    Systems of coupled, nonlinear partial differential equations (PDEs) often arise in simulation of nuclear processes. MOOSE: Multiphysics Object Oriented Simulation Environment, a parallel computational framework targeted at the solution of such systems, is presented. As opposed to traditional data-flow oriented computational frameworks, MOOSE is instead founded on the mathematical principle of Jacobian-free Newton-Krylov (JFNK) solution methods. Utilizing the mathematical structure present in JFNK, physics expressions are modularized into `Kernels,'' allowing for rapid production of new simulation tools. In addition, systems are solved implicitly and fully coupled, employing physics based preconditioning, which provides great flexibility even with large variance in timemore » scales. A summary of the mathematics, an overview of the structure of MOOSE, and several representative solutions from applications built on the framework are presented.« less

  14. Taking a fresh look at boiling heat transfer on the road to improved nuclear economics and efficiency

    DOE PAGES

    Pointer, William David; Baglietto, Emilio

    2016-05-01

    Here, in the effort to reinvigorate innovation in the way we design, build, and operate the nuclear power generating stations of today and tomorrow, nothing can be taken for granted. Not even the seemingly familiar physics of boiling water. The Consortium for the Advanced Simulation of Light Water Reactors, or CASL, is focused on the deployment of advanced modeling and simulation capabilities to enable the nuclear industry to reduce uncertainties in the prediction of multi-physics phenomena and continue to improve the performance of today’s Light Water Reactors and their fuel. An important part of the CASL mission is the developmentmore » of a next generation thermal hydraulics simulation capability, integrating the history of engineering models based on experimental experience with the computing technology of the future.« less

  15. Comparison of the Physical and Technical Demands of Cricket Players During Training and Match-Play.

    PubMed

    Vickery, Will; Duffield, Rob; Crowther, Rian; Beakley, David; Blanch, Peter; Dascombe, Ben J

    2018-03-01

    Vickery, W, Duffield, R, Crowther, R, Beakley, D, Blanch, P, and Dascombe, BJ. Comparison of the physical and technical demands of cricket players during training and match-play. J Strength Cond Res 32(3): 821-829, 2018-This study aimed to determine which training method (net-based sessions or center-wicket simulations) currently used in national level and U19 male players cricket provided a more physical and technical match-specific training response. The heart rate, rating of perceived exertion, and movement patterns of 42 male cricket players were measured across the various training and match formats. Video analysis was coded retrospectively to quantify technical loads based on the cricket skills performed. Magnitude-based inferences were based on the standardization of effect and presented with ±90% confidence intervals. Regardless of playing position, differences in physiological demands between training modes and match-play were unclear, with the exception of higher heart rates in fielders during traditional net sessions (mean heart rate: d = -2.7 [-4.7 to -0.7]; 75% of maximum heart rate: d = -1.7 [-3.2 to -0.2]). Typically, the movement demands of center-wicket simulations were similar or greater than match-play, which was most evident in the distance traveled at a high intensity within each playing position (batsmen: d = 6.4 [3.7-9.2]; medium-fast bowlers: d = 1.71 [0.1-3.3]; spin bowlers: d = 6.5 [0.01-13.0]; fielders: d = 0.8 [-0.2 to 1.7]). The technical demands of traditional net cricket training exceeded that of a typical match for each playing position. Specifically, fast bowlers delivered a greater number of balls during net-bowling compared with a match (d = -2.2 [-3.6 to 0.9]). In conclusion, center-wicket simulations more closely matched the physical demands of a One-Day match within batsmen and spin bowlers, whereas traditional cricket training often exceeded match-specific demands.

  16. Equilibration of experimentally determined protein structures for molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Walton, Emily B.; Vanvliet, Krystyn J.

    2006-12-01

    Preceding molecular dynamics simulations of biomolecular interactions, the molecule of interest is often equilibrated with respect to an initial configuration. This so-called equilibration stage is required because the input structure is typically not within the equilibrium phase space of the simulation conditions, particularly in systems as complex as proteins, which can lead to artifactual trajectories of protein dynamics. The time at which nonequilibrium effects from the initial configuration are minimized—what we will call the equilibration time—marks the beginning of equilibrium phase-space exploration. Note that the identification of this time does not imply exploration of the entire equilibrium phase space. We have found that current equilibration methodologies contain ambiguities that lead to uncertainty in determining the end of the equilibration stage of the trajectory. This results in equilibration times that are either too long, resulting in wasted computational resources, or too short, resulting in the simulation of molecular trajectories that do not accurately represent the physical system. We outline and demonstrate a protocol for identifying the equilibration time that is based on the physical model of Normal Mode Analysis. We attain the computational efficiency required of large-protein simulations via a stretched exponential approximation that enables an analytically tractable and physically meaningful form of the root-mean-square deviation of atoms comprising the protein. We find that the fitting parameters (which correspond to physical properties of the protein) fluctuate initially but then stabilize for increased simulation time, independently of the simulation duration or sampling frequency. We define the end of the equilibration stage—and thus the equilibration time—as the point in the simulation when these parameters attain constant values. Compared to existing methods, our approach provides the objective identification of the time at which the simulated biomolecule has entered an energetic basin. For the representative protein considered, bovine pancreatic trypsin inhibitor, existing methods indicate a range of 0.2-10ns of simulation until a local minimum is attained. Our approach identifies a substantially narrower range of 4.5-5.5ns , which will lead to a much more objective choice of equilibration time.

  17. High-Accurate, Physics-Based Wake Simulation Techniques

    DTIC Science & Technology

    2015-01-27

    to accepting the use of computational fluid dynamics models to supplement some of the research. The scientists Lewellen and Lewellen [13] in 1996...resolved in today’s climate es- pecially concerning CFD and experimental. Multiple programs have been established such as the Aircraft Vortex Spacing ...step the entire matrix is solved at once creating inconsistencies when applied to the physics of a fluid mechanics problem where information changes

  18. Improved coating for silica fiber based ceramic Reusable Surface Insulation (CRSI)

    NASA Technical Reports Server (NTRS)

    Ormiston, T. J.

    1974-01-01

    A series of coatings was developed for the space shuttle type silica fiber insulation system and characterized for optical and physical properties. Reentry simulation tests were run using a radiant panel and also using a hypersonic plasma arc. The coatings produced had improved physical and optical properties as well as greater reuse capability over the GE version of the JSC-0042 coating.

  19. High-resolution coupled physics solvers for analysing fine-scale nuclear reactor design problems

    DOE PAGES

    Mahadevan, Vijay S.; Merzari, Elia; Tautges, Timothy; ...

    2014-06-30

    An integrated multi-physics simulation capability for the design and analysis of current and future nuclear reactor models is being investigated, to tightly couple neutron transport and thermal-hydraulics physics under the SHARP framework. Over several years, high-fidelity, validated mono-physics solvers with proven scalability on petascale architectures have been developed independently. Based on a unified component-based architecture, these existing codes can be coupled with a mesh-data backplane and a flexible coupling-strategy-based driver suite to produce a viable tool for analysts. The goal of the SHARP framework is to perform fully resolved coupled physics analysis of a reactor on heterogeneous geometry, in ordermore » to reduce the overall numerical uncertainty while leveraging available computational resources. Finally, the coupling methodology and software interfaces of the framework are presented, along with verification studies on two representative fast sodium-cooled reactor demonstration problems to prove the usability of the SHARP framework.« less

  20. Design of high-fidelity haptic display for one-dimensional force reflection applications

    NASA Astrophysics Data System (ADS)

    Gillespie, Brent; Rosenberg, Louis B.

    1995-12-01

    This paper discusses the development of a virtual reality platform for the simulation of medical procedures which involve needle insertion into human tissue. The paper's focus is the hardware and software requirements for haptic display of a particular medical procedure known as epidural analgesia. To perform this delicate manual procedure, an anesthesiologist must carefully guide a needle through various layers of tissue using only haptic cues for guidance. As a simplifying aspect for the simulator design, all motions and forces involved in the task occur along a fixed line once insertion begins. To create a haptic representation of this procedure, we have explored both physical modeling and perceptual modeling techniques. A preliminary physical model was built based on CT-scan data of the operative site. A preliminary perceptual model was built based on current training techniques for the procedure provided by a skilled instructor. We compare and contrast these two modeling methods and discuss the implications of each. We select and defend the perceptual model as a superior approach for the epidural analgesia simulator.

  1. Semantic Information Processing of Physical Simulation Based on Scientific Concept Vocabulary Model

    NASA Astrophysics Data System (ADS)

    Kino, Chiaki; Suzuki, Yoshio; Takemiya, Hiroshi

    Scientific Concept Vocabulary (SCV) has been developed to actualize Cognitive methodology based Data Analysis System: CDAS which supports researchers to analyze large scale data efficiently and comprehensively. SCV is an information model for processing semantic information for physics and engineering. In the model of SCV, all semantic information is related to substantial data and algorisms. Consequently, SCV enables a data analysis system to recognize the meaning of execution results output from a numerical simulation. This method has allowed a data analysis system to extract important information from a scientific view point. Previous research has shown that SCV is able to describe simple scientific indices and scientific perceptions. However, it is difficult to describe complex scientific perceptions by currently-proposed SCV. In this paper, a new data structure for SCV has been proposed in order to describe scientific perceptions in more detail. Additionally, the prototype of the new model has been constructed and applied to actual data of numerical simulation. The result means that the new SCV is able to describe more complex scientific perceptions.

  2. Different modelling approaches to evaluate nitrogen transport and turnover at the watershed scale

    NASA Astrophysics Data System (ADS)

    Epelde, Ane Miren; Antiguedad, Iñaki; Brito, David; Jauch, Eduardo; Neves, Ramiro; Garneau, Cyril; Sauvage, Sabine; Sánchez-Pérez, José Miguel

    2016-08-01

    This study presents the simulation of hydrological processes and nutrient transport and turnover processes using two integrated numerical models: Soil and Water Assessment Tool (SWAT) (Arnold et al., 1998), an empirical and semi-distributed numerical model; and Modelo Hidrodinâmico (MOHID) (Neves, 1985), a physics-based and fully distributed numerical model. This work shows that both models reproduce satisfactorily water and nitrate exportation at the watershed scale at annual and daily basis, MOHID providing slightly better results. At the watershed scale, both SWAT and MOHID simulated similarly and satisfactorily the denitrification amount. However, as MOHID numerical model was the only one able to reproduce adequately the spatial variation of the soil hydrological conditions and water table level fluctuation, it proved to be the only model able of reproducing the spatial variation of the nutrient cycling processes that are dependent to the soil hydrological conditions such as the denitrification process. This evidences the strength of the fully distributed and physics-based models to simulate the spatial variability of nutrient cycling processes that are dependent to the hydrological conditions of the soils.

  3. Beam-dynamic effects at the CMS BRIL van der Meer scans

    NASA Astrophysics Data System (ADS)

    Babaev, A.

    2018-03-01

    The CMS Beam Radiation Instrumentation and Luminosity Project (BRIL) is responsible for the simulation and measurement of luminosity, beam conditions and radiation fields in the CMS experiment. The project is engaged in operating and developing new detectors (luminometers), adequate for the experimental conditions associated with high values of instantaneous luminosity delivered by the CERN LHC . BRIL operates several detectors based on different physical principles and technologies. Precise and accurate measurements of the delivered luminosity is of paramount importance for the CMS physics program. The absolute calibration of luminosity is achieved by the van der Meer method, which is carried out under specially tailored conditions. This paper presents models used to simulate of beam-dynamic effects arising due to the electromagnetic interaction of colliding bunches. These effects include beam-beam deflection and dynamic-β effect. Both effects are important to luminosity measurements and influence calibration constants at the level of 1-2%. The simulations are carried out based on 2016 CMS van der Meer scan data for proton-proton collisions at a center-of-mass energy of 13 TeV.

  4. Optimization of GATE and PHITS Monte Carlo code parameters for uniform scanning proton beam based on simulation with FLUKA general-purpose code

    NASA Astrophysics Data System (ADS)

    Kurosu, Keita; Takashina, Masaaki; Koizumi, Masahiko; Das, Indra J.; Moskvin, Vadim P.

    2014-10-01

    Although three general-purpose Monte Carlo (MC) simulation tools: Geant4, FLUKA and PHITS have been used extensively, differences in calculation results have been reported. The major causes are the implementation of the physical model, preset value of the ionization potential or definition of the maximum step size. In order to achieve artifact free MC simulation, an optimized parameters list for each simulation system is required. Several authors have already proposed the optimized lists, but those studies were performed with a simple system such as only a water phantom. Since particle beams have a transport, interaction and electromagnetic processes during beam delivery, establishment of an optimized parameters-list for whole beam delivery system is therefore of major importance. The purpose of this study was to determine the optimized parameters list for GATE and PHITS using proton treatment nozzle computational model. The simulation was performed with the broad scanning proton beam. The influences of the customizing parameters on the percentage depth dose (PDD) profile and the proton range were investigated by comparison with the result of FLUKA, and then the optimal parameters were determined. The PDD profile and the proton range obtained from our optimized parameters list showed different characteristics from the results obtained with simple system. This led to the conclusion that the physical model, particle transport mechanics and different geometry-based descriptions need accurate customization in planning computational experiments for artifact-free MC simulation.

  5. Theory, modeling, and simulation of structural and functional materials: Micromechanics, microstructures, and properties

    NASA Astrophysics Data System (ADS)

    Jin, Yongmei

    In recent years, theoretical modeling and computational simulation of microstructure evolution and materials property has been attracting much attention. While significant advances have been made, two major challenges remain. One is the integration of multiple physical phenomena for simulation of complex materials behavior, the other is the bridging over multiple length and time scales in materials modeling and simulation. The research presented in this Thesis is focused mainly on tackling the first major challenge. In this Thesis, a unified Phase Field Microelasticity (PFM) approach is developed. This approach is an advanced version of the phase field method that takes into account the exact elasticity of arbitrarily anisotropic, elastically and structurally inhomogeneous systems. The proposed theory and models are applicable to infinite solids, elastic half-space, and finite bodies with arbitrary-shaped free surfaces, which may undergo various concomitant physical processes. The Phase Field Microelasticity approach is employed to formulate the theories and models of martensitic transformation, dislocation dynamics, and crack evolution in single crystal and polycrystalline solids. It is also used to study strain relaxation in heteroepitaxial thin films through misfit dislocation and surface roughening. Magnetic domain evolution in nanocrystalline thin films is also investigated. Numerous simulation studies are performed. Comparison with analytical predictions and experimental observations are presented. Agreement verities the theory and models as realistic simulation tools for computational materials science and engineering. The same Phase Field Microelasticity formalism of individual models of different physical phenomena makes it easy to integrate multiple physical processes into one unified simulation model, where multiple phenomena are treated as various relaxation modes that together act as one common cooperative phenomenon. The model does not impose a priori constraints on possible microstructure evolution paths. This gives the model predicting power, where material system itself "chooses" the optimal path for multiple processes. The advances made in this Thesis present a significant step forward to overcome the first challenge, mesoscale multi-physics modeling and simulation of materials. At the end of this Thesis, the way to tackle the second challenge, bridging over multiple length and time scales in materials modeling and simulation, is discussed based on connection between the mesoscale Phase Field Microelasticity modeling and microscopic atomistic calculation as well as macroscopic continuum theory.

  6. Rotor dynamic simulation and system identification methods for application to vacuum whirl data

    NASA Technical Reports Server (NTRS)

    Berman, A.; Giansante, N.; Flannelly, W. G.

    1980-01-01

    Methods of using rotor vacuum whirl data to improve the ability to model helicopter rotors were developed. The work consisted of the formulation of the equations of motion of elastic blades on a hub using a Galerkin method; the development of a general computer program for simulation of these equations; the study and implementation of a procedure for determining physical parameters based on measured data; and the application of a method for computing the normal modes and natural frequencies based on test data.

  7. Physics-Based Stimulation for Night Vision Goggle Simulation

    DTIC Science & Technology

    2006-11-01

    a CRT display system can produce darker black level than displays based on digital light processing (DLP) or liquid crystal technologies. It should...The general form of the bucket equation for any gun (color) is as follows: (3) n n n n r MnRp f MxR MnR ⎛ ⎞− = ⎜ ⎟−⎝ ⎠ Equation 3 General...simulate rendering approach, we began by testing the bucket rendering approach already utilized by SensorHost: (10) n n n n r MnRp f MxR MnR

  8. Virtual worlds and team training.

    PubMed

    Dev, Parvati; Youngblood, Patricia; Heinrichs, W Leroy; Kusumoto, Laura

    2007-06-01

    An important component of all emergency medicine residency programs is managing trauma effectively as a member of an emergency medicine team, but practice on live patients is often impractical and mannequin-based simulators are expensive and require all trainees to be physically present at the same location. This article describes a project to develop and evaluate a computer-based simulator (the Virtual Emergency Department) for distance training in teamwork and leadership in trauma management. The virtual environment provides repeated practice opportunities with life-threatening trauma cases in a safe and reproducible setting.

  9. Multi-Mission Simulation and Visualization for Real-Time Telemetry Display, Playback and EDL Event Reconstruction

    NASA Technical Reports Server (NTRS)

    Pomerantz, M. I.; Lim, C.; Myint, S.; Woodward, G.; Balaram, J.; Kuo, C.

    2012-01-01

    he Jet Propulsion Laboratory's Entry, Descent and Landing (EDL) Reconstruction Task has developed a software system that provides mission operations personnel and analysts with a real time telemetry-based live display, playback and post-EDL reconstruction capability that leverages the existing high-fidelity, physics-based simulation framework and modern game engine-derived 3D visualization system developed in the JPL Dynamics and Real Time Simulation (DARTS) Lab. Developed as a multi-mission solution, the EDL Telemetry Visualization (ETV) system has been used for a variety of projects including NASA's Mars Science Laboratory (MSL), NASA'S Low Density Supersonic Decelerator (LDSD) and JPL's MoonRise Lunar sample return proposal.

  10. Teaching quantum physics by the sum over paths approach and GeoGebra simulations

    NASA Astrophysics Data System (ADS)

    Malgieri, M.; Onorato, P.; De Ambrosis, A.

    2014-09-01

    We present a research-based teaching sequence in introductory quantum physics using the Feynman sum over paths approach. Our reconstruction avoids the historical pathway, and starts by reconsidering optics from the standpoint of the quantum nature of light, analysing both traditional and modern experiments. The core of our educational path lies in the treatment of conceptual and epistemological themes, peculiar of quantum theory, based on evidence from quantum optics, such as the single photon Mach-Zehnder and Zhou-Wang-Mandel experiments. The sequence is supported by a collection of interactive simulations, realized in the open source GeoGebra environment, which we used to assist students in learning the basics of the method, and help them explore the proposed experimental situations as modeled in the sum over paths perspective. We tested our approach in the context of a post-graduate training course for pre-service physics teachers; according to the data we collected, student teachers displayed a greatly improved understanding of conceptual issues, and acquired significant abilities in using the sum over path method for problem solving.

  11. Effect of a Six-Week Preparation Period on Acute Physiological Responses to a Simulated Combat in Young National-Level Taekwondo Athletes.

    PubMed

    Nikolaidis, Pantelis T; Chtourou, Hamdi; Torres-Luque, Gema; Tasiopoulos, Ioannis G; Heller, Jan; Padulo, Johnny

    2015-09-29

    The aim of this study was to examine changes in physical attributes, physiological characteristics and responses that occurred in a simulated combat during a six-week preparatory period in young taekwondo athletes. Seven athletes (age 12.17 ± 1.11 years) were examined before (pre-intervention) and after (post-intervention) a preparatory period for physical fitness and physiological responses to a 2×90 s simulated bout with a 30 s rest period. The heart rate (HR) was monitored during the simulated combat, and handgrip muscle strength (HMS) along with the countermovement jump (CMJ) were recorded before and after the combat. When compared with pre-intervention values, in post-intervention we observed a decrease in body mass, body fat percentage, and the HR at rest and during recovery after a 3 min step test, and an increase in maximal velocity of the cycle ergometer force-velocity test, the CMJ and mean power during the 30 s continuous jumping test (p<0.05). Furthermore, HR responses to a simulated combat were lower in the post-intervention session (p<0.05). CMJ values increased after the bout in both pre and post-intervention, with higher absolute values in the latter case (p<0.05), whereas there was no difference in HMS. Based on these findings, it can be concluded that the acute physiological responses to a simulated taekwondo combat vary during a season, which might be explained by changes in physical fitness.

  12. Effect of a Six-Week Preparation Period on Acute Physiological Responses to a Simulated Combat in Young National-Level Taekwondo Athletes

    PubMed Central

    Nikolaidis, Pantelis T.; Chtourou, Hamdi; Torres-Luque, Gema; Tasiopoulos, Ioannis G.; Heller, Jan; Padulo, Johnny

    2015-01-01

    The aim of this study was to examine changes in physical attributes, physiological characteristics and responses that occurred in a simulated combat during a six-week preparatory period in young taekwondo athletes. Seven athletes (age 12.17 ± 1.11 years) were examined before (pre-intervention) and after (post-intervention) a preparatory period for physical fitness and physiological responses to a 2×90 s simulated bout with a 30 s rest period. The heart rate (HR) was monitored during the simulated combat, and handgrip muscle strength (HMS) along with the countermovement jump (CMJ) were recorded before and after the combat. When compared with pre-intervention values, in post-intervention we observed a decrease in body mass, body fat percentage, and the HR at rest and during recovery after a 3 min step test, and an increase in maximal velocity of the cycle ergometer force-velocity test, the CMJ and mean power during the 30 s continuous jumping test (p<0.05). Furthermore, HR responses to a simulated combat were lower in the post-intervention session (p<0.05). CMJ values increased after the bout in both pre and post-intervention, with higher absolute values in the latter case (p<0.05), whereas there was no difference in HMS. Based on these findings, it can be concluded that the acute physiological responses to a simulated taekwondo combat vary during a season, which might be explained by changes in physical fitness. PMID:26557196

  13. Multi-physics CFD simulations in engineering

    NASA Astrophysics Data System (ADS)

    Yamamoto, Makoto

    2013-08-01

    Nowadays Computational Fluid Dynamics (CFD) software is adopted as a design and analysis tool in a great number of engineering fields. We can say that single-physics CFD has been sufficiently matured in the practical point of view. The main target of existing CFD software is single-phase flows such as water and air. However, many multi-physics problems exist in engineering. Most of them consist of flow and other physics, and the interactions between different physics are very important. Obviously, multi-physics phenomena are critical in developing machines and processes. A multi-physics phenomenon seems to be very complex, and it is so difficult to be predicted by adding other physics to flow phenomenon. Therefore, multi-physics CFD techniques are still under research and development. This would be caused from the facts that processing speed of current computers is not fast enough for conducting a multi-physics simulation, and furthermore physical models except for flow physics have not been suitably established. Therefore, in near future, we have to develop various physical models and efficient CFD techniques, in order to success multi-physics simulations in engineering. In the present paper, I will describe the present states of multi-physics CFD simulations, and then show some numerical results such as ice accretion and electro-chemical machining process of a three-dimensional compressor blade which were obtained in my laboratory. Multi-physics CFD simulations would be a key technology in near future.

  14. Experimental Validation of Numerical Simulations for an Acoustic Liner in Grazing Flow

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Pastouchenko, Nikolai N.; Jones, Michael G.; Watson, Willie R.

    2013-01-01

    A coordinated experimental and numerical simulation effort is carried out to improve our understanding of the physics of acoustic liners in a grazing flow as well our computational aeroacoustics (CAA) method prediction capability. A numerical simulation code based on advanced CAA methods is developed. In a parallel effort, experiments are performed using the Grazing Flow Impedance Tube at the NASA Langley Research Center. In the experiment, a liner is installed in the upper wall of a rectangular flow duct with a 2 inch by 2.5 inch cross section. Spatial distribution of sound pressure levels and relative phases are measured on the wall opposite the liner in the presence of a Mach 0.3 grazing flow. The computer code is validated by comparing computed results with experimental measurements. Good agreements are found. The numerical simulation code is then used to investigate the physical properties of the acoustic liner. It is shown that an acoustic liner can produce self-noise in the presence of a grazing flow and that a feedback acoustic resonance mechanism is responsible for the generation of this liner self-noise. In addition, the same mechanism also creates additional liner drag. An estimate, based on numerical simulation data, indicates that for a resonant liner with a 10% open area ratio, the drag increase would be about 4% of the turbulent boundary layer drag over a flat wall.

  15. Interactions of solutes and streambed sediment: 2. A dynamic analysis of coupled hydrologic and chemical processes that determine solute transport

    USGS Publications Warehouse

    Bencala, Kenneth E.

    1984-01-01

    Solute transport in streams is determined by the interaction of physical and chemical processes. Data from an injection experiment for chloride and several cations indicate significant influence of solutestreambed processes on transport in a mountain stream. These data are interpreted in terms of transient storage processes for all tracers and sorption processes for the cations. Process parameter values are estimated with simulations based on coupled quasi-two-dimensional transport and first-order mass transfer sorption. Comparative simulations demonstrate the relative roles of the physical and chemical processes in determining solute transport. During the first 24 hours of the experiment, chloride concentrations were attenuated relative to expected plateau levels. Additional attenuation occurred for the sorbing cation strontium. The simulations account for these storage processes. Parameter values determined by calibration compare favorably with estimates from other studies in mountain streams. Without further calibration, the transport of potassium and lithium is adequately simulated using parameters determined in the chloride-strontium simulation and with measured cation distribution coefficients.

  16. Empirical Scaling Laws of Rocket Exhaust Cratering

    NASA Technical Reports Server (NTRS)

    Donahue, Carly M.; Metzger, Philip T.; Immer, Christopher D.

    2005-01-01

    When launching or landing a space craft on the regolith of a terrestrial surface, special attention needs to be paid to the rocket exhaust cratering effects. If the effects are not controlled, the rocket cratering could damage the spacecraft or other surrounding hardware. The cratering effects of a rocket landing on a planet's surface are not understood well, especially for the lunar case with the plume expanding in vacuum. As a result, the blast effects cannot be estimated sufficiently using analytical theories. It is necessary to develop physics-based simulation tools in order to calculate mission-essential parameters. In this work we test out the scaling laws of the physics in regard to growth rate of the crater depth. This will provide the physical insight necessary to begin the physics-based modeling.

  17. Simulation of nitrate reduction in groundwater - An upscaling approach from small catchments to the Baltic Sea basin

    NASA Astrophysics Data System (ADS)

    Hansen, A. L.; Donnelly, C.; Refsgaard, J. C.; Karlsson, I. B.

    2018-01-01

    This paper describes a modeling approach proposed to simulate the impact of local-scale, spatially targeted N-mitigation measures for the Baltic Sea Basin. Spatially targeted N-regulations aim at exploiting the considerable spatial differences in the natural N-reduction taking place in groundwater and surface water. While such measures can be simulated using local-scale physically-based catchment models, use of such detailed models for the 1.8 million km2 Baltic Sea basin is not feasible due to constraints on input data and computing power. Large-scale models that are able to simulate the Baltic Sea basin, on the other hand, do not have adequate spatial resolution to simulate some of the field-scale measures. Our methodology combines knowledge and results from two local-scale physically-based MIKE SHE catchment models, the large-scale and more conceptual E-HYPE model, and auxiliary data in order to enable E-HYPE to simulate how spatially targeted regulation of agricultural practices may affect N-loads to the Baltic Sea. We conclude that the use of E-HYPE with this upscaling methodology enables the simulation of the impact on N-loads of applying a spatially targeted regulation at the Baltic Sea basin scale to the correct order-of-magnitude. The E-HYPE model together with the upscaling methodology therefore provides a sound basis for large-scale policy analysis; however, we do not expect it to be sufficiently accurate to be useful for the detailed design of local-scale measures.

  18. Optimized Materials From First Principles Simulations: Are We There Yet?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galli, G; Gygi, F

    2005-07-26

    In the past thirty years, the use of scientific computing has become pervasive in all disciplines: collection and interpretation of most experimental data is carried out using computers, and physical models in computable form, with various degrees of complexity and sophistication, are utilized in all fields of science. However, full prediction of physical and chemical phenomena based on the basic laws of Nature, using computer simulations, is a revolution still in the making, and it involves some formidable theoretical and computational challenges. We illustrate the progress and successes obtained in recent years in predicting fundamental properties of materials in condensedmore » phases and at the nanoscale, using ab-initio, quantum simulations. We also discuss open issues related to the validation of the approximate, first principles theories used in large scale simulations, and the resulting complex interplay between computation and experiment. Finally, we describe some applications, with focus on nanostructures and liquids, both at ambient and under extreme conditions.« less

  19. A Modeling Framework for Optimal Computational Resource Allocation Estimation: Considering the Trade-offs between Physical Resolutions, Uncertainty and Computational Costs

    NASA Astrophysics Data System (ADS)

    Moslehi, M.; de Barros, F.; Rajagopal, R.

    2014-12-01

    Hydrogeological models that represent flow and transport in subsurface domains are usually large-scale with excessive computational complexity and uncertain characteristics. Uncertainty quantification for predicting flow and transport in heterogeneous formations often entails utilizing a numerical Monte Carlo framework, which repeatedly simulates the model according to a random field representing hydrogeological characteristics of the field. The physical resolution (e.g. grid resolution associated with the physical space) for the simulation is customarily chosen based on recommendations in the literature, independent of the number of Monte Carlo realizations. This practice may lead to either excessive computational burden or inaccurate solutions. We propose an optimization-based methodology that considers the trade-off between the following conflicting objectives: time associated with computational costs, statistical convergence of the model predictions and physical errors corresponding to numerical grid resolution. In this research, we optimally allocate computational resources by developing a modeling framework for the overall error based on a joint statistical and numerical analysis and optimizing the error model subject to a given computational constraint. The derived expression for the overall error explicitly takes into account the joint dependence between the discretization error of the physical space and the statistical error associated with Monte Carlo realizations. The accuracy of the proposed framework is verified in this study by applying it to several computationally extensive examples. Having this framework at hand aims hydrogeologists to achieve the optimum physical and statistical resolutions to minimize the error with a given computational budget. Moreover, the influence of the available computational resources and the geometric properties of the contaminant source zone on the optimum resolutions are investigated. We conclude that the computational cost associated with optimal allocation can be substantially reduced compared with prevalent recommendations in the literature.

  20. A new approach to identify the sensitivity and importance of physical parameters combination within numerical models using the Lund-Potsdam-Jena (LPJ) model as an example

    NASA Astrophysics Data System (ADS)

    Sun, Guodong; Mu, Mu

    2017-05-01

    An important source of uncertainty, which causes further uncertainty in numerical simulations, is that residing in the parameters describing physical processes in numerical models. Therefore, finding a subset among numerous physical parameters in numerical models in the atmospheric and oceanic sciences, which are relatively more sensitive and important parameters, and reducing the errors in the physical parameters in this subset would be a far more efficient way to reduce the uncertainties involved in simulations. In this context, we present a new approach based on the conditional nonlinear optimal perturbation related to parameter (CNOP-P) method. The approach provides a framework to ascertain the subset of those relatively more sensitive and important parameters among the physical parameters. The Lund-Potsdam-Jena (LPJ) dynamical global vegetation model was utilized to test the validity of the new approach in China. The results imply that nonlinear interactions among parameters play a key role in the identification of sensitive parameters in arid and semi-arid regions of China compared to those in northern, northeastern, and southern China. The uncertainties in the numerical simulations were reduced considerably by reducing the errors of the subset of relatively more sensitive and important parameters. The results demonstrate that our approach not only offers a new route to identify relatively more sensitive and important physical parameters but also that it is viable to then apply "target observations" to reduce the uncertainties in model parameters.

Top