The Alba ray tracing code: ART
NASA Astrophysics Data System (ADS)
Nicolas, Josep; Barla, Alessandro; Juanhuix, Jordi
2013-09-01
The Alba ray tracing code (ART) is a suite of Matlab functions and tools for the ray tracing simulation of x-ray beamlines. The code is structured in different layers, which allow its usage as part of optimization routines as well as an easy control from a graphical user interface. Additional tools for slope error handling and for grating efficiency calculations are also included. Generic characteristics of ART include the accumulation of rays to improve statistics without memory limitations, and still providing normalized values of flux and resolution in physically meaningful units.
Establishing confidence in complex physics codes: Art or science?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trucano, T.
1997-12-31
The ALEGRA shock wave physics code, currently under development at Sandia National Laboratories and partially supported by the US Advanced Strategic Computing Initiative (ASCI), is generic to a certain class of physics codes: large, multi-application, intended to support a broad user community on the latest generation of massively parallel supercomputer, and in a continual state of formal development. To say that the author has ``confidence`` in the results of ALEGRA is to say something different than that he believes that ALEGRA is ``predictive.`` It is the purpose of this talk to illustrate the distinction between these two concepts. The authormore » elects to perform this task in a somewhat historical manner. He will summarize certain older approaches to code validation. He views these methods as aiming to establish the predictive behavior of the code. These methods are distinguished by their emphasis on local information. He will conclude that these approaches are more art than science.« less
ERIC Educational Resources Information Center
Newton Unified School District 373, KS.
GRADES OR AGES: Primary Grades. SUBJECT MATTER: Art. ORGANIZATION AND PHYSICAL APPEARANCE: The guide begins with a list of topics for art expression. The main body of the guide contains 15 color-coded sections on the following subjects: 1) mobiles and folded paper; 2) collage and photo montage; 3) square paper and mosaics; 4) wax paper and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simunovic, Srdjan
2015-02-16
CASL's modeling and simulation technology, the Virtual Environment for Reactor Applications (VERA), incorporates coupled physics and science-based models, state-of-the-art numerical methods, modern computational science, integrated uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs), single-effect experiments, and integral tests. The computational simulation component of VERA is the VERA Core Simulator (VERA-CS). The core simulator is the specific collection of multi-physics computer codes used to model and deplete a LWR core over multiple cycles. The core simulator has a single common input file that drives all of the different physics codes. The parser code, VERAIn, converts VERAmore » Input into an XML file that is used as input to different VERA codes.« less
Research Prototype: Automated Analysis of Scientific and Engineering Semantics
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.; Follen, Greg (Technical Monitor)
2001-01-01
Physical and mathematical formulae and concepts are fundamental elements of scientific and engineering software. These classical equations and methods are time tested, universally accepted, and relatively unambiguous. The existence of this classical ontology suggests an ideal problem for automated comprehension. This problem is further motivated by the pervasive use of scientific code and high code development costs. To investigate code comprehension in this classical knowledge domain, a research prototype has been developed. The prototype incorporates scientific domain knowledge to recognize code properties (including units, physical, and mathematical quantity). Also, the procedure implements programming language semantics to propagate these properties through the code. This prototype's ability to elucidate code and detect errors will be demonstrated with state of the art scientific codes.
HEPMath 1.4: A mathematica package for semi-automatic computations in high energy physics
NASA Astrophysics Data System (ADS)
Wiebusch, Martin
2015-10-01
This article introduces the Mathematica package HEPMath which provides a number of utilities and algorithms for High Energy Physics computations in Mathematica. Its functionality is similar to packages like FormCalc or FeynCalc, but it takes a more complete and extensible approach to implementing common High Energy Physics notations in the Mathematica language, in particular those related to tensors and index contractions. It also provides a more flexible method for the generation of numerical code which is based on new features for C code generation in Mathematica. In particular it can automatically generate Python extension modules which make the compiled functions callable from Python, thus eliminating the need to write any code in a low-level language like C or Fortran. It also contains seamless interfaces to LHAPDF, FeynArts, and LoopTools.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.
The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scalemore » projects such as ICF3D.« less
TRIQS: A toolbox for research on interacting quantum systems
NASA Astrophysics Data System (ADS)
Parcollet, Olivier; Ferrero, Michel; Ayral, Thomas; Hafermann, Hartmut; Krivenko, Igor; Messio, Laura; Seth, Priyanka
2015-11-01
We present the TRIQS library, a Toolbox for Research on Interacting Quantum Systems. It is an open-source, computational physics library providing a framework for the quick development of applications in the field of many-body quantum physics, and in particular, strongly-correlated electronic systems. It supplies components to develop codes in a modern, concise and efficient way: e.g. Green's function containers, a generic Monte Carlo class, and simple interfaces to HDF5. TRIQS is a C++/Python library that can be used from either language. It is distributed under the GNU General Public License (GPLv3). State-of-the-art applications based on the library, such as modern quantum many-body solvers and interfaces between density-functional-theory codes and dynamical mean-field theory (DMFT) codes are distributed along with it.
An Experiment in Scientific Program Understanding
NASA Technical Reports Server (NTRS)
Stewart, Mark E. M.; Owen, Karl (Technical Monitor)
2000-01-01
This paper concerns a procedure that analyzes aspects of the meaning or semantics of scientific and engineering code. This procedure involves taking a user's existing code, adding semantic declarations for some primitive variables, and parsing this annotated code using multiple, independent expert parsers. These semantic parsers encode domain knowledge and recognize formulae in different disciplines including physics, numerical methods, mathematics, and geometry. The parsers will automatically recognize and document some static, semantic concepts and help locate some program semantic errors. Results are shown for three intensively studied codes and seven blind test cases; all test cases are state of the art scientific codes. These techniques may apply to a wider range of scientific codes. If so, the techniques could reduce the time, risk, and effort required to develop and modify scientific codes.
Final Report: SciDAC Computational Astrophysics Consortium (at Princeton University)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrows, Adam
Supernova explosions are the central events in astrophysics. They are the major agencies of change in the interstellar medium, driving star formation and the evolution of galaxies. Their gas remnants are the birthplaces of the cosmic rays. Such is their brightness that they can be used as standard candles to measure the size and geometry of the universe and their investigation draws on particle and nuclear physics, radiative transfer, kinetic theory, gravitational physics, thermodynamics, and the numerical arts. Hence, supernovae are unrivaled astrophysical laboratories. We will develop new state-of-the-art multi-dimensional radiation hydrodynamic codes to address this and other related astrophysicalmore » phenomena.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William
ITS is a powerful and user-friendly software package permitting state of the art Monte Carlo solution of linear time-independent couple electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theoristsmore » alike with a method for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 5.0, the latest version of ITS, contains (1) improvements to the ITS 3.0 continuous-energy codes, (2)multigroup codes with adjoint transport capabilities, and (3) parallel implementations of all ITS codes. Moreover the general user friendliness of the software has been enhanced through increased internal error checking and improved code portability.« less
Advances in modelling of condensation phenomena
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, W.S.; Zaltsgendler, E.; Hanna, B.
1997-07-01
The physical parameters in the modelling of condensation phenomena in the CANDU reactor system codes are discussed. The experimental programs used for thermal-hydraulic code validation in the Canadian nuclear industry are briefly described. The modelling of vapour generation and in particular condensation plays a key role in modelling of postulated reactor transients. The condensation models adopted in the current state-of-the-art two-fluid CANDU reactor thermal-hydraulic system codes (CATHENA and TUF) are described. As examples of the modelling challenges faced, the simulation of a cold water injection experiment by CATHENA and the simulation of a condensation induced water hammer experiment by TUFmore » are described.« less
Load management strategy for Particle-In-Cell simulations in high energy particle acceleration
NASA Astrophysics Data System (ADS)
Beck, A.; Frederiksen, J. T.; Dérouillat, J.
2016-09-01
In the wake of the intense effort made for the experimental CILEX project, numerical simulation campaigns have been carried out in order to finalize the design of the facility and to identify optimal laser and plasma parameters. These simulations bring, of course, important insight into the fundamental physics at play. As a by-product, they also characterize the quality of our theoretical and numerical models. In this paper, we compare the results given by different codes and point out algorithmic limitations both in terms of physical accuracy and computational performances. These limitations are illustrated in the context of electron laser wakefield acceleration (LWFA). The main limitation we identify in state-of-the-art Particle-In-Cell (PIC) codes is computational load imbalance. We propose an innovative algorithm to deal with this specific issue as well as milestones towards a modern, accurate high-performance PIC code for high energy particle acceleration.
1988-01-01
Article 162 of this Mexican Code provides, among other things, that "Every person has the right freely, responsibly, and in an informed fashion to determine the number and spacing of his or her children." When a marriage is involved, this right is to be observed by the spouses "in agreement with each other." The civil codes of the following states contain the same provisions: 1) Baja California (Art. 159 of the Civil Code of 28 April 1972 as revised in Decree No. 167 of 31 January 1974); 2) Morelos (Art. 255 of the Civil Code of 26 September 1949 as revised in Decree No. 135 of 29 December 1981); 3) Queretaro (Art. 162 of the Civil Code of 29 December 1950 as revised in the Act of 9 January 1981); 4) San Luis Potosi (Art. 147 of the Civil Code of 24 March 1946 as revised in 13 June 1978); Sinaloa (Art. 162 of the Civil Code of 18 June 1940 as revised in Decree No. 28 of 14 October 1975); 5) Tamaulipas (Art. 146 of the Civil Code of 21 November 1960 as revised in Decree No. 20 of 30 April 1975); 6) Veracruz-Llave (Art. 98 of the Civil Code of 1 September 1932 as revised in the Act of 30 December 1975); and 7) Zacatecas (Art. 253 of the Civil Code of 9 February 1965 as revised in Decree No. 104 of 13 August 1975). The Civil Codes of Puebla and Tlaxcala provide for this right only in the context of marriage with the spouses in agreement. See Art. 317 of the Civil Code of Puebla of 15 April 1985 and Article 52 of the Civil Code of Tlaxcala of 31 August 1976 as revised in Decree No. 23 of 2 April 1984. The Family Code of Hidalgo requires as a formality of marriage a certification that the spouses are aware of methods of controlling fertility, responsible parenthood, and family planning. In addition, Article 22 the Civil Code of the Federal District provides that the legal capacity of natural persons is acquired at birth and lost at death; however, from the moment of conception the individual comes under the protection of the law, which is valid with respect to the individual as far as the effects of this law provides as if the individual were already born. full text
Design Considerations of a Virtual Laboratory for Advanced X-ray Sources
NASA Astrophysics Data System (ADS)
Luginsland, J. W.; Frese, M. H.; Frese, S. D.; Watrous, J. J.; Heileman, G. L.
2004-11-01
The field of scientific computation has greatly advanced in the last few years, resulting in the ability to perform complex computer simulations that can predict the performance of real-world experiments in a number of fields of study. Among the forces driving this new computational capability is the advent of parallel algorithms, allowing calculations in three-dimensional space with realistic time scales. Electromagnetic radiation sources driven by high-voltage, high-current electron beams offer an area to further push the state-of-the-art in high fidelity, first-principles simulation tools. The physics of these x-ray sources combine kinetic plasma physics (electron beams) with dense fluid-like plasma physics (anode plasmas) and x-ray generation (bremsstrahlung). There are a number of mature techniques and software packages for dealing with the individual aspects of these sources, such as Particle-In-Cell (PIC), Magneto-Hydrodynamics (MHD), and radiation transport codes. The current effort is focused on developing an object-oriented software environment using the Rational© Unified Process and the Unified Modeling Language (UML) to provide a framework where multiple 3D parallel physics packages, such as a PIC code (ICEPIC), a MHD code (MACH), and a x-ray transport code (ITS) can co-exist in a system-of-systems approach to modeling advanced x-ray sources. Initial software design and assessments of the various physics algorithms' fidelity will be presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Kyung-Doo; Jeong, Jae-Jun; Lee, Seung-Wook
The Nuclear Steam Supply System (NSSS) thermal-hydraulic model adopted in the Korea Nuclear Plant Education Center (KNPEC)-2 simulator was provided in the early 1980s. The reference plant for KNPEC-2 is the Yong Gwang Nuclear Unit 1, which is a Westinghouse-type 3-loop, 950 MW(electric) pressurized water reactor. Because of the limited computational capability at that time, it uses overly simplified physical models and assumptions for a real-time simulation of NSSS thermal-hydraulic transients. This may entail inaccurate results and thus, the possibility of so-called ''negative training,'' especially for complicated two-phase flows in the reactor coolant system. To resolve the problem, we developedmore » a realistic NSSS thermal-hydraulic program (named ARTS code) based on the best-estimate code RETRAN-3D. The systematic assessment of ARTS has been conducted by both a stand-alone test and an integrated test in the simulator environment. The non-integrated stand-alone test (NIST) results were reasonable in terms of accuracy, real-time simulation capability, and robustness. After successful completion of the NIST, ARTS was integrated with a 3-D reactor kinetics model and other system models. The site acceptance test (SAT) has been completed successively and confirmed to comply with the ANSI/ANS-3.5-1998 simulator software performance criteria. This paper presents our efforts for the ARTS development and some test results of the NIST and SAT.« less
Distributed Learning, Recognition, and Prediction by ART and ARTMAP Neural Networks.
Carpenter, Gail A.
1997-11-01
A class of adaptive resonance theory (ART) models for learning, recognition, and prediction with arbitrarily distributed code representations is introduced. Distributed ART neural networks combine the stable fast learning capabilities of winner-take-all ART systems with the noise tolerance and code compression capabilities of multilayer perceptrons. With a winner-take-all code, the unsupervised model dART reduces to fuzzy ART and the supervised model dARTMAP reduces to fuzzy ARTMAP. With a distributed code, these networks automatically apportion learned changes according to the degree of activation of each coding node, which permits fast as well as slow learning without catastrophic forgetting. Distributed ART models replace the traditional neural network path weight with a dynamic weight equal to the rectified difference between coding node activation and an adaptive threshold. Thresholds increase monotonically during learning according to a principle of atrophy due to disuse. However, monotonic change at the synaptic level manifests itself as bidirectional change at the dynamic level, where the result of adaptation resembles long-term potentiation (LTP) for single-pulse or low frequency test inputs but can resemble long-term depression (LTD) for higher frequency test inputs. This paradoxical behavior is traced to dual computational properties of phasic and tonic coding signal components. A parallel distributed match-reset-search process also helps stabilize memory. Without the match-reset-search system, dART becomes a type of distributed competitive learning network.
ITS Version 6 : the integrated TIGER series of coupled electron/photon Monte Carlo transport codes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Brian Claude; Kensek, Ronald Patrick; Laub, Thomas William
2008-04-01
ITS is a powerful and user-friendly software package permitting state-of-the-art Monte Carlo solution of lineartime-independent coupled electron/photon radiation transport problems, with or without the presence of macroscopic electric and magnetic fields of arbitrary spatial dependence. Our goal has been to simultaneously maximize operational simplicity and physical accuracy. Through a set of preprocessor directives, the user selects one of the many ITS codes. The ease with which the makefile system is applied combines with an input scheme based on order-independent descriptive keywords that makes maximum use of defaults and internal error checking to provide experimentalists and theorists alike with a methodmore » for the routine but rigorous solution of sophisticated radiation transport problems. Physical rigor is provided by employing accurate cross sections, sampling distributions, and physical models for describing the production and transport of the electron/photon cascade from 1.0 GeV down to 1.0 keV. The availability of source code permits the more sophisticated user to tailor the codes to specific applications and to extend the capabilities of the codes to more complex applications. Version 6, the latest version of ITS, contains (1) improvements to the ITS 5.0 codes, and (2) conversion to Fortran 90. The general user friendliness of the software has been enhanced through memory allocation to reduce the need for users to modify and recompile the code.« less
NASA Technical Reports Server (NTRS)
Bose, Deepak
2012-01-01
The design of entry vehicles requires predictions of aerothermal environment during the hypersonic phase of their flight trajectories. These predictions are made using computational fluid dynamics (CFD) codes that often rely on physics and chemistry models of nonequilibrium processes. The primary processes of interest are gas phase chemistry, internal energy relaxation, electronic excitation, nonequilibrium emission and absorption of radiation, and gas-surface interaction leading to surface recession and catalytic recombination. NASAs Hypersonics Project is advancing the state-of-the-art in modeling of nonequilibrium phenomena by making detailed spectroscopic measurements in shock tube and arcjets, using ab-initio quantum mechanical techniques develop fundamental chemistry and spectroscopic databases, making fundamental measurements of finite-rate gas surface interactions, implementing of detailed mechanisms in the state-of-the-art CFD codes, The development of new models is based on validation with relevant experiments. We will present the latest developments and a roadmap for the technical areas mentioned above
Making extreme computations possible with virtual machines
NASA Astrophysics Data System (ADS)
Reuter, J.; Chokoufe Nejad, B.; Ohl, T.
2016-10-01
State-of-the-art algorithms generate scattering amplitudes for high-energy physics at leading order for high-multiplicity processes as compiled code (in Fortran, C or C++). For complicated processes the size of these libraries can become tremendous (many GiB). We show that amplitudes can be translated to byte-code instructions, which even reduce the size by one order of magnitude. The byte-code is interpreted by a Virtual Machine with runtimes comparable to compiled code and a better scaling with additional legs. We study the properties of this algorithm, as an extension of the Optimizing Matrix Element Generator (O'Mega). The bytecode matrix elements are available as alternative input for the event generator WHIZARD. The bytecode interpreter can be implemented very compactly, which will help with a future implementation on massively parallel GPUs.
Galactic Cosmic Ray Event-Based Risk Model (GERM) Code
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Plante, Ianik; Ponomarev, Artem L.; Kim, Myung-Hee Y.
2013-01-01
This software describes the transport and energy deposition of the passage of galactic cosmic rays in astronaut tissues during space travel, or heavy ion beams in patients in cancer therapy. Space radiation risk is a probability distribution, and time-dependent biological events must be accounted for physical description of space radiation transport in tissues and cells. A stochastic model can calculate the probability density directly without unverified assumptions about shape of probability density function. The prior art of transport codes calculates the average flux and dose of particles behind spacecraft and tissue shielding. Because of the signaling times for activation and relaxation in the cell and tissue, transport code must describe temporal and microspatial density of functions to correlate DNA and oxidative damage with non-targeted effects of signals, bystander, etc. These are absolutely ignored or impossible in the prior art. The GERM code provides scientists data interpretation of experiments; modeling of beam line, shielding of target samples, and sample holders; and estimation of basic physical and biological outputs of their experiments. For mono-energetic ion beams, basic physical and biological properties are calculated for a selected ion type, such as kinetic energy, mass, charge number, absorbed dose, or fluence. Evaluated quantities are linear energy transfer (LET), range (R), absorption and fragmentation cross-sections, and the probability of nuclear interactions after 1 or 5 cm of water equivalent material. In addition, a set of biophysical properties is evaluated, such as the Poisson distribution for a specified cellular area, cell survival curves, and DNA damage yields per cell. Also, the GERM code calculates the radiation transport of the beam line for either a fixed number of user-specified depths or at multiple positions along the Bragg curve of the particle in a selected material. The GERM code makes the numerical estimates of basic physical and biophysical quantities of high-energy protons and heavy ions that have been studied at the NASA Space Radiation Laboratory (NSRL) for the purpose of simulating space radiation biological effects. In the first option, properties of monoenergetic beams are treated. In the second option, the transport of beams in different materials is treated. Similar biophysical properties as in the first option are evaluated for the primary ion and its secondary particles. Additional properties related to the nuclear fragmentation of the beam are evaluated. The GERM code is a computationally efficient Monte-Carlo heavy-ion-beam model. It includes accurate models of LET, range, residual energy, and straggling, and the quantum multiple scattering fragmentation (QMSGRG) nuclear database.
Advanced graphical user interface for multi-physics simulations using AMST
NASA Astrophysics Data System (ADS)
Hoffmann, Florian; Vogel, Frank
2017-07-01
Numerical modelling of particulate matter has gained much popularity in recent decades. Advanced Multi-physics Simulation Technology (AMST) is a state-of-the-art three dimensional numerical modelling technique combining the eX-tended Discrete Element Method (XDEM) with Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) [1]. One major limitation of this code is the lack of a graphical user interface (GUI) meaning that all pre-processing has to be made directly in a HDF5-file. This contribution presents the first graphical pre-processor developed for AMST.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curca-Tivig, Florin; Merk, Stephan; Pautz, Andreas
2007-07-01
Anticipating future needs of our customers and willing to concentrate synergies and competences existing in the company for the benefit of our customers, AREVA NP decided in 2002 to develop the next generation of coupled neutronics/ core thermal-hydraulic (TH) code systems for fuel assembly and core design calculations for both, PWR and BWR applications. The global CONVERGENCE project was born: after a feasibility study of one year (2002) and a conceptual phase of another year (2003), development was started at the beginning of 2004. The present paper introduces the CONVERGENCE project, presents the main feature of the new code systemmore » ARCADIA{sup R} and concludes on customer benefits. ARCADIA{sup R} is designed to meet AREVA NP market and customers' requirements worldwide. Besides state-of-the-art physical modeling, numerical performance and industrial functionality, the ARCADIA{sup R} system is featuring state-of-the-art software engineering. The new code system will bring a series of benefits for our customers: e.g. improved accuracy for heterogeneous cores (MOX/ UOX, Gd...), better description of nuclide chains, and access to local neutronics/ thermal-hydraulics and possibly thermal-mechanical information (3D pin by pin full core modeling). ARCADIA is a registered trademark of AREVA NP. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCaskey, Alexander J.
There is a lack of state-of-the-art HPC simulation tools for simulating general quantum computing. Furthermore, there are no real software tools that integrate current quantum computers into existing classical HPC workflows. This product, the Quantum Virtual Machine (QVM), solves this problem by providing an extensible framework for pluggable virtual, or physical, quantum processing units (QPUs). It enables the execution of low level quantum assembly codes and returns the results of such executions.
NASA Astrophysics Data System (ADS)
Ghiringhelli, Luca M.; Carbogno, Christian; Levchenko, Sergey; Mohamed, Fawzi; Huhs, Georg; Lüders, Martin; Oliveira, Micael; Scheffler, Matthias
2017-11-01
With big-data driven materials research, the new paradigm of materials science, sharing and wide accessibility of data are becoming crucial aspects. Obviously, a prerequisite for data exchange and big-data analytics is standardization, which means using consistent and unique conventions for, e.g., units, zero base lines, and file formats. There are two main strategies to achieve this goal. One accepts the heterogeneous nature of the community, which comprises scientists from physics, chemistry, bio-physics, and materials science, by complying with the diverse ecosystem of computer codes and thus develops "converters" for the input and output files of all important codes. These converters then translate the data of each code into a standardized, code-independent format. The other strategy is to provide standardized open libraries that code developers can adopt for shaping their inputs, outputs, and restart files, directly into the same code-independent format. In this perspective paper, we present both strategies and argue that they can and should be regarded as complementary, if not even synergetic. The represented appropriate format and conventions were agreed upon by two teams, the Electronic Structure Library (ESL) of the European Center for Atomic and Molecular Computations (CECAM) and the NOvel MAterials Discovery (NOMAD) Laboratory, a European Centre of Excellence (CoE). A key element of this work is the definition of hierarchical metadata describing state-of-the-art electronic-structure calculations.
The AGORA High-resolution Galaxy Simulations Comparison Project II: Isolated disk test
Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain; ...
2016-12-20
Using an isolated Milky Way-mass galaxy simulation, we compare results from 9 state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly-formed stellar clump mass functions show more significant variation (difference by up to a factor of ~3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low density region, and between more diffusive and less diffusive schemes in the high density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Lastly, our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less
The AGORA High-resolution Galaxy Simulations Comparison Project II: Isolated disk test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain
Using an isolated Milky Way-mass galaxy simulation, we compare results from 9 state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt-Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly-formed stellar clump mass functions show more significant variation (difference by up to a factor of ~3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low density region, and between more diffusive and less diffusive schemes in the high density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Lastly, our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less
THE AGORA HIGH-RESOLUTION GALAXY SIMULATIONS COMPARISON PROJECT. II. ISOLATED DISK TEST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ji-hoon; Agertz, Oscar; Teyssier, Romain
Using an isolated Milky Way-mass galaxy simulation, we compare results from nine state-of-the-art gravito-hydrodynamics codes widely used in the numerical community. We utilize the infrastructure we have built for the AGORA High-resolution Galaxy Simulations Comparison Project. This includes the common disk initial conditions, common physics models (e.g., radiative cooling and UV background by the standardized package Grackle) and common analysis toolkit yt, all of which are publicly available. Subgrid physics models such as Jeans pressure floor, star formation, supernova feedback energy, and metal production are carefully constrained across code platforms. With numerical accuracy that resolves the disk scale height, wemore » find that the codes overall agree well with one another in many dimensions including: gas and stellar surface densities, rotation curves, velocity dispersions, density and temperature distribution functions, disk vertical heights, stellar clumps, star formation rates, and Kennicutt–Schmidt relations. Quantities such as velocity dispersions are very robust (agreement within a few tens of percent at all radii) while measures like newly formed stellar clump mass functions show more significant variation (difference by up to a factor of ∼3). Systematic differences exist, for example, between mesh-based and particle-based codes in the low-density region, and between more diffusive and less diffusive schemes in the high-density tail of the density distribution. Yet intrinsic code differences are generally small compared to the variations in numerical implementations of the common subgrid physics such as supernova feedback. Our experiment reassures that, if adequately designed in accordance with our proposed common parameters, results of a modern high-resolution galaxy formation simulation are more sensitive to input physics than to intrinsic differences in numerical schemes.« less
MCNP capabilities for nuclear well logging calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forster, R.A.; Little, R.C.; Briesmeister, J.F.
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. This paper discusses how the general-purpose continuous-energy Monte Carlo code MCNP ({und M}onte {und C}arlo {und n}eutron {und p}hoton), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tallymore » characteristics with standard MCNP features. The time-dependent capability of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data.« less
Improved Simulations of Astrophysical Plasmas: Computation of New Atomic Data
NASA Technical Reports Server (NTRS)
Gorczyca, Thomas W.; Korista, Kirk T.
2005-01-01
Our research program is designed to carry out state-of-the-art atomic physics calculations crucial to advancing our understanding of fundamental astrophysical problems. We redress the present inadequacies in the atomic data base along two important areas: dielectronic recombination and inner-shell photoionization and multiple electron ejection/Auger fluorescence therefrom. All of these data are disseminated to the astrophysical community in the proper format for implementation in spectral simulation code.
2010-01-01
or in more general terms, as a result of dislocation nucleation, motion, multiplication, and interaction). Nonetheless, state-of-the-art simulation ...computational power, together with under-developed physics within the simulation codes (i.e. cross-slip, climb, crystal rotations and patterning to...name a few), prevent realistic dislocation simulations over temporal and spatial domains that are readily accessible by experimental methods [9, 10
A domain specific language for performance portable molecular dynamics algorithms
NASA Astrophysics Data System (ADS)
Saunders, William Robert; Grant, James; Müller, Eike Hermann
2018-03-01
Developers of Molecular Dynamics (MD) codes face significant challenges when adapting existing simulation packages to new hardware. In a continuously diversifying hardware landscape it becomes increasingly difficult for scientists to be experts both in their own domain (physics/chemistry/biology) and specialists in the low level parallelisation and optimisation of their codes. To address this challenge, we describe a "Separation of Concerns" approach for the development of parallel and optimised MD codes: the science specialist writes code at a high abstraction level in a domain specific language (DSL), which is then translated into efficient computer code by a scientific programmer. In a related context, an abstraction for the solution of partial differential equations with grid based methods has recently been implemented in the (Py)OP2 library. Inspired by this approach, we develop a Python code generation system for molecular dynamics simulations on different parallel architectures, including massively parallel distributed memory systems and GPUs. We demonstrate the efficiency of the auto-generated code by studying its performance and scalability on different hardware and compare it to other state-of-the-art simulation packages. With growing data volumes the extraction of physically meaningful information from the simulation becomes increasingly challenging and requires equally efficient implementations. A particular advantage of our approach is the easy expression of such analysis algorithms. We consider two popular methods for deducing the crystalline structure of a material from the local environment of each atom, show how they can be expressed in our abstraction and implement them in the code generation framework.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Massimo, F., E-mail: francesco.massimo@ensta-paristech.fr; Dipartimento SBAI, Università di Roma “La Sapienza“, Via A. Scarpa 14, 00161 Roma; Atzeni, S.
Architect, a time explicit hybrid code designed to perform quick simulations for electron driven plasma wakefield acceleration, is described. In order to obtain beam quality acceptable for applications, control of the beam-plasma-dynamics is necessary. Particle in Cell (PIC) codes represent the state-of-the-art technique to investigate the underlying physics and possible experimental scenarios; however PIC codes demand the necessity of heavy computational resources. Architect code substantially reduces the need for computational resources by using a hybrid approach: relativistic electron bunches are treated kinetically as in a PIC code and the background plasma as a fluid. Cylindrical symmetry is assumed for themore » solution of the electromagnetic fields and fluid equations. In this paper both the underlying algorithms as well as a comparison with a fully three dimensional particle in cell code are reported. The comparison highlights the good agreement between the two models up to the weakly non-linear regimes. In highly non-linear regimes the two models only disagree in a localized region, where the plasma electrons expelled by the bunch close up at the end of the first plasma oscillation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crozier, Paul; Howard, Micah; Rider, William J.
The SPARC (Sandia Parallel Aerodynamics and Reentry Code) will provide nuclear weapon qualification evidence for the random vibration and thermal environments created by re-entry of a warhead into the earth’s atmosphere. SPARC incorporates the innovative approaches of ATDM projects on several fronts including: effective harnessing of heterogeneous compute nodes using Kokkos, exascale-ready parallel scalability through asynchronous multi-tasking, uncertainty quantification through Sacado integration, implementation of state-of-the-art reentry physics and multiscale models, use of advanced verification and validation methods, and enabling of improved workflows for users. SPARC is being developed primarily for the Department of Energy nuclear weapon program, with additional developmentmore » and use of the code is being supported by the Department of Defense for conventional weapons programs.« less
An Embedded Rule-Based Diagnostic Expert System in Ada
NASA Technical Reports Server (NTRS)
Jones, Robert E.; Liberman, Eugene M.
