Sample records for physics chemistry engineering

  1. Engineering Faculty Attitudes to General Chemistry Courses in Engineering Curricula

    ERIC Educational Resources Information Center

    Garip, Mehmet; Erdil, Erzat; Bilsel, Ayhan

    2006-01-01

    A survey on the attitudes of engineering faculty to chemistry, physics, and mathematics was conducted with the aim of clarifying the attitudes of engineering faculty to chemistry courses in relation to engineering education or curricula and assessing their expectations. The results confirm that on the whole chemistry is perceived as having a…

  2. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-07-01

    This interdisciplinary laboratory in the College of Engineering support research in areas of condensed matter physics, solid state chemistry, and materials science. These research programs are developed with the assistance of faculty, students, and research associates in the departments of Physics, Materials Science and Engineering, chemistry, Chemical Engineering, Electrical Engineering, Mechanical Engineering, and Nuclear Engineering.

  3. Investigation Of Student Learning In Thermodynamics And Implications For Instruction In Chemistry And Engineering

    NASA Astrophysics Data System (ADS)

    Meltzer, David E.

    2007-01-01

    As part of an investigation into student learning of thermodynamics, we have probed the reasoning of students enrolled in introductory and advanced courses in both physics and chemistry. A particular focus of this work has been put on the learning difficulties encountered by physics, chemistry, and engineering students enrolled in an upper-level thermal physics course that included many topics also covered in physical chemistry courses. We have explored the evolution of students' understanding as they progressed from the introductory course through more advanced courses. Through this investigation we have gained insights into students' learning difficulties in thermodynamics at various levels. Our experience in addressing these learning difficulties may provide insights into analogous pedagogical issues in upper-level courses in both engineering and chemistry which focus on the theory and applications of thermodynamics.

  4. Supplemental Instruction in Physical Chemistry I

    ERIC Educational Resources Information Center

    Toby, Ellen; Scott, Timothy P.; Migl, David; Kolodzeji, Elizabeth

    2016-01-01

    Physical chemistry I at Texas A&M University is an upper division course requiring mathematical and analytical skills. As such, this course poses a major problem for many Chemistry, Engineering, Biochemistry and Genetics majors. Comparisons between participants and non-participants in Supplemental Instruction for physical chemistry were made…

  5. NUCLEAR CHEMISTRY ANNUAL REPORT 1970

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Authors, Various

    Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.

  6. Converting STEM Doctoral Dissertations into Patent Applications: A Study of Chemistry, Physics, Mathematics, and Chemical Engineering Dissertations from CIC Institutions

    ERIC Educational Resources Information Center

    Butkovich, Nancy J.

    2015-01-01

    Doctoral candidates may request short-term embargoes on the release of their dissertations in order to apply for patents. This study examines how often inventions described in dissertations in chemical engineering, chemistry, physics, and mathematics are converted into U.S. patent applications, as well as the relationship between dissertation…

  7. Integrating a Single Tablet PC in Chemistry, Engineering, and Physics Courses

    ERIC Educational Resources Information Center

    Rogers, James W.; Cox, James R.

    2008-01-01

    A tablet PC is a versatile computer that combines the computing power of a notebook with the pen functionality of a PDA (Cox and Rogers 2005b). The authors adopted tablet PC technology in order to improve the process and product of the lecture format in their chemistry, engineering, and physics courses. In this high-tech model, a single tablet PC…

  8. Lincoln Advanced Science and Engineering Reinforcement

    DTIC Science & Technology

    1989-01-01

    Chamblee Physics Lincoln University Kelvin Clark Physics Lincoln University Dwayne Cole Mechanical Engineering Howard University Francis Countiss Physics...Mathematics Lincoln University Spencer Lane Mechanical Engineering Howard University Edward Lawerence Physics Lincoln University Cyd Hall Actuarial Science...Pittsburgh Lloyd Hammond Ph.D., Bio-Chemistry Purdue University Timothy Moore M.S., Psychology Howard University * completedI During 1988, three (3

  9. ANNUAL REPORT ON PHYSICAL SCIENCES, ENGINEERING AND LIFE SCIENCES , JULY 1, 1961

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1962-10-31

    The research program at Brooknaven is described. Current activities in physics, high-energy accelerators, instrumentation, chemistry, nuclear engineering, applied mathematics, biology, and medical research are outlined. (D.L.C.)

  10. In the Footsteps of Irving Langmuir: Physical Chemistry in Service of Society

    NASA Astrophysics Data System (ADS)

    Carter, Emily

    The approach that Irving Langmuir took during his scientific career in industry at General Electric exemplifies the best that we chemical physicists/physical chemists can offer the world. His name is associated with very fundamental concepts and phenomena (e.g., the Langmuir isotherm, Langmuir-Blodgett films) along with practical inventions (e.g., the Langmuir probe, Langmuir trough). He worked at the interface of physics, chemistry, and engineering, with much of his important work devoted to understanding surface and interface phenomena. I have - unintentionally - followed in his footsteps, trained as a physical chemist who now leads the engineering school at Princeton. In this talk, I will give examples from my research as to how fundamental physical chemistry techniques and concepts - based largely on quantum mechanics - can be harnessed to help the world transition to a sustainable energy future. In the footsteps of Irving, surface and interfacial phenomena will figure prominently in the examples chosen.

  11. Dilution physics modeling: Dissolution/precipitation chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affectmore » safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics.« less

  12. 14 CFR 1275.101 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., biology, engineering and physical sciences (physics and chemistry). (h) Inquiry means the assessment of..., social sciences, statistics, and biological and physical research (ground based and microgravity...

  13. 14 CFR § 1275.101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., biology, engineering and physical sciences (physics and chemistry). (h) Inquiry means the assessment of..., psychology, social sciences, statistics, and biological and physical research (ground based and microgravity...

  14. 77 FR 58006 - Addition of Certain Persons to the Entity List; Removal of Person From the Entity List Based on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ...; (5) Chinese Academy of Engineering Physics, a.k.a., the following seventeen aliases: --Ninth Academy...; --Southwest Institute of Explosives and Chemical Engineering; --Southwest Institute of Fluid Physics...; --Southwest Institute of Materials; --Southwest Institute of Nuclear Physics and Chemistry (a.k.a., China...

  15. Advanced Chemical Modeling for Turbulent Combustion Simulations

    DTIC Science & Technology

    2012-05-03

    premixed combustion. The chemistry work proposes a method for defining jet fuel surrogates, describes how different sub- mechanisms can be incorporated...Chemical Modeling For Turbulent Combustion Simulations Final Report submitted by: Heinz Pitsch (PI) Stanford University Mechanical Engineering Flow Physics...predict the combustion characteristics of fuel oxidation and pollutant emissions from engines . The relevant fuel chemistry must be accurately modeled

  16. Engineering Protein Hydrogels Using SpyCatcher-SpyTag Chemistry.

    PubMed

    Gao, Xiaoye; Fang, Jie; Xue, Bin; Fu, Linglan; Li, Hongbin

    2016-09-12

    Constructing hydrogels from engineered proteins has attracted significant attention within the material sciences, owing to their myriad potential applications in biomedical engineering. Developing efficient methods to cross-link tailored protein building blocks into hydrogels with desirable mechanical, physical, and functional properties is of paramount importance. By making use of the recently developed SpyCatcher-SpyTag chemistry, we successfully engineered protein hydrogels on the basis of engineered tandem modular elastomeric proteins. Our resultant protein hydrogels are soft but stable, and show excellent biocompatibility. As the first step, we tested the use of these hydrogels as a drug carrier, as well as in encapsulating human lung fibroblast cells. Our results demonstrate the robustness of the SpyCatcher-SpyTag chemistry, even when the SpyTag (or SpyCatcher) is flanked by folded globular domains. These results demonstrate that SpyCatcher-SpyTag chemistry can be used to engineer protein hydrogels from tandem modular elastomeric proteins that can find applications in tissue engineering, in fundamental mechano-biological studies, and as a controlled drug release vehicle.

  17. Empowering Girls with Chemistry, Exercise and Physical Activity

    ERIC Educational Resources Information Center

    Clapham, Emily D.; Ciccomascolo, Lori E.; Clapham, Andrew J.

    2015-01-01

    Research suggests that a girl's career interests in the areas of science, technology, engineering and mathematics (STEM) declines between grades 6 and 8. Similarly, in middle school, there is a decrease in physical activity among girls. Researchers at the University of Rhode Island (URI) conducted a chemistry-based science camp that took place…

  18. Considerations on Educating Engineers in Sustainability

    ERIC Educational Resources Information Center

    Boyle, Carol

    2004-01-01

    The teaching of sustainability to engineers will follow similar paths to that of environmental engineering. There is a strong feeling that environmental engineering is a discipline unto itself, requiring knowledge of chemistry, physics, biology, hydrology, toxicology, modelling and law. However, environmental engineering can also be encompassed…

  19. NASA/DoD Aerospace Knowledge Diffusion Research Project. Report Number 19. The U. S. Government Technical Report and the Transfer of Federally Funded Aerospace R&D: An Analysis of Five Studies

    DTIC Science & Technology

    1994-01-01

    defined etymologically , according to report content and method (U.S. Department of Defense, 1964); behaviorally, according to the influence on the reader...SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3 ENGINEERING 8 PHYSICS 4 GEOSCIENCES 9 SPACE SCIENCES 5 LIFE SCIENCES 10 OTHER (specify) 63. IsANYof...YOUR work? (Circle ONLY one number) I AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3 ENGINEERING 8 PHYSICS 4

  20. 21 CFR 900.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... radiographic image of a phantom. (ll) Physical science means physics, chemistry, radiation science (including medical physics and health physics), and engineering. (mm) Positive mammogram means a mammogram that has... 50 percent adipose tissue. (vv) Survey means an onsite physics consultation and evaluation of a...

  1. 21 CFR 900.2 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... radiographic image of a phantom. (ll) Physical science means physics, chemistry, radiation science (including medical physics and health physics), and engineering. (mm) Positive mammogram means a mammogram that has... 50 percent adipose tissue. (vv) Survey means an onsite physics consultation and evaluation of a...

  2. 21 CFR 900.2 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... radiographic image of a phantom. (ll) Physical science means physics, chemistry, radiation science (including medical physics and health physics), and engineering. (mm) Positive mammogram means a mammogram that has... 50 percent adipose tissue. (vv) Survey means an onsite physics consultation and evaluation of a...

  3. 21 CFR 900.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... radiographic image of a phantom. (ll) Physical science means physics, chemistry, radiation science (including medical physics and health physics), and engineering. (mm) Positive mammogram means a mammogram that has... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MAMMOGRAPHY QUALITY...

  4. Minority Contributions to Science, Engineering, and Medicine.

    ERIC Educational Resources Information Center

    Funches, Peggy; And Others

    Offering an historical perspective on the development of science, engineering, medicine, and technology and providing current role models for minority students, the bulletin lists the outstanding contributions made by: (1) Blacks - medicine, chemistry, architecture, engineering, physics, biology, and exploration; (2) Hispanos - biomedical…

  5. 10 CFR Appendix A to Part 725 - Categories of Restricted Data Available

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... and radiation studies. b. Chemistry, chemical engineering and radiochemistry of all the elements and their compounds. Included are techniques and processes of chemical separations, radioactive waste..., including chemical engineering, processes and techniques. Reactor physics, engineering and criticality...

  6. 41 CFR 102-80.135 - Who is a qualified fire protection engineer?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... protection engineer? 102-80.135 Section 102-80.135 Public Contracts and Property Management Federal Property... qualified fire protection engineer? A qualified fire protection engineer is defined as an individual with a thorough knowledge and understanding of the principles of physics and chemistry governing fire growth...

  7. A National Study of Mathematics Requirements for Scientists and Engineers. Final Report.

    ERIC Educational Resources Information Center

    Miller, G. H.

    The National Study of Mathematics Requirements for Scientists and Engineers is concerned with establishing the mathematics experiences desired for the many specializations in science and engineering, such as microbiology, organic chemistry, electrical engineering, and molecular physics. An instruction and course content sheet and a course…

  8. PEOPLE IN PHYSICS: Interview with Scott Durow, Software Engineer, Oxford

    NASA Astrophysics Data System (ADS)

    Burton, Conducted by Paul

    1998-05-01

    Scott Durow was educated at Bootham School, York. He studied Physics, Mathematics and Chemistry to A-level and went on to Nottingham University to read Medical Physics. After graduating from Nottingham he embarked on his present career as a Software Engineer based in Oxford. He is a musician in his spare time, as a member of a band and playing the French horn.

  9. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    NASA Astrophysics Data System (ADS)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-08-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  10. Why are some STEM fields more gender balanced than others?

    PubMed

    Cheryan, Sapna; Ziegler, Sianna A; Montoya, Amanda K; Jiang, Lily

    2017-01-01

    Women obtain more than half of U.S. undergraduate degrees in biology, chemistry, and mathematics, yet they earn less than 20% of computer science, engineering, and physics undergraduate degrees (National Science Foundation, 2014a). Gender differences in interest in computer science, engineering, and physics appear even before college. Why are women represented in some science, technology, engineering, and mathematics (STEM) fields more than others? We conduct a critical review of the most commonly cited factors explaining gender disparities in STEM participation and investigate whether these factors explain differential gender participation across STEM fields. Math performance and discrimination influence who enters STEM, but there is little evidence to date that these factors explain why women's underrepresentation is relatively worse in some STEM fields. We introduce a model with three overarching factors to explain the larger gender gaps in participation in computer science, engineering, and physics than in biology, chemistry, and mathematics: (a) masculine cultures that signal a lower sense of belonging to women than men, (b) a lack of sufficient early experience with computer science, engineering, and physics, and (c) gender gaps in self-efficacy. Efforts to increase women's participation in computer science, engineering, and physics may benefit from changing masculine cultures and providing students with early experiences that signal equally to both girls and boys that they belong and can succeed in these fields. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  11. Control of Leakage in the Triaxial Test

    DTIC Science & Technology

    1964-03-01

    fields of chemistry, biology , medicine, physics and engi- neering was covered. The application of statistical mechanics to derive equations...chemistry, biology , engineering, physics and medicine was reviewed for Information on the flow of fluids through membranes. (b) The Importance of...suspected that a reaction occurs in the membrane that surrounds the nucleus of the human red blood cell which causes sodium ions to flow in a

  12. Effects of Professional Development on Infusing Engineering Design into High School Science, Technology, Engineering, and Math (STEM) Curricula

    ERIC Educational Resources Information Center

    Avery, Zanj Kano

    2010-01-01

    The purpose of this study was to examine the effects of professional development (PD) on the infusion of engineering design into high school curricula. Four inservice teachers with backgrounds in physics, chemistry, industrial education, math, and electrical engineering participated in the 2006 National Center of Engineering and Technology…

  13. Educational Analysis of a First Year Engineering Physics Experiment on Standing Waves: Based on the ACELL Approach

    ERIC Educational Resources Information Center

    Bhathal, Ragbir; Sharma, Manjula D.; Mendez, Alberto

    2010-01-01

    This paper describes an educational analysis of a first year physics experiment on standing waves for engineering students. The educational analysis is based on the ACELL (Advancing Chemistry by Enhancing Learning in the Laboratory) approach which includes a statement of educational objectives and an analysis of student learning experiences. The…

  14. Physics of Mechanical, Gaseous, and Fluid Systems. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Dixon, Peggy; And Others

    This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The objective of this curriculum development project is to train technicians in the use of…

  15. Evaluation of an Integrated Curriculum in Physics, Mathematics, Engineering, and Chemistry

    NASA Astrophysics Data System (ADS)

    Beichner, Robert

    1997-04-01

    An experimental, student centered, introductory curriculum called IMPEC (for Integrated Mathematics, Physics, Engineering, and Chemistry curriculum) is in its third year of pilot-testing at NCSU. The curriculum is taught by a multidisciplinary team of professors using a combination of traditional lecturing and alternative instructional methods including cooperative learning, activity-based class sessions, and extensive use of computer modeling, simulations, and the world wide web. This talk will discuss the research basis for our design and implementation of the curriculum, the qualitative and quantitative methods we have been using to assess its effectiveness, and the educational outcomes we have noted so far.

  16. US Air Force 1989 Research Initiation Program. Volume 4.

    DTIC Science & Technology

    1992-06-25

    Kentucky University Specialty: Mechanical Engineering Svecialty: Analytical Chemistry 760-7MG-079 and 210-IOMG-095 Dr. Thomas Lalk Texas A&M University...Base) Dr. Peter Armendarez Mr. William Newbold (GSRP) Brescia College University of Florida Secialty: Physical Chemistry Specialty: Aerospace...Research Dr. Roger Bunting Dr. Steven Trogdon Illinois State University University of Minnesota-Duluth Specialty: Inorganic Chemistry Specialty

  17. What a Chemist Needs to Know--Other than Chemistry.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1980

    1980-01-01

    Recommends a range of courses of study which may be important for one pursuing a career in chemistry. Discusses courses in computer science, statistics, public speaking, technical writing, mathematics, physics, economics, market research, psychology, chemical engineering, toxicology, history, foreign language, and science history. (CS)

  18. The Chemistry of Color Photography

    ERIC Educational Resources Information Center

    Guida, Wayne C.; Raber, Douglas J.

    1975-01-01

    Presents several topics in color photography which can serve as an introduction of scientific concepts into the classroom, such as: photochemistry (energy transport), organic chemistry (dye formation), physics (nature of light), psychology (color perception), and engineering (isolation of different chemical processes within layers of the film).…

  19. Designing a 'neotissue' using the principles of biology, chemistry and engineering.

    PubMed

    Nannaparaju, Madhusudhan; Oragui, Emeka; Khan, Wasim S

    2012-01-01

    The traditional methods of treating musculoskeletal injuries and disorders are not completely effective and have several limitations. Tissue engineering involves using the principles of biology, chemistry and engineering to design a 'neotissue' that augments a malfunctioning in vivo tissue. The main requirements for functional engineered tissue include reparative cellular components that proliferate on a scaffold grown within a bioreactor that provides specific biochemical and physical signals to regulate cell differentiation and tissue assembly. In this review we provide an overview of the biology of common musculoskeletal tissue and discuss their common pathologies. We also describe the commonly used stem cells, scaffolds and bioreactors and evaluate their role in issue engineering.

  20. Design of Molecular Materials: Supramolecular Engineering

    NASA Astrophysics Data System (ADS)

    Simon, Jacques; Bassoul, Pierre

    2001-02-01

    This timely and fascinating book is destined to be recognised as THE book on supramolecular engineering protocols. It covers this sometimes difficult subject in an approachable form, gathering together information from many sources. Supramolecular chemistry, which links organic chemistry to materials science, is one of the fastest growth areas of chemistry research. This book creates a correlation between the structure of single molecules and the physical and chemical properties of the resulting materials. By making systematic changes to the component molecules, the resulting solid can be engineered for optimum performance. There is a clearly written development from synthesis of designer molecules to properties of solids and further on to devices and complex materials systems, providing guidelines for mastering the organisation of these systems. Topics covered include: Systemic chemistry Molecular assemblies Notions of symmetry Supramolecular engineering Principe de Curie Organisation in molecular media Molecular semiconductors Industrial applications of molecular materials This superb book will be invaluable to researchers in the field of supramolecular materials and also to students and teachers of the subject.

  1. Scientific Research in British Universities and Colleges 1969-70, Volume I, Physical Sciences.

    ERIC Educational Resources Information Center

    Department of Education and Science, London (England).

    This annual publication (1969-1970) contains brief statements about current research in the physical sciences being conducted at British universities and colleges. Areas included are chemistry, physics, engineering, biochemistry, biometry, biophysics, physical geography, mathematics, computing science, and history and philosophy of science. (CP)

  2. 2014 International Conference on Science & Engineering in Mathematics, Chemistry and Physics (ScieTech 2014)

    NASA Astrophysics Data System (ADS)

    2014-04-01

    2014 International Conference on Science & Engineering in Mathematics, Chemistry and Physics (ScieTech 2014), was held at the Media Hotel, Jakarta, Indonesia, on 13-14 January 2014. The ScieTech 2014 conference is aimed to bring together researchers, engineers and scientists in the domain of interest from around the world. ScieTech 2014 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within Mathematics, Chemistry and Physics. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 187 papers and after rigorous review, 50 papers were accepted. The participants come from 16 countries. There are 5 (Five) Paralell Sessions and Four Keynote Speakers. It is an honour to present this volume of Journal of Physics: Conference Series (JPCS) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of ScieTech 2014. The Editors of the Scietech 2014 Proceedings: Dr. Ford Lumban Gaol Dr. Benfano Soewito Dr. P.N. Gajjar

  3. Chemical research projects office: An overview and bibliography, 1975-1980

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.; Heimbuch, A. H.; Parker, J. A.

    1980-01-01

    The activities of the Chemical Research Projects Office at Ames Research Center, Moffett Field, California are reported. The office conducts basic and applied research in the fields of polymer chemistry, computational chemistry, polymer physics, and physical and organic chemistry. It works to identify the chemical research and technology required for solutions to problems of national urgency, synchronous with the aeronautic and space effort. It conducts interdisciplinary research on chemical problems, mainly in areas of macromolecular science and fire research. The office also acts as liaison with the engineering community and assures that relevant technology is made available to other NASA centers, agencies, and industry. Recent accomplishments are listed in this report. Activities of the three research groups, Polymer Research, Aircraft Operating and Safety, and Engineering Testing, are summarized. A complete bibliography which lists all Chemical Research Projects Office publications, contracts, grants, patents, and presentations from 1975 to 1980 is included.

  4. NASA/DoD Aerospace Knowledge Diffusion Research Project. Report Number 20. The Use of Selected Information Products and Services by U.S. Aerospace Engineers and Scientists: Results of Two Surveys.

    DTIC Science & Technology

    1994-02-01

    within and between organizations. The technical report has been defined etymologically , according to report content and method (U.S. Department of...number) I AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3 ENGINEERING 8 PHYSICS 4 GEOSCIENCES 9 SPACE SCIENCES 5...the application of your work? (Circle ONLY one number) 1 AERONAUTICS 6 MATHEMATICAL & COMPUTER SCIENCES 2 ASTRONAUTICS 7 MATERIALS & CHEMISTRY 3

  5. 75 FR 15675 - Professional Research Experience Program in Chemical Science and Technology Laboratory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-30

    ... in physics, chemistry, mathematics, computer science, or engineering. Institutions should have a 4..., mathematics, computer science, or engineering with work experiences in laboratories or other settings...-0141-01] Professional Research Experience Program in Chemical Science and Technology Laboratory...

  6. The role of gender on academic performance in STEM-related disciplines: Data from a tertiary institution.

    PubMed

    John, Temitope M; Badejo, Joke A; Popoola, Segun I; Omole, David O; Odukoya, Jonathan A; Ajayi, Priscilla O; Aboyade, Mary; Atayero, Aderemi A

    2018-06-01

    This data article presents data of academic performances of undergraduate students in Science, Technology, Engineering and Mathematics (STEM) disciplines in Covenant University, Nigeria. The data shows academic performances of Male and Female students who graduated from 2010 to 2014. The total population of samples in the observation is 3046 undergraduates mined from Biochemistry (BCH), Building technology (BLD), Computer Engineering (CEN), Chemical Engineering (CHE), Industrial Chemistry (CHM), Computer Science (CIS), Civil Engineering (CVE), Electrical and Electronics Engineering (EEE), Information and Communication Engineering (ICE), Mathematics (MAT), Microbiology (MCB), Mechanical Engineering (MCE), Management and Information System (MIS), Petroleum Engineering (PET), Industrial Physics-Electronics and IT Applications (PHYE), Industrial Physics-Applied Geophysics (PHYG) and Industrial Physics-Renewable Energy (PHYR). The detailed dataset is made available in form of a Microsoft Excel spreadsheet in the supplementary material of this article.

  7. Physics First: Impact on SAT Math Scores

    ERIC Educational Resources Information Center

    Bouma, Craig E.

    2013-01-01

    Improving science, technology, engineering, and mathematics (STEM) education has become a national priority and the call to modernize secondary science has been heard. A Physics First (PF) program with the curriculum sequence of physics, chemistry, and biology (PCB) driven by inquiry- and project-based learning offers a viable alternative to the…

  8. Science and Engineering Graphics I. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Craig, Jerry; Stapleton, Jerry

    This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum was developed for the purpose of training technicians in the use of electronic instruments and their applications. It integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology,…

  9. A comprehensive combustion model for biodiesel-fueled engine simulations

    NASA Astrophysics Data System (ADS)

    Brakora, Jessica L.

    Engine models for alternative fuels are available, but few are comprehensive, well-validated models that include accurate physical property data as well as a detailed description of the fuel chemistry. In this work, a comprehensive biodiesel combustion model was created for use in multi-dimensional engine simulations, specifically the KIVA3v R2 code. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. A reduced mechanism was generated from the methyl decanoate (MD) and methyl-9-decenoate (MD9D) mechanism developed at Lawrence Livermore National Laboratory. It was combined with a multi-component mechanism to include n-heptane in the fuel chemistry. The biodiesel chemistry was represented using a combination of MD, MD9D and n-heptane, which varied for a given fuel source. The reduced mechanism, which contained 63 species, accurately predicted ignition delay times of the detailed mechanism over a range of engine-specific operating conditions. Physical property data for the five methyl ester components of biodiesel were added to the KIVA library. Spray simulations were performed to ensure that the models adequately reproduce liquid penetration observed in biodiesel spray experiments. Fuel composition impacted liquid length as expected, with saturated species vaporizing more and penetrating less. Distillation curves were created to ensure the fuel vaporization process was comparable to available data. Engine validation was performed against a low-speed, high-load, conventional combustion experiments and the model was able to predict the performance and NOx formation seen in the experiment. High-speed, low-load, low-temperature combustion conditions were also modeled, and the emissions (HC, CO, NOx) and fuel consumption were well-predicted for a sweep of injection timings. Finally, comparisons were made between the results of biodiesel composition (palm vs. soy) and fuel blends (neat vs. B20). The model effectively reproduced the trends observed in the experiments.

  10. This Act of Cultural Vandalism

    ERIC Educational Resources Information Center

    Cushman, Mike

    2010-01-01

    Science, technology, engineering and mathematics are vital areas of learning and research. The loss of physics, chemistry and engineering departments in many British universities has been pitiful to observe. But the recent announcement of funding for universities highlights the disastrous effects of the decision to prioritise these "STEM"…

  11. Middle School Regional Science Bowl Competition | Argonne National

    Science.gov Websites

    biology, chemistry, earth science, physics, energy, and math. The winner of the academic portion of the Biology IMEInstitute for Molecular Engineering JCESRJoint Center for Energy Storage Research MCSGMidwest Science and Engineering RISCRisk and Infrastructure Science Center SBCStructural Biology Center Energy.gov

  12. Undergraduate Research in Physics as a course for Engineering and Computer Science Majors

    NASA Astrophysics Data System (ADS)

    O'Brien, James; Rueckert, Franz; Sirokman, Greg

    2017-01-01

    Undergraduate research has become more and more integral to the functioning of higher educational institutions. At many institutions undergraduate research is conducted as capstone projects in the pure sciences, however, science faculty at some schools (including that of the authors) face the challenge of not having science majors. Even at these institutions, a select population of high achieving engineering students will often express a keen interest in conducting pure science research. Since a foray into science research provides the student the full exposure to the scientific method and scientific collaboration, the experience can be quite rewarding and beneficial to the development of the student as a professional. To this end, the authors have been working to find new contexts in which to offer research experiences to non- science majors, including a new undergraduate research class conducted by physics and chemistry faculty. An added benefit is that these courses are inherently interdisciplinary. Students in the engineering and computer science fields step into physics and chemistry labs to solve science problems, often invoking their own relevant expertise. In this paper we start by discussing the common themes and outcomes of the course. We then discuss three particular projects that were conducted with engineering students and focus on how the undergraduate research experience enhanced their already rigorous engineering curriculum.

  13. Coordinated Research Program in Pulsed Power Physics.

    DTIC Science & Technology

    1987-02-16

    II 1 Associate Investigator and 11 Graduate Students. Other faculty investigators from Electrical Engineerings, Physics and Chemistry , also...admixtu4 P’.*rs’ OfC0 o as atar 12. i. 4 hws 11.BUNAY FECSAN ... AILTE SCHAEFER AND SCHOENRACH: DIFFUSE DISCHARGE oPENiNG swrrcHEs - 40 increasing velocity...a complete set of cross sections is available for N2 18) and the plasma . chemistry in a mixture of N2 and N20 appeared to be U a s is 2 2 relatively

  14. 48 CFR 22.1102 - Definition.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., architecture, dentistry, engineering, law, medicine, nursing, pharmacy, the sciences (such as biology, chemistry, and physics), and teaching. To be a professional employee, a person must not only be a...

  15. Instrumental Techniques in Archeological Research

    DTIC Science & Technology

    1988-09-01

    and instruments borrowed from the fields of chemistry , physics, geology, metallurgy, and ceramic engineering yield quantitative data on archeological...artifacts. Early analyses relied primarily on wet chemistry techniques in which samples of artifacts were dissolved into liquid solutions, destroying...other organic and inorganic materials. Advantages and disadvantages are dis- cussed. Each technique is presented with attention to appropriate materials

  16. Quantum Chemistry; A concise introduction for students of physics, chemistry, biochemistry and materials science

    NASA Astrophysics Data System (ADS)

    Thakkar, Ajit J.

    2017-09-01

    This book provides non-specialists with a basic understanding of the underlying concepts of quantum chemistry. It is both a text for second- or third-year undergraduates and a reference for researchers who need a quick introduction or refresher. All chemists and many biochemists, materials scientists, engineers, and physicists routinely use spectroscopic measurements and electronic structure computations in their work. The emphasis of Quantum Chemistry on explaining ideas rather than enumerating facts or presenting procedural details makes this an excellent foundation text/reference.

  17. Science, Engineering, and Mathematics (SEM) at the Timbuktu Academy

    DTIC Science & Technology

    2005-07-31

    School @ CalTech (PhD Chemistry Program) Millican , Jasmine F Su02 ONR 20 Fall `02- Grad . School @ LSU for Ph .D. in Chemistry, Baton Rouge, LA Thomas...n 22 . Joshua McKinsey Stennis Space Center - Stennis Space Center, M S 23 . Jasmine Millican Louisiana State University (LAMP Program) - Baton Rouge...OH 26. Rachel Mckinsey Fr ./Physics MIT- Boston, M A 27. Jasmine Millican Jr ./Chemistry University of Illinois - Chicago, I L 28. Symoane Mizell So

  18. Discussion of the Investigation Method on the Reaction Kinetics of Metallurgical Reaction Engineering

    NASA Astrophysics Data System (ADS)

    Du, Ruiling; Wu, Keng; Zhang, Jiazhi; Zhao, Yong

    Reaction kinetics of metallurgical physical chemistry which was successfully applied in metallurgy (as ferrous metallurgy, non-ferrous metallurgy) became an important theoretical foundation for subject system of traditional metallurgy. Not only the research methods were very perfect, but also the independent structures and systems of it had been formed. One of the important tasks of metallurgical reaction engineering was the simulation of metallurgical process. And then, the mechanism of reaction process and the conversion time points of different control links should be obtained accurately. Therefore, the research methods and results of reaction kinetics in metallurgical physical chemistry were not very suitable for metallurgical reaction engineering. In order to provide the definite conditions of transmission, reaction kinetics parameters and the conversion time points of different control links for solving the transmission and reaction equations in metallurgical reaction engineering, a new method for researching kinetics mechanisms in metallurgical reaction engineering was proposed, which was named stepwise attempt method. Then the comparison of results between the two methods and the further development of stepwise attempt method were discussed in this paper. As a new research method for reaction kinetics in metallurgical reaction engineering, stepwise attempt method could not only satisfy the development of metallurgical reaction engineering, but also provide necessary guarantees for establishing its independent subject system.

  19. Challenging Gifted Learners: General Principles for Science Educators; and Exemplification in the Context of Teaching Chemistry

    ERIC Educational Resources Information Center

    Taber, Keith S.

    2010-01-01

    There is concern in some counties about the number of able young people entering degree level study and careers in physical science, including chemistry. Too few of the most talented young people are selecting "STEM" subjects to ensure the future supply of scientists, engineers and related professionals. The present paper sets out general…

  20. Materials and Fabrication Methods II. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Lindberg, Andrew; Bay, Robert

    This study guide is part of a program of studies entitled Science and Engineering Technician (SET) Curriculum. The SET Curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic instruments and their…

  1. Chemical Science and Technology I. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Ballinger, Jack T.; Wolf, Lawrence J.

    This study guide is part of an interdisciplinary program of studies entitled the Science and Engineering Technician (SET) Curriculum. This curriculum integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology with the objective of training technicians in the use of electronic…

  2. Materials and Fabrication Methods I. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Lindberg, Andrew; And Others

    This study guide is part of a curriculum entitled Science and Engineering Technician (SET) Curriculum, a program of studies which integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and electronic technology. The purpose of this national curriculum development project was to provide a framework for…

  3. Everyday Engineering: What Makes a Bic Click?

    ERIC Educational Resources Information Center

    Moyer, Richard; Everett, Susan

    2009-01-01

    The ballpoint pen is an ideal example of simple engineering that we use everyday. But is it really so simple? The ballpoint pen is a remarkable combination of technology and science. Its operation uses several scientific principles related to chemistry and physics, such as properties of liquids and simple machines. They represent significant…

  4. Combustion and Energy Transfer Experiments: A Laboratory Model for Linking Core Concepts across the Science Curriculum

    ERIC Educational Resources Information Center

    Barreto, Jose C.; Dubetz, Terry A.; Schmidt, Diane L.; Isern, Sharon; Beatty, Thomas; Brown, David W.; Gillman, Edward; Alberte, Randall S.; Egiebor, Nosa O.

    2007-01-01

    Core concepts can be integrated throughout lower-division science and engineering courses by using a series of related, cross-referenced laboratory experiments. Starting with butane combustion in chemistry, the authors expanded the underlying core concepts of energy transfer into laboratories designed for biology, physics, and engineering. This…

  5. Analog and Digital Electronics. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Cavanaugh, Vince; Greer, Marlin

    This study guide is part of an interdisciplinary curriculum entitled the Science and Engineering Technician (SET) Curriculum devised to provide basic information to train technicians in the use of electronic instruments and their application. The program of study integrates elements from the disciplines of chemistry, physics, mathematics,…

  6. Editorial of the PCCP themed issue on "Solvation Science".

    PubMed

    Morgenstern, Karina; Marx, Dominik; Havenith, Martina; Muhler, Martin

    2015-04-07

    The present special issue presents exciting experimental and theoretical results in the topic of "Solvation Science", a topic that emerges from physical, theoretical, and industrial chemistry, and is also of interest to a multitude of neighboring fields, such as inorganic and organic chemistry, biochemistry, physics and engineering. We hope that the articles will be highly useful for researchers who would like to enter this newly emerging area, and that it is a valuable source for the nucleation of new ideas and collaborations to better understand the active role of the solvent in reactions.

  7. Institutional profile: the London Centre for Nanotechnology.

    PubMed

    Weston, David; Bontoux, Thierry

    2009-12-01

    Located in the London neighborhoods of Bloomsbury and South Kensington, the London Centre for Nanotechnology is a UK-based multidisciplinary research center that operates at the forefront of science and technology. It is a joint venture between two of the world's leading institutions, UCL and Imperial College London, uniting their strong capabilities in the disciplines that underpin nanotechnology: engineering, the physical sciences and biomedicine. The London Centre for Nanotechnology has a unique operating model that accesses and focuses the combined skills of the Departments of Chemistry, Physics, Materials, Medicine, Electrical and Electronic Engineering, Mechanical Engineering, Chemical Engineering, Biochemical Engineering and Earth Sciences across the two universities. It aims to provide the nanoscience and nanotechnology required to solve major problems in healthcare, information processing, energy and the environment.

  8. Multidisciplinary research in space sciences and engineering with emphasis on theoretical chemistry

    NASA Technical Reports Server (NTRS)

    Hirschfelder, J. O.; Curtiss, C. F.

    1974-01-01

    A broad program is reported of research in theoretical chemistry, particularly in molecular quantum and statistical mechanics, directed toward determination of the physical and chemical properties of materials, relation of these macroscopic properties to properties of individual molecules, and determination of the structure and properties of the individual molecules. Abstracts are presented for each research project conducted during the course of the program.

  9. Closing the Engineering Gender Gap: Viewers like You

    ERIC Educational Resources Information Center

    Sullivan, Brigid

    2007-01-01

    A study published in the "Journal of Women and Minorities in Science and Engineering" found that girls are completing high school science and math courses at the same rate as boys: 94 percent of girls took biology (compared with 91 percent of boys), 64 percent took chemistry (57 percent for boys) and 26 percent studied physics (32 percent of…

  10. Water Reclamation Technology Development at Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Callahan, Michael R.; Pickering, Karen

    2014-01-01

    Who We Are: A staff of approximately 14 BS, MS, and PhD-Level Engineers and Scientists with experience in Aerospace, Civil, Environmental, and Mechanical Engineering, Chemistry, Physical Science and Water Pollution Microbiology. Our Primary Objective: To develop the next generation water recovery system technologies that will support NASA's long duration missions beyond low-earth orbit.

  11. Chemical Science and Technology II. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Ballinger, Jack T.; Wolf, Lawrence J.

    This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed to provide a framework for training technicians in the use of electronic instruments and their applications. This interdisciplinary course of study integrates elements from the disciplines of chemistry, physics, mathematics,…

  12. Electronic Components, Transducers, and Basic Circuits. A Study Guide of the Science and Engineering Technician Curriculum.

    ERIC Educational Resources Information Center

    Mowery, Donald R.

    This study guide is part of a program of studies entitled the Science and Engineering Technician (SET) Curriculum developed for the purpose of training technicians in the use of electronic instruments and their applications. The program integrates elements from the disciplines of chemistry, physics, mathematics, mechanical technology, and…

  13. Aeronautical engineering: A continuing bibliography with indexes (supplement 280)

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This bibliography lists 647 reports, articles, and other documents introduced into the NASA scientific and technical information system in June, 1991. Subject coverage includes: aerodynamics, air transportation safety, aircraft communication and navigation, aircraft design and performance, aircraft instrumentation, aircraft propulsion, aircraft stability and control, research facilities, astronautics, chemistry and materials, engineering, geosciences, computer sciences, physics, and social sciences.

  14. An Introduction to Atmospheric Physics

    NASA Astrophysics Data System (ADS)

    Andrews, David G.

    2000-09-01

    This advanced undergraduate textbook clearly details how physics can be used to understand many important aspects of atmospheric behavior. Coverage presents a broad overview of atmospheric physics, including atmospheric thermodynamics, radiative transfer, atmospheric fluid dynamics and elementary atmospheric chemistry. Armed with an understanding of these topics, the interested student will be able to grasp the essential physics behind issues of current concern, such as the enhanced greenhouse effect and associated questions of climate change, the Antarctic ozone hole and global ozone depletion, as well as more familiar processes such as the formation of raindrops and the development of weather systems. This introductory textbook is ideal for advanced undergraduates studying atmospheric physics as part of physics, meteorology or environmental science courses. It will also be useful for graduate students studying atmospheric physics for the first time and for students of applied mathematics, physical chemistry and engineering who have an interest in the atmosphere.

  15. Advances in rapid compression machine studies of low- and intermediate-temperature autoignition phenomena

    DOE PAGES

    Goldsborough, S. Scott; Hochgreb, Simone; Vanhove, Guillaume; ...

    2017-07-10

    Rapid compression machines (RCMs) are widely-used to acquire experimental insights into fuel autoignition and pollutant formation chemistry, especially at conditions relevant to current and future combustion technologies. RCM studies emphasize important experimental regimes, characterized by low- to intermediate-temperatures (600–1200 K) and moderate to high pressures (5–80 bar). At these conditions, which are directly relevant to modern combustion schemes including low temperature combustion (LTC) for internal combustion engines and dry low emissions (DLE) for gas turbine engines, combustion chemistry exhibits complex and experimentally challenging behaviors such as the chemistry attributed to cool flame behavior and the negative temperature coefficient regime. Challengesmore » for studying this regime include that experimental observations can be more sensitive to coupled physical-chemical processes leading to phenomena such as mixed deflagrative/autoignitive combustion. Experimental strategies which leverage the strengths of RCMs have been developed in recent years to make RCMs particularly well suited for elucidating LTC and DLE chemistry, as well as convolved physical-chemical processes. Specifically, this work presents a review of experimental and computational efforts applying RCMs to study autoignition phenomena, and the insights gained through these efforts. A brief history of RCM development is presented towards the steady improvement in design, characterization, instrumentation and data analysis. Novel experimental approaches and measurement techniques, coordinated with computational methods are described which have expanded the utility of RCMs beyond empirical studies of explosion limits to increasingly detailed understanding of autoignition chemistry and the role of physical-chemical interactions. Fundamental insight into the autoignition chemistry of specific fuels is described, demonstrating the extent of knowledge of low-temperature chemistry derived from RCM studies, from simple hydrocarbons to multi-component blends and full-boiling range fuels. In conclusion, emerging needs and further opportunities are suggested, including investigations of under-explored fuels and the implementation of increasingly higher fidelity diagnostics.« less

  16. Advances in rapid compression machine studies of low- and intermediate-temperature autoignition phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsborough, S. Scott; Hochgreb, Simone; Vanhove, Guillaume

    Rapid compression machines (RCMs) are widely-used to acquire experimental insights into fuel autoignition and pollutant formation chemistry, especially at conditions relevant to current and future combustion technologies. RCM studies emphasize important experimental regimes, characterized by low- to intermediate-temperatures (600–1200 K) and moderate to high pressures (5–80 bar). At these conditions, which are directly relevant to modern combustion schemes including low temperature combustion (LTC) for internal combustion engines and dry low emissions (DLE) for gas turbine engines, combustion chemistry exhibits complex and experimentally challenging behaviors such as the chemistry attributed to cool flame behavior and the negative temperature coefficient regime. Challengesmore » for studying this regime include that experimental observations can be more sensitive to coupled physical-chemical processes leading to phenomena such as mixed deflagrative/autoignitive combustion. Experimental strategies which leverage the strengths of RCMs have been developed in recent years to make RCMs particularly well suited for elucidating LTC and DLE chemistry, as well as convolved physical-chemical processes. Specifically, this work presents a review of experimental and computational efforts applying RCMs to study autoignition phenomena, and the insights gained through these efforts. A brief history of RCM development is presented towards the steady improvement in design, characterization, instrumentation and data analysis. Novel experimental approaches and measurement techniques, coordinated with computational methods are described which have expanded the utility of RCMs beyond empirical studies of explosion limits to increasingly detailed understanding of autoignition chemistry and the role of physical-chemical interactions. Fundamental insight into the autoignition chemistry of specific fuels is described, demonstrating the extent of knowledge of low-temperature chemistry derived from RCM studies, from simple hydrocarbons to multi-component blends and full-boiling range fuels. In conclusion, emerging needs and further opportunities are suggested, including investigations of under-explored fuels and the implementation of increasingly higher fidelity diagnostics.« less

  17. Handbook for aquaculture water quality

    USDA-ARS?s Scientific Manuscript database

    Efficient aquaculture production depends upon maintaining acceptable water quality conditions in culture units. This handbook discusses background information from chemistry, physics, biology, and engineering necessary for understanding the principles of water quality management in aquaculture. It a...

  18. Quantum Dot Surface Engineering: Toward Inert Fluorophores with Compact Size and Bright, Stable Emission

    PubMed Central

    Lim, Sung Jun; Ma, Liang; Schleife, André; Smith, Andrew M.

    2016-01-01

    The surfaces of colloidal nanocrystals are complex interfaces between solid crystals, coordinating ligands, and liquid solutions. For fluorescent quantum dots, the properties of the surface vastly influence the efficiency of light emission, stability, and physical interactions, and thus determine their sensitivity and specificity when they are used to detect and image biological molecules. But after more than 30 years of study, the surfaces of quantum dots remain poorly understood and continue to be an important subject of both experimental and theoretical research. In this article, we review the physics and chemistry of quantum dot surfaces and describe approaches to engineer optimal fluorescent probes for applications in biomolecular imaging and sensing. We describe the structure and electronic properties of crystalline facets, the chemistry of ligand coordination, and the impact of ligands on optical properties. We further describe recent advances in compact coatings that have significantly improved their properties by providing small hydrodynamic size, high stability and fluorescence efficiency, and minimal nonspecific interactions with cells and biological molecules. While major progress has been made in both basic and applied research, many questions remain in the chemistry and physics of quantum dot surfaces that have hindered key breakthroughs to fully optimize their properties. PMID:28344357

  19. Laboratory Directed Research and Development Annual Report for 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hughes, Pamela J.

    2012-04-09

    This report documents progress made on all LDRD-funded projects during fiscal year 2011. The following topics are discussed: (1) Advanced sensors and instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and space sciences; (5) Energy supply and use; (6) Engineering and manufacturing processes; (7) Materials science and technology; (8) Mathematics and computing sciences; (9) Nuclear science and engineering; and (10) Physics.

  20. The Year in Science.

    ERIC Educational Resources Information Center

    Discover, 1982

    1982-01-01

    Highlights scientific accomplishments in 1981. Focuses on space sciences, medicine, geology, chemistry, physics, zoology, paleontology, environmental problems, and genetics including such topics as the Space Shuttle, Mount St. Helen's endangered species, genetic engineering, and the scientists associated with these accomplishments. (JN)

  1. Teaching the Physics of a String-Coupled Pendulum Oscillator: Not Just for Seniors Anymore

    ERIC Educational Resources Information Center

    Cho, Young-Ki

    2012-01-01

    Coupled oscillators are an example of resonant energy exchange that is an interesting topic for many students in various majors, such as physics, chemistry, and electrical and mechanical engineering. However, this subject matter is considered too advanced for freshmen and sophomores, usually because of the level of mathematics involved.…

  2. Magnetic Excitations and Geometric Confinement; Theory and simulations

    NASA Astrophysics Data System (ADS)

    Wysin, Gary Matthew

    2015-12-01

    In this book, author Gary Wysin provides an overview of model systems and their behaviour and effects, and is intended for advanced students and researchers in physics, chemistry and engineering interested in confined magnetics. It is also suitable as an auxiliary text in a class on magnetism or solid state physics. Previous physics knowledge is expected, along with some basic knowledge of classical electromagnetism and electromagnetic waves for the latter chapters.

  3. First Look--The Aerospace Database.

    ERIC Educational Resources Information Center

    Kavanagh, Stephen K.; Miller, Jay G.

    1986-01-01

    Presents overview prepared by producer of database newly available in 1985 that covers 10 subject categories: engineering, geosciences, chemistry and materials, space sciences, aeronautics, astronautics, mathematical and computer sciences, physics, social sciences, and life sciences. Database development, unique features, document delivery, sample…

  4. 48 CFR 22.1102 - Definition.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... PROGRAMS APPLICATION OF LABOR LAWS TO GOVERNMENT ACQUISITIONS Professional Employee Compensation 22.1102..., architecture, dentistry, engineering, law, medicine, nursing, pharmacy, the sciences (such as biology, chemistry, and physics), and teaching. To be a professional employee, a person must not only be a...

  5. 48 CFR 22.1102 - Definition.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... PROGRAMS APPLICATION OF LABOR LAWS TO GOVERNMENT ACQUISITIONS Professional Employee Compensation 22.1102..., architecture, dentistry, engineering, law, medicine, nursing, pharmacy, the sciences (such as biology, chemistry, and physics), and teaching. To be a professional employee, a person must not only be a...

  6. 48 CFR 22.1102 - Definition.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... PROGRAMS APPLICATION OF LABOR LAWS TO GOVERNMENT ACQUISITIONS Professional Employee Compensation 22.1102..., architecture, dentistry, engineering, law, medicine, nursing, pharmacy, the sciences (such as biology, chemistry, and physics), and teaching. To be a professional employee, a person must not only be a...

  7. The Physics and Chemistry of Materials

    NASA Astrophysics Data System (ADS)

    Gersten, Joel I.; Smith, Frederick W.

    2001-06-01

    A comprehensive introduction to the structure, properties, and applications of materials This title provides the first unified treatment for the broad subject of materials. Authors Gersten and Smith use a fundamental approach to define the structure and properties of a wide range of solids on the basis of the local chemical bonding and atomic order present in the material. Emphasizing the physical and chemical origins of material properties, the book focuses on the most technologically important materials being utilized and developed by scientists and engineers. Appropriate for use in advanced materials courses, The Physics and Chemistry of Materials provides the background information necessary to assimilate the current academic and patent literature on materials and their applications. Problem sets, illustrations, and helpful tables complete this well-rounded new treatment. Five sections cover these important topics: * Structure of materials, including crystal structure, bonding in solids, diffraction and the reciprocal lattice, and order and disorder in solids * Physical properties of materials, including electrical, thermal, optical, magnetic, and mechanical properties * Classes of materials, including semiconductors, superconductors, magnetic materials, and optical materials in addition to metals, ceramics, polymers, dielectrics, and ferroelectrics * A section on surfaces, thin films, interfaces, and multilayers discusses the effects of spatial discontinuities in the physical and chemical structure of materials * A section on synthesis and processing examines the effects of synthesis on the structure and properties of various materials This book is enhanced by a Web-based supplement that offers advanced material together with an entire electronic chapter on the characterization of materials. The Physics and Chemistry of Materials is a complete introduction to the structure and properties of materials for students and an excellent reference for scientists and engineers.

  8. ANNUAL REPORT, JULY 1, 1960

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1961-10-31

    Research facilities, general construction progress, research activities, and administration are discussed and a financial statement is given. Fairly detailed accounts are given of research programs in the fields of physics, accelerator development, instrumentation, applied mathematics, chemistry, nuclear engineering, biology, and medicine. (M.C.G.)

  9. Research in the aerospace physical sciences

    NASA Technical Reports Server (NTRS)

    Whitehurst, R. N.

    1973-01-01

    Research efforts are reported in various areas including dynamics of thin films, polymer chemistry, mechanical and chemical properties of materials, radar system engineering, stabilization of lasers, and radiation damage of organic crystals. Brief summaries of research accomplished and literature citations are included.

  10. Once a physicist: Subramaniam Ramadorai

    NASA Astrophysics Data System (ADS)

    Ramadorai, Subramaniam

    2009-09-01

    Why did you choose to study physics? I come from a traditional South Indian family, where the culture typically emphasizes science education. My upbringing reflected these same influences, and my father in particular had a great love for mathematics and physics. I remember going on long walks with him in the countryside, where he shared with me his unfulfilled dreams of becoming an engineer. He felt that he had a talent for engineering, but parental advice steered him towards studying mathematics instead. Perhaps I imbibed his passion, because I always loved fixing things and figuring how they worked through experimentation. All of these developed in me a growing interest in physics, and so my major at Delhi University was physics, with maths and chemistry as subsidiary subjects.

  11. Editorial

    NASA Astrophysics Data System (ADS)

    Al-Sheikhly, Mohamad; Varca, Gustavo H. C.

    2018-02-01

    We are very proud and delighted to introduce this special issue of Radiation Physics and Chemistry (RPC). It is indeed the fruit of an outstanding, collective effort by radiation chemists and physicists, as well as radiation processing and nuclear engineers, who presented their research at the 18th International Meeting of Radiation Processing (IMRP) 2016 in Vancouver, Canada. This valuable issue covers a wide range of reported new results in the field of radiation chemistry, physics, and processing. Eminent scientists carefully selected these invited papers, followed by a thorough reviewing process. This issue presents the selected sixteen invited papers. These papers cover fundamental radiation chemistry mechanisms and kinetics, radiation-induced polymerization and kinetics, radiation effects on synthetic and natural polymers, radiation processing control and quality assurances, radiation-induced preservation of food, radiation sterilization, radiation dosimetry, and radiation synthesis of various fabrics for remediation of nuclear isotopes such as cesium.

  12. Illustrating Thermodynamic Concepts Using a Hero's Engine

    NASA Astrophysics Data System (ADS)

    Muiño, Pedro L.; Hodgson, James R.

    2000-05-01

    A modified Hero's engine is used to illustrate concepts of thermodynamics and engineering design suitable for introductory chemistry courses and more advanced physical chemistry courses. The engine is a boiler made of Pyrex with two off-center nozzles. Upon boiling, the vapor exits the nozzles, creating two opposite, off-center forces that result in a circular motion by the engine around the vertical axis. The engine is suspended from a horizontal bar by means of two parallel threads. The rotation of the engine results in the twisting of the threads, with two important effects: the engine is raised vertically, and potential energy is stored in the coiling of the threads. When the engine is raised, it is removed from the heating source. This stops the boiling. The stored potential energy is then released into kinetic energy; that is, the threads uncoil, and the engine rotates in the opposite direction. This lowers the engine into the flame, so the water resumes boiling and the engine can be raised again. This cycle continues until all the liquid water is vaporized. This demonstration is suitable to illustrate concepts like gas expansion, gas cooling through expansion (Joule-Thompson experiment), conversion of heat to work, interconversion between kinetic energy and potential energy, and feedback mechanisms.

  13. NASA-HBCU Space Science and Engineering Research Forum Proceedings

    NASA Technical Reports Server (NTRS)

    Sanders, Yvonne D. (Editor); Freeman, Yvonne B. (Editor); George, M. C. (Editor)

    1989-01-01

    The proceedings of the Historically Black Colleges and Universities (HBCU) forum are presented. A wide range of research topics from plant science to space science and related academic areas was covered. The sessions were divided into the following subject areas: Life science; Mathematical modeling, image processing, pattern recognition, and algorithms; Microgravity processing, space utilization and application; Physical science and chemistry; Research and training programs; Space science (astronomy, planetary science, asteroids, moon); Space technology (engineering, structures and systems for application in space); Space technology (physics of materials and systems for space applications); and Technology (materials, techniques, measurements).

  14. 10 CFR 1045.15 - Classification and declassification presumptions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... criteria in § 1045.16 indicates otherwise: (1) Basic science: mathematics, chemistry, theoretical and experimental physics, engineering, materials science, biology and medicine; (2) Magnetic confinement fusion...); (5) Fact of use of safety features (e.g., insensitive high explosives, fire resistant pits) to lower...

  15. 10 CFR 1045.15 - Classification and declassification presumptions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... criteria in § 1045.16 indicates otherwise: (1) Basic science: mathematics, chemistry, theoretical and experimental physics, engineering, materials science, biology and medicine; (2) Magnetic confinement fusion...); (5) Fact of use of safety features (e.g., insensitive high explosives, fire resistant pits) to lower...

  16. Studies of Scientific Disciplines. An Annotated Bibliography.

    ERIC Educational Resources Information Center

    Weisz, Diane; Kruytbosch, Carlos

    Provided in this bibliography are annotated lists of social studies of science literature, arranged alphabetically by author in 13 disciplinary areas. These areas include astronomy; general biology; biochemistry and molecular biology; biomedicine; chemistry; earth and space sciences; economics; engineering; mathematics; physics; political science;…

  17. PREFACE: 3rd International Conference on Science & Engineering in Mathematics, Chemistry and Physics 2015 (ScieTech 2015)

    NASA Astrophysics Data System (ADS)

    Gaol, F. L.

    2015-06-01

    The 3rd International Conference on Science & Engineering in Mathematics, Chemistry and Physics 2015 (ScieTech 2015), was held at The Westin Resort Nusa Dua, Bali on 31 January - 1 February 2015. The ScieTech 2015 conference is aimed to bring together researchers, engineers and scientists from around the world. ScieTech 2015 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within mathematics, chemistry and physics. As we already know that science and technology have brought tremendous benefits for human civilization. People are becoming healthier, wealthier, better educated, more peaceful, increasingly connected, and living longer. Of course, science and technology provide many answers to global challenges, but we will face more complex problems in the next decade due to increasing world population, limitation of energy, and climate change. Therefore, researchers should be more active in conducting research that enables collaboration between one and the others. Interdisciplinary cooperation is absolutely necessary in order to create a smart system for solving the global problems. We need a global and general long-term view of the future with long-range goals for solving complex problems in next decade. Therefore the conference was held to be a forum for researchers from different disciplines to start collaborating and conducting research that provides a solution to the global issues. The theme of ScieTech 2015 was ''The interdisciplinary Application between Mathematics, Chemistry and Physics to enhance the Quality of Life''. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting conference program as well as the invited and plenary speakers. This year, we received 197 papers and after rigorous review, 59 papers were accepted. The participants came from 19 countries, and there were six paralell sessions and four keynote speakers. It is an honour to present this volume of Journal of Physics: Conference Series (JPCS) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of ScieTech 2015.

  18. Laboratory directed research and development. FY 1995 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  19. Computer-based, Jeopardy™-like game in general chemistry for engineering majors

    NASA Astrophysics Data System (ADS)

    Ling, S. S.; Saffre, F.; Kadadha, M.; Gater, D. L.; Isakovic, A. F.

    2013-03-01

    We report on the design of Jeopardy™-like computer game for enhancement of learning of general chemistry for engineering majors. While we examine several parameters of student achievement and attitude, our primary concern is addressing the motivation of students, which tends to be low in a traditionally run chemistry lectures. The effect of the game-playing is tested by comparing paper-based game quiz, which constitutes a control group, and computer-based game quiz, constituting a treatment group. Computer-based game quizzes are Java™-based applications that students run once a week in the second part of the last lecture of the week. Overall effectiveness of the semester-long program is measured through pretest-postest conceptual testing of general chemistry. The objective of this research is to determine to what extent this ``gamification'' of the course delivery and course evaluation processes may be beneficial to the undergraduates' learning of science in general, and chemistry in particular. We present data addressing gender-specific difference in performance, as well as background (pre-college) level of general science and chemistry preparation. We outline the plan how to extend such approach to general physics courses and to modern science driven electives, and we offer live, in-lectures examples of our computer gaming experience. We acknowledge support from Khalifa University, Abu Dhabi

  20. What's so Big about Being Small?

    ERIC Educational Resources Information Center

    Orgill, MaryKay; Crippen, Kent J.

    2009-01-01

    An interdisciplinary approach to teaching involves leveraging the different perspectives of each discipline to better understand an issue or problem. The most ideal topics for interdisciplinary study are those whose very nature is also interdisciplinary. Nanoscience--which combines biology, chemistry, physics, engineering, and mathematics--is one…

  1. Disks for the Laboratory Part II.

    ERIC Educational Resources Information Center

    Dessy, Raymond E., Ed.

    1985-01-01

    Part 1 presents the chemistry, physics, and engineering technology associated with magnetic and optical disks. This part explores the subjects of archiving, security, validation and certification, and protection. Questions and issues are raised in each of the areas that both users and vendors should be aware. (JN)

  2. Energy and technology review, July--August, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burnham, A.K.

    1990-01-01

    This report highlights various research programs conducted at the Lab to include: defense systems, laser research, fusion energy, biomedical and environmental sciences, engineering, physics, chemistry, materials science, and computational analysis. It also contains a statement on the state of the Lab and Laboratory Administration. (JEF)

  3. Plasma Processes for Semiconductor Fabrication

    NASA Astrophysics Data System (ADS)

    Hitchon, W. N. G.

    1999-01-01

    Plasma processing is a central technique in the fabrication of semiconductor devices. This self-contained book provides an up-to-date description of plasma etching and deposition in semiconductor fabrication. It presents the basic physics and chemistry of these processes, and shows how they can be accurately modeled. The author begins with an overview of plasma reactors and discusses the various models for understanding plasma processes. He then covers plasma chemistry, addressing the effects of different chemicals on the features being etched. Having presented the relevant background material, he then describes in detail the modeling of complex plasma systems, with reference to experimental results. The book closes with a useful glossary of technical terms. No prior knowledge of plasma physics is assumed in the book. It contains many homework exercises and serves as an ideal introduction to plasma processing and technology for graduate students of electrical engineering and materials science. It will also be a useful reference for practicing engineers in the semiconductor industry.

  4. Computational fluid dynamics - An introduction for engineers

    NASA Astrophysics Data System (ADS)

    Abbott, Michael Barry; Basco, David R.

    An introduction to the fundamentals of CFD for engineers and physical scientists is presented. The principal definitions, basic ideas, and most common methods used in CFD are presented, and the application of these methods to the description of free surface, unsteady, and turbulent flow is shown. Emphasis is on the numerical treatment of incompressible unsteady fluid flow with primary applications to water problems using the finite difference method. While traditional areas of application like hydrology, hydraulic and coastal engineering and oceanography get the main emphasis, newer areas of application such as medical fluid dynamics, bioengineering, and soil physics and chemistry are also addressed. The possibilities and limitations of CFD are pointed out along with the relations of CFD to other branches of science.

  5. Publications of LASL research, 1972--1976

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, L.

    1977-04-01

    This bibliography is a compilation of unclassified work done at the Los Alamos Scientific Laboratory and published during the years 1972 to 1976. Publications too late for inclusion in earlier compilations are also listed. Declassification of previously classified reports is considered to constitute publication. The bibliography includes LASL reports, journal articles, books, conference papers, papers published in congressional hearings, theses, patents, etc. The following subject areas are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma physics; earth science and engineering; energymore » (nonnuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronics and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). (RWR)« less

  6. Book Notes: College Chemistry Faculties 1996, 10th ed.

    NASA Astrophysics Data System (ADS)

    Kauffman, George B.

    1998-02-01

    This comprehensive directory of the most current information on two-, three-, and four-year college and university teachers of chemistry, biochemistry, biotechnology, chemical engineering, chemical technology, medicinal chemistry, and other chemistry-related fields in the United States, its territories, and Canada will be of great use and interest not only to chemistry faculty members but to graduate and undergraduate students, librarians, and departmental secretaries as well. For each of the more than 2,150 academic departments devoted to these disciplines the entire staffs (except for emeriti, emeritae, adjunct, or visiting professors; persons on temporary appointment; postdoctoral fellows; research associates; or graduate students) are listed, along with major teaching fields, highest degree earned, and academic rank. Other departments, such as biology or physical science, in which these disciplines are taught are also included, but only persons who teach chemistry or related subjects are listed for these departments.

  7. Poetry for physicists

    NASA Astrophysics Data System (ADS)

    Tobias, Sheila; Abel, Lynne S.

    1990-09-01

    In an effort to discover what makes the humanities difficult and unpopular with some science and engineering students, 14 Cornell faculty from the disciplines of chemistry, physics, applied mathematics, geology, materials science, and engineering were invited to become ``surrogate learners'' in a junior/senior level poetry seminar designed expressly for them. Their encounter with humanistic pedagogy and scholarship was meant to be an extension of ``Peer Perspectives on Science'' [see S. Tobias and R. R. Hake, ``Professors as physics students: What can they teach us?'' Am. J. Phys. 56, 786 (1988)]. The results challenge certain assumptions about differences between scholarship and pedagogy in the humanities and science (as regards ``certainty'' and models). But the experiment uncovered other problems that affect ``marketing'' the humanities to science and engineering students. Results are some additional insights into what makes science ``hard'' for humanities students and why physical science and engineering students have difficulty with and tend to avoid courses in literature, as well as into what can make humanities courses valuable for science students.

  8. Education Program for Ph.D. Course to Cultivate Literacy and Competency

    NASA Astrophysics Data System (ADS)

    Yokono, Yasuyuki; Mitsuishi, Mamoru

    The program aims to cultivate internationally competitive young researchers equipped with Fundamental attainment (mathematics, physics, chemistry and biology, and fundamental social sciences) , Specialized knowledge (mechanical dynamics, mechanics of materials, hydrodynamics, thermodynamics, design engineering, manufacturing engineering and material engineering, and bird‧s-eye view knowledge on technology, society and the environment) , Literacy (Language, information literacy, technological literacy and knowledge of the law) and Competency (Creativity, problem identification and solution, planning and execution, self-management, teamwork, leadership, sense of responsibility and sense of duty) to become future leaders in industry and academia.

  9. Tribology. LC Science Tracer Bullet.

    ERIC Educational Resources Information Center

    Havas, George D., Comp.

    Tribology is the science and technology of interacting surfaces in relative motion. It incorporates a number of scientific fields, including friction, wear, lubrication, materials science, and various branches of surface physics and surface chemistry. Tribology forms a vital part of engineering science. The interacting surfaces may be on machinery…

  10. ANNUAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1959-07-01

    The national laboratory concept, laboratory objectives, the staff, research facilities. research activities, and administration are discussed in general terms and a financial statement is given. Fairly detailed accounts are given for the research programs in the fields of physics, accelerator development, instrumentation, applied mathematics, chemistry, nuclear engineering, biology, and medicine. (W.D.M.)

  11. Physical approaches to biomaterial design

    PubMed Central

    Mitragotri, Samir; Lahann, Joerg

    2009-01-01

    The development of biomaterials for drug delivery, tissue engineering and medical diagnostics has traditionally been based on new chemistries. However, there is growing recognition that the physical as well as the chemical properties of materials can regulate biological responses. Here, we review this transition with regard to selected physical properties including size, shape, mechanical properties, surface texture and compartmentalization. In each case, we present examples demonstrating the significance of these properties in biology. We also discuss synthesis methods and biological applications for designer biomaterials, which offer unique physical properties. PMID:19096389

  12. Rudolf Mössbauer in Munich

    NASA Astrophysics Data System (ADS)

    Kalvius, G. M.; Kienle, P.

    Mössbauer and one of the authors (PK) started in 1949 studying physics at the Technische Hochschule München (THM), which was still under reconstruction from the war damages. It offered two directions for studying physics: "Physik A" and "Physik B." I took courses in "Physik A," which meant Technical Physics; Mössbauer studied "Physik B," which was General Physics. Actually, the lectures of both directions were not too different up to the forth semester, followed by a "pre-diploma" examination, which Mössbauer passed in 1952. I as "Physik A" student had besides the various physics, chemistry, and mathematics courses, in addition lectures in Technical Electricity, Technical Mechanics, Technical Thermodynamics, and later Measurement Engineering offered by very famous professors, such as W.O. Schumann, L. Föppl, W. Nußelt, and H. Piloty. Our physics teachers were G. Joos (Experimental physics), G. Hettner (Theoretical Physics), and W. Meissner (Technical Physics); in mathematics, we enjoyed lectures by J. Lense and R. Sauer, and interesting chemistry lectures by W. Hieber. Thus we received a high-class classical education, but quantum mechanics was not a compulsory subject. Mössbauer complained about this deficiency when he realized that the effect he found was a quantum mechanical phenomenon. Quantum mechanics was offered as an optional subject by Prof. Fick and Prof. Haug. Mössbauer just missed to take these advanced lectures, although he was highly talented in mathematics and received even a tutoring position in the mathematics institute of Prof. R. Sauer, while I worked in engineering projects and had extensive industrial training.

  13. Diode-pumped laser performance of Tm:Sc2SiO5 crystal at 1971 nm

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Zheng, Li-He; Wang, Qing-Guo; Liu, Jun-Fang; Su, Liang-Bi; Tang, Hui-Li; Liu, Jie; Fan, Xiu-Wei; Wu, Feng; Luo, Ping; Zhao, Heng-Yu; Shi, Jiao-Jiao; He, Nuo-Tian; Li, Na; Li, Qiu; Guo, Chao; Xu, Xiao-Dong; Wang, Zhan-Shan; Xu, Jun

    2017-08-01

    Not Available Project supported by the Shanghai Municipal Engineering Research Center for Sapphire Crystals, China (Grant No. 14DZ2252500), the Fund of Key Laboratory of Optoelectronic Materials Chemistry and Physics, Chinese Academy of Sciences (Grant No. 2008DP17301), the Fundamental Research Funds for the Central Universities, the National Natural Science Foundation of China and the China Academy of Engineering Physics Joint Fund (Grant No. U1530152), the National Natural Science Foundation of China (Grant Nos. 61475177 and 61621001), the Shanghai Municipal Natural Science Foundation, China (Grant No. 13ZR1446100), and the MDE Key Laboratory of Advanced Micro-Structured Materials.

  14. Physical and Chemical Processes in Flames

    DTIC Science & Technology

    2010-02-15

    Results: Use of comprehensively validated reduced chemical kinetic mechanism allows realistic description of methane oxidation chemistry with NOx ...PERFORMING ORGANIZATION REPORT NUMBER Department of Mechanical and Aerospace Engineering Princeton University Princeton, NJ 08544... mechanism reduction; skeletal mechanism ; CO/H2 oxidation; ethylene oxidation; heptane oxidation; directed relation graph; high-pressure combustion

  15. A Novel Interdisciplinary Science Experience for Undergraduates across Introductory Biology, Chemistry, and Physics Courses

    ERIC Educational Resources Information Center

    Murray, Joelle L.; Atkinson, Elizabeth J. O.; Gilbert, Brian D.; Kruchten, Anne E.

    2014-01-01

    Successfully creating and implementing interdisciplinary curricula in introductory science, technology, engineering, and mathematics (STEM) courses is challenging, but doing so is increasingly more important as current problems in science become more interdisciplinary. Opening up the silos between science disciplines and overcoming common…

  16. Energy and technology review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Quirk, W.J.; Canada, J.; de Vore, L.

    1994-04-01

    This issue highlights the Lawrence Livermore National Laboratory`s 1993 accomplishments in our mission areas and core programs: economic competitiveness, national security, energy, the environment, lasers, biology and biotechnology, engineering, physics, chemistry, materials science, computers and computing, and science and math education. Secondary topics include: nonproliferation, arms control, international security, environmental remediation, and waste management.

  17. Group to Use Chemistry to Solve Developing Countries' Ills.

    ERIC Educational Resources Information Center

    O'Sullivan, Dermot A.

    1983-01-01

    Chemical engineers have begun savoring the first fruits of a massive effort to gather, determine, and evaluate data of physical properties and predictive methods for large numbers of compounds and mixtures processed in the chemical industry. The use of this centralized data source is highlighted. (Author/JN)

  18. Discipline-Based Education Research: Understanding and Improving Learning in Undergraduate Science and Engineering

    ERIC Educational Resources Information Center

    Singer, Susan R.; Nielsen, Natalie R.; Schweingruber, Heidi A.

    2012-01-01

    The National Science Foundation funded a synthesis study on the status, contributions, and future direction of discipline-based education research (DBER) in physics, biological sciences, geosciences, and chemistry. DBER combines knowledge of teaching and learning with deep knowledge of discipline-specific science content. It describes the…

  19. Weak Bond-Based Injectable and Stimuli Responsive Hydrogels for Biomedical Applications

    PubMed Central

    Ding, Xiaochu; Wang, Yadong

    2017-01-01

    Here we define hydrogels crosslinked by weak bonds as physical hydrogels. They possess unique features including reversible bonding, shear thinning and stimuli-responsiveness. Unlike covalently crosslinked hydrogels, physical hydrogels do not require triggers to initiate chemical reactions for in situ gelation. The drug can be fully loaded in a pre-formed hydrogel for delivery with minimal cargo leakage during injection. These benefits make physical hydrogels useful as delivery vehicles for applications in biomedical engineering. This review focuses on recent advances of physical hydrogels crosslinked by weak bonds: hydrogen bonds, ionic interactions, host-guest chemistry, hydrophobic interactions, coordination bonds and π-π stacking interactions. Understanding the principles and the state of the art of gels with these dynamic bonds may give rise to breakthroughs in many biomedical research areas including drug delivery and tissue engineering. PMID:29062484

  20. A Component Approach to Collaborative Scientific Software Development: Tools and Techniques Utilized by the Quantum Chemistry Science Application Partnership

    DOE PAGES

    Kenny, Joseph P.; Janssen, Curtis L.; Gordon, Mark S.; ...

    2008-01-01

    Cutting-edge scientific computing software is complex, increasingly involving the coupling of multiple packages to combine advanced algorithms or simulations at multiple physical scales. Component-based software engineering (CBSE) has been advanced as a technique for managing this complexity, and complex component applications have been created in the quantum chemistry domain, as well as several other simulation areas, using the component model advocated by the Common Component Architecture (CCA) Forum. While programming models do indeed enable sound software engineering practices, the selection of programming model is just one building block in a comprehensive approach to large-scale collaborative development which must also addressmore » interface and data standardization, and language and package interoperability. We provide an overview of the development approach utilized within the Quantum Chemistry Science Application Partnership, identifying design challenges, describing the techniques which we have adopted to address these challenges and highlighting the advantages which the CCA approach offers for collaborative development.« less

  1. Enhancing Women's Undergraduate Experience in Physics and Chemistry Through a PUI/MRSEC Collaboration Emphasizing Materials Research

    NASA Astrophysics Data System (ADS)

    Goldberg, Velda; Malliaras, George; Schember, Helene; Singhota, Nevjinder

    2002-04-01

    This three-year collaboration between a predominately undergraduate women's college (Simmons College) and a NSF-supported Materials Research Science and Engineering Center (the Cornell Center for Materials Research (CCMR)) provides opportunities for physics and chemistry students to participate in materials-related research throughout their undergraduate careers, have access to sophisticated instrumentation, and gain related work experience in industrial settings. As part of the project, undergraduate students are involved in all aspects of a collaborative Simmons/Cornell research program concentrating on degradation processes in electroluminescent materials. This work is particularly interesting because an understanding and control of these processes will ultimately influence the use of these materials in various types of consumer products.

  2. Atomic structure and chemistry of human serum albumin

    NASA Technical Reports Server (NTRS)

    He, Xiao M.; Carter, Daniel C.

    1992-01-01

    The three-dimensional structure of human serum albumin has been determined crystallographically to a resolution of 2.8 A. It comprises three homologous domains that assemble to form a heart-shaped molecule. Each domain is a product of two subdomains that possess common structural motifs. The principal regions of ligand binding to human serum albumin are located in hydrophobic cavities in subdomains IIA and ILIA, which exhibit similar chemistry. The structure explains numerous physical phenomena and should provide insight into future pharmacokinetic and genetically engineered therapeutic applications of serum albumin.

  3. Atomic structure and chemistry of human serum albumin

    NASA Astrophysics Data System (ADS)

    He, Xiao Min; Carter, Daniel C.

    1992-07-01

    The three-dimensional structure of human serum albumin has been determined crystallographically to a resolution of 2.8 Å. It comprises three homologous domains that assemble to form a heart-shaped molecule. Each domain is a product of two subdomains that possess common structural motifs. The principal regions of ligand binding to human serum albumin are located in hydrophobic cavities in subdomains IIA and IIIA, which exhibit similar chemistry. The structure explains numerous physical phenomena and should provide insight into future pharmacokinetic and genetically engineered therapeutic applications of serum albumin.

  4. Comparative analysis of female physicists in the physical sciences: Motivation and background variables

    NASA Astrophysics Data System (ADS)

    Dabney, Katherine P.; Tai, Robert H.

    2014-06-01

    The majority of existing science, technology, engineering, and mathematics (STEM) research studies compare women to men, yet a paucity of research exists that examines what differentiates female career choice within the physical sciences. In light of these research trends and recommendations, this study examines the following question: On average, do females who select physics as compared to chemistry doctoral programs differ in their reported personal motivations and background factors prior to entering the field? This question is analyzed using variables from the Project Crossover Survey data set through a subset of female physical science doctoral students and scientists (n =1137). A logistic regression analysis and prototypical odds ratio uncover what differentiates women in the physical sciences based on their academic achievement and experiences ranging from high school through undergraduate education. Results indicate that females who have negative undergraduate chemistry experiences as well as higher grades and positive experiences in undergraduate physics are more likely to pursue a career in physics as opposed to chemistry. Conclusions suggest that a greater emphasis should be placed on the classroom experiences that are provided to females in gateway physics courses. Analyses show that women are not a single entity that should only be examined as a whole group or in comparison to men. Instead women can be compared to one another to see what influences their differences in educational experiences and career choice in STEM-based fields as well as other academic areas of study.

  5. An intermediate-level course on Biological Physics

    NASA Astrophysics Data System (ADS)

    Nelson, Phil

    2004-03-01

    I describe both undergraduate and graduate 1-semester courses designed to give a survey of Biological Physics. The courses cover classical as well as recent topics. The undergraduate version requires calculus-based first-year physics as its prerequisite. With this level of assumed background, we can arrive at topics such as molecular motors, manipulation of single molecules, and the propagation of nerve impulses. Students majoring in physics, chemistry, biochemistry, and every engineering major (as well as a few in biology), end up taking this course. The graduate course covers the same material but includes exercises with symbolic mathematics packages and data modeling.

  6. Harbor Beach Harbor Dredging and Dredged Material Disposal, Huron County, Michigan: The Detroit Edison Company Permit Application and Corps of Engineers’ Maintenance Operations.

    DTIC Science & Technology

    1981-12-01

    Steven W. Congdon Physical Science John Collis Geography Abram J. Nicholson Civil Engineering Franklin L. Snitz Environmental Chemistry 6.02 The data...Isllfeebe tP deil,1t1v -, i .1d IO~ 1 , ’, , o- , ,,r-nS ,,n J. Thi pteId h,11 ’- 1 tr ts.-d o lrrf¢t . withot 5. wrlfan aore’sav of the land Resource

  7. Science 101: An Integrated, Inquiry-Oriented Science Course for Education Majors

    ERIC Educational Resources Information Center

    Edgcomb, Michelle; Britner, Shari L.; McConnaughay, Kelly; Wolffe, Robert

    2008-01-01

    Science 101 was designed by a multidisciplinary, multi-institutional team, with leadership from the Departments of Biology and Teacher Education, and participation by faculty in the Departments of Chemistry, Physics, and Mathematics, the College of Engineering, and master teachers from school districts in the state of Illinois. Their goal was to…

  8. The Erroneous Derivative Examples of Eleventh Grade Students

    ERIC Educational Resources Information Center

    Gur, Hulya; Barak, Basak

    2007-01-01

    The derivative is not only an important subject for mathematics but also is an important subject for engineering, physics, economy, chemistry, and statistics. Especially, mathematics depends on strongly preceding learning and the subject of derivative will be used in university education by all students. Therefore, it is one of the most important…

  9. Tribology.

    PubMed

    Spencer, Nicholas D

    2012-01-01

    The 156th Faraday Discussion covered the field of tribology, focussing on the subtopics of biotribology, predictive modelling, smart surfaces, and future lubricated systems. The papers themselves covered topics that drew on the fields of biology, medicine, chemistry, physics, materials science and mechanical engineering, providing a challenging and fascinating insight into the current state of the field of tribology.

  10. The AfterMath (and Science) of the Gulf War.

    ERIC Educational Resources Information Center

    Shaw, John M.; Sheahen, Thomas P.

    1991-01-01

    Discusses the science used in the war with Iraq. Explains principles of mechanics and feedback systems, and describes how they were used in war technology. Explains the need for engineers to know physics and chemistry, to understand the capabilities and limitations of their equipment, to make accurate measurements, and to work in teams. (PR)

  11. Using Mathematics and Engineering to Solve Problems in Secondary Level Biology

    ERIC Educational Resources Information Center

    Cox, Charles; Reynolds, Birdy; Schunn, Christian; Schuchardt, Anita

    2016-01-01

    There are strong classroom ties between mathematics and the sciences of physics and chemistry, but those ties seem weaker between mathematics and biology. Practicing biologists realize both that there are interesting mathematics problems in biology, and that viewing classroom biology in the context of another discipline could support students'…

  12. O-Pu-U (Oxygen-Plutonium-Uranium)

    NASA Astrophysics Data System (ADS)

    Materials Science International Team MSIT

    This document is part of Subvolume C4 'Non-Ferrous Metal Systems. Part 4: Selected Nuclear Materials and Engineering Systems' of Volume 11 'Ternary Alloy Systems - Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT®' of Landolt-Börnstein - Group IV 'Physical Chemistry'. It provides data of the ternary system Oxygen-Plutonium-Uranium.

  13. Uranium to Electricity: The Chemistry of the Nuclear Fuel Cycle

    ERIC Educational Resources Information Center

    Settle, Frank A.

    2009-01-01

    The nuclear fuel cycle consists of a series of industrial processes that produce fuel for the production of electricity in nuclear reactors, use the fuel to generate electricity, and subsequently manage the spent reactor fuel. While the physics and engineering of controlled fission are central to the generation of nuclear power, chemistry…

  14. A new and compact system at the AMS laboratory in Bucharest

    NASA Astrophysics Data System (ADS)

    Stan-Sion, C.; Enachescu, M.; Petre, A. R.; Simion, C. A.; Calinescu, C. I.; Ghita, D. G.

    2015-10-01

    AMS research started more than 15 years ago at our National Institute for Physics and Nuclear Engineering (IFIN-HH), Bucharest. A first facility was constructed based on our multipurpose 9 MV tandem accelerator and was upgraded several times. In May 2012 a new Cockcroft Walton type 1 MV HVEE tandetron AMS system, was commissioned. Two chemistry laboratories were constructed and are routinely performing the target preparation for carbon dating and for other isotope applications such as for geology, environment physics, medicine and forensic physics. Performance parameters of the new system are shown.

  15. Tutorial: Magnetic resonance with nitrogen-vacancy centers in diamond—microwave engineering, materials science, and magnetometry

    NASA Astrophysics Data System (ADS)

    Abe, Eisuke; Sasaki, Kento

    2018-04-01

    This tutorial article provides a concise and pedagogical overview on negatively charged nitrogen-vacancy (NV) centers in diamond. The research on the NV centers has attracted enormous attention for its application to quantum sensing, encompassing the areas of not only physics and applied physics but also chemistry, biology, and life sciences. Nonetheless, its key technical aspects can be understood from the viewpoint of magnetic resonance. We focus on three facets of this ever-expanding research field, to which our viewpoint is especially relevant: microwave engineering, materials science, and magnetometry. In explaining these aspects, we provide a technical basis and up-to-date technologies for research on the NV centers.

  16. Gas Phase Nanoparticle Synthesis

    NASA Astrophysics Data System (ADS)

    Granqvist, Claes; Kish, Laszlo; Marlow, William

    This book deals with gas-phase nanoparticle synthesis and is intended for researchers and research students in nanomaterials science and engineering, condensed matter physics and chemistry, and aerosol science. Gas-phase nanoparticle synthesis is instrumental to nanotechnology - a field in current focus that raises hopes for environmentally benign, resource-lean manufacturing. Nanoparticles can be produced by many physical, chemical, and even biological routes. Gas-phase synthesis is particularly interesting since one can achieve accurate manufacturing control and hence industrial viability.

  17. Spacecraft Dynamics as Related to Laboratory Experiments in Space. [conference

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H. (Editor); Antar, B. N. (Editor); Collins, F. G. (Editor)

    1981-01-01

    Proceedings are presented of a conference sponsored by the Physics and Chemistry Experiments in Space Working Group to discuss the scientific and engineering aspects involved in the design and performance of reduced to zero gravity experiments affected by spacecraft environments and dynamics. The dynamics of drops, geophysical fluids, and superfluid helium are considered as well as two phase flow, combustion, and heat transfer. Interactions between spacecraft motions and the atmospheric cloud physics laboratory experiments are also examined.

  18. Defect engineering in Multinary Semiconductors

    NASA Astrophysics Data System (ADS)

    Radautsan, S. I.

    1993-12-01

    The last two decades have shown a rapid increase both in our knowledge of the multinary compounds and their applications in engineering. The remarkable scientific leaders from different countries Prof. N.A.Goryunova, M.Rodot, A. Rabenau, E. Parthe, P. Manca, K. Matsumoto, C. Schwab, R. Tomlinson, J. Woolley, W.T. Kim, T. Irie, A. Zunger, N. Joshi, E. Sato et al. made their valuable contribution to the problems of the classification,crystal chemistry,growing processes and characterizations of multinary compounds [1-3]. Most of them were technologically difficult and as a result it was very hard to obtain the crystals with reproducible parameters. It was therefore obvious the well coordinated efforts in the field of chemistry,physics and electronics to be required. In this paper we review some of the major original results to get the defective compounds suitable for fundamental research and electronic applications. The main attention is paid to such effects as non-stoichiometry, order-disorder phase transitions as well as to non-equilibrium treatment by employing different methods of the defect engineering.

  19. Research and Teaching. The Science Identity of College Students: Exploring the Intersection of Gender, Race, and Ethnicity

    ERIC Educational Resources Information Center

    Hazari, Zahra; Sadler, Philip M.; Sonnert, Gerhard

    2013-01-01

    This study explores students' self-perceptions across science subjects (biology, chemistry, and physics) by gender and underrepresented minority group membership. The data are drawn from the Persistence Research in Science and Engineering (PRiSE) project, which surveyed 7,505 students (enrolled in college English courses required for all majors)…

  20. Microgravity Polymers

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A one-day, interactive workshop considering the effects of gravity on polymer materials science was held in Cleveland, Ohio, on May 9, 1985. Selected programmatic and technical issues were reviewed to introduce the field to workshop participants. Parallel discussions were conducted in three disciplinary working groups: polymer chemistry, polymer physics, and polymer engineering. This proceedings presents summaries of the workshop discussions and conclusions.

  1. Education in Brazil

    DTIC Science & Technology

    1993-04-01

    student dropout rate and a lacking scientific tradition. This paper would be beneficial to someone interested in educa- tion, especially the...Competition is keen, especially in engineering, and medicine. The test is very difficult. It tests students knowledge of biology, chemistry, physics...States’ Industrial and National War Colleges and prepares "civilians and military to perform executive and advisory functions, especially in those

  2. Carl Hempel's Philosophy of Science: How to Avoid Epistemic Discontinuity and Pedagogical Pitfalls

    ERIC Educational Resources Information Center

    Vemulapalli, G. Krishna; Byerly, Henry C.

    2004-01-01

    Mathematical theories are essential for explanations in physics, chemistry and engineering. These theories often incorporate functions that are defined by the irrelation to other variables in the theory but not with reference to experimental observations. The wave function in quantum mechanics is perhaps one of the best known example of such…

  3. Cold molecules: Progress in quantum engineering of chemistry and quantum matter

    NASA Astrophysics Data System (ADS)

    Bohn, John L.; Rey, Ana Maria; Ye, Jun

    2017-09-01

    Cooling atoms to ultralow temperatures has produced a wealth of opportunities in fundamental physics, precision metrology, and quantum science. The more recent application of sophisticated cooling techniques to molecules, which has been more challenging to implement owing to the complexity of molecular structures, has now opened the door to the longstanding goal of precisely controlling molecular internal and external degrees of freedom and the resulting interaction processes. This line of research can leverage fundamental insights into how molecules interact and evolve to enable the control of reaction chemistry and the design and realization of a range of advanced quantum materials.

  4. Visualizing Chemistry: The Progess and Promise of Advanced Chemical Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Committee on Revealing Chemistry Through Advanced Chemical Imaging

    2006-09-01

    The field of chemical imaging can provide detailed structural, functional, and applicable information about chemistry and chemical engineering phenomena that have enormous impacts on medicine, materials, and technology. In recognizing the potential for more research development in the field of chemical imaging, the National Academies was asked by the National Science Foundation, Department of Energy, U.S. Army, and National Cancer Institute to complete a study that would review the current state of molecular imaging technology, point to promising future developments and their applications, and suggest a research and educational agenda to enable breakthrough improvements in the ability to image molecularmore » processes simultaneously in multiple physical dimensions as well as time. The study resulted in a consensus report that provides guidance for a focused research and development program in chemical imaging and identifies research needs and possible applications of imaging technologies that can provide the breakthrough knowledge in chemistry, materials science, biology, and engineering for which we should strive. Public release of this report is expected in early October.« less

  5. Nanotechnology: emerging tool for diagnostics and therapeutics.

    PubMed

    Chakraborty, Mainak; Jain, Surangna; Rani, Vibha

    2011-11-01

    Nanotechnology is an emerging technology which is an amalgamation of different aspects of science and technology that includes disciplines such as electrical engineering, mechanical engineering, biology, physics, chemistry, and material science. It has potential in the fields of information and communication technology, biotechnology, and medicinal technology. It involves manipulating the dimensions of nanoparticles at an atomic scale to make use of its physical and chemical properties. All these properties are responsible for the wide application of nanoparticles in the field of human health care. Promising new technologies based on nanotechnology are being utilized to improve diverse aspects of medical treatments like diagnostics, imaging, and gene and drug delivery. This review summarizes the most promising nanomaterials and their application in human health.

  6. US Army Research Office research in progress, July 1, 1991--June 30, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-12-31

    The US Army Research Office, under the US Army Materiel Command (AMC), is responsible for coordinating and supporting research in the physical and engineering sciences, in materials science, geosciences, biology, and mathematics. This report describes research directly supported by the Army Research Projects Agency, and several AMC and other Army commands. A separate section is devoted to the research program at the US Army Research, Development and Standardization Group - United Kingdom. The present volume includes the research program in physics, chemistry, biological sciences, mathematics, engineering sciences, metallurgy and materials science, geosciences, electronics, and the European Research Program. It coversmore » the 12-month period from 1 July 1991 through 30 June 1992.« less

  7. Engineered Barrier System: Physical and Chemical Environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Dixon

    2004-04-26

    The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming bymore » deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.« less

  8. The Physics of Life and Quantum Complex Matter: A Case of Cross-Fertilization

    PubMed Central

    Poccia, Nicola; Bianconi, Antonio

    2011-01-01

    Progress in the science of complexity, from the Big Bang to the coming of humankind, from chemistry and biology to geosciences and medicine, and from materials engineering to energy sciences, is leading to a shift of paradigm in the physical sciences. The focus is on the understanding of the non-equilibrium process in fine tuned systems. Quantum complex materials such as high temperature superconductors and living matter are both non-equilibrium and fine tuned systems. These topics have been subbjects of scientific discussion in the Rome Symposium on the “Quantum Physics of Living Matter”. PMID:26791661

  9. What Chemistry To Teach Engineers?

    ERIC Educational Resources Information Center

    Hawkes, Stephen J.

    2000-01-01

    Examines possible general chemistry topics that would be most relevant and practical for engineering majors. Consults the Accreditation Board for Engineering and Technology (ABET), engineering textbooks, texts from other required subjects, and practicing engineers for recommendations. (Contains 24 references.) (WRM)

  10. Expert System Approach For Generating And Evaluating Engine Design Alternatives

    NASA Astrophysics Data System (ADS)

    Shen, Stewart N. T.; Chew, Meng-Sang; Issa, Ghassan F.

    1989-03-01

    Artificial intelligence is becoming an increasingly important subject of study for computer scientists, engineering designers, as well as professionals in other fields. Even though AI technology is a relatively new discipline, many of its concepts have already found practical applications. Expert systems, in particular, have made significant contributions to technologies in such fields as business, medicine, engineering design, chemistry, and particle physics. This paper describes an expert system developed to aid the mechanical designer with the preliminary design of variable-stroke internal-combustion engines. The expert system accomplished its task by generating and evaluating a large number of design alternatives represented in the form of graphs. Through the application of structural and design rules directly to the graphs, optimal and near optimal preliminary design configurations of engines are deduced.

  11. The challenges of sequencing by synthesis.

    PubMed

    Fuller, Carl W; Middendorf, Lyle R; Benner, Steven A; Church, George M; Harris, Timothy; Huang, Xiaohua; Jovanovich, Stevan B; Nelson, John R; Schloss, Jeffery A; Schwartz, David C; Vezenov, Dmitri V

    2009-11-01

    DNA sequencing-by-synthesis (SBS) technology, using a polymerase or ligase enzyme as its core biochemistry, has already been incorporated in several second-generation DNA sequencing systems with significant performance. Notwithstanding the substantial success of these SBS platforms, challenges continue to limit the ability to reduce the cost of sequencing a human genome to $100,000 or less. Achieving dramatically reduced cost with enhanced throughput and quality will require the seamless integration of scientific and technological effort across disciplines within biochemistry, chemistry, physics and engineering. The challenges include sample preparation, surface chemistry, fluorescent labels, optimizing the enzyme-substrate system, optics, instrumentation, understanding tradeoffs of throughput versus accuracy, and read-length/phasing limitations. By framing these challenges in a manner accessible to a broad community of scientists and engineers, we hope to solicit input from the broader research community on means of accelerating the advancement of genome sequencing technology.

  12. The physical chemistry and materials science behind sinter-resistant catalysts.

    PubMed

    Dai, Yunqian; Lu, Ping; Cao, Zhenming; Campbell, Charles T; Xia, Younan

    2018-06-18

    Catalyst sintering, a main cause of the loss of catalytic activity and/or selectivity at high reaction temperatures, is a major concern and grand challenge in the general area of heterogeneous catalysis. Although all heterogeneous catalysts are inevitably subjected to sintering during their operation, the immediate and drastic consequences can be mitigated by carefully engineering the catalytic particles and their interactions with the supports. In this tutorial review, we highlight recent progress in understanding the physical chemistry and materials science involved in sintering, including the discussion of advanced techniques, such as in situ microscopy and spectroscopy, for investigating the sintering process and its rate. We also discuss strategies for the design and rational fabrication of sinter-resistant catalysts. Finally, we showcase recent success in improving the thermal stability and thus sinter resistance of supported catalytic systems.

  13. List of Organizing Committees and Conference Programme

    NASA Astrophysics Data System (ADS)

    2012-03-01

    Organizers Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH Romanian Neutron Scattering Society Sponsors Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research Horia Hulubei National Institute of Physics and Nuclear Engineering - IFIN HH Comenius University in Bratislava, Slovakia Institute of Macromolecular Chemistry AS CR, Czech Republic Programme Committee Valentin Gordely (chairman)Joint Institute for Nuclear Research, Russia Heinrich StuhrmannGermany Jose TeixeiraLaboratoire Leon Brillouin, France Pavel ApelJoint Institute for Nuclear Research, Russia Pavol BalgavyComenius University in Bratislava, Slovakia Alexander BelushkinJoint Institute for Nuclear Research, Russia Georg BueldtInstitute of Structural Biology and Biophysics (ISB), Germany Leonid BulavinTaras Shevchenko National University of Kyiv, Ukraine Emil BurzoBabes-Bolyai University, Romania Vadim CherezovThe Scripps Research Institute, Department of Molecular Biology, USA Ion IonitaRomanian Society of Neutron Scattering, Romania Alexei KhokhlovMoscow State University, Russia Aziz MuzafarovInstitute of Synthetic Polymeric Materials, Russian Academy of Sciences, Russia Alexander OzerinInstitute of Synthetic Polymeric Materials, Russian Academy of Sciences, Russia Gerard PepyResearch Institute for Solid State Physics and Optics, Hungary Josef PlestilInstitute of Macromolecular Chemistry CAS, Czech Republic Aurel RadulescuJuelich Centre for Neutron Science JCNS, Germany Maria BalasoiuJoint Institute for Nuclear Research, Russia Alexander KuklinJoint Institute for Nuclear Research, Russia Local Organizing Committee Alexander Kuklin - Chairman Maria Balasoiu - Co-chairman Tatiana Murugova - Secretary Natalia Malysheva Natalia Dokalenko Julia Gorshkova Andrey Rogachev Oleksandr Ivankov Dmitry Soloviev Lilia Anghel Erhan Raul The PDF also contains the Conference Programme.

  14. Commonwealth of Independent States aerospace science and technology, 1992: A bibliography with indexes

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This bibliography contains 1237 annotated references to reports and journal articles of Commonwealth of Independent States (CIS) intellectual origin entered into the NASA Scientific and Technical Information System during 1992. Representative subject areas include the following: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, and space sciences.

  15. BoneSource hydroxyapatite cement: a novel biomaterial for craniofacial skeletal tissue engineering and reconstruction.

    PubMed

    Friedman, C D; Costantino, P D; Takagi, S; Chow, L C

    1998-01-01

    BoneSource-hydroxyapatite cement is a new self-setting calcium phosphate cement biomaterial. Its unique and innovative physical chemistry coupled with enhanced biocompatibility make it useful for craniofacial skeletal reconstruction. The general properties and clinical use guidelines are reviewed. The biomaterial and surgical applications offer insight into improved outcomes and potential new uses for hydroxyapatite cement systems.

  16. Journal of Undergraduate Research, Volume VIII, 2008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stiner, K. S.; Graham, S.; Khan, M.

    Th e Journal of Undergraduate Research (JUR) provides undergraduate interns the opportunity to publish their scientific innovation and to share their passion for education and research with fellow students and scientists. Fields in which these students worked include: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Sciences; Materials Sciences; Medical and Health Sciences; Nuclear Sciences; Physics; Science Policy; and Waste Management.

  17. Coefficients for Use in the U. S. Army Corps of Engineers Reservoir Model, CE-QUAL-R1.

    DTIC Science & Technology

    1983-10-01

    temiper- atares . 53 . Tem,:n ratur: acclimation . The temperature cf1- cicnts for aiaIpoutonare ucoecndesnt upon the acclima- t ion te rt i nd th...Health Bulletin No. 171. 101 4 4- " / Hutchinson, G. E. 1957. A Treatise on Limnology. I. Geog- raphy, Physics and Chemistry . John Wiley and Sons, NY

  18. Gender differences in teacher-student interactions in science classrooms

    NASA Astrophysics Data System (ADS)

    Jones, M. Gail; Wheatley, Jack

    1990-12-01

    Thirty physical science and 30 chemistry classes, which contained a total of 1332 students, were observed using the Brophy-Good Teacher-Child Dyadic Interaction System. Classroom interactions were examined for gender differences that may contribute to the underrepresentation of women in physics and engineering courses and subsequent careers. The Brophy-Good coding process allows for examination of patterns of interactions for individuals and groups of pupils. An analysis of variance of the data yielded a significant main effect for teacher praise, call outs, procedural questions, and behavioral warnings based on the sex of the student and a significant teacher-sex main effect for direct questions. Significant two-way interactions were found for the behavioral warning variable for teacher sex and subject by student sex. Female teachers warned male students significantly more than female students. Male teachers warned both genders with similar frequency. Male students also received significantly more behavioral warnings in physical science classes than female students. In chemistry classes, both male and female students received approximately the same number of behavioral warnings.

  19. A New Chemistry Course for Non-Chemistry Majors.

    ERIC Educational Resources Information Center

    Ariel, Magda; And Others

    1982-01-01

    A two-semester basic chemistry course for nonchemistry engineering majors is described. First semester provides introductory chemistry for freshmen while second semester is "customer-oriented," based on a departmental choice of three out of six independent modules. For example, aeronautical engineering "customers" would select…

  20. Second-Guessing Scientists and Engineers: Post Hoc Criticism and the Reform of Practice in Green Chemistry and Engineering.

    PubMed

    Lynch, William T

    2015-10-01

    The article examines and extends work bringing together engineering ethics and Science and Technology Studies, which had built upon Diane Vaughan's analysis of the Challenger shuttle accident as a test case. Reconsidering the use of her term "normalization of deviance," the article argues for a middle path between moralizing against and excusing away engineering practices contributing to engineering disaster. To explore an illustrative pedagogical case and to suggest avenues for constructive research developing this middle path, it examines the emergence of green chemistry and green engineering. Green chemistry began when Paul Anastas and John Warner developed a set of new rules for chemical synthesis that sought to learn from missed opportunities to avoid environmental damage in the twentieth century, an approach that was soon extended to engineering as well. Examination of tacit assumptions about historical counterfactuals in recent, interdisciplinary discussions of green chemistry illuminate competing views about the field's prospects. An integrated perspective is sought, addressing how both technical practice within chemistry and engineering and the influence of a wider "social movement" can play a role in remedying environmental problems.

  1. [The physical problems in medicine].

    PubMed

    Bao, Shang-lian; Wang, Wei-dong; Fan, Tie-shuan

    2007-05-01

    According to the World Health Organization (WHO), the basic sciences to support the human health are chemistry, physics and informatics. Chemistry is the base of pharmacy. Physics is the base of medical instruments and equipments (MIE). The diagnosis and therapy of diseases are relying on informatics. Therefore, as the fusion results of physics and medicine, medical physics is the creative source science of MIE. Among all diagnosis tools, medical imaging devices are the fastest-developed and the most-complicated MIE since Roentgen discovered X-ray which was quickly used in medical diagnosis in 1895. Among all treatment tools, the radiotherapeutical devices are the most-widely used and the most effective MIE for tumor treatments since Mrs. Courier found the nature radiation isotope Radium at the end of 19th century and began to use it in tumor therapy. Although the research and development (R&D) of so-complicated MIE need many subjects of science and engineering, the kernel science is medical physics. With the results of more than 50 years' development in developed countries, medical physics has defined its own field, which is the medical imaging physics and the radiotherapeutical physics. But, the definition has been expanded to be wider and wider. Therefore, we should pay more attention to the establishment of Medical Physics in China. In order to develop medical physics in china, the bases of R&D and clinical practice should be also built.

  2. Curriculum Outline for Introduction to Engineering Chemistry. First Edition. Review Cycle-Annual.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This curriculum outline consists of behavioral objectives (called terminal and enabling objectives) for Introduction to Engineering Chemistry, a one-semester, post-secondary course consisting of four 1-hour lectures each week. Course goal is to introduce marine engineering students to the rudiments of basic/introductory inorganic chemistry. The…

  3. Bioorganic Chemistry. A Natural Reunion of the Physical and Life Sciences

    PubMed Central

    Poulter, C. Dale

    2009-01-01

    Organic substances were conceived as those found in living organisms. Although the definition was soon broadened to include all carbon-containing compounds, naturally occurring molecules have always held a special fascination for organic chemists. From these beginnings, molecules from nature were indespensible tools as generations of organic chemists developed new techniques for determining structures, analyzed the mechanisms of reactions, explored the effects conformation and stereochemistry on reactions, and found challenging new targets to synthesize. Only recently have organic chemists harnessed the powerful techniques of organic chemistry to study the functions of organic molecules in their biological hosts, the enzymes that synthesize molecules and the complex processes that occur in a cell. In this Perspective, I present a personal account my entrée into bioorganic chemistry as a physical organic chemist and subsequent work to understand the chemical mechanisms of enzyme-catalyzed reactions, to develop techniques to identify and assign hydrogen bonds in tRNAs through NMR studies with isotopically labeled molecules, and to study how structure determines function in biosynthetic enzymes with proteins obtained by genetic engineering. PMID:19323569

  4. Preparation and measurement methods for studying nanoparticle aggregate surface chemistry.

    PubMed

    Szakal, Christopher; McCarthy, James A; Ugelow, Melissa S; Konicek, Andrew R; Louis, Kacie; Yezer, Benjamin; Herzing, Andrew A; Hamers, Robert J; Holbrook, R David

    2012-07-01

    Despite best efforts at controlling nanoparticle (NP) surface chemistries, the environment surrounding nanomaterials is always changing and can impart a permanent chemical memory. We present a set of preparation and measurement methods to be used as the foundation for studying the surface chemical memory of engineered NP aggregates. We attempt to bridge the gap between controlled lab studies and real-world NP samples, specifically TiO(2), by using well-characterized and consistently synthesized NPs, controllably producing NP aggregates with precision drop-on-demand inkjet printing for subsequent chemical measurements, monitoring the physical morphology of the NP aggregate depositions with scanning electron microscopy (SEM), acquiring "surface-to-bulk" mass spectra of the NP aggregate surfaces with time-of-flight secondary ion mass spectrometry (ToF-SIMS), and developing a data analysis scheme to interpret chemical signatures more accurately from thousands of data files. We present differences in mass spectral peak ratios for bare TiO(2) NPs compared to NPs mixed separately with natural organic matter (NOM) or pond water. The results suggest that subtle changes in the local environment can alter the surface chemistry of TiO(2) NPs, as monitored by Ti(+)/TiO(+) and Ti(+)/C(3)H(5)(+) peak ratios. The subtle changes in the absolute surface chemistry of NP aggregates vs. that of the subsurface are explored. It is envisioned that the methods developed herein can be adapted for monitoring the surface chemistries of a variety of engineered NPs obtained from diverse natural environments.

  5. Investigation of Ba, BaO, Sr and SrO Pulsed Laser-Induced Vapor Plumes in N2, O2, Microwave Discharged O2, and Vacuum at Low Laser Fluence.

    DTIC Science & Technology

    1996-12-01

    Physics and chemistry of the upper atmosphere. Great Britain: Cambridge University Press, 1989. Serway , Raymond A . Physics for Scientists and Engineers...Results ... ......... .69 4.2 Summary of the Spectral Data ..... ........... 70 4.3 Recommendations for Future Study ... ......... .71 Appendix A ...calibration curve to correlate the laser energy setting with the actual output pulse energy. A linear regression resulted in the relation "output" = 1.77 x

  6. Intensities and spectral features of the {}^{4}{\\rm{I}}_{13/2}-{}^{4}{\\rm{I}}_{15/2} potential laser transition of Er3+ centers in CaF2-CeF3 disordered crystal

    NASA Astrophysics Data System (ADS)

    Wang, Qing-Guo; Su, Liangbi; Liu, Jun-Fang; Liu, Bin; Wu, Feng; Luo, Ping; Zhao, Heng-Yu; Shi, Jiao-Jiao; Xue, Yan-Yan; Xu, Xiao-Dong; Ryba-Romanowski, Witold; Solarz, Piotr; Lisiecki, Radoslaw; Wang, Zhan-Shan; Tang, Hui-Li; Xu, Jun

    2017-10-01

    Not Available Project supported by Shanghai Engineering Research Center for Sapphire Crystals, China (Grant No. 14DZ2252500), the Fund of Key Laboratory of Optoelectronic Materials Chemistry and Physics Chinese Academy of Sciences (Grant No. 2008DP17301), the Fundamental Research Funds for the Central Universities of China, the National Natural Science Foundation of China and China Academy of Engineering Physics Joint Fund (Grant No. U1530152), the National Natural Science Foundation of China (Grant Nos. 61475177 and 61621001), the Natural Science Foundation of Shanghai Municiple, China (Grant No. 13ZR1446100), and the MOE Key Laboratory of Advanced Micro-Structured Materials of China.

  7. Geoscience salaries up by 10.8%

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    According to a recent salary survey of over 4000 scientists in all fields by Research and Development (March 1984) geoscientists ranked fourth place for 1984. Mathematics, aeronautical engineering, and metallurgy had higher median salaries, but the discipline of geoscience had a higher median salary than that of physics, chemical engineering, mechanical engineering, electrical engineering, ceramics, chemistry, industrial engineering, biology, and other fields of research and development. The 1984 median salary for geoscientists was $40,950, up from the median value by 10.8%. In 1983, geoscience was ranked in ninth place.The geoscientist profile for 1984 was not unusual. The median age was 47.5 years, and the median years of experience was 18. Geoscientists are the best educated. Eighty-two percent of the geoscientists polled had advanced degrees beyond the bachelor's degree. Fifty-six percent of the geoscientists had the Ph.D. degree.

  8. Curriculum Outline for Introduction to Engineering Chemistry. Second Edition. Review Cycle-Annual.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    Introduction to Engineering Chemistry is a four-credit hour (one semester) course designed to introduce marine engineering students to the rudiments of basic (introductory) inorganic chemistry. The course consists of 18 units (numbered 1.0 through 18.0) focusing on these subject areas: fundamental concepts; structure of the atom and the periodic…

  9. Interest in STEM is contagious for students in biology, chemistry, and physics classes

    PubMed Central

    Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D.; Godwin, Allison; Scott, Tyler D.; Klotz, Leidy

    2017-01-01

    We report on a study of the effect of peers’ interest in high school biology, chemistry, and physics classes on students’ STEM (science, technology, engineering, and mathematics)–related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students‘ experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students‘ STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students’ intentions toward STEM careers while enhancing or maintaining course performance. PMID:28808678

  10. Interest in STEM is contagious for students in biology, chemistry, and physics classes.

    PubMed

    Hazari, Zahra; Potvin, Geoff; Cribbs, Jennifer D; Godwin, Allison; Scott, Tyler D; Klotz, Leidy

    2017-08-01

    We report on a study of the effect of peers' interest in high school biology, chemistry, and physics classes on students' STEM (science, technology, engineering, and mathematics)-related career intentions and course achievement. We define an interest quorum as a science class where students perceive a high level of interest for the subject matter from their classmates. We hypothesized that students who experience such an interest quorum are more likely to choose STEM careers. Using data from a national survey study of students' experiences in high school science, we compared the effect of five levels of peer interest reported in biology, chemistry, and physics courses on students' STEM career intentions. The results support our hypothesis, showing a strong, positive effect of an interest quorum even after controlling for differences between students that pose competing hypotheses such as previous STEM career interest, academic achievement, family support for mathematics and science, and gender. Smaller positive effects of interest quorums were observed for course performance in some cases, with no detrimental effects observed across the study. Last, significant effects persisted even after controlling for differences in teaching quality. This work emphasizes the likely importance of interest quorums for creating classroom environments that increase students' intentions toward STEM careers while enhancing or maintaining course performance.

  11. Physical and Chemical Processes in Flames

    DTIC Science & Technology

    2010-02-15

    7. "An efficient reduced mechanism for methane oxidation with NOx chemistry ," by T. F. Lu and C. K. Law, Paper No. C17, Fifth US Combustion Meeting... Mechanical and Aerospace Engineering Princeton University Princeton, NJ 08544 9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR...TERMS Laminar flame speeds; ignition temperatures; extinction limits; mechanism reduction; skeletal mechanism ; CO/H2 oxidation; ethy lene oxidation

  12. Near-Unity Quantum Yields for Intersystem Crossing and Singlet Oxygen Generation in Polymethine-like Molecules: Design and Experimental Realization

    DTIC Science & Technology

    2010-01-01

    Florida, Cocoa , Florida 32922, ^Institute of Organic Chemistry, National Academy of Sciences, Kiev 03094, Ukraine, and #Physics and Optical Engineering...the time evolution of the S-S and T-Tabsorption and their cross sections (σSS and σTT). S-SandT-TESAspectra for SD-S7508are shown inFigure3a. SD-O

  13. Journal of Undergraduate Research, Volume VI, 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faletra, P.; Schuetz, A.; Cherkerzian, D.

    Students who conducted research at DOE National Laboratories during 2005 were invited to include their research abstracts, and for a select few, their completed research papers in this Journal. This Journal is direct evidence of students collaborating with their mentors. Fields in which these students worked include: Biology; Chemistry; Computer Science; Engineering; Environmental Science; General Sciences; Materials Sciences; Medical and Health Sciences; Nuclear Sciences; Physics; and Science Policy.

  14. Implementation of Protocols to Enable Doctoral Training in Physical and Computational Chemistry of a Blind Graduate Student

    ERIC Educational Resources Information Center

    Minkara, Mona S.; Weaver, Michael N.; Gorske, Jim; Bowers, Clifford R.; Merz, Kenneth M., Jr.

    2015-01-01

    There exists a sparse representation of blind and low-vision students in science, technology, engineering and mathematics (STEM) fields. This is due in part to these individuals being discouraged from pursuing STEM degrees as well as a lack of appropriate adaptive resources in upper level STEM courses and research. Mona Minkara is a rising fifth…

  15. The 1984 NASA/ASEE summer faculty fellowship program

    NASA Technical Reports Server (NTRS)

    Mcinnis, B. C.; Duke, M. B.; Crow, B.

    1984-01-01

    An overview is given of the program management and activities. Participants and research advisors are listed. Abstracts give describe and present results of research assignments performed by 31 fellows either at the Johnson Space Center, at the White Sands test Facility, or at the California Space Institute in La Jolla. Disciplines studied include engineering; biology/life sciences; Earth sciences; chemistry; mathematics/statistics/computer sciences; and physics/astronomy.

  16. Physical Chemistry of Nanomedicine: Understanding the Complex Behaviors of Nanoparticles in Vivo

    NASA Astrophysics Data System (ADS)

    Lane, Lucas A.; Qian, Ximei; Smith, Andrew M.; Nie, Shuming

    2015-04-01

    Nanomedicine is an interdisciplinary field of research at the interface of science, engineering, and medicine, with broad clinical applications ranging from molecular imaging to medical diagnostics, targeted therapy, and image-guided surgery. Despite major advances during the past 20 years, there are still major fundamental and technical barriers that need to be understood and overcome. In particular, the complex behaviors of nanoparticles under physiological conditions are poorly understood, and detailed kinetic and thermodynamic principles are still not available to guide the rational design and development of nanoparticle agents. Here we discuss the interactions of nanoparticles with proteins, cells, tissues, and organs from a quantitative physical chemistry point of view. We also discuss insights and strategies on how to minimize nonspecific protein binding, how to design multistage and activatable nanostructures for improved drug delivery, and how to use the enhanced permeability and retention effect to deliver imaging agents for image-guided cancer surgery.

  17. Bioceramics for Hip Joints: The Physical Chemistry Viewpoint

    PubMed Central

    Pezzotti, Giuseppe

    2014-01-01

    Which intrinsic biomaterial parameter governs and, if quantitatively monitored, could reveal to us the actual lifetime potential of advanced hip joint bearing materials? An answer to this crucial question is searched for in this paper, which identifies ceramic bearings as the most innovative biomaterials in hip arthroplasty. It is shown that, if in vivo exposures comparable to human lifetimes are actually searched for, then fundamental issues should lie in the physical chemistry aspects of biomaterial surfaces. Besides searching for improvements in the phenomenological response of biomaterials to engineering protocols, hip joint components should also be designed to satisfy precise stability requirements in the stoichiometric behavior of their surfaces when exposed to extreme chemical and micromechanical conditions. New spectroscopic protocols have enabled us to visualize surface stoichiometry at the molecular scale, which is shown to be the key for assessing bioceramics with elongated lifetimes with respect to the primitive alumina biomaterials used in the past. PMID:28788682

  18. Biomedical Nanomagnetics: A Spin Through Possibilities in Imaging, Diagnostics, and Therapy

    PubMed Central

    Krishnan, Kannan M.

    2010-01-01

    Biomedical nanomagnetics is a multidisciplinary area of research in science, engineering and medicine with broad applications in imaging, diagnostics and therapy. Recent developments offer exciting possibilities in personalized medicine provided a truly integrated approach, combining chemistry, materials science, physics, engineering, biology and medicine, is implemented. Emphasizing this perspective, here we address important issues for the rapid development of the field, i.e., magnetic behavior at the nanoscale with emphasis on the relaxation dynamics, synthesis and surface functionalization of nanoparticles and core-shell structures, biocompatibility and toxicity studies, biological constraints and opportunities, and in vivo and in vitro applications. Specifically, we discuss targeted drug delivery and triggered release, novel contrast agents for magnetic resonance imaging, cancer therapy using magnetic fluid hyperthermia, in vitro diagnostics and the emerging magnetic particle imaging technique, that is quantitative and sensitive enough to compete with established imaging methods. In addition, the physics of self-assembly, which is fundamental to both biology and the future development of nanoscience, is illustrated with magnetic nanoparticles. It is shown that various competing energies associated with self-assembly converge on the nanometer length scale and different assemblies can be tailored by varying particle size and size distribution. Throughout this paper, while we discuss our recent research in the broad context of the multidisciplinary literature, we hope to bridge the gap between related work in physics/chemistry/engineering and biology/medicine and, at the same time, present the essential concepts in the individual disciplines. This approach is essential as biomedical nanomagnetics moves into the next phase of innovative translational research with emphasis on development of quantitative in vivo imaging, targeted and triggered drug release, and image guided therapy including validation of delivery and therapy response. PMID:20930943

  19. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1993-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  20. Liquid lubricants for advanced aircraft engines

    NASA Technical Reports Server (NTRS)

    Loomis, William R.; Fusaro, Robert L.

    1992-01-01

    An overview of liquid lubricants for use in current and projected high performance turbojet engines is discussed. Chemical and physical properties are reviewed with special emphasis placed on the oxidation and thermal stability requirements imposed upon the lubrication system. A brief history is given of the development of turbine engine lubricants which led to the present day synthetic oils with their inherent modification advantages. The status and state of development of some eleven candidate classes of fluids for use in advanced turbine engines are discussed. Published examples of fundamental studies to obtain a better understanding of the chemistry involved in fluid degradation are reviewed. Alternatives to high temperature fluid development are described. The importance of continuing work on improving current high temperature lubricant candidates and encouraging development of new and improved fluid base stocks are discussed.

  1. Influence of nanomaterials on stem cell differentiation: designing an appropriate nanobiointerface

    PubMed Central

    Ilie, Ioana; Ilie, Razvan; Mocan, Teodora; Bartos, Dana; Mocan, Lucian

    2012-01-01

    During the last decade, due to advances in functionalization chemistry, novel nanobiomaterials with applications in tissue engineering and regenerative medicine have been developed. These novel materials with their unique physical and chemical properties are bioactive hierarchical structures that hold great promise for future development of human tissues. Thus, various nanomaterials are currently being intensively explored in the directed differentiation of stem cells, the design of novel bioactive scaffolds, and new research avenues towards tissue regeneration. This paper illustrates the latest achievements in the applications of nanotechnology in tissue engineering in the field of regenerative medicine. PMID:22619557

  2. Publications of LASL research, 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, A.K.

    1975-05-01

    This bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-Los Alamos reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, and U. S. patents. Publications by LASL authors which are not records of Laboratory-sponsored work are included when the Library becomes aware of them. The entries are arranged in sections by broad subject categories; within each section they are alphabetical by title. The following subject categories are included: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equationmore » of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma studies; earth science and engineering; energy (non-nuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronic and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). Author, numerical and KWIC indexes are included. (RWR)« less

  3. DI Diesel Performance and Emissions Model

    DTIC Science & Technology

    1998-03-31

    Skeletal mechanism for NOx chemistry in Diesel engines ," SAE Paper 981450. Mori, K. (1997), "Worldwide...Based on the review discussed above, Mellor et al. (1998) postulate a skeletal mechanism for NO chemistry in DI Diesel engines . This mechanism is... mechanism for NOx chemistry in Diesel engines ," SAE Paper 981450. Various Internal Ford Reports, Ford Motor Company, Dearborn, MI. 29

  4. An Alternative Educational Approach for an Inorganic Chemistry Laboratory Course in Industrial and Chemical Engineering

    ERIC Educational Resources Information Center

    Garces, Andres; Sanchez-Barba, Luis Fernando

    2011-01-01

    We describe an alternative educational approach for an inorganic chemistry laboratory module named "Experimentation in Chemistry", which is included in Industrial Engineering and Chemical Engineering courses. The main aims of the new approach were to reduce the high levels of failure and dropout on the module and to make the content match the…

  5. The Significance of the Origin of Physical Chemistry for Physical Chemistry Education: The Case of Electrolyte Solution Chemistry

    ERIC Educational Resources Information Center

    de Berg, Kevin Charles

    2014-01-01

    Physical Chemistry's birth was fraught with controversy, a controversy about electrolyte solution chemistry which has much to say about how scientific knowledge originates, matures, and responds to challenges. This has direct implications for the way our students are educated in physical chemistry in particular and science in general. The…

  6. Engineering noble metal nanomaterials for environmental applications

    NASA Astrophysics Data System (ADS)

    Li, Jingguo; Zhao, Tingting; Chen, Tiankai; Liu, Yanbiao; Ong, Choon Nam; Xie, Jianping

    2015-04-01

    Besides being valuable assets in our daily lives, noble metals (namely, gold, silver, and platinum) also feature many intriguing physical and chemical properties when their sizes are reduced to the nano- or even subnano-scale; such assets may significantly increase the values of the noble metals as functional materials for tackling important societal issues related to human health and the environment. Among which, designing/engineering of noble metal nanomaterials (NMNs) to address challenging issues in the environment has attracted recent interest in the community. In general, the use of NMNs for environmental applications is highly dependent on the physical and chemical properties of NMNs. Such properties can be readily controlled by tailoring the attributes of NMNs, including their size, shape, composition, and surface. In this feature article, we discuss recent progress in the rational design and engineering of NMNs with particular focus on their applications in the field of environmental sensing and catalysis. The development of functional NMNs for environmental applications is highly interdisciplinary, which requires concerted efforts from the communities of materials science, chemistry, engineering, and environmental science.

  7. Graduate Student Program in Materials and Engineering Research and Development for Future Accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spentzouris, Linda

    The objective of the proposal was to develop graduate student training in materials and engineering research relevant to the development of particle accelerators. Many components used in today's accelerators or storage rings are at the limit of performance. The path forward in many cases requires the development of new materials or fabrication techniques, or a novel engineering approach. Often, accelerator-based laboratories find it difficult to get top-level engineers or materials experts with the motivation to work on these problems. The three years of funding provided by this grant was used to support development of accelerator components through a multidisciplinary approachmore » that cut across the disciplinary boundaries of accelerator physics, materials science, and surface chemistry. The following results were achieved: (1) significant scientific results on fabrication of novel photocathodes, (2) application of surface science and superconducting materials expertise to accelerator problems through faculty involvement, (3) development of instrumentation for fabrication and characterization of materials for accelerator components, (4) student involvement with problems at the interface of material science and accelerator physics.« less

  8. Engineering noble metal nanomaterials for environmental applications.

    PubMed

    Li, Jingguo; Zhao, Tingting; Chen, Tiankai; Liu, Yanbiao; Ong, Choon Nam; Xie, Jianping

    2015-05-07

    Besides being valuable assets in our daily lives, noble metals (namely, gold, silver, and platinum) also feature many intriguing physical and chemical properties when their sizes are reduced to the nano- or even subnano-scale; such assets may significantly increase the values of the noble metals as functional materials for tackling important societal issues related to human health and the environment. Among which, designing/engineering of noble metal nanomaterials (NMNs) to address challenging issues in the environment has attracted recent interest in the community. In general, the use of NMNs for environmental applications is highly dependent on the physical and chemical properties of NMNs. Such properties can be readily controlled by tailoring the attributes of NMNs, including their size, shape, composition, and surface. In this feature article, we discuss recent progress in the rational design and engineering of NMNs with particular focus on their applications in the field of environmental sensing and catalysis. The development of functional NMNs for environmental applications is highly interdisciplinary, which requires concerted efforts from the communities of materials science, chemistry, engineering, and environmental science.

  9. Predictors of student success in entry-level science courses

    NASA Astrophysics Data System (ADS)

    Singh, Mamta K.

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses. Similarly, students' performance and success in entry-level physics courses were influenced by high school physics. Finally, the study developed student success equation with high school GAP and high school chemistry as good predictors of students' success in entry-level science courses.

  10. Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Liang, Long; Ge, Hai-Wen; Reitz, Rolf D.

    2010-03-01

    Acceleration of the chemistry solver for engine combustion is of much interest due to the fact that in practical engine simulations extensive computational time is spent solving the fuel oxidation and emission formation chemistry. A dynamic adaptive chemistry (DAC) scheme based on a directed relation graph error propagation (DRGEP) method has been applied to study homogeneous charge compression ignition (HCCI) engine combustion with detailed chemistry (over 500 species) previously using an R-value-based breadth-first search (RBFS) algorithm, which significantly reduced computational times (by as much as 30-fold). The present paper extends the use of this on-the-fly kinetic mechanism reduction scheme to model combustion in direct-injection (DI) engines. It was found that the DAC scheme becomes less efficient when applied to DI engine simulations using a kinetic mechanism of relatively small size and the accuracy of the original DAC scheme decreases for conventional non-premixed combustion engine. The present study also focuses on determination of search-initiating species, involvement of the NOx chemistry, selection of a proper error tolerance, as well as treatment of the interaction of chemical heat release and the fuel spray. Both the DAC schemes were integrated into the ERC KIVA-3v2 code, and simulations were conducted to compare the two schemes. In general, the present DAC scheme has better efficiency and similar accuracy compared to the previous DAC scheme. The efficiency depends on the size of the chemical kinetics mechanism used and the engine operating conditions. For cases using a small n-heptane kinetic mechanism of 34 species, 30% of the computational time is saved, and 50% for a larger n-heptane kinetic mechanism of 61 species. The paper also demonstrates that by combining the present DAC scheme with an adaptive multi-grid chemistry (AMC) solver, it is feasible to simulate a direct-injection engine using a detailed n-heptane mechanism with 543 species with practical computer time.

  11. Symbolic Mathematics Engines in Teaching Chemistry: A Symposium Report

    ERIC Educational Resources Information Center

    Ellison, Mark

    2004-01-01

    The use of Symbolic Mathematics Engines (SMEs) in chemical education as a part of the Division of Computers in Chemistry was discussed by a panel of educators at the Symbolic Calculation in Chemistry symposium in Philadelphia in 2004. The panelists agreed that many more topics in chemistry are amenable to SME's exploration and that symbolic…

  12. Chemists, Engineers Probe Mutual Problems.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1980

    1980-01-01

    Summarizes recommendations made in a workshop sponsored by the American Chemical Society concerning issues involving the diverging viewpoints of chemistry and chemical engineering. Includes recommendations regarding curricula, salary differences, and the need to change attitudes of chemistry faculty toward industry and industrial chemistry. (CS)

  13. PREFACE: First International Meeting on Applied Physics (APHYS-2003)

    NASA Astrophysics Data System (ADS)

    Méndez-Vilas, A.; Chacón, R.

    2005-01-01

    This special issue of Physica Scripta contains papers presented at the 1st International Meeting on Applied Physics (APHYS-2003), held in Badajoz (Spain), from 13th to 18th October 2003, and more specifically, selected papers presented during the conference sessions mainly on Applied Optics, Laser Physics, Ultrafast Phenomena, Optical Materials, Semiconductor Materials and Devices, Optoelectronics, Quantum Electronics and Applied Solid State Physics-Chemistry. APHYS-2003 was born as an attempt to create a new international forum on Applied Physics in Europe. Since Applied Physics is not really a branch of Physics, but the application of all the branches of Physics to the broad realms of practical problems in Science, Engineering and Industry, this conference was a truly multi and inter-disciplinary event. The organizers called for papers relating Physics with other sciences such as Biology, Chemistry, Information Science, Medicine, etc, or relating different Physics areas, and aimed at solving practical problems. In other words, the Conference was specifically interested in reports applying the techniques, the training, and the culture of Physics to research areas usually associated with other scientific and engineering disciplines. It was extremely rewarding that over 800 researchers, from over 65 countries, attended the conference, where more than 1000 research papers were presented. We feel really proud of this excellent response obtained (in number and quality), for this first edition of the conference. We are very grateful to all the members of the Organizing Committee, for the hard work done for the preparation of the Conference (which began one year before the conference start), and to the members of the International Advisory Committee, for the valuable contribution to the evaluation of submitted works. Also thank to the referees for the excellent work done in the revision of submitted papers. Finally, we would like to thank the Department of Physics of the University of Extremadura, for their support, and the Regional Government (Junta de Extremadura/Consejería de Educación, Ciencia y Tecnología), as well as INNOVA Instrumentación, for sponsoring the Conference.

  14. Sensitivity Analysis in Engineering

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M. (Compiler); Haftka, Raphael T. (Compiler)

    1987-01-01

    The symposium proceedings presented focused primarily on sensitivity analysis of structural response. However, the first session, entitled, General and Multidisciplinary Sensitivity, focused on areas such as physics, chemistry, controls, and aerodynamics. The other four sessions were concerned with the sensitivity of structural systems modeled by finite elements. Session 2 dealt with Static Sensitivity Analysis and Applications; Session 3 with Eigenproblem Sensitivity Methods; Session 4 with Transient Sensitivity Analysis; and Session 5 with Shape Sensitivity Analysis.

  15. Building a Futuristic Telescope on the Moon - A Fun Project for Research, Science Teaching, and Outreach

    NASA Astrophysics Data System (ADS)

    Chen, Peter C.; Rabin, Douglas M.; Haas, J. Patrick; Mirel, Paul

    2018-01-01

    We present the design and demonstrate the operation of a model lunar observatory. While this is a research project, it is also intended to stimulate student interest in space science, astronomy, physics, chemistry, and engineering. First, we discuss the science objectives of a lunar observatory. The Moon is a great location for astronomy. Why? What science can best be done from there? What are exoplanets? We would like to see what planets around other stars look like. Why is it so difficult? What are optical interferometers and why do we need them? Next, we discuss the physics, chemistry, and engineering principles involved. The lunar environment is totally different from Earth. It features high vacuum, low gravity, very slow rotation rate, cryogenic temperatures, and dust. How can an observatory be designed that not only survives, but can take advantage of the environment? We present a “cool” solution (the model uses liquid nitrogen) that combines the following elements: high temperature superconductors, telescope mirrors made of “moondust”, novel telescope support system, an observatory structure made of simulated lunar soil, 3D printing, and methods for dust mitigation. Information will be provided on how similar systems can be built and what further refinements (e.g. voice control, precision stepper drives, autonomous operation, and telerobotics) can be added.

  16. Implementing Computer Based Laboratories

    NASA Astrophysics Data System (ADS)

    Peterson, David

    2001-11-01

    Physics students at Francis Marion University will complete several required laboratory exercises utilizing computer-based Vernier probes. The simple pendulum, the acceleration due to gravity, simple harmonic motion, radioactive half lives, and radiation inverse square law experiments will be incorporated into calculus-based and algebra-based physics courses. Assessment of student learning and faculty satisfaction will be carried out by surveys and test results. Cost effectiveness and time effectiveness assessments will be presented. Majors in Computational Physics, Health Physics, Engineering, Chemistry, Mathematics and Biology take these courses, and assessments will be categorized by major. To enhance the computer skills of students enrolled in the courses, MAPLE will be used for further analysis of the data acquired during the experiments. Assessment of these enhancement exercises will also be presented.

  17. Biological materials by design.

    PubMed

    Qin, Zhao; Dimas, Leon; Adler, David; Bratzel, Graham; Buehler, Markus J

    2014-02-19

    In this topical review we discuss recent advances in the use of physical insight into the way biological materials function, to design novel engineered materials 'from scratch', or from the level of fundamental building blocks upwards and by using computational multiscale methods that link chemistry to material function. We present studies that connect advances in multiscale hierarchical material structuring with material synthesis and testing, review case studies of wood and other biological materials, and illustrate how engineered fiber composites and bulk materials are designed, modeled, and then synthesized and tested experimentally. The integration of experiment and simulation in multiscale design opens new avenues to explore the physics of materials from a fundamental perspective, and using complementary strengths from models and empirical techniques. Recent developments in this field illustrate a new paradigm by which complex material functionality is achieved through hierarchical structuring in spite of simple material constituents.

  18. Current Research at the University of Chicago Enrico Fermi Institute and James Franck Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swordy, Simon

    2009-03-04

    These talks will give an overview of physics research at the University of Chicago centered in two research institutes. The Enrico Fermi Institute pursues research in some core areas of the physical sciences. These include cosmology, particle physics, theoretical physics, particle astrophysics, and cosmochemistry. The EFI talk will focus on some examples of these activities which together will provide a broad overview of EFI science. Research at the James Franck Institute centers on the intersection between physics, chemistry and materials science, with the aim to unravel the complex connections between structure and dynamics in condensed matter systems. The JFI ismore » also home to the Chicago Materials Research Science and Engineering Center. The JFI talk will provide highlights of current projects by JFI members.« less

  19. Current Research at the University of Chicago Enrico Fermi Institute and James Franck Institute

    ScienceCinema

    Swordy, Simon

    2017-12-22

    These talks will give an overview of physics research at the University of Chicago centered in two research institutes. The Enrico Fermi Institute pursues research in some core areas of the physical sciences. These include cosmology, particle physics, theoretical physics, particle astrophysics, and cosmochemistry. The EFI talk will focus on some examples of these activities which together will provide a broad overview of EFI science. Research at the James Franck Institute centers on the intersection between physics, chemistry and materials science, with the aim to unravel the complex connections between structure and dynamics in condensed matter systems. The JFI is also home to the Chicago Materials Research Science and Engineering Center. The JFI talk will provide highlights of current projects by JFI members.

  20. Feasibility of Integration of Selected Aspects of (CBA) Chemistry, (CHEMS) Chemistry and (PSSC) Physics into a Two Year Physical Science Sequence.

    ERIC Educational Resources Information Center

    Fiasca, Michael Aldo

    Compared, for selected outcomes, were integrated chemistry-physics courses with chemistry and physics courses taught separately. Three classes studying integrated Physical Science Study Committee (PSSC)-Chemical Bond Approach (CBA), and three classes studying integrated Physical Science Study Committee-Chemical Education Materials Study (CHEMS)…

  1. Final Report “Electrical and mechanical characterization of rocks at the sub-millimeter scale” DE-SC0000757

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scales, John

    The broad purpose of CSM's 6-year (3 years plus renewal) DOE project was to develop and apply new experimental physics technology to the material characterization of rocks at the grain scale or smaller. This is motivated by a knowledge that the bulk chemistry and physics of rocks are strongly influenced by processes occurring at the grain scale: the flow of fluids, cation exchange, the state of cementation of grains, and many more. It may also be possible in some cases to ``upscale'' or homogenize the mesoscopic properties of rocks in order to directly infer the large-scale properties of formations, butmore » that is not our central goal. Understanding the physics and chemistry at the small scale is. During the first 3 years, most effort was devoted to developing and validating the near-field scanning technology. During the 3 year renewal phase, most effort was focused on applying the technology in the labs Professors Batzle (now deceased) in Geophysics and Prasad in Petroleum engineering.« less

  2. An Introduction to Quantum Theory

    NASA Astrophysics Data System (ADS)

    Greensite, Jeff

    2017-02-01

    Written in a lucid and engaging style, the author takes readers from an overview of classical mechanics and the historical development of quantum theory through to advanced topics. The mathematical aspects of quantum theory necessary for a firm grasp of the subject are developed in the early chapters, but an effort is made to motivate that formalism on physical grounds. Including animated figures and their respective Mathematica® codes, this book provides a complete and comprehensive text for students in physics, maths, chemistry and engineering needing an accessible introduction to quantum mechanics. Supplementary Mathematica codes available within Book Information

  3. CFD assessment of the pollutant environment from RD-170 propulsion system testing

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Mcconnaughey, Paul; Warsi, Saif; Chen, Yen-Sen

    1995-01-01

    Computational Fluid Dynamics (CFD) technology has been used to assess the exhaust plume pollutant environment of the RD-170 engine hot-firing on the F1 Test Stand at Marshall Space Flight Center. Researchers know that rocket engine hot-firing has the potential for forming thermal nitric oxides (NO(x)), as well as producing carbon monoxide (CO) when hydrocarbon fuels are used. Because of the complicated physics involved, however, little attempt has been made to predict the pollutant emissions from ground-based engine testing, except for simplified methods which can grossly underpredict and/or overpredict the pollutant formations in a test environment. The objective of this work, therefore, has been to develop a technology using CFD to describe the underlying pollutant emission physics from ground-based rocket engine testing. This resultant technology is based on a three-dimensional (3D), viscous flow, pressure-based CFD formulation, where wet CO and thermal NO finite-rate chemistry mechanisms are solved with a Penalty Function method. A nominal hot-firing of a RD-170 engine on the F1 stand has been computed. Pertinent test stand flow physics such as the multiple-nozzle clustered engine plume interaction, air aspiration from base and aspirator, plume mixing with entrained air that resulted in contaminant dilution and afterburning, counter-afterburning due to flame bucket water-quenching, plume impingement on the flame bucket, and restricted multiple-plume expansion and turning have been captured. The predicted total emission rates compared reasonably well with those of the existing hydrocarbon engine hot-firing test data.

  4. Large eddy simulation modelling of combustion for propulsion applications.

    PubMed

    Fureby, C

    2009-07-28

    Predictive modelling of turbulent combustion is important for the development of air-breathing engines, internal combustion engines, furnaces and for power generation. Significant advances in modelling non-reactive turbulent flows are now possible with the development of large eddy simulation (LES), in which the large energetic scales of the flow are resolved on the grid while modelling the effects of the small scales. Here, we discuss the use of combustion LES in predictive modelling of propulsion applications such as gas turbine, ramjet and scramjet engines. The LES models used are described in some detail and are validated against laboratory data-of which results from two cases are presented. These validated LES models are then applied to an annular multi-burner gas turbine combustor and a simplified scramjet combustor, for which some additional experimental data are available. For these cases, good agreement with the available reference data is obtained, and the LES predictions are used to elucidate the flow physics in such devices to further enhance our knowledge of these propulsion systems. Particular attention is focused on the influence of the combustion chemistry, turbulence-chemistry interaction, self-ignition, flame holding burner-to-burner interactions and combustion oscillations.

  5. Opportunities for research in aerothermodynamics

    NASA Technical Reports Server (NTRS)

    Graham, R. W.

    1983-01-01

    "Aerothermodynamics' involves the disciplines of chemistry, thermodynamics, fluid mechanics and heat transfer which have collaborative importance in propulsion systems. There are growing opportunities for the further application of these disciplines to improve the methodology for the design of advanced gas turbines; particularly, the combustor and turbine. Design procedures follow empirical or cut and try guidelines. The tremendous advances in computational analysis and in instrumentation techniques hold promise for research answers to complex physical processes that are currently not well understood. The transfer of basic research understanding to engineering design should result in shorter, less expensive development commitments for engines. The status and anticipated opportunities in research topics relevant to combustors and turbines is reviewed.

  6. Cumulative reports and publications through December 31, 1989

    NASA Technical Reports Server (NTRS)

    1990-01-01

    A complete list of reports from the Institute for Computer Applications in Science and Engineering (ICASE) is presented. The major categories of the current ICASE research program are: numerical methods, with particular emphasis on the development and analysis of basic numerical algorithms; control and parameter identification problems, with emphasis on effectual numerical methods; computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, structural analysis, and chemistry; computer systems and software, especially vector and parallel computers, microcomputers, and data management. Since ICASE reports are intended to be preprints of articles that will appear in journals or conference proceedings, the published reference is included when it is available.

  7. Combustion research for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.; Claus, R. W.

    1985-01-01

    Research on combustion is being conducted at Lewis Research Center to provide improved analytical models of the complex flow and chemical reaction processes which occur in the combustor of gas turbine engines and other aeropropulsion systems. The objective of the research is to obtain a better understanding of the various physical processes that occur in the gas turbine combustor in order to develop models and numerical codes which can accurately describe these processes. Activities include in-house research projects, university grants, and industry contracts and are classified under the subject areas of advanced numerics, fuel sprays, fluid mixing, and radiation-chemistry. Results are high-lighted from several projects.

  8. NRC Grants for Federal Research

    NASA Astrophysics Data System (ADS)

    The National Research Council is accepting applications for the 1989 Resident, Cooperative, and Postdoctoral Research Associateship Programs in science and engineering. NRC administers the awards for 30 federal agencies and research institutions, which have 115 participating laboratories in the U.S.About 450 new full-time Associateships will be given for research in biological, health, behaviorial sciences and biotechnology; chemistry; Earth and atmospheric sciences; engineering and applied sciences; mathematics; physics; and space and planetary sciences. Most of the programs are open to recent Ph.D.s and senior investigators and to citizens of the U.S. and other countries. More than 5500 scientists have received Associateships since the programs began in 1954.

  9. Economics of electron beam and electrical discharge processing for post-combustion NO(x) control in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Penetrante, B. M.

    1993-08-01

    The physics and chemistry of non-thermal plasma processing for post-combustion NO(x) control in internal combustion engines are discussed. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO(x) removal mechanisms, and by-product formation. Pollution control applications present a good opportunity for transferring pulsed power techniques to the commercial sector. However, unless advances are made to drastically reduce the price and power consumption of electron beam sources and pulsed power systems, these plasma techniques will not become commercially competitive with conventional thermal or surface-catalytic methods.

  10. Classical Challenges in the Physical Chemistry of Polymer Networks and the Design of New Materials.

    PubMed

    Wang, Rui; Sing, Michelle K; Avery, Reginald K; Souza, Bruno S; Kim, Minkyu; Olsen, Bradley D

    2016-12-20

    Polymer networks are widely used from commodity to biomedical materials. The space-spanning, net-like structure gives polymer networks their advantageous mechanical and dynamic properties, the most essential factor that governs their responses to external electrical, thermal, and chemical stimuli. Despite the ubiquity of applications and a century of active research on these materials, the way that chemistry and processing interact to yield the final structure and the material properties of polymer networks is not fully understood, which leads to a number of classical challenges in the physical chemistry of gels. Fundamentally, it is not yet possible to quantitatively predict the mechanical response of a polymer network based on its chemical design, limiting our ability to understand and characterize the nanostructure of gels and rationally design new materials. In this Account, we summarize our recent theoretical and experimental approaches to study the physical chemistry of polymer networks. First, our understanding of the impact of molecular defects on topology and elasticity of polymer networks is discussed. By systematically incorporating the effects of different orders of loop structure, we develop a kinetic graph theory and real elastic network theory that bridge the chemical design, the network topology, and the mechanical properties of the gel. These theories show good agreement with the recent experimental data without any fitting parameters. Next, associative polymer gel dynamics is discussed, focusing on our evolving understanding of the effect of transient bonds on the mechanical response. Using forced Rayleigh scattering (FRS), we are able to probe diffusivity across a wide range of length and time scales in gels. A superdiffusive region is observed in different associative network systems, which can be captured by a two-state kinetic model. Further, the effects of the architecture and chemistry of polymer chains on gel nanostructure are studied. By incorporating shear-thinning coiled-coil protein motifs into the midblock of a micelle-forming block copolymer, we are able to responsively adjust the gel toughness through controlling the nanostructure. Finally, we review the development of novel application-oriented materials that emerge from our enhanced understanding of gel physical chemistry, including injectable gel hemostats designed to treat internal wounds and engineered nucleoporin-like polypeptide (NLP) hydrogels that act as biologically selective filters. We believe that the fundamental physical chemistry questions articulated in this Account will provide inspiration to fully understand the design of polymer networks, a group of mysterious yet critically important materials.

  11. Recent activities in science and technology and the progress of women in physics in the last three years in Iran

    NASA Astrophysics Data System (ADS)

    Izadi, Dina; Azad, Masoud Torabi; Mahmoudi, Nafiseh; Izadipanah, Nona; Eshghi, Najmeh

    2013-03-01

    For the 4th IUPAP International Conference of Women in Physics, we report on activities in science and engineering in Iran, and conditions for women in physics, in the three years since the 3rd IUPAP International Conference of Women in Physics was held in 2008. Iran has made prominent advancements and astonishing progress in laser technology, biotechnology, nanotechnology, genetics, computer software and hardware, and robotics. Iranian scientists have been very productive in several experimental fields, such as pharmaceutical, organic, and polymer chemistry. Conditions for women in physics have improved greatly in recent years. A project to improve the environment for learning physics, and science in general, by focusing on real-life applications, and the creation of new student competitions in Iran, have increased the numbers of both women and men in physics and all sciences in recent years.

  12. Physics Education in a Multidisciplinary Materials Research Environment

    NASA Astrophysics Data System (ADS)

    Doyle, W. D.

    1997-03-01

    The MINT Center, an NSF Materials Research Science and Engineering Center, is a multidisciplinary research program focusing on materials information storage. It involves 17 faculty, 10 post-doctoral fellows and 25 graduate students from six academic programs including Physics, Chemistry, Materials Science, Metallurgical and Materials Engineering, Electric al Engineering and Chemical Engineering, whose research is supported by university, federal and industrial funds. The research facilities (15,000 ft^2) which include faculty and student offices are located in one building and are maintained by the university and the Center at no cost to participating faculty. The academic requirements for the students are determined by the individual departments along relatively rigid, traditional grounds although several materials and device courses are offered for students from all departments. Within the Center, participants work in teams assigning responsibilities and sharing results at regularly scheduled meetings. Bi-weekly research seminars for all participants provide excellent opportunities for students to improve their communication skills and to receive critical input from a large, diverse audience. Strong collaboration with industrial partners in the storage industry supported by workshops, research reviews, internships, industrial visitors and participation in industry consortia give students a broader criteria for self-evaluation, higher motivation and excellent career opportunities. Physics students, because of their rigorous basic training, are an important element in a strong materials sciences program, but they often are deficient in the behavior and characterization of real materials. The curriculum for physics students should be broadened to prepare them fully for a rewarding career in this emerging discipline.

  13. High pressure in bioscience and biotechnology: pure science encompassed in pursuit of value.

    PubMed

    Hayashi, Rikimaru

    2002-03-25

    A fundamental factors, pressure (P), is indispensable to develop and support applications in the field of bioscience and biotechnology. This short sentence describes an example how high pressure bioscience and biotechnology, which started from applied science, stimulates challenges of basic science and pure science in the biology-related fields including not only food science, medicine, and pharmacology but also biochemistry, molecular biology, cell biology, physical chemistry, and engineering.

  14. American Conference on Neutron Scattering 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillen, J. Ardie

    2014-12-31

    Scientists from the around the world converged in Knoxville, TN to have share ideas, present technical information and contribute to the advancement of neutron scattering. Featuring over 400 oral/poster presentations, ACNS 2014 offered a strong program of plenary, invited and contributed talks and poster sessions covering topics in soft condensed matter, hard condensed matter, biology, chemistry, energy and engineering applications in neutron physics – confirming the great diversity of science that is enabled by neutron scattering.

  15. Earth observations and global change decision making: A special bibliography, 1991

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The first section of the bibliography contains 294 bibliographic citations and abstracts of relevant reports, articles, and documents announced in 'Scientific and Technical Aerospace Reports (STAR)' and 'International Aerospace Abstracts (IAA)'. These abstracts are categorized by the following major subject divisions: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, space sciences and general. Following the abstract section, seven indexes are provided for further assistance.

  16. Next Generation of Electrospun Textiles for Chemical and Biological Protection and Air Filtration

    DTIC Science & Technology

    2009-09-01

    these products were comparable to results reported for reactions of potassium 2,3-butanedione monooximate with GD, which produced 31P resonances at...Next Generation of Electrospun Textiles for Chemical and Biological Protection and Air Filtration by Liang Chen B.S. in Chemical Physics, University... of Science and Technology of China, 2001 M.S. in Chemistry, Brown University, 2004 M.S.C.E.P. in Chemical Engineering, Massachusetts Institute of

  17. Installation Restoration Program. Phase I. Records Search, Reese, AFB, Texas.

    DTIC Science & Technology

    1984-06-01

    engineering in flue - gas desulfurization plants, and corrosion asaessinnto of hazardous waste handling systems. Mr. Ellis is or has been an active participant...provean to evaluate lime- stones as wet scrubbers in flue gas desulfurisatios (VS) system. She vas task leader for the chemical ad physical analysis...11109163A-15 Debra L. lichmann PUBLIC&TIOUSIlEPOITS: lichmann, D.L., K.V. Luke, end J.C. Terry, " Flue Gas Desulfurization Chemistry Studies

  18. A RESTful API for Exchanging Materials Data in the AFLOWLIB.org Consortium

    DTIC Science & Technology

    2014-03-12

    of North Texas, Denton TX 4Materials Science, Electrical Engineering, Physics and Chemistry, Duke University, Durham NC, 27708 †On leave from the...software tools, input and output data are maintained remotely, lowering cost, improving ecological sustainability (saving electricity ) and increas- ing...enthalpy_formation_atom) – Description. Returns the formation enthalpy ∆HF per unit cell (∆HF atomic per atom). For compounds ANABNB · · · with NA + NB

  19. Physical Chemistry in Practice: Evaluation of DVD Modules

    ERIC Educational Resources Information Center

    Dyer, James U.; Towns, Marcy; Weaver, Gabriela C.

    2007-01-01

    The Physical Chemistry in Practice (PCIP) DVD contains video programs (modules) and experimental data that present the research of scientists working in applications of physical chemistry. The DVD allows students to learn about cutting edge research in physical chemistry while making connections to the theoretical concepts learned in lecture.…

  20. An Alternative Route to Chemical Engineering for Minority and Other Students.

    ERIC Educational Resources Information Center

    Cussler, E. L.

    The following three alternative ways in which minority group chemistry majors may be trained as chemical engineers are examined in this paper: (l) they are admitted as engineers and take the same courses as engineering students at the graduate level; (2) undergraduate courses are taken as part of the transition from chemistry to chemical…

  1. Characterization of Nanophase Materials

    NASA Astrophysics Data System (ADS)

    Wang, Zhong Lin

    2000-01-01

    Engineering of nanophase materials and devices is of vital interest in electronics, semiconductors and optics, catalysis, ceramics and magnetism. Research associated with nanoparticles has widely spread and diffused into every field of scientific research, forming a trend of nanocrystal engineered materials. The unique properties of nanophase materials are entirely determined by their atomic scale structures, particularly the structures of interfaces and surfaces. Development of nanotechnology involves several steps, of which characterization of nanoparticles is indespensable to understand the behavior and properties of nanoparticles, aiming at implementing nanotechnolgy, controlling their behavior and designing new nanomaterials systems with super performance. The book will focus on structural and property characterization of nanocrystals and their assemblies, with an emphasis on basic physical approach, detailed techniques, data interpretation and applications. Intended readers of this comprehensive reference work are advanced graduate students and researchers in the field, who are specialized in materials chemistry, materials physics and materials science.

  2. Challenges and Opportunities in Interdisciplinary Materials Research Experiences for Undergraduates

    NASA Astrophysics Data System (ADS)

    Vohra, Yogesh; Nordlund, Thomas

    2009-03-01

    The University of Alabama at Birmingham (UAB) offer a broad range of interdisciplinary materials research experiences to undergraduate students with diverse backgrounds in physics, chemistry, applied mathematics, and engineering. The research projects offered cover a broad range of topics including high pressure physics, microelectronic materials, nano-materials, laser materials, bioceramics and biopolymers, cell-biomaterials interactions, planetary materials, and computer simulation of materials. The students welcome the opportunity to work with an interdisciplinary team of basic science, engineering, and biomedical faculty but the challenge is in learning the key vocabulary for interdisciplinary collaborations, experimental tools, and working in an independent capacity. The career development workshops dealing with the graduate school application process and the entrepreneurial business activities were found to be most effective. The interdisciplinary university wide poster session helped student broaden their horizons in research careers. The synergy of the REU program with other concurrently running high school summer programs on UAB campus will also be discussed.

  3. Polymeric Medical Sutures: An Exploration of Polymers and Green Chemistry

    ERIC Educational Resources Information Center

    Knutson, Cassandra M.; Schneiderman, Deborah K.; Yu, Ming; Javner, Cassidy H.; Distefano, Mark D.; Wissinger, Jane E.

    2017-01-01

    With new K-12 national science standards emerging, there is an increased need for experiments that integrate engineering into the context of society. Here we describe a chemistry experiment that combines science and engineering principles while introducing basic polymer and green chemistry concepts. Using medical sutures as a platform for…

  4. Career Opportunities in Chemistry and Chemical Engineering.

    ERIC Educational Resources Information Center

    Glover, Trienne

    This pamphlet discusses career and employment opportunities in chemical engineering. Necessary college preparation is described and median salaries by degree are tabulated. Nontraditional careers in chemistry are also described. Future demand for chemists and chemical engineers is projected to 1985 and the availability of jobs for women and…

  5. The need and potential for building a integrated knowledge-base of the Earth-Human system

    NASA Astrophysics Data System (ADS)

    Jacobs, Clifford

    2011-03-01

    The pursuit of scientific understanding is increasingly based on interdisciplinary research. To understand more deeply the planet and its interactions requires a progressively more holistic approach, exploring knowledge coming from all scientific and engineering disciplines including but not limited to, biology, chemistry, computer sciences, geosciences, material sciences, mathematics, physics, cyberinfrastucture, and social sciences. Nowhere is such an approach more critical than in the study of global climate change in which one of the major challenges is the development of next-generation Earth System Models that include coupled and interactive representations of ecosystems, agricultural working lands and forests, urban environments, biogeochemistry, atmospheric chemistry, ocean and atmospheric currents, the water cycle, land ice, and human activities.

  6. New Perspectives on Biomedical Applications of Iron Oxide Nanoparticles.

    PubMed

    Magro, Massimiliano; Baratella, Davide; Bonaiuto, Emanuela; de A Roger, Jessica; Vianello, Fabio

    2018-02-12

    Iron oxide nanomaterials are considered promising tools for improved therapeutic efficacy and diagnostic applications in biomedicine. Accordingly, engineered iron oxide nanomaterials are increasingly proposed in biomedicine, and the interdisciplinary researches involving physics, chemistry, biology (nanotechnology) and medicine have led to exciting developments in the last decades. The progresses of the development of magnetic nanoparticles with tailored physico-chemical and surface properties produced a variety of clinically relevant applications, spanning from magnetic resonance imaging (MRI), drug delivery, magnetic hyperthermia, to in vitro diagnostics. Notwithstanding the wellknown conventional synthetic procedures and their wide use, along with recent advances in the synthetic methods open the door to new generations of naked iron oxide nanoparticles possessing peculiar surface chemistries, suitable for other competitive biomedical applications. New abilities to rationally manipulate iron oxides and their physical, chemical, and biological properties, allow the emersion of additional possibilities for designing novel nanomaterials for theranostic applications. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Computational Experiments for Science and Engineering Education

    NASA Technical Reports Server (NTRS)

    Xie, Charles

    2011-01-01

    How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.

  8. Langley Aerospace Research Summer Scholars. Part 2

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  9. Technical Reports: Langley Aerospace Research Summer Scholars. Part 1

    NASA Technical Reports Server (NTRS)

    Schwan, Rafaela (Compiler)

    1995-01-01

    The Langley Aerospace Research Summer Scholars (LARSS) Program was established by Dr. Samuel E. Massenberg in 1986. The program has increased from 20 participants in 1986 to 114 participants in 1995. The program is LaRC-unique and is administered by Hampton University. The program was established for the benefit of undergraduate juniors and seniors and first-year graduate students who are pursuing degrees in aeronautical engineering, mechanical engineering, electrical engineering, material science, computer science, atmospheric science, astrophysics, physics, and chemistry. Two primary elements of the LARSS Program are: (1) a research project to be completed by each participant under the supervision of a researcher who will assume the role of a mentor for the summer, and (2) technical lectures by prominent engineers and scientists. Additional elements of this program include tours of LARC wind tunnels, computational facilities, and laboratories. Library and computer facilities will be available for use by the participants.

  10. Medical imaging education in biomedical engineering curriculum: courseware development and application through a hybrid teaching model.

    PubMed

    Zhao, Weizhao; Li, Xiping; Chen, Hairong; Manns, Fabrice

    2012-01-01

    Medical Imaging is a key training component in Biomedical Engineering programs. Medical imaging education is interdisciplinary training, involving physics, mathematics, chemistry, electrical engineering, computer engineering, and applications in biology and medicine. Seeking an efficient teaching method for instructors and an effective learning environment for students has long been a goal for medical imaging education. By the support of NSF grants, we developed the medical imaging teaching software (MITS) and associated dynamic assessment tracking system (DATS). The MITS/DATS system has been applied to junior and senior medical imaging classes through a hybrid teaching model. The results show that student's learning gain improved, particularly in concept understanding and simulation project completion. The results also indicate disparities in subjective perception between junior and senior classes. Three institutions are collaborating to expand the courseware system and plan to apply it to different class settings.

  11. 75 FR 14565 - NIST Summer Institute for Middle School Science Teachers; Availability of Funds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-26

    ...), including, but not limited to, earth science, physical science, chemistry, physics, and/or biology. This... science, physical science, chemistry, physics and/or biology. NIST will award funding that will support... instruction in general science fields including earth science, physical science, chemistry, physics, and/or...

  12. Fusing a Reversed and Informal Learning Scheme and Space: Student Perceptions of Active Learning in Physical Chemistry

    ERIC Educational Resources Information Center

    Donnelly, Julie; Hernández, Florencio E.

    2018-01-01

    Physical chemistry students often have negative perceptions and low expectations for success in physical chemistry, attitudes that likely affect their performance in the course. Despite the results of several studies indicating increased positive perception of physical chemistry when active learning strategies are used, a recent survey of faculty…

  13. Physical and Biological Modes of Thought in the Chemistry of Linus Pauling

    NASA Astrophysics Data System (ADS)

    Nye, Mary Jo

    No figure in modern chemistry better exemplifies than Linus Pauling (1901-1994) the intersections of the scientific disciplines of chemistry, physics, and biology nor the roles of physical and biological modes of thought in the 'central science' of chemistry.

  14. 10 CFR Appendix A to Part 605 - The Energy Research Program Office Descriptions

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... inorganic chemistry; chemical physics; atomic physics; photochemistry; radiation chemistry; thermodynamics... is comprised of the subfields metallurgy, ceramics, solid state physics, materials chemistry, and... listed below. (a) Applied Plasma Physics (APP) This Division seeks to develop that body of physics...

  15. An Introduction to the Fundamentals of Chemistry for the Marine Engineer - An Audio-Tutorial Correspondence Course (CH-1C).

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This document provides a study guide for a three-credit-hour fundamentals of chemistry course for marine engineer majors. The course is composed of 17 minicourses including: chemical reactions, atomic theory, solutions, corrosion, organic chemistry, water pollution, metric system, and remedial mathematics skills. Course grading, objectives,…

  16. Ecological literacy through critical/place-based pedagogy in the environmental studies program at a small liberal arts college

    NASA Astrophysics Data System (ADS)

    Beeman-Cadwallader, Nicole

    In 2007 Pioneer High School, a public school in Whittier, California changed the sequence of its science courses from the Traditional Biology-Chemistry-Physics (B-C-P) to Biology-Physics-Chemistry (B-P-C), or "Physics Second." The California Standards Tests (CSTs) scores in Physics and Chemistry from 2004-2012 were used to determine if there were any effects of the Physics Second sequencing on student achievement in those courses. The data was also used to determine whether the Physics Second sequence had an effect on performance in Physics and Chemistry based on gender. Independent t tests and chi-square analysis of the data determined an improvement in student performance in Chemistry but not Physics. The 2x2 Factorial ANOVA analysis revealed that in Physics male students performed better on the CSTs than their female peers. In Chemistry, it was noted that male and female students performed equally well. Neither finding was a result ofthe change to the "Physics Second" sequencing.

  17. Atomic spectroscopy and holography: A combined laboratory experiment at the intermediate undergraduate level

    NASA Astrophysics Data System (ADS)

    Bates, Harry E.

    1984-05-01

    Holography is a new and exciting field that has found many applications in physics and engineering. Atomic spectroscopy has been the experimental cornerstone of modern physics and chemistry. This paper reports on an intermediate undergraduate laboratory experiment that combines fundamental ideas and techniques of both fields. The student utilizes holographic techniques to make a small sinusoidal diffraction grating and then uses this grating to analyze the spectrum of hydrogen. The Rydberg constant can be determined from the wavelength, the angle between the laser beams used to make the grating, and the observed diffractions angles of lines of the Balmer series.

  18. Nanotechnology: Societal Implications - II. Individual Perspectives

    NASA Astrophysics Data System (ADS)

    Roco, Mihail C.; Bainbridge, William S.

    Advances in nanoscience and nanotechnology promise to have major impacts on human health, wealth, and peace in the coming decades. Among the expected breakthroughs are `designer' materials created from directed assembly of atoms and molecules, and the emergence of entirely new phenomena in chemistry and physics. This book includes a collection of essays by leading scientists, engineers, and social scientists reviewing the possible uses of these impending developments in various applications, and the corresponding issues that they raise.

  19. Nanotechnology: Societal Implications - I. Maximising Benefits for Humanity

    NASA Astrophysics Data System (ADS)

    Roco, Mihail C.; Bainbridge, William S.

    Advances in nanoscience and nanotechnology promise to have major impacts on human health, wealth, and peace in the coming decades. Among the expected breakthroughs are `designer' materials created from directed assembly of atoms and molecules, and the emergence of entirely new phenomena in chemistry and physics. This book includes a collection of essays by leading scientists, engineers, and social scientists reviewing the possible uses of these impending developments in various applications, and the corresponding issues that they raise.

  20. Calculating the Vulnerability of Synthetic Polymers to Autoignition during Nuclear Flash.

    DTIC Science & Technology

    1985-03-01

    Lawrence Livermore National Laboratory P.O. Box 808 2561C Livermore, California 94550 II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE~March...34Low Emissivity and Solar Control Coatings on Architectural Glass," Proc. SPIE 37, 324 (1982). 10. R. C. Weast, Ed., Handbook of Chemistry and Physics...Attn: Michael Frankel Chief of Engineers Washington, D.C. 20305 Department of the Army Attn: DAEN-RDZ-A Command and Control Technical Center Washington

  1. Final Progress Report for Award DE-FG07-05ID14637.pdf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathy Dixon

    2012-03-09

    2004-2011 Final Report for AFCI University Fellowship Program. The goal of this effort was to be supportive of university students and university programs - particularly those students and programs that will help to strengthen the development of nuclear-related fields. The program also supported the stability of the nuclear infrastructure and developed research partnerships that are helping to enlarge the national nuclear science technology base. In this fellowship program, the U.S. Department of Energy sought master's degree students in nuclear, mechanical, or chemical engineering, engineering/applied physics, physics, chemistry, radiochemistry, or fields of science and engineering applicable to the AFCI/Gen IV/GNEP missionsmore » in order to meet future U.S. nuclear program needs. The fellowship program identified candidates and selected full time students of high-caliber who were taking nuclear courses as part of their degree programs. The DOE Academic Program Managers encouraged fellows to pursue summer internships at national laboratories and supported the students with appropriate information so that both the fellows and the nation's nuclear energy objectives were successful.« less

  2. Transient Three-Dimensional Analysis of Nozzle Side Load in Regeneratively Cooled Engines

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See

    2005-01-01

    Three-dimensional numerical investigations on the start-up side load physics for a regeneratively cooled, high-aspect-ratio nozzle were performed. The objectives of this study are to identify the three-dimensional side load physics and to compute the associated aerodynamic side load using an anchored computational methodology. The computational methodology is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, and a transient inlet condition based on an engine system simulation. Computations were performed for both the adiabatic and cooled walls in order to understand the effect of boundary conditions. Finite-rate chemistry was used throughout the study so that combustion effect is always included. The results show that three types of shock evolution are responsible for side loads: generation of combustion wave; transitions among free-shock separation, restricted-shock separation, and simultaneous free-shock and restricted shock separations; along with oscillation of shocks across the lip. Wall boundary conditions drastically affect the computed side load physics: the adiabatic nozzle prefers free-shock separation while the cooled nozzle favors restricted-shock separation, resulting in higher peak side load for the cooled nozzle than that of the adiabatic nozzle. By comparing the computed physics with those of test observations, it is concluded that cooled wall is a more realistic boundary condition, and the oscillation of the restricted-shock separation flow pattern across the lip along with its associated tangential shock motion are the dominant side load physics for a regeneratively cooled, high aspect-ratio rocket engine.

  3. NREL Fuels and Engines Research: Maximizing Vehicle Efficiency and

    Science.gov Websites

    Laboratory, we analyze the effects of fuel chemistry on ignition and the potential emissions impacts. Our lab research. It can be used to investigate fuel chemistry effects on current and near-term engine technology , independent control allows for deeper interrogation of fuel effects on future-generation engine strategies

  4. A Comparison of Student Spatial Abilities Across STEM Fields

    NASA Astrophysics Data System (ADS)

    Loftis, Thad; Cid, Xiimena; Lopez, Ramon

    2011-10-01

    It has been shown that STEM (Science, Technology, Engineering, and Mathematics) students have higher spatial abilities than students in the liberal arts or humanities. In order to track the change in spatial abilities within a group, studies in physics have examined topics in kinematics, chemistry has examined topics on molecular diagrams, mathematics has examined topics related to geometry, and engineering has developed courses specifically targeting students' spatial abilities. It is understood that students in STEM fields improve their spatial abilities while taking STEM courses, but very few studies have done comparisons amongst the different STEM fields. I will be presenting data comparing different STEM students' spatial ability, assessed using the Mental Rotation Test.

  5. a Study of Women Engineering Students and Time to Completion of First-Year Required Courses at Texas A&M University

    NASA Astrophysics Data System (ADS)

    Kimball, Jorja; Cole, Bryan; Hobson, Margaret; Watson, Karan; Stanley, Christine

    This paper reports findings on gender that were part of a larger study reviewing time to completion of course work that includes the first two semesters of calculus, chemistry, and physics, which are often considered the stumbling points or "barrier courses" to an engineering baccalaureate degree. Texas A&M University terms these courses core body of knowledge (CBK), and statistical analysis was conducted on two cohorts of first-year enrolling engineering students at the institution. Findings indicate that gender is statistically significantly related to completion of CBK with female engineering students completing required courses faster than males at the .01 level (p = 0.008). Statistical significance for gender and ethnicity was found between white male and white female students at the .01 level (p = 0.008). Descriptive analysis indicated that of the five majors studied (chemical, civil, computer, electrical, and mechanical engineering), women completed CBK faster than men, and African American and Hispanic women completed CBK faster than males of the same ethnicity.

  6. Opportunities for Funding at NSF

    NASA Astrophysics Data System (ADS)

    Kafafi, Zakya H.

    2009-03-01

    Materials science, inter- and multi-disciplinary in nature, provides the bridge to many areas of fundamental and applied sciences such as biology, chemistry, physics, mathematics, computer sciences, and engineering. Strong links that may exist between materials science and other disciplines, such as biology or chemistry or physics, very often lead to novel applications and enable technologies of great benefit to our society. The Division of Materials Research (DMR) invested 274.0 M in FY 2008 and is estimated to invest 324.6 M in FY 2009 funding research and education as well as enabling tools & instrumentation for individual investigators, groups, centers, and national facilities. DMR programs cover a wide spectrum of materials research and education ranging from condensed matter and materials physics, solid-state and materials chemistry, multifunctional, hybrid, electronic, photonic, metallic, ceramic, polymeric, bio-materials, composites and nanostructures to list a few. New modes of funding, research opportunities and directions, such as the recent SOLAR solicitation, will be described. This Solar Energy Initiative launched jointly by three divisions, namely Chemistry, Materials Research and Mathematical Science is aimed at supporting truly interdisciplinary efforts that address the scientific challenges of highly efficient harvesting, conversion, and storage of solar energy. The goal of this new program is to create a new modality of linking the mathematical with the chemical and materials sciences to develop transformative paradigms based on the integrated expertise and synergy from three disciplinary communities. DMR is also seeking new ways to transform materials science and education, and make it more attractive as a career for bright, young women & men. A description will be given of several workshops held this year and planned for next year with this purpose in mind. Outreach programs that emphasize how the innovations resulting from materials research lead to a better quality of life and improved economic development for people all over the world will also be given. As science is becoming increasingly global, DMR is particularly interested in preparing students to be agile thinkers in this universal environment and in forging collaborations and cooperation among scientists and engineers around the world. Free movement of knowledge without any obstacles can only be achieved through a more coordinated approach for international collaboration. Following the presentation there will be a question-and-answer period. For additional information, visit the DMR Web page at www.nsf.gov/materials

  7. DNA-mediated engineering of multicomponent enzyme crystals

    PubMed Central

    Brodin, Jeffrey D.; Auyeung, Evelyn; Mirkin, Chad A.

    2015-01-01

    The ability to predictably control the coassembly of multiple nanoscale building blocks, especially those with disparate chemical and physical properties such as biomolecules and inorganic nanoparticles, has far-reaching implications in catalysis, sensing, and photonics, but a generalizable strategy for engineering specific contacts between these particles is an outstanding challenge. This is especially true in the case of proteins, where the types of possible interparticle interactions are numerous, diverse, and complex. Herein, we explore the concept of trading protein–protein interactions for DNA–DNA interactions to direct the assembly of two nucleic-acid–functionalized proteins with distinct surface chemistries into six unique lattices composed of catalytically active proteins, or of a combination of proteins and DNA-modified gold nanoparticles. The programmable nature of DNA–DNA interactions used in this strategy allows us to control the lattice symmetries and unit cell constants, as well as the compositions and habit, of the resulting crystals. This study provides a potentially generalizable strategy for constructing a unique class of materials that take advantage of the diverse morphologies, surface chemistries, and functionalities of proteins for assembling functional crystalline materials. PMID:25831510

  8. DNA-mediated engineering of multicomponent enzyme crystals

    DOE PAGES

    Brodin, Jeffrey D.; Auyeung, Evelyn; Mirkin, Chad A.

    2015-03-23

    The ability to predictably control the coassembly of multiple nanoscale building blocks, especially those with disparate chemical and physical properties such as biomolecules and inorganic nanoparticles, has far-reaching implications in catalysis, sensing, and photonics, but a generalizable strategy for engineering specific contacts between these particles is an outstanding challenge. This is especially true in the case of proteins, where the types of possible interparticle interactions are numerous, diverse, and complex. In this paper, we explore the concept of trading protein–protein interactions for DNA–DNA interactions to direct the assembly of two nucleic-acid–functionalized proteins with distinct surface chemistries into six unique latticesmore » composed of catalytically active proteins, or of a combination of proteins and DNA-modified gold nanoparticles. The programmable nature of DNA–DNA interactions used in this strategy allows us to control the lattice symmetries and unit cell constants, as well as the compositions and habit, of the resulting crystals. Finally, this study provides a potentially generalizable strategy for constructing a unique class of materials that take advantage of the diverse morphologies, surface chemistries, and functionalities of proteins for assembling functional crystalline materials.« less

  9. Blending Education and Polymer Science: Semi Automated Creation of a Thermodynamic Property Database.

    PubMed

    Tchoua, Roselyne B; Qin, Jian; Audus, Debra J; Chard, Kyle; Foster, Ian T; de Pablo, Juan

    2016-09-13

    Structured databases of chemical and physical properties play a central role in the everyday research activities of scientists and engineers. In materials science, researchers and engineers turn to these databases to quickly query, compare, and aggregate various properties, thereby allowing for the development or application of new materials. The vast majority of these databases have been generated manually, through decades of labor-intensive harvesting of information from the literature; yet, while there are many examples of commonly used databases, a significant number of important properties remain locked within the tables, figures, and text of publications. The question addressed in our work is whether, and to what extent, the process of data collection can be automated. Students of the physical sciences and engineering are often confronted with the challenge of finding and applying property data from the literature, and a central aspect of their education is to develop the critical skills needed to identify such data and discern their meaning or validity. To address shortcomings associated with automated information extraction, while simultaneously preparing the next generation of scientists for their future endeavors, we developed a novel course-based approach in which students develop skills in polymer chemistry and physics and apply their knowledge by assisting with the semi-automated creation of a thermodynamic property database.

  10. Blending Education and Polymer Science: Semiautomated Creation of a Thermodynamic Property Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tchoua, Roselyne B.; Qin, Jian; Audus, Debra J.

    Structured databases of chemical and physical properties play a central role in the everyday research activities of scientists and engineers. In materials science, researchers and engineers turn to these databases to quickly query, compare, and aggregate various properties, thereby allowing for the development or application of new materials. The vast majority of these databases have been generated manually, through decades of labor-intensive harvesting of information from the literature, yet while there are many examples of commonly used databases, a significant number of important properties remain locked within the tables, figures, and text of publications. The question addressed in our workmore » is whether and to what extent the process of data collection can be automated. Students of the physical sciences and engineering are often confronted with the challenge of finding and applying property data from the literature, and a central aspect of their education is to develop the critical skills needed to identify such data and discern their meaning or validity. To address shortcomings associated with automated information extraction while simultaneously preparing the next generation of scientists for their future endeavors, we developed a novel course-based approach in which students develop skills in polymer chemistry and physics and apply their knowledge by assisting with the semiautomated creation of a thermodynamic property database.« less

  11. The Materials Chemistry of Atomic Oxygen with Applications to Anisotropic Etching of Submicron Structures in Microelectronics and the Surface Chemistry Engineering of Porous Solids

    NASA Technical Reports Server (NTRS)

    Koontz, Steve L.; Leger, Lubert J.; Wu, Corina; Cross, Jon B.; Jurgensen, Charles W.

    1994-01-01

    Neutral atomic oxygen is the most abundant component of the ionospheric plasma in the low Earth orbit environment (LEO; 200 to 700 kilometers altitude) and can produce significant degradation of some spacecraft materials. In order to produce a more complete understanding of the materials chemistry of atomic oxygen, the chemistry and physics of O-atom interactions with materials were determined in three radically different environments: (1) The Space Shuttle cargo bay in low Earth orbit (the EOIM-3 space flight experiment), (2) a high-velocity neutral atom beam system (HVAB) at Los Alamos National Laboratory (LANL), and (3) a microwave-plasma flowing-discharge system at JSC. The Space Shuttle and the high velocity atom beam systems produce atom-surface collision energies ranging from 0.1 to 7 eV (hyperthermal atoms) under high-vacuum conditions, while the flowing discharge system produces a 0.065 eV surface collision energy at a total pressure of 2 Torr. Data obtained in the three different O-atom environments referred to above show that the rate of O-atom reaction with polymeric materials is strongly dependent on atom kinetic energy, obeying a reactive scattering law which suggests that atom kinetic energy is directly available for overcoming activation barriers in the reaction. General relationships between polymer reactivity with O atoms and polymer composition and molecular structure have been determined. In addition, vacuum ultraviolet photochemical effects have been shown to dominate the reaction of O atoms with fluorocarbon polymers. Finally, studies of the materials chemistry of O atoms have produced results which may be of interest to technologists outside the aerospace industry. Atomic oxygen 'spin-off' or 'dual use' technologies in the areas of anisotropic etching in microelectronic materials and device processing, as well as surface chemistry engineering of porous solid materials are described.

  12. Chemistry vs. Physics: A Comparison of How Biology Majors View Each Discipline

    NASA Astrophysics Data System (ADS)

    Perkins, K. K.; Barbera, J.; Adams, W. K.; Wieman, C. E.

    2007-01-01

    A student's beliefs about science and learning science may be more or less sophisticated depending on the specific science discipline. In this study, we used the physics and chemistry versions of the Colorado Learning Attitudes about Science Survey (CLASS) to measure student beliefs in the large, introductory physics and chemistry courses, respectively. We compare how biology majors — generally required to take both of the courses — view these two disciplines. We find that these students' beliefs are more sophisticated about physics (more like the experts in that discipline) than they are about chemistry. At the start of the term, the average % Overall Favorable score on the CLASS is 59% in physics and 53% in chemistry. The students' responses are statistically more expert-like in physics than in chemistry on 10 statements (P ⩽ 0.01), indicating that these students think chemistry is more about memorizing disconnected pieces of information and sample problems, and has less to do with the real world. In addition, these students' view of chemistry degraded over the course of the term. Their favorable scores shifted -5.7% and -13.5% in `Overall' and the `Real World Connection' category, respectively, in the physics course, which used a variety of research-based teaching practices, these scores shifted 0.0% and +0.3%, respectively. The chemistry shifts are comparable to those previously observed in traditional introductory physics courses.

  13. Comprehensive Glossary of Nuclear Science

    NASA Astrophysics Data System (ADS)

    Langlands, Tracy; Stone, Craig; Meyer, Richard

    2001-10-01

    We have developed a comprehensive glossary of terms covering the broad fields of nuclear and related areas of science. The glossary has been constructed with two sections. A primary section consists of over 6,000 terms covering the fields of nuclear and high energy physics, nuclear chemistry, radiochemistry, health physics, astrophysics, materials science, analytical science, environmental science, nuclear medicine, nuclear engineering, nuclear instrumentation, nuclear weapons, and nuclear safeguards. Approximately 1,500 terms of specific focus on military and nuclear weapons testing define the second section. The glossary is currently larger than many published glossaries and dictionaries covering the entire field of physics. Glossary terms have been defined using an extensive collection of current and historical publications. Historical texts extend back into the 1800's, the early days of atomic physics. The glossary has been developed both as a software application and as a hard copy document.

  14. Microbial isoprenoid production: an example of green chemistry through metabolic engineering.

    PubMed

    Maury, Jérôme; Asadollahi, Mohammad A; Møller, Kasper; Clark, Anthony; Nielsen, Jens

    2005-01-01

    Saving energy, cost efficiency, producing less waste, improving the biodegradability of products, potential for producing novel and complex molecules with improved properties, and reducing the dependency on fossil fuels as raw materials are the main advantages of using biotechnological processes to produce chemicals. Such processes are often referred to as green chemistry or white biotechnology. Metabolic engineering, which permits the rational design of cell factories using directed genetic modifications, is an indispensable strategy for expanding green chemistry. In this chapter, the benefits of using metabolic engineering approaches for the development of green chemistry are illustrated by the recent advances in microbial production of isoprenoids, a diverse and important group of natural compounds with numerous existing and potential commercial applications. Accumulated knowledge on the metabolic pathways leading to the synthesis of the principal precursors of isoprenoids is reviewed, and recent investigations into isoprenoid production using engineered cell factories are described.

  15. Communities of Molecules: A Physical Chemistry Module. Teacher's Guide.

    ERIC Educational Resources Information Center

    DeVoe, Howard; Hearle, Robert

    This teacher's guide is designed to provide science teachers with the necessary guidance and suggestions for teaching physical chemistry. The material in this book can be integrated with the other modules in a sequence that helps students see that chemistry is a unified science. Contents include: (1) "Introduction of Physical Chemistry"; (2) "The…

  16. Magnetic resonance imaging of chemistry.

    PubMed

    Britton, Melanie M

    2010-11-01

    Magnetic resonance imaging (MRI) has long been recognized as one of the most important tools in medical diagnosis and research. However, MRI is also well placed to image chemical reactions and processes, determine the concentration of chemical species, and look at how chemistry couples with environmental factors, such as flow and heterogeneous media. This tutorial review will explain how magnetic resonance imaging works, reviewing its application in chemistry and its ability to directly visualise chemical processes. It will give information on what resolution and contrast are possible, and what chemical and physical parameters can be measured. It will provide examples of the use of MRI to study chemical systems, its application in chemical engineering and the identification of contrast agents for non-clinical applications. A number of studies are presented including investigation of chemical conversion and selectivity in fixed-bed reactors, temperature probes for catalyst pellets, ion mobility during tablet dissolution, solvent dynamics and ion transport in Nafion polymers and the formation of chemical waves and patterns.

  17. DNA Charge Transport: From Chemical Principles to the Cell

    PubMed Central

    Arnold, Anna R.; Grodick, Michael A.; Barton, Jacqueline K.

    2016-01-01

    The DNA double helix has captured the imagination of many, bringing it to the forefront of biological research. DNA has unique features that extend our interest into areas of chemistry, physics, material science and engineering. Our laboratory has focused on studies of DNA charge transport (CT), wherein charges can efficiently travel long molecular distances through the DNA helix while maintaining an exquisite sensitivity to base pair π-stacking. Because DNA CT chemistry reports on the integrity of the DNA duplex, this property may be exploited to develop electrochemical devices to detect DNA lesions and DNA-binding proteins. Furthermore, studies now indicate that DNA CT may also be used in the cell by, for example, DNA repair proteins, as a cellular diagnostic, in order to scan the genome to localize efficiently to damage sites. In this review, we describe this evolution of DNA CT chemistry from the discovery of fundamental chemical principles to applications in diagnostic strategies and possible roles in biology. PMID:26933744

  18. Implementation of Protocols To Enable Doctoral Training in Physical and Computational Chemistry of a Blind Graduate Student.

    PubMed

    Minkara, Mona S; Weaver, Michael N; Gorske, Jim; Bowers, Clifford R; Merz, Kenneth M

    2015-08-11

    There exists a sparse representation of blind and low-vision students in science, technology, engineering and mathematics (STEM) fields. This is due in part to these individuals being discouraged from pursuing STEM degrees as well as a lack of appropriate adaptive resources in upper level STEM courses and research. Mona Minkara is a rising fifth year graduate student in computational chemistry at the University of Florida. She is also blind. This account presents efforts conducted by an expansive team of university and student personnel in conjunction with Mona to adapt different portions of the graduate student curriculum to meet Mona's needs. The most important consideration is prior preparation of materials to assist with coursework and cumulative exams. Herein we present an account of the first four years of Mona's graduate experience hoping this will assist in the development of protocols for future blind and low-vision graduate students in computational chemistry.

  19. Development, Evaluation, and Dissemination of an Astrobiology Curriculum for Secondary Students: Establishing a Successful Model for Increasing the Use of Scientific Data by Underrepresented Students.

    NASA Astrophysics Data System (ADS)

    Arino de La Rubia, L.; Butler, J.; Gary, T.; Stockman, S.; Mumma, M.; Pfiffner, S.; Davis, K.; Edmonds, J.

    2009-12-01

    The Minority Institution Astrobiology Collaborative began working with the NASA Goddard Center for Astrobiology in 2003 to develop curriculum materials for high school chemistry and Earth science classes based on astrobiology concepts. The Astrobiology in Secondary Classrooms modules are being developed to emphasize interdisciplinary connections in astronomy, biology, chemistry, geoscience, physics, mathematics, and ethics through hands-on activities that address national educational standards. Since this time, more NASA Astrobiology Institute Teams have joined this education and public outreach (EPO)effort. Field-testing of the Astrobiology in Secondary Classrooms materials began in 2007 in five US locations, each with populations that are underrepresented in the career fields of science, technology, engineering, and mathematics.

  20. Inverse problems in quantum chemistry

    NASA Astrophysics Data System (ADS)

    Karwowski, Jacek

    Inverse problems constitute a branch of applied mathematics with well-developed methodology and formalism. A broad family of tasks met in theoretical physics, in civil and mechanical engineering, as well as in various branches of medical and biological sciences has been formulated as specific implementations of the general theory of inverse problems. In this article, it is pointed out that a number of approaches met in quantum chemistry can (and should) be classified as inverse problems. Consequently, the methodology used in these approaches may be enriched by applying ideas and theorems developed within the general field of inverse problems. Several examples, including the RKR method for the construction of potential energy curves, determining parameter values in semiempirical methods, and finding external potentials for which the pertinent Schrödinger equation is exactly solvable, are discussed in detail.

  1. Lipid Nanotechnology

    PubMed Central

    Mashaghi, Samaneh; Jadidi, Tayebeh; Koenderink, Gijsje; Mashaghi, Alireza

    2013-01-01

    Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology. PMID:23429269

  2. Ultrafast Phenomena XIV

    NASA Astrophysics Data System (ADS)

    Kobayashi, Takayoshi; Okada, Tadashi; Kobayashi, Tetsuro; Nelson, Keith A.; de Silvestri, Sandro

    Ultrafast Phenomena XIV presents the latest advances in ultrafast science, including ultrafast laser and measurement technology as well as studies of ultrafast phenomena. Pico-, femto-, and atosecond processes relevant in physics, chemistry, biology, and engineering are presented. Ultrafast technology is now having a profound impact within a wide range of applications, among them imaging, material diagnostics, and transformation and high-speed optoelectronics . This book summarizes results presented at the 14th Ultrafast Phenomena Conference and reviews the state of the art in this important and rapidly advancing field.

  3. INEEL BNCT research program. Annual report, January 1, 1996--December 31, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venhuizen, J.R.

    1997-04-01

    This report is a summary of the progress and research produced for the Idaho National Engineering and Environmental Laboratory (INEEL) Boron Neutron Capture Therapy (BNCT) Research Program for calendar year 1996. Contributions from the individual investigators about their projects are included, specifically, physics: treatment planning software, real-time neutron beam measurement dosimetry, measurement of the Finnish research reactor epithermal neutron spectrum, BNCT accelerator technology; and chemistry: analysis of biological samples and preparation of {sup 10}B enriched decaborane.

  4. Elementary metallography

    NASA Technical Reports Server (NTRS)

    Kazem, Sayyed M.

    1992-01-01

    Materials and Processes 1 (MET 141) is offered to freshmen by the Mechanical Engineering Department at Purdue University. The goal of MET 141 is to broaden the technical background of students who have not had any college science courses. Hence, applied physics, chemistry, and mathematics are included and quantitative problem solving is involved. In the elementary metallography experiment of this course, the objectives are: (1) introduce the vocabulary and establish outlook; (2) make qualitative observations and quantitative measurements; (3) demonstrate the proper use of equipment; and (4) review basic mathematics and science.

  5. Heritage Science: A Future-Oriented Cross-Disciplinary Field.

    PubMed

    Strlič, Matija

    2018-06-18

    "Heritage science is the study of interpretation and management of the material evidence of the humankind. It enables both society and individuals to exercise their right to cultural heritage and contributes to our understanding of who we are and our sense of place. Heritage science demonstrates its relevance to, as well as its deep roots in chemistry, and in other physical and engineering sciences …" Read more in the Guest Editorial by Matija Strlič. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Lightweight Portable Plasma Medical Device - Plasma Engineering Research Laboratory

    DTIC Science & Technology

    2014-10-01

    34Optical study of radicals (OH, O, H, N) in a needle- plate negative pulsed streamer corona discharge ," Plasma Chemistry and Plasma Processing, vol. 26...pulsed corona discharge ," European Physical Journal D, vol. 38, pp. 515-522, Jun 2006. [35] W. Wang, S. Wang, F. Liu, W. Zheng, and D. Wang, "Optical...study of OH radical in a wire-plate pulsed corona discharge ," Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 63, pp. 477

  7. Summer Research of Factors Influencing High School Student’s Choice of Careers in Defense Related Engineering.

    DTIC Science & Technology

    1979-05-01

    RESEARH DIVISION fLT COL JOEL BRADSHAW 1300 - 1400 HIGH EXPLOSIVE TESTING COMPU’rATIONAL DIVISION MR. (MI OMDDA 1 1400 - 1630 TOUR AND DEUNSTRATIONS OF...high schools. In sciences, Biology and Chemistry were the most common courses that had been taken. Physics was taken mainly by students again from the... biology ), and the other music. percent changed their senior year program following UNITE 󈨐. percent wanted to change their program but could not. Many

  8. Twenty-Fifth Annual Conference on the Physics and Chemistry of Semiconductor Interfaces. Volume 16, Number 4

    DTIC Science & Technology

    1998-08-01

    Shigefusa Chichibu, Takayuki Sofa, Kazumi Wada, and Shuji Nakamura Dynamics of localized excitons in InGaN/GaN quantum wells ,. 0 _ _ . w 7onn...Electron. Electron Phys. 11, 413 (1959). 2E. G. Bylander, J. Appl. Phys. 49, 1188 (1978). 3M. Hiraki et al., J. Lumin. 12/13, 941 (1976). 4A. O...University of Tokyo, Noda, Chiba 278-8510, Japan Takayuki Sotab) TT . . . Department of Electrical, Electronics, and Computer Engineering, Waseda

  9. Institute for Sustainable Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Ajay

    2016-03-28

    Alternate fuels offer unique challenges and opportunities as energy source for power generation, vehicular transportation, and industrial applications. Institute for Sustainable Energy (ISE) at UA conducts innovative research to utilize the complex mix of domestically-produced alternate fuels to achieve low-emissions, high energy-efficiency, and fuel-flexibility. ISE also provides educational and advancement opportunities to students and researchers in the energy field. Basic research probing the physics and chemistry of alternative fuels has generated practical concepts investigated in a burner and engine test platforms.

  10. Protein based Block Copolymers

    PubMed Central

    Rabotyagova, Olena S.; Cebe, Peggy; Kaplan, David L.

    2011-01-01

    Advances in genetic engineering have led to the synthesis of protein-based block copolymers with control of chemistry and molecular weight, resulting in unique physical and biological properties. The benefits from incorporating peptide blocks into copolymer designs arise from the fundamental properties of proteins to adopt ordered conformations and to undergo self-assembly, providing control over structure formation at various length scales when compared to conventional block copolymers. This review covers the synthesis, structure, assembly, properties, and applications of protein-based block copolymers. PMID:21235251

  11. Chemical Sensors and Biosensors in Italy: A Review of the 2015 Literature.

    PubMed

    Compagnone, Dario; Francia, Girolamo Di; Natale, Corrado Di; Neri, Giovanni; Seeber, Renato; Tajani, Antonella

    2017-04-14

    The contributions of Italian researchers to sensor research in 2015 is reviewed. The analysis of the activities in one year allows one to obtain a snapshot of the Italian scenario capturing the main directions of the research activities. Furthermore, the distance of more than one year makes meaningful the bibliometric analysis of the reviewed papers. The review shows a research community distributed among different scientific disciplines, from chemistry, physics, engineering, and material science, with a strong interest in collaborative works.

  12. Chemical Sensors and Biosensors in Italy: A Review of the 2015 Literature

    PubMed Central

    Compagnone, Dario; Di Francia, Girolamo; Di Natale, Corrado; Neri, Giovanni; Seeber, Renato; Tajani, Antonella

    2017-01-01

    The contributions of Italian researchers to sensor research in 2015 is reviewed. The analysis of the activities in one year allows one to obtain a snapshot of the Italian scenario capturing the main directions of the research activities. Furthermore, the distance of more than one year makes meaningful the bibliometric analysis of the reviewed papers. The review shows a research community distributed among different scientific disciplines, from chemistry, physics, engineering, and material science, with a strong interest in collaborative works. PMID:28420110

  13. An Introduction to the Fundamentals of Chemistry for the Marine Engineer.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.

    This document describes an introduction course in the fundamentals of chemistry for marine engineers. The course is modularized, audio tutorial allowing the student to progress at his own rate while integrating laboratory and lecture materials. (SL)

  14. Developing Technical Writing Skills in the Physical Chemistry Laboratory: A Progressive Approach Employing Peer Review

    ERIC Educational Resources Information Center

    Gragson, Derek E.; Hagen, John P.

    2010-01-01

    Writing formal "journal-style" lab reports is often one of the requirements chemistry and biochemistry students encounter in the physical chemistry laboratory. Helping students improve their technical writing skills is the primary reason this type of writing is a requirement in the physical chemistry laboratory. Developing these skills is an…

  15. Final Report: Utilizing Alternative Fuel Ignition Properties to Improve SI and CI Engine Efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wooldridge, Margaret; Boehman, Andre; Lavoie, George

    Experimental and modeling studies were completed to explore leveraging physical and chemical fuel properties for improved thermal efficiency of internal combustion engines. Fundamental studies of the ignition chemistry of ethanol and iso-octane blends and constant volume spray chamber studies of gasoline and diesel sprays supported the core research effort which used several reciprocating engine platforms. Single cylinder spark ignition (SI) engine studies were carried out to characterize the impact of ethanol/gasoline, syngas (H 2 and CO)/gasoline and other oxygenate/gasoline blends on engine performance. The results of the single-cylinder engine experiments and other data from the literature were used to trainmore » a GT Power model and to develop a knock criteria based on reaction chemistry. The models were used to interpret the experimental results and project future performance. Studies were also carried out using a state of the art, direct injection (DI) turbocharged multi- cylinder engine with piezo-actuated fuel injectors to demonstrate the promising spray and spark timing strategies from single-cylinder engine studies on the multi-cylinder engine. Key outcomes and conclusions of the studies were: 1. Efficiency benefits of ethanol and gasoline fuel blends were consistent and substantial (e.g. 5-8% absolute improvement in gross indicated thermal efficiency (GITE)). 2. The best ethanol/gasoline blend (based on maximum thermal efficiency) was determined by the engine hardware and limits based on component protection (e.g. peak in-cylinder pressure or maximum turbocharger inlet temperature) – and not by knock limits. Blends with <50% ethanol delivered significant thermal efficiency gains with conventional SI hardware while maintain good safety integrity to the engine hardware. 3. Other compositions of fuel blends including syngas (H 2 and CO) and other dilution strategies provided significant efficiency gains as well (e.g. 5% absolute improvement in ITE). 4. When the combination of engine and fuel system is not knock limited, multiple fuel injection events maintain thermal efficiency while improving engine-out emissions (e.g. CO, UHC, and particulate number).« less

  16. Magnetic resonance of porous media (MRPM): a perspective.

    PubMed

    Song, Yi-Qiao

    2013-04-01

    Porous media are ubiquitous in our environment and their application is extremely broad. The common connection between these diverse materials is the importance of the microstructure (μm to mm scale) in determining the physical, chemical and biological functions and properties. Magnetic resonance and its imaging modality have been essential for noninvasive characterization of these materials, in the development of catalysts, understanding cement hydration, fluid transport in rocks and soil, geological prospecting, and characterization of tissue properties for medical diagnosis. The past two decades have witnessed significant development of MRPM that couples advances in physics, chemistry and engineering with a broad range of applications. This article will summarize key advances in basic physics and methodology, examine their limitations and envision future R&D directions. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Minorities Road to Graduate School: The Xavier Experience

    NASA Astrophysics Data System (ADS)

    Sunda-Meya, Anderson

    2010-10-01

    During the past decade, Xavier University of Louisiana has ranked first nationally in the number of African American students who have earned undergraduate degrees in biology, chemistry, physics, and the physical sciences overall. Recent data shows that Xavier also ranks 8th in the nation in producing African American students who go on to earn science and engineering PhDs. A look at Xavier's ``way'' will examine several components that contribute to its success: pre-college preparation, recruitment programs, admissions policies, financial assistance, and academic monitoring programs. By promoting comprehensive recruitment and retention strategies and by leveling the playing field, Xavier experience may offer a paradigm and a model for increasing the pool of motivated, talented and well-prepared minority applicants ready to tackle the rigors of a graduate level education in physics.

  18. The effects of engine operating conditions on CCD chemistry and morphology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yeh, S.W.; Moore, S.M.; Sabourin, E.T.

    1996-10-01

    The effects of engine driving cycle and engine coolant temperature on combustion chamber deposit (CCD) surface chemistry and morphology were assessed by the use of XPS and scanning electron micrographs. A 3.1L V6 test cell engine was used to generate a six test matrix that compared deposit surface chemistry and morphology under two distinctly different driving cycles, each cycle being evaluated at three separate engine coolant temperatures. Deposit material for each respective test was collected by removable combustion chamber sample probes that were subjected to XPS surface analysis and SEM evaluation. Discernible trends were observed in surface chemistry and depositmore » amounts with respect to changes in both driving cycle and coolant temperature. However, much more pronounced were deposit morphological changes recorded by SEM in different engine coolant temperature regimes for both of the utilized driving cycles. Deposit nodules formed in one temperature regime were seen to be typically much larger in size, highly irregular in shape, and appeared to be porous in structure. At a different operating temperature, the deposit nodules were observed to be extremely uniform and more tightly packed.« less

  19. Discussion on the Development of Green Chemistry and Chemical Engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Yunshen

    2017-11-01

    Chemical industry plays a vital role in the development process of national economy. However, in view of the special nature of the chemical industry, a large number of poisonous and harmful substances pose a great threat to the ecological environment and human health in the entire process of raw material acquisition, production, transportation, product manufacturing, and the final practical application. Therefore, it is a general trend to promote the development of chemistry and chemical engineering towards a greener environment. This article will focus on some basic problems occurred in the development process of green chemistry and chemical engineering.

  20. History of ``NANO''-Scale VERY EARLY Solid-State (and Liquid-State) Physics/Chemistry/Metallurgy/ Ceramics; Interstitial-Alloys Carbides/Nitrides/Borides/...Powders and Cermets, Rock Shocks, ...

    NASA Astrophysics Data System (ADS)

    Maiden, Colin; Siegel, Edward

    History of ``NANO'': Siegel-Matsubara-Vest-Gregson[Mtls. Sci. and Eng. 8, 6, 323(`71); Physica Status Solidi (a)11,45(`72)] VERY EARLY carbides/nitrides/borides powders/cermets solid-state physics/chemistry/metallurgy/ ceramics FIRST-EVER EXPERIMENTAL NANO-physics/chemistry[1968 ->Physica Status Solidi (a)11,45(`72); and EARLY NANO-``physics''/NANO-``chemistry'' THEORY(after: Kubo(`62)-Matsubara(`60s-`70s)-Fulde (`65) [ref.: Sugano[Microcluster-Physics, Springer('82 `98)

  1. Evaluation of Chemical Representations in Physical Chemistry Textbooks

    ERIC Educational Resources Information Center

    Nyachwaya, James M.; Wood, Nathan B.

    2014-01-01

    That different levels of representation are important for complete understanding of chemistry is an accepted fact in the chemistry education community. This study sought to uncover types of representations used in given physical chemistry textbooks. Textbooks play a central role in the teaching and learning of science (chemistry), and in some…

  2. Tribology theory versus experiment

    NASA Technical Reports Server (NTRS)

    Ferrante, John

    1987-01-01

    Tribology, the study of friction and wear of materials, has achieved a new interest because of the need for energy conservation. Fundamental understanding of this field is very complex and requires a knowledge of solid-state physics, material science, chemistry, and mechanical engineering. This paper is meant to be didactic in nature and outlines some of the considerations needed for a tribology research program. The approach is first to present a simple model, a field emission tip in contact with a flat surface, in order to elucidate important considerations, such as contact area, mechanical deformations, and interfacial bonding. Then examples from illustrative experiments are presented. Finally, the current status of physical theories concerning interfacial bonding are presented.

  3. Laboratory-directed research and development: FY 1996 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear andmore » particle physics, and (9) biosciences.« less

  4. Guide for Teaching Chemistry-Physics Combined 1-2, 3-4 (PSSC - CHEMS).

    ERIC Educational Resources Information Center

    Millstone, H. George

    This guide is written for a combined physics-chemistry course taught over a two-year period. The subject matter contains the major ideas in Chemical Education Materials Study (CHEMS) Chemistry and Physical Science Study Committee (PSSC) Physics. The guide includes discussion of text references, laboratory experiments, films, testing and evaluation…

  5. Role of physics in Saudi engineering education

    NASA Astrophysics Data System (ADS)

    Ahmed, M.

    1984-05-01

    In recent years some engineering schools in the Middle East have proposed reducing the amount of basic science courses in their curricula. A conference on engineering education in the Arabian Gulf countries held in Kuwait in 1980 suggested that the number of courses in physics and chemistry should be reduced from the present level (Jamjoom 1980). The arguments often put forward can be summarised as follows. First, engineering students are at present overburdened with too many basic science courses which puts a strain on the average student. This in turn leads to a high drop-out as is witnessed in many engineering colleges in this region. This drop-out, as high as 20% in some Saudi universities, is a cause of great concern among the university authorities. Secondly, it is argued that the number of credit hours allocated to departmental requirements is not sufficient to give a student enough breadth and depth of knowledge in his specialisation in particular engineering branches. Universities in Saudi Arabia follow the American credit-hour system in which courses are given certain credit hours, ranging from two to four, depending on the number of lectures per week as well as laboratory and tutorial requirements. Engineering students have to complete about 150 credit hours to graduate, which they normally do in four to five years. Out of these credit hours, about two-thirds are allocated to core courses (including physics) common to all branches of engineering. The remaining one-third are reserved for departmental specialisation. Since there is no possibility of increasing the overall credit hours necessary for graduation, it is suggested that the extra credit hours demanded for increasing the number of departmental courses should be obtained by correspondingly curtailing those for the basic sciences. When carefully scrutinised the arguments do not appear to be well founded. The reasons for high drop-out can be traced to more deep-rooted factors.

  6. Dynamics of co-authorship and productivity across different fields of scientific research.

    PubMed

    Parish, Austin J; Boyack, Kevin W; Ioannidis, John P A

    2018-01-01

    We aimed to assess which factors correlate with collaborative behavior and whether such behavior associates with scientific impact (citations and becoming a principal investigator). We used the R index which is defined for each author as log(Np)/log(I1), where I1 is the number of co-authors who appear in at least I1 papers written by that author and Np are his/her total papers. Higher R means lower collaborative behavior, i.e. not working much with others, or not collaborating repeatedly with the same co-authors. Across 249,054 researchers who had published ≥30 papers in 2000-2015 but had not published anything before 2000, R varied across scientific fields. Lower values of R (more collaboration) were seen in physics, medicine, infectious disease and brain sciences and higher values of R were seen for social science, computer science and engineering. Among the 9,314 most productive researchers already reaching Np ≥ 30 and I1 ≥ 4 by the end of 2006, R mostly remained stable for most fields from 2006 to 2015 with small increases seen in physics, chemistry, and medicine. Both US-based authorship and male gender were associated with higher values of R (lower collaboration), although the effect was small. Lower values of R (more collaboration) were associated with higher citation impact (h-index), and the effect was stronger in certain fields (physics, medicine, engineering, health sciences) than in others (brain sciences, computer science, infectious disease, chemistry). Finally, for a subset of 400 U.S. researchers in medicine, infectious disease and brain sciences, higher R (lower collaboration) was associated with a higher chance of being a principal investigator by 2016. Our analysis maps the patterns and evolution of collaborative behavior across scientific disciplines.

  7. Preface: Special Topic on Frontiers in Molecular Scale Electronics

    NASA Astrophysics Data System (ADS)

    Evers, Ferdinand; Venkataraman, Latha

    2017-03-01

    The electronic, mechanical, and thermoelectric properties of molecular scale devices have fascinated scientists across several disciplines in natural sciences and engineering. The interest is partially technological, driven by the fast miniaturization of integrated circuits that now have reached characteristic features at the nanometer scale. Equally important, a very strong incentive also exists to elucidate the fundamental aspects of structure-function relations for nanoscale devices, which utilize molecular building blocks as functional units. Thus motivated, a rich research field has established itself, broadly termed "Molecular Electronics," that hosts a plethora of activities devoted to this goal in chemistry, physics, and electrical engineering. This Special Topic on Frontiers of Molecular Scale Electronics captures recent theoretical and experimental advances in the field.

  8. Role of engine age and lubricant chemistry on the characteristics of EGR soot

    NASA Astrophysics Data System (ADS)

    Adeniran, Olusanmi Adeniji

    Exhaust products of Diesel Engines serves as an environmental hazard, and to curtail this problem a Tier 3 emission standard was introduced which involves change in engine designs and introduction of EGR systems in Diesel engines. EGR systems, however has the challenge of generating soot which are abrasive and are major causes of wear in Diesel engines. This work has studied the characteristics of EGR soot formed in different range of engine age and in different lubricant chemistries of Mineral and Synthetic based diesel Oils. It is found that lubricant degradation is encouraged by less efficient combustion as engine age increases, and these are precursors to formation of crystalline and amorphous particles that are causes of wear in Diesel Engines. It is found that soot from new engine is dominated by calcium based crystals which are from calcium sulfonate detergent, which reduces formation of second phase particles that can be abrasive. Diversity and peak intensity is seen to increase in soot samples as engine age increases. This understanding of second phase particles formed in engines across age ranges can help in the durability development of engine, improvement of Oil formulation for EGR engines, and in development of chemistries for after-treatment Oil solutions that can combat formation of abrasive particles in Oils.

  9. Publications of LASL research, 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kerr, A.K.

    1976-09-01

    This bibliography lists unclassified 1975 publications of work done at the Los Alamos Scientific Laboratory and those earlier publications that were received too late for inclusion in earlier compilations. Papers published in 1975 are included regardless of when they were actually written. Declassification of previously classified reports is considered to constitute publication. All classified issuances are omitted. The bibliography includes Los Alamos Scientific Laboratory reports, papers released as non-Los Alamos reports, journal articles, books, chapters of books, conference papers (whether published separately or as part of conference proceedings issued as books or reports), papers published in congressional hearings, theses, andmore » U.S. Patents. Publications by LASL authors which are not records of Laboratory-sponsored work are included when the Library becomes aware of them. The entries are arranged in sections by the following broad subject categories: aerospace studies; analytical technology; astrophysics; atomic and molecular physics, equation of state, opacity; biology and medicine; chemical dynamics and kinetics; chemistry; cryogenics; crystallography; CTR and plasma physics; earth science and engineering; energy (nonnuclear); engineering and equipment; EPR, ESR, NMR studies; explosives and detonations; fission physics; health and safety; hydrodynamics and radiation transport; instruments; lasers; mathematics and computers; medium-energy physics; metallurgy and ceramics technology; neutronics and criticality studies; nuclear physics; nuclear safeguards; physics; reactor technology; solid state science; and miscellaneous (including Project Rover). Author, numerical, and KWIC indexes are included. (RWR)« less

  10. Chemistry Division. Quarterly progress report for period ending June 30, 1949

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1949-09-14

    Progress reports are presented for the following tasks: (1) nuclear and chemical properties of heavy elements (solution chemistry, phase rule studies); (2) nuclear and chemical properties of elements in the fission product region; (3) general nuclear chemistry; (4) radio-organic chemistry; (5) chemistry of separations processes; (6) physical chemistry and chemical physics; (7) radiation chemistry; (8) physical measurements and instrumentation; and (9) analytical chemistry. The program of the chemistry division is divided into two efforts of approximately equal weight with respect to number of personnel, chemical research, and analytical service for the Laboratory. The various research problems fall into the followingmore » classifications: (1) chemical separation processes for isolation and recovery of fissionable material, production of radioisotopes, and military applications; (2) reactor development; and (3) fundamental research.« less

  11. Guest editorial: Special issue micro-and nanomachines.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Samuel; Paxton, Walter F.; Nitta, Takahiro

    The articles in this special section focus on the technologies and applications supported by micro- and nanomachines. The world of artificial micro- and nanomachines has greatly expanded over the last few years to include a range of disciplines from chemistry, physics, biology, to micro/nanoengineering, robotics, and theoretical physics. The dream of engineering nanomachines involves fabricating devices that mimic the mechanical action of biological motors that operate over multiple length scales: from molecular-scale enzymes and motors such as kinesins to the micro-scale biomachinery responsible for the motility of tiny organisms such as the flagella motors of E. coli. However, the designmore » and fabrication of artificial nano- and micromachines with comparable performance as their biological counterparts is not a straightforward task. It requires a detailed understanding of the basic principles of the operation of biomotors and mechanisms that couple the dissipation of energy to mechanical motion. Furthermore, micro engineering and microfabrication knowledge is required in order to design efficient, small and even smart micro- and nanomachines.« less

  12. Modern Aspects of Liquid Metal Engineering

    NASA Astrophysics Data System (ADS)

    Czerwinski, Frank

    2017-02-01

    Liquid metal engineering (LME) refers to a variety of physical and/or chemical treatments of molten metals aimed at influencing their solidification characteristics. Although the fundamentals have been known for decades, only recent progress in understanding solidification mechanisms has renewed an interest in opportunities this technique creates for an improvement of castings. This review covers conventional and novel concepts of LME with their application to modern manufacturing techniques based not only on liquid but also on semisolid routes. The role of external forces applied to the melt combined with grain nucleation control is explained along with laboratory- and commercial-scale equipment designed for implementation of various concepts exploring mechanical, electromagnetic, and ultrasound principles. An influence of melt treatments on quality of the final product is considered through distinguishing between internal integrity of net shape components and the alloy microstructure. Recent global developments indicate that exploring the synergy of melt chemistry and physical treatments achieved through LME allows creating the optimum conditions for nucleation and growth during solidification, positively affecting quality of castings.

  13. Guest editorial: Special issue micro-and nanomachines.

    DOE PAGES

    Sanchez, Samuel; Paxton, Walter F.; Nitta, Takahiro

    2015-04-01

    The articles in this special section focus on the technologies and applications supported by micro- and nanomachines. The world of artificial micro- and nanomachines has greatly expanded over the last few years to include a range of disciplines from chemistry, physics, biology, to micro/nanoengineering, robotics, and theoretical physics. The dream of engineering nanomachines involves fabricating devices that mimic the mechanical action of biological motors that operate over multiple length scales: from molecular-scale enzymes and motors such as kinesins to the micro-scale biomachinery responsible for the motility of tiny organisms such as the flagella motors of E. coli. However, the designmore » and fabrication of artificial nano- and micromachines with comparable performance as their biological counterparts is not a straightforward task. It requires a detailed understanding of the basic principles of the operation of biomotors and mechanisms that couple the dissipation of energy to mechanical motion. Furthermore, micro engineering and microfabrication knowledge is required in order to design efficient, small and even smart micro- and nanomachines.« less

  14. Tabulated Combustion Model Development For Non-Premixed Flames

    NASA Astrophysics Data System (ADS)

    Kundu, Prithwish

    Turbulent non-premixed flames play a very important role in the field of engineering ranging from power generation to propulsion. The coupling of fluid mechanics and complicated combustion chemistry of fuels pose a challenge for the numerical modeling of these type of problems. Combustion modeling in Computational Fluid Dynamics (CFD) is one of the most important tools used for predictive modeling of complex systems and to understand the basic fundamentals of combustion. Traditional combustion models solve a transport equation of each species with a source term. In order to resolve the complex chemistry accurately it is important to include a large number of species. However, the computational cost is generally proportional to the cube of number of species. The presence of a large number of species in a flame makes the use of CFD computationally expensive and beyond reach for some applications or inaccurate when solved with simplified chemistry. For highly turbulent flows, it also becomes important to incorporate the effects of turbulence chemistry interaction (TCI). The aim of this work is to develop high fidelity combustion models based on the flamelet concept and to significantly advance the existing capabilities. A thorough investigation of existing models (Finite-rate chemistry and Representative Interactive Flamelet (RIF)) and comparative study of combustion models was done initially on a constant volume combustion chamber with diesel fuel injection. The CFD modeling was validated with experimental results and was also successfully applied to a single cylinder diesel engine. The effect of number of flamelets on the RIF model and flamelet initialization strategies were studied. The RIF model with multiple flamelets is computationally expensive and a model was proposed on the frame work of RIF. The new model was based on tabulated chemistry and incorporated TCI effects. A multidimensional tabulated chemistry database generation code was developed based on the 1D diffusion flame solver. The proposed model did not use progress variables like the traditional chemistry tabulation methods. The resulting model demonstrated an order of magnitude computational speed up over the RIF model. The results were validated across a wide range of operating conditions for diesel injections and the results were in close agreement to those of the experimental data. History of scalar dissipation rates plays a very important role in non premixed flames. However, tabulated methods have not been able to incorporate this physics in their models. A comparative approach is developed that can quantify these effects and find correlations with flow variables. A new model is proposed to include these effects in tabulated combustion models. The model is initially validated for 1D counterflow diffusion flame problems at engine conditions. The model is further implemented and validated in a 3D RANS code across a range of operating conditions for spray flames.

  15. The Logical and Psychological Structure of Physical Chemistry and Its Relevance to the Organization/Sequencing of the Major Areas Covered in Physical Chemistry Textbooks

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios

    2014-01-01

    Jensen's scheme for the logical structure of chemistry is taken as reference to study the logical structure of physical chemistry. The scheme distinguishes three dimensions (composition and structure, energy, and time), with each dimension treated at one of the three levels (molar, molecular, and electrical). Such a structure places the outer…

  16. M13 Bacteriophage-Based Self-Assembly Structures and Their Functional Capabilities.

    PubMed

    Moon, Jong-Sik; Kim, Won-Geun; Kim, Chuntae; Park, Geun-Tae; Heo, Jeong; Yoo, So Y; Oh, Jin-Woo

    2015-06-01

    Controlling the assembly of basic structural building blocks in a systematic and orderly fashion is an emerging issue in various areas of science and engineering such as physics, chemistry, material science, biological engineering, and electrical engineering. The self-assembly technique, among many other kinds of ordering techniques, has several unique advantages and the M13 bacteriophage can be utilized as part of this technique. The M13 bacteriophage (Phage) can easily be modified genetically and chemically to demonstrate specific functions. This allows for its use as a template to determine the homogeneous distribution and percolated network structures of inorganic nanostructures under ambient conditions. Inexpensive and environmentally friendly synthesis can be achieved by using the M13 bacteriophage as a novel functional building block. Here, we discuss recent advances in the application of M13 bacteriophage self-assembly structures and the future of this technology.

  17. M13 Bacteriophage-Based Self-Assembly Structures and Their Functional Capabilities

    PubMed Central

    Moon, Jong-Sik; Kim, Won-Geun; Kim, Chuntae; Park, Geun-Tae; Heo, Jeong; Yoo, So Y; Oh, Jin-Woo

    2015-01-01

    Controlling the assembly of basic structural building blocks in a systematic and orderly fashion is an emerging issue in various areas of science and engineering such as physics, chemistry, material science, biological engineering, and electrical engineering. The self-assembly technique, among many other kinds of ordering techniques, has several unique advantages and the M13 bacteriophage can be utilized as part of this technique. The M13 bacteriophage (Phage) can easily be modified genetically and chemically to demonstrate specific functions. This allows for its use as a template to determine the homogeneous distribution and percolated network structures of inorganic nanostructures under ambient conditions. Inexpensive and environmentally friendly synthesis can be achieved by using the M13 bacteriophage as a novel functional building block. Here, we discuss recent advances in the application of M13 bacteriophage self-assembly structures and the future of this technology. PMID:26146494

  18. Insights from a Subject Knowledge Enhancement Course for Preparing New Chemistry and Physics Teachers

    ERIC Educational Resources Information Center

    Inglis, Michael; Mallaburn, Andrea; Tynan, Richard; Clays, Ken; Jones, Robert Bryn

    2013-01-01

    A recent Government response to shortages of new physics and chemistry teachers is the extended subject knowledge enhancement (SKE) course. Graduates without a physics or chemistry bachelor degree are prepared by an SKE course to enter a Postgraduate Certificate in Education (PGCE) programme to become science teachers with a physics or chemistry…

  19. S.E.A. Lab. Science Experiments and Activities. Marine Science for High School Students in Chemistry, Biology and Physics.

    ERIC Educational Resources Information Center

    Hart, Kathy, Ed.

    A series of science experiments and activities designed for secondary school students taking biology, chemistry, physics, physical science or marine science courses are outlined. Each of the three major sections--chemistry, biology, and physics--addresses concepts that are generally covered in those courses but incorporates aspects of marine…

  20. 77 FR 51786 - Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... to increasing the number and quality of the nation's scientists and engineers. Application... Engineering, Biosciences, Chemical Engineering, Chemistry, Civil Engineering, Cognitive, Neural, and...

  1. The Astrobiology in Secondary Classrooms (ASC) curriculum: focusing upon diverse students and teachers.

    PubMed

    Arino de la Rubia, Leigh S

    2012-09-01

    The Minority Institution Astrobiology Collaborative (MIAC) began working with the NASA Goddard Center for Astrobiology in 2003 to develop curriculum materials for high school chemistry and Earth science classes based on astrobiology concepts. The Astrobiology in Secondary Classrooms (ASC) modules emphasize interdisciplinary connections in astronomy, biology, chemistry, geoscience, physics, mathematics, and ethics through hands-on activities that address national educational standards. Field-testing of the Astrobiology in Secondary Classrooms materials occurred over three years in eight U.S. locations, each with populations that are underrepresented in the career fields of science, technology, engineering, and mathematics. Analysis of the educational research upon the high school students participating in the ASC project showed statistically significant increases in students' perceived knowledge and science reasoning. The curriculum is in its final stages, preparing for review to become a NASA educational product.

  2. Using Green Chemistry and Engineering Principles to Design, Assess, and Retrofit Chemical Processes for Sustainability

    EPA Science Inventory

    The concepts of green chemistry and engineering (GC&E) have been promoted as an effective qualitative framework for developing more sustainable chemical syntheses, processes, and material management techniques. This has been demonstrated by many theoretical and practical cases. I...

  3. Terra Firma: "Physics First" for Teaching Chemistry to Pre-Service Elementary School Teachers

    ERIC Educational Resources Information Center

    More, Michelle B.

    2007-01-01

    A pre-service elementary school teacher chemistry class that incorporates the physics first idea is described. This class is taught basic physics followed by introductory chemistry and the students' response indicates that both science literacy and science interest increase using this method.

  4. Journal of Chemical Education: Software.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1989

    1989-01-01

    "Spreadsheets in Physical Chemistry" contains reviewed and classroom tested Lotus 1-2-3 and SuperCalc IV templates and handouts designed for use in physical chemistry courses. The 21 templates keyed to Atkins' physical chemistry textbook, the 7 numerical methods templates, and the 10 simulation templates are discussed. (MVL)

  5. The Logical and Psychological Structure of Physical Chemistry and Its Relevance to Graduate Students' Opinions about the Difficulties of the Major Areas of the Subject

    ERIC Educational Resources Information Center

    Tsaparlis, Georgios

    2016-01-01

    In a previous publication, Jensen's scheme for the logical structure of chemistry was employed to identify a logical structure for physical chemistry, which was further used as a tool for analyzing the organization of twenty physical chemistry textbooks. In addition, science education research was considered for the study of the psychological…

  6. Intra-Engine Trace Species Chemistry

    NASA Technical Reports Server (NTRS)

    Waitz, Ian A.; Lukachko, S. P.; Chobot, A.; Miake-Lye, R. C.; Brown, R.

    2002-01-01

    Prompted by the needs of downstream plume-wake models, the Massachusetts Institute of Technology (MIT) and Aerodyne Research Incorporated (ART) initiated a collaborative effort, with funding from the NASA AEAP, to develop tools that would assist in understanding the fundamental drivers of chemical change within the intra-engine exhaust flow path. Efforts have been focused on the development of a modeling methodology that can adequately investigate the complex intra-engine environment. Over the history of this project, our research has increasingly pointed to the intra-engine environment as a possible site for important trace chemical activity. Modeling studies we initiated for the turbine and exhaust nozzle have contributed several important capabilities to the atmospheric effects of aviation assessment. These include a more complete understanding of aerosol precursor production, improved initial conditions for plume-wake modeling studies, and a more comprehensive analysis of ground-based test cell and in-flight exhaust measurement data. In addition, establishing a physical understanding of important flow and chemical processes through computational investigations may eventually assist in the design of engines to reduce undesirable species.

  7. The Clarinet Reed: AN Introduction to its Biology, Chemistry, and Physics

    NASA Astrophysics Data System (ADS)

    Casadonte, Donald Jay

    Although clarinet reeds have been used for over two-hundred years, there has been little scientific study of the reed, either from a material science or engineering perspective. This document is intended to be the first large-scale study of the clarinet reed covering its biology, chemistry and physics. The reed is made, most often, from cane--Arundo donax. We present a complete atlas of the anatomy of Arundo donax, and examine the role of each of the cellular components in the clarinet reed performance. We examine the three principal chemical components of the processed clarinet reed: cellulose, xylan, and lignin through the use of instrumental analysis. We examine the breakdown pathways of the clarinet reed, and isolate five: (1) decrystallization of the cellulose microstructure, (2) removal of xylan by saliva, (3) plasticization of the reed material due to alkalai attack in saliva, (4) the culturing of a bacterium, Staph Epidermitis, in the cell wall matrix, (5) density changes due to salival coating of the reed. The physics of the reed is examined, and a finite element model of the modal shapes is presented. We present a theoretical treatment of the two modes of excitation of the reed, a low frequency mode (normal playing mode) due to vortex shedding, and a high frequency mode which is associated with reed squeak.

  8. Nationwide Survey of the Undergraduate Physical Chemistry Course

    ERIC Educational Resources Information Center

    Fox, Laura J.; Roehrig, Gillian H.

    2015-01-01

    A nationwide survey of the undergraduate physical chemistry course was conducted to investigate the depth and breadth of content that is covered, how content is delivered, how student understanding is assessed, and the experiences and beliefs of instructors. The survey was administered to instructors of physical chemistry (N = 331) at American…

  9. Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model

    ERIC Educational Resources Information Center

    Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert

    2015-01-01

    The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…

  10. Protein Engineering: Development of a Metal Ion Dependent Switch

    DTIC Science & Technology

    2017-05-22

    Society of Chemistry Royal Society of Chemistry Biochemistry PNAS Escherichia coli Journal of Biotechnology Biochemistry Nature Protocols Journal of...Molecular Biology Biochemistry Royal Society of Chemistry Proteins: Structure, Function, and Bioinformatics Journal of Molecular Biology Biophysical...Biophysical Journal Protein Science Journal of Computational Chemistry Current Opinion in Chemical Biology Royal Society of Chemistry

  11. Strengthening programs in science, engineering and mathematics. Third annual progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, S.S.

    1997-09-30

    The Division of Natural Sciences and Mathematics at Claflin College consists of the Departments of Biology, Chemistry, Computer Science, Physics, Engineering and Mathematics. It offers a variety of major and minor academic programs designed to meet the mission and objectives of the college. The division`s pursuit to achieve excellence in science education is adversely impacted by the poor academic preparation of entering students and the lack of equipment, facilities and research participation, required to impart adequate academic training and laboratory skills to the students. Funds were received from the US Department of Energy to improve the divisional facilities and laboratorymore » equipment and establish mechanism at pre-college and college levels to increase (1) the pool of high school students who will enroll in Science and Mathematics courses (2) the pool of well qualified college freshmen who will seek careers in Science, Engineering and Mathematics (3) the graduation rate in Science,engineering and Mathematics at the undergraduate level and (4) the pool of well-qualified students who can successfully compete to enter the graduate schools of their choice in the fields of science, engineering, and mathematics. The strategies that were used to achieve the mentioned objectives include: (1) Improved Mentoring and Advisement, (2) Summer Science Camp for 7th and 8th graders, (3) Summer Research Internships for Claflin SEM Seniors, (4) Summer Internships for Rising High School Seniors, (5) Development of Mathematical Skills at Pre-college/Post-secondary Levels, (6) Expansion of Undergraduate Seminars, (7) Exposure of Undergraduates to Guest Speakers/Roll Models, (8) Visitations by Undergraduate Students to Graduate Schools, and (9) Expanded Academic Program in Environmental Chemistry.« less

  12. A Physical Chemist Looks at Organic Chemistry Lab.

    ERIC Educational Resources Information Center

    Pickering, Miles

    1988-01-01

    Criticizes the way organic chemistry teaching laboratory experiments are approached from the viewpoint of physical chemistry. Compares these experiments to cooking. Stresses that what matters is not the practice of the finger skills of organic chemistry but practice in the style of thinking of organic chemists. (CW)

  13. Nanostructured silicon membranes for control of molecular transport.

    PubMed

    Srijanto, Bernadeta R; Retterer, Scott T; Fowlkes, Jason D; Doktycz, Mitchel J

    2010-11-01

    A membrane that allows selective transport of molecular species requires precise engineering on the nanoscale. Membrane permeability can be tuned by controlling the physical structure and surface chemistry of the pores. Here, a combination of electron beam and optical lithography, along with cryogenic deep reactive ion etching, has been used to fabricate silicon membranes that are physically robust, have uniform pore sizes, and are directly integrated into a microfluidic network. Additional reductions in pore size were achieved using plasma enhanced chemical vapor deposition and atomic layer deposition of silicon dioxide to coat membrane surfaces. Cross sectioning of the membranes using focused ion beam milling was used to determine the physical shape of the membrane pores before and after coating. Functional characterization of the membranes was performed by using quantitative fluorescence microscopy to document the transport of molecular species across the membrane.

  14. The impact of supercomputers on experimentation: A view from a national laboratory

    NASA Technical Reports Server (NTRS)

    Peterson, V. L.; Arnold, J. O.

    1985-01-01

    The relative roles of large scale scientific computers and physical experiments in several science and engineering disciplines are discussed. Increasing dependence on computers is shown to be motivated both by the rapid growth in computer speed and memory, which permits accurate numerical simulation of complex physical phenomena, and by the rapid reduction in the cost of performing a calculation, which makes computation an increasingly attractive complement to experimentation. Computer speed and memory requirements are presented for selected areas of such disciplines as fluid dynamics, aerodynamics, aerothermodynamics, chemistry, atmospheric sciences, astronomy, and astrophysics, together with some examples of the complementary nature of computation and experiment. Finally, the impact of the emerging role of computers in the technical disciplines is discussed in terms of both the requirements for experimentation and the attainment of previously inaccessible information on physical processes.

  15. How to manage continuing education and retraining programs on optical physics and laser technology at a university: Moscow State experience

    NASA Astrophysics Data System (ADS)

    Zadkov, Victor N.; Koroteev, Nikolai I.

    1995-10-01

    An experience of managing the continuing education and retraining programs at the International Laser Center (ILC) of Moscow State University is discussed. The offered programs are in a wide range of areas, namely laser physics and technology, laser biophysics and biomedicine, laser chemistry, and computers in laser physics. The attendees who are presumably scientists, engineers, technical managers, and graduate students can join these programs through the annual ILC term (6 months), individual training and research programs (up to a year), annual ILC Laser Graduate School, graduate study, and post-docs program, which are reviewed in the paper. A curriculum that includes basic and specialized courses is described in detail. A brief description of the ILC Laser Teaching and Computer Labs that support all the educational courses is given as well.

  16. Environmental chemistry: Volume A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yen, T.F.

    1999-08-01

    This is an extensive introduction to environmental chemistry for engineering and chemical professionals. The contents of Volume A include a brief review of basic chemistry prior to coverage of litho, atmo, hydro, pedo, and biospheres.

  17. Improving High School Physics Through An Outreach Initiative

    NASA Astrophysics Data System (ADS)

    Zettili, Nouredine

    2006-04-01

    We want to discuss our outreach initiative at Jacksonville State University designed to help improve the teaching of physics at a number of high schools in Northeast Alabama. This initiative is part of Project IMPACTSEED (IMproving Physics And Chemistry Teaching in SEcondary Education), a No-Child Left Behind grant funded by the Alabama Commission on Higher Education. This project is motivated by a major pressing local need: A large number of high school physics teachers teach out of field. IMPACTSEED is designed to achieve a double aim: (a) to make physics and chemistry understandable and fun to learn within a hands-on, inquiry-based setting; (b) to overcome the fear-factor for physics and chemistry among students. Through a two-week long summer institute, a series of weekend workshops designed to help bring technology into physics classrooms, onsite support, and a hotline, we have been providing year-round support to the physics/chemistry teachers in this area. IMPACTSEED aims at providing our students with a physics/chemistry education that enjoys a great deal of continuity and consistency from high school to college.

  18. 76 FR 77228 - Request for Nominations of Experts to the Office of Research and Development's Board of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-12

    ... will consider candidates from the environmental scientific/technical fields, human health care... physics, aerosol chemistry, aerosol physics); Analytical Chemistry; Green Chemistry; Endocrinology...

  19. Opportunities in plant synthetic biology.

    PubMed

    Cook, Charis; Martin, Lisa; Bastow, Ruth

    2014-05-01

    Synthetic biology is an emerging field uniting scientists from all disciplines with the aim of designing or re-designing biological processes. Initially, synthetic biology breakthroughs came from microbiology, chemistry, physics, computer science, materials science, mathematics, and engineering disciplines. A transition to multicellular systems is the next logical step for synthetic biologists and plants will provide an ideal platform for this new phase of research. This meeting report highlights some of the exciting plant synthetic biology projects, and tools and resources, presented and discussed at the 2013 GARNet workshop on plant synthetic biology.

  20. Contact Angle of Drops Measured on Nontransparent Surfaces and Capillary Flow Visualized

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Zhang, Nengli

    2003-01-01

    The spreading of a liquid on a solid surface is important for various practical processes, and contact-angle measurements provide an elegant method to characterize the interfacial properties of the liquid with the solid substrates. The complex physical processes occurring when a liquid contacts a solid play an important role in determining the performance of chemical processes and materials. Applications for these processes are in printing, coating, gluing, textile dyeing, and adhesives and in the pharmaceutical industry, biomedical research, adhesives, flat panel display manufacturing, surfactant chemistry, and thermal engineering.

  1. The 1998 NASA Aerospace Battery Workshop

    NASA Technical Reports Server (NTRS)

    Brewer, Jeffrey C. (Compiler)

    1999-01-01

    This document contains the proceedings of the 31st annual NASA Aerospace Battery Workshop, hosted by the Marshall Space Flight Center on October 27-29, 1998. The workshop was attended by scientists and engineers from various agencies of the U.S. Government, aerospace contractors, and battery manufacturers, as well as international participation in like kind from a number of countries around the world. The subjects covered included nickel-hydrogen, silver-hydrogen, nickel-metal hydride, and lithium-based technologies, as well as results from destructive physical analyses on various cell chemistries.

  2. Pre-Service Physics and Chemistry Teachers' Conceptual Integration of Physics and Chemistry Concepts

    ERIC Educational Resources Information Center

    Tuysuz, Mustafa; Bektas, Oktay; Geban, Omer; Ozturk, Gokhan; Yalvac, Bugrahan

    2016-01-01

    This study examines the pre-service teachers' opinions about conceptual integration (CI) and their understanding of it. A qualitative phenomenology design was used in the study. Data was collected through in-depth semi-structured interviews comprising ten guiding questions. Three pre-service physics and three pre-service chemistry teachers…

  3. Students' Understanding of Mathematical Expressions in Physical Chemistry Contexts: An Analysis Using Sherin's Symbolic Forms

    ERIC Educational Resources Information Center

    Becker, Nicole; Towns, Marcy

    2012-01-01

    Undergraduate physical chemistry courses require students to be proficient in calculus in order to develop an understanding of thermodynamics concepts. Here we present the findings of a study that examines student understanding of mathematical expressions, including partial derivative expressions, in two undergraduate physical chemistry courses.…

  4. Subject Knowledge Enhancement (SKE) Courses for Creating New Chemistry and Physics Teachers: Do They Work?

    ERIC Educational Resources Information Center

    Tynan, Richard; Mallaburn, Andrea; Jones, Robert Bryn; Clays, Ken

    2014-01-01

    During extended subject knowledge enhancement (SKE) courses, graduates without chemistry or physics bachelor degrees prepared to enter a Postgraduate Certificate in Education (PGCE) programme to become chemistry or physics teachers. Data were gathered from the exit survey returned by Liverpool John Moores University SKE students about to start…

  5. Preface

    NASA Astrophysics Data System (ADS)

    Makabe, Toshiaki; Samukawa, Seiji

    2007-06-01

    Twenty-first century will be the era of the design technology on a firm basis of physics and chemistry under circumstances of a prospective high-speed computing along the line of environmentally friendly and economically saving society. The 4th International Workshop on Basic Aspects of Nonequilibrium Plasmas Interacting with Surfaces (BANPIS); Negative ions, their function & designability, and the 4th EU-Japan Joint Symposium on Plasma Processes (JSPP) were held at Hotel Highland Resort close to Mt. Fuji in Japan on January 30 - February 1, 2006. The joint conference was organized by the 21st century Center of Excellence (COE) for ;Optical & Electronic Device Technology for Access Networks; in Keio University, and co-operated by the Center for ;Atomic and Molecular Engineering,; in Open University, and by The Japan Society of Applied Physics.

  6. 1999 LDRD Laboratory Directed Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rita Spencer; Kyle Wheeler

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  7. Laboratory Directed Research and Development FY 1998 Progress Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John Vigil; Kyle Wheeler

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  8. Laboratory directed research and development: FY 1997 progress report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5)more » engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.« less

  9. Single molecules, cells, and super-resolution optics (Presentation Video)

    NASA Astrophysics Data System (ADS)

    Betzig, Eric

    2015-03-01

    In this plenary presentation, Eric Betzig talks about his scientific journey that led to the Nobel Prize. He made waves early in his career by helping to develop a technique known as near-field microscopy, which brought into focus structures that scientists had long considered too small to see with a light microscope. Eric Betzig is a group leader at Janelia Research Campus of the Howard Hughes Medical Institute (HHMI) in Ashburn, VA. He recieved a BS in physics from California Institute of Technology and a PhD in applied and engineering physics from Cornell University. Betzig received the 2014 Nobel Prize in Chemistry, along with William Moerner and Stefan Hell, for their development of super-resolved fluorescence microscopy.

  10. Turbine Chemistry Modeling

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Wey, Thomas

    2001-01-01

    Many of the engine exhaust species resulting in significant environmental impact exist in trace amounts. Recent research, e.g., conducted at MIT-AM, has pointed to the intra-engine environment as a possible site for important trace chemistry activity. In addition, the key processes affecting the trace species activity occurring downstream in the air passages of the turbine and exhaust nozzle are not well understood. Most recently, an effort has been initiated at NASA Glenn Research Center under the UEET Program to evaluate and further develop CFD-based technology for modeling and simulation of intra-engine trace chemical changes relevant to atmospheric effects of pollutant emissions from aircraft engines. This presentation will describe the current effort conducted at Glenn; some preliminary results relevant to the trace species chemistry in a turbine passage will also be presented to indicate the progress to date.

  11. Macmillan Encyclopedia of Chemistry (edited by Joseph J. Lagowski)

    NASA Astrophysics Data System (ADS)

    Kauffman, George B.

    1998-11-01

    Macmillan: New York, 1997. Four volumes. Figs., tables. lxxi + 1696 pp. 22.0 x 28.5 cm. $400. ISBN 0-02-897225-2. This latest addition to Macmillan's series of comprehensive core science encyclopedias (previous sets dealt with physics and earth sciences) will be of particular interest to readers of this Journal, for it is edited by longtime Journal of Chemical Education editor Joe Lagowski, assisted by a board of five distinguished associate editors. The attractively priced set offers clear explanations of the phenomena and concepts of chemistry and its materials, whether found in industry, the laboratory, or the natural world. It is intended for a broad spectrum of readers-professionals whose work draws on chemical concepts and knowledge (e.g., material scientists, engineers, health workers, biotechnologists, mathematicians, and computer programmers), science teachers at all levels from kindergarten to high school, high school and college students interested in medicine or the sciences, college and university professors, and laypersons desiring information on practical aspects of chemistry (e.g., household cleaning products, food and food additives, manufactured materials, herbicides, the human body, sweeteners, and animal communication).

  12. National Research Program of the Water Resources Division, U.S. Geological Survey: Fiscal Year 1988

    USGS Publications Warehouse

    Friedman, Linda C.; Donato, Christine N.

    1989-01-01

    The National Research Program (NRP) of the US Geological Survey 's Water Resources Division (WRD) had its beginnings in the late 1950 's when ' core research ' was added as a line item to the Congressional budget. Since that time, the NRP has grown to encompass a broad spectrum of scientific investigations. The sciences of hydrology, mathematics, chemistry, physics, ecology, biology, geology, and engineering are used to gain a fundamental understanding of the processes that affect the availability, movement, and quality of the Nation 's water resources. The NRP is located principally in Reston, VA, Denver, CO, and Menlo Park , CA. The NRP is subdivided into six disciplines as follows: (1) Ecology; (2) Geomorphology and Sediment Transport; (3) Groundwater Chemistry; (4) Groundwater Hydrology; (5) Surface Water Chemistry; and (6) Surface Water Hydrology. The report provides current information about the NRP on an annual basis. Organized by the six research disciplines, the volume contains a summary of the problem, objective, approach, and progress for each project that was active during fiscal year 1988.

  13. Exhaust Gas Emissions from a Rotating Detonation-wave Engine

    NASA Astrophysics Data System (ADS)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2015-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release. Work sponsored by the Office of Naval Research.

  14. Incorporating Computational Chemistry into the Chemical Engineering Curriculum

    ERIC Educational Resources Information Center

    Wilcox, Jennifer

    2006-01-01

    A graduate-level computational chemistry course was designed and developed and carried out in the Department of Chemical Engineering at Worcester Polytechnic Institute in the Fall of 2005. The thrust of the course was a reaction assignment that led students through a series of steps, beginning with energetic predictions based upon fundamental…

  15. Synthesis of Hollow Gold-Silver Alloyed Nanoparticles: A "Galvanic Replacement" Experiment for Chemistry and Engineering Students

    ERIC Educational Resources Information Center

    Jenkins, Samir V.; Gohman, Taylor D.; Miller, Emily K.; Chen, Jingyi

    2015-01-01

    The rapid academic and industrial development of nanotechnology has led to its implementation in laboratory teaching for undergraduate-level chemistry and engineering students. This laboratory experiment introduces the galvanic replacement reaction for synthesis of hollow metal nanoparticles and investigates the optical properties of these…

  16. An Exemplary Program in Higher Education for Chemists, Engineers, and Chemistry Teachers.

    ERIC Educational Resources Information Center

    Ayers, Jerry B.; And Others

    This paper presents the rationale, structure, and specifications for a model program for the preparation of chemists, chemical engineers, and high school chemistry teachers. The model (an application of systems technology to program development in higher education) is based on the structure provided by the Georgia Educational Model Specifications…

  17. A Quantum Chemistry Concept Inventory for Physical Chemistry Classes

    ERIC Educational Resources Information Center

    Dick-Perez, Marilu; Luxford, Cynthia J.; Windus, Theresa L.; Holme, Thomas

    2016-01-01

    A 14-item, multiple-choice diagnostic assessment tool, the quantum chemistry concept inventory or QCCI, is presented. Items were developed based on published student misconceptions and content coverage and then piloted and used in advanced physical chemistry undergraduate courses. In addition to the instrument itself, data from both a pretest,…

  18. Introducing Chemistry Students to the "Real World" of Chemistry

    ERIC Educational Resources Information Center

    Brown, Michael E.; Cosser, Ronald C.; Davies-Coleman, Michael T.; Kaye, Perry T.; Klein, Rosalyn; Lamprecht, Emmanuel; Lobb, Kevin; Nyokong, Tebello; Sewry, Joyce D.; Tshentu, Zenixole R.; van der Zeyde, Tino; Watkins, Gareth M.

    2010-01-01

    A majority of chemistry graduates seek employment in a rapidly changing chemical industry. Our attempts to provide the graduates with skills in entrepreneurship and the ability to understand and communicate with their chemical engineering colleagues, in addition to their fundamental knowledge of chemistry, are described. This is done at…

  19. Report of the Polymer Core Course Committee: Polymer Principles in the Undergraduate Physical Chemistry Course, Part 1.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1985

    1985-01-01

    Demonstrates, with a set of definitive examples, how polymer principles can be introduced into the first undergraduate physical chemistry course in a very natural way. The intent is to encourage introduction of polymer-related material into conventional physical chemistry courses without sacrificing any rigor associated with such courses. (JN)

  20. Engineering for Life Sciences: A Fruitful Collaboration Enabled by Chemistry.

    PubMed

    Niemeyer, Christof M

    2017-02-13

    "… The interaction of engineering and life sciences has a long history that is characterized by a mutual dependency. The role of chemistry in these developments is to connect the engineers' instrumentation with the life scientists' specimens. This very successful partnership will further continue to produce essential and innovative solutions for future challenges …" Read more in the Guest Editorial by Christof M. Niemeyer. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Nuclear chemistry. Annual report, 1974

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conzett, H.E.; Edelstein, N.M.; Tsang, C.F.

    1975-07-01

    The 1974 Nuclear Chemistry Annual Report contains information on research in the following areas: nuclear science (nuclear spectroscopy and radioactivity, nuclear reactions and scattering, nuclear theory); chemical and atomic physics (heavy ion-induced atomic reactions, atomic and molecular spectroscopy, photoelectron spectroscopy and hyperfine interactions); physical, inorganic, and analytical chemistry (x-ray crystallography, physical and inorganic chemistry, geochemistry); and instrumentation. Thesis abstracts, 1974 publication titles, and an author index are also included. Papers having a significant amount of information are listed separately by title. (RWR)

  2. Bringing Technology into High School Physics Classrooms

    NASA Astrophysics Data System (ADS)

    Zettili, Nouredine

    2005-04-01

    In an effort to help high school physics teachers bring technology into their classrooms, we at JSU have been offering professional development to secondary education teachers. This effort is part of Project IMPACTSEED (IMproving Physics And Chemistry Teaching in SEcondary Education), a No-Child Left Behind (NCLB) grant funded by the Alabama Commission on Higher Education, serving high school physics teachers in Northeast Alabama. This project is motivated by a major pressing local need: A large number of high school physics teachers teach out of field. To achieve IMPACTSEED's goals, we have forged a functional collaboration with school districts from about ten counties. This collaboration is aimed at achieving a double aim: (a) to make physics and chemistry understandable and fun to learn within a hands-on, inquiry-based setting; (b) to overcome the fear- factor for physics and chemistry among students. Through a two-week long summer institute, a series of weekend technology workshops, and onsite support, we have been providing year-round support to the physics/chemistry teachers in this area. This outreach initiative has helped provide our students with a physics/chemistry education that enjoys a great deal of continuity and consistency from high school to college.

  3. Economic Aspects of the Chemical Industry

    NASA Astrophysics Data System (ADS)

    Koleske, Joseph V.

    Within the formal disciplines of science at traditional universities, through the years, chemistry has grown to have a unique status because of its close correspondence with an industry and with a branch of engineering—the chemical industry and chemical engineering. There is no biology industry, but aspects of biology have closely related disciplines such as fish raising and other aquaculture, animal cloning and other facets of agriculture, ethical drugs of pharmaceutical manufacture, genomics, water quality and conservation, and the like. Although there is no physics industry, there are power generation, electricity, computers, optics, magnetic media, and electronics that exist as industries. However, in the case of chemistry, there is a named industry. This unusual correspondence no doubt came about because in the chemical industry one makes things from raw materials—chemicals—and the science, manufacture, and use of chemicals grew up together during the past century or so.

  4. European scientific notes. Volume 38. Number 1. Monthly publication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaffer, L.E.

    1984-01-01

    Topics include: Gender-mixed Crews on Dutch Combat Ships; Max-Planck-Institute for Psycholinguistics; Cancer Therapy with Magnetism; 9th European Underwater Biomedical Society Convention; International Center for Genetic Engineering and Biotechnology; Biotechnological Route to Polyphenylene; 2nd Romania-US Seminar on Polymer Chemistry; Statistical Climatology; A Code for Generating Dynamic Models of Robots; Fifth Generation Computing Systems; New Data Logger; Erosion by Liquid and Solid Impact, ELSI VI; Physical Chemistry of the Solid State -- Metals and alloys; NATO Buys a New Oceanographic Research Vessel; Oceanexpo/Oceantropigues 1984; Progress in Development of Wave Energy to Generate Electricity; IAPSO Symposia and Oceanography at the 18th IUGG; Newmore » Decision Support System; High Energy Channeling Research in Switzerland; Muon-Catalyzed Fusion; 2nd International Symposium on Acoustic Remote Sensing of the Atmosphere and Ocean; and Support of Science Research by the British Military.« less

  5. Engineering half-Heusler thermoelectric materials using Zintl chemistry

    NASA Astrophysics Data System (ADS)

    Zeier, Wolfgang G.; Schmitt, Jennifer; Hautier, Geoffroy; Aydemir, Umut; Gibbs, Zachary M.; Felser, Claudia; Snyder, G. Jeffrey

    2016-06-01

    Half-Heusler compounds based on XNiSn and XCoSb (X = Ti, Zr or Hf) have rapidly become important thermoelectric materials for converting waste heat into electricity. In this Review, we provide an overview on the electronic properties of half-Heusler compounds in an attempt to understand their basic structural chemistry and physical properties, and to guide their further development. Half-Heusler compounds can exhibit semiconducting transport behaviour even though they are described as ‘intermetallic’ compounds. Therefore, it is most useful to consider these systems as rigid-band semiconductors within the framework of Zintl (or valence-precise) compounds. These considerations aid our understanding of their properties, such as the bandgap and low hole mobility because of interstitial Ni defects in XNiSn. Understanding the structural and bonding characteristics, including the presence of defects, will help to develop different strategies to improve and design better half-Heusler thermoelectric materials.

  6. Enhancing interdisciplinary, mathematics, and physical science in an undergraduate life science program through physical chemistry.

    PubMed

    Pursell, David P

    2009-01-01

    BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect.

  7. Enhancing Interdisciplinary, Mathematics, and Physical Science in an Undergraduate Life Science Program through Physical Chemistry

    PubMed Central

    2009-01-01

    BIO2010 advocates enhancing the interdisciplinary, mathematics, and physical science components of the undergraduate biology curriculum. The Department of Chemistry and Life Science at West Point responded by developing a required physical chemistry course tailored to the interests of life science majors. To overcome student resistance to physical chemistry, students were enabled as long-term stakeholders who would shape the syllabus by selecting life science topics of interest to them. The initial 2 yr of assessment indicates that students have a positive view of the course, feel they have succeeded in achieving course outcome goals, and that the course is relevant to their professional future. Instructor assessment of student outcome goal achievement via performance on exams and labs is comparable to that of students in traditional physical chemistry courses. Perhaps more noteworthy, both student and instructor assessment indicate positive trends from year 1 to year 2, presumably due to the student stakeholder effect. PMID:19255133

  8. Physical Chemistry for the Chemical and Biological Sciences (by Raymond Chang)

    NASA Astrophysics Data System (ADS)

    Pounds, Andrew

    2001-05-01

    This book does offer an alternative approach to physical chemistry that is particularly well suited for those who want to pursue a course of study more focused on the biological sciences. It could also be an excellent choice for schools that mainly serve preprofessional programs or for schools that have split physical chemistry tracks to independently serve the B.S. and B.A. degrees. Since the book focuses on single-variable mathematics, schools that require only one year of calculus for their chemistry degree could also think about adopting it. However, in general, the use of the text as a drop-in replacement for physical chemistry for the B.S. degree is questionable owing to its lack of focus on quantum mechanics and its implications for spectroscopy.

  9. Finding Hidden Chemistry in Ancient Egyptian Artifacts: Pigment Degradation Taught in a Chemical Engineering Course

    ERIC Educational Resources Information Center

    Gime´nez, Javier

    2015-01-01

    The main objective of this work was to show the application of the study of ancient technology and science on teaching (and learning) chemistry in Chemical Engineering Undergraduate studies. Degradation patterns of pigments used in Ancient Egypt were incorporated in the syllabus of the course entitled "Technological and Scientific…

  10. Pulse Detonation Rocket Engine Research at NASA Marshall

    NASA Technical Reports Server (NTRS)

    Morris, Christopher I.

    2003-01-01

    This viewgraph representation provides an overview of research being conducted on Pulse Detonation Rocket Engines (PDRE) by the Propulsion Research Center (PRC) at the Marshall Space Flight Center. PDREs have a theoretical thermodynamic advantage over Steady-State Rocket Engines (SSREs) although unsteady blowdown processes complicate effective use of this advantage in practice; PRE is engaged in a fundamental study of PDRE gas dynamics to improve understanding of performance issues. Topics covered include: simplified PDRE cycle, comparison of PDRE and SSRE performance, numerical modeling of quasi 1-D rocket flows, time-accurate thrust calculations, finite-rate chemistry effects in nozzles, effect of F-R chemistry on specific impulse, effect of F-R chemistry on exit species mole fractions and PDRE performance optimization studies.

  11. Interior. Balance room for chemistry laboratory. Storage room for glassware ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior. Balance room for chemistry laboratory. Storage room for glassware and reference room with frequently used chemistry and chemical engineering texts. - Thomas A. Edison Laboratories, Building No. 2, Main Street & Lakeside Avenue, West Orange, Essex County, NJ

  12. The Relationship Between Responses to Science Concepts on a Semantic Differential Instrument and Achievement in Freshman Physics and Chemistry.

    ERIC Educational Resources Information Center

    Rothman, Arthur Israel

    Students taking freshman physics and freshman chemistry at The State University of New York at Buffalo (SUNYAB) were administered a science-related semantic differential instrument. This same test was administered to physics and chemistry graduate students from SUNYAB and the University of Rochester. A scoring procedure was developed which…

  13. Analysis of High School Physics, Chemistry and Biology Curriculums in Terms of Scientific Literacy Themes

    ERIC Educational Resources Information Center

    Erdogan, Melek Nur; Koseoglu, Fitnat

    2012-01-01

    The purpose of this study is to analyze 9th grade physics, chemistry and biology curriculums, which were implemented by the Ministry of Education since the academic year 2008-2009, in terms of scientific literacy themes and the balance of these themes and also to examine the quality of statements about objectives. Physics, chemistry, and biology…

  14. Advisory Council on College Chemistry Newsletter Number 16.

    ERIC Educational Resources Information Center

    Advisory Council on Coll. Chemistry.

    Discussed are the goals of the Advisory Council on College Chemistry and the effect on College Chemistry of termination of National Science Foundation funding. Reported are conferences on (1) the relevance of thermodynamics to chemists and engineers and its place in a chemistry curriculum, (2) new approaches to teaching thermodynamics in an…

  15. The effects of experience and attrition for novice high-school science and mathematics teachers.

    PubMed

    Henry, Gary T; Fortner, C Kevin; Bastian, Kevin C

    2012-03-02

    Because of the current high proportion of novice high-school teachers, many students' mastery of science and mathematics depends on the effectiveness of early-career teachers. In this study, which used value-added models to analyze high-school teachers' effectiveness in raising test scores on 1.05 million end-of-course exams, we found that the effectiveness of high-school science and mathematics teachers increased substantially with experience but exhibited diminishing rates of return by their fourth year; that teachers of algebra 1, algebra 2, biology, and physical science who continued to teach for at least 5 years were more effective as novice teachers than those who left the profession earlier; and that novice teachers of physics, chemistry, physical science, geometry, and biology exhibited steeper growth in effectiveness than did novice non-science, technology, engineering, and mathematics teachers.

  16. Pathways to Careers in Federal Highway Research

    DOT National Transportation Integrated Search

    2017-02-16

    Our researchers at the Turner-Fairbank Highway Research Center are dedicated scientists and engineers. They are experts in more than 100 trans-portation-related fields including: CIVIL ENGINEERING STRUCTURAL ENGINEERING PAVEMENT ENGINEERING CHEMISTRY...

  17. Development of hydrogels for regenerative engineering.

    PubMed

    Guan, Xiaofei; Avci-Adali, Meltem; Alarçin, Emine; Cheng, Hao; Kashaf, Sara Saheb; Li, Yuxiao; Chawla, Aditya; Jang, Hae Lin; Khademhosseini, Ali

    2017-05-01

    The aim of regenerative engineering is to restore complex tissues and biological systems through convergence in the fields of advanced biomaterials, stem cell science, and developmental biology. Hydrogels are one of the most attractive biomaterials for regenerative engineering, since they can be engineered into tissue mimetic 3D scaffolds to support cell growth due to their similarity to native extracellular matrix. Advanced nano- and micro-technologies have dramatically increased the ability to control properties and functionalities of hydrogel materials by facilitating biomimetic fabrication of more sophisticated compositions and architectures, thus extending our understanding of cell-matrix interactions at the nanoscale. With this perspective, this review discusses the most commonly used hydrogel materials and their fabrication strategies for regenerative engineering. We highlight the physical, chemical, and functional modulation of hydrogels to design and engineer biomimetic tissues based on recent achievements in nano- and micro-technologies. In addition, current hydrogel-based regenerative engineering strategies for treating multiple tissues, such as musculoskeletal, nervous and cardiac tissue, are also covered in this review. The interaction of multiple disciplines including materials science, cell biology, and chemistry, will further play an important role in the design of functional hydrogels for the regeneration of complex tissues. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Physics and Its Interfaces with Medicinal Chemistry and Drug Design

    NASA Astrophysics Data System (ADS)

    Santos, Ricardo N.; Andricopulo, Adriano D.

    2013-08-01

    Medicinal chemistry is a multidisciplinary subject that integrates knowledge from a variety of fields of science, including, but not limited to, chemistry, biology, and physics. The area of drug design involves the cooperative work of scientists with a diverse range of backgrounds and technical skills, trying to tackle complex problems using an integration of approaches and methods. One important contribution to this field comes from physics through studies that attempt to identify and quantify the molecular interactions between small molecules (drugs) and biological targets (receptors), such as the forces that govern the interactions, the thermodynamics of the drug-receptor interactions, and so on. In this context, the interfaces of physics, medicinal chemistry, and drug design are of vital importance for the development of drugs that not only have the right chemistry but also the right intermolecular properties to interact at the macromolecular level, providing useful information about the principles and molecular mechanisms underlying the therapeutic action of drugs. This article highlights some of the most important connections between physics and medicinal chemistry in the design of new drugs.

  19. Physical chemistry of Nanogap-Enhanced Raman Scattering (NERS)

    NASA Astrophysics Data System (ADS)

    Suh, Yung Doug; Kim, Hyun Woo

    2017-08-01

    Plasmonically coupled electromagnetic field localization has generated a variety of new concepts and applications, and this has been one of the hottest topics in nanoscience, materials science, chemistry, physics and engineering and increasingly more important over the last decade. In particular, plasmonically coupled nanostructures with ultra-small gap ( 1-nm or smaller) gap have been of special interest due to their ultra-strong optical properties that can be useful for a variety of signal enhancements such surface-enhanced Raman scattering (SERS) and nanoantenna. These promising nanostructures with extraordinarily strong optical signal, however, have rendered a limited success in widespread use and commercialization largely due to the lack of designing principles, high-yield synthetic strategies with nm-level structural controllability and reproducibility and lack of systematic single-molecule and single-particle level studies. All these are extremely important challenges because even small changes ( 1 nm) of the coupled nanogap structures can significant affect plasmon mode and signal intensity and therefore structural and signal reproducibility and controllability can be in question. The plasmonic nanogap-enhanced Raman scattering (NERS) is defined as the plasmonic nanogap-based Raman signal enhancement within plasmonic nanogap particles with 1 nm gap and a Raman dye positioned inside the gap.

  20. Intentions and actions in molecular self-assembly: perspectives on students' language use

    NASA Astrophysics Data System (ADS)

    Höst, Gunnar E.; Anward, Jan

    2017-04-01

    Learning to talk science is an important aspect of learning to do science. Given that scientists' language frequently includes intentions and purposes in explanations of unobservable objects and events, teachers must interpret whether learners' use of such language reflects a scientific understanding or inaccurate anthropomorphism and teleology. In the present study, a framework consisting of three 'stances' (Dennett, 1987) - intentional, design and physical - is presented as a powerful tool for analysing students' language use. The aim was to investigate how the framework can be differentiated and used analytically for interpreting students' talk about a molecular process. Semi-structured group discussions and individual interviews about the molecular self-assembly process were conducted with engineering biology/chemistry (n = 15) and biology/chemistry teacher students (n = 6). Qualitative content analysis of transcripts showed that all three stances were employed by students. The analysis also identified subcategories for each stance, and revealed that intentional language with respect to molecular movement and assumptions about design requirements may be potentially problematic areas. Students' exclusion of physical stance explanations may indicate literal anthropomorphic interpretations. Implications for practice include providing teachers with a tool for scaffolding their use of metaphorical language and for supporting students' metacognitive development as scientific language users.

  1. Making Sense of the Arrow-Pushing Formalism among Chemistry Majors Enrolled in Organic Chemistry

    ERIC Educational Resources Information Center

    Ferguson, Robert; Bodner, George M.

    2008-01-01

    This paper reports results of a qualitative study of sixteen students enrolled in a second year organic chemistry course for chemistry and chemical engineering majors. The focus of the study was student use of the arrow-pushing formalism that plays a central role in both the teaching and practice of organic chemistry. The goal of the study was to…

  2. Factors Shaping the Human Exposome in the Built Environment: Opportunities for Engineering Control.

    PubMed

    Dai, Dongjuan; Prussin, Aaron J; Marr, Linsey C; Vikesland, Peter J; Edwards, Marc A; Pruden, Amy

    2017-07-18

    The "exposome" is a term describing the summation of one's lifetime exposure to microbes and chemicals. Such exposures are now recognized as major drivers of human health and disease. Because humans spend ∼90% of their time indoors, the built environment exposome merits particular attention. Herein we utilize an engineering perspective to advance understanding of the factors that shape the built environment exposome and its influence on human wellness and disease, while simultaneously informing development of a framework for intentionally controlling the exposome to protect public health. Historically, engineers have been focused on controlling chemical and physical contaminants and on eradicating microbes; however, there is a growing awareness of the role of "beneficial" microbes. Here we consider the potential to selectively control the materials and chemistry of the built environment to positively influence the microbial and chemical components of the indoor exposome. Finally, we discuss research gaps that must be addressed to enable intentional engineering design, including the need to define a "healthy" built environment exposome and how to control it.

  3. Toxicity Evaluation of Engineered Nanomaterials (Phase 1 Studies)

    DTIC Science & Technology

    2012-01-01

    Surface Chemistry on Cellular Response ...................................................................................................... 48...Gold Nanomaterial Solution Purity and Surface Chemistry Toxicity ................................................................. 18 Figure 7...Solution Purity and Surface Chemistry Control Although several studies have shown that both MPS and PEG are biocompatible, in order to ensure that

  4. Zero and root loci of disturbed spring–mass systems

    PubMed Central

    Lecomte, Christophe

    2014-01-01

    Models consisting of chains of particles that are coupled to their neighbours appear in many applications in physics or engineering, such as in the study of dynamics of mono-atomic and multi-atomic lattices, the resonances of crystals with impurities and the response of damaged bladed discs. Analytical properties of the dynamic responses of such disturbed chains of identical springs and masses are presented, including when damping is present. Several remarkable properties in the location of the resonances (poles) and anti-resonances (zeros) of the displacements in the frequency domain are presented and proved. In particular, it is shown that there exists an elliptical region in the frequency–disturbance magnitude plane from which zeros are excluded and the discrete values of the frequency and disturbance at which double poles occur are identified. A particular focus is on a local disturbance, such as when a spring or damper is modified at or between the first and last masses. It is demonstrated how, notably through normalization, the techniques and results of the paper apply to a broad category of more complex systems in physics, chemistry and engineering. PMID:24711724

  5. Cancer Prevention and Control Research Manpower Development

    DTIC Science & Technology

    1997-10-01

    of Lagos, Akoka, Lagos, Nigeria B.S. 1975 Chemistry Atlanta University, Atlanta, GA M.S. 1982 Physical Chemistry Georgia Institute of Technology...1992 Instructor of Hands on Laboratory Procedures in Physical Science Kindergarten through K8 Teachers in Atlanta Public School System. 1988-1990...Spectrum of Chlorine Nitrate and Evidence for the Existence of C1OONO. Journal of Physical Chemistry (1983), 87, 1091. 10

  6. The Six Core Theories of Modern Physics

    NASA Astrophysics Data System (ADS)

    Stevens, Charles F.

    1996-09-01

    Charles Stevens, a prominent neurobiologist who originally trained as a biophysicist (with George Uhlenbeck and Mark Kac), wrote this book almost by accident. Each summer he found himself reviewing key areas of physics that he had once known and understood well, for use in his present biological research. Since there was no book, he created his own set of notes, which formed the basis for this brief, clear, and self-contained summary of the basic theoretical structures of classical mechanics, electricity and magnetism, quantum mechanics, statistical physics, special relativity, and quantum field theory. The Six Core Theories of Modern Physics can be used by advanced undergraduates or beginning graduate students as a supplement to the standard texts or for an uncluttered, succinct review of the key areas. Professionals in such quantitative sciences as chemistry, engineering, computer science, applied mathematics, and biophysics who need to brush up on the essentials of a particular area will find most of the required background material, including the mathematics.

  7. Combining research in physical chemistry and chemical education: Part A. The femtosecond molecular dynamics of small gas-phase anion clusters. Part B. Surveying student beliefs about chemistry and the development of physical chemistry learning tutorials

    NASA Astrophysics Data System (ADS)

    Barbera, Jack

    2007-12-01

    This dissertation combines work in the areas of experimental physical chemistry and chemical education. In the area of physical chemistry, femtosecond pump-probe spectroscopy is used to interrogate the time-dependence for energy redistribution, solvent reorientation, and dissociation dynamics in small gas-phase anion clusters. The chemical education research addressed in this manuscript include the development and validation of a survey to measure students' beliefs about chemistry and the learning of chemistry and the development and testing of learning tutorials for use in undergraduate physical chemistry courses in thermodynamics and kinetics. In the first part of this dissertation, the Cu(CD3OD) dynamics are investigated using a combination of femtosecond pump-probe experiments and ab initio calculations. Dissociation of this complex into Cu and CD3OD occurs on two distinct time scales: 3 and 30 ps, which arise, respectively, from the coupling of intermolecular solvent rotations and excited methyl rotor rotation into the Cu-O dissociation component upon electron photodetachment of the precursor anion. In the second part of this dissertation, the time-resolved recombination of photodissociated IBr-(CO2)n (n = 5 - 10) cluster anions is investigated. Upon excitation to the A' 2pi 1/2 state of the chromophore, the bare anion results in I- and Br products, upon solvation with CO2, the IBr- chromophore regains near-IR absorption after recombination and vibrational relaxation on the ground electronic state. The recombination times vary with the number of solvent molecules from 12 ps for n = 5 to 900 ps for n = 10. Extensive electronic structure and non-adiabatic molecular dynamic simulations provide a framework to understand this behavior. In the third part of this dissertation, the modification and validation of the Colorado Learning Attitudes about Science Survey (CLASS) for use in chemistry is presented in detail. The CLASS survey is designed to measure student beliefs about chemistry and the learning of chemistry. This instrument is a modification of the original CLASS-Phys survey designed for use in physics. Statements on the chemistry version (CLASS-Chem) are validated using chemistry students with a broad range of experience levels to ensure clarity in wording and meaning. The chemistry version addresses additional belief areas important in learning chemistry but not physics, specifically, beliefs about reactions and molecular structure. Statements are grouped into statistically robust categories using reduced basis factor analysis. The final part of this dissertation addresses the development and testing of learning tutorials for use in undergraduate physical chemistry. The tutorials are designed to promote the active mental engagement of students in the process of learning. Questions within the pencil-paper format guide students through the reasoning needed to apply concepts to real-world situations. Each tutorial is connected to a physical model or computer simulation providing students with additional hands-on investigations to strengthen their connection with the concepts addressed in the tutorial. Currently tutorials connected with the First and Second Laws of Thermodynamics as well as Kinetics have been developed and tested.

  8. In situ magnetic resonance measurement of conversion, hydrodynamics and mass transfer during single- and two-phase flow in fixed-bed reactors.

    PubMed

    Gladden, L F; Alexander, P; Britton, M M; Mantle, M D; Sederman, A J; Yuen, E H L

    2003-01-01

    In recent years there has been increasing interest in applying magnetic resonance (MR) techniques in areas of engineering and chemical technology. The science that underpins many of these applications is the physics and chemistry of transport and reaction processes in porous materials. Key to the exploitation of MR methods will be our ability to demonstrate that MR yields information that cannot be obtained using conventional measurement techniques in engineering research. This article describes two case studies that highlight the power of MR to give new insights to chemical engineers. First, we demonstrate the application of MR techniques to explore both mass transfer and chemical conversion in situ within a fixed bed of catalyst, and we then use these data to identify the rate-controlling step of the chemical conversion. Second, we implement a rapid imaging technique to study the stability of the gas-liquid distribution in the low- and high-interaction two-phase flow regimes in a trickle-bed reactor.

  9. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery

    PubMed Central

    Zrazhevskiy, Pavel; Sena, Mark; Gao, Xiaohu

    2011-01-01

    The emerging field of bionanotechnology aims at revolutionizing biomedical research and clinical practice via introduction of nanoparticle-based tools, expanding capabilities of existing investigative, diagnostic, and therapeutic techniques as well as creating novel instruments and approaches for addressing challenges faced by medicine. Quantum dots (QDs), semiconductor nanoparticles with unique photo-physical properties, have become one of the dominant classes of imaging probes as well as universal platforms for engineering of multifunctional nanodevices. Possessing versatile surface chemistry and superior optical features, QDs have found initial use in a variety of in vitro and in vivo applications. However, careful engineering of QD probes guided by application-specific design criteria is becoming increasingly important for successful transition of this technology from proof-of-concept studies towards real-life clinical applications. This review outlines the major design principles and criteria, from general ones to application-specific, governing the engineering of novel QD probes satisfying the increasing demands and requirements of nanomedicine and discusses the future directions of QD-focused bionanotechnology research (critical review, 201 references). PMID:20697629

  10. Systems Biocatalysis: Development and engineering of cell-free "artificial metabolisms" for preparative multi-enzymatic synthesis.

    PubMed

    Fessner, Wolf-Dieter

    2015-12-25

    Systems Biocatalysis is an emerging concept of organizing enzymes in vitro to construct complex reaction cascades for an efficient, sustainable synthesis of valuable chemical products. The strategy merges the synthetic focus of chemistry with the modular design of biological systems, which is similar to metabolic engineering of cellular production systems but can be realized at a far lower level of complexity from a true reductionist approach. Such operations are free from material erosion by competing metabolic pathways, from kinetic restrictions by physical barriers and regulating circuits, and from toxicity problems with reactive foreign substrates, which are notorious problems in whole-cell systems. A particular advantage of cell-free concepts arises from the inherent opportunity to construct novel biocatalytic reaction systems for the efficient synthesis of non-natural products ("artificial metabolisms") by using enzymes specifically chosen or engineered for non-natural substrate promiscuity. Examples illustrating the technology from our laboratory are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Nuclear Magnetic Resonance (NMR) Spectroscopic Characterization of Nanomaterials and Biopolymers

    NASA Astrophysics Data System (ADS)

    Guo, Chengchen

    Nanomaterials have attracted considerable attention in recent research due to their wide applications in various fields such as material science, physical science, electrical engineering, and biomedical engineering. Researchers have developed many methods for synthesizing different types of nanostructures and have further applied them in various applications. However, in many cases, a molecular level understanding of nanoparticles and their associated surface chemistry is lacking investigation. Understanding the surface chemistry of nanomaterials is of great significance for obtaining a better understanding of the properties and functions of the nanomaterials. Nuclear magnetic resonance (NMR) spectroscopy can provide a familiar means of looking at the molecular structure of molecules bound to surfaces of nanomaterials as well as a method to determine the size of nanoparticles in solution. Here, a combination of NMR spectroscopic techniques including one- and two-dimensional NMR spectroscopies was used to investigate the surface chemistry and physical properties of some common nanomaterials, including for example, thiol-protected gold nanostructures and biomolecule-capped silica nanoparticles. Silk is a natural protein fiber that features unique properties such as excellent mechanical properties, biocompatibility, and non-linear optical properties. These appealing physical properties originate from the silk structure, and therefore, the structural analysis of silk is of great importance for revealing the mystery of these impressive properties and developing novel silk-based biomaterials as well. Here, solid-state NMR spectroscopy was used to elucidate the secondary structure of silk proteins in N. clavipes spider dragline silk and B. mori silkworm silk. It is found that the Gly-Gly-X (X=Leu, Tyr, Gln) motif in spider dragline silk is not in a beta-sheet or alpha-helix structure and is very likely to be present in a disordered structure with evidence for 31-helix confirmation. In addition, the conformations of the Ala, Ser, and Tyr residues in silk fibroin of B. mori were investigated and it indicates that the Ala, Ser, and Tyr residues are all present in disordered structures in silk I (before spinning), while show different conformations in silk II (after spinning). Specifically, in silk II, the Ala and Tyr residues are present in both disordered structures and beta-sheet structures, and the Ser residues are present primarily in beta-sheet structures.

  12. Interdisciplinary Learning for Chemical Engineering Students from Organic Chemistry Synthesis Lab to Reactor Design to Separation

    ERIC Educational Resources Information Center

    Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph

    2008-01-01

    A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…

  13. Reduced Chemical Kinetic Mechanisms for Hydrocarbon Fuels

    DTIC Science & Technology

    2006-01-01

    Technologies Reaction Engineering International 77 West 200 South, Suite # 210 Salt Lake City, UT 84101 3Professor Department of Mechanical ... Engineering University of California, Berkeley Berkeley, CA 94720 4Program Leader for Computational Chemistry Lawrence Livermore National Laboratory...species by the error introduced by assuming they are in quasi-steady state. The reduced mechanisms have been compared to detailed chemistry calculations

  14. An Introduction to Boiler Water Chemistry for the Marine Engineer: A Text of Audio-Tutorial Instruction.

    ERIC Educational Resources Information Center

    Schlenker, Richard M.; And Others

    Presented is a manuscript for an introductory boiler water chemistry course for marine engineer education. The course is modular, self-paced, audio-tutorial, contract graded and combined lecture-laboratory instructed. Lectures are presented to students individually via audio-tapes and 35 mm slides. The course consists of a total of 17 modules -…

  15. Physics and chemistry-driven artificial neural network for predicting bioactivity of peptides and proteins and their design.

    PubMed

    Huang, Ri-Bo; Du, Qi-Shi; Wei, Yu-Tuo; Pang, Zong-Wen; Wei, Hang; Chou, Kuo-Chen

    2009-02-07

    Predicting the bioactivity of peptides and proteins is an important challenge in drug development and protein engineering. In this study we introduce a novel approach, the so-called "physics and chemistry-driven artificial neural network (Phys-Chem ANN)", to deal with such a problem. Unlike the existing ANN approaches, which were designed under the inspiration of biological neural system, the Phys-Chem ANN approach is based on the physical and chemical principles, as well as the structural features of proteins. In the Phys-Chem ANN model the "hidden layers" are no longer virtual "neurons", but real structural units of proteins and peptides. It is a hybridization approach, which combines the linear free energy concept of quantitative structure-activity relationship (QSAR) with the advanced mathematical technique of ANN. The Phys-Chem ANN approach has adopted an iterative and feedback procedure, incorporating both machine-learning and artificial intelligence capabilities. In addition to making more accurate predictions for the bioactivities of proteins and peptides than is possible with the traditional QSAR approach, the Phys-Chem ANN approach can also provide more insights about the relationship between bioactivities and the structures involved than the ANN approach does. As an example of the application of the Phys-Chem ANN approach, a predictive model for the conformational stability of human lysozyme is presented.

  16. Evolution of the teachings of chemistry in the new degrees of School of Agricultural Engineering and its importance in the acquisition of competencies

    NASA Astrophysics Data System (ADS)

    Arce, Augusto; Tarquis, Ana M.; Castellanos, Maria Teresa; Requejo, Maria Isabel; Cartagena, Maria Carmen

    2014-05-01

    The academic year 2012-13 is the third year of implementation of the Bologna process in ETSI Agricultural for the subjects Chemistry I and Chemistry II in the new four Degrees: Graduate in Engineering and Agricultural Science, Food Engineering Graduate, Graduate in Engineering Environmental and Biotechnology graduate. We have implemented new interactive methodologies in the teaching-learning process based on the use of the virtual platform of the UPM, and teaching support materials and new laboratory practice developing has. It has also launched new continuous assessment systems that promote active student participation. A comparative study of academic achievements by students of the new grades in the subjects of chemistry during the last three academic years was performed to correlating the results obtained, the success rate and the drop out, and compare with the level of prior knowledge to those entering students. Possible solutions to try and fix these results in future courses are proposed Finally, the general competencies that contribute this course, how they are acquired and how they should be evaluated correctly are indicated. Acknowledgments: Innovation educative projects Nº IE02054-11/12 UPM. 2012

  17. Tutorial on X-Ray Free-Electron Lasers

    DOE PAGES

    Carlsten, Bruce E.

    2018-05-02

    This article provides a tutorial on X-ray free-electron lasers (XFELs) which are currently being designed, built, commissioned, and operated as fourth-generation light sources to enable discovery science in materials science, biology, and chemistry. XFELs are complex devices, driven by high-energy, high-brightness electron accelerators and cost on the order of $B. Here, we provide a basic introduction to their operating physics and a description of their main accelerator components. To make their basic operating principle accessible to the electrical engineering community, we rederive the FEL dispersion relation in a manner similar to that done for traveling-wave tubes. We finish with sectionsmore » describing some unique features of the X-rays generated and on the physics that lead to the main design limitations, including approaches for mitigation.« less

  18. Tutorial on X-Ray Free-Electron Lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsten, Bruce E.

    This article provides a tutorial on X-ray free-electron lasers (XFELs) which are currently being designed, built, commissioned, and operated as fourth-generation light sources to enable discovery science in materials science, biology, and chemistry. XFELs are complex devices, driven by high-energy, high-brightness electron accelerators and cost on the order of $B. Here, we provide a basic introduction to their operating physics and a description of their main accelerator components. To make their basic operating principle accessible to the electrical engineering community, we rederive the FEL dispersion relation in a manner similar to that done for traveling-wave tubes. We finish with sectionsmore » describing some unique features of the X-rays generated and on the physics that lead to the main design limitations, including approaches for mitigation.« less

  19. KSC-2012-2761

    NASA Image and Video Library

    2012-05-14

    CAPE CANAVERAL, Fla. – Dr. Phil Metzger demonstrates an experiment to study the physics of granular materials to students in the Granular Physics and Regolith Operations Lab at the Space Life Sciences Lab facility. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann

  20. Physics and Biology Collaborate to Color the World

    ERIC Educational Resources Information Center

    Liu, Dennis W. C.

    2013-01-01

    To understand how life works, it is essential to understand physics and chemistry. Most biologists have a clear notion of where chemistry fits into their life sciences research and teaching. Although we are physical beings, physics does not always find a place in the biology curriculum. Physics informs and enlightens biology in myriad dimensions,…

  1. City of Huntsville Public Housing Areas STEM Initiative Project

    NASA Astrophysics Data System (ADS)

    Colon, Tomeka; Smith, Cydale; Pugh, Marcus; Budak, Satilmis; Muntele, Claudiu

    2012-02-01

    Students in high-poverty and high-minority schools are entering the classroom without the knowledge and skills they need to succeed. In order to bridge the gaps in opportunity and achievement that separate low-income students and students of color from other young Americans, we have introduced elementary and middle school students to the basic concepts of biology, chemistry, physics, and engineering. Within the project, we have provided students with excellent learning opportunities, engaging hands-on experiences, and outstanding advising and mentoring. We have assessed student development and impact before, during, and after the program.

  2. NASA aerospace database subject scope: An overview

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Outlined here is the subject scope of the NASA Aerospace Database, a publicly available subset of the NASA Scientific and Technical (STI) Database. Topics of interest to NASA are outlined and placed within the framework of the following broad aerospace subject categories: aeronautics, astronautics, chemistry and materials, engineering, geosciences, life sciences, mathematical and computer sciences, physics, social sciences, space sciences, and general. A brief discussion of the subject scope is given for each broad area, followed by a similar explanation of each of the narrower subject fields that follow. The subject category code is listed for each entry.

  3. Investigation of chemically-reacting supersonic internal flows

    NASA Technical Reports Server (NTRS)

    Chitsomboon, T.; Tiwari, S. N.

    1985-01-01

    This report covers work done on the research project Analysis and Computation of Internal Flow Field in a Scramjet Engine. The work is supported by the NASA Langley Research Center (Computational Methods Branch of the High-Speed Aerodynamics Division) through research grant NAG1-423. The governing equations of two-dimensional chemically-reacting flows are presented together with the global two-step chemistry model. The finite-difference algorithm used is illustrated and the method of circumventing the stiffness is discussed. The computer program developed is used to solve two model problems of a premixed chemically-reacting flow. The results obtained are physically reasonable.

  4. Effects of engine emissions from high-speed civil transport aircraft: A two-dimensional modeling study, part 2

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra K.; Sze, Nein Dak; Shia, Run-Lie; Rodriguez, Jose M.; Heisey, Curtis

    1991-01-01

    The AER two-dimensional chemistry-transport model is used to study the effect of supersonic and subsonic aircraft operation in the 2010 atmosphere on stratospheric ozone (O3). The results show that: (1) the calculated O3 response is smaller in the 2010 atmosphere compared to previous calculations performed in the 1980 atmosphere; (2) with the emissions provided, the calculated decrease in O3 column is less than 1 percent; and (3) the effect of model grid resolution on O3 response is small provided that the physics is not modified.

  5. Exploring the relationship between the engineering and physical sciences and the health and life sciences by advanced bibliometric methods.

    PubMed

    Waltman, Ludo; van Raan, Anthony F J; Smart, Sue

    2014-01-01

    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the 'EPS-HLS interface' is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade.

  6. Exploring the Relationship between the Engineering and Physical Sciences and the Health and Life Sciences by Advanced Bibliometric Methods

    PubMed Central

    Waltman, Ludo; van Raan, Anthony F. J.; Smart, Sue

    2014-01-01

    We investigate the extent to which advances in the health and life sciences (HLS) are dependent on research in the engineering and physical sciences (EPS), particularly physics, chemistry, mathematics, and engineering. The analysis combines two different bibliometric approaches. The first approach to analyze the ‘EPS-HLS interface’ is based on term map visualizations of HLS research fields. We consider 16 clinical fields and five life science fields. On the basis of expert judgment, EPS research in these fields is studied by identifying EPS-related terms in the term maps. In the second approach, a large-scale citation-based network analysis is applied to publications from all fields of science. We work with about 22,000 clusters of publications, each representing a topic in the scientific literature. Citation relations are used to identify topics at the EPS-HLS interface. The two approaches complement each other. The advantages of working with textual data compensate for the limitations of working with citation relations and the other way around. An important advantage of working with textual data is in the in-depth qualitative insights it provides. Working with citation relations, on the other hand, yields many relevant quantitative statistics. We find that EPS research contributes to HLS developments mainly in the following five ways: new materials and their properties; chemical methods for analysis and molecular synthesis; imaging of parts of the body as well as of biomaterial surfaces; medical engineering mainly related to imaging, radiation therapy, signal processing technology, and other medical instrumentation; mathematical and statistical methods for data analysis. In our analysis, about 10% of all EPS and HLS publications are classified as being at the EPS-HLS interface. This percentage has remained more or less constant during the past decade. PMID:25360616

  7. Corrosion chemistry closing comments: opportunities in corrosion science facilitated by operando experimental characterization combined with multi-scale computational modelling.

    PubMed

    Scully, John R

    2015-01-01

    Recent advances in characterization tools, computational capabilities, and theories have created opportunities for advancement in understanding of solid-fluid interfaces at the nanoscale in corroding metallic systems. The Faraday Discussion on Corrosion Chemistry in 2015 highlighted some of the current needs, gaps and opportunities in corrosion science. Themes were organized into several hierarchical categories that provide an organizational framework for corrosion. Opportunities to develop fundamental physical and chemical data which will enable further progress in thermodynamic and kinetic modelling of corrosion were discussed. These will enable new and better understanding of unit processes that govern corrosion at the nanoscale. Additional topics discussed included scales, films and oxides, fluid-surface and molecular-surface interactions, selected topics in corrosion science and engineering as well as corrosion control. Corrosion science and engineering topics included complex alloy dissolution, local corrosion, and modelling of specific corrosion processes that are made up of collections of temporally and spatially varying unit processes such as oxidation, ion transport, and competitive adsorption. Corrosion control and mitigation topics covered some new insights on coatings and inhibitors. Further advances in operando or in situ experimental characterization strategies at the nanoscale combined with computational modelling will enhance progress in the field, especially if coupling across length and time scales can be achieved incorporating the various phenomena encountered in corrosion. Readers are encouraged to not only to use this ad hoc organizational scheme to guide their immersion into the current opportunities in corrosion chemistry, but also to find value in the information presented in their own ways.

  8. Quantum Feynman Ratchet

    NASA Astrophysics Data System (ADS)

    Goyal, Ketan; Kawai, Ryoichi

    As nanotechnology advances, understanding of the thermodynamic properties of small systems becomes increasingly important. Such systems are found throughout physics, biology, and chemistry manifesting striking properties that are a direct result of their small dimensions where fluctuations become predominant. The standard theory of thermodynamics for macroscopic systems is powerless for such ever fluctuating systems. Furthermore, as small systems are inherently quantum mechanical, influence of quantum effects such as discreteness and quantum entanglement on their thermodynamic properties is of great interest. In particular, the quantum fluctuations due to quantum uncertainty principles may play a significant role. In this talk, we investigate thermodynamic properties of an autonomous quantum heat engine, resembling a quantum version of the Feynman Ratchet, in non-equilibrium condition based on the theory of open quantum systems. The heat engine consists of multiple subsystems individually contacted to different thermal environments.

  9. The growing importance of geo-scientists in the global oil field service industry

    NASA Astrophysics Data System (ADS)

    Schwartz, L.

    2005-12-01

    Schlumberger is often seen as a physics, chemistry and engineering company whose primary businesses are directional drilling, well logging, cementing, perforating and stimulation. However, in the future we see enormous potential for growth in the areas of seismic for reservoir monitoring, production services and project management. To succeed we will have to greatly strengthen our geo-technical workforce - geologists, geophysicists, drilling, reservoir and petroleum engineers. This will involve recruiting new graduates and developing their careers in addition to mid-career hiring. For the last 25 years, we have developed a culture of hiring in the countries where we work and of career development for employees of all nationalities. I will review our recruiting, training and university relations efforts and will discuss the adjustments we have made to effectively manage the growth of our geo-technical community.

  10. Monthly Progress Report No. 60 for April 1948

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Various

    This report gives a short summary of each of the following programs: (1) 184-inch Cyclotron Program; (2) 60-inch Cyclotron Program; (3) Synchrotron Program; (4) Linear Accelerator Program; (5) Experimental Physics; (6) Theoretical Physics; (7) Chemistry; (8) Medical Physics; and (9) Health Physics and Chemistry.

  11. Integrating Computational Chemistry into the Physical Chemistry Curriculum

    ERIC Educational Resources Information Center

    Johnson, Lewis E.; Engel, Thomas

    2011-01-01

    Relatively few undergraduate physical chemistry programs integrate molecular modeling into their quantum mechanics curriculum owing to concerns about limited access to computational facilities, the cost of software, and concerns about increasing the course material. However, modeling exercises can be integrated into an undergraduate course at a…

  12. Rethinking Undergraduate Physical Chemistry Curricula

    ERIC Educational Resources Information Center

    Miller, Stephen R.

    2016-01-01

    A summary of fundamental changes made to the undergraduate physical chemistry curriculum in the Chemistry Department at Gustavus Adolphus College (beginning in the 2013-2014 academic year) is presented. The yearlong sequence now consists of an introductory semester covering both quantum mechanics and thermodynamics/kinetics, followed by a second…

  13. Engineering the Mechanical Properties of Polymer Networks with Precise Doping of Primary Defects.

    PubMed

    Chan, Doreen; Ding, Yichuan; Dauskardt, Reinhold H; Appel, Eric A

    2017-12-06

    Polymer networks are extensively utilized across numerous applications ranging from commodity superabsorbent polymers and coatings to high-performance microelectronics and biomaterials. For many applications, desirable properties are known; however, achieving them has been challenging. Additionally, the accurate prediction of elastic modulus has been a long-standing difficulty owing to the presence of loops. By tuning the prepolymer formulation through precise doping of monomers, specific primary network defects can be programmed into an elastomeric scaffold, without alteration of their resulting chemistry. The addition of these monomers that respond mechanically as primary defects is used both to understand their impact on the resulting mechanical properties of the materials and as a method to engineer the mechanical properties. Indeed, these materials exhibit identical bulk and surface chemistry, yet vastly different mechanical properties. Further, we have adapted the real elastic network theory (RENT) to the case of primary defects in the absence of loops, thus providing new insights into the mechanism for material strength and failure in polymer networks arising from primary network defects, and to accurately predict the elastic modulus of the polymer system. The versatility of the approach we describe and the fundamental knowledge gained from this study can lead to new advancements in the development of novel materials with precisely defined and predictable chemical, physical, and mechanical properties.

  14. Biodegradable polyester-based microcarriers with modified surface tailored for tissue engineering.

    PubMed

    Privalova, A; Markvicheva, E; Sevrin, Ch; Drozdova, M; Kottgen, C; Gilbert, B; Ortiz, M; Grandfils, Ch

    2015-03-01

    Microcarriers have been proposed in tissue engineering, namely for bone, cartilage, skin, vascular, and central nervous system. Although polyester-based microcarriers have been already used for this purpose, their surface properties should be improved to provide better cell growth. The goal of this study was to prepare microbeads based on poly(D,L-lactide) acid, poly(L-lactide) acid, and to study cell behavior (adhesion, spreading, growth, and proliferation) in function of microbead topography and surface chemistry. To improve L-929 fibroblasts adhesion, microbead surface has been modified with three polycations: chitosan, poly(2-dimethylamino ethylmethacrylate) (PDMAEMA), or chitosan-g-oligolactide copolymer (chit-g-OLA). Although modification of the microbead surface with chitosan and PDMAEMA was performed through physical adsorption on the previously prepared microbeads, chit-g-OLA copolymer was introduced directly during microbead processing. This simple approach (1) bypass the use of an emulsifier (polyvinyl alcohol, PVA); (2) avoid surface "contamination" with PVA molecules limiting a control of the surface characteristics. In vitro study of the growth of mouse fibroblasts on the microbeads showed that both surface topography and chemistry affected cell attachment, spreading, and proliferation. Cultivation of L-929 fibroblasts for 7 days resulted in the formation of a 3D cell-scaffold network. © 2014 Wiley Periodicals, Inc.

  15. Black Boxes in Analytical Chemistry: University Students' Misconceptions of Instrumental Analysis

    ERIC Educational Resources Information Center

    Carbo, Antonio Domenech; Adelantado, Jose Vicente Gimeno; Reig, Francisco Bosch

    2010-01-01

    Misconceptions of chemistry and chemical engineering university students concerning instrumental analysis have been established from coordinated tests, tutorial interviews and laboratory lessons. Misconceptions can be divided into: (1) formal, involving specific concepts and formulations within the general frame of chemistry; (2)…

  16. Anisotropic noble metal nanoparticles: Synthesis, surface functionalization and applications in biosensing, bioimaging, drug delivery and theranostics.

    PubMed

    Paramasivam, Gokul; Kayambu, Namitharan; Rabel, Arul Maximus; Sundramoorthy, Ashok K; Sundaramurthy, Anandhakumar

    2017-02-01

    Anisotropic nanoparticles have fascinated scientists and engineering communities for over a century because of their unique physical and chemical properties. In recent years, continuous advances in design and fabrication of anisotropic nanoparticles have opened new avenues for application in various areas of biology, chemistry and physics. Anisotropic nanoparticles have the plasmon absorption in the visible as well as near-infrared (NIR) region, which enables them to be used for crucial applications such as biological imaging, medical diagnostics and therapy ("theranostics"). Here, we describe the progress in anisotropic nanoparticles achieved since the millennium in the area of preparation including various shapes and modification of the particle surface, and in areas of application by providing examples of applications in biosensing, bio-imaging, drug delivery and theranostics. Furthermore, we also explain various mechanisms involved in cellular uptake of anisotropic nanoparticles, and conclude with our opinion on various obstacles that limit their applications in biomedical field. Anisotropy at the molecular level has always fascinated scientists and engineering communities for over a century, however, the research on novel methods through which shape and size of nanoparticles can be precisely controlled has opened new avenues for anisotropic nanoparticles in various areas of biology, chemistry and physics. In this manuscript, we describe progress achieved since the millennium in the areas of preparation of various shapes of anisotropic nanoparticles, investigate various methods involved in modifying the surface of these NPs, and provide examples of applications in biosensing and bio-imaging, drug delivery and theranostics. We also present mechanisms involved in cellular uptake of nanoparticles, describe different methods of preparation of anisotropic nanoparticles including biomimetic and photochemical synthesis, and conclude with our opinion on various obstacles that limit their applications in biomedical field. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Chemistry and the Internal Combustion Engine II: Pollution Problems.

    ERIC Educational Resources Information Center

    Hunt, C. B.

    1979-01-01

    Discusses pollution problems which arise from the use of internal combustion (IC) engines in the United Kingdom (UK). The IC engine exhaust emissions, controlling IC engine pollution in the UK, and some future developments are also included. (HM)

  18. The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class

    ERIC Educational Resources Information Center

    Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R.

    2008-01-01

    Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. Marine aquaria and their life support systems feature many chemical processes. A life support system consists of the entire recirculation system, as well as the habitat tank and all ancillary…

  19. Upon Further Review: A Commodity Chemist on Green Chemistry

    NASA Astrophysics Data System (ADS)

    Carroll, William F.

    2016-09-01

    Green chemistry is most often thought of in the context of specialty or pharmaceutical chemicals where many synthetic chemistry approaches are in play. However, principles similar to those of green chemistry and engineering were employed over the years in reducing cost and increasing volume of chemicals that became commodities. This paper considers some of those principles, their impact, and some perspectives on the potential and limits associated with green chemistry for commodity chemicals.

  20. Systems chemistry: All in a spin

    NASA Astrophysics Data System (ADS)

    Clark, Lucy; Lightfoot, Philip

    2016-05-01

    A fundamental challenge in systems chemistry is to engineer the emergence of complex behaviour. The collective structures of metal cyanide chains have now been interpreted in the same manner as the myriad of magnetic phases displayed by frustrated spin systems, highlighting a symbiotic approach between systems chemistry and magnetism.

  1. Chemistry teaching in the new degrees of Agricultural Engineering

    NASA Astrophysics Data System (ADS)

    Arce, Augusto; Tarquis, Ana Maria; Castellanos, Maria Teresa; Requejo, Maria Isabel; Cartagena, Maria Carmen

    2013-04-01

    The academic year 2011-12 is the second one implementing Bologna process in ETSI at the subjects of Agricultural Chemistry I and Chemistry II in the new four Degrees: Graduate in Engineering and Agricultural Science, Food Engineering Graduate, Graduate Environmental and engineering Graduate in Biotechnology, for it has been necessary to design and implement new interactive methodologies in the teaching-learning process based on the use of the virtual platform of the UPM, implement new evaluation systems that promote continued participation active student and the development of educational materials to support the subjects of chemistry designed new degrees within the EEES. In addition to the above actions, an assessment test prior chemistry knowledge has been made to all students who enter into Agricultural Grades, improving laboratory practices and the comparative study of academic obtained by the students of the new grades in the subjects of chemistry during the year 2011-12 compared to the 2010-11 academic year. More than 15,000 data have showed a good correlation between the student's prior knowledge, the level test performed, test scores, the overall success rate of the course and the abandonment of the different degrees. Academic results show a higher percentage of students enrolled and presented on a greater number of passes on students enrolled in the 2011-12 academic year for students enrolled in the previous academic year. The improved results have influenced the actions taken and the level of knowledge with students entering. Finally, we propose possible solutions to fix these results in future courses, aiming to improve the degree of efficiency, success and significant absenteeism in the first year as it will condition the dropout rate of these new degrees. Acknowledgements: Proyecto de Innovación Educativa N° IE02054-11/12 UPM. 2012.

  2. LECTURES ON PHYSICS, BIOPHYSICS, AND CHEMISTRY FOR HIGH SCHOOL SCIENCE TEACHERS GIVEN AT THE ERNEST O. LAWRENCE RADIATION LABORATORY, BERKELEY, CALIFORNIA, JUNE-AUGUST 1959

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calhoon, E.C.; Starring, P.W. eds.

    1959-08-01

    Lectures given at the Ernest 0. Lawrence Radiation Laboratory on physics, biophysics, and chemistry for high school science teachers are presented. Topics covered include a mathematics review, atomic physics, nuclear physics, solid-state physics, elementary particles, antiparticies, design of experiments, high-energy particle accelerators, survey of particle detectors, emulsion as a particle detector, counters used in high-energy physics, bubble chambers, computer programming, chromatography, the transuranium elements, health physics, photosynthesis, the chemistry and physics of virus, the biology of virus, lipoproteins and heart disease, origin and evolution of the solar system, the role of space satellites in gathering astronomical data, and radiation andmore » life in space. (M.C.G.)« less

  3. Layered materials

    NASA Astrophysics Data System (ADS)

    Johnson, David; Clarke, Simon; Wiley, John; Koumoto, Kunihito

    2014-06-01

    Layered compounds, materials with a large anisotropy to their bonding, electrical and/or magnetic properties, have been important in the development of solid state chemistry, physics and engineering applications. Layered materials were the initial test bed where chemists developed intercalation chemistry that evolved into the field of topochemical reactions where researchers are able to perform sequential steps to arrive at kinetically stable products that cannot be directly prepared by other approaches. Physicists have used layered compounds to discover and understand novel phenomena made more apparent through reduced dimensionality. The discovery of charge and spin density waves and more recently the remarkable discovery in condensed matter physics of the two-dimensional topological insulating state were discovered in two-dimensional materials. The understanding developed in two-dimensional materials enabled subsequent extension of these and other phenomena into three-dimensional materials. Layered compounds have also been used in many technologies as engineers and scientists used their unique properties to solve challenging technical problems (low temperature ion conduction for batteries, easy shear planes for lubrication in vacuum, edge decorated catalyst sites for catalytic removal of sulfur from oil, etc). The articles that are published in this issue provide an excellent overview of the spectrum of activities that are being pursued, as well as an introduction to some of the most established achievements in the field. Clusters of papers discussing thermoelectric properties, electronic structure and transport properties, growth of single two-dimensional layers, intercalation and more extensive topochemical reactions and the interleaving of two structures to form new materials highlight the breadth of current research in this area. These papers will hopefully serve as a useful guideline for the interested reader to different important aspects in this field and an overview of current areas of research interest.

  4. Application of tunable diode laser absorption spectroscopy in the detection of oxygen

    NASA Astrophysics Data System (ADS)

    Zhou, Xin; Jin, Xing

    2015-10-01

    Most aircrafts is driven by chemic energy which is released in the combustion process. For improving the capability of engine and controlling the running on-time, the processes of fuel physics and chemistry need to be analysis by kinds of high quality sensor. In the research of designing and improving the processes of fuel physics and chemistry, the concentration, temperature and velocity of kinds of gas in the combustor need to be detected and measured. In addition, these engines and research equipments are always in the harsh environment of high temperature, high pressure and high speed. The harsh environment needs the sensor to be high reliability, well repetition, no cross- sensitivity between gases, and the traditional measurement system can't satisfy the metrical requirement well. Tunable diode laser absorption spectroscopy (TDLAS) analytic measurement technology can well satisfy the measurement in the harsh environment, which can support the whole measurement plan and high quality measurement system. Because the TDLAS sensor has the excellence of small bulk, light weight, high reliability and well specifically measurement, the TDLAS measurement technology has wide prospects. Different from most measurements, only a beam of laser can be pass through the measured environment by TDLAS, and the measurement equipment needn't be set in the harsh environment. So, the TDLAS equipment can't be interrupted by the measured equipment. The ability of subsistence in the harsh environment is very valuable, especially in the measurement on the subject of aerospace with environment of high speed, combustion and plasma. This paper focuses on the collecting the articles on the subject of oxygen detection of TDLAS. By analyzing the research and results of the articles, we conclude the central issues, difficulties and results. And we can get some instructive conclusions.

  5. Phase Equilibrium, Chemical Equilibrium, and a Test of the Third Law: Experiments for Physical Chemistry.

    ERIC Educational Resources Information Center

    Dannhauser, Walter

    1980-01-01

    Described is an experiment designed to provide an experimental basis for a unifying point of view (utilizing theoretical framework and chemistry laboratory experiments) for physical chemistry students. Three experiments are described: phase equilibrium, chemical equilibrium, and a test of the third law of thermodynamics. (Author/DS)

  6. Predicting fire frequency with chemistry and climate

    Treesearch

    Richard P. Guyette; Michael C. Stambaugh; Daniel C. Dey; Rose-Marie Muzika

    2012-01-01

    A predictive equation for estimating fire frequency was developed from theories and data in physical chemistry, ecosystem ecology, and climatology. We refer to this equation as the Physical Chemistry Fire Frequency Model (PC2FM). The equation was calibrated and validated with North American fire data (170 sites) prior to widespread industrial influences (before ...

  7. Introduction of Entropy via the Boltzmann Distribution in Undergraduate Physical Chemistry: A Molecular Approach

    ERIC Educational Resources Information Center

    Kozliak, Evguenii I.

    2004-01-01

    A molecular approach for introducing entropy in undergraduate physical chemistry course and incorporating the features of Davies' treatment that meets the needs of the students but ignores the complexities of statistics and upgrades the qualitative, intuitive approach of Lambert for general chemistry to a semiquantitative treatment using Boltzmann…

  8. Using Physics Principles in the Teaching of Chemistry.

    ERIC Educational Resources Information Center

    Gulden, Warren

    1996-01-01

    Presents three examples that show how students can use traditional physics principles or laws for the purpose of understanding chemistry better. Examples include Coulomb's Law and melting points, the Faraday Constant, and the Rydberg Constant. Presents a list of some other traditional topics in a chemistry course that could be enhanced by the…

  9. Understanding Academic Performance in Organic Chemistry

    ERIC Educational Resources Information Center

    Szu, Evan; Nandagopal, Kiruthiga; Shavelson, Richard J.; Lopez, Enrique J.; Penn, John H.; Scharberg, Maureen; Hill, Geannine W.

    2011-01-01

    Successful completion of organic chemistry is a prerequisite for many graduate and professional programs in science, technology, engineering, and mathematics, yet the failure rate for this sequence of courses is notoriously high. To date, few studies have examined why some students succeed while others have difficulty in organic chemistry. This…

  10. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  11. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Cruz-Ramírez de Arellano, Daniel; Towns, Marcy H.

    2014-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  12. Presidential Green Chemistry Challenge: 2014 Greener Synthetic Pathways Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2014 award winner, Solazyme, engineered microalgae to produce oils tailored to customers’ needs that can mimic or enhance properties of traditional vegetable oils.

  13. General Chemistry for Engineers.

    ERIC Educational Resources Information Center

    Kybett, B. D.

    1982-01-01

    Discusses the relationship between molecular structure, intermolecular forces, and tensile strengths of a polymer and suggests that this is a logical way to introduce polymers into a general chemistry course. (Author/JN)

  14. DI Diesel Performance and Emissions Models

    DTIC Science & Technology

    2003-06-11

    Skeletal mechanism for NOx chemistry in diesel engines ,” SAE Paper 981450, 1998 SAE Transactions, Vol. 107, Sect. 4, J. Fuels and... mechanism for NOx chemistry proposed by Mellor et al. (1998a) is incorporated in an engine simulation code. The two-zone model, also proposed by Mellor et...34Dynamic Application of a Skeletal Mechanism for DI Diesel NOx Emissions," SAE Paper 2001-01-1984, SAE Trans., J. Fuels & Lubricants,

  15. NOx Emissions from a Rotating Detonation-wave Engine

    NASA Astrophysics Data System (ADS)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2016-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. Results to date show that NOx emissions are not a problem for the RDE due to the short residence times and the nature of the flow field. Furthermore, simulations show that the amount of NOx can be further reduced by tailoring the fluid dynamics within the RDE.

  16. Chemical Kinetics in the expansion flow field of a rotating detonation-wave engine

    NASA Astrophysics Data System (ADS)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2014-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. A key step towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release.

  17. Predicting Scientific Understanding of Prospective Elementary Teachers: Role of Gender, Education Level, Courses in Science, and Attitudes Toward Science and Mathematics

    NASA Astrophysics Data System (ADS)

    Kumar, David D.; Morris, John D.

    2005-12-01

    A multiple regression analysis of the relationship between prospective teachers' scientific understanding and Gender, Education Level (High School, College), Courses in Science (Biology, Chemistry, Physics, Earth Science, Astronomy, and Agriculture), Attitude Towards Science, and Attitude Towards Mathematics is reported. Undergraduate elementary science students ( N = 176) in an urban doctoral-level university in the United States participated in this study. The results of this study showed Gender, completion of courses in High School Chemistry and Physics, College Chemistry and Physics, and Attitudes Toward Mathematics and Science significantly correlated with scientific understanding. Based on a regression model, Gender, and College Chemistry and Physics experiences added significant predictive accuracy to scientific understanding among prospective elementary teachers compared to the other variables.

  18. Physical Chemistry, Science (Experimental): 5318.60.

    ERIC Educational Resources Information Center

    Mary, Charlotta B.; Feuer, Jerold

    Performance objectives are stated for this secondary school instructional unit concerned with aspects of physical chemistry, involving the physical properties of matter, and laws and theories regarding chemical interaction. Lists of films and state-adopted and other texts are presented. Included are enrollment guidelines; an outline summarizing…

  19. Halogenase engineering and its utility in medicinal chemistry.

    PubMed

    Fraley, Amy E; Sherman, David H

    2018-06-15

    Halogenation is commonly used in medicinal chemistry to improve the potency of pharmaceutical leads. While synthetic methods for halogenation present selectivity and reactivity challenges, halogenases have evolved over time to perform selective reactions under benign conditions. The optimization of halogenation biocatalysts has utilized enzyme evolution and structure-based engineering alongside biotransformation in a variety of systems to generate stable site-selective variants. The recent improvements in halogenase-catalyzed reactions has demonstrated the utility of these biocatalysts for industrial purposes, and their ability to achieve a broad substrate scope implies a synthetic tractability with increasing relevance in medicinal chemistry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Attitudes towards chemistry among engineering students

    NASA Astrophysics Data System (ADS)

    Olivo Delgado, Carlos J.

    The attitudes towards chemistry of the engineering students enrolled in an introductory course at the Polytechnic University of Puerto Rico were explored (n = 115). A mixed methodology was used in an exploratory-oriented research approach. The first stage consisted of the administration of a Likert scale attitudinal survey which was validated during the study's design process. The survey allowed collecting information about the participant's attitudes towards their personal opinion, their perspectives about peer's or relatives' opinion, relevant aspects of the discipline, and difficulty-increasing factors in the chemistry course. The scale internal reliability was measured in a pilot study with a convenience simple, obtaining an acceptable coefficient (Cronbach alpha = 0.731). Survey results evidenced a mainly neutral attitude towards the chemistry course, not highly negative or highly positive, in contrast with other studies in this field. On the other hand, the normality hypothesis was tested for the scores obtained by participants in the survey. Although the pilot study sample had an approximately normal distribution, the scores in obtained by the participants in the survey failed the normality test criteria. The second stage of the study was accomplished using a case study. Among the survey participants, some students were invited to in-depth interviews to elucidate the reasons why they have certain attitudes towards chemistry. Study time, instructor, motivation, term of study, and course schedule are the factors that interviewees agreed as contributors to success or failure in the chemistry course. Interview's participants emphasized that study time is determinant to pass the class. This methodological approach, quantitative followed by qualitative, was useful in describing the attitudes towards chemistry among university students of engineering.

  1. Presidential Green Chemistry Challenge: 2010 Small Business Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2010 award winner, LS9, engineered microorganisms to convert fermentable sugars selectively to alkanes, olefins, fatty alcohols, or fatty esters, each in a single-unit biorefinery.

  2. Presidential Green Chemistry Challenge: 2003 Greener Reaction Conditions Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2003 award winner, DuPont, developed a genetically engineered microorganism jointly with Genencor International to manufacture 1,3-propanediol, a building block for Sorona polyester.

  3. Exploring the Relationship Between Students' Visual Spatial Abilities and Comprehension in STEM Fields

    NASA Astrophysics Data System (ADS)

    Cid, Ximena; Lopez, Ramon

    2011-10-01

    It is well known that student have difficulties with concepts in physics and space science as well as other STEM fields. Some of these difficulties may be rooted in student conceptual errors, whereas other difficulties may arise from issues with visual cognition and spatial intelligence. It has also been suggested that some aspects of high attrition rates from STEM fields can be attributed to students' visual spatial abilities. We will be presenting data collected from introductory courses in the College of Engineering, Department of Physics, Department of Chemistry, and the Department of Mathematics at the University of Texas at Arlington. These data examine the relationship between students' visual spatial abilities and comprehension in the subject matter. Where correlations are found to exist, visual spatial interventions can be implemented to reduce the attrition rates.

  4. Recent advances in the biomimicry of structural colours.

    PubMed

    Dumanli, Ahu Gümrah; Savin, Thierry

    2016-12-21

    Nature has mastered the construction of nanostructures with well-defined macroscopic effects and purposes. Structural colouration is a visible consequence of the particular patterning of a reflecting surface with regular structures at submicron length scales. Structural colours usually appear bright, shiny, iridescent or with a metallic look, as a result of physical processes such as diffraction, interference, or scattering with a typically small dissipative loss. These features have recently attracted much research effort in materials science, chemistry, engineering and physics, in order to understand and produce structural colours. In these early stages of photonics, researchers facing an infinite array of possible colour-producing structures are heavily inspired by the elaborate architectures they find in nature. We review here the recent technological strategies employed to artificially mimic the structural colours found in nature, as well as some of their current and potential applications.

  5. Overview of sports vision

    NASA Astrophysics Data System (ADS)

    Moore, Linda A.; Ferreira, Jannie T.

    2003-03-01

    Sports vision encompasses the visual assessment and provision of sports-specific visual performance enhancement and ocular protection for athletes of all ages, genders and levels of participation. In recent years, sports vision has been identified as one of the key performance indicators in sport. It is built on four main cornerstones: corrective eyewear, protective eyewear, visual skills enhancement and performance enhancement. Although clinically well established in the US, it is still a relatively new area of optometric specialisation elsewhere in the world and is gaining increasing popularity with eyecare practitioners and researchers. This research is often multi-disciplinary and involves input from a variety of subject disciplines, mainly those of optometry, medicine, physiology, psychology, physics, chemistry, computer science and engineering. Collaborative research projects are currently underway between staff of the Schools of Physics and Computing (DIT) and the Academy of Sports Vision (RAU).

  6. Bio-Inspired Self-Cleaning Surfaces

    NASA Astrophysics Data System (ADS)

    Liu, Kesong; Jiang, Lei

    2012-08-01

    Self-cleaning surfaces have drawn a lot of interest for both fundamental research and practical applications. This review focuses on the recent progress in mechanism, preparation, and application of self-cleaning surfaces. To date, self-cleaning has been demonstrated by the following four conceptual approaches: (a) TiO2-based superhydrophilic self-cleaning, (b) lotus effect self-cleaning (superhydrophobicity with a small sliding angle), (c) gecko setae-inspired self-cleaning, and (d) underwater organisms-inspired antifouling self-cleaning. Although a number of self-cleaning products have been commercialized, the remaining challenges and future outlook of self-cleaning surfaces are also briefly addressed. Through evolution, nature, which has long been a source of inspiration for scientists and engineers, has arrived at what is optimal. We hope this review will stimulate interdisciplinary collaboration among material science, chemistry, biology, physics, nanoscience, engineering, etc., which is essential for the rational design and reproducible construction of bio-inspired multifunctional self-cleaning surfaces in practical applications.

  7. Fundamentals of tribology at the atomic level

    NASA Technical Reports Server (NTRS)

    Ferrante, John; Pepper, Stephen V.

    1989-01-01

    Tribology, the science and engineering of solid surfaces in moving contact, is a field that encompasses many disciplines: solid state physics, chemistry, materials science, and mechanical engineering. In spite of the practical importance and maturity of the field, the fundamental understanding of basic phenomena has only recently been attacked. An attempt to define some of these problems and indicate some profitable directions for future research is presented. There are three broad classifications: (1) fluid properties (compression, rheology, additives and particulates); (2) material properties of the solids (deformation, defect formation and energy loss mechanisms); and (3) interfacial properties (adhesion, friction chemical reactions, and boundary films). Research in the categories has traditionally been approached by considering macroscopic material properties. Recent activity has shown that some issues can be approached at the atomic level: the atoms in the materials can be manipulated both experimentally and theoretically, and can produce results related to macroscopic phenomena.

  8. Computational approaches for rational design of proteins with novel functionalities

    PubMed Central

    Tiwari, Manish Kumar; Singh, Ranjitha; Singh, Raushan Kumar; Kim, In-Won; Lee, Jung-Kul

    2012-01-01

    Proteins are the most multifaceted macromolecules in living systems and have various important functions, including structural, catalytic, sensory, and regulatory functions. Rational design of enzymes is a great challenge to our understanding of protein structure and physical chemistry and has numerous potential applications. Protein design algorithms have been applied to design or engineer proteins that fold, fold faster, catalyze, catalyze faster, signal, and adopt preferred conformational states. The field of de novo protein design, although only a few decades old, is beginning to produce exciting results. Developments in this field are already having a significant impact on biotechnology and chemical biology. The application of powerful computational methods for functional protein designing has recently succeeded at engineering target activities. Here, we review recently reported de novo functional proteins that were developed using various protein design approaches, including rational design, computational optimization, and selection from combinatorial libraries, highlighting recent advances and successes. PMID:24688643

  9. van der Waals Layered Materials: Opportunities and Challenges.

    PubMed

    Duong, Dinh Loc; Yun, Seok Joon; Lee, Young Hee

    2017-12-26

    Since graphene became available by a scotch tape technique, a vast class of two-dimensional (2D) van der Waals (vdW) layered materials has been researched intensively. What is more intriguing is that the well-known physics and chemistry of three-dimensional (3D) bulk materials are often irrelevant, revealing exotic phenomena in 2D vdW materials. By further constructing heterostructures of these materials in the planar and vertical directions, which can be easily achieved via simple exfoliation techniques, numerous quantum mechanical devices have been demonstrated for fundamental research and technological applications. It is, therefore, necessary to review the special features in 2D vdW materials and to discuss the remaining issues and challenges. Here, we review the vdW materials library, technology relevance, and specialties of vdW materials covering the vdW interaction, strong Coulomb interaction, layer dependence, dielectric screening engineering, work function modulation, phase engineering, heterostructures, stability, growth issues, and the remaining challenges.

  10. Chemical modulation of M13 bacteriophage and its functional opportunities for nanomedicine

    PubMed Central

    Chung, Woo-Jae; Lee, Doe-Young; Yoo, So Young

    2014-01-01

    M13 bacteriophage (phage) has emerged as an attractive bionanomaterial owing to its genetically tunable surface chemistry and its potential to self-assemble into hierarchical structures. Furthermore, because of its unique nanoscopic structure, phage has been proposed as a model system in soft condensed physics and as a biomimetic building block for structured functional materials. Genetic engineering of phage provides great opportunities to develop novel nanomaterials with functional surface peptide motifs; however, this biological approach is generally limited to peptides containing the 20 natural amino acids. To extend the scope of phage applications, strategies involving chemical modification have been employed to incorporate a wider range of functional groups, including synthetic chemical compounds. In this review, we introduce the design of chemoselective phage functionalization and discuss how such a strategy is combined with genetic engineering for a variety of medical applications, as reported in recent literature. PMID:25540583

  11. Chemical modulation of M13 bacteriophage and its functional opportunities for nanomedicine.

    PubMed

    Chung, Woo-Jae; Lee, Doe-Young; Yoo, So Young

    2014-01-01

    M13 bacteriophage (phage) has emerged as an attractive bionanomaterial owing to its genetically tunable surface chemistry and its potential to self-assemble into hierarchical structures. Furthermore, because of its unique nanoscopic structure, phage has been proposed as a model system in soft condensed physics and as a biomimetic building block for structured functional materials. Genetic engineering of phage provides great opportunities to develop novel nanomaterials with functional surface peptide motifs; however, this biological approach is generally limited to peptides containing the 20 natural amino acids. To extend the scope of phage applications, strategies involving chemical modification have been employed to incorporate a wider range of functional groups, including synthetic chemical compounds. In this review, we introduce the design of chemoselective phage functionalization and discuss how such a strategy is combined with genetic engineering for a variety of medical applications, as reported in recent literature.

  12. Quantum-enhanced absorption refrigerators

    PubMed Central

    Correa, Luis A.; Palao, José P.; Alonso, Daniel; Adesso, Gerardo

    2014-01-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators. PMID:24492860

  13. The Number of Scholarly Documents on the Public Web

    PubMed Central

    Khabsa, Madian; Giles, C. Lee

    2014-01-01

    The number of scholarly documents available on the web is estimated using capture/recapture methods by studying the coverage of two major academic search engines: Google Scholar and Microsoft Academic Search. Our estimates show that at least 114 million English-language scholarly documents are accessible on the web, of which Google Scholar has nearly 100 million. Of these, we estimate that at least 27 million (24%) are freely available since they do not require a subscription or payment of any kind. In addition, at a finer scale, we also estimate the number of scholarly documents on the web for fifteen fields: Agricultural Science, Arts and Humanities, Biology, Chemistry, Computer Science, Economics and Business, Engineering, Environmental Sciences, Geosciences, Material Science, Mathematics, Medicine, Physics, Social Sciences, and Multidisciplinary, as defined by Microsoft Academic Search. In addition, we show that among these fields the percentage of documents defined as freely available varies significantly, i.e., from 12 to 50%. PMID:24817403

  14. Research trend in thermally stimulated current method for development of materials and devices in Japan

    NASA Astrophysics Data System (ADS)

    Iwamoto, Mitsumasa; Taguchi, Dai

    2018-03-01

    Thermally stimulated current (TSC) measurement is widely used in a variety of research fields, i.e., physics, electronics, electrical engineering, chemistry, ceramics, and biology. TSC is short-circuit current that flows owing to the displacement of charges in samples during heating. TSC measurement is very simple, but TSC curves give very important information on charge behaviors. In the 1970s, TSC measurement contributed greatly to the development of electrical insulation engineering, semiconductor device technology, and so forth. Accordingly, the TSC experimental technique and its analytical method advanced. Over the past decades, many new molecules and advanced functional materials have been discovered and developed. Along with this, TSC measurement has attracted much attention in industries and academic laboratories as a way of characterizing newly discovered materials and devices. In this review, we report the latest research trend in the TSC method for the development of materials and devices in Japan.

  15. The number of scholarly documents on the public web.

    PubMed

    Khabsa, Madian; Giles, C Lee

    2014-01-01

    The number of scholarly documents available on the web is estimated using capture/recapture methods by studying the coverage of two major academic search engines: Google Scholar and Microsoft Academic Search. Our estimates show that at least 114 million English-language scholarly documents are accessible on the web, of which Google Scholar has nearly 100 million. Of these, we estimate that at least 27 million (24%) are freely available since they do not require a subscription or payment of any kind. In addition, at a finer scale, we also estimate the number of scholarly documents on the web for fifteen fields: Agricultural Science, Arts and Humanities, Biology, Chemistry, Computer Science, Economics and Business, Engineering, Environmental Sciences, Geosciences, Material Science, Mathematics, Medicine, Physics, Social Sciences, and Multidisciplinary, as defined by Microsoft Academic Search. In addition, we show that among these fields the percentage of documents defined as freely available varies significantly, i.e., from 12 to 50%.

  16. Thermal and Chemical Denaturation of "Bacillus circulans" Xylanase: A Biophysical Chemistry Laboratory Module

    ERIC Educational Resources Information Center

    Raabe, Richard; Gentile, Lisa

    2008-01-01

    A number of institutions have been, or are in the process of, modifying their biochemistry major to include some emphasis on the quantitative physical chemistry of biomolecules. Sometimes this is done as a replacement for part for the entire physical chemistry requirement, while at other institutions this is incorporated as a component into the…

  17. Teaching a Chemistry MOOC with a Virtual Laboratory: Lessons Learned from an Introductory Physical Chemistry Course

    ERIC Educational Resources Information Center

    O'Malley, Patrick J.; Agger, Jonathan R.; Anderson, Michael W.

    2015-01-01

    An analysis is presented of the experience and lessons learned of running a MOOC in introductory physical chemistry. The course was unique in allowing students to conduct experimental measurements using a virtual laboratory constructed using video and simulations. A breakdown of the student background and motivation for taking the course is…

  18. Analyzing Students' Understanding of Models and Modeling Referring to the Disciplines Biology, Chemistry, and Physics

    ERIC Educational Resources Information Center

    Krell, Moritz; Reinisch, Bianca; Krüger, Dirk

    2015-01-01

    In this study, secondary school students' (N?=?617; grades 7 to 10) understanding of models and modeling was assessed using tasks which explicitly refer to the scientific disciplines of biology, chemistry, and physics and, as a control, to no scientific discipline. The students' responses are interpreted as their biology-, chemistry-, and…

  19. An Investigation into the Effectiveness of Problem-Based Learning in a Physical Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Gurses, Ahmet; Acikyildiz, Metin; Dogar, Cetin; Sozbilir, Mustafa

    2007-01-01

    The aim of this study was to investigate the effectiveness of a problem-based learning (PBL) approach in a physical chemistry laboratory course. The parameters investigated were students' attitudes towards a chemistry laboratory course, scientific process skills of students and their academic achievement. The design of the study was one group…

  20. Determining the Quantum Efficiency for Activation of an Organometallic Photoinitiator for Cationic Polymerization: An Experiment for the Physical or Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hayes, David M.; Mahar, Maura; Schnabel, R. Chris; Shah, Paras; Lees, Alistair J.; Jakubek, Vladimir

    2007-01-01

    We present a new laboratory experiment on the photochemistry of organometallic [eta][superscript 5],[eta][superscript 6]-mixed-sandwich compounds, which is suitable for both the physical chemistry and inorganic chemistry laboratory. Specifically, students use 1,10-phenanthroline to trap the intermediate formed when…

  1. Additional evidence of far transfer of scientific reasoning skills acquired in a CLASP reformed physics course

    NASA Astrophysics Data System (ADS)

    Potter, Wendell H.; Lynch, Robert B.

    2013-01-01

    The introductory physics course taken by biological science majors at UC Davis, Physics 7, was radically reformed 16 years ago in order to explicitly emphasize the development of scientific reasoning skills in all elements of the course. We have previously seen evidence of increased performance on the biological and physical science portions of the MCAT exam, in a rigorous systemic physiology course, and higher graduating GPAs for students who took Physics 7 rather than a traditionally taught introductory physics course. We report here on the increased performance by a group of biological-science majors in a general chemistry course who took the first quarter of Physics 7 prior to beginning the chemistry course sequence compared to a similar group who began taking physics after completing the first two quarters of general chemistry.

  2. Collection Development: Celebrating Chemistry, February 1, 2011

    ERIC Educational Resources Information Center

    Hamm, Susannah

    2011-01-01

    A hundred years after Marie Curie received her Nobel Prize in Chemistry, this arm of science is pointing the way to a more sustainable future. Growing movements like green chemistry, which strives to create alternative and new chemical reactions that produce no harmful waste products, and molecular engineering hold great potential for industry,…

  3. Put Some Movie Wow! in Your Chemistry Teaching

    ERIC Educational Resources Information Center

    Frey, Christopher A.; Mikasen, Marjorie L.; Griep, Mark A.

    2012-01-01

    Movies and movie clips have been used by many instructors to teach chemistry. Entire movies based on true chemical stories are used because they provide students with a common experience after which instructors can launch writing lessons about the chemistry, the scientists, or engineers, or even postscripts to the story presented in the film. In…

  4. Survey Exploring Views of Scientists on Current Trends in Chemistry Education

    ERIC Educational Resources Information Center

    Vamvakeros, Xenofon; Pavlatou, Evangelia A.; Spyrellis, Nicolas

    2010-01-01

    A survey exploring the views of scientists, chemists and chemical engineers, on current trends in Chemistry Education was conducted in Greece. Their opinions were investigated using a questionnaire focusing on curricula (the content and process of chemistry teaching and learning), as well as on the respondents' general educational beliefs and…

  5. 75 FR 64726 - Science Advisory Board Staff Office; Request for Nominations of Experts To Serve on the Clean Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... the most recently revised ozone NAAQS and changes to atmospheric chemistry that have occurred over the... Organic Compounds (VOCs)--Advice on potential improvements to TO-15 with particular emphasis on improving..., atmospheric chemistry, ecosystem modeling, aquatic chemistry, environmental science and engineering, risk...

  6. Embedded Mathematics in Chemistry: A Case Study of Students' Attitudes and Mastery

    ERIC Educational Resources Information Center

    Preininger, Anita M.

    2017-01-01

    There are many factors that shape students' attitudes toward science, technology, engineering and mathematics. This exploratory study of high school students examined the effect of enriching chemistry with math on chemistry students' attitudes toward math and careers involving math. To measure student attitudes, a survey was administered before…

  7. Colour and Optical Properties of Materials: An Exploration of the Relationship Between Light, the Optical Properties of Materials and Colour

    NASA Astrophysics Data System (ADS)

    Tilley, Richard J. D.

    2003-05-01

    Colour is an important and integral part of everyday life, and an understanding and knowledge of the scientific principles behind colour, with its many applications and uses, is becoming increasingly important to a wide range of academic disciplines, from physical, medical and biological sciences through to the arts. Colour and the Optical Properties of Materials carefully introduces the science behind the subject, along with many modern and cutting-edge applications, chose to appeal to today's students. For science students, it provides a broad introduction to the subject and the many applications of colour. To more applied students, such as engineering and arts students, it provides the essential scientific background to colour and the many applications. Features: * Introduces the science behind the subject whilst closely connecting it to modern applications, such as colour displays, optical amplifiers and colour centre lasers * Richly illustrated with full-colour plates * Includes many worked examples, along with problems and exercises at the end of each chapter and selected answers at the back of the book * A Web site, including additional problems and full solutions to all the problems, which may be accessed at: www.cardiff.ac.uk/uwcc/engin/staff/rdjt/colour Written for students taking an introductory course in colour in a wide range of disciplines such as physics, chemistry, engineering, materials science, computer science, design, photography, architecture and textiles.

  8. A transformative model for undergraduate quantitative biology education.

    PubMed

    Usher, David C; Driscoll, Tobin A; Dhurjati, Prasad; Pelesko, John A; Rossi, Louis F; Schleiniger, Gilberto; Pusecker, Kathleen; White, Harold B

    2010-01-01

    The BIO2010 report recommended that students in the life sciences receive a more rigorous education in mathematics and physical sciences. The University of Delaware approached this problem by (1) developing a bio-calculus section of a standard calculus course, (2) embedding quantitative activities into existing biology courses, and (3) creating a new interdisciplinary major, quantitative biology, designed for students interested in solving complex biological problems using advanced mathematical approaches. To develop the bio-calculus sections, the Department of Mathematical Sciences revised its three-semester calculus sequence to include differential equations in the first semester and, rather than using examples traditionally drawn from application domains that are most relevant to engineers, drew models and examples heavily from the life sciences. The curriculum of the B.S. degree in Quantitative Biology was designed to provide students with a solid foundation in biology, chemistry, and mathematics, with an emphasis on preparation for research careers in life sciences. Students in the program take core courses from biology, chemistry, and physics, though mathematics, as the cornerstone of all quantitative sciences, is given particular prominence. Seminars and a capstone course stress how the interplay of mathematics and biology can be used to explain complex biological systems. To initiate these academic changes required the identification of barriers and the implementation of solutions.

  9. A Transformative Model for Undergraduate Quantitative Biology Education

    PubMed Central

    Driscoll, Tobin A.; Dhurjati, Prasad; Pelesko, John A.; Rossi, Louis F.; Schleiniger, Gilberto; Pusecker, Kathleen; White, Harold B.

    2010-01-01

    The BIO2010 report recommended that students in the life sciences receive a more rigorous education in mathematics and physical sciences. The University of Delaware approached this problem by (1) developing a bio-calculus section of a standard calculus course, (2) embedding quantitative activities into existing biology courses, and (3) creating a new interdisciplinary major, quantitative biology, designed for students interested in solving complex biological problems using advanced mathematical approaches. To develop the bio-calculus sections, the Department of Mathematical Sciences revised its three-semester calculus sequence to include differential equations in the first semester and, rather than using examples traditionally drawn from application domains that are most relevant to engineers, drew models and examples heavily from the life sciences. The curriculum of the B.S. degree in Quantitative Biology was designed to provide students with a solid foundation in biology, chemistry, and mathematics, with an emphasis on preparation for research careers in life sciences. Students in the program take core courses from biology, chemistry, and physics, though mathematics, as the cornerstone of all quantitative sciences, is given particular prominence. Seminars and a capstone course stress how the interplay of mathematics and biology can be used to explain complex biological systems. To initiate these academic changes required the identification of barriers and the implementation of solutions. PMID:20810949

  10. Comparison of free radicals formation induced by cold atmospheric plasma, ultrasound, and ionizing radiation.

    PubMed

    Rehman, Mati Ur; Jawaid, Paras; Uchiyama, Hidefumi; Kondo, Takashi

    2016-09-01

    Plasma medicine is increasingly recognized interdisciplinary field combining engineering, physics, biochemistry and life sciences. Plasma is classified into two categories based on the temperature applied, namely "thermal" and "non-thermal" (i.e., cold atmospheric plasma). Non-thermal or cold atmospheric plasma (CAP) is produced by applying high voltage electric field at low pressures and power. The chemical effects of cold atmospheric plasma in aqueous solution are attributed to high voltage discharge and gas flow, which is transported rapidly on the liquid surface. The argon-cold atmospheric plasma (Ar-CAP) induces efficient reactive oxygen species (ROS) in aqueous solutions without thermal decomposition. Their formation has been confirmed by electron paramagnetic resonance (EPR) spin trapping, which is reviewed here. The similarities and differences between the plasma chemistry, sonochemistry, and radiation chemistry are explained. Further, the evidence for free radical formation in the liquid phase and their role in the biological effects induced by cold atmospheric plasma, ultrasound and ionizing radiation are discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Instrumentation Needs of Academic Departments of Chemistry: A Survey Study. Report of a Joint Task Force of the Committee on Science and Committee on Chemistry and Public Affairs.

    ERIC Educational Resources Information Center

    American Chemical Society, Washington, DC.

    A questionnaire was mailed to 50 major chemistry departments, 112 smaller chemistry departments, and 25 chemical engineering (CE) departments. The survey (included in an appendix) consists of a series of questions on two broad subjects--the current inventory at the surveyed institutions and the needs for instrumentation. Responses were received…

  12. American Chemical Society division of fuel chemistry Henry H. Storch award.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chemistry

    American Chemical Society Division of Fuel Chemistry Henry H. Storch Award ... The purpose of the Henry H. Storch Award is to recognize distinguished contributions worldwide to fundamental or engineering research on the chemistry and utilization of all hydrocarbon fuels, with the exception of petroleum. ... The award was established in 1964 by the American Chemical Society Division of Fuel Chemistry and administered by the Division until 1985.

  13. Laser-Induced Plasma Chemistry of the Explosive RDX with Various Metals

    DTIC Science & Technology

    2011-07-18

    U.S. Army Research, Development and Engineering Command Laser-induced plasma chemistry of the explosive RDX with various metals Jennifer L...2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE Laser-induced plasma chemistry of the explosive RDX with...followed by laser-induced plasma chemistry Time-resolved emission spectra Laser Parameters Laser pulse energy dependence Single vs. double pulse

  14. Alloy chemistry and microstructural control to meet the demands of the automotive Stirling engine

    NASA Technical Reports Server (NTRS)

    Stephens, Joseph R.

    1988-01-01

    The automotive Stirling engine now under development by DOE/NASA as an alternative to the internal combustion engine, imposes severe materials requirements for the hot portion of the engine. Materials selected must be low cost and contain a minimum of strategic elements so that availability is not a problem. Heater head tubes contain high pressure hydrogen on the inside and are exposed to hot combustion gases on the outside surface. The cylinders and regenerator housings must be readily castable into complex shapes having varying wall thicknesses and be amenable to brazing and welding operations. Also, high strength, oxidation resistance, resistance to hydrogen permeation, cyclic operation, and long-life are required. A research program conducted by NASA Lewis focused on alloy chemistry and microstructural control to achieve the desired properties over the life of the engine. Results of alloy selection, characterization, evaluation, and actual engine testing of selected materials are presented.

  15. Comparing in Cylinder Pressure Modelling of a DI Diesel Engine Fuelled on Alternative Fuel Using Two Tabulated Chemistry Approaches.

    PubMed

    Ngayihi Abbe, Claude Valery; Nzengwa, Robert; Danwe, Raidandi

    2014-01-01

    The present work presents the comparative simulation of a diesel engine fuelled on diesel fuel and biodiesel fuel. Two models, based on tabulated chemistry, were implemented for the simulation purpose and results were compared with experimental data obtained from a single cylinder diesel engine. The first model is a single zone model based on the Krieger and Bormann combustion model while the second model is a two-zone model based on Olikara and Bormann combustion model. It was shown that both models can predict well the engine's in-cylinder pressure as well as its overall performances. The second model showed a better accuracy than the first, while the first model was easier to implement and faster to compute. It was found that the first method was better suited for real time engine control and monitoring while the second one was better suited for engine design and emission prediction.

  16. Alloy chemistry and microstructural control to meet the demands of the automotive Stirling engine

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1986-01-01

    The automotive Stirling engine now under development by DOE/NASA as an alternative to the internal combustion engine, imposes severe materials requirements for the hot portion of the engine. Materials selected must be low cost and contain a minimum of strategic elements so that availability is not a problem. Heater head tubes contain high pressure hydrogen on the inside and are exposed to hot combustion gases on the outside surface. The cylinders and regenerator housings must be readily castable into complex shapes having varying wall thicknesses and be amenable to brazing and welding operations. Also, high strength, oxidation resistance, resistance to hydrogen permeation, cyclic operation, and long-life are required. A research program conducted by NASA Lewis focused on alloy chemistry and microstructural control to achieve the desired properties over the life of the engine. Results of alloy selection, characterization, evaluation, and actual engine testing of selected materials are presented.

  17. Differences within: A comparative analysis of women in the physical sciences --- Motivation and background factors

    NASA Astrophysics Data System (ADS)

    Dabney, Katherine Patricia Traudel

    Science, technology, engineering, and mathematics (STEM) education has become a critical focus in the United States due to economic concerns and public policy (National Academy of Sciences, 2007; U.S. Department of Education, 2006). Part of this focus has been an emphasis on encouraging and evaluating career choice and persistence factors among underrepresented groups such as females in the physical sciences (Hill et al., 2010; National Academy of Sciences, 2007). The majority of existing STEM research studies compare women to men, yet a paucity of research exists that examines what differentiates female career choice within the physical sciences. In light of these research trends and recommendations, this study examines the following questions: 1. On average, do females who select chemistry or physics doctoral programs differ in their reported personal motivations and background factors prior to entering the field? 2. Do such variables as racial and ethnic background, age, highest level of education completed by guardians/parents, citizenship status, family interest in science, first interest in general science, first interest in the physical sciences, average grades in high school and undergraduate studies in the physical sciences, and experiences in undergraduate physical science courses explain a significant amount of variance in female physical scientists' years to Ph.D. completion? These questions are analyzed using variables from the Project Crossover Survey dataset through a subset of female physical science doctoral students and scientists. Logistic regression analyses are performed to uncover what differentiates women in the physical sciences based on their background, interest, academic achievement, and experiences ranging prior to elementary school through postsecondary education. Significant variables that positively predict a career choice in chemistry or physics include content specific high school and undergraduate academic achievement and positive undergraduate experiences. Two multiple regression models, one composed of female chemists and one of female physicists, examine significant predictors that positively associated with time to doctoral degree completion. The models account for little differentiation in the outcome of time to doctoral completion. In addition, significant predictors are based on demographic and achievement factors that were not paralleled in the two multiple regressions.

  18. Research in Physical Chemistry and Chemical Education: Part A--Water Mediated Chemistry of Oxidized Atmospheric Compounds Part B--The Development of Surveying Tools to Determine How Effective Laboratory Experiments Contribute to Student Conceptual Understanding

    ERIC Educational Resources Information Center

    Maron, Marta Katarzyna

    2011-01-01

    This dissertation is a combination of two research areas, experimental physical chemistry, Chapters I to V, and chemical education, Chapters VI to VII. Chapters I to V describe research on the water-mediated chemistry of oxidized atmospheric molecules and the impact that water has on the spectra of these environmental systems. The role of water…

  19. Quantum Chemistry, 5th Edition by Ira N. Levine

    NASA Astrophysics Data System (ADS)

    Hinde, Robert J.

    2000-12-01

    Of course, there is no one- or two-week shortcut by which nonspecialists can master enough quantum mechanics to become informed users of quantum chemical techniques. Nevertheless, a text that integrated the fundamentals of quantum theory with a rigorous introduction to quantum chemistry could help instructors design a class that would benefit both these nonspecialists and graduate students in physical chemistry. Could such a class overcome the (undeserved) stigma associated with the physical chemistry curriculum? That remains to be seen.

  20. Biological Physics major as a means to stimulate an undergraduate physics program

    NASA Astrophysics Data System (ADS)

    Jaeger, Herbert; Eid, Khalid; Yarrison-Rice, Jan

    2013-03-01

    In an effort to stress the cross-disciplinary nature of modern physics we added a Biological Physics major. Drawing from coursework in physics, biology, chemistry, mathematics, and related disciplines, it combines a broad curriculum with physical and mathematical rigor in preparation for careers in biophysics, medical physics, and biomedical engineering. Biological Physics offers a new path of studies to a large pool of life science students. We hope to grow our physics majors from 70-80 to more than 100 students and boost our graduation rate from the mid-teens to the mid-twenties. The new major brought about a revision of our sophomore curriculum to make room for modern topics without sidelining fundamentals. As a result, we split our 1-semester long Contemporary Physics course (4 cr hrs) into a year-long sequence Contemporary Physics Foundations and Contemporary Physics Frontiers (both 3 cr hrs). Foundations starts with relativity, then focuses on 4 quantum mechanics topics: wells, spin 1/2, oscillators, and hydrogen. Throughout the course applications are woven in whenever the opportunity arises, e.g. magnetism and NMR with spin 1/2. The following semester Frontiers explores scientific principles and technological advances that make quantum science and resulting technologies different from the large scale. Frontiers covers enabling techniques from atomic, molecular, condensed matter, and particle physics, as well as advances in nanotechnology, quantum optics, and biophysics.

  1. All-Optical Nanoscale Thermometry using Silicon-Vacancy Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Nguyen, Christian; Evans, Ruffin; Sipahigil, Alp; Bhaskar, Mihir; Sukachev, Denis; Lukin, Mikhail

    2017-04-01

    Accurate thermometry at the nanoscale is a difficult challenge, but building such a thermometer would be a powerful tool for discovering and understanding new processes in biology, chemistry and physics. Applications include cell-selective treatment of disease, engineering of more efficient integrated circuits, or even the development of new chemical and biological reactions. In this work, we study how the bulk properties of the Silicon Vacancy center (SiV) in diamond depend on temperature, and use them to measure temperature with 100mK accuracy. Using SiVs in 200 nm nanodiamonds, we measure the temperature with 100 nm spatial resolution over a 10 μm area.

  2. Artificial neural networks in biology and chemistry: the evolution of a new analytical tool.

    PubMed

    Cartwright, Hugh M

    2008-01-01

    Once regarded as an eccentric and unpromising algorithm for the analysis of scientific data, the neural network has been developed in the last decade into a powerful computational tool. Its use now spans all areas of science, from the physical sciences and engineering to the life sciences and allied subjects. Applications range from the assessment of epidemiological data or the deconvolution of spectra to highly practical applications, such as the electronic nose. This introductory chapter considers briefly the growth in the use of neural networks and provides some general background in preparation for the more detailed chapters that follow.

  3. Special Issue: Big data and predictive computational modeling

    NASA Astrophysics Data System (ADS)

    Koutsourelakis, P. S.; Zabaras, N.; Girolami, M.

    2016-09-01

    The motivation for this special issue stems from the symposium on "Big Data and Predictive Computational Modeling" that took place at the Institute for Advanced Study, Technical University of Munich, during May 18-21, 2015. With a mindset firmly grounded in computational discovery, but a polychromatic set of viewpoints, several leading scientists, from physics and chemistry, biology, engineering, applied mathematics, scientific computing, neuroscience, statistics and machine learning, engaged in discussions and exchanged ideas for four days. This special issue contains a subset of the presentations. Video and slides of all the presentations are available on the TUM-IAS website http://www.tum-ias.de/bigdata2015/.

  4. Graph Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanfilippo, Antonio P.

    2005-12-27

    Graph theory is a branch of discrete combinatorial mathematics that studies the properties of graphs. The theory was pioneered by the Swiss mathematician Leonhard Euler in the 18th century, commenced its formal development during the second half of the 19th century, and has witnessed substantial growth during the last seventy years, with applications in areas as diverse as engineering, computer science, physics, sociology, chemistry and biology. Graph theory has also had a strong impact in computational linguistics by providing the foundations for the theory of features structures that has emerged as one of the most widely used frameworks for themore » representation of grammar formalisms.« less

  5. The ATCA CABB Line Survey on Centaurus A: Properties of the Molecular Gas from the Dust Lanes to the Central Engine

    NASA Astrophysics Data System (ADS)

    Ott, Juergen; Henkel, Christian; Meier, David; Feain, Ilana; Martin-Pintado, Jesus; Israel, Frank; Impellizzeri, Caterina M. V.

    2011-04-01

    Centaurus A with its host NGC5128 is the most nearby radio galaxy. Its molecular spectrum exhibits three prominent features: a) gas that is located in the outer disk and dust lanes, b) absorption lines that are supposedly close to the central AGN, and c) gas in emission from the central nucleus. We propose to perform an extensive line survey toward CenA using the exciting new capabilities of CABB. Our multi-band line observations will allow us to derive the exact physical conditions of each component as well as the chemistry involved.

  6. Biological applications of nanobiotechnology.

    PubMed

    de Morais, Michele Greque; Martins, Vilásia Guimarães; Steffens, Daniela; Pranke, Patricia; da Costa, Jorge Alberto Vieira

    2014-01-01

    Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices derived from engineering, physics, chemistry, and biology. Nanotechnology has opened up by rapid advances in science and technology, creating new opportunities for advances in the fields of medicine, electronics, foods, and the environment. Nanoscale structures and materials (nanoparticles, nanowires, nanofibers, nanotubes) have been explored in many biological applications (biosensing, biological separation, molecular imaging, anticancer therapy) because their novel properties and functions differ drastically from their bulk counterparts. Their high volume/surface ratio, improved solubility, and multifunctionality open many new possibilities. The objective of this review is to describe the potential benefits and impacts of the nanobiotechnology in different areas.

  7. Cumulative reports and publications through 31 December 1983

    NASA Technical Reports Server (NTRS)

    1983-01-01

    All reports for the calendar years 1975 through December 1983 are listed by author. Since ICASE reports are intended to be preprints of articles for journals and conference proceedings, the published reference is included when available. Thirteen older journal and conference proceedings references are included as well as five additional reports by ICASE personnel. Major categories of research covered include: (1) numerical methods, with particular emphasis on the development and analysis of basic algorithms; (2) computational problems in engineering and the physical sciences, particularly fluid dynamics, acoustics, structural analysis, and chemistry; and (3) computer systems and software, especially vector and parallel computers, microcomputers, and data management.

  8. From Foam Rubber to Volcanoes: The Physical Chemistry of Foam Formation

    NASA Astrophysics Data System (ADS)

    Hansen, Lee D.; McCarlie, V. Wallace

    2004-11-01

    Principles of physical chemistry and physical properties are used to describe foam formation. Foams are common in nature and in consumer products. The process of foam formation can be used to understand a wide variety of phenomena from exploding volcanoes to popping popcorn and making shoe soles.

  9. [Commentary on the Nobel Prize that has been granted in Medicine-Physiology, Chemistry and Physics to noteable investigators].

    PubMed

    Zárate, Arturo; Apolinar, Leticia Manuel; Saucedo, Renata; Basurto, Lourdes

    2015-01-01

    The Nobel Prize was established by Alfred Nobel in 1901 to award people who have made outstanding achievements in physics, chemistry and medicine. So far, from 852 laureates, 45 have been female. Marie Curie was the first woman to receive the Nobel Prize in 1903 for physics and eight years later also for chemistry It is remarkable that her daughter Irene and her husband also received the Nobel Prize for chemistry in 1935. Other two married couples, Cori and Moser, have also been awarded the Nobel Prize. The present commentary attempts to show the female participation in the progress of scientific activities.

  10. Chemical Technology Division annual technical report, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-05-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, andmore » treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.« less

  11. The Application of Physical Organic Chemistry to Biochemical Problems.

    ERIC Educational Resources Information Center

    Westheimer, Frank

    1986-01-01

    Presents the synthesis of the science of enzymology from application of the concepts of physical organic chemistry from a historical perspective. Summarizes enzyme and coenzyme mechanisms elucidated prior to 1963. (JM)

  12. Molecule by molecule, the physics and chemistry of life: SMB 2007.

    PubMed

    Block, Steven M; Larson, Matthew H; Greenleaf, William J; Herbert, Kristina M; Guydosh, Nicholas R; Anthony, Peter C

    2007-04-01

    Interdisciplinary work in the life sciences at the boundaries of biology, chemistry and physics is making enormous strides. This progress was showcased at the recent Single Molecule Biophysics conference.

  13. Materials from Mussel-Inspired Chemistry for Cell and Tissue Engineering Applications.

    PubMed

    Madhurakkat Perikamana, Sajeesh Kumar; Lee, Jinkyu; Lee, Yu Bin; Shin, Young Min; Lee, Esther J; Mikos, Antonios G; Shin, Heungsoo

    2015-09-14

    Current advances in biomaterial fabrication techniques have broadened their application in different realms of biomedical engineering, spanning from drug delivery to tissue engineering. The success of biomaterials depends highly on the ability to modulate cell and tissue responses, including cell adhesion, as well as induction of repair and immune processes. Thus, most recent approaches in the field have concentrated on functionalizing biomaterials with different biomolecules intended to evoke cell- and tissue-specific reactions. Marine mussels produce mussel adhesive proteins (MAPs), which help them strongly attach to different surfaces, even under wet conditions in the ocean. Inspired by mussel adhesiveness, scientists discovered that dopamine undergoes self-polymerization at alkaline conditions. This reaction provides a universal coating for metals, polymers, and ceramics, regardless of their chemical and physical properties. Furthermore, this polymerized layer is enriched with catechol groups that enable immobilization of primary amine or thiol-based biomolecules via a simple dipping process. Herein, this review explores the versatile surface modification techniques that have recently been exploited in tissue engineering and summarizes polydopamine polymerization mechanisms, coating process parameters, and effects on substrate properties. A brief discussion of polydopamine-based reactions in the context of engineering various tissue types, including bone, blood vessels, cartilage, nerves, and muscle, is also provided.

  14. SDE decomposition and A-type stochastic interpretation in nonequilibrium processes

    NASA Astrophysics Data System (ADS)

    Yuan, Ruoshi; Tang, Ying; Ao, Ping

    2017-12-01

    An innovative theoretical framework for stochastic dynamics based on the decomposition of a stochastic differential equation (SDE) into a dissipative component, a detailed-balance-breaking component, and a dual-role potential landscape has been developed, which has fruitful applications in physics, engineering, chemistry, and biology. It introduces the A-type stochastic interpretation of the SDE beyond the traditional Ito or Stratonovich interpretation or even the α-type interpretation for multidimensional systems. The potential landscape serves as a Hamiltonian-like function in nonequilibrium processes without detailed balance, which extends this important concept from equilibrium statistical physics to the nonequilibrium region. A question on the uniqueness of the SDE decomposition was recently raised. Our review of both the mathematical and physical aspects shows that uniqueness is guaranteed. The demonstration leads to a better understanding of the robustness of the novel framework. In addition, we discuss related issues including the limitations of an approach to obtaining the potential function from a steady-state distribution.

  15. Physics First: Impact on SAT Math Scores

    NASA Astrophysics Data System (ADS)

    Bouma, Craig E.

    Improving science, technology, engineering, and mathematics (STEM) education has become a national priority and the call to modernize secondary science has been heard. A Physics First (PF) program with the curriculum sequence of physics, chemistry, and biology (PCB) driven by inquiry- and project-based learning offers a viable alternative to the traditional curricular sequence (BCP) and methods of teaching, but requires more empirical evidence. This study determined impact of a PF program (PF-PCB) on math achievement (SAT math scores) after the first two cohorts of students completed the PF-PCB program at Matteo Ricci High School (MRHS) and provided more quantitative data to inform the PF debate and advance secondary science education. Statistical analysis (ANCOVA) determined the influence of covariates and revealed that PF-PCB program had a significant (p < .05) impact on SAT math scores in the second cohort at MRHS. Statistically adjusted, the SAT math means for PF students were 21.4 points higher than their non-PF counterparts when controlling for prior math achievement (HSTP math), socioeconomic status (SES), and ethnicity/race.

  16. Ionic Liquids as Novel Lubricants and /or Lubricant Additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, J.; Viola, M. B.

    2013-10-31

    This ORNL-GM CRADA developed ionic liquids (ILs) as novel lubricants or oil additives for engine lubrication. A new group of oil-miscible ILs have been designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Mechanistic analysis attributes the superior lubricating performance of IL additives to their physical and chemical interactions with metallic surfaces. Working with a leading lubricant formulation company, the team has successfully developed a prototype low-viscosity engine oil using a phosphonium-phosphate IL as an anti-wear additive. Tribological bench tests of the IL-additized formulated oil showed 20-33% lower friction inmore » mixed and elastohydrodynamic lubrication and 38-92% lower wear in boundary lubrication when compared with commercial Mobil 1 and Mobil Clean 5W-30 engine oils. High-temperature, high load (HTHL) full-size engine tests confirmed the excellent anti-wear performance for the IL-additized engine oil. Sequence VID engine dynamometer tests demonstrated an improved fuel economy by >2% for this IL-additized engine oil benchmarked against the Mobil 1 5W-30 oil. In addition, accelerated catalyst aging tests suggest that the IL additive may potentially have less adverse impact on three-way catalysts compared to the conventional ZDDP. Follow-on research is needed for further development and optimization of IL chemistry and oil formulation to fully meet ILSAC GF-5 specifications and further enhance the automotive engine efficiency and durability.« less

  17. Chemical Laws, Idealization and Approximation

    NASA Astrophysics Data System (ADS)

    Tobin, Emma

    2013-07-01

    This paper examines the notion of laws in chemistry. Vihalemm ( Found Chem 5(1):7-22, 2003) argues that the laws of chemistry are fundamentally the same as the laws of physics they are all ceteris paribus laws which are true "in ideal conditions". In contrast, Scerri (2000) contends that the laws of chemistry are fundamentally different to the laws of physics, because they involve approximations. Christie ( Stud Hist Philos Sci 25:613-629, 1994) and Christie and Christie ( Of minds and molecules. Oxford University Press, New York, pp. 34-50, 2000) agree that the laws of chemistry are operationally different to the laws of physics, but claim that the distinction between exact and approximate laws is too simplistic to taxonomise them. Approximations in chemistry involve diverse kinds of activity and often what counts as a scientific law in chemistry is dictated by the context of its use in scientific practice. This paper addresses the question of what makes chemical laws distinctive independently of the separate question as to how they are related to the laws of physics. From an analysis of some candidate ceteris paribus laws in chemistry, this paper argues that there are two distinct kinds of ceteris paribus laws in chemistry; idealized and approximate chemical laws. Thus, while Christie ( Stud Hist Philos Sci 25:613-629, 1994) and Christie and Christie ( Of minds and molecules. Oxford University Press, New York, pp. 34--50, 2000) are correct to point out that the candidate generalisations in chemistry are diverse and heterogeneous, a distinction between idealizations and approximations can nevertheless be used to successfully taxonomise them.

  18. Maximizing the Adjacent Possible in Automata Chemistries.

    PubMed

    Hickinbotham, Simon; Clark, Edward; Nellis, Adam; Stepney, Susan; Clarke, Tim; Young, Peter

    2016-01-01

    Automata chemistries are good vehicles for experimentation in open-ended evolution, but they are by necessity complex systems whose low-level properties require careful design. To aid the process of designing automata chemistries, we develop an abstract model that classifies the features of a chemistry from a physical (bottom up) perspective and from a biological (top down) perspective. There are two levels: things that can evolve, and things that cannot. We equate the evolving level with biology and the non-evolving level with physics. We design our initial organisms in the biology, so they can evolve. We design the physics to facilitate evolvable biologies. This architecture leads to a set of design principles that should be observed when creating an instantiation of the architecture. These principles are Everything Evolves, Everything's Soft, and Everything Dies. To evaluate these ideas, we present experiments in the recently developed Stringmol automata chemistry. We examine the properties of Stringmol with respect to the principles, and so demonstrate the usefulness of the principles in designing automata chemistries.

  19. The Physics Teacher: The Four States of Matter—Solid, Squishy, Liquid, and Gas

    NASA Astrophysics Data System (ADS)

    Clark, Roy W.

    2007-04-01

    The featured article offers several demonstrations of substances that seem to be neither solid nor liquid, but somewhere in between. The authors suggest laboratory experiments that can be performed by beginning physics students, and suggest theoretical explanations for the strange viscosity behaviors. The subject is chemistry much more than physics, and it may require chemistry textbook authors to rethink the popular definitions of physical and chemical change. This reviewer then comments on the historical origins of squishiness, and on its unfortunate neglect, in their author's opinion, by general chemistry texts. The subject is properly called rheology, and is of considerable significance to industrial chemists.

  20. Metrology in physics, chemistry, and biology: differing perceptions.

    PubMed

    Iyengar, Venkatesh

    2007-04-01

    The association of physics and chemistry with metrology (the science of measurements) is well documented. For practical purposes, basic metrological measurements in physics are governed by two components, namely, the measure (i.e., the unit of measurement) and the measurand (i.e., the entity measured), which fully account for the integrity of a measurement process. In simple words, in the case of measuring the length of a room (the measurand), the SI unit meter (the measure) provides a direct answer sustained by metrological concepts. Metrology in chemistry, as observed through physical chemistry (measures used to express molar relationships, volume, pressure, temperature, surface tension, among others) follows the same principles of metrology as in physics. The same basis percolates to classical analytical chemistry (gravimetry for preparing high-purity standards, related definitive analytical techniques, among others). However, certain transition takes place in extending the metrological principles to chemical measurements in complex chemical matrices (e.g., food samples), as it adds a third component, namely, indirect measurements (e.g., AAS determination of Zn in foods). This is a practice frequently used in field assays, and calls for additional steps to account for traceability of such chemical measurements for safeguarding reliability concerns. Hence, the assessment that chemical metrology is still evolving.

  1. Coherence of Physics and Chemistry Curricula in Terms of the Electron Concept

    NASA Astrophysics Data System (ADS)

    Elena, Ivanova

    2016-08-01

    One of the major contradictions in subject teaching is the contradiction between the unity of the world and the discrete separated generalized content of natural sciences that study natural phenomena. These are physics, chemistry, biology and more. One can eliminate the conflict if opens the content's interdisciplinary links set by the events that are studied by different disciplines. The corresponding contexts of the phenomenon content arise depending on the discipline, and they are not enough coordinated. Obviously, we need a mechanism that allows establishing interdisciplinary links in the content quickly and without losing the logic of the material and assess their coherence in academic disciplines. This article uses a quantitative method of coherence assessment elaborated by T.N. Gnitetskaya. The definition of the concept of the semantic state introduced by the authors is given in this article. The method is applied to coherence assessment of physics and chemistry textbooks. The coherence of two pairs of chemistry and physics textbooks by different authors in different combinations was calculated. The most cohered pairs of textbooks (chemistry-physics) were identified. One can recommend using the pair of textbooks for eighth grade that we offered that favors the development of holistic understandings of the world around us.

  2. Presidential Green Chemistry Challenge: 2014 Small Business Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2014 award winner, Amyris, engineered yeast to make a chemical called farnesene, which is a building block hydrocarbon that can be converted into a renewable, drop-in replacement for petroleum diesel.

  3. Presidential Green Chemistry Challenge: 1998 Academic Award (Draths and Frost)

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 1998 award winners, Dr. Karen M. Draths and Professor John W. Frost, used benign, genetically engineered microbes and sugars (instead of benzene) to synthesize adipic acid and catechol.

  4. People Interview: Materials unite physics and chemistry

    NASA Astrophysics Data System (ADS)

    2011-05-01

    INTERVIEW Materials unite physics and chemistry Mark Miodownik is a materials scientist at King's College, London. David Smith talks to him about his career and his fascinating experiences of giving last year's Royal Institution Christmas Lectures.

  5. Molecule by molecule, the physics and chemistry of life: SMB 2007

    PubMed Central

    Block, Steven M; Larson, Matthew H; Greenleaf, William J; Herbert, Kristina M; Guydosh, Nicholas R; Anthony, Peter C

    2007-01-01

    Interdisciplinary work in the life sciences at the boundaries of biology, chemistry and physics is making enormous strides. This progress was showcased at the recent Single Molecule Biophysics conference. PMID:17372599

  6. Education in applied and instrumental optics at the University of Helsinki

    NASA Astrophysics Data System (ADS)

    Stenman, Folke

    1997-12-01

    The teaching of applied and instrumental optics at the University of Helsinki Department of Physics originally grew out of the needs of the research group of molecular physics as a basis for the experimental work in the group. The training program starts with a one-year course for senior undergraduates and graduates comprising geometrical optics, eikonal theory, image forming components, matrix methods, optical instruments, the optics of laser beams, radiometry and photometry, ray tracing methods, optics of anisotropic media, diffraction theory, general image formation theory and Fourier optics. The course starts from fundamentals, but the mathematical level is kept adequate for serious work. Further applications are treated in courses on molecular spectroscopy, where ruled and holographic diffraction gratings (both plane and spherical), interferometric spectroscopy and imaging properties of spectral equipment are treated. Aspects of image analysis, information in optics, signal-to-noise ratio, etc. are treated in separate courses on Fourier method and digital spectral analysis. The applicability of optical techniques to various fields of physics and engineering and the analogies with them are especially brought out. Experimental and calculational and skills are stressed throughout. Computer programming is introduced as an indispensable tool for the optics practitioner, and the students are required to write programs of their own. The students gain practical experience, e.g., by working in the molecular physics group. Close cooperation is maintained with other research groups in laser physics, ultrasonics and physical chemistry. The training in optics has proved very useful, with students frequently ending up working in the industry on optics and spectroscopy problems. Parts of these courses have also been given at other universities and to engineers and scientists working in the industry.

  7. Plasma Chemistry of Vibrationally Nonequilibrium Molecules

    DTIC Science & Technology

    1993-11-01

    WL-TR-93-2116 PLASMA CHEMISTRY OF VIBRATIONALLY NONEQUILIBRIUM MOLECULES AD-A279 630--, J. WILLIAM RICH DEPARTMENT OF MECHANICAL ENGINEERING D THE...1AT9E L. REPORT TYPE AND DATES COVERED ONLY Man"_November 1993 Final 09 July 1990_- 08 July 1993 4 MITL AND SUBTITLE S. FUNDNG NUMERS & Plasma Chemistry of...k14. SUBIECT TERMS 15. NUMBER OF PAGES Molecular Energy Transfer; Plasma Chemistry ; Ionization; 4% Vibrational Relaxation; Nitric Oxide; Carbon

  8. Past, Present and Future of General Chemistry in the PUC-Rio.

    ERIC Educational Resources Information Center

    Farias, Percio A. M.; Goulart, Mauricio S.; de Mello, Paulo Correa

    This manuscript describes the role of chemistry as a vehicle for understanding many other basic sciences and engineering based on the experience acquired in the General Chemistry course at the "Center Technical-Scientific" at the Pontific Catholic University of Rio de Janeiro (CTC-PUC-Rio). A description of the history of the General…

  9. Lincoln Advanced Science and Engineering Reinforcement (LASER) program

    NASA Technical Reports Server (NTRS)

    Williams, Willie E.

    1989-01-01

    Lincoln University, under the Lincoln Advanced Science and Engineering Reinforcement (LASER) Program, has identified and successfully recruited over 100 students for majors in technical fields. To date, over 70 percent of these students have completed or will complete technical degrees in engineering, physics, chemistry, and computer science. Of those completing the undergraduate degree, over 40 percent have gone on to graduate and professional schools. This success is attributable to well planned approaches to student recruitment, training, personal motivation, retention, and program staff. Very closely coupled to the above factors is a focus designed to achieve excellence in program services and student performance. Future contributions by the LASER Program to the pool of technical minority graduates will have a significant impact. This is already evident from the success of the students that began the first year of the program. With program plans to refine many of the already successful techniques, follow-on activities are expected to make even greater contributions to the availability of technically trained minorities. For example, undergraduate research exposure, broadened summer, and co-op work experiences will be enhanced.

  10. Critical assembly: A technical history of Los Alamos during the Oppenheimer years, 1943--1945

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoddeson, L.; Henriksen, P.W.; Meade, R.A.

    1993-11-01

    This volume treats the technical research that led to the first atomic bombs. The authors explore how the ``critical assembly`` of scientists, engineers, and military Personnel at Los Alamos collaborated during World War II, blending their traditions to create a new approach to large-scale research. The research was characterized by strong mission orientation, multidisciplinary teamwork, expansion of the scientists` traditional methodology with engineering techniques, and a trail-and-error methodology responding to wartime deadlines. The book opens with an introduction laying out major themes. After a synopsis of the prehistory of the bomb project, from the discovery of nuclear fission to themore » start of the Manhattan Engineer District, and an overview of the early materials program, the book examines the establishment of the Los Alamos Laboratory, the implosion and gun assembly programs, nuclear physics research, chemistry and metallurgy, explosives, uranium and plutonium development, confirmation of spontaneous fission in pile-produced plutonium, the thermonuclear bomb, critical assemblies, the Trinity test, and delivery of the combat weapons.« less

  11. Interview: An interview with Chad Mirkin: nanomedicine expert

    PubMed Central

    Mirkin, Chad

    2015-01-01

    Chad Mirkin speaks to Hannah Stanwix, Assistant Commissioning Editor Professor Chad Mirkin received his Bachelor of Science Degree in Chemistry from Dickinson College (PA, USA) in 1986. He holds a PhD in Chemistry from Pennsylvania State University (PA, USA) and was a Postdoctoral Fellow at the Massachusetts Institute of Technology (MA, USA). He subsequently moved to Northwestern University (IL, USA) as a Professor of Chemistry in 1991. In 2004, Professor Mirkin became Director of the International Institute for Nanotechnology and holds that post currently. He is also the George B Rathmann Professor of Chemistry, Professor of Chemical and Biological Engineering, Professor of Biomedical Engineering, Professor of Materials Science and Engineering and Professor of Medicine at Northwestern University. Professor Mirkin is a member of the National Academy of Engineering, the National Academy of Sciences, the Institute of Medicine, and the American Academy of Arts and Sciences. He is also currently a member of President Obama’s Council of Advisors for Science and Technology. Professor Mirkin is best known for his work on spherical nucleic acid nanoparticle conjugates and the invention of Dip-Pen Nanolithography. He has received over 70 awards and accolades for his accomplishments. Currently, based on total citations, Professor Mirkin is one of the most cited chemists and nanomedicine researchers in the world. He has authored over 500 publications, as well as over 440 patents and applications worldwide. PMID:22630148

  12. Student science enrichment training program. Progress report, June 1, 1991--May 31, 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sandhu, S.S.

    1992-04-21

    Historically Black Colleges and Universities wing of the United States Department of Energy (DOE) provided funds to Claflin College, Orangeburg, S.C. To conduct a student Science Enrichment Training Program for a period of six weeks during 1991 summer. Thirty participants were selected from a pool of applicants, generated by the High School Seniors and Juniors and the Freshmen class of 1990-1991 at Claflin College. The program primarily focused on high ability students, with potential for Science, Mathematics and Engineering Careers. The major objectives of the program were W to increase the pool of well qualified college entering minority students whomore » will elect to go in Physical Sciences and Engineering and (II) to increase the enrollment in Chemistry and Preprofessional-Pre-Med, Pre-Dent, etc.-majors at Claflin College by including the Claflin students to participate in summer academic program. The summer academic program consisted of Chemistry and Computer Science training. The program placed emphasis upon laboratory experience and research. Visits to Scientific and Industrial laboratories were arranged. Guest speakers which were drawn from academia, industry and several federal agencies, addressed the participants on the future role of Science in the industrial growth of United States of America. The guest speakers also acted as role models for the participants. Several videos and films, emphasizing the role of Science in human life, were also screened.« less

  13. Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series.

    PubMed

    Vaughan, Adam; Bohac, Stanislav V

    2015-10-01

    Fuel efficient Homogeneous Charge Compression Ignition (HCCI) engine combustion timing predictions must contend with non-linear chemistry, non-linear physics, period doubling bifurcation(s), turbulent mixing, model parameters that can drift day-to-day, and air-fuel mixture state information that cannot typically be resolved on a cycle-to-cycle basis, especially during transients. In previous work, an abstract cycle-to-cycle mapping function coupled with ϵ-Support Vector Regression was shown to predict experimentally observed cycle-to-cycle combustion timing over a wide range of engine conditions, despite some of the aforementioned difficulties. The main limitation of the previous approach was that a partially acasual randomly sampled training dataset was used to train proof of concept offline predictions. The objective of this paper is to address this limitation by proposing a new online adaptive Extreme Learning Machine (ELM) extension named Weighted Ring-ELM. This extension enables fully causal combustion timing predictions at randomly chosen engine set points, and is shown to achieve results that are as good as or better than the previous offline method. The broader objective of this approach is to enable a new class of real-time model predictive control strategies for high variability HCCI and, ultimately, to bring HCCI's low engine-out NOx and reduced CO2 emissions to production engines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Persistence of community college engineering science students: The impact of selected cognitive and noncognitive characteristics

    NASA Astrophysics Data System (ADS)

    Chatman, Lawrence M., Jr.

    If the United States is to remain technologically competitive, persistence in engineering programs must improve. This study on student persistence employed a mixed-method design to identify the cognitive and noncognitive factors which contribute to students remaining in an engineering science curriculum or switching from an engineering curriculum at a community college in the northeast United States. Records from 372 students were evaluated to determine the characteristics of two groups: those students that persisted with the engineering curriculum and those that switched from engineering; also, the dropout phenomenon was evaluated. The quantitative portion of the study used a logistic regression analyses on 22 independent variables, while the qualitative portion of the study used group interviews to investigate the noncognitive factors that influenced persisting or switching. The qualitative portion of the study added depth and credibility to the results from the quantitative portion. The study revealed that (1) high grades in first year calculus, physics and chemistry courses, (2) fewer number of semesters enrolled, (3) attendance with full time status, and (4) not participating in an English as a Second Language (ESL) program were significant variables used to predict student persistence. The group interviews confirmed several of these contributing factors. Students that dropped out of college began with (1) the lowest levels of remediation, (2) the lowest grade point averages, and (3) the fewest credits earned.

  15. A Course in Biophysics: An Integration of Physics, Chemistry, and Biology

    ERIC Educational Resources Information Center

    Giancoli, Douglas C.

    1971-01-01

    Describes an interdisciplinary course for advanced undergraduates in the physical and biological sciences. The goal is to understand a living cell from the most basic standpoint possible. The ideas of physics, chemistry, and molecular biology are all essential to the course, which leads to a unified view of the sciences. (PR)

  16. Mental Rolodexing: Senior Chemistry Majors' Understanding of Chemical and Physical Properties

    ERIC Educational Resources Information Center

    DeFever, Ryan S.; Bruce, Heather; Bhattacharyya, Gautam

    2015-01-01

    Using a constructivist framework, eight senior chemistry majors were interviewed twice to determine: (i) structural inferences they are able to make from chemical and physical properties; and (ii) their ability to apply their inferences and understandings of these chemical and physical properties to solve tasks on the reactivity of organic…

  17. West German Education in the Global Village

    DTIC Science & Technology

    1993-04-01

    GeschichwlEdbode) with additional studies in religion (Refigiotarehre), art (K/auterfehumg), music ( Musik ), physical education (Leiberuebumgen...chemistry (OChmie) and bioklgy (Bioiogie) instead of general science. Additional studies include religion, art, music , physical education...religion, English, history, biology and chemistry, music , and physical education but adds a required choice between three different major course

  18. Pre-Service Science Teachers' Pedagogical Content Knowledge in the Physics, Chemistry, and Biology Topics

    ERIC Educational Resources Information Center

    Bektas, Oktay

    2015-01-01

    This study investigated pre-service science teachers' pedagogical content knowledge in the physics, chemistry, and biology topics. These topics were the light and sound, the physical and chemical changes, and reproduction, growth, and evolution. Qualitative research design was utilized. Data were collected from 33 pre-service science teachers…

  19. Student Use of Energy Concepts from Physics in Chemistry Courses

    ERIC Educational Resources Information Center

    Nagel, Megan L.; Lindsey, Beth A.

    2015-01-01

    This paper describes an interdisciplinary investigation of students' usage of ideas about energy from physics in the context of introductory chemistry. We focus on student understanding of the idea that potential energy is a function of distance between interacting objects, a concept relevant to understanding potential energy in both physical and…

  20. Cross-Course Collaboration in the Undergraduate Chemistry Curriculum: Primary Kinetic Isotope Effect in the Hypochlorite Oxidation of 1-Phenylethanol in the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Noll, Robert J.; Fitch, Richard W.; Kjonaas, Richard A.; Wyatt, Richard A.

    2017-01-01

    A kinetic isotope effect (KIE) experiment is described for the physical chemistry laboratory. Students conduct a hypochlorite (household bleach) oxidation of an equimolar mixture of 1-phenylethanol and 1-deuterio-1-phenylethanol to acetophenone. The reaction occurs in a biphasic reaction mixture and follows first-order kinetics with respect to…

Top