1992-01-01
Ada is becoming an increasingly popular programming language for large Government-funded software projects. Ada with it portability, transportability, and maintainability lends itself well to today's complex programming environment. In addition, expert systems have also assumed a growing role in providing human-like reasoning capability expertise for computer systems. The integration is discussed of expert system technology with Ada programming language, especially a rule-based expert system using an ART-Ada (Automated Reasoning Tool for Ada) system shell. NASA Lewis was chosen as a beta test site for ART-Ada. The test was conducted by implementing the existing Autonomous Power EXpert System (APEX), a Lisp-based power expert system, in ART-Ada. Three components, the rule-based expert systems, a graphics user interface, and communications software make up SMART-Ada (Systems fault Management with ART-Ada). The rules were written in the ART-Ada development environment and converted to Ada source code. The graphics interface was developed with the Transportable Application Environment (TAE) Plus, which generates Ada source code to control graphics images. SMART-Ada communicates with a remote host to obtain either simulated or real data. The Ada source code generated with ART-Ada, TAE Plus, and communications code was incorporated into an Ada expert system that reads the data from a power distribution test bed, applies the rule to determine a fault, if one exists, and graphically displays it on the screen. The main objective, to conduct a beta test on the ART-Ada rule-based expert system shell, was achieved. The system is operational. New Ada tools will assist in future successful projects. ART-Ada is one such tool and is a viable alternative to the straight Ada code when an application requires a rule-based or knowledge-based approach.
Status and Plans for the TRANSP Interpretive and Predictive Simulation Code
NASA Astrophysics Data System (ADS)
Kaye, Stanley; Andre, Robert; Marina, Gorelenkova; Yuan, Xingqui; Hawryluk, Richard; Jardin, Steven; Poli, Francesca
2015-11-01
TRANSP is an integrated interpretive and predictive transport analysis tool that incorporates state of the art heating/current drive sources and transport models. The treatments and transport solvers are becoming increasingly sophisticated and comprehensive. For instance, the ISOLVER component provides a free boundary equilibrium solution, while the PT_SOLVER transport solver is especially suited for stiff transport models such as TGLF. TRANSP also incorporates such source models as NUBEAM for neutral beam injection, GENRAY, TORAY, TORBEAM, TORIC and CQL3D for ICRH, LHCD, ECH and HHFW. The implementation of selected components makes efficient use of MPI for speed up of code calculations. TRANSP has a wide international user-base, and it is run on the FusionGrid to allow for timely support and quick turnaround by the PPPL Computational Plasma Physics Group. It is being used as a basis for both analysis and development of control algorithms and discharge operational scenarios, including simulation of ITER plasmas. This poster will describe present uses of the code worldwide, as well as plans for upgrading the physics modules and code framework. Progress on implementing TRANSP as a component in the ITER IMAS will also be described. This research was supported by the U.S. Department of Energy under contracts DE-AC02-09CH11466.
Langley Stability and Transition Analysis Code (LASTRAC) Version 1.2 User Manual
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan
2004-01-01
LASTRAC is a general-purposed, physics-based transition prediction code released by NASA for Laminar Flow Control studies and transition research. The design and development of the LASTRAC code is aimed at providing an engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. It was written from scratch based on the state-of-the-art numerical methods for stability analysis and modern software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory or linear parabolized stability equations method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. This document describes the governing equations, numerical methods, code development, detailed description of input/output parameters, and case studies for the current release of LASTRAC.
Computational Infrastructure for Geodynamics (CIG)
NASA Astrophysics Data System (ADS)
Gurnis, M.; Kellogg, L. H.; Bloxham, J.; Hager, B. H.; Spiegelman, M.; Willett, S.; Wysession, M. E.; Aivazis, M.
2004-12-01
Solid earth geophysicists have a long tradition of writing scientific software to address a wide range of problems. In particular, computer simulations came into wide use in geophysics during the decade after the plate tectonic revolution. Solution schemes and numerical algorithms that developed in other areas of science, most notably engineering, fluid mechanics, and physics, were adapted with considerable success to geophysics. This software has largely been the product of individual efforts and although this approach has proven successful, its strength for solving problems of interest is now starting to show its limitations as we try to share codes and algorithms or when we want to recombine codes in novel ways to produce new science. With funding from the NSF, the US community has embarked on a Computational Infrastructure for Geodynamics (CIG) that will develop, support, and disseminate community-accessible software for the greater geodynamics community from model developers to end-users. The software is being developed for problems involving mantle and core dynamics, crustal and earthquake dynamics, magma migration, seismology, and other related topics. With a high level of community participation, CIG is leveraging state-of-the-art scientific computing into a suite of open-source tools and codes. The infrastructure that we are now starting to develop will consist of: (a) a coordinated effort to develop reusable, well-documented and open-source geodynamics software; (b) the basic building blocks - an infrastructure layer - of software by which state-of-the-art modeling codes can be quickly assembled; (c) extension of existing software frameworks to interlink multiple codes and data through a superstructure layer; (d) strategic partnerships with the larger world of computational science and geoinformatics; and (e) specialized training and workshops for both the geodynamics and broader Earth science communities. The CIG initiative has already started to leverage and develop long-term strategic partnerships with open source development efforts within the larger thrusts of scientific computing and geoinformatics. These strategic partnerships are essential as the frontier has moved into multi-scale and multi-physics problems in which many investigators now want to use simulation software for data interpretation, data assimilation, and hypothesis testing.
Development of Fuel Shuffling Module for PHISICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allan Mabe; Andrea Alfonsi; Cristian Rabiti
2013-06-01
PHISICS (Parallel and Highly Innovative Simulation for the INL Code System) [4] code toolkit has been in development at the Idaho National Laboratory. This package is intended to provide a modern analysis tool for reactor physics investigation. It is designed with the mindset to maximize accuracy for a given availability of computational resources and to give state of the art tools to the modern nuclear engineer. This is obtained by implementing several different algorithms and meshing approaches among which the user will be able to choose, in order to optimize his computational resources and accuracy needs. The software is completelymore » modular in order to simplify the independent development of modules by different teams and future maintenance. The package is coupled with the thermo-hydraulic code RELAP5-3D [3]. In the following the structure of the different PHISICS modules is briefly recalled, focusing on the new shuffling module (SHUFFLE), object of this paper.« less
Decree No. 2737 issuing the Code of Minors, 27 November 1989.
1989-01-01
This document contains major provisions of the 1989 Code of Minors of Colombia. This Code spells out the rights of minors to protection, care, and adequate physical, mental, and social development. These rights go into force from the moment of conception. Minors have a specified right to life; to a defined filiation; to grow up within a family; to receive an education (compulsory to the ninth grade and free of charge); to be protected from abuse; to health care; to freedom of speech and to know their rights; to liberty of thought, conscience, and religion; to rest, recreation, and play; to participate in sports and the arts; and to be protected from labor exploitation. Handicapped minors have the right to care, education, and special training. Minors also have the right to be protected from the use of dependency-creating drugs. Any minor in an "irregular situation" will receive protective services. The Code defines abandoned minors and those in danger and provides specific protective measures which can be taken. Rules and procedures covering adoption are included in the Code, because adoption is viewed as primarily a protective measure.
Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes
NASA Astrophysics Data System (ADS)
Schreier, Franz; Milz, Mathias; Buehler, Stefan A.; von Clarmann, Thomas
2018-05-01
An intercomparison of three line-by-line (lbl) codes developed independently for atmospheric radiative transfer and remote sensing - ARTS, GARLIC, and KOPRA - has been performed for a thermal infrared nadir sounding application assuming a HIRS-like (High resolution Infrared Radiation Sounder) setup. Radiances for the 19 HIRS infrared channels and a set of 42 atmospheric profiles from the "Garand dataset" have been computed. The mutual differences of the equivalent brightness temperatures are presented and possible causes of disagreement are discussed. In particular, the impact of path integration schemes and atmospheric layer discretization is assessed. When the continuum absorption contribution is ignored because of the different implementations, residuals are generally in the sub-Kelvin range and smaller than 0.1 K for some window channels (and all atmospheric models and lbl codes). None of the three codes turned out to be perfect for all channels and atmospheres. Remaining discrepancies are attributed to different lbl optimization techniques. Lbl codes seem to have reached a maturity in the implementation of radiative transfer that the choice of the underlying physical models (line shape models, continua etc) becomes increasingly relevant.
Leadership Class Configuration Interaction Code - Status and Opportunities
NASA Astrophysics Data System (ADS)
Vary, James
2011-10-01
With support from SciDAC-UNEDF (www.unedf.org) nuclear theorists have developed and are continuously improving a Leadership Class Configuration Interaction Code (LCCI) for forefront nuclear structure calculations. The aim of this project is to make state-of-the-art nuclear structure tools available to the entire community of researchers including graduate students. The project includes codes such as NuShellX, MFDn and BIGSTICK that run a range of computers from laptops to leadership class supercomputers. Codes, scripts, test cases and documentation have been assembled, are under continuous development and are scheduled for release to the entire research community in November 2011. A covering script that accesses the appropriate code and supporting files is under development. In addition, a Data Base Management System (DBMS) that records key information from large production runs and archived results of those runs has been developed (http://nuclear.physics.iastate.edu/info/) and will be released. Following an outline of the project, the code structure, capabilities, the DBMS and current efforts, I will suggest a path forward that would benefit greatly from a significant partnership between researchers who use the codes, code developers and the National Nuclear Data efforts. This research is supported in part by DOE under grant DE-FG02-87ER40371 and grant DE-FC02-09ER41582 (SciDAC-UNEDF).
NASA Technical Reports Server (NTRS)
vanderWall, Berend G.; Lim, Joon W.; Smith, Marilyn J.; Jung, Sung N.; Bailly, Joelle; Baeder, James D.; Boyd, D. Douglas, Jr.
2013-01-01
Significant advancements in computational fluid dynamics (CFD) and their coupling with computational structural dynamics (CSD, or comprehensive codes) for rotorcraft applications have been achieved recently. Despite this, CSD codes with their engineering level of modeling the rotor blade dynamics, the unsteady sectional aerodynamics and the vortical wake are still the workhorse for the majority of applications. This is especially true when a large number of parameter variations is to be performed and their impact on performance, structural loads, vibration and noise is to be judged in an approximate yet reliable and as accurate as possible manner. In this article, the capabilities of such codes are evaluated using the HART II International Workshop database, focusing on a typical descent operating condition which includes strong blade-vortex interactions. A companion article addresses the CFD/CSD coupled approach. Three cases are of interest: the baseline case and two cases with 3/rev higher harmonic blade root pitch control (HHC) with different control phases employed. One setting is for minimum blade-vortex interaction noise radiation and the other one for minimum vibration generation. The challenge is to correctly predict the wake physics-especially for the cases with HHC-and all the dynamics, aerodynamics, modifications of the wake structure and the aero-acoustics coming with it. It is observed that the comprehensive codes used today have a surprisingly good predictive capability when they appropriately account for all of the physics involved. The minimum requirements to obtain these results are outlined.
NASA Technical Reports Server (NTRS)
vanderWall, Berend G.; Lim, Joon W.; Smith, Marilyn J.; Jung, Sung N.; Bailly, Joelle; Baeder, James D.; Boyd, D. Douglas, Jr.
2012-01-01
Despite significant advancements in computational fluid dynamics and their coupling with computational structural dynamics (= CSD, or comprehensive codes) for rotorcraft applications, CSD codes with their engineering level of modeling the rotor blade dynamics, the unsteady sectional aerodynamics and the vortical wake are still the workhorse for the majority of applications. This is especially true when a large number of parameter variations is to be performed and their impact on performance, structural loads, vibration and noise is to be judged in an approximate yet reliable and as accurate as possible manner. In this paper, the capabilities of such codes are evaluated using the HART II Inter- national Workshop data base, focusing on a typical descent operating condition which includes strong blade-vortex interactions. Three cases are of interest: the baseline case and two cases with 3/rev higher harmonic blade root pitch control (HHC) with different control phases employed. One setting is for minimum blade-vortex interaction noise radiation and the other one for minimum vibration generation. The challenge is to correctly predict the wake physics - especially for the cases with HHC - and all the dynamics, aerodynamics, modifications of the wake structure and the aero-acoustics coming with it. It is observed that the comprehensive codes used today have a surprisingly good predictive capability when they appropriately account for all of the physics involved. The minimum requirements to obtain these results are outlined.
Data collection systems in ART must follow the pace of change in clinical practice.
De Geyter, Ch; Wyns, C; Mocanu, E; de Mouzon, J; Calhaz-Jorge, C
2016-10-01
In assisted reproductive technology (ART), quality control necessitates the collection of outcome data and occurring complications. Traditional quality assurance is based on data derived from single ART centres and more recently from national registries, both recording outcome parameters during well-defined observation periods. Nowadays, ART is moving towards much more diverse approaches, with sequential activities including short- or long-term freezing of gametes, gonadal tissues and embryos, and cross-border reproductive care. Hence, long-term cumulative treatment rates and an international approach are becoming a necessity. We suggest the initiation of an easy access European Reproductive Coding System, through which each ART recipient is allocated a unique reproductive care code. This code would identify individuals (and reproductive material) during case to case data reporting to national ART data collecting institutions and to a central European ART monitoring agency. For confidentiality reasons, the identity of the individuals should remain with the local ART provider. This way, cumulative and fully reliable reproductive outcome data can be constructed with follow-up over prolonged time periods. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Humble, Travis S; Sadlier, Ronald J
Quantum communication systems harness modern physics through state-of-the-art optical engineering to provide revolutionary capabilities. An important concern for quantum communication engineering is designing and prototyping these systems to prototype proposed capabilities. We apply the paradigm of software-defined communica- tion for engineering quantum communication systems to facilitate rapid prototyping and prototype comparisons. We detail how to decompose quantum communication terminals into functional layers defining hardware, software, and middleware concerns, and we describe how each layer behaves. Using the super-dense coding protocol as a test case, we describe implementations of both the transmitter and receiver, and we present results from numerical simulationsmore » of the behavior. We find that while the theoretical benefits of super dense coding are maintained, there is a classical overhead associated with the full implementation.« less
Imran, Noreen; Seet, Boon-Chong; Fong, A C M
2015-01-01
Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian-Wolf and Wyner-Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs.
State of the States 2016: Arts Education State Policy Summary
ERIC Educational Resources Information Center
Aragon, Stephanie
2016-01-01
The "State of the States 2016" summarizes state policies for arts education identified in statute or administrative code for all 50 states and the District of Columbia. Information is based on a comprehensive search of state education statute and codes on each state's relevant websites. Complete results from this review are available in…
Statistical regularities in art: Relations with visual coding and perception.
Graham, Daniel J; Redies, Christoph
2010-07-21
Since at least 1935, vision researchers have used art stimuli to test human response to complex scenes. This is sensible given the "inherent interestingness" of art and its relation to the natural visual world. The use of art stimuli has remained popular, especially in eye tracking studies. Moreover, stimuli in common use by vision scientists are inspired by the work of famous artists (e.g., Mondrians). Artworks are also popular in vision science as illustrations of a host of visual phenomena, such as depth cues and surface properties. However, until recently, there has been scant consideration of the spatial, luminance, and color statistics of artwork, and even less study of ways that regularities in such statistics could affect visual processing. Furthermore, the relationship between regularities in art images and those in natural scenes has received little or no attention. In the past few years, there has been a concerted effort to study statistical regularities in art as they relate to neural coding and visual perception, and art stimuli have begun to be studied in rigorous ways, as natural scenes have been. In this minireview, we summarize quantitative studies of links between regular statistics in artwork and processing in the visual stream. The results of these studies suggest that art is especially germane to understanding human visual coding and perception, and it therefore warrants wider study. Copyright 2010 Elsevier Ltd. All rights reserved.
Overcoming Challenges in Kinetic Modeling of Magnetized Plasmas and Vacuum Electronic Devices
NASA Astrophysics Data System (ADS)
Omelchenko, Yuri; Na, Dong-Yeop; Teixeira, Fernando
2017-10-01
We transform the state-of-the art of plasma modeling by taking advantage of novel computational techniques for fast and robust integration of multiscale hybrid (full particle ions, fluid electrons, no displacement current) and full-PIC models. These models are implemented in 3D HYPERS and axisymmetric full-PIC CONPIC codes. HYPERS is a massively parallel, asynchronous code. The HYPERS solver does not step fields and particles synchronously in time but instead executes local variable updates (events) at their self-adaptive rates while preserving fundamental conservation laws. The charge-conserving CONPIC code has a matrix-free explicit finite-element (FE) solver based on a sparse-approximate inverse (SPAI) algorithm. This explicit solver approximates the inverse FE system matrix (``mass'' matrix) using successive sparsity pattern orders of the original matrix. It does not reduce the set of Maxwell's equations to a vector-wave (curl-curl) equation of second order but instead utilizes the standard coupled first-order Maxwell's system. We discuss the ability of our codes to accurately and efficiently account for multiscale physical phenomena in 3D magnetized space and laboratory plasmas and axisymmetric vacuum electronic devices.
Nuclear thermal propulsion engine system design analysis code development
NASA Astrophysics Data System (ADS)
Pelaccio, Dennis G.; Scheil, Christine M.; Petrosky, Lyman J.; Ivanenok, Joseph F.
1992-01-01
A Nuclear Thermal Propulsion (NTP) Engine System Design Analyis Code has recently been developed to characterize key NTP engine system design features. Such a versatile, standalone NTP system performance and engine design code is required to support ongoing and future engine system and vehicle design efforts associated with proposed Space Exploration Initiative (SEI) missions of interest. Key areas of interest in the engine system modeling effort were the reactor, shielding, and inclusion of an engine multi-redundant propellant pump feed system design option. A solid-core nuclear thermal reactor and internal shielding code model was developed to estimate the reactor's thermal-hydraulic and physical parameters based on a prescribed thermal output which was integrated into a state-of-the-art engine system design model. The reactor code module has the capability to model graphite, composite, or carbide fuels. Key output from the model consists of reactor parameters such as thermal power, pressure drop, thermal profile, and heat generation in cooled structures (reflector, shield, and core supports), as well as the engine system parameters such as weight, dimensions, pressures, temperatures, mass flows, and performance. The model's overall analysis methodology and its key assumptions and capabilities are summarized in this paper.
A Manual for Coding Descriptions, Interpretations, and Evaluations of Visual Art Forms.
ERIC Educational Resources Information Center
Acuff, Bette C.; Sieber-Suppes, Joan
This manual presents a system for categorizing stated esthetic responses to paintings. It is primarily a training manual for coders, but it may also be used for teaching reflective thinking skills and for evaluating programs of art education. The coding system contains 33 subdivisions of esthetic responses under three major categories: Cue…
Development of 3D pseudo pin-by-pin calculation methodology in ANC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, B.; Mayhue, L.; Huria, H.
2012-07-01
Advanced cores and fuel assembly designs have been developed to improve operational flexibility, economic performance and further enhance safety features of nuclear power plants. The simulation of these new designs, along with strong heterogeneous fuel loading, have brought new challenges to the reactor physics methodologies currently employed in the industrial codes for core analyses. Control rod insertion during normal operation is one operational feature in the AP1000{sup R} plant of Westinghouse next generation Pressurized Water Reactor (PWR) design. This design improves its operational flexibility and efficiency but significantly challenges the conventional reactor physics methods, especially in pin power calculations. Themore » mixture loading of fuel assemblies with significant neutron spectrums causes a strong interaction between different fuel assembly types that is not fully captured with the current core design codes. To overcome the weaknesses of the conventional methods, Westinghouse has developed a state-of-the-art 3D Pin-by-Pin Calculation Methodology (P3C) and successfully implemented in the Westinghouse core design code ANC. The new methodology has been qualified and licensed for pin power prediction. The 3D P3C methodology along with its application and validation will be discussed in the paper. (authors)« less
Phase 1 Validation Testing and Simulation for the WEC-Sim Open Source Code
NASA Astrophysics Data System (ADS)
Ruehl, K.; Michelen, C.; Gunawan, B.; Bosma, B.; Simmons, A.; Lomonaco, P.
2015-12-01
WEC-Sim is an open source code to model wave energy converters performance in operational waves, developed by Sandia and NREL and funded by the US DOE. The code is a time-domain modeling tool developed in MATLAB/SIMULINK using the multibody dynamics solver SimMechanics, and solves the WEC's governing equations of motion using the Cummins time-domain impulse response formulation in 6 degrees of freedom. The WEC-Sim code has undergone verification through code-to-code comparisons; however validation of the code has been limited to publicly available experimental data sets. While these data sets provide preliminary code validation, the experimental tests were not explicitly designed for code validation, and as a result are limited in their ability to validate the full functionality of the WEC-Sim code. Therefore, dedicated physical model tests for WEC-Sim validation have been performed. This presentation provides an overview of the WEC-Sim validation experimental wave tank tests performed at the Oregon State University's Directional Wave Basin at Hinsdale Wave Research Laboratory. Phase 1 of experimental testing was focused on device characterization and completed in Fall 2015. Phase 2 is focused on WEC performance and scheduled for Winter 2015/2016. These experimental tests were designed explicitly to validate the performance of WEC-Sim code, and its new feature additions. Upon completion, the WEC-Sim validation data set will be made publicly available to the wave energy community. For the physical model test, a controllable model of a floating wave energy converter has been designed and constructed. The instrumentation includes state-of-the-art devices to measure pressure fields, motions in 6 DOF, multi-axial load cells, torque transducers, position transducers, and encoders. The model also incorporates a fully programmable Power-Take-Off system which can be used to generate or absorb wave energy. Numerical simulations of the experiments using WEC-Sim will be presented. These simulations highlight the code features included in the latest release of WEC-Sim (v1.2), including: wave directionality, nonlinear hydrostatics and hydrodynamics, user-defined wave elevation time-series, state space radiation, and WEC-Sim compatibility with BEMIO (open source AQWA/WAMI/NEMOH coefficient parser).
Portable LQCD Monte Carlo code using OpenACC
NASA Astrophysics Data System (ADS)
Bonati, Claudio; Calore, Enrico; Coscetti, Simone; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Fabio Schifano, Sebastiano; Silvi, Giorgio; Tripiccione, Raffaele
2018-03-01
Varying from multi-core CPU processors to many-core GPUs, the present scenario of HPC architectures is extremely heterogeneous. In this context, code portability is increasingly important for easy maintainability of applications; this is relevant in scientific computing where code changes are numerous and frequent. In this talk we present the design and optimization of a state-of-the-art production level LQCD Monte Carlo application, using the OpenACC directives model. OpenACC aims to abstract parallel programming to a descriptive level, where programmers do not need to specify the mapping of the code on the target machine. We describe the OpenACC implementation and show that the same code is able to target different architectures, including state-of-the-art CPUs and GPUs.
ERIC Educational Resources Information Center
Martínez, Ramón Antonio
2014-01-01
This article draws on scholarship in educational and linguistic anthropology to explore awareness of Spanish-English code-switching among bilingual Chicana/o and Latina/o students in a sixth-grade English Language Arts classroom. Analysis of qualitative data gathered via participant observation, video/audio recording, and semistructured interviews…
A prototype Knowledge-Based System to Aid Space System Restoration Management.
1986-12-01
Systems. ......... 122 Appendix B: Computation of Weights With AHP . . .. 132 Appendix C: ART Code .. ............... 138 Appendix D: Test Outputs...45 5.1 Earth Coverage With Geosynchronous Satellites 49 5.2 Space System Configurations ... ........... . 50 5.3 AHP Hierarchy...67 5.4 AHP Hierarchy With Weights .... ............ 68 6.1 TALK Schema Structure ..... .............. 75 6.2 ART Code for TALK Satellite C
CHOLLA: A New Massively Parallel Hydrodynamics Code for Astrophysical Simulation
NASA Astrophysics Data System (ADS)
Schneider, Evan E.; Robertson, Brant E.
2015-04-01
We present Computational Hydrodynamics On ParaLLel Architectures (Cholla ), a new three-dimensional hydrodynamics code that harnesses the power of graphics processing units (GPUs) to accelerate astrophysical simulations. Cholla models the Euler equations on a static mesh using state-of-the-art techniques, including the unsplit Corner Transport Upwind algorithm, a variety of exact and approximate Riemann solvers, and multiple spatial reconstruction techniques including the piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid properties of thousands of cells simultaneously and can update over 10 million cells per GPU-second while using an exact Riemann solver and PPM reconstruction. Owing to the massively parallel architecture of GPUs and the design of the Cholla code, astrophysical simulations with physically interesting grid resolutions (≳2563) can easily be computed on a single device. We use the Message Passing Interface library to extend calculations onto multiple devices and demonstrate nearly ideal scaling beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our modeling and provides a useful comparison to other codes. We then use Cholla to simulate the interaction of a shock wave with a gas cloud in the interstellar medium, showing that the evolution of the cloud is highly dependent on its density structure. We reconcile the computed mixing time of a turbulent cloud with a realistic density distribution destroyed by a strong shock with the existing analytic theory for spherical cloud destruction by describing the system in terms of its median gas density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Azevedo, Eduardo; Abbott, Stephen; Koskela, Tuomas
The XGC fusion gyrokinetic code combines state-of-the-art, portable computational and algorithmic technologies to enable complicated multiscale simulations of turbulence and transport dynamics in ITER edge plasma on the largest US open-science computer, the CRAY XK7 Titan, at its maximal heterogeneous capability, which have not been possible before due to a factor of over 10 shortage in the time-to-solution for less than 5 days of wall-clock time for one physics case. Frontier techniques such as nested OpenMP parallelism, adaptive parallel I/O, staging I/O and data reduction using dynamic and asynchronous applications interactions, dynamic repartitioning.
The effect of gas physics on the halo mass function
NASA Astrophysics Data System (ADS)
Stanek, R.; Rudd, D.; Evrard, A. E.
2009-03-01
Cosmological tests based on cluster counts require accurate calibration of the space density of massive haloes, but most calibrations to date have ignored complex gas physics associated with halo baryons. We explore the sensitivity of the halo mass function to baryon physics using two pairs of gas-dynamic simulations that are likely to bracket the true behaviour. Each pair consists of a baseline model involving only gravity and shock heating, and a refined physics model aimed at reproducing the observed scaling of the hot, intracluster gas phase. One pair consists of billion-particle resimulations of the original 500h-1Mpc Millennium Simulation of Springel et al., run with the smoothed particle hydrodynamics (SPH) code GADGET-2 and using a refined physics treatment approximated by pre-heating (PH) at high redshift. The other pair are high-resolution simulations from the adaptive-mesh refinement code ART, for which the refined treatment includes cooling, star formation and supernova feedback (CSF). We find that, although the mass functions of the gravity-only (GO) treatments are consistent with the recent calibration of Tinker et al. (2008), both pairs of simulations with refined baryon physics show significant deviations. Relative to the GO case, the masses of ~1014h-1Msolar haloes in the PH and CSF treatments are shifted by the averages of -15 +/- 1 and +16 +/- 2 per cent, respectively. These mass shifts cause ~30 per cent deviations in number density relative to the Tinker function, significantly larger than the 5 per cent statistical uncertainty of that calibration.
Federal Tax Exemption Status of the Private Nonprofit Art Association.
ERIC Educational Resources Information Center
Rodriguez, Edward J.
1978-01-01
The question of whether the selling of art by a private nonprofit art association violates the provisions of section 501(c)(3) of the Internal Revenue Code of 1954 is considered. Revenue rulings of 1971 and 1976 suggest that any sale of art may render the organization ineligible for tax exemption when private interests are benefited. (JMD)
Arabaci, Murat; Djordjevic, Ivan B; Saunders, Ross; Marcoccia, Roberto M
2010-02-01
In order to achieve high-speed transmission over optical transport networks (OTNs) and maximize its throughput, we propose using a rate-adaptive polarization-multiplexed coded multilevel modulation with coherent detection based on component non-binary quasi-cyclic (QC) LDPC codes. Compared to prior-art bit-interleaved LDPC-coded modulation (BI-LDPC-CM) scheme, the proposed non-binary LDPC-coded modulation (NB-LDPC-CM) scheme not only reduces latency due to symbol- instead of bit-level processing but also provides either impressive reduction in computational complexity or striking improvements in coding gain depending on the constellation size. As the paper presents, compared to its prior-art binary counterpart, the proposed NB-LDPC-CM scheme addresses the needs of future OTNs, which are achieving the target BER performance and providing maximum possible throughput both over the entire lifetime of the OTN, better.
Uncertainty Assessment of Hypersonic Aerothermodynamics Prediction Capability
NASA Technical Reports Server (NTRS)
Bose, Deepak; Brown, James L.; Prabhu, Dinesh K.; Gnoffo, Peter; Johnston, Christopher O.; Hollis, Brian
2011-01-01
The present paper provides the background of a focused effort to assess uncertainties in predictions of heat flux and pressure in hypersonic flight (airbreathing or atmospheric entry) using state-of-the-art aerothermodynamics codes. The assessment is performed for four mission relevant problems: (1) shock turbulent boundary layer interaction on a compression corner, (2) shock turbulent boundary layer interaction due a impinging shock, (3) high-mass Mars entry and aerocapture, and (4) high speed return to Earth. A validation based uncertainty assessment approach with reliance on subject matter expertise is used. A code verification exercise with code-to-code comparisons and comparisons against well established correlations is also included in this effort. A thorough review of the literature in search of validation experiments is performed, which identified a scarcity of ground based validation experiments at hypersonic conditions. In particular, a shortage of useable experimental data at flight like enthalpies and Reynolds numbers is found. The uncertainty was quantified using metrics that measured discrepancy between model predictions and experimental data. The discrepancy data is statistically analyzed and investigated for physics based trends in order to define a meaningful quantified uncertainty. The detailed uncertainty assessment of each mission relevant problem is found in the four companion papers.
NASA Astrophysics Data System (ADS)
Andre, R.; Carlsson, J.; Gorelenkova, M.; Jardin, S.; Kaye, S.; Poli, F.; Yuan, X.
2016-10-01
TRANSP is an integrated interpretive and predictive transport analysis tool that incorporates state of the art heating/current drive sources and transport models. The treatments and transport solvers are becoming increasingly sophisticated and comprehensive. For instance, the ISOLVER component provides a free boundary equilibrium solution, while the PT- SOLVER transport solver is especially suited for stiff transport models such as TGLF. TRANSP incorporates high fidelity heating and current drive source models, such as NUBEAM for neutral beam injection, the beam tracing code TORBEAM for EC, TORIC for ICRF, the ray tracing TORAY and GENRAY for EC. The implementation of selected components makes efficient use of MPI for speed up of code calculations. Recently the GENRAY-CQL3D solver for modeling of LH heating and current drive has been implemented and currently being extended to multiple antennas, to allow modeling of EAST discharges. Also, GENRAY+CQL3D is being extended to the use of EC/EBW and of HHFW for NSTX-U. This poster will describe present uses of the code worldwide, as well as plans for upgrading the physics modules and code framework. Work supported by the US Department of Energy under DE-AC02-CH0911466.
Physics Meets Art in the General Education Core
ERIC Educational Resources Information Center
Dark, Marta L.; Hylton, Derrick J.
2018-01-01
This article describes a general education course offering, Physics and the Arts. During the development of this course, physics and arts faculty collaborated closely. We cover the usual physics phenomena for such a course--light, color, and sound--in addition to gravity, equilibrium, and spacetime. Goals of the course are to increase students'…
Pandya, Tara M.; Johnson, Seth R.; Evans, Thomas M.; ...
2015-12-21
This paper discusses the implementation, capabilities, and validation of Shift, a massively parallel Monte Carlo radiation transport package developed and maintained at Oak Ridge National Laboratory. It has been developed to scale well from laptop to small computing clusters to advanced supercomputers. Special features of Shift include hybrid capabilities for variance reduction such as CADIS and FW-CADIS, and advanced parallel decomposition and tally methods optimized for scalability on supercomputing architectures. Shift has been validated and verified against various reactor physics benchmarks and compares well to other state-of-the-art Monte Carlo radiation transport codes such as MCNP5, CE KENO-VI, and OpenMC. Somemore » specific benchmarks used for verification and validation include the CASL VERA criticality test suite and several Westinghouse AP1000 ® problems. These benchmark and scaling studies show promising results.« less
Skills and the appreciation of computer art
NASA Astrophysics Data System (ADS)
Boden, Margaret A.
2016-04-01
The appreciation of art normally includes recognition of the artist's skills in making it. Most people cannot appreciate computer art in that way, because they know little or nothing about coding. Various suggestions are made about how computer artists and/or curators might design and present computer art in such a way as to make the relevant making-skills more intelligible.
Advances In Coding For Nearly Errorless Communication
NASA Technical Reports Server (NTRS)
Cheung, Kar-Ming; Deutsch, Leslie J.; Dolinar, Samuel J.; Mceliece, Robert J.; Pollara, Fabrizio; Shahshahani, Mehrdad M.; Swanson, Laif
1993-01-01
Report surveys state of art of coding digital data for nearly errorless communication over long distances. Coding techniques described include mainly ones that have been or might be used to transmit imagery and/or other data from spacecraft to receivers on Earth.
Magidson, Jessica F; Seitz-Brown, C J; Listhaus, Alyson; Lindberg, Briana; Anderson, Katelyn E; Daughters, Stacey B
2013-09-01
Despite recent clinical guidelines recommending early initiation and widespread use of antiretroviral therapy (ART), many HIV-infected individuals are not receiving ART-in particular low-income, minority substance users. Few studies have examined psychological, as opposed to structural, factors related to not receiving ART in this population. Perceived capacity to tolerate physical and psychological distress, known as distress tolerance (DT), may be a particularly relevant yet understudied factor. The current study tested the relationship between self-reported physical and psychological DT and ART receipt among predominantly low-income, minority HIV-infected substance users (n=77). Psychiatric disorders, biological indicators of health status, ART use, structural barriers to health care, and self-reported physical and psychological DT were assessed. 61% of participants were receiving ART. The only factors that distinguished individuals not on ART were greater avoidance of physical discomfort, higher psychological DT, and higher CD4 count. Both DT measures remained associated with ART use after controlling for CD4 count and were associated with almost a two-fold decrease in likelihood of ART receipt. Current findings suggest higher perceived capacity to tolerate psychological distress and greater avoidance of physical discomfort are important factors associated with lower ART use among substance users and may be important intervention targets.
State of the States, 2012: Arts Education State Policy Summary
ERIC Educational Resources Information Center
Arts Education Partnership (NJ1), 2012
2012-01-01
The "State of the States 2012" summarizes state policies for arts education identified in statute or code for all 50 states and the District of Columbia. Information is based primarily on results from the AEP Arts Education State Policy Survey conducted in 2010-11, and updated in April 2012.
The Fine Art of Using a Laserdisc in the Art Classroom.
ERIC Educational Resources Information Center
Porter, Sharon
1998-01-01
Laserdiscs are an efficient and flexible medium for art presentations in schools. This article discusses laserdiscs, also called videodiscs; distinguishes between constant linear velocity (CLV) and constant angular velocity (CAV) which allows more flexible access; describes the use of bar coding for access; and lists selected visual art…
NASA Astrophysics Data System (ADS)
van der Veen, Janet Krause
In a recent editorial in Physics Today (July, 2006, p. 10) the ability of physicists to "imagine new realities" was correlated with what have been traditionally considered non-scientific qualities of imagination and creativity, which are usually associated with fine arts. In view of the current developments in physics of the 21st Century, including the searches for cosmic dark energy and evidence from the Large Hadron Collider which, it is hoped, will verify or refute the proposals of String Theory, the importance of developing creativity and imagination through education is gaining recognition. Two questions are addressed by this study: First, How can we bring the sense of aesthetics and creativity, which are important in the practice of physics, into the teaching and learning of physics at the introductory college level, without sacrificing the mathematical rigor which is necessary for proper understanding of physics? Second, How can we provide access to physics for a diverse population of students which includes physics majors, arts majors, and future teachers? An interdisciplinary curriculum which begins with teaching math as a language of nature, and utilizes arts to help visualize the connections between mathematics and the physical universe, may provide answers to these questions. In this dissertation I describe in detail the case study of the eleven students - seven physics majors and four arts majors - who participated in an experimental course, Symmetry and Aesthetics in Introductory Physics, in Winter Quarter, 2007, at UCSB's College of Creative Studies. The very positive results of this experiment suggest that this model deserves further testing, and could provide an entry into the study of physics for physics majors, liberal arts majors, future teachers, and as a foundation for media arts and technology programs.
Teaching Taekwondo through Mosston's Spectrum of Styles
ERIC Educational Resources Information Center
Na, Jaekwon
2009-01-01
Martial arts have recently gained the attention of physical educators as a viable activity in their physical education curriculum. However, physical education teachers may have difficulty teaching martial arts because they have little pedagogical content knowledge and no experience, and because they perceive martial arts to be dangerous and…
Industrial Arts Technology Bibliography; An Annotated Reference for Librarians.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.
This compilation is designed to assist librarians in selecting books for supplementing the expanding program of industrial arts education. The books were selected for the major subject areas of a broad industrial arts program, on the basis of reflected interest of students, content, format, and readability. The format and coding used in the…
Art and Design Practices in Nigeria: The Problem of Dropping Out
ERIC Educational Resources Information Center
Ogunduyile, Sunday Roberts; Kayode, Femi; Ojo, Bankole
2008-01-01
Despite interest in the arts, art and design practice in Nigeria continues to witness a downward trend. A new orientation and redirection of priorities, skills development, and patterns of practice that are not contradictory to the code of professional conduct and ethical procedures is contemplated. This paper groups the professionally trained…
Categories for Observing Language Arts Instruction (COLAI).
ERIC Educational Resources Information Center
Benterud, Julianna G.
Designed to study individual use of time spent in reading during regularly scheduled language arts instruction in a natural classroom setting, this coding sheet consists of nine categories: (1) engagement, (2) area of language arts, (3) instructional setting, (4) partner (teacher or pupil(s)), (5) source of content, (6) type of unit, (7) assigned…
Proficiency Verification Systems (PVS): Skills Indices for Language Arts. Technical Note.
ERIC Educational Resources Information Center
Humes, Ann
The procedures undertaken in developing and organizing skills indexes for use in coding elementary school language arts textbooks to determine what is actually taught are presented in this paper. The outlined procedures included performing a preliminary analysis on four language arts textbooks to compile an extensive list of skills and performance…
Overview of the Meso-NH model version 5.4 and its applications
NASA Astrophysics Data System (ADS)
Lac, Christine; Chaboureau, Jean-Pierre; Masson, Valéry; Pinty, Jean-Pierre; Tulet, Pierre; Escobar, Juan; Leriche, Maud; Barthe, Christelle; Aouizerats, Benjamin; Augros, Clotilde; Aumond, Pierre; Auguste, Franck; Bechtold, Peter; Berthet, Sarah; Bielli, Soline; Bosseur, Frédéric; Caumont, Olivier; Cohard, Jean-Martial; Colin, Jeanne; Couvreux, Fleur; Cuxart, Joan; Delautier, Gaëlle; Dauhut, Thibaut; Ducrocq, Véronique; Filippi, Jean-Baptiste; Gazen, Didier; Geoffroy, Olivier; Gheusi, François; Honnert, Rachel; Lafore, Jean-Philippe; Lebeaupin Brossier, Cindy; Libois, Quentin; Lunet, Thibaut; Mari, Céline; Maric, Tomislav; Mascart, Patrick; Mogé, Maxime; Molinié, Gilles; Nuissier, Olivier; Pantillon, Florian; Peyrillé, Philippe; Pergaud, Julien; Perraud, Emilie; Pianezze, Joris; Redelsperger, Jean-Luc; Ricard, Didier; Richard, Evelyne; Riette, Sébastien; Rodier, Quentin; Schoetter, Robert; Seyfried, Léo; Stein, Joël; Suhre, Karsten; Taufour, Marie; Thouron, Odile; Turner, Sandra; Verrelle, Antoine; Vié, Benoît; Visentin, Florian; Vionnet, Vincent; Wautelet, Philippe
2018-05-01
This paper presents the Meso-NH model version 5.4. Meso-NH is an atmospheric non hydrostatic research model that is applied to a broad range of resolutions, from synoptic to turbulent scales, and is designed for studies of physics and chemistry. It is a limited-area model employing advanced numerical techniques, including monotonic advection schemes for scalar transport and fourth-order centered or odd-order WENO advection schemes for momentum. The model includes state-of-the-art physics parameterization schemes that are important to represent convective-scale phenomena and turbulent eddies, as well as flows at larger scales. In addition, Meso-NH has been expanded to provide capabilities for a range of Earth system prediction applications such as chemistry and aerosols, electricity and lightning, hydrology, wildland fires, volcanic eruptions, and cyclones with ocean coupling. Here, we present the main innovations to the dynamics and physics of the code since the pioneer paper of Lafore et al. (1998) and provide an overview of recent applications and couplings.
Research that Helps Move Us Closer to a World where Each Child Thrives
Diamond, Adele
2015-01-01
Schools are curtailing programs in arts, physical exercise, and play so more time and resources can be devoted to academic instruction. Yet indications are that the arts (e.g., music, dance, or theatre) and physical activity (e.g., sports, martial arts, or youth circus) are crucial for all aspects of children’s development – including success in school. Thus in cutting those activities, schools may be impeding academic success, not aiding it. Correlational and retrospective studies have laid the groundwork, as have moving personal accounts, case studies, and theoretical arguments. The time is ripe for rigorous studies to investigate causality (Do arts and physical activities actually produce academic benefits or would kids in those activities have succeeded anyway?) and what characteristics of programs account for the benefits. Instead of simply claiming that the arts and/or physical activities can transform kids’ lives, that needs to be demonstrated, and granting agencies need to be more open to funding rigorous research of real-world arts and physical-activity programs. PMID:26635510
The role of computational physics in the liberal arts curriculum
NASA Astrophysics Data System (ADS)
Dominguez, Rachele; Huff, Benjamin
2015-09-01
The role of computational physics education varies dramatically from department to department. We will discuss a new computational physics course at Randolph-Macon College and our attempt to identify where it fits (or should fit) into the larger liberal arts curriculum and why. In doing so, we will describe the goals of the course, and how the liberal arts curriculum conditions the exploration of computational physics.
Admissibility of Evidence from Compelled Mental Examinations: MRE 302 and Beyond
1988-04-01
antisocial and paranoid personality disorder. He was subsequently apprehended for possession of marihuana and another assault. He was again referred to the...acts. Mental disease or defect does not otherwise constitute a defense. Uniform Code of Military Justice art . 50a, 10 U.S.C.A. § 859a (1987 Supp...UCMJ art . 5a (bW. 4 RCM 716k (3)(A). 5 "No problem in the drafting of a penal code presents larger intrinsic difficulties than that of determining when
Adapting Arts Activities or Success for All.
ERIC Educational Resources Information Center
Carr, Gary R.
It is possible to adapt art activity to meet the needs of any student regardless of physical and medical challenges. Art activities should allow any child to participate with success. This handbook is about tools and devices adapted for and used by physically handicapped and health impaired students for art activities. The handbook also works on…
Fostering Resilience through Art Education for Children with Severe Physical Disabilities
ERIC Educational Resources Information Center
Swanson, Sarah
2017-01-01
The purpose of this study is to measure the effects of fostering resilience through art education for students with severe physical disabilities ages 7-21. Recent trends of fostering resilience through art education were explored. Current attitudes towards art education for severely disables individuals were also explored. Of particular interest…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-19
... Determinations: ``Erotic Gold: The Art and Life of Bartholom[auml]us Spranger 1546-1611'' SUMMARY: Notice is... object to be included in the exhibition ``Erotic Gold: The Art and Life of Bartholom[auml]us Spranger.... 2012-25832 Filed 10-18-12; 8:45 am] BILLING CODE 4710-05-P ...
NASA Technical Reports Server (NTRS)
Sanchez, Jose Enrique; Auge, Estanislau; Santalo, Josep; Blanes, Ian; Serra-Sagrista, Joan; Kiely, Aaron
2011-01-01
A new standard for image coding is being developed by the MHDC working group of the CCSDS, targeting onboard compression of multi- and hyper-spectral imagery captured by aircraft and satellites. The proposed standard is based on the "Fast Lossless" adaptive linear predictive compressor, and is adapted to better overcome issues of onboard scenarios. In this paper, we present a review of the state of the art in this field, and provide an experimental comparison of the coding performance of the emerging standard in relation to other state-of-the-art coding techniques. Our own independent implementation of the MHDC Recommended Standard, as well as of some of the other techniques, has been used to provide extensive results over the vast corpus of test images from the CCSDS-MHDC.
PharmARTS: terminology web services for drug safety data coding and retrieval.
Alecu, Iulian; Bousquet, Cédric; Degoulet, Patrice; Jaulent, Marie-Christine
2007-01-01
MedDRA and WHO-ART are the terminologies used to encode drug safety reports. The standardisation achieved with these terminologies facilitates: 1) The sharing of safety databases; 2) Data mining for the continuous reassessment of benefit-risk ratio at national or international level or in the pharmaceutical industry. There is some debate about the capacity of these terminologies for retrieving case reports related to similar medical conditions. We have developed a resource that allows grouping similar medical conditions more effectively than WHO-ART and MedDRA. We describe here a software tool facilitating the use of this terminological resource thanks to an RDF framework with support for RDF Schema inferencing and querying. This tool eases coding and data retrieval in drug safety.
77 FR 2766 - Arts Advisory Panel Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-19
...: Pursuant to Section 10(a)(2) of the Federal Advisory Committee Act (Pub. L. 92-463), as amended, this... Endowment for the Arts. [FR Doc. 2012-1016 Filed 1-13-12; 4:15 pm] BILLING CODE 7537-01-P ...
Analysis of an Unusual Mirror in a 16th-Century Painting: A Museum Exercise for Physics Students
NASA Astrophysics Data System (ADS)
Swaminathan, Sudha; Lamelas, Frank
2017-04-01
Physics students at Worcester State University visit the Worcester Art Museum (WAM) at the end of a special 100-level course called Physics in Art. The students have studied geometrical optics, and they have been introduced to concepts in atomic physics. The purpose of the museum tour is to show how physics-based techniques can be used in a nontraditional lab setting. Other examples of the use of museum-based art in physics instruction include analyses of Pointillism and image resolution, and of reflections in soap bubbles in 17- and 18th-century paintings.
ERIC Educational Resources Information Center
Crane, Jean; Rains, Annette
1996-01-01
Presents six curriculum guides for art, physical education, reading/language arts, science, and social studies. Each guide identifies library media skills objectives; curriculum objectives; grade levels; print and nonprint resources; instructional roles; the activity; and procedures for completion, evaluation, and follow-up activities. (AEF)
Specification of the near-Earth space environment with SHIELDS
Jordanova, Vania Koleva; Delzanno, Gian Luca; Henderson, Michael Gerard; ...
2017-11-26
Here, predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of “space weather” and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- andmore » micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design.« less
Specification of the near-Earth space environment with SHIELDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordanova, Vania Koleva; Delzanno, Gian Luca; Henderson, Michael Gerard
Here, predicting variations in the near-Earth space environment that can lead to spacecraft damage and failure is one example of “space weather” and a big space physics challenge. A project recently funded through the Los Alamos National Laboratory (LANL) Directed Research and Development (LDRD) program aims at developing a new capability to understand, model, and predict Space Hazards Induced near Earth by Large Dynamic Storms, the SHIELDS framework. The project goals are to understand the dynamics of the surface charging environment (SCE), the hot (keV) electrons representing the source and seed populations for the radiation belts, on both macro- andmore » micro-scale. Important physics questions related to particle injection and acceleration associated with magnetospheric storms and substorms, as well as plasma waves, are investigated. These challenging problems are addressed using a team of world-class experts in the fields of space science and computational plasma physics, and state-of-the-art models and computational facilities. A full two-way coupling of physics-based models across multiple scales, including a global MHD (BATS-R-US) embedding a particle-in-cell (iPIC3D) and an inner magnetosphere (RAM-SCB) codes, is achieved. New data assimilation techniques employing in situ satellite data are developed; these provide an order of magnitude improvement in the accuracy in the simulation of the SCE. SHIELDS also includes a post-processing tool designed to calculate the surface charging for specific spacecraft geometry using the Curvilinear Particle-In-Cell (CPIC) code that can be used for reanalysis of satellite failures or for satellite design.« less
NASA Astrophysics Data System (ADS)
Kaliatka, T.; Povilaitis, M.; Kaliatka, A.; Urbonavicius, E.
2012-10-01
Wendelstein nuclear fusion device W7-X is a stellarator type experimental device, developed by Max Planck Institute of plasma physics. Rupture of one of the 40 mm inner diameter coolant pipes providing water for the divertor targets during the "baking" regime of the facility operation is considered to be the most severe accident in terms of the plasma vessel pressurization. "Baking" regime is the regime of the facility operation during which plasma vessel structures are heated to the temperature acceptable for the plasma ignition in the vessel. This paper presents the model of W7-X cooling system (pumps, valves, pipes, hydro-accumulators, and heat exchangers), developed using thermal-hydraulic state-of-the-art RELAP5 Mod3.3 code, and model of plasma vessel, developed by employing the lumped-parameter code COCOSYS. Using both models the numerical simulation of processes in W7-X cooling system and plasma vessel has been performed. The results of simulation showed, that the automatic valve closure time 1 s is the most acceptable (no water hammer effect occurs) and selected area of the burst disk is sufficient to prevent pressure in the plasma vessel.
Particle acceleration and transport at a 2D CME-driven shock using the HAFv3 and PATH Code
NASA Astrophysics Data System (ADS)
Li, G.; Ao, X.; Fry, C. D.; Verkhoglyadova, O. P.; Zank, G. P.
2012-12-01
We study particle acceleration at a 2D CME-driven shock and the subsequent transport in the inner heliosphere (up to 2 AU) by coupling the kinematic Hakamada-Akasofu-Fry version 3 (HAFv3) solar wind model (Hakamada and Akasofu, 1982, Fry et al. 2003) with the Particle Acceleration and Transport in the Heliosphere (PATH) model (Zank et al., 2000, Li et al., 2003, 2005, Verkhoglyadova et al. 2009). The HAFv3 provides the evolution of a two-dimensional shock geometry and other plasma parameters, which are fed into the PATH model to investigate the effect of a varying shock geometry on particle acceleration and transport. The transport module of the PATH model is parallelized and utilizes the state-of-the-art GPU computation technique to achieve a rapid physics-based numerical description of the interplanetary energetic particles. Together with a fast execution of the HAFv3 model, the coupled code gives us a possibility to nowcast/forecast the interplanetary radiation environment.
Revealing the Physics of Galactic Winds Through Massively-Parallel Hydrodynamics Simulations
NASA Astrophysics Data System (ADS)
Schneider, Evan Elizabeth
This thesis documents the hydrodynamics code Cholla and a numerical study of multiphase galactic winds. Cholla is a massively-parallel, GPU-based code designed for astrophysical simulations that is freely available to the astrophysics community. A static-mesh Eulerian code, Cholla is ideally suited to carrying out massive simulations (> 20483 cells) that require very high resolution. The code incorporates state-of-the-art hydrodynamics algorithms including third-order spatial reconstruction, exact and linearized Riemann solvers, and unsplit integration algorithms that account for transverse fluxes on multidimensional grids. Operator-split radiative cooling and a dual-energy formalism for high mach number flows are also included. An extensive test suite demonstrates Cholla's superior ability to model shocks and discontinuities, while the GPU-native design makes the code extremely computationally efficient - speeds of 5-10 million cell updates per GPU-second are typical on current hardware for 3D simulations with all of the aforementioned physics. The latter half of this work comprises a comprehensive study of the mixing between a hot, supernova-driven wind and cooler clouds representative of those observed in multiphase galactic winds. Both adiabatic and radiatively-cooling clouds are investigated. The analytic theory of cloud-crushing is applied to the problem, and adiabatic turbulent clouds are found to be mixed with the hot wind on similar timescales as the classic spherical case (4-5 t cc) with an appropriate rescaling of the cloud-crushing time. Radiatively cooling clouds survive considerably longer, and the differences in evolution between turbulent and spherical clouds cannot be reconciled with a simple rescaling. The rapid incorporation of low-density material into the hot wind implies efficient mass-loading of hot phases of galactic winds. At the same time, the extreme compression of high-density cloud material leads to long-lived but slow-moving clumps that are unlikely to escape the galaxy.
The QuakeSim Project: Numerical Simulations for Active Tectonic Processes
NASA Technical Reports Server (NTRS)
Donnellan, Andrea; Parker, Jay; Lyzenga, Greg; Granat, Robert; Fox, Geoffrey; Pierce, Marlon; Rundle, John; McLeod, Dennis; Grant, Lisa; Tullis, Terry
2004-01-01
In order to develop a solid earth science framework for understanding and studying of active tectonic and earthquake processes, this task develops simulation and analysis tools to study the physics of earthquakes using state-of-the art modeling, data manipulation, and pattern recognition technologies. We develop clearly defined accessible data formats and code protocols as inputs to the simulations. these are adapted to high-performance computers because the solid earth system is extremely complex and nonlinear resulting in computationally intensive problems with millions of unknowns. With these tools it will be possible to construct the more complex models and simulations necessary to develop hazard assessment systems critical for reducing future losses from major earthquakes.
The Development of the Theory and Doctrine of Operational Art in the American Army, 1920-1940
1988-03-22
Ln THE DEVELOPMENT OF THE THEORY AND DOCTRINE 0) OF OPERATIONAL ART IN THE AMERICAN ARMY, 11920-1940 by Major Michael R. Matheny Armor School of...11. TITLE (Include Security Classificetion).. The Dovelcpment of the Theory and Doctrine of Operational Art in the American Army,1920-194 " "a...COSATI CODES I8. SUBJECT TERMS (Continue on reverse if necessary ad •entify by block number) FIELD GROUP SUG-GROUP Operational Art , American Army
NASA Technical Reports Server (NTRS)
Norris, Andrew
2003-01-01
The goal was to perform 3D simulation of GE90 combustor, as part of full turbofan engine simulation. Requirements of high fidelity as well as fast turn-around time require massively parallel code. National Combustion Code (NCC) was chosen for this task as supports up to 999 processors and includes state-of-the-art combustion models. Also required is ability to take inlet conditions from compressor code and give exit conditions to turbine code.
Design and optimization of a portable LQCD Monte Carlo code using OpenACC
NASA Astrophysics Data System (ADS)
Bonati, Claudio; Coscetti, Simone; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Calore, Enrico; Schifano, Sebastiano Fabio; Silvi, Giorgio; Tripiccione, Raffaele
The present panorama of HPC architectures is extremely heterogeneous, ranging from traditional multi-core CPU processors, supporting a wide class of applications but delivering moderate computing performance, to many-core Graphics Processor Units (GPUs), exploiting aggressive data-parallelism and delivering higher performances for streaming computing applications. In this scenario, code portability (and performance portability) become necessary for easy maintainability of applications; this is very relevant in scientific computing where code changes are very frequent, making it tedious and prone to error to keep different code versions aligned. In this work, we present the design and optimization of a state-of-the-art production-level LQCD Monte Carlo application, using the directive-based OpenACC programming model. OpenACC abstracts parallel programming to a descriptive level, relieving programmers from specifying how codes should be mapped onto the target architecture. We describe the implementation of a code fully written in OpenAcc, and show that we are able to target several different architectures, including state-of-the-art traditional CPUs and GPUs, with the same code. We also measure performance, evaluating the computing efficiency of our OpenACC code on several architectures, comparing with GPU-specific implementations and showing that a good level of performance-portability can be reached.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, A.L.
This report presents a summary of the status of research activities associated with fission product behavior (release and transport) under severe accident conditions within the primary systems of water-moderated and water-cooled nuclear reactors. For each of the areas of fission product release and fission product transport, the report summarizes relevant information on important phenomena, major experiments performed, relevant computer models and codes, comparisons of computer code calculations with experimental results, and general conclusions on the overall state of the art. Finally, the report provides an assessment of the overall importance and knowledge of primary system release and transport phenomena andmore » presents major conclusions on the state of the art.« less
SENR /NRPy + : Numerical relativity in singular curvilinear coordinate systems
NASA Astrophysics Data System (ADS)
Ruchlin, Ian; Etienne, Zachariah B.; Baumgarte, Thomas W.
2018-03-01
We report on a new open-source, user-friendly numerical relativity code package called SENR /NRPy + . Our code extends previous implementations of the BSSN reference-metric formulation to a much broader class of curvilinear coordinate systems, making it ideally suited to modeling physical configurations with approximate or exact symmetries. In the context of modeling black hole dynamics, it is orders of magnitude more efficient than other widely used open-source numerical relativity codes. NRPy + provides a Python-based interface in which equations are written in natural tensorial form and output at arbitrary finite difference order as highly efficient C code, putting complex tensorial equations at the scientist's fingertips without the need for an expensive software license. SENR provides the algorithmic framework that combines the C codes generated by NRPy + into a functioning numerical relativity code. We validate against two other established, state-of-the-art codes, and achieve excellent agreement. For the first time—in the context of moving puncture black hole evolutions—we demonstrate nearly exponential convergence of constraint violation and gravitational waveform errors to zero as the order of spatial finite difference derivatives is increased, while fixing the numerical grids at moderate resolution in a singular coordinate system. Such behavior outside the horizons is remarkable, as numerical errors do not converge to zero near punctures, and all points along the polar axis are coordinate singularities. The formulation addresses such coordinate singularities via cell-centered grids and a simple change of basis that analytically regularizes tensor components with respect to the coordinates. Future plans include extending this formulation to allow dynamical coordinate grids and bispherical-like distribution of points to efficiently capture orbiting compact binary dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yidong Xia; Mitch Plummer; Robert Podgorney
2016-02-01
Performance of heat production process over a 30-year period is assessed in a conceptual EGS model with a geothermal gradient of 65K per km depth in the reservoir. Water is circulated through a pair of parallel wells connected by a set of single large wing fractures. The results indicate that the desirable output electric power rate and lifespan could be obtained under suitable material properties and system parameters. A sensitivity analysis on some design constraints and operation parameters indicates that 1) the fracture horizontal spacing has profound effect on the long-term performance of heat production, 2) the downward deviation anglemore » for the parallel doublet wells may help overcome the difficulty of vertical drilling to reach a favorable production temperature, and 3) the thermal energy production rate and lifespan has close dependence on water mass flow rate. The results also indicate that the heat production can be improved when the horizontal fracture spacing, well deviation angle, and production flow rate are under reasonable conditions. To conduct the reservoir modeling and simulations, an open-source, finite element based, fully implicit, fully coupled hydrothermal code, namely FALCON, has been developed and used in this work. Compared with most other existing codes that are either closed-source or commercially available in this area, this new open-source code has demonstrated a code development strategy that aims to provide an unparalleled easiness for user-customization and multi-physics coupling. Test results have shown that the FALCON code is able to complete the long-term tests efficiently and accurately, thanks to the state-of-the-art nonlinear and linear solver algorithms implemented in the code.« less
Software Review: "The Secret Codes of C.Y.P.H.E.R.: Operation Wildlife."
ERIC Educational Resources Information Center
Bober, Marcie
1992-01-01
Describes "The Secret Codes of C.Y.P.H.E.R.: Operation Wildlife," a software program for language arts classrooms that joins natural science and communication/cryptography topics in a secret-agent interactive setting. (SR)
HACC: Simulating sky surveys on state-of-the-art supercomputing architectures
NASA Astrophysics Data System (ADS)
Habib, Salman; Pope, Adrian; Finkel, Hal; Frontiere, Nicholas; Heitmann, Katrin; Daniel, David; Fasel, Patricia; Morozov, Vitali; Zagaris, George; Peterka, Tom; Vishwanath, Venkatram; Lukić, Zarija; Sehrish, Saba; Liao, Wei-keng
2016-01-01
Current and future surveys of large-scale cosmic structure are associated with a massive and complex datastream to study, characterize, and ultimately understand the physics behind the two major components of the 'Dark Universe', dark energy and dark matter. In addition, the surveys also probe primordial perturbations and carry out fundamental measurements, such as determining the sum of neutrino masses. Large-scale simulations of structure formation in the Universe play a critical role in the interpretation of the data and extraction of the physics of interest. Just as survey instruments continue to grow in size and complexity, so do the supercomputers that enable these simulations. Here we report on HACC (Hardware/Hybrid Accelerated Cosmology Code), a recently developed and evolving cosmology N-body code framework, designed to run efficiently on diverse computing architectures and to scale to millions of cores and beyond. HACC can run on all current supercomputer architectures and supports a variety of programming models and algorithms. It has been demonstrated at scale on Cell- and GPU-accelerated systems, standard multi-core node clusters, and Blue Gene systems. HACC's design allows for ease of portability, and at the same time, high levels of sustained performance on the fastest supercomputers available. We present a description of the design philosophy of HACC, the underlying algorithms and code structure, and outline implementation details for several specific architectures. We show selected accuracy and performance results from some of the largest high resolution cosmological simulations so far performed, including benchmarks evolving more than 3.6 trillion particles.
HACC: Simulating sky surveys on state-of-the-art supercomputing architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Habib, Salman; Pope, Adrian; Finkel, Hal
2016-01-01
Current and future surveys of large-scale cosmic structure are associated with a massive and complex datastream to study, characterize, and ultimately understand the physics behind the two major components of the ‘Dark Universe’, dark energy and dark matter. In addition, the surveys also probe primordial perturbations and carry out fundamental measurements, such as determining the sum of neutrino masses. Large-scale simulations of structure formation in the Universe play a critical role in the interpretation of the data and extraction of the physics of interest. Just as survey instruments continue to grow in size and complexity, so do the supercomputers thatmore » enable these simulations. Here we report on HACC (Hardware/Hybrid Accelerated Cosmology Code), a recently developed and evolving cosmology N-body code framework, designed to run efficiently on diverse computing architectures and to scale to millions of cores and beyond. HACC can run on all current supercomputer architectures and supports a variety of programming models and algorithms. It has been demonstrated at scale on Cell- and GPU-accelerated systems, standard multi-core node clusters, and Blue Gene systems. HACC’s design allows for ease of portability, and at the same time, high levels of sustained performance on the fastest supercomputers available. We present a description of the design philosophy of HACC, the underlying algorithms and code structure, and outline implementation details for several specific architectures. We show selected accuracy and performance results from some of the largest high resolution cosmological simulations so far performed, including benchmarks evolving more than 3.6 trillion particles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jonathan Helmus, Scott Collis
The Python-ARM Radar Toolkit (Py-ART) is a collection of radar quality control and retrieval codes which all work on two unifying Python objects: the PyRadar and PyGrid objects. By building ingests to several popular radar formats and then abstracting the interface Py-ART greatly simplifies data processing over several other available utilities. In addition Py-ART makes use of Numpy arrays as its primary storage mechanism enabling use of existing and extensive community software tools.
Mische Lawson, Lisa; Wedan, Lindsay; Stock, Morgan; Glennon, Cathy
2016-06-01
To explore patient experiences of engaging in art making or music listening while receiving treatment in a blood and marrow transplant clinic. Researchers recruited 25 individuals receiving blood and marrow transplant (BMT) treatment, 12 men and 13 women aged 22 to 74, from a Midwestern outpatient BMT clinic. Participants engaged in a painting activity or listened to music on an iPad using an internet music application for one hour. Researchers interviewed participants after the one-hour activity to gain insight into participants' perceptions of the art making or music listening experience. Interviews were recorded, transcribed verbatim, and independently coded by members of the research team. Researchers met on several occasions to analyse codes and agree on emerging themes. Nine themes emerged from the data including, Engaging in Activity, Art and Music in Daily Life, Expression, Engaging with Equipment, Novelty, BMT Process, Activity Process, Social Support, and Living Situation. Participants enjoyed art making and music listening and found the activities beneficial during treatment. Participants benefited from art making and music listening because these activities increased the variety of options available during treatment, allowed for self-expression, and could be done alone or with caregivers. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Yilmaz, Aynur; Esenturk, Oguz Kaan; Demir, Gonul Tekkursun; Ilhan, Ekrem Levent
2017-01-01
It is to determine the perception of the gifted students who participate to "Science and Art Center" about "Physical Education Course" and "Physical Education Teachers" via metaphors. The working group of the research consists of 48 students who participate Science and Art Center in 2014-2015 school years. Among the…
The Four-Year Liberal Arts College Library: A Descriptive Profile.
ERIC Educational Resources Information Center
Buttlar, Lois; Garcha, Rajinder
1995-01-01
Presents a study of staffing, services, budgets, collections, and facilities of small academic libraries and offers a statistical and demographic profile of a four-year liberal arts college library. Results are presented in tables, and an appendix lists coding sheets used for the study. (JMV)
Terry, Charles M
2006-08-01
Given the increasing popularity of the martial arts, it is likely that physicians in all specialties encounter patients who participate. From pediatric patients, to geriatric patients, to those living with various disabilities, the martial arts may offer physical, psychologic, and therapeutic benefits. An appreciation of the physical demands of the martial arts is crucial to understanding the pathogenesis of injury as well as to planning treatment and prevention strategies and to determining safe return to participation after injury.
ARIES: Enabling Visual Exploration and Organization of Art Image Collections.
Crissaff, Lhaylla; Wood Ruby, Louisa; Deutch, Samantha; DuBois, R Luke; Fekete, Jean-Daniel; Freire, Juliana; Silva, Claudio
2018-01-01
Art historians have traditionally used physical light boxes to prepare exhibits or curate collections. On a light box, they can place slides or printed images, move the images around at will, group them as desired, and visual-ly compare them. The transition to digital images has rendered this workflow obsolete. Now, art historians lack well-designed, unified interactive software tools that effectively support the operations they perform with physi-cal light boxes. To address this problem, we designed ARIES (ARt Image Exploration Space), an interactive image manipulation system that enables the exploration and organization of fine digital art. The system allows images to be compared in multiple ways, offering dynamic overlays analogous to a physical light box, and sup-porting advanced image comparisons and feature-matching functions, available through computational image processing. We demonstrate the effectiveness of our system to support art historians tasks through real use cases.
Teaching the nature of physics through art: a new art of teaching
NASA Astrophysics Data System (ADS)
Colletti, Leonardo
2018-01-01
Science and art are traditionally represented as two disciplines with completely divergent goals, methods, and public. It has been claimed that, if rightly addressed, science and art education could mutually support each other. In this paper I propose the recurrent reference to certain famous paintings during the ordinary progress of physics courses in secondary schools, in order to convey, in a memorable way, some basic features of physics methodology. For an understanding of the overall characteristics of science should be regarded as one of the crucial goals of physics education. As a part of a general education, the forgetting of physics concepts may be acceptable, but failing to grasp the very nature of science is not. Images may help in conveying the nature of science, especially for humanities-oriented students. Moreover, famous paintings, with their familiarity and availability, are a valid tool in facilitating this.
ART-Ada design project, phase 2
NASA Technical Reports Server (NTRS)
Lee, S. Daniel; Allen, Bradley P.
1990-01-01
Interest in deploying expert systems in Ada has increased. An Ada based expert system tool is described called ART-Ada, which was built to support research into the language and methodological issues of expert systems in Ada. ART-Ada allows applications of an existing expert system tool called ART-IM (Automated Reasoning Tool for Information Management) to be deployed in various Ada environments. ART-IM, a C-based expert system tool, is used to generate Ada source code which is compiled and linked with an Ada based inference engine to produce an Ada executable image. ART-Ada is being used to implement several expert systems for NASA's Space Station Freedom Program and the U.S. Air Force.
Minnesota Academic Standards: Kindergarten
ERIC Educational Resources Information Center
Minnesota Department of Education, 2017
2017-01-01
This document contains all of the Minnesota kindergarten academic standards in the content areas of Arts, English Language Arts, Mathematics, Science and Social Studies. For each content area there is a short overview followed by a coding diagram of how the standards are organized and displayed. This document is adapted from the official versions…
EVALUATION OF THE STATE-OF-THE-ART CONTAMINATED SEDIMENT TRANSPORT AND FATE MODELING SYSTEM
Modeling approaches for evaluating the transport and fate of sediment and associated contaminants are briefly reviewed. The main emphasis is on: 1) the application of EFDC (Environmental Fluid Dynamics Code), the state-of-the-art contaminated sediment transport and fate public do...
Curriculum Study Report, June 1992.
ERIC Educational Resources Information Center
Cohen, Arthur M.
In 1992, the Center for the Study of Community Colleges (CSCC) in California examined the liberal arts curriculum in community colleges nationwide through a random sampling of 164 community colleges. Using spring 1991 catalogs and class schedules, course sections in the liberal arts were counted and tallied according to a coding scheme developed…
The Importance of Why: An Intelligence Approach for a Multi-Polar World
2016-04-04
code breakers drew information from 1 Sun Tzu , The Art of War. Translated by Samuel B...document_conversions/17/20110525.pdf (accessed December 29, 2015) Tzu , Sun . The Art of War. Translated by Samuel B. Griffith. New York: Oxford...Systems, and Game Theory..................................................... 63 Bibliography
Meaning and Identities: A Visual Performative Pedagogy for Socio-Cultural Learning
ERIC Educational Resources Information Center
Grushka, Kathryn
2009-01-01
In this article I present personalised socio-cultural inquiry in visual art education as a critical and expressive material praxis. The model of "Visual Performative Pedagogy and Communicative Proficiency for the Visual Art Classroom" is presented as a legitimate means of manipulating visual codes, communicating meaning and mediating…
Integrating the English Language Arts Common Core State Standards into Physical Education
ERIC Educational Resources Information Center
James, Alisa R.; Bullock, Kerri
2015-01-01
Physical education teachers are expected to implement the English language arts (ELA) Common Core State Standards (CCSS) in their instruction. This has proved to be challenging for many physical educators. The purpose of this article is to provide developmentally appropriate examples of how to incorporate the ELA CCSS into physical education,…
A Trial of Physics Education for Liberal Arts Students Using the Advancing Physics
NASA Astrophysics Data System (ADS)
Ochi, Nobuaki
A new approach to physics education for liberal arts students was performed in a Japanese university. The Advancing Physics, a modern textbook developed by the Institute of Physics, was employed as the base of this approach. The textbook includes a variety of modern topics about science and technology with beautiful pictures, while the use of math is kept to a minimum. From results of the questionnaire after one-semester lectures, it turned out that students' interest in science and technology rose substantially. On the other hand, there were some difficulties in lecturing, mathematical techniques in particular, which should be modified by the next trial. This result is an indication of a potential of the Advancing Physics for liberal arts education.
Environmental Fluid Dynamics Code
The Environmental Fluid Dynamics Code (EFDC)is a state-of-the-art hydrodynamic model that can be used to simulate aquatic systems in one, two, and three dimensions. It has evolved over the past two decades to become one of the most widely used and technically defensible hydrodyn...
ArtDeco: a beam-deconvolution code for absolute cosmic microwave background measurements
NASA Astrophysics Data System (ADS)
Keihänen, E.; Reinecke, M.
2012-12-01
We present a method for beam-deconvolving cosmic microwave background (CMB) anisotropy measurements. The code takes as input the time-ordered data along with the corresponding detector pointings and known beam shapes, and produces as output the harmonic aTlm, aElm, and aBlm coefficients of the observed sky. From these one can derive temperature and Q and U polarisation maps. The method is applicable to absolute CMB measurements with wide sky coverage, and is independent of the scanning strategy. We tested the code with extensive simulations, mimicking the resolution and data volume of Planck 30 GHz and 70 GHz channels, but with exaggerated beam asymmetry. We applied it to multipoles up to l = 1700 and examined the results in both pixel space and harmonic space. We also tested the method in presence of white noise. The code is released under the terms of the GNU General Public License and can be obtained from http://sourceforge.net/projects/art-deco/
Product code optimization for determinate state LDPC decoding in robust image transmission.
Thomos, Nikolaos; Boulgouris, Nikolaos V; Strintzis, Michael G
2006-08-01
We propose a novel scheme for error-resilient image transmission. The proposed scheme employs a product coder consisting of low-density parity check (LDPC) codes and Reed-Solomon codes in order to deal effectively with bit errors. The efficiency of the proposed scheme is based on the exploitation of determinate symbols in Tanner graph decoding of LDPC codes and a novel product code optimization technique based on error estimation. Experimental evaluation demonstrates the superiority of the proposed system in comparison to recent state-of-the-art techniques for image transmission.
Analysis of an Unusual Mirror in a 16th-Century Painting: A Museum Exercise for Physics Students
ERIC Educational Resources Information Center
Swaminathan, Sudha; Lamelas, Frank
2017-01-01
Physics students at Worcester State University visit the Worcester Art Museum (WAM) at the end of a special 100- level course called Physics in Art. The students have studied geometrical optics, and they have been introduced to concepts in atomic physics. The purpose of the museum tour is to show how physics-based techniques can be used in a…
Scanner Art and Links to Physics
ERIC Educational Resources Information Center
Russell, David
2005-01-01
A photocopier or scanner can be used to produce not only the standard motion graphs of physics, but a variety of other graphs that resemble gravitational and electrical fields. This article presents a starting point for exploring scanner graphics, which brings together investigation in art and design, physics, mathematics, and information…
Physical Education and Art for Elementary Special Education.
ERIC Educational Resources Information Center
Lambert, Anne; Drage, Darlene
The manual contains approximately 68 physical education activities and 60 art activities to be used with special education students in elementary school. It is explained that the physical education activities are limited to low organization games and team sports. Suggested are procedures for class organization, safety, teaching (such as having a…
The predictive mind and the experience of visual art work
Kesner, Ladislav
2014-01-01
Among the main challenges of the predictive brain/mind concept is how to link prediction at the neural level to prediction at the cognitive-psychological level and finding conceptually robust and empirically verifiable ways to harness this theoretical framework toward explaining higher-order mental and cognitive phenomena, including the subjective experience of aesthetic and symbolic forms. Building on the tentative prediction error account of visual art, this article extends the application of the predictive coding framework to the visual arts. It does so by linking this theoretical discussion to a subjective, phenomenological account of how a work of art is experienced. In order to engage more deeply with a work of art, viewers must be able to tune or adapt their prediction mechanism to recognize art as a specific class of objects whose ontological nature defies predictability, and they must be able to sustain a productive flow of predictions from low-level sensory, recognitional to abstract semantic, conceptual, and affective inferences. The affective component of the process of predictive error optimization that occurs when a viewer enters into dialog with a painting is constituted both by activating the affective affordances within the image and by the affective consequences of prediction error minimization itself. The predictive coding framework also has implications for the problem of the culturality of vision. A person’s mindset, which determines what top–down expectations and predictions are generated, is co-constituted by culture-relative skills and knowledge, which form hyperpriors that operate in the perception of art. PMID:25566111
The predictive mind and the experience of visual art work.
Kesner, Ladislav
2014-01-01
Among the main challenges of the predictive brain/mind concept is how to link prediction at the neural level to prediction at the cognitive-psychological level and finding conceptually robust and empirically verifiable ways to harness this theoretical framework toward explaining higher-order mental and cognitive phenomena, including the subjective experience of aesthetic and symbolic forms. Building on the tentative prediction error account of visual art, this article extends the application of the predictive coding framework to the visual arts. It does so by linking this theoretical discussion to a subjective, phenomenological account of how a work of art is experienced. In order to engage more deeply with a work of art, viewers must be able to tune or adapt their prediction mechanism to recognize art as a specific class of objects whose ontological nature defies predictability, and they must be able to sustain a productive flow of predictions from low-level sensory, recognitional to abstract semantic, conceptual, and affective inferences. The affective component of the process of predictive error optimization that occurs when a viewer enters into dialog with a painting is constituted both by activating the affective affordances within the image and by the affective consequences of prediction error minimization itself. The predictive coding framework also has implications for the problem of the culturality of vision. A person's mindset, which determines what top-down expectations and predictions are generated, is co-constituted by culture-relative skills and knowledge, which form hyperpriors that operate in the perception of art.
Ayieko, James; Ti, Angeline; Hagey, Jill; Akama, Eliud; Bukusi, Elizabeth A; Cohen, Craig R; Patel, Rena C
2017-08-08
Factors influencing fertility desires among HIV-infected individuals remain poorly understood. With new recommendations for universal HIV treatment and increasing antiretroviral therapy (ART) access, we sought to evaluate how access to early ART influences fertility desires among HIV-infected ART-naïve women. Semi-structured in-depth interviews were conducted with a select subgroup of 20 HIV-infected ART-naïve women attending one of 13 HIV facilities in western Kenya between July and August 2014 who would soon newly become eligible to initiate ART based on the latest national policy recommendations. The interviews covered four major themes: 1) definitions of family and children's role in community; 2) personal, interpersonal, institutional, and societal factors influencing fertility desires; 3) influence of HIV-positive status on fertility desires; and 4) influence of future ART initiation on fertility desires. An iterative process of reading transcripts, applying inductive codes, and comparing and contrasting codes was used to identify convergent and divergent themes. The women indicated their HIV-positive status did influence-largely negatively-their fertility desires. Furthermore, initiating ART and anticipating improved health status did not necessarily translate to increased fertility desires. Instead, individual factors, such as age, parity, current health status, financial resources and number of surviving or HIV-infected children, played a crucial role in decisions about future fertility. In addition, societal influences, such as community norms and health providers' expectations of their fertility desires, played an equally important role in determining fertility desires. Initiating ART may not be the leading factor influencing fertility desires among previously ART-naïve HIV-infected women. Instead, individual and societal factors appear to be the major determinants of fertility desires among these women.
National Combustion Code Validated Against Lean Direct Injection Flow Field Data
NASA Technical Reports Server (NTRS)
Iannetti, Anthony C.
2003-01-01
Most combustion processes have, in some way or another, a recirculating flow field. This recirculation stabilizes the reaction zone, or flame, but an unnecessarily large recirculation zone can result in high nitrogen oxide (NOx) values for combustion systems. The size of this recirculation zone is crucial to the performance of state-of-the-art, low-emissions hardware. If this is a large-scale combustion process, the flow field will probably be turbulent and, therefore, three-dimensional. This research dealt primarily with flow fields resulting from lean direct injection (LDI) concepts, as described in Research & Technology 2001. LDI is a concept that depends heavily on the design of the swirler. The LDI concept has the potential to reduce NOx values from 50 to 70 percent of current values, with good flame stability characteristics. It is cost effective and (hopefully) beneficial to do most of the design work for an LDI swirler using computer-aided design (CAD) and computer-aided engineering (CAE) tools. Computational fluid dynamics (CFD) codes are CAE tools that can calculate three-dimensional flows in complex geometries. However, CFD codes are only beginning to correctly calculate the flow fields for complex devices, and the related combustion models usually remove a large portion of the flow physics.
RICH: OPEN-SOURCE HYDRODYNAMIC SIMULATION ON A MOVING VORONOI MESH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yalinewich, Almog; Steinberg, Elad; Sari, Re’em
2015-02-01
We present here RICH, a state-of-the-art two-dimensional hydrodynamic code based on Godunov’s method, on an unstructured moving mesh (the acronym stands for Racah Institute Computational Hydrodynamics). This code is largely based on the code AREPO. It differs from AREPO in the interpolation and time-advancement schemeS as well as a novel parallelization scheme based on Voronoi tessellation. Using our code, we study the pros and cons of a moving mesh (in comparison to a static mesh). We also compare its accuracy to other codes. Specifically, we show that our implementation of external sources and time-advancement scheme is more accurate and robustmore » than is AREPO when the mesh is allowed to move. We performed a parameter study of the cell rounding mechanism (Lloyd iterations) and its effects. We find that in most cases a moving mesh gives better results than a static mesh, but it is not universally true. In the case where matter moves in one way and a sound wave is traveling in the other way (such that relative to the grid the wave is not moving) a static mesh gives better results than a moving mesh. We perform an analytic analysis for finite difference schemes that reveals that a Lagrangian simulation is better than a Eulerian simulation in the case of a highly supersonic flow. Moreover, we show that Voronoi-based moving mesh schemes suffer from an error, which is resolution independent, due to inconsistencies between the flux calculation and the change in the area of a cell. Our code is publicly available as open source and designed in an object-oriented, user-friendly way that facilitates incorporation of new algorithms and physical processes.« less
Ngo, Victoria K.; Wagner, Glenn J.; Huynh, Alexis; Ryan, Gery; Musisi, Seggane
2013-01-01
Depression is common among people living with HIV/AIDS in sub-Saharan Africa. Yet, little is known about how depression influences physical health and socioeconomic well-being in the context of antiretroviral therapy (ART). Semi-structured interviews with 40 adult HIV clients receiving ART in Uganda were conducted to assess experiences prior to and after HIV diagnosis and initiation of ART. Content analysis revealed themes that were suggestive of the following patterns: 1) functioning decreased after patients were diagnosed with HIV, but improved following ART, 2) depression is associated with lower physical health functioning and work status levels after both HIV diagnosis and ART, and 3) antidepressant medication is associated with better functioning compared to depressed patients not receiving depression treatment. These findings suggest that depression plays a role in the deleterious effects of HIV on functioning, and that antidepressant treatment provided alongside ART may serve to help individuals regain functioning, particularly employment. These findings highlight the potential value of integrating depression treatment into HIV care. PMID:23442495
Youth as Media Art Designers: Workshops for Creative Coding
ERIC Educational Resources Information Center
Peppler, Kylie A.; Kafai, Yasmin B.
2008-01-01
We describe our efforts to bring media arts into design work with the goals to introduce new expressive forms in programming to urban youth. We're presenting the findings from a series of workshops organized together with professional media artists that focused on immersion, interaction, color and perspective using Scratch, a media-rich…
Toward Transparent Data Management in Multi-layer Storage Hierarchy for HPC Systems
Wadhwa, Bharti; Byna, Suren; Butt, Ali R.
2018-04-17
Upcoming exascale high performance computing (HPC) systems are expected to comprise multi-tier storage hierarchy, and thus will necessitate innovative storage and I/O mechanisms. Traditional disk and block-based interfaces and file systems face severe challenges in utilizing capabilities of storage hierarchies due to the lack of hierarchy support and semantic interfaces. Object-based and semantically-rich data abstractions for scientific data management on large scale systems offer a sustainable solution to these challenges. Such data abstractions can also simplify users involvement in data movement. Here, we take the first steps of realizing such an object abstraction and explore storage mechanisms for these objectsmore » to enhance I/O performance, especially for scientific applications. We explore how an object-based interface can facilitate next generation scalable computing systems by presenting the mapping of data I/O from two real world HPC scientific use cases: a plasma physics simulation code (VPIC) and a cosmology simulation code (HACC). Our storage model stores data objects in different physical organizations to support data movement across layers of memory/storage hierarchy. Our implementation sclaes well to 16K parallel processes, and compared to the state of the art, such as MPI-IO and HDF5, our object-based data abstractions and data placement strategy in multi-level storage hierarchy achieves up to 7 X I/O performance improvement for scientific data.« less
Toward Transparent Data Management in Multi-layer Storage Hierarchy for HPC Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wadhwa, Bharti; Byna, Suren; Butt, Ali R.
Upcoming exascale high performance computing (HPC) systems are expected to comprise multi-tier storage hierarchy, and thus will necessitate innovative storage and I/O mechanisms. Traditional disk and block-based interfaces and file systems face severe challenges in utilizing capabilities of storage hierarchies due to the lack of hierarchy support and semantic interfaces. Object-based and semantically-rich data abstractions for scientific data management on large scale systems offer a sustainable solution to these challenges. Such data abstractions can also simplify users involvement in data movement. Here, we take the first steps of realizing such an object abstraction and explore storage mechanisms for these objectsmore » to enhance I/O performance, especially for scientific applications. We explore how an object-based interface can facilitate next generation scalable computing systems by presenting the mapping of data I/O from two real world HPC scientific use cases: a plasma physics simulation code (VPIC) and a cosmology simulation code (HACC). Our storage model stores data objects in different physical organizations to support data movement across layers of memory/storage hierarchy. Our implementation sclaes well to 16K parallel processes, and compared to the state of the art, such as MPI-IO and HDF5, our object-based data abstractions and data placement strategy in multi-level storage hierarchy achieves up to 7 X I/O performance improvement for scientific data.« less
Physics and the Art of Dance - Understanding Movement
NASA Astrophysics Data System (ADS)
Swope, Kenneth Laws
2005-03-01
Written by a physicist with professional dance training, Physics and the Art of Dance explains how dancers can achieve better, safer performances through an understanding of physics in motion. Using simple, non-technical terms, Kenneth Laws combines his knowledge of both physics and dance to describe how the laws of gravity, momentum, and energy affect dancing bodies. The book explores the natural laws that govern the subtleties of balance, the techniques of leaps and pirouettes, and the impressive lifts and turns executed by ballet partners. Finally, Laws offers insight into two current discussions in the dance world--the effect of body size on ballet technique, and the relationship between science and the art of dance. Beautiful, original stop-action photographs by Martha Swope, along with clear diagrams, illustrate the concepts described in the text. Plus, an intriguing "puzzler" at the beginning of each chapter provides an engaging entree into the topics presented. For those who want a more advanced understanding of the physics, extensive appendices are provided. This new book combines the best features of Laws's widely acclaimed The Physics of Dance and Physics, Dance, and the Pas de Deux by Laws and Cynthia Harvey. Its expert application of the basic principles of physics to the art of dance will be an invaluable resource for dancers and dance instructors and will open a new level of appreciation for lovers of the form. It will also appeal to physicists who seek to include the arts in their scientific pursuits.
Analytical fuel property effects--small combustors
NASA Technical Reports Server (NTRS)
Sutton, R. D.; Troth, D. L.; Miles, G. A.
1984-01-01
The consequences of using broad-property fuels in both conventional and advanced state-of-the-art small gas turbine combustors are assessed. Eight combustor concepts were selected for initial screening, of these, four final combustor concepts were chosen for further detailed analysis. These included the dual orifice injector baseline combustor (a current production 250-C30 engine combustor) two baseline airblast injected modifications, short and piloted prechamber combustors, and an advanced airblast injected, variable geometry air staged combustor. Final predictions employed the use of the STAC-I computer code. This quasi 2-D model includes real fuel properties, effects of injector type on atomization, detailed droplet dynamics, and multistep chemical kinetics. In general, fuel property effects on various combustor concepts can be classified as chemical or physical in nature. Predictions indicate that fuel chemistry has a significant effect on flame radiation, liner wall temperature, and smoke emission. Fuel physical properties that govern atomization quality and evaporation rates are predicted to affect ignition and lean-blowout limits, combustion efficiency, unburned hydrocarbon, and carbon monoxide emissions.
The distribution of an illustrated timeline wall chart and teacher's guide of 20th century physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwartz, Brian
The American Physical Society's part of its centennial celebration in March of 1999 decided to develop a timeline wall chart on the history of 20th century physics. This resulted in eleven consecutive posters, which when mounted side by side, create a 23-foot mural. The timeline exhibits and describes the millstones of physics in images and words. The timeline functions as a chronology, a work of art, a permanent open textbook, and a gigantic photo album covering a hundred years in the life of the community of physicists and the existence of the American Physical Society. Each of the eleven postersmore » begins with a brief essay that places a major scientific achievement of the decade in its historical context. Large portraits of the essays' subjects include youthful photographs of Marie Curie, Albert Einstein, and Richard Feynman among others, to help put a face on science. Below the essays, a total of over 130 individual discoveries and inventions, explained in dated text boxes with accompanying images, form the backbone of the timeline. For ease of comprehension, this wealth of material is organized into five color-coded story lines the stretch horizontally across the hundred years of the 20th century. The five story lines are: Cosmic Scale, relate the story of astrophysics and cosmology; Human Scale, refers to the physics of the more familiar distances from the global to the microscopic; Atomic Scale, focuses on the submicroscopic world of atoms, nuclei and quarks; Living World, chronicles the interaction of physics with biology and medicine; Technology, traces the applications of physic to everyday living. Woven into the bottom border of the timeline are period images of significant works of art, architecture, and technological artifacts such as telephones, automobiles, aircraft, computers, and appliances. The last poster, covering the years since 1995, differs from the others. Its essay concerns the prospect for physics into the next century, and is illustrated with pictures of promising award winning high school students who, it is hoped, will be the leading researchers of physics in the decades ahead. Appropriately the last entries in the timeline are not achievements but open questions to be answered in the future.« less
(001) A proposal relating to infraspecific names (Art. 24)
USDA-ARS?s Scientific Manuscript database
The International Code of Nomenclature for algae, fungi and plants is revised every six years to incorporate decisions of the Nomenclature Section of successive International Botanical Congresses (IBC) on proposals to amend the Code. The proposal in this paper will be considered at the IBC in Shenzh...
NASA Astrophysics Data System (ADS)
Lago, M. Miguel; Esteban Berea, J.; Miñambres Fernández, M.; Rufino, M.
2002-01-01
This proposal is a response to the initiative "Physics on Stage 2" to excite interest in physics and science by a dance and puppetry performance. The purpose of this piece is to show the possibilities and characteristics of entertainment with space knowledge and education for the audience of teachers and children through a show. Two virtually opposite areas (science and arts), both generally inaccessible for children, will be introduced in a funny and amusing way, with the interaction of puppets. Education is not "fashion"... we need to develop an educational package to focus the attention of children on the uses of Space in everyday life. Our world today is mainly logic and mathematical. The presence of art in the children's lives is often scarce or even inexistent. With the performance children will gain a better understanding of space physics through the joy of a dance performance like an educational tool. Dance as body expression, is a very powerful tool to explain and interact with children and teachers. Through dance the physics of movement may be studied in a visual way, within the body's limits. We consider as priority the use of dance as well as theater (in this case, puppet theater) as an efficient and fun didactic method, which we may go further and explain in an imaginative funny way all those complex processes of physics, which are further unknown. Aiming to teach in a relaxing atmosphere the performance is based on the " Earth Space Alphabet", a first dictionary for Primary Schools combining Science, Space and Education... Did you ever realize that people are not interested in something because they do not understand the words or the meaning? The alphabet is intended to meet the overwhelming need that exists for education on space, and allows both teachers and children to learn about the "Art of Teaching Space" combining earth and space language linked by space technology. The performance explains many concepts of physics through a comet puppet, which travels in Space driving the dance artist on its tail. On the journey, they discover the alphabet letters, letters that make words, words which are concepts of physics, physics which is on the stage this stage being space. The teacher before, during and after the performance, will analyse, review and discuss through this simple tool "an alphabet", space vocabulary and also the meaning of communication and teaching. They will relate to the present situation of physics and science education in general and Space in particular and how to address this problem through our language. Instructions Name of Conference to which this abstract is53rd IAC submitted FirstFirst Submission Subrnission/Update/Correction/Withdrawal Title of Contribution in plain ASCII.The Space Puppets Author(s): a) Last Name, Initial(s) - b) LastMIGUEL LAGO., M. Name, lnitial(s) - c) etc. Number and Title or Abbreviation of SessionP. Space and Education Symposium to which this abstract is submitted.P.3. Educational and Outreach Name of Chairs of that SessionFrank Friedlaender and Dennis Stone Indicate any equipment you need in addition to the standard equipment: One overhead projector and screen will be available in ail IAC sessions. A limited number of LCD and 35mm slide projectors will be provided in sessions based on advance notice of need and availability of projectors. All presenters should bring copies of their computer presentations in overhead format in case LCD projection is not available for a specific session. Type of abstract file added/attached/sentWord file sent by e-mail separately Address of Main Author:Miguel Lago NameMónica. First Name Dept. Company/University: PO Box/Street:P.O. Box ZIP Code:D-22415 City: Country: Telephone: E-mail:+31 71 565 36 84 E-mail:+31 71 565 55 90 Have you obtained or will you obtain approval to attend the Congress? Yes Are you willing to present this paper at the IAC Public Outreach Program: Yes
West German Education in the Global Village
1993-04-01
GeschichwlEdbode) with additional studies in religion (Refigiotarehre), art (K/auterfehumg), music ( Musik ), physical education (Leiberuebumgen...chemistry (OChmie) and bioklgy (Bioiogie) instead of general science. Additional studies include religion, art, music , physical education...religion, English, history, biology and chemistry, music , and physical education but adds a required choice between three different major course
The Art of Learning: A Guide to Outstanding North Carolina Arts in Education Programs.
ERIC Educational Resources Information Center
Herman, Miriam L.
The Arts in Education programs delineated in this guide complement the rigorous arts curriculum taught by arts specialists in North Carolina schools and enable students to experience the joy of the creative process while reinforcing learning in other curricula: language arts, mathematics, social studies, science, and physical education. Programs…
AEROELASTIC SIMULATION TOOL FOR INFLATABLE BALLUTE AEROCAPTURE
NASA Technical Reports Server (NTRS)
Liever, P. A.; Sheta, E. F.; Habchi, S. D.
2006-01-01
A multidisciplinary analysis tool is under development for predicting the impact of aeroelastic effects on the functionality of inflatable ballute aeroassist vehicles in both the continuum and rarefied flow regimes. High-fidelity modules for continuum and rarefied aerodynamics, structural dynamics, heat transfer, and computational grid deformation are coupled in an integrated multi-physics, multi-disciplinary computing environment. This flexible and extensible approach allows the integration of state-of-the-art, stand-alone NASA and industry leading continuum and rarefied flow solvers and structural analysis codes into a computing environment in which the modules can run concurrently with synchronized data transfer. Coupled fluid-structure continuum flow demonstrations were conducted on a clamped ballute configuration. The feasibility of implementing a DSMC flow solver in the simulation framework was demonstrated, and loosely coupled rarefied flow aeroelastic demonstrations were performed. A NASA and industry technology survey identified CFD, DSMC and structural analysis codes capable of modeling non-linear shape and material response of thin-film inflated aeroshells. The simulation technology will find direct and immediate applications with NASA and industry in ongoing aerocapture technology development programs.
The Fireball integrated code package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobranich, D.; Powers, D.A.; Harper, F.T.
1997-07-01
Many deep-space satellites contain a plutonium heat source. An explosion, during launch, of a rocket carrying such a satellite offers the potential for the release of some of the plutonium. The fireball following such an explosion exposes any released plutonium to a high-temperature chemically-reactive environment. Vaporization, condensation, and agglomeration processes can alter the distribution of plutonium-bearing particles. The Fireball code package simulates the integrated response of the physical and chemical processes occurring in a fireball and the effect these processes have on the plutonium-bearing particle distribution. This integrated treatment of multiple phenomena represents a significant improvement in the state ofmore » the art for fireball simulations. Preliminary simulations of launch-second scenarios indicate: (1) most plutonium vaporization occurs within the first second of the fireball; (2) large non-aerosol-sized particles contribute very little to plutonium vapor production; (3) vaporization and both homogeneous and heterogeneous condensation occur simultaneously; (4) homogeneous condensation transports plutonium down to the smallest-particle sizes; (5) heterogeneous condensation precludes homogeneous condensation if sufficient condensation sites are available; and (6) agglomeration produces larger-sized particles but slows rapidly as the fireball grows.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Azevedo, Eduardo; Abbott, Stephen; Koskela, Tuomas
The XGC fusion gyrokinetic code combines state-of-the-art, portable computational and algorithmic technologies to enable complicated multiscale simulations of turbulence and transport dynamics in ITER edge plasma on the largest US open-science computer, the CRAY XK7 Titan, at its maximal heterogeneous capability, which have not been possible before due to a factor of over 10 shortage in the time-to-solution for less than 5 days of wall-clock time for one physics case. Frontier techniques such as nested OpenMP parallelism, adaptive parallel I/O, staging I/O and data reduction using dynamic and asynchronous applications interactions, dynamic repartitioning for balancing computational work in pushing particlesmore » and in grid related work, scalable and accurate discretization algorithms for non-linear Coulomb collisions, and communication-avoiding subcycling technology for pushing particles on both CPUs and GPUs are also utilized to dramatically improve the scalability and time-to-solution, hence enabling the difficult kinetic ITER edge simulation on a present-day leadership class computer.« less
Overview of the Aeroelastic Prediction Workshop
NASA Technical Reports Server (NTRS)
Heeg, Jennifer; Chwalowski, Pawel; Florance, Jennifer P.; Wieseman, Carol D.; Schuster, David M.; Perry, Raleigh B.
2013-01-01
The Aeroelastic Prediction Workshop brought together an international community of computational fluid dynamicists as a step in defining the state of the art in computational aeroelasticity. This workshop's technical focus was prediction of unsteady pressure distributions resulting from forced motion, benchmarking the results first using unforced system data. The most challenging aspects of the physics were identified as capturing oscillatory shock behavior, dynamic shock-induced separated flow and tunnel wall boundary layer influences. The majority of the participants used unsteady Reynolds-averaged Navier Stokes codes. These codes were exercised at transonic Mach numbers for three configurations and comparisons were made with existing experimental data. Substantial variations were observed among the computational solutions as well as differences relative to the experimental data. Contributing issues to these differences include wall effects and wall modeling, non-standardized convergence criteria, inclusion of static aeroelastic deflection, methodology for oscillatory solutions, post-processing methods. Contributing issues pertaining principally to the experimental data sets include the position of the model relative to the tunnel wall, splitter plate size, wind tunnel expansion slot configuration, spacing and location of pressure instrumentation, and data processing methods.
Development of fission-products transport model in severe-accident scenarios for Scdap/Relap5
NASA Astrophysics Data System (ADS)
Honaiser, Eduardo Henrique Rangel
The understanding and estimation of the release of fission products during a severe accident became one of the priorities of the nuclear community after 1980, with the events of the Three-mile Island unit 2 (TMI-2), in 1979, and Chernobyl accidents, in 1986. Since this time, theoretical developments and experiments have shown that the primary circuit systems of light water reactors (LWR) have the potential to attenuate the release of fission products, a fact that had been neglected before. An advanced tool, compatible with nuclear thermal-hydraulics integral codes, is developed to predict the retention and physical evolution of the fission products in the primary circuit of LWRs, without considering the chemistry effects. The tool embodies the state-of-the-art models for the involved phenomena as well as develops new models. The capabilities acquired after the implementation of this tool in the Scdap/Relap5 code can be used to increase the accuracy of probability safety assessment (PSA) level 2, enhance the reactor accident management procedures and design new emergency safety features.
Radiation from advanced solid rocket motor plumes
NASA Technical Reports Server (NTRS)
Farmer, Richard C.; Smith, Sheldon D.; Myruski, Brian L.
1994-01-01
The overall objective of this study was to develop an understanding of solid rocket motor (SRM) plumes in sufficient detail to accurately explain the majority of plume radiation test data. Improved flowfield and radiation analysis codes were developed to accurately and efficiently account for all the factors which effect radiation heating from rocket plumes. These codes were verified by comparing predicted plume behavior with measured NASA/MSFC ASRM test data. Upon conducting a thorough review of the current state-of-the-art of SRM plume flowfield and radiation prediction methodology and the pertinent data base, the following analyses were developed for future design use. The NOZZRAD code was developed for preliminary base heating design and Al2O3 particle optical property data evaluation using a generalized two-flux solution to the radiative transfer equation. The IDARAD code was developed for rapid evaluation of plume radiation effects using the spherical harmonics method of differential approximation to the radiative transfer equation. The FDNS CFD code with fully coupled Euler-Lagrange particle tracking was validated by comparison to predictions made with the industry standard RAMP code for SRM nozzle flowfield analysis. The FDNS code provides the ability to analyze not only rocket nozzle flow, but also axisymmetric and three-dimensional plume flowfields with state-of-the-art CFD methodology. Procedures for conducting meaningful thermo-vision camera studies were developed.
Decoupling, situated cognition and immersion in art.
Reboul, Anne
2015-09-01
Situated cognition seems incompatible with strong decoupling, where representations are deployed in the absence of their targets and are not oriented toward physical action. Yet, in art consumption, the epitome of a strongly decoupled cognitive process, the artwork is a physical part of the environment and partly controls the perception of its target by the audience, leading to immersion. Hence, art consumption combines strong decoupling with situated cognition.
Overview of the H.264/AVC video coding standard
NASA Astrophysics Data System (ADS)
Luthra, Ajay; Topiwala, Pankaj N.
2003-11-01
H.264/MPEG-4 AVC is the latest coding standard jointly developed by the Video Coding Experts Group (VCEG) of ITU-T and Moving Picture Experts Group (MPEG) of ISO/IEC. It uses state of the art coding tools and provides enhanced coding efficiency for a wide range of applications including video telephony, video conferencing, TV, storage (DVD and/or hard disk based), streaming video, digital video creation, digital cinema and others. In this paper an overview of this standard is provided. Some comparisons with the existing standards, MPEG-2 and MPEG-4 Part 2, are also provided.
Structure of the solar photosphere studied from the radiation hydrodynamics code ANTARES.
Leitner, P; Lemmerer, B; Hanslmeier, A; Zaqarashvili, T; Veronig, A; Grimm-Strele, H; Muthsam, H J
2017-01-01
The ANTARES radiation hydrodynamics code is capable of simulating the solar granulation in detail unequaled by direct observation. We introduce a state-of-the-art numerical tool to the solar physics community and demonstrate its applicability to model the solar granulation. The code is based on the weighted essentially non-oscillatory finite volume method and by its implementation of local mesh refinement is also capable of simulating turbulent fluids. While the ANTARES code already provides promising insights into small-scale dynamical processes occurring in the quiet-Sun photosphere, it will soon be capable of modeling the latter in the scope of radiation magnetohydrodynamics. In this first preliminary study we focus on the vertical photospheric stratification by examining a 3-D model photosphere with an evolution time much larger than the dynamical timescales of the solar granulation and of particular large horizontal extent corresponding to [Formula: see text] on the solar surface to smooth out horizontal spatial inhomogeneities separately for up- and downflows. The highly resolved Cartesian grid thereby covers [Formula: see text] of the upper convection zone and the adjacent photosphere. Correlation analysis, both local and two-point, provides a suitable means to probe the photospheric structure and thereby to identify several layers of characteristic dynamics: The thermal convection zone is found to reach some ten kilometers above the solar surface, while convectively overshooting gas penetrates even higher into the low photosphere. An [Formula: see text] wide transition layer separates the convective from the oscillatory layers in the higher photosphere.
Structure of the solar photosphere studied from the radiation hydrodynamics code ANTARES
NASA Astrophysics Data System (ADS)
Leitner, P.; Lemmerer, B.; Hanslmeier, A.; Zaqarashvili, T.; Veronig, A.; Grimm-Strele, H.; Muthsam, H. J.
2017-09-01
The ANTARES radiation hydrodynamics code is capable of simulating the solar granulation in detail unequaled by direct observation. We introduce a state-of-the-art numerical tool to the solar physics community and demonstrate its applicability to model the solar granulation. The code is based on the weighted essentially non-oscillatory finite volume method and by its implementation of local mesh refinement is also capable of simulating turbulent fluids. While the ANTARES code already provides promising insights into small-scale dynamical processes occurring in the quiet-Sun photosphere, it will soon be capable of modeling the latter in the scope of radiation magnetohydrodynamics. In this first preliminary study we focus on the vertical photospheric stratification by examining a 3-D model photosphere with an evolution time much larger than the dynamical timescales of the solar granulation and of particular large horizontal extent corresponding to 25''×25'' on the solar surface to smooth out horizontal spatial inhomogeneities separately for up- and downflows. The highly resolved Cartesian grid thereby covers ˜4 Mm of the upper convection zone and the adjacent photosphere. Correlation analysis, both local and two-point, provides a suitable means to probe the photospheric structure and thereby to identify several layers of characteristic dynamics: The thermal convection zone is found to reach some ten kilometers above the solar surface, while convectively overshooting gas penetrates even higher into the low photosphere. An ≈145 km wide transition layer separates the convective from the oscillatory layers in the higher photosphere.
29 CFR 1910.144 - Safety color code for marking physical hazards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 5 2010-07-01 2010-07-01 false Safety color code for marking physical hazards. 1910.144... § 1910.144 Safety color code for marking physical hazards. (a) Color identification—(1) Red. Red shall be... basic color for designating caution and for marking physical hazards such as: Striking against...
ERIC Educational Resources Information Center
Adkins, Megan; Wajciechowski, Misti R.; Scantling, Ed
2013-01-01
Quick response codes, better known as QR codes, are small barcodes scanned to receive information about a specific topic. This article explains QR code technology and the utility of QR codes in the delivery of physical education instruction. Consideration is given to how QR codes can be used to accommodate learners of varying ability levels as…
CORESAFE: A Formal Approach against Code Replacement Attacks on Cyber Physical Systems
2018-04-19
AFRL-AFOSR-JP-TR-2018-0035 CORESAFE:A Formal Approach against Code Replacement Attacks on Cyber Physical Systems Sandeep Shukla INDIAN INSTITUTE OF...Formal Approach against Code Replacement Attacks on Cyber Physical Systems 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-16-1-4099 5c. PROGRAM ELEMENT...Institute of Technology Kanpur India Final Report for AOARD Grant “CORESAFE: A Formal Approach against Code Replacement Attacks on Cyber Physical
The Art Studio: A Studio-Based Art Therapy Program.
ERIC Educational Resources Information Center
McGraw, Mary K.
1995-01-01
Describes the history and development of the Art Studio, a studio-based art therapy program in Cleveland, Ohio, and discusses specific patient needs that are uniquely addressed by the Art Studio model. The Art Studio was developed for use by medically ill and physically disabled persons, and is the result of a unique cooperative relationship…
InnerSpark: A Creative Summer School and Artistic Community for Teenagers with Visual Arts Talent
ERIC Educational Resources Information Center
Chin, Christina S.; Harrington, David M.
2009-01-01
InnerSpark is a residential summer arts training program for high school students established by the California State Legislature (California Education Code sections 8950-8957) in order to make it possible for "artistically gifted and talented students, broadly representative of the socioeconomic and ethnic diversity of the state, to receive…
Library Homepage Design at Smaller Bachelor of Arts Institutions
ERIC Educational Resources Information Center
Jones, Scott L.; Leonard, Kirsten
2011-01-01
This study examined the homepages of the libraries of 175 smaller bachelor of arts institutions, coding for the presence of 98 design elements. By reporting and examining the frequency of these features, the authors noted what is and is not common practice at these libraries. They found that only fourteen elements were present on at least half of…
Alecu, Iulian; Bousquet, Cedric; Mougin, Fleur; Jaulent, Marie-Christine
2006-01-01
The WHO-ART and MedDRA terminologies used for coding adverse drug reactions (ADR) do not provide formal definitions of terms. In order to improve groupings, we propose to map ADR terms to equivalent Snomed CT concepts through UMLS Metathesaurus. We performed such mappings on WHO-ART terms and can automatically classify them using a description logic definition expressing their synonymies. Our gold standard was a set of 13 MedDRA special search categories restricted to ADR terms available in WHO-ART. The overlapping of the groupings within the new structure of WHO-ART on the manually built MedDRA search categories showed a 71% success rate. We plan to improve our method in order to retrieve associative relations between WHO-ART terms.
Villette, Claire; Bourret, Antoine; Santulli, Pietro; Gayet, Vanessa; Chapron, Charles; de Ziegler, Dominique
2016-08-01
To study possible associations among endometriosis, pelvic infectious disease, and ART. Retrospective cohort analysis over 4 consecutive years, based on medical records and insurance coding in a tertiary endometriosis reference center. Tertiary university-based reference center for endometriosis. We retrieved all charts carrying the diagnoses infectious process and endometriosis in 2009-2012. Each chart was individually analyzed for categorization of the infectious episode and determining whether ART had been performed. Hospitalization for acute infection in women with known endometriosis and possible past ART. Retrospective insurance codes-triggered chart analysis. Ten patients were admitted for an acute infection with fever, acute abdomen syndrome, elevated white blood cell count, and adnexal mass. Three women had oocyte retrieval, and an endometrioma was present 16, 57, and 102 days earlier. In one patient, the complication occurred 37 days after a cesarean section without prior ART. In the remaining six cases tubo-ovarian abscesses (TOAs) occurred spontaneously in endometriosis women who never had ART. Medical treatment succeeded in only two patients, and the remaining eight needed laparoscopic drainage. In 6 out of those 8 cases, laparoscopic drainage was a second-stage measure justified by failure to respond to antibiotic therapy. Our data indicate that some putative complications of ART and endometrioma may actually not be linked to ART, but rather constitute sporadic occurrences in endometriosis. Furthermore, TOAs occurring in women with endometriosis are best treated by early surgical drainage together with intravenous antibiotics. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
What Are Those Checkerboard Things?: How QR Codes Can Enrich Student Projects
ERIC Educational Resources Information Center
Tucker, Al
2011-01-01
Students enrolled in commercial arts program design and publish their school's yearbook. For the 2010-2011 school year, the students applied Quick Response (QR) code technology to include links to events that occurred after the yearbook's print deadline, including graduation. The technology has many applications in the school setting, and the…
Moving Towards a State of the Art Charge-Exchange Reaction Code
NASA Astrophysics Data System (ADS)
Poxon-Pearson, Terri; Nunes, Filomena; Potel, Gregory
2017-09-01
Charge-exchange reactions have a wide range of applications, including late stellar evolution, constraining the matrix elements for neutrinoless double β-decay, and exploring symmetry energy and other aspects of exotic nuclear matter. Still, much of the reaction theory needed to describe these transitions is underdeveloped and relies on assumptions and simplifications that are often extended outside of their region of validity. In this work, we have begun to move towards a state of the art charge-exchange reaction code. As a first step, we focus on Fermi transitions using a Lane potential in a few body, Distorted Wave Born Approximation (DWBA) framework. We have focused on maintaining a modular structure for the code so we can later incorporate complications such as nonlocality, breakup, and microscopic inputs. Results using this new charge-exchange code will be shown compared to the analysis in for the case of 48Ca(p,n)48Sc. This work was supported in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program through the U.S. DOE Cooperative Agreement No. DE- FG52-08NA2855.
Probabilistic structural analysis methods for select space propulsion system components
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Cruse, T. A.
1989-01-01
The Probabilistic Structural Analysis Methods (PSAM) project developed at the Southwest Research Institute integrates state-of-the-art structural analysis techniques with probability theory for the design and analysis of complex large-scale engineering structures. An advanced efficient software system (NESSUS) capable of performing complex probabilistic analysis has been developed. NESSUS contains a number of software components to perform probabilistic analysis of structures. These components include: an expert system, a probabilistic finite element code, a probabilistic boundary element code and a fast probability integrator. The NESSUS software system is shown. An expert system is included to capture and utilize PSAM knowledge and experience. NESSUS/EXPERT is an interactive menu-driven expert system that provides information to assist in the use of the probabilistic finite element code NESSUS/FEM and the fast probability integrator (FPI). The expert system menu structure is summarized. The NESSUS system contains a state-of-the-art nonlinear probabilistic finite element code, NESSUS/FEM, to determine the structural response and sensitivities. A broad range of analysis capabilities and an extensive element library is present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radhakrishnan, Balasubramaniam; Fattebert, Jean-Luc; Gorti, Sarma B.
Additive Manufacturing (AM) refers to a process by which digital three-dimensional (3-D) design data is converted to build up a component by depositing material layer-by-layer. United Technologies Corporation (UTC) is currently involved in fabrication and certification of several AM aerospace structural components made from aerospace materials. This is accomplished by using optimized process parameters determined through numerous design-of-experiments (DOE)-based studies. Certification of these components is broadly recognized as a significant challenge, with long lead times, very expensive new product development cycles and very high energy consumption. Because of these challenges, United Technologies Research Center (UTRC), together with UTC business unitsmore » have been developing and validating an advanced physics-based process model. The specific goal is to develop a physics-based framework of an AM process and reliably predict fatigue properties of built-up structures as based on detailed solidification microstructures. Microstructures are predicted using process control parameters including energy source power, scan velocity, deposition pattern, and powder properties. The multi-scale multi-physics model requires solution and coupling of governing physics that will allow prediction of the thermal field and enable solution at the microstructural scale. The state-of-the-art approach to solve these problems requires a huge computational framework and this kind of resource is only available within academia and national laboratories. The project utilized the parallel phase-fields codes at Oak Ridge National Laboratory (ORNL) and Lawrence Livermore National Laboratory (LLNL), along with the high-performance computing (HPC) capabilities existing at the two labs to demonstrate the simulation of multiple dendrite growth in threedimensions (3-D). The LLNL code AMPE was used to implement the UTRC phase field model that was previously developed for a model binary alloy, and the simulation results were compared against the UTRC simulation results, followed by extension of the UTRC model to simulate multiple dendrite growth in 3-D. The ORNL MEUMAPPS code was used to simulate dendritic growth in a model ternary alloy with the same equilibrium solidification range as the Ni-base alloy 718 using realistic model parameters, including thermodynamic integration with a Calphad based model for the ternary alloy. Implementation of the UTRC model in AMPE met with several numerical and parametric issues that were resolved and good comparison between the simulation results obtained by the two codes was demonstrated for two dimensional (2-D) dendrites. 3-D dendrite growth was then demonstrated with the AMPE code using nondimensional parameters obtained in 2-D simulations. Multiple dendrite growth in 2-D and 3-D were demonstrated using ORNL’s MEUMAPPS code using simple thermal boundary conditions. MEUMAPPS was then modified to incorporate the complex, time-dependent thermal boundary conditions obtained by UTRC’s thermal modeling of single track AM experiments to drive the phase field simulations. The results were in good agreement with UTRC’s experimental measurements.« less
A new art code for tomographic interferometry
NASA Technical Reports Server (NTRS)
Tan, H.; Modarress, D.
1987-01-01
A new algebraic reconstruction technique (ART) code based on the iterative refinement method of least squares solution for tomographic reconstruction is presented. Accuracy and the convergence of the technique is evaluated through the application of numerically generated interferometric data. It was found that, in general, the accuracy of the results was superior to other reported techniques. The iterative method unconditionally converged to a solution for which the residual was minimum. The effects of increased data were studied. The inversion error was found to be a function of the input data error only. The convergence rate, on the other hand, was affected by all three parameters. Finally, the technique was applied to experimental data, and the results are reported.
Classroom Use of Martial Arts Exhibitions
NASA Astrophysics Data System (ADS)
Landry, Shane Garrett; Denn, Grant R.
2006-10-01
Martial arts are becoming increasingly popular, and many of the techniques used by martial artists can provide effective demonstrations to showcase basic physics concepts. Many students have martial arts experience by the time they reach the senior level of high school or college. In one conceptual physics course, seven students out of 40 had studied some form of martial arts. Teachers can use experienced students as a resource and exploit the popularity of martial arts to demonstrate some basic points in Newtonian mechanics via martial arts demonstrations. This interactive mode of learning, we have found, is very popular and highly motivational for the students. In this paper we provide some of the possible examples of effective classroom demonstrations; there are many additional examples that your students may want to introduce.
ERIC Educational Resources Information Center
South Carolina Univ., Columbia. Dept. of Physics.
This book contains 65 physics experiments. The experiments are for a college-level physics course for music and art majors. The initial experiments are devoted to the general concept of vibration and cover vibrating strings, air columns, reflection, and interference. Later experiments explore light, color perception, cameras, mirrors and symmetry,…
One thousand words: evaluating an interdisciplinary art education program.
Klugman, Craig M; Beckmann-Mendez, Diana
2015-04-01
Art Rounds, an innovative interdisciplinary program, began as a pilot project to determine if use of fine arts instructional strategies would be of benefit in health professional education. Specifically, students were exposed to fine art and taught to use visual thinking strategies (VTS). The initial evaluation of the pilot program revealed improved physical observation skills, increased tolerance for ambiguity, and increased interest in communication skills. More recently, the Art Rounds program has been expanded to an interdisciplinary elective course open to both nursing student and medical students at all levels. An evaluation of Art Rounds as a semester- long course was conducted by course faculty and compared to the original pilot program for differences and similarities. Outcomes have demonstrated that the use of visual arts and humanities continues to be highly effective in improving students' physical observation skills and a powerful tool for teaching nursing students how to be skilled clinicians. Copyright 2015, SLACK Incorporated.
Computational tools for Breakthrough Propulsion Physics: State of the art and future prospects
NASA Astrophysics Data System (ADS)
Maccone, Claudio
2000-01-01
To address problems in Breakthrough Propulsion Physics (BPP) one needs sheer computing capabilities. This is because General Relativity and Quantum Field Theory are so mathematically sophisticated that the amount of analytical calculations is prohibitive and one can hardly do all of them by hand. In this paper we make a comparative review of the main tensor calculus capabilities of the three most advanced and commercially available ``symbolic manipulator'' codes: Macsyma, Maple V and Mathematica. We also point out that currently one faces such a variety of different conventions in tensor calculus that it is difficult or impossible to compare results obtained by different scholars in General Relativity and Quantum Field Theory. Mathematical physicists, experimental physicists and engineers have each their own way of customizing tensors, especially by using the different metric signatures, different metric determinant signs, different definitions of the basic Riemann and Ricci tensors, and by adopting different systems of physical units. This chaos greatly hampers progress toward the chief NASA BPP goal: the design of the NASA Warp Drive. It is thus concluded that NASA should put order by establishing international standards in symbolic tensor calculus and enforcing anyone working in BPP to adopt these NASA BPP Standards. .
Validating the BISON fuel performance code to integral LWR experiments
Williamson, R. L.; Gamble, K. A.; Perez, D. M.; ...
2016-03-24
BISON is a modern finite element-based nuclear fuel performance code that has been under development at the Idaho National Laboratory (INL) since 2009. The code is applicable to both steady and transient fuel behavior and has been used to analyze a variety of fuel forms in 1D spherical, 2D axisymmetric, or 3D geometries. Code validation is underway and is the subject of this study. A brief overview of BISON’s computational framework, governing equations, and general material and behavioral models is provided. BISON code and solution verification procedures are described, followed by a summary of the experimental data used to datemore » for validation of Light Water Reactor (LWR) fuel. Validation comparisons focus on fuel centerline temperature, fission gas release, and rod diameter both before and following fuel-clad mechanical contact. Comparisons for 35 LWR rods are consolidated to provide an overall view of how the code is predicting physical behavior, with a few select validation cases discussed in greater detail. Our results demonstrate that 1) fuel centerline temperature comparisons through all phases of fuel life are very reasonable with deviations between predictions and experimental data within ±10% for early life through high burnup fuel and only slightly out of these bounds for power ramp experiments, 2) accuracy in predicting fission gas release appears to be consistent with state-of-the-art modeling and with the involved uncertainties and 3) comparison of rod diameter results indicates a tendency to overpredict clad diameter reduction early in life, when clad creepdown dominates, and more significantly overpredict the diameter increase late in life, when fuel expansion controls the mechanical response. In the initial rod diameter comparisons they were unsatisfactory and have lead to consideration of additional separate effects experiments to better understand and predict clad and fuel mechanical behavior. Results from this study are being used to define priorities for ongoing code development and validation activities.« less
ERIC Educational Resources Information Center
Ingraham, Nissa; Nuttall, Susanne
2016-01-01
This qualitative case study of a southwest regional elementary school used interviews, focus groups, and document collection to better understand how this arts-integrated school is meeting the needs of English-language learner (ELL) students, discerning increased test performance on state standardized tests. Data were analyzed using open coding.…
Putting reward in art: A tentative prediction error account of visual art
Van de Cruys, Sander; Wagemans, Johan
2011-01-01
The predictive coding model is increasingly and fruitfully used to explain a wide range of findings in perception. Here we discuss the potential of this model in explaining the mechanisms underlying aesthetic experiences. Traditionally art appreciation has been associated with concepts such as harmony, perceptual fluency, and the so-called good Gestalt. We observe that more often than not great artworks blatantly violate these characteristics. Using the concept of prediction error from the predictive coding approach, we attempt to resolve this contradiction. We argue that artists often destroy predictions that they have first carefully built up in their viewers, and thus highlight the importance of negative affect in aesthetic experience. However, the viewer often succeeds in recovering the predictable pattern, sometimes on a different level. The ensuing rewarding effect is derived from this transition from a state of uncertainty to a state of increased predictability. We illustrate our account with several example paintings and with a discussion of art movements and individual differences in preference. On a more fundamental level, our theorizing leads us to consider the affective implications of prediction confirmation and violation. We compare our proposal to other influential theories on aesthetics and explore its advantages and limitations. PMID:23145260
Healing pathways: art therapy for American Indian cancer survivors.
Warson, Elizabeth
2012-04-01
There is a paucity of research addressing quality of life factors for American Indian and Alaska Native cancer survivors. Complementary forms of therapy, such as art therapy, are beginning to address quality of life factors through the "healing" arts for cancer survivors. The purpose of this mixed methods pilot was to explore the effects of culturally relevant art interventions on stress reduction for American Indian cancer survivors and their family members. Forty-six adult participants attended one of three workshops held within two settlements of the Coharie tribe and one southeastern urban tribal center. The data collected consisted of a pretest and posttest State-Trait Personality Inventory (STPI) and artwork resulting from three directed interventions. The artwork was analyzed using qualitative coding methods; however, the scores from the STPI were inconclusive because the inventory was determined to be culturally biased. While statistical significance was not achieved, the findings from qualitative coding reinforced a native concept of wellness focusing on the complex interaction between mind, body, spirit, and context. This pilot study also demonstrated how a community-driven approach was instrumental in the development of the overall workshop format. An expansion of the pilot study is also presented with preliminary results available in 2012.
NASA Technical Reports Server (NTRS)
Follen, G.; Naiman, C.; auBuchon, M.
2000-01-01
Within NASA's High Performance Computing and Communication (HPCC) program, NASA Glenn Research Center is developing an environment for the analysis/design of propulsion systems for aircraft and space vehicles called the Numerical Propulsion System Simulation (NPSS). The NPSS focuses on the integration of multiple disciplines such as aerodynamics, structures, and heat transfer, along with the concept of numerical zooming between 0- Dimensional to 1-, 2-, and 3-dimensional component engine codes. The vision for NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Current "state-of-the-art" engine simulations are 0-dimensional in that there is there is no axial, radial or circumferential resolution within a given component (e.g. a compressor or turbine has no internal station designations). In these 0-dimensional cycle simulations the individual component performance characteristics typically come from a table look-up (map) with adjustments for off-design effects such as variable geometry, Reynolds effects, and clearances. Zooming one or more of the engine components to a higher order, physics-based analysis means a higher order code is executed and the results from this analysis are used to adjust the 0-dimensional component performance characteristics within the system simulation. By drawing on the results from more predictive, physics based higher order analysis codes, "cycle" simulations are refined to closely model and predict the complex physical processes inherent to engines. As part of the overall development of the NPSS, NASA and industry began the process of defining and implementing an object class structure that enables Numerical Zooming between the NPSS Version I (0-dimension) and higher order 1-, 2- and 3-dimensional analysis codes. The NPSS Version I preserves the historical cycle engineering practices but also extends these classical practices into the area of numerical zooming for use within a companies' design system. What follows here is a description of successfully zooming I-dimensional (row-by-row) high pressure compressor results back to a NPSS engine 0-dimension simulation and a discussion of the results illustrated using an advanced data visualization tool. This type of high fidelity system-level analysis, made possible by the zooming capability of the NPSS, will greatly improve the fidelity of the engine system simulation and enable the engine system to be "pre-validated" prior to commitment to engine hardware.
29 CFR 1915.90 - Safety color code for marking physical hazards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 7 2013-07-01 2013-07-01 false Safety color code for marking physical hazards. 1915.90 Section 1915.90 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... General Working Conditions § 1915.90 Safety color code for marking physical hazards. The requirements...
29 CFR 1915.90 - Safety color code for marking physical hazards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 7 2014-07-01 2014-07-01 false Safety color code for marking physical hazards. 1915.90 Section 1915.90 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... General Working Conditions § 1915.90 Safety color code for marking physical hazards. The requirements...
29 CFR 1915.90 - Safety color code for marking physical hazards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 7 2012-07-01 2012-07-01 false Safety color code for marking physical hazards. 1915.90 Section 1915.90 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH... General Working Conditions § 1915.90 Safety color code for marking physical hazards. The requirements...
MCNP (Monte Carlo Neutron Photon) capabilities for nuclear well logging calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forster, R.A.; Little, R.C.; Briesmeister, J.F.
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. The general-purpose continuous-energy Monte Carlo code MCNP (Monte Carlo Neutron Photon), part of the LARTCS, provides a computational predictive capability for many applications of interest to the nuclear well logging community. The generalized three-dimensional geometry of MCNP is well suited for borehole-tool models. SABRINA, another component of the LARTCS, is a graphics code that can be used to interactively create a complex MCNP geometry. Users can define many source and tally characteristics with standard MCNP features. The time-dependent capabilitymore » of the code is essential when modeling pulsed sources. Problems with neutrons, photons, and electrons as either single particle or coupled particles can be calculated with MCNP. The physics of neutron and photon transport and interactions is modeled in detail using the latest available cross-section data. A rich collections of variance reduction features can greatly increase the efficiency of a calculation. MCNP is written in FORTRAN 77 and has been run on variety of computer systems from scientific workstations to supercomputers. The next production version of MCNP will include features such as continuous-energy electron transport and a multitasking option. Areas of ongoing research of interest to the well logging community include angle biasing, adaptive Monte Carlo, improved discrete ordinates capabilities, and discrete ordinates/Monte Carlo hybrid development. Los Alamos has requested approval by the Department of Energy to create a Radiation Transport Computational Facility under their User Facility Program to increase external interactions with industry, universities, and other government organizations. 21 refs.« less
Modern gyrokinetic particle-in-cell simulation of fusion plasmas on top supercomputers
Wang, Bei; Ethier, Stephane; Tang, William; ...
2017-06-29
The Gyrokinetic Toroidal Code at Princeton (GTC-P) is a highly scalable and portable particle-in-cell (PIC) code. It solves the 5D Vlasov-Poisson equation featuring efficient utilization of modern parallel computer architectures at the petascale and beyond. Motivated by the goal of developing a modern code capable of dealing with the physics challenge of increasing problem size with sufficient resolution, new thread-level optimizations have been introduced as well as a key additional domain decomposition. GTC-P's multiple levels of parallelism, including inter-node 2D domain decomposition and particle decomposition, as well as intra-node shared memory partition and vectorization have enabled pushing the scalability ofmore » the PIC method to extreme computational scales. In this paper, we describe the methods developed to build a highly parallelized PIC code across a broad range of supercomputer designs. This particularly includes implementations on heterogeneous systems using NVIDIA GPU accelerators and Intel Xeon Phi (MIC) co-processors and performance comparisons with state-of-the-art homogeneous HPC systems such as Blue Gene/Q. New discovery science capabilities in the magnetic fusion energy application domain are enabled, including investigations of Ion-Temperature-Gradient (ITG) driven turbulence simulations with unprecedented spatial resolution and long temporal duration. Performance studies with realistic fusion experimental parameters are carried out on multiple supercomputing systems spanning a wide range of cache capacities, cache-sharing configurations, memory bandwidth, interconnects and network topologies. These performance comparisons using a realistic discovery-science-capable domain application code provide valuable insights on optimization techniques across one of the broadest sets of current high-end computing platforms worldwide.« less
Modern gyrokinetic particle-in-cell simulation of fusion plasmas on top supercomputers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bei; Ethier, Stephane; Tang, William
The Gyrokinetic Toroidal Code at Princeton (GTC-P) is a highly scalable and portable particle-in-cell (PIC) code. It solves the 5D Vlasov-Poisson equation featuring efficient utilization of modern parallel computer architectures at the petascale and beyond. Motivated by the goal of developing a modern code capable of dealing with the physics challenge of increasing problem size with sufficient resolution, new thread-level optimizations have been introduced as well as a key additional domain decomposition. GTC-P's multiple levels of parallelism, including inter-node 2D domain decomposition and particle decomposition, as well as intra-node shared memory partition and vectorization have enabled pushing the scalability ofmore » the PIC method to extreme computational scales. In this paper, we describe the methods developed to build a highly parallelized PIC code across a broad range of supercomputer designs. This particularly includes implementations on heterogeneous systems using NVIDIA GPU accelerators and Intel Xeon Phi (MIC) co-processors and performance comparisons with state-of-the-art homogeneous HPC systems such as Blue Gene/Q. New discovery science capabilities in the magnetic fusion energy application domain are enabled, including investigations of Ion-Temperature-Gradient (ITG) driven turbulence simulations with unprecedented spatial resolution and long temporal duration. Performance studies with realistic fusion experimental parameters are carried out on multiple supercomputing systems spanning a wide range of cache capacities, cache-sharing configurations, memory bandwidth, interconnects and network topologies. These performance comparisons using a realistic discovery-science-capable domain application code provide valuable insights on optimization techniques across one of the broadest sets of current high-end computing platforms worldwide.« less
What Are Those Checkerboard Things? How Quick Response Codes Can Enrich Student Projects
ERIC Educational Resources Information Center
Tucker, Al
2011-01-01
Students enrolled in the author's commercial arts program design and publish the school's yearbook. For the 2010-2011 school year, the students applied Quick Response (QR) code technology to include links to events that occurred after the yearbook's print deadline, including graduation. The technology has many applications in the school setting,…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-20
... analysis and design, and computer software design and coding. Given the fact that over $500 million were... acoustic algorithms, computer architecture, and source code that dated to the 1970s. Since that time... 2012. Version 3.0 is an entirely new, state-of-the-art computer program used for predicting noise...
ERIC Educational Resources Information Center
Bruno, Michael A.
2016-01-01
As school districts nationwide struggle to raise academic achievement of students, an emphasis is made to increase the rigor of core subjects such as math, language arts, reading and writing. To balance the school day, courses such as physical education, health, and fine arts are given less prominence in scheduling. For physical education (PE), a…
NASA Astrophysics Data System (ADS)
Fang, Ye; Feng, Sheng; Tam, Ka-Ming; Yun, Zhifeng; Moreno, Juana; Ramanujam, J.; Jarrell, Mark
2014-10-01
Monte Carlo simulations of the Ising model play an important role in the field of computational statistical physics, and they have revealed many properties of the model over the past few decades. However, the effect of frustration due to random disorder, in particular the possible spin glass phase, remains a crucial but poorly understood problem. One of the obstacles in the Monte Carlo simulation of random frustrated systems is their long relaxation time making an efficient parallel implementation on state-of-the-art computation platforms highly desirable. The Graphics Processing Unit (GPU) is such a platform that provides an opportunity to significantly enhance the computational performance and thus gain new insight into this problem. In this paper, we present optimization and tuning approaches for the CUDA implementation of the spin glass simulation on GPUs. We discuss the integration of various design alternatives, such as GPU kernel construction with minimal communication, memory tiling, and look-up tables. We present a binary data format, Compact Asynchronous Multispin Coding (CAMSC), which provides an additional 28.4% speedup compared with the traditionally used Asynchronous Multispin Coding (AMSC). Our overall design sustains a performance of 33.5 ps per spin flip attempt for simulating the three-dimensional Edwards-Anderson model with parallel tempering, which significantly improves the performance over existing GPU implementations.
Technical Assistance for Arts Facilities: A Sourcebook. A Report.
ERIC Educational Resources Information Center
Educational Facilities Labs., Inc., New York, NY.
This booklet is a directory of sources of technical assistance on problems relating to physical facilities for arts organizations. Wherever possible, agencies and organizations are described in their own words. Technical assistance in the area of physical facilities encompasses planning, financing, acquiring, renovating, designing, and maintaining…
The Effect of Physical Activity on Science Competence and Attitude towards Science Content
NASA Astrophysics Data System (ADS)
Klinkenborg, Ann Maria
This study examines the effect of physical activity on science instruction. To combat the implications of physical inactivity, schools need to be willing to consider all possible opportunities for students to engage in moderate-to-vigorous physical activity (MVPA). Integrating physical activity with traditional classroom content is one instructional method to consider. Researchers have typically focused on integration with English/language arts (ELA) and mathematics. The purpose of this study was to determine the effect of physical activity on science competence and attitude towards science. Fifty-three third grade children participated in this investigation; one group received science instruction with a physical activity intervention while the other group received traditional science instruction. Participants in both groups completed a modified version of What I Really Think of Science attitude scale (Pell & Jarvis, 2001) and a physical science test of competence prior to and following the intervention. Children were videotaped during science instruction and their movement coded to measure the proportion of time spent in MVPA. Results revealed that children in the intervention group demonstrated greater MVPA during the instructional period. A moderate to large effect size (partial eta squared = .091) was seen in the intervention group science competence post-test indicating greater understanding of force, motion, work, and simple machines concepts than that of the control group who were less physically active. There was no statistically significant attitude difference between the intervention and control groups post-test, (F(1,51) = .375, p = .543). These results provide evidence that integration can effectively present physical science content and have a positive impact on the number of minutes of health-enhancing physical activity in a school day.
29 CFR 1910.144 - Safety color code for marking physical hazards.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 5 2013-07-01 2013-07-01 false Safety color code for marking physical hazards. 1910.144... § 1910.144 Safety color code for marking physical hazards. (a) Color identification—(1) Red. Red shall be the basic color for the identification of: (i) Fire protection equipment and apparatus. [Reserved] (ii...
29 CFR 1910.144 - Safety color code for marking physical hazards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 5 2014-07-01 2014-07-01 false Safety color code for marking physical hazards. 1910.144... § 1910.144 Safety color code for marking physical hazards. (a) Color identification—(1) Red. Red shall be the basic color for the identification of: (i) Fire protection equipment and apparatus. [Reserved] (ii...
29 CFR 1910.144 - Safety color code for marking physical hazards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 5 2012-07-01 2012-07-01 false Safety color code for marking physical hazards. 1910.144... § 1910.144 Safety color code for marking physical hazards. (a) Color identification—(1) Red. Red shall be the basic color for the identification of: (i) Fire protection equipment and apparatus. [Reserved] (ii...
The Impact of ART on the Economic Outcomes of People Living with HIV/AIDS.
Nannungi, Annet; Wagner, Glenn; Ghosh-Dastidar, Bonnie
2013-01-01
Background. Clinical benefits of ART are well documented, but less is known about its effects on economic outcomes such as work status and income in sub-Saharan Africa. Methods. Data were examined from 482 adult clients entering HIV care (257 starting ART; 225 not yet eligible for ART) in Kampala, Uganda. Self-reported data on work status and income were assessed at baseline, months 6 and 12. Multivariate analysis examined the effects of ART over time, controlling for change in physical health functioning and baseline covariates. Results. Fewer ART patients worked at baseline compared to non-ART patients (25.5% versus 34.2%); 48.8% of those not working at baseline were now working at month 6, and 50% at month 12, with similar improvement in both the ART and non-ART groups. However, multivariate analysis revealed that the ART group experienced greater improvement over time. Average weekly income did not differ between the groups at baseline nor change significantly over time, among those who were working; being male gender and having any secondary education were predictive of higher income. Conclusions. ART was associated with greater improvement in work status, even after controlling for change in physical health functioning, suggesting other factors associated with ART may influence work.
Assessing the Effects of Data Compression in Simulations Using Physically Motivated Metrics
Laney, Daniel; Langer, Steven; Weber, Christopher; ...
2014-01-01
This paper examines whether lossy compression can be used effectively in physics simulations as a possible strategy to combat the expected data-movement bottleneck in future high performance computing architectures. We show that, for the codes and simulations we tested, compression levels of 3–5X can be applied without causing significant changes to important physical quantities. Rather than applying signal processing error metrics, we utilize physics-based metrics appropriate for each code to assess the impact of compression. We evaluate three different simulation codes: a Lagrangian shock-hydrodynamics code, an Eulerian higher-order hydrodynamics turbulence modeling code, and an Eulerian coupled laser-plasma interaction code. Wemore » compress relevant quantities after each time-step to approximate the effects of tightly coupled compression and study the compression rates to estimate memory and disk-bandwidth reduction. We find that the error characteristics of compression algorithms must be carefully considered in the context of the underlying physics being modeled.« less
The Proteus Navier-Stokes code
NASA Technical Reports Server (NTRS)
Towne, Charles E.; Bui, Trong T.; Cavicchi, Richard H.; Conley, Julianne M.; Molls, Frank B.; Schwab, John R.
1992-01-01
An effort is currently underway at NASA Lewis to develop two- and three-dimensional Navier-Stokes codes, called Proteus, for aerospace propulsion applications. The emphasis in the development of Proteus is not algorithm development or research on numerical methods, but rather the development of the code itself. The objective is to develop codes that are user-oriented, easily-modified, and well-documented. Well-proven, state-of-the-art solution algorithms are being used. Code readability, documentation (both internal and external), and validation are being emphasized. This paper is a status report on the Proteus development effort. The analysis and solution procedure are described briefly, and the various features in the code are summarized. The results from some of the validation cases that have been run are presented for both the two- and three-dimensional codes.
Acoustic Prediction State of the Art Assessment
NASA Technical Reports Server (NTRS)
Dahl, Milo D.
2007-01-01
The acoustic assessment task for both the Subsonic Fixed Wing and the Supersonic projects under NASA s Fundamental Aeronautics Program was designed to assess the current state-of-the-art in noise prediction capability and to establish baselines for gauging future progress. The documentation of our current capabilities included quantifying the differences between predictions of noise from computer codes and measurements of noise from experimental tests. Quantifying the accuracy of both the computed and experimental results further enhanced the credibility of the assessment. This presentation gives sample results from codes representative of NASA s capabilities in aircraft noise prediction both for systems and components. These include semi-empirical, statistical, analytical, and numerical codes. System level results are shown for both aircraft and engines. Component level results are shown for a landing gear prototype, for fan broadband noise, for jet noise from a subsonic round nozzle, and for propulsion airframe aeroacoustic interactions. Additional results are shown for modeling of the acoustic behavior of duct acoustic lining and the attenuation of sound in lined ducts with flow.
NASA Technical Reports Server (NTRS)
Bittker, D. A.; Scullin, V. J.
1984-01-01
A general chemical kinetics code is described for complex, homogeneous ideal gas reactions in any chemical system. The main features of the GCKP84 code are flexibility, convenience, and speed of computation for many different reaction conditions. The code, which replaces the GCKP code published previously, solves numerically the differential equations for complex reaction in a batch system or one dimensional inviscid flow. It also solves numerically the nonlinear algebraic equations describing the well stirred reactor. A new state of the art numerical integration method is used for greatly increased speed in handling systems of stiff differential equations. The theory and the computer program, including details of input preparation and a guide to using the code are given.
Pang, Junbiao; Qin, Lei; Zhang, Chunjie; Zhang, Weigang; Huang, Qingming; Yin, Baocai
2015-12-01
Local coordinate coding (LCC) is a framework to approximate a Lipschitz smooth function by combining linear functions into a nonlinear one. For locally linear classification, LCC requires a coding scheme that heavily determines the nonlinear approximation ability, posing two main challenges: 1) the locality making faraway anchors have smaller influences on current data and 2) the flexibility balancing well between the reconstruction of current data and the locality. In this paper, we address the problem from the theoretical analysis of the simplest local coding schemes, i.e., local Gaussian coding and local student coding, and propose local Laplacian coding (LPC) to achieve the locality and the flexibility. We apply LPC into locally linear classifiers to solve diverse classification tasks. The comparable or exceeded performances of state-of-the-art methods demonstrate the effectiveness of the proposed method.
USDA-ARS?s Scientific Manuscript database
The International Code of Nomenclature for algae, fungi and plants is revised every six years to incorporate decisions of the Nomenclature Section of successive International Botanical Congresses (IBC) on proposals to amend the Code. The proposals in this paper will be considered at the IBC in Shenz...
USDA-ARS?s Scientific Manuscript database
The International Code of Nomenclature for algae, fungi and plants is revised every six years to incorporate decisions of the Nomenclature Section of successive International Botanical Congresses (IBC) on proposals to amend the Code. The proposals in this paper will be considered at the IBC in Shenz...
NASA Technical Reports Server (NTRS)
Gray, Robert M.
1989-01-01
During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-22
... analysis and design, and computer software design and coding. Given the fact that over $500 million were... acoustic algorithms, computer architecture, and source code that dated to the 1970s. Since that time... towards the end of 2012. Version 3.0 is an entirely new, state-of-the-art computer program used for...
Streamlined Genome Sequence Compression using Distributed Source Coding
Wang, Shuang; Jiang, Xiaoqian; Chen, Feng; Cui, Lijuan; Cheng, Samuel
2014-01-01
We aim at developing a streamlined genome sequence compression algorithm to support alternative miniaturized sequencing devices, which have limited communication, storage, and computation power. Existing techniques that require heavy client (encoder side) cannot be applied. To tackle this challenge, we carefully examined distributed source coding theory and developed a customized reference-based genome compression protocol to meet the low-complexity need at the client side. Based on the variation between source and reference, our protocol will pick adaptively either syndrome coding or hash coding to compress subsequences of changing code length. Our experimental results showed promising performance of the proposed method when compared with the state-of-the-art algorithm (GRS). PMID:25520552
NASA Technical Reports Server (NTRS)
Eklund, Dean R.; Northam, G. B.; Mcdaniel, J. C.; Smith, Cliff
1992-01-01
A CFD (Computational Fluid Dynamics) competition was held at the Third Scramjet Combustor Modeling Workshop to assess the current state-of-the-art in CFD codes for the analysis of scramjet combustors. Solutions from six three-dimensional Navier-Stokes codes were compared for the case of staged injection of air behind a step into a Mach 2 flow. This case was investigated experimentally at the University of Virginia and extensive in-stream data was obtained. Code-to-code comparisons have been made with regard to both accuracy and efficiency. The turbulence models employed in the solutions are believed to be a major source of discrepancy between the six solutions.
Teaching the Nature of Physics through Art: A New Art of Teaching
ERIC Educational Resources Information Center
Colletti, Leonardo
2018-01-01
Science and art are traditionally represented as two disciplines with completely divergent goals, methods, and public. It has been claimed that, if rightly addressed, science and art education could mutually support each other. In this paper I propose the recurrent reference to certain famous paintings during the ordinary progress of physics…
Art. Program of Art Instruction in the Secondary School.
ERIC Educational Resources Information Center
Battle Creek Public Schools, MI.
GRADES OR AGES: Junior and senior high school. SUBJECT MATTER: Art. ORGANIZATION AND PHYSICAL APPEARANCE: The guide has four main sections: 1) "Aims of the Art Program"; 2) "Function of the Guide"; 3) "Course Descriptions"; and 4) "References, Source Materials, Aids." The course descriptions in section 3 are arranged in chart form with six…
Art as a Vehicle for Nuclear Astrophysics
NASA Astrophysics Data System (ADS)
Kilburn, Micha
2013-04-01
One aim of the The Joint Institute for Nuclear Astrophysics (JINA) is to teach K-12 students concepts and ideas related to nuclear astrophysics. For students who have not yet seen the periodic table, this can be daunting, and we often begin with astronomy concepts. The field of astronomy naturally lends itself to an art connection through its beautiful images. Our Art 2 Science programming adopts a hands-on approach by teaching astronomy through student created art projects. This approach engages the students, through tactile means, visually and spatially. For younger students, we also include physics based craft projects that facilitate the assimilation of problem solving skills. The arts can be useful for aural and kinetic learners as well. Our program also includes singing and dancing to songs with lyrics that teach physics and astronomy concepts. The Art 2 Science programming has been successfully used in after-school programs at schools, community centers, and art studios. We have even expanded the program into a popular week long summer camp. I will discuss our methods, projects, specific goals, and survey results for JINA's Art 2 Science programs.
Reacting Chemistry Based Burn Model for Explosive Hydrocodes
NASA Astrophysics Data System (ADS)
Schwaab, Matthew; Greendyke, Robert; Steward, Bryan
2017-06-01
Currently, in hydrocodes designed to simulate explosive material undergoing shock-induced ignition, the state of the art is to use one of numerous reaction burn rate models. These burn models are designed to estimate the bulk chemical reaction rate. Unfortunately, these models are largely based on empirical data and must be recalibrated for every new material being simulated. We propose that the use of an equilibrium Arrhenius rate reacting chemistry model in place of these empirically derived burn models will improve the accuracy for these computational codes. Such models have been successfully used in codes simulating the flow physics around hypersonic vehicles. A reacting chemistry model of this form was developed for the cyclic nitramine RDX by the Naval Research Laboratory (NRL). Initial implementation of this chemistry based burn model has been conducted on the Air Force Research Laboratory's MPEXS multi-phase continuum hydrocode. In its present form, the burn rate is based on the destruction rate of RDX from NRL's chemistry model. Early results using the chemistry based burn model show promise in capturing deflagration to detonation features more accurately in continuum hydrocodes than previously achieved using empirically derived burn models.
ERIC Educational Resources Information Center
Luzzatto, Paola; Bruno, Teresa; Cosco, Marianna; Del Curatolo, Annamaria; Frigenti, Franca; Macchioni, Silvia
2017-01-01
This article describes a 10-session group art therapy program for people with physical and neurological disabilities. This program, the DIS-ART Creative Journey, was adapted from the Creative Journey used with cancer patients, and was tested in Italy by 4 art therapists. The 5-step structure of each session and the 10 facilitating techniques used…
Internal fluid mechanics research on supercomputers for aerospace propulsion systems
NASA Technical Reports Server (NTRS)
Miller, Brent A.; Anderson, Bernhard H.; Szuch, John R.
1988-01-01
The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid mechanics (ICFM) to a state of practical application for aerospace propulsion systems. The strategies used to achieve this goal are to: (1) pursue an understanding of flow physics, surface heat transfer, and combustion via analysis and fundamental experiments, (2) incorporate improved understanding of these phenomena into verified 3-D CFD codes, and (3) utilize state-of-the-art computational technology to enhance experimental and CFD research. Presented is an overview of the ICFM program in high-speed propulsion, including work in inlets, turbomachinery, and chemical reacting flows. Ongoing efforts to integrate new computer technologies, such as parallel computing and artificial intelligence, into high-speed aeropropulsion research are described.
Assessment of computational issues associated with analysis of high-lift systems
NASA Technical Reports Server (NTRS)
Balasubramanian, R.; Jones, Kenneth M.; Waggoner, Edgar G.
1992-01-01
Thin-layer Navier-Stokes calculations for wing-fuselage configurations from subsonic to hypersonic flow regimes are now possible. However, efficient, accurate solutions for using these codes for two- and three-dimensional high-lift systems have yet to be realized. A brief overview of salient experimental and computational research is presented. An assessment of the state-of-the-art relative to high-lift system analysis and identification of issues related to grid generation and flow physics which are crucial for computational success in this area are also provided. Research in support of the high-lift elements of NASA's High Speed Research and Advanced Subsonic Transport Programs which addresses some of the computational issues is presented. Finally, fruitful areas of concentrated research are identified to accelerate overall progress for high lift system analysis and design.
Software Tools for Stochastic Simulations of Turbulence
2015-08-28
client interface to FTI. Specefic client programs using this interface include the weather forecasting code WRF ; the high energy physics code, FLASH...client programs using this interface include the weather forecasting code WRF ; the high energy physics code, FLASH; and two locally constructed fluid...45 4.4.2.2 FLASH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.4.2.3 WRF
Monte Carlo Techniques for Nuclear Systems - Theory Lectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. Thesemore » lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations. Beginning MCNP users are encouraged to review LA-UR-09-00380, "Criticality Calculations with MCNP: A Primer (3nd Edition)" (available at http:// mcnp.lanl.gov under "Reference Collection") prior to the class. No Monte Carlo class can be complete without having students write their own simple Monte Carlo routines for basic random sampling, use of the random number generator, and simplified particle transport simulation.« less
Processing Motion: Using Code to Teach Newtonian Physics
NASA Astrophysics Data System (ADS)
Massey, M. Ryan
Prior to instruction, students often possess a common-sense view of motion, which is inconsistent with Newtonian physics. Effective physics lessons therefore involve conceptual change. To provide a theoretical explanation for concepts and how they change, the triangulation model brings together key attributes of prototypes, exemplars, theories, Bayesian learning, ontological categories, and the causal model theory. The triangulation model provides a theoretical rationale for why coding is a viable method for physics instruction. As an experiment, thirty-two adolescent students participated in summer coding academies to learn how to design Newtonian simulations. Conceptual and attitudinal data was collected using the Force Concept Inventory and the Colorado Learning Attitudes about Science Survey. Results suggest that coding is an effective means for teaching Newtonian physics.
ERIC Educational Resources Information Center
Root-Bernstein, Robert; Root-Bernstein, Michele
2013-01-01
Walter Alvarez, a doctor and physiologist of some renown, decided to send his scientifically talented son, Luis, to an arts and crafts school where Luis took industrial drawing and woodworking instead of calculus. Luis Alvarez won the Nobel Prize in physics in 1968. Einstein was certainly not a standout in his mathematics and physics classes. Yet…
Taekwondo Instructional and Assessment Strategies in Authentic Settings
ERIC Educational Resources Information Center
Oh, Hyun-Ju
2014-01-01
Martial arts, including taekwondo, have become popular in the United States and are being taught in some physical education programs. Unfortunately, martial arts skills in physical education are likely to be taught in a traditional manner (mastering basic skills and performing routines as a large group) and assessed in a closed setting. The…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philip, Bobby
2012-06-01
The Advanced Multi-Physics (AMP) code, in its present form, will allow a user to build a multi-physics application code for existing mechanics and diffusion operators and extend them with user-defined material models and new physics operators. There are examples that demonstrate mechanics, thermo-mechanics, coupled diffusion, and mechanical contact. The AMP code is designed to leverage a variety of mathematical solvers (PETSc, Trilinos, SUNDIALS, and AMP solvers) and mesh databases (LibMesh and AMP) in a consistent interchangeable approach.
Fluid Film Bearing Code Development
NASA Technical Reports Server (NTRS)
1995-01-01
The next generation of rocket engine turbopumps is being developed by industry through Government-directed contracts. These turbopumps will use fluid film bearings because they eliminate the life and shaft-speed limitations of rolling-element bearings, increase turbopump design flexibility, and reduce the need for turbopump overhauls and maintenance. The design of the fluid film bearings for these turbopumps, however, requires sophisticated analysis tools to model the complex physical behavior characteristic of fluid film bearings operating at high speeds with low viscosity fluids. State-of-the-art analysis and design tools are being developed at the Texas A&M University under a grant guided by the NASA Lewis Research Center. The latest version of the code, HYDROFLEXT, is a thermohydrodynamic bulk flow analysis with fluid compressibility, full inertia, and fully developed turbulence models. It can predict the static and dynamic force response of rigid and flexible pad hydrodynamic bearings and of rigid and tilting pad hydrostatic bearings. The Texas A&M code is a comprehensive analysis tool, incorporating key fluid phenomenon pertinent to bearings that operate at high speeds with low-viscosity fluids typical of those used in rocket engine turbopumps. Specifically, the energy equation was implemented into the code to enable fluid properties to vary with temperature and pressure. This is particularly important for cryogenic fluids because their properties are sensitive to temperature as well as pressure. As shown in the figure, predicted bearing mass flow rates vary significantly depending on the fluid model used. Because cryogens are semicompressible fluids and the bearing dynamic characteristics are highly sensitive to fluid compressibility, fluid compressibility effects are also modeled. The code contains fluid properties for liquid hydrogen, liquid oxygen, and liquid nitrogen as well as for water and air. Other fluids can be handled by the code provided that the user inputs information that relates the fluid transport properties to the temperature.
ERIC Educational Resources Information Center
SHORE, ROBERT E.
THE SAN RAFAEL MORE ABLE LEARNER CURRICULUM WAS GEARED TO A SELECT GROUP OF ELEMENTARY SCHOOL STUDENTS. IT ATTEMPTED "TO DEEPEN APPRECIATIONS, ATTITUDES, AND UNDERSTANDINGS THROUGH INCREASED KNOWLEDGE OF THE ARTS AND SCIENCES, AND TO DEVELOP PROFICIENCIES AND SKILLS IN SELECTED AREAS IN THE ARTS AND SCIENCES." THE CURRICULUM OFFERED A…
Location Technologies for Apparel Assembly
1991-09-01
ADDRESS (Stry, State, and ZIP Code) School of Textile & Fiber Engineering Georgia Institute of Technology Atlanta, Georgia 30332-0295 206 O’Keefe...at a cost of less than $500. A review is also given of state-of-the- art vision systems. These systems have the nccessry- accuracy and precision for...of state-of-the- art vision systems. These systems have the necessary accuracy and precision for apparel manufacturing applications and could
Brown, Elliot G
2002-01-01
To support signal generation a terminology should facilitate recognition of medical conditions by using terms which represent unique concepts, providing appropriate, homogeneous grouping of related terms. It should allow intuitive or mathematical identification of adverse events reaching a threshold frequency or with disproportionate incidence, permit identification of important events which are commonly drug-related, and support recognition of new syndromes. It is probable that the Medical Dictionary for Regulatory Activities (MedDRA) preferred terms (PTs) or high level terms (HLTs) will be used to represent adverse events for the purposes of signal generation. A comparison with 315 WHO Adverse Reaction Terminology (WHO-ART) PTs showed that for about 72% of WHO-ART PTs, there were one or two corresponding MedDRA PTs. However, there were instances where there were many MedDRA PTs corresponding to single WHO-ART PTs. In many cases, MedDRA HLTs grouped large numbers of PTs and sometimes there could be problems when a single HLT comprises PTs which represent very different medical concepts, or conditions which differ greatly in their clinical importance. Further studies are needed to compare the way in which identical data sets coded with MedDRA and with other terminologies actually function in generating and exploring signals using the same methods of detection and evaluation.
Outside the Research Lab; Volume 1: Physics in the arts, architecture and design
NASA Astrophysics Data System (ADS)
Holgate, Sharon Ann
2017-02-01
This book is written for students and other interested readers as a look inside the diverse range of applications for physics outside of the scientific research environment. This first volume covers several different areas of the arts and design ranging from stage lighting to sculpting. The author has interviewed experts in each area to explain how physics and technology impact their work. These are all useful examples of how physics encountered in taught courses relates to the real world. Audio files and videos are available within Book information
A methodology for the rigorous verification of plasma simulation codes
NASA Astrophysics Data System (ADS)
Riva, Fabio
2016-10-01
The methodology used to assess the reliability of numerical simulation codes constitutes the Verification and Validation (V&V) procedure. V&V is composed by two separate tasks: the verification, which is a mathematical issue targeted to assess that the physical model is correctly solved, and the validation, which determines the consistency of the code results, and therefore of the physical model, with experimental data. In the present talk we focus our attention on the verification, which in turn is composed by the code verification, targeted to assess that a physical model is correctly implemented in a simulation code, and the solution verification, that quantifies the numerical error affecting a simulation. Bridging the gap between plasma physics and other scientific domains, we introduced for the first time in our domain a rigorous methodology for the code verification, based on the method of manufactured solutions, as well as a solution verification based on the Richardson extrapolation. This methodology was applied to GBS, a three-dimensional fluid code based on a finite difference scheme, used to investigate the plasma turbulence in basic plasma physics experiments and in the tokamak scrape-off layer. Overcoming the difficulty of dealing with a numerical method intrinsically affected by statistical noise, we have now generalized the rigorous verification methodology to simulation codes based on the particle-in-cell algorithm, which are employed to solve Vlasov equation in the investigation of a number of plasma physics phenomena.
Martial Arts: A Discussion of the Feasibility of a University Martial Arts Program.
ERIC Educational Resources Information Center
Hamada, Hiroshi; Tow, Patrick
1979-01-01
A brief description of some of the martial arts is provided along with some discussion of the feasibility of offering one or more of these disciplines as part of the college physical education program. (JMF)
Konaka, Hiroyuki; Sugimoto, Kazuhiro; Orikasa, Hideki; Iwamoto, Teruaki; Takamura, Toshinari; Takeda, Yoshiyu; Shigehara, Kazuyoshi; Iijima, Masashi; Koh, Eitetsu; Namiki, Mikio
2016-01-01
Androgen replacement therapy (ART) efficacy on late-onset hypogonadism (LOH) has been widely investigated in Western countries; however, it remains controversial whether ART can improve health and prolong active lifestyles. We prospectively assessed long-term ART effects on the physical and mental statuses of aging men with LOH in Japan. The primary endpoint was health-related quality of life assessed by questionnaires. Secondary endpoints included glycemic control, lipid parameters, blood pressure, waist circumference, body composition, muscular strength, International Prostate Symptom Scores (IPSS), International Index of Erectile Function-5 (IIEF-5) scores, and serum prostate-specific antigen levels. Of the 1637 eligible volunteers, 334 patients > 40 years with LOH were randomly assigned to either the ART (n = 169) or control groups (n = 165). Fifty-two weeks after the initial treatment, ART significantly affected the role physical subdomain of the short form-36 health survey (SF-36) scale (P = 0.0318). ART was also associated with significant decreases in waist circumstance (P = 0.002) and serum triglyceride (TG) (P = 0.013) and with significant increases in whole-body and leg muscle mass volumes (P = 0.071 and 0.0108, respectively), serum hemoglobin (P < 0.001), IPSS voiding subscore (P = 0.0418), and the second question on IIEF-5 (P = 0.0049). There was no significant difference between the groups in terms of severe adverse events. In conclusion, in patients with LOH, long-term ART exerted beneficial effects on Role Physical subdomain of the SF-36 scale, serum TG, waist circumstance, muscle mass volume, voiding subscore of IPSS, and the second question of IIEF-5. We hope our study will contribute to the future development of this area. PMID:25761833
NASA Technical Reports Server (NTRS)
Ballarini, F.; Battistoni, G.; Campanella, M.; Carboni, M.; Cerutti, F.; Empl, A.; Fasso, A.; Ferrari, A.; Gadioli, E.; Garzelli, M. V.;
2006-01-01
FLUKA is a multipurpose Monte Carlo code which can transport a variety of particles over a wide energy range in complex geometries. The code is a joint project of INFN and CERN: part of its development is also supported by the University of Houston and NASA. FLUKA is successfully applied in several fields, including but not only, particle physics, cosmic ray physics, dosimetry, radioprotection, hadron therapy, space radiation, accelerator design and neutronics. The code is the standard tool used at CERN for dosimetry, radioprotection and beam-machine interaction studies. Here we give a glimpse into the code physics models with a particular emphasis to the hadronic and nuclear sector.
Standard interface files and procedures for reactor physics codes, version III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmichael, B.M.
Standards and procedures for promoting the exchange of reactor physics codes are updated to Version-III status. Standards covering program structure, interface files, file handling subroutines, and card input format are included. The implementation status of the standards in codes and the extension of the standards to new code areas are summarized. (15 references) (auth)
Lawrence, David W; Hutchison, Michael G; Cusimano, Michael D; Singh, Tanveer; Li, Luke
2014-09-01
Interrater agreement evaluation of a tool to document and code the situational factors and mechanisms of knockouts (KOs) and technical knockouts (TKOs) in mixed martial arts (MMA). Retrospective case series. Professional MMA matches from the Ultimate Fighting Championship-2006-2012. Two nonmedically trained independent raters. The MMA Knockout Tool (MMA-KT) consists of 20 factors and captures and codes information on match characteristics, situational context preceding KOs and TKOs, as well as describing competitor states during these outcomes. The MMA-KT also evaluates the mechanism of action and subsequent events surrounding a KO. The 2 raters coded 125 unique events for a total of 250 events. The 8 factors of Part A had an average κ of 0.87 (SD = 0.10; range = 0.65-0.98); 7 were considered "substantial" agreement and 1 "moderate." Part B consists of 12 factors with an average κ of 0.84 (SD = 0.16; range = 0.59-1.0); 7 classified as "substantial" agreement, 4 "moderate," and 1 "fair." The majority of the factors in the MMA-KT demonstrated substantial interrater agreement, with an average κ of 0.86 (SD = 0.13; range = 0.59-1.0). The MMA-KT is a reliable tool to extract and code relevant information to investigate the situational factors and mechanism of KOs and TKOs in MMA competitions.
Los Alamos radiation transport code system on desktop computing platforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briesmeister, J.F.; Brinkley, F.W.; Clark, B.A.
The Los Alamos Radiation Transport Code System (LARTCS) consists of state-of-the-art Monte Carlo and discrete ordinates transport codes and data libraries. These codes were originally developed many years ago and have undergone continual improvement. With a large initial effort and continued vigilance, the codes are easily portable from one type of hardware to another. The performance of scientific work-stations (SWS) has evolved to the point that such platforms can be used routinely to perform sophisticated radiation transport calculations. As the personal computer (PC) performance approaches that of the SWS, the hardware options for desk-top radiation transport calculations expands considerably. Themore » current status of the radiation transport codes within the LARTCS is described: MCNP, SABRINA, LAHET, ONEDANT, TWODANT, TWOHEX, and ONELD. Specifically, the authors discuss hardware systems on which the codes run and present code performance comparisons for various machines.« less
Development of a CFD code for casting simulation
NASA Technical Reports Server (NTRS)
Murph, Jesse E.
1992-01-01
The task of developing a computational fluid dynamics (CFD) code to accurately model the mold filling phase of a casting operation was accomplished in a systematic manner. First the state-of-the-art was determined through a literature search, a code search, and participation with casting industry personnel involved in consortium startups. From this material and inputs from industry personnel, an evaluation of the currently available codes was made. It was determined that a few of the codes already contained sophisticated CFD algorithms and further validation of one of these codes could preclude the development of a new CFD code for this purpose. With industry concurrence, ProCAST was chosen for further evaluation. Two benchmark cases were used to evaluate the code's performance using a Silicon Graphics Personal Iris system. The results of these limited evaluations (because of machine and time constraints) are presented along with discussions of possible improvements and recommendations for further evaluation.
Art & Early Childhood: Personal Narratives & Social Practices. Occasional Paper Series 31
ERIC Educational Resources Information Center
Sunday, Kris, Ed.; McClure, Marissa, Ed.; Schulte, Christopher, Ed.
2015-01-01
This issue explores the nature of childhood by offering selections that re/imagine the idea of the child as art maker; inquire about the relationships between children and adults when they are making art; and investigate how physical space influences approaches to art instruction. Readers are invited to join a dialogue that questions long-standing…
Wavelet-based scalable L-infinity-oriented compression.
Alecu, Alin; Munteanu, Adrian; Cornelis, Jan P H; Schelkens, Peter
2006-09-01
Among the different classes of coding techniques proposed in literature, predictive schemes have proven their outstanding performance in near-lossless compression. However, these schemes are incapable of providing embedded L(infinity)-oriented compression, or, at most, provide a very limited number of potential L(infinity) bit-stream truncation points. We propose a new multidimensional wavelet-based L(infinity)-constrained scalable coding framework that generates a fully embedded L(infinity)-oriented bit stream and that retains the coding performance and all the scalability options of state-of-the-art L2-oriented wavelet codecs. Moreover, our codec instantiation of the proposed framework clearly outperforms JPEG2000 in L(infinity) coding sense.
NASA Astrophysics Data System (ADS)
York, B. J.; Sinha, N.; Dash, S. M.; Hosangadi, A.; Kenzakowski, D. C.; Lee, R. A.
1992-07-01
The analysis of steady and transient aerodynamic/propulsive/plume flowfield interactions utilizing several state-of-the-art computer codes (PARCH, CRAFT, and SCHAFT) is discussed. These codes have been extended to include advanced turbulence models, generalized thermochemistry, and multiphase nonequilibrium capabilities. Several specialized versions of these codes have been developed for specific applications. This paper presents a brief overview of these codes followed by selected cases demonstrating steady and transient analyses of conventional as well as advanced missile systems. Areas requiring upgrades include turbulence modeling in a highly compressible environment and the treatment of particulates in general. Recent progress in these areas are highlighted.
ALE3D: An Arbitrary Lagrangian-Eulerian Multi-Physics Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, Charles R.; Anderson, Andrew T.; Barton, Nathan R.
ALE3D is a multi-physics numerical simulation software tool utilizing arbitrary-Lagrangian- Eulerian (ALE) techniques. The code is written to address both two-dimensional (2D plane and axisymmetric) and three-dimensional (3D) physics and engineering problems using a hybrid finite element and finite volume formulation to model fluid and elastic-plastic response of materials on an unstructured grid. As shown in Figure 1, ALE3D is a single code that integrates many physical phenomena.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doebling, Scott William
The purpose of the verification project is to establish, through rigorous convergence analysis, that each ASC computational physics code correctly implements a set of physics models and algorithms (code verification); Evaluate and analyze the uncertainties of code outputs associated with the choice of temporal and spatial discretization (solution or calculation verification); and Develop and maintain the capability to expand and update these analyses on demand. This presentation describes project milestones.
Combining analysis with optimization at Langley Research Center. An evolutionary process
NASA Technical Reports Server (NTRS)
Rogers, J. L., Jr.
1982-01-01
The evolutionary process of combining analysis and optimization codes was traced with a view toward providing insight into the long term goal of developing the methodology for an integrated, multidisciplinary software system for the concurrent analysis and optimization of aerospace structures. It was traced along the lines of strength sizing, concurrent strength and flutter sizing, and general optimization to define a near-term goal for combining analysis and optimization codes. Development of a modular software system combining general-purpose, state-of-the-art, production-level analysis computer programs for structures, aerodynamics, and aeroelasticity with a state-of-the-art optimization program is required. Incorporation of a modular and flexible structural optimization software system into a state-of-the-art finite element analysis computer program will facilitate this effort. This effort results in the software system used that is controlled with a special-purpose language, communicates with a data management system, and is easily modified for adding new programs and capabilities. A 337 degree-of-freedom finite element model is used in verifying the accuracy of this system.
2015-03-01
unlimited 13. ABSTRACT (maximum 200 words) Physical network maps are important to critical infrastructure defense and planning. Current state-of...the-art network infrastructure geolocation relies on Domain Name System (DNS) inferences. However, not only is using the DNS relatively inaccurate for...INTENTIONALLY LEFT BLANK iv ABSTRACT Physical network maps are important to critical infrastructure defense and planning. Cur- rent state-of-the-art
Physics and Art--A Cultural Symbiosis in Physics Education
ERIC Educational Resources Information Center
Galili, Igal; Zinn, Barbara
2007-01-01
This paper presents and discusses examples of works of art which, if included in science curricula, could prompt an understanding by students of some concepts in optics through a discussion of the context in which they were created. Such discussion would elucidate the meaning of the artworks and, at the same time, challenge students'…
Toward Intelligent Software Defect Detection
NASA Technical Reports Server (NTRS)
Benson, Markland J.
2011-01-01
Source code level software defect detection has gone from state of the art to a software engineering best practice. Automated code analysis tools streamline many of the aspects of formal code inspections but have the drawback of being difficult to construct and either prone to false positives or severely limited in the set of defects that can be detected. Machine learning technology provides the promise of learning software defects by example, easing construction of detectors and broadening the range of defects that can be found. Pinpointing software defects with the same level of granularity as prominent source code analysis tools distinguishes this research from past efforts, which focused on analyzing software engineering metrics data with granularity limited to that of a particular function rather than a line of code.
Breaking the Code: The Creative Use of QR Codes to Market Extension Events
ERIC Educational Resources Information Center
Hill, Paul; Mills, Rebecca; Peterson, GaeLynn; Smith, Janet
2013-01-01
The use of smartphones has drastically increased in recent years, heralding an explosion in the use of QR codes. The black and white square barcodes that link the physical and digital world are everywhere. These simple codes can provide many opportunities to connect people in the physical world with many of Extension online resources. The…
Exercise Training and Energy Expenditure following Weight Loss
Hunter, Gary R.; Fisher, Gordon; Neumeier, William H.; Carter, Stephen J.; Plaisance, Eric P.
2015-01-01
Purpose Determine the effects of aerobic or resistance training on activity related energy expenditure (AEE, kcal/d) and physical activity index (ARTE) following weight loss. It was hypothesized that weight loss without exercise training would be accompanied by a decrease in AEE, ARTE, and non-training physical activity energy expenditure (NEAT) and that exercise training would prevent decreases in free living energy expenditure. Methods 140 pre-menopausal women underwent an average of 25 pound weight loss during an 800 kcal/day diet of furnished food. One group aerobically trained 3 times/wk (40 min/d), another resistance trained 3 times/wk (10 exercises/2 sets x10 repetitions) and the third group did not exercise. DXA was used to measure body composition, indirect calorimetry to measure resting (REE) and walking energy expenditure, and doubly labeled water to measure total energy expenditure (TEE). AEE, ARTE, and non-training physical activity energy expenditure (NEAT) were calculated. Results TEE, REE, and NEAT all decreased following weight loss for the no exercise group, but not for the aerobic and resistance trainers. Only REE decreased in the two exercise groups. The resistance trainers increased ARTE. Heart rate and oxygen uptake while walking on the flat and up a grade were consistently related to TEE, AEE, NEAT, and ARTE. Conclusion Exercise training prevents a decrease in energy expenditure, including free living energy expenditure separate from the exercise training, following weight loss. Resistance training increased physical activity, while ease and economy in walking associates with increased TEE, AEE, NEAT, and ARTE. PMID:25606816
Noncoherent Physical-Layer Network Coding with FSK Modulation: Relay Receiver Design Issues
2011-03-01
222 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 59, NO. 9, SEPTEMBER 2011 2595 Noncoherent Physical-Layer Network Coding with FSK Modulation: Relay... noncoherent reception, channel estima- tion. I. INTRODUCTION IN the two-way relay channel (TWRC), a pair of sourceterminals exchange information...2011 4. TITLE AND SUBTITLE Noncoherent Physical-Layer Network Coding with FSK Modulation:Relay Receiver Design Issues 5a. CONTRACT NUMBER 5b
Assessment of the prevailing physics codes: LEOPARD, LASER, and EPRI-CELL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lan, J.S.
1981-01-01
In order to analyze core performance and fuel management, it is necessary to verify reactor physics codes in great detail. This kind of work not only serves the purpose of understanding and controlling the characteristics of each code, but also ensures the reliability as codes continually change due to constant modifications and machine transfers. This paper will present the results of a comprehensive verification of three code packages - LEOPARD, LASER, and EPRI-CELL.
Recent Upgrades to the NASA Ames Mars General Circulation Model: Applications to Mars' Water Cycle
NASA Astrophysics Data System (ADS)
Hollingsworth, Jeffery L.; Kahre, M. A.; Haberle, R. M.; Montmessin, F.; Wilson, R. J.; Schaeffer, J.
2008-09-01
We report on recent improvements to the NASA Ames Mars general circulation model (GCM), a robust 3D climate-modeling tool that is state-of-the-art in terms of its physics parameterizations and subgrid-scale processes, and which can be applied to investigate physical and dynamical processes of the present (and past) Mars climate system. The most recent version (gcm2.1, v.24) of the Ames Mars GCM utilizes a more generalized radiation code (based on a two-stream approximation with correlated k's); an updated transport scheme (van Leer formulation); a cloud microphysics scheme that assumes a log-normal particle size distribution whose first two moments are treated as atmospheric tracers, and which includes the nucleation, growth and sedimentation of ice crystals. Atmospheric aerosols (e.g., dust and water-ice) can either be radiatively active or inactive. We apply this version of the Ames GCM to investigate key aspects of the present water cycle on Mars. Atmospheric dust is partially interactive in our simulations; namely, the radiation code "sees" a prescribed distribution that follows the MGS thermal emission spectrometer (TES) year-one measurements with a self-consistent vertical depth scale that varies with season. The cloud microphysics code interacts with a transported dust tracer column whose surface source is adjusted to maintain the TES distribution. The model is run from an initially dry state with a better representation of the north residual cap (NRC) which accounts for both surface-ice and bare-soil components. A seasonally repeatable water cycle is obtained within five Mars years. Our sub-grid scale representation of the NRC provides for a more realistic flux of moisture to the atmosphere and a much drier water cycle consistent with recent spacecraft observations (e.g., Mars Express PFS, corrected MGS/TES) compared to models that assume a spatially uniform and homogeneous north residual polar cap.
Liddle, Jeannine L M; Parkinson, Lynne; Sibbritt, David W
2013-12-01
The fourth age, as the last stage of life, represents a final challenge to find personal meaning in the face of changing capacities, illness and disability. Participation in valued activities is important for sustaining interest in life and has been associated with enhanced health and well-being. Art and craft activities are a popular form of participation amongst women in late life with growing international interest in the potential for these types of activities to maintain health and well-being and address problems of social isolation. Drawing on open text comments from 114 women enrolled in the Australian Longitudinal Study on Women's Health and in-depth interviews with 23 women all aged in their eighties, this paper explores the nature of older women's participation in art and craft activities and conceptualises links between participation in these activities and health and well-being in late life. Participation in art and craft activities is complex and dynamic, comprising cognitive and physical processes infused with emotion and occurs in the context of social relationships, physical spaces, physical ailments and beliefs about the value of the activities. By participating in art and craft activities, older women find purpose in their lives, contributing to their subjective well-being whilst helping and being appreciated by others. They develop a self view as enabled and as such take on new art and craft challenges, continue to learn and develop as art and craft makers and remain open to new possibilities. © 2013.
MEG and EEG data analysis with MNE-Python.
Gramfort, Alexandre; Luessi, Martin; Larson, Eric; Engemann, Denis A; Strohmeier, Daniel; Brodbeck, Christian; Goj, Roman; Jas, Mainak; Brooks, Teon; Parkkonen, Lauri; Hämäläinen, Matti
2013-12-26
Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals generated by neuronal activity in the brain. Using these signals to characterize and locate neural activation in the brain is a challenge that requires expertise in physics, signal processing, statistics, and numerical methods. As part of the MNE software suite, MNE-Python is an open-source software package that addresses this challenge by providing state-of-the-art algorithms implemented in Python that cover multiple methods of data preprocessing, source localization, statistical analysis, and estimation of functional connectivity between distributed brain regions. All algorithms and utility functions are implemented in a consistent manner with well-documented interfaces, enabling users to create M/EEG data analysis pipelines by writing Python scripts. Moreover, MNE-Python is tightly integrated with the core Python libraries for scientific comptutation (NumPy, SciPy) and visualization (matplotlib and Mayavi), as well as the greater neuroimaging ecosystem in Python via the Nibabel package. The code is provided under the new BSD license allowing code reuse, even in commercial products. Although MNE-Python has only been under heavy development for a couple of years, it has rapidly evolved with expanded analysis capabilities and pedagogical tutorials because multiple labs have collaborated during code development to help share best practices. MNE-Python also gives easy access to preprocessed datasets, helping users to get started quickly and facilitating reproducibility of methods by other researchers. Full documentation, including dozens of examples, is available at http://martinos.org/mne.
MEG and EEG data analysis with MNE-Python
Gramfort, Alexandre; Luessi, Martin; Larson, Eric; Engemann, Denis A.; Strohmeier, Daniel; Brodbeck, Christian; Goj, Roman; Jas, Mainak; Brooks, Teon; Parkkonen, Lauri; Hämäläinen, Matti
2013-01-01
Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals generated by neuronal activity in the brain. Using these signals to characterize and locate neural activation in the brain is a challenge that requires expertise in physics, signal processing, statistics, and numerical methods. As part of the MNE software suite, MNE-Python is an open-source software package that addresses this challenge by providing state-of-the-art algorithms implemented in Python that cover multiple methods of data preprocessing, source localization, statistical analysis, and estimation of functional connectivity between distributed brain regions. All algorithms and utility functions are implemented in a consistent manner with well-documented interfaces, enabling users to create M/EEG data analysis pipelines by writing Python scripts. Moreover, MNE-Python is tightly integrated with the core Python libraries for scientific comptutation (NumPy, SciPy) and visualization (matplotlib and Mayavi), as well as the greater neuroimaging ecosystem in Python via the Nibabel package. The code is provided under the new BSD license allowing code reuse, even in commercial products. Although MNE-Python has only been under heavy development for a couple of years, it has rapidly evolved with expanded analysis capabilities and pedagogical tutorials because multiple labs have collaborated during code development to help share best practices. MNE-Python also gives easy access to preprocessed datasets, helping users to get started quickly and facilitating reproducibility of methods by other researchers. Full documentation, including dozens of examples, is available at http://martinos.org/mne. PMID:24431986
Improvement of Mishchenko's T-matrix code for absorbing particles.
Moroz, Alexander
2005-06-10
The use of Gaussian elimination with backsubstitution for matrix inversion in scattering theories is discussed. Within the framework of the T-matrix method (the state-of-the-art code by Mishchenko is freely available at http://www.giss.nasa.gov/-crmim), it is shown that the domain of applicability of Mishchenko's FORTRAN 77 (F77) code can be substantially expanded in the direction of strongly absorbing particles where the current code fails to converge. Such an extension is especially important if the code is to be used in nanoplasmonic or nanophotonic applications involving metallic particles. At the same time, convergence can also be achieved for large nonabsorbing particles, in which case the non-Numerical Algorithms Group option of Mishchenko's code diverges. Computer F77 implementation of Mishchenko's code supplemented with Gaussian elimination with backsubstitution is freely available at http://www.wave-scattering.com.
SCISEAL: A CFD Code for Analysis of Fluid Dynamic Forces in Seals
NASA Technical Reports Server (NTRS)
Althavale, Mahesh M.; Ho, Yin-Hsing; Przekwas, Andre J.
1996-01-01
A 3D CFD code, SCISEAL, has been developed and validated. Its capabilities include cylindrical seals, and it is employed on labyrinth seals, rim seals, and disc cavities. State-of-the-art numerical methods include colocated grids, high-order differencing, and turbulence models which account for wall roughness. SCISEAL computes efficient solutions for complicated flow geometries and seal-specific capabilities (rotor loads, torques, etc.).
How the Arts Develop the Young Brain
ERIC Educational Resources Information Center
Sousa, David A.
2006-01-01
The arts play an important role in human development, enhancing the growth of cognitive, emotional, and psychomotor pathways. Neuroscience research reveals the impressive impact of arts instruction, such as, music, drawing and physical activity, on students' cognitive, social and emotional development. Much of what young children do as…
Structure finding in cosmological simulations: the state of affairs
NASA Astrophysics Data System (ADS)
Knebe, Alexander; Pearce, Frazer R.; Lux, Hanni; Ascasibar, Yago; Behroozi, Peter; Casado, Javier; Moran, Christine Corbett; Diemand, Juerg; Dolag, Klaus; Dominguez-Tenreiro, Rosa; Elahi, Pascal; Falck, Bridget; Gottlöber, Stefan; Han, Jiaxin; Klypin, Anatoly; Lukić, Zarija; Maciejewski, Michal; McBride, Cameron K.; Merchán, Manuel E.; Muldrew, Stuart I.; Neyrinck, Mark; Onions, Julian; Planelles, Susana; Potter, Doug; Quilis, Vicent; Rasera, Yann; Ricker, Paul M.; Roy, Fabrice; Ruiz, Andrés N.; Sgró, Mario A.; Springel, Volker; Stadel, Joachim; Sutter, P. M.; Tweed, Dylan; Zemp, Marcel
2013-10-01
The ever increasing size and complexity of data coming from simulations of cosmic structure formation demand equally sophisticated tools for their analysis. During the past decade, the art of object finding in these simulations has hence developed into an important discipline itself. A multitude of codes based upon a huge variety of methods and techniques have been spawned yet the question remained as to whether or not they will provide the same (physical) information about the structures of interest. Here we summarize and extent previous work of the `halo finder comparison project': we investigate in detail the (possible) origin of any deviations across finders. To this extent, we decipher and discuss differences in halo-finding methods, clearly separating them from the disparity in definitions of halo properties. We observe that different codes not only find different numbers of objects leading to a scatter of up to 20 per cent in the halo mass and Vmax function, but also that the particulars of those objects that are identified by all finders differ. The strength of the variation, however, depends on the property studied, e.g. the scatter in position, bulk velocity, mass and the peak value of the rotation curve is practically below a few per cent, whereas derived quantities such as spin and shape show larger deviations. Our study indicates that the prime contribution to differences in halo properties across codes stems from the distinct particle collection methods and - to a minor extent - the particular aspects of how the procedure for removing unbound particles is implemented. We close with a discussion of the relevance and implications of the scatter across different codes for other fields such as semi-analytical galaxy formation models, gravitational lensing and observables in general.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Rui; Sumner, Tyler S.
2016-04-17
An advanced system analysis tool SAM is being developed for fast-running, improved-fidelity, and whole-plant transient analyses at Argonne National Laboratory under DOE-NE’s Nuclear Energy Advanced Modeling and Simulation (NEAMS) program. As an important part of code development, companion validation activities are being conducted to ensure the performance and validity of the SAM code. This paper presents the benchmark simulations of two EBR-II tests, SHRT-45R and BOP-302R, whose data are available through the support of DOE-NE’s Advanced Reactor Technology (ART) program. The code predictions of major primary coolant system parameter are compared with the test results. Additionally, the SAS4A/SASSYS-1 code simulationmore » results are also included for a code-to-code comparison.« less
Diet and Physical Activity Intervention Strategies for College Students
Martinez, Yannica Theda S.; Harmon, Brook E.; Bantum, Erin O.; Strayhorn, Shaila
2016-01-01
Objectives To understand perceived barriers of a diverse sample of college students and their suggestions for interventions aimed at healthy eating, cooking, and physical activity. Methods Forty students (33% Asian American, 30% mixed ethnicity) were recruited. Six focus groups were audio-recorded, transcribed, and coded. Coding began with a priori codes, but allowed for additional codes to emerge. Analysis of questionnaires on participants’ dietary and physical activity practices and behaviors provided context for qualitative findings. Results Barriers included time, cost, facility quality, and intimidation. Tailoring towards a college student’s lifestyle, inclusion of hands-on skill building, and online support and resources were suggested strategies. Conclusions Findings provide direction for diet and physical activity interventions and policies aimed at college students. PMID:28480225
ALICE: A non-LTE plasma atomic physics, kinetics and lineshape package
NASA Astrophysics Data System (ADS)
Hill, E. G.; Pérez-Callejo, G.; Rose, S. J.
2018-03-01
All three parts of an atomic physics, atomic kinetics and lineshape code, ALICE, are described. Examples of the code being used to model the emissivity and opacity of plasmas are discussed and interesting features of the code which build on the existing corpus of models are shown throughout.
NASA Technical Reports Server (NTRS)
Farral, Joseph F.; Seshan, P. K.; Rohatgi, Naresh K.
1991-01-01
This paper describes the Generic Modular Flow Schematic (GMFS) architecture capable of encompassing all functional elements of a physical/chemical life support system (LSS). The GMFS can be implemented to synthesize, model, analyze, and quantitatively compare many configurations of LSSs, from a simple, completely open-loop to a very complex closed-loop. The GMFS model is coded in ASPEN, a state-of-the-art chemical process simulation program, to accurately compute the material, heat, and power flow quantities for every stream in each of the subsystem functional elements (SFEs) in the chosen configuration of a life support system. The GMFS approach integrates the various SFEs and subsystems in a hierarchical and modular fashion facilitating rapid substitutions and reconfiguration of a life support system. The comprehensive ASPEN material and energy balance output is transferred to a systems and technology assessment spreadsheet for rigorous system analysis and trade studies.
Spent fuel pool storage calculations using the ISOCRIT burnup credit tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kucukboyaci, Vefa; Marshall, William BJ J
2012-01-01
In order to conservatively apply burnup credit in spent fuel pool criticality safety analyses, Westinghouse has developed a software tool, ISOCRIT, for generating depletion isotopics. This tool is used to create isotopics data based on specific reactor input parameters, such as design basis assembly type; bounding power/burnup profiles; reactor specific moderator temperature profiles; pellet percent theoretical density; burnable absorbers, axial blanket regions, and bounding ppm boron concentration. ISOCRIT generates burnup dependent isotopics using PARAGON; Westinghouse's state-of-the-art and licensed lattice physics code. Generation of isotopics and passing the data to the subsequent 3D KENO calculations are performed in an automated fashion,more » thus reducing the chance for human error. Furthermore, ISOCRIT provides the means for responding to any customer request regarding re-analysis due to changed parameters (e.g., power uprate, exit temperature changes, etc.) with a quick turnaround.« less
Renton, A.; Phillips, G.; Daykin, N.; Yu, G.; Taylor, K.; Petticrew, M.
2012-01-01
Summary Objectives To investigate the association of participation in arts and cultural activities with health behaviours and mental well-being in low-income populations in London. Study design Cross-sectional, community-based observational study. Methods Data were taken from the cross-sectional baseline survey of the Well London cluster randomized trial, conducted during 2008 in 40 of the most deprived census lower super output areas in London (selected using the English Indices of Multiple Deprivation). Multiple imputation was used to account for missing data in the Well London survey. Descriptive statistics and regression analyses were used to examine the association between participation in arts and cultural activities and physical activity (meeting target of five sessions of at least 30 min of moderate-intensity physical activity per week), healthy eating (meeting target of at least five portions of fruit or vegetables per day) and mental well-being (Hope Scale score; feeling anxious or depressed). Results This study found that levels of arts and cultural engagement in low-income groups in London are >75%, but this is well below the national average for England. Individuals who were more socially disadvantaged (unemployed, living in rented social housing, low educational attainment, low disposable income) were less likely to participate in arts or cultural activities. Arts participation was strongly associated with healthy eating, physical activity and positive mental well-being, with no evidence of confounding by socio-economic or sociodemographic factors. Neither positive mental well-being nor social capital appeared to mediate the relationship between arts participation and health behaviours. Conclusion This study suggests that arts and cultural activities are independently associated with health behaviours and mental well-being. Further qualitative and prospective intervention studies are needed to elucidate the nature of the relationship between health behaviours, mental well-being and arts participation. If arts activities are to be recommended for health improvement, social inequalities in access to arts and cultural activities must be addressed in order to prevent further reinforcement of health inequalities. PMID:22766259
[Characteristics of art therapists in rehabilitative therapy].
Oster, Jörg
2017-09-01
Characteristics of art therapists in rehabilitative therapy Objectives: This study examines the sociodemographic, qualification- and activity-related characteristics of art therapists working in the field of rehabilitation. In 2013, an analysis of occupational groups was carried out in Germany, with the objective of describing the art therapists working there.A total of 2,303 complete datasets were submitted. From this group, those therapists mainly working in the field of rehabilitation/follow-up care/participation of disabled persons (according to Social Security Code VI and IX, n = 302) were selected and described. Most art therapists are female (average age 45 years) and largelywork part-time. Music and art therapy are the most common venues.More than 80% have a graduate degree. Methods of quality management are used.More than half of the therapists working in rehabilitation hospitals are employed in the field of psychosomatic medicine. Both individual and group therapy (each patient attending 1-2 times a week) are common. The results provide an overview of art therapy in the field of rehabilitation and show the spread in rehabilitation. Further research is indicated.
Arts Education and the Whole Child
ERIC Educational Resources Information Center
Nelson, Hal
2009-01-01
For years, professional journals have published articles that communicate the importance of high-quality arts education programs. This article talks about how educators can use quality arts programs to contribute to the intellectual, physical, and emotional well-being of learners. The author also discusses what principals can do to advance arts…
Music in the Life Skills Classroom
ERIC Educational Resources Information Center
van Vuuren, Eurika Jansen; van Niekerka, Caroline
2015-01-01
Generalist educators in South Africa shy away from music in the subjects Life Skills (Dance, Drama, Music, Visual Art, Physical Education and Personal and Social Well-being) and Creative Arts (Dance, Drama, Music, Visual Art) and universities are not delivering generalist students for the subject demands. In-service educators, as well as subject…
ERIC Educational Resources Information Center
Saccardi, Marianne
1997-01-01
Provides an annotated bibliography of books for grades K and up which explores the folklore, poetry, fiction, and art of Mexico, and focuses on the Mayans and Aztecs and Diego Rivera and Frida Kahlo. Also suggests various research, reading, drama, music, social studies, physical education, and art activities and lists related videos and Internet…
Capacity Maximizing Constellations
NASA Technical Reports Server (NTRS)
Barsoum, Maged; Jones, Christopher
2010-01-01
Some non-traditional signal constellations have been proposed for transmission of data over the Additive White Gaussian Noise (AWGN) channel using such channel-capacity-approaching codes as low-density parity-check (LDPC) or turbo codes. Computational simulations have shown performance gains of more than 1 dB over traditional constellations. These gains could be translated to bandwidth- efficient communications, variously, over longer distances, using less power, or using smaller antennas. The proposed constellations have been used in a bit-interleaved coded modulation system employing state-ofthe-art LDPC codes. In computational simulations, these constellations were shown to afford performance gains over traditional constellations as predicted by the gap between the parallel decoding capacity of the constellations and the Gaussian capacity
The use of arts interventions for mental health and wellbeing in health settings.
Jensen, A; Bonde, L O
2018-04-01
This literature review aims to illustrate the variety and multitude of studies showing that participation in arts activities and clinical arts interventions can be beneficial for citizens with mental and physical health problems. The article is focused on mental health benefits because this is an emerging field in the Nordic countries where evidence is demanded from national health agencies that face an increasing number of citizens with poor mental health and a need for non-medical interventions and programmes. A total of 20 articles of interest were drawn from a wider literature review. Studies were identified through the search engines: Cochrane Library, Primo, Ebscohost, ProQuest, Web of Science, CINAHL, PsycINFO, PubMed and Design and Applied Arts Index. Search words included the following: arts engagement + health/hospital/recovery, arts + hospital/evidence/wellbeing, evidence-based health practice, participatory arts for wellbeing, health + poetry/literature/dance/singing/music/community arts, arts health cost-effectiveness and creative art or creative activity + health/hospital/recovery/mental health. The inclusion criteria for studies were (1) peer review and (2) empirical data. The studies document that participation in activities in a spectrum from clinical arts interventions to non-clinical participatory arts programmes is beneficial and an effective way of using engagement in the arts to promote holistic approaches with health benefits. Engagement in specially designed arts activities or arts therapies can reduce physical symptoms and improve mental health issues. Based on the growing evidence of the arts as a tool for enhancing mental health wellbeing, and in line with the global challenges in health, we suggest that participatory arts activities and clinical arts interventions are made more widely available in health and social settings. It is well-documented that such activities can be used as non-medical interventions to promote public health and wellbeing.
Computational Fluid Dynamics Technology for Hypersonic Applications
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2003-01-01
Several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented from code validation and code benchmarking efforts to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified. Highlights of diverse efforts to address these challenges are then discussed. One such effort to re-engineer and synthesize the existing analysis capability in LAURA, VULCAN, and FUN3D will provide context for these discussions. The critical (and evolving) role of agile software engineering practice in the capability enhancement process is also noted.
NASA Astrophysics Data System (ADS)
Wang, Liming; Qiao, Yaojun; Yu, Qian; Zhang, Wenbo
2016-04-01
We introduce a watermark non-binary low-density parity check code (NB-LDPC) scheme, which can estimate the time-varying noise variance by using prior information of watermark symbols, to improve the performance of NB-LDPC codes. And compared with the prior-art counterpart, the watermark scheme can bring about 0.25 dB improvement in net coding gain (NCG) at bit error rate (BER) of 1e-6 and 36.8-81% reduction of the iteration numbers. Obviously, the proposed scheme shows great potential in terms of error correction performance and decoding efficiency.
Toftager, Mette; Sylvest, Randi; Schmidt, Lone; Bogstad, Jeanette; Løssl, Kristine; Prætorius, Lisbeth; Zedeler, Anne; Bryndorf, Thue; Pinborg, Anja
2018-01-01
To compare self-reported quality of life, psychosocial well-being, and physical well-being during assisted reproductive technology (ART) treatment in 1,023 women allocated to either a short GnRH antagonist or long GnRH agonist protocol. Secondary outcome of a prospective phase 4, open-label, randomized controlled trial. Four times during treatment a questionnaire on self-reported physical well-being was completed. Further, a questionnaire on self-reported quality of life and psychosocial well-being was completed at the day of hCG testing. Fertility clinics at university hospitals. Women referred for their first ART treatment were randomized in a 1:1 ratio and started standardized ART protocols. Gonadotropin-releasing hormone analogue; 528 women allocated to a short GnRH antagonist protocol and 495 women allocated to a long GnRH agonist protocol. Self-reported quality of life, psychosocial well-being, and physical well-being based on questionnaires developed for women receiving ART treatment. Baseline characteristics were similar, and response rates were 79.4% and 74.3% in the GnRH antagonist and GnRH agonist groups, respectively. Self-reported quality of life during ART treatment was rated similar and slightly below normal in both groups. However, women in the GnRH antagonist group felt less emotional (adjusted odds ratio [AOR] 0.69), less limited in their everyday life (AOR 0.74), experienced less unexpected crying (AOR 0.71), and rated quality of sleep better (AOR 1.55). Further, women receiving GnRH agonist treatment felt worse physically. Women in a short GnRH antagonist protocol rated psychosocial and physical well-being during first ART treatment better than did women in a long GnRH agonist protocol. However, the one item on self-reported general quality of life was rated similarly. NCT00756028. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Yu, Hui-Ting; Yang, Qing; Sun, Xiao-Xi; Chen, Guo-Wu; Qian, Nai-Si; Cai, Ren-Zhi; Guo, Han-Bing; Wang, Chun-Fang
2018-05-01
To evaluate the impact of assisted reproductive technology (ART) on the offspring of Chinese population. Retrospective, data-linkage cohort. Not applicable. Live births resulting from ART or natural conception. None. Birth defects coded according to ICD-10. Births after ART were more likely to be female and multiple births, especially after intracytoplasmic sperm injection (ICSI). ART was associated with a significantly increased risk of birth defects, especially, among singleton births, a significantly increased risk in fresh-embryo cycles after in vitro fertilization (IVF) and frozen-embryo cycles after ICSI. Associations between ART and multiple defects, between ART and gastrointestinal malformation, genital organs malformation, and musculoskeletal malformation among singleton births, and between ART and cardiac septa malformation among multiple births were observed. This study suggests that ART increases the risk of birth defects. Subgroup analyses indicate higher risk for both fresh and frozen embryos, although nonsignificantly for frozen embryos after IVF and for fresh embryos were presented with low power. Larger sample size research is needed to clarify effects from fresh- or frozen-embryo cycles after IVF and ICSI. Copyright © 2018 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Exercise Training and Energy Expenditure following Weight Loss.
Hunter, Gary R; Fisher, Gordon; Neumeier, William H; Carter, Stephen J; Plaisance, Eric P
2015-09-01
This study aims to determine the effects of aerobic or resistance training on activity-related energy expenditure (AEE; kcal·d(-1)) and physical activity index (activity-related time equivalent (ARTE)) following weight loss. It was hypothesized that weight loss without exercise training would be accompanied by decreases in AEE, ARTE, and nontraining physical activity energy expenditure (nonexercise activity thermogenesis (NEAT)) and that exercise training would prevent decreases in free-living energy expenditure. One hundred forty premenopausal women had an average weight loss of 25 lb during a diet (800 kcal·d(-1)) of furnished food. One group aerobically trained 3 times per week (40 min·d(-1)), another group resistance-trained 3 times per week (10 exercises/2 sets × 10 repetitions), and the third group did not exercise. Dual-energy x-ray absorptiometry was used to measure body composition, indirect calorimetry was used to measure resting energy expenditure (REE) and walking energy expenditure, and doubly labeled water was used to measure total energy expenditure (TEE). AEE, ARTE, and nontraining physical activity energy expenditure (NEAT) were calculated. TEE, REE, and NEAT all decreased following weight loss for the no-exercise group, but not for aerobic and resistance trainers. Only REE decreased in the two exercise groups. Resistance trainers increased ARTE. HR and oxygen uptake while walking on the flat and up a grade were consistently related to TEE, AEE, NEAT, and ARTE. Exercise training prevents a decrease in energy expenditure, including free-living energy expenditure separate from exercise training, following weight loss. Resistance training increases physical activity, whereas economy/ease of walking is associated with increased TEE, AEE, NEAT, and ARTE.
ERIC Educational Resources Information Center
Berthelot, Ronald J.; And Others
1982-01-01
This series of five articles highlights Pensacola Junior College's occupational safety course, involving simulated emergencies, Florida's standards for teacher liability, electrical safety in the classroom and laboratory, color coding for machine safety, and Florida industrial arts safety instructional materials. (SK)
Dependency graph for code analysis on emerging architectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shashkov, Mikhail Jurievich; Lipnikov, Konstantin
Direct acyclic dependency (DAG) graph is becoming the standard for modern multi-physics codes.The ideal DAG is the true block-scheme of a multi-physics code. Therefore, it is the convenient object for insitu analysis of the cost of computations and algorithmic bottlenecks related to statistical frequent data motion and dymanical machine state.
USDA-ARS?s Scientific Manuscript database
The International Code of Nomenclature for algae, fungi and plants in its current edition, the 2012 Melbourne Code, includes in Art. 34 provisions for the suppression of names in specified publications that are listed in its Appendix VI. Any publication can be proposed for suppression, and if such a...
Magnetic Tape Recording for the Eighties
NASA Technical Reports Server (NTRS)
Kalil, Ford (Editor)
1982-01-01
The practical and theoretical aspects of state-of-the-art magnetic tape recording technology are reviewed. Topics covered include the following: (1) analog and digital magnetic tape recording, (2) tape and head wear, (3) wear testing, (4) magnetic tape certification, (5) care, handling, and management of magnetic tape, (6) cleaning, packing, and winding of magnetic tape, (7) tape reels, bands, and packaging, (8) coding techniques for high-density digital recording, and (9) tradeoffs of coding techniques.
Review of numerical models to predict cooling tower performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, B.M.; Nomura, K.K.; Bartz, J.A.
1987-01-01
Four state-of-the-art computer models developed to predict the thermal performance of evaporative cooling towers are summarized. The formulation of these models, STAR and TEFERI (developed in Europe) and FACTS and VERA2D (developed in the U.S.), is summarized. A fifth code, based on Merkel analysis, is also discussed. Principal features of the codes, computation time and storage requirements are described. A discussion of model validation is also provided.
Development of the US3D Code for Advanced Compressible and Reacting Flow Simulations
NASA Technical Reports Server (NTRS)
Candler, Graham V.; Johnson, Heath B.; Nompelis, Ioannis; Subbareddy, Pramod K.; Drayna, Travis W.; Gidzak, Vladimyr; Barnhardt, Michael D.
2015-01-01
Aerothermodynamics and hypersonic flows involve complex multi-disciplinary physics, including finite-rate gas-phase kinetics, finite-rate internal energy relaxation, gas-surface interactions with finite-rate oxidation and sublimation, transition to turbulence, large-scale unsteadiness, shock-boundary layer interactions, fluid-structure interactions, and thermal protection system ablation and thermal response. Many of the flows have a large range of length and time scales, requiring large computational grids, implicit time integration, and large solution run times. The University of Minnesota NASA US3D code was designed for the simulation of these complex, highly-coupled flows. It has many of the features of the well-established DPLR code, but uses unstructured grids and has many advanced numerical capabilities and physical models for multi-physics problems. The main capabilities of the code are described, the physical modeling approaches are discussed, the different types of numerical flux functions and time integration approaches are outlined, and the parallelization strategy is overviewed. Comparisons between US3D and the NASA DPLR code are presented, and several advanced simulations are presented to illustrate some of novel features of the code.
... cardiovascular (cardio) kickboxing , which combines elements of boxing, martial arts, and aerobics to provide overall physical conditioning and ... who has both a high-level belt in martial arts and is certified as a fitness instructor by ...
Barriers to ART adherence & follow ups among patients attending ART centres in Maharashtra, India.
Joglekar, N; Paranjape, R; Jain, R; Rahane, G; Potdar, R; Reddy, K S; Sahay, S
2011-12-01
Adherence to ART is a patient specific issue influenced by a variety of situations that a patient may encounter, especially in resource-limited settings. A study was conducted to understand factors and influencers of adherence to ART and their follow ups among patients attending ART centres in Maharashtra, India. Between January and March 2009, barriers to ART adherence among 32 patients at three selected ART centres functioning under national ART roll-out programme in Maharashtra, India, were studied using qualitative methods. Consenting patients were interviewed to assess barriers to ART adherence. Constant comparison method was used to identify grounded codes. Patients reported multiple barriers to ART adherence and follow up as (i) Financial barriers where the contributing factors were unemployment, economic dependency, and debt, (ii) social norm of attending family rituals, and fulfilling social obligations emerged as socio-cultural barriers, (iii) patients' belief, attitude and behaviour towards medication and self-perceived stigma were the reasons for sub-optimal adherence, and (iv) long waiting period, doctor-patient relationship and less time devoted in counselling at the center contributed to missed visits. Mainstreaming ART can facilitate access and address 'missed doses' due to travel and migration. A 'morning' and 'evening' ART centre/s hours may reduce work absenteeism and help in time management. Proactive 'adherence probing' and probing on internalized stigma might optimize adherence. Adherence probing to prevent transitioning to suboptimal adherence among patients stable on ART is recommended.
Recent improvements of reactor physics codes in MHI
NASA Astrophysics Data System (ADS)
Kosaka, Shinya; Yamaji, Kazuya; Kirimura, Kazuki; Kamiyama, Yohei; Matsumoto, Hideki
2015-12-01
This paper introduces recent improvements for reactor physics codes in Mitsubishi Heavy Industries, Ltd(MHI). MHI has developed a new neutronics design code system Galaxy/Cosmo-S(GCS) for PWR core analysis. After TEPCO's Fukushima Daiichi accident, it is required to consider design extended condition which has not been covered explicitly by the former safety licensing analyses. Under these circumstances, MHI made some improvements for GCS code system. A new resonance calculation model of lattice physics code and homogeneous cross section representative model for core simulator have been developed to apply more wide range core conditions corresponding to severe accident status such like anticipated transient without scram (ATWS) analysis and criticality evaluation of dried-up spent fuel pit. As a result of these improvements, GCS code system has very wide calculation applicability with good accuracy for any core conditions as far as fuel is not damaged. In this paper, the outline of GCS code system is described briefly and recent relevant development activities are presented.
Recent improvements of reactor physics codes in MHI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kosaka, Shinya, E-mail: shinya-kosaka@mhi.co.jp; Yamaji, Kazuya; Kirimura, Kazuki
2015-12-31
This paper introduces recent improvements for reactor physics codes in Mitsubishi Heavy Industries, Ltd(MHI). MHI has developed a new neutronics design code system Galaxy/Cosmo-S(GCS) for PWR core analysis. After TEPCO’s Fukushima Daiichi accident, it is required to consider design extended condition which has not been covered explicitly by the former safety licensing analyses. Under these circumstances, MHI made some improvements for GCS code system. A new resonance calculation model of lattice physics code and homogeneous cross section representative model for core simulator have been developed to apply more wide range core conditions corresponding to severe accident status such like anticipatedmore » transient without scram (ATWS) analysis and criticality evaluation of dried-up spent fuel pit. As a result of these improvements, GCS code system has very wide calculation applicability with good accuracy for any core conditions as far as fuel is not damaged. In this paper, the outline of GCS code system is described briefly and recent relevant development activities are presented.« less
Art Therapy on a Hospital Burn Unit: A Step towards Healing and Recovery.
ERIC Educational Resources Information Center
Russel, Johanna
1995-01-01
Describes how art therapy can benefit patients hospitalized due to severe burns, who suffer psychological as well as physical trauma. Outlines the psychological phases, identifies how burn patients typically experience their healing process, and discusses how art therapy can assist the patient at each stage of the recovery process. (JPS)
New Places for the Arts. A Report.
ERIC Educational Resources Information Center
Educational Facilities Labs., Inc., New York, NY.
This catalogue of facilities and centers built specifically for the arts within the last decade dramatizes the commitment to facilities made by arts organizations and agencies all over the country--a commitment that is having a significant impact on the quality of life and the physical environment of many neighborhoods and urban centers. The…
The Secret Club Project: Exploring Miscarriage through the Visual Arts.
ERIC Educational Resources Information Center
Seftel, Laura
2001-01-01
Examines art as a means to understand the physical and emotional loss of miscarriage. "The Secret Club Project," an innovative exhibit featuring 10 women artists' visual responses to miscarriage, is described. Rituals related to pregnancy loss are reviewed, as well as artists' and art therapists' use of the creative process to move…
Fashion Arts. Curriculum RP-54.
ERIC Educational Resources Information Center
Ontario Dept. of Education, Toronto.
GRADES OR AGES: Grades 11 and 12. SUBJECT MATTER: Fashion arts and marketing. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into two main sections, one for fashion arts and one for marketing, each of which is further subdivided into sections for grade 11 and grade 12. Each of these subdivisions contains from three to six subject…
The Art Gallery/La Galeria de Arte: An Exhibition of Transformation.
ERIC Educational Resources Information Center
Biagi, Juliet
2001-01-01
Describes the development of an art gallery within an urban elementary school, examining its impact on diverse students and their social interactions at school and home. The gallery had a positive impact on students (improved self-esteem, motivation, and appreciation of others); the school (transformation of the physical space and appreciation of…
NASA Astrophysics Data System (ADS)
Vaidya, Ashwin; Munakata, Mika
2014-03-01
The Art of Science project at Montclair State University strives to communicate the creativity inherent in the sciences to students and the general public alike. The project uses connections between the arts and sciences to show the underlying unity and interdependence of the two. The project is planned as one big `performance' bringing together the two disciplines around the theme of sustainability. In the first phase, physics students learned about and built human-powered generators including hand cranks and bicycle units. In the second phase, using the generators to power video cameras, art students worked with a visiting artist to make short films on the subject of sustainability, science, and art. The generators and films were showcased at an annual university Physics and Art exhibition which was open to the university and local community. In the final phase, to be conducted, K12 teachers will learn about the project through a professional development workshop and will be encouraged to adapt the experiment for their own classrooms. The last phase will also combine the university and K12 projects for an exhibition to be displayed on Earth Day, 2014. Project funded by the APS Outreach Grant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adrian Miron; Joshua Valentine; John Christenson
2009-10-01
The current state of the art in nuclear fuel cycle (NFC) modeling is an eclectic mixture of codes with various levels of applicability, flexibility, and availability. In support of the advanced fuel cycle systems analyses, especially those by the Advanced Fuel Cycle Initiative (AFCI), Unviery of Cincinnati in collaboration with Idaho State University carried out a detailed review of the existing codes describing various aspects of the nuclear fuel cycle and identified the research and development needs required for a comprehensive model of the global nuclear energy infrastructure and the associated nuclear fuel cycles. Relevant information obtained on the NFCmore » codes was compiled into a relational database that allows easy access to various codes' properties. Additionally, the research analyzed the gaps in the NFC computer codes with respect to their potential integration into programs that perform comprehensive NFC analysis.« less
Effective Identification of Similar Patients Through Sequential Matching over ICD Code Embedding.
Nguyen, Dang; Luo, Wei; Venkatesh, Svetha; Phung, Dinh
2018-04-11
Evidence-based medicine often involves the identification of patients with similar conditions, which are often captured in ICD (International Classification of Diseases (World Health Organization 2013)) code sequences. With no satisfying prior solutions for matching ICD-10 code sequences, this paper presents a method which effectively captures the clinical similarity among routine patients who have multiple comorbidities and complex care needs. Our method leverages the recent progress in representation learning of individual ICD-10 codes, and it explicitly uses the sequential order of codes for matching. Empirical evaluation on a state-wide cancer data collection shows that our proposed method achieves significantly higher matching performance compared with state-of-the-art methods ignoring the sequential order. Our method better identifies similar patients in a number of clinical outcomes including readmission and mortality outlook. Although this paper focuses on ICD-10 diagnosis code sequences, our method can be adapted to work with other codified sequence data.
Omichi, Masaaki; Matsusaki, Michiya; Kato, Shinya; Maruyama, Ikuro; Akashi, Mitsuru
2010-11-01
ART-123 is a recombinant soluble human thrombomodulin (hTM) with excellent anticoagulant activity. We focused on improving the blood compatibility of the polysulfone-polyvinylpyrrolidone dialyzer surface by the physical adsorption of ART-123 onto the surface. The blood compatibility of the dialyzer with the hTM adsorbed membrane was evaluated by measuring the differential pressure between the arterial and the venous pressures and by blood parameters during blood circulation. The hTM adsorbed dialyzer membrane inhibited blood clot formation without heparin administration due to the anticoagulant activity of hTM for over 4 h. The physically adsorbed hTM was stable during blood circulation, and it did not affect activated clotting time, which is significant drawback of heparin administration, and blood cell counts of RBC, WBC, or platelets. The physical adsorption of hTM onto the dialyzer membrane will be a simple and safe method to prevent blood coagulation during dialysis instead of heparin administration. © 2010 Wiley Periodicals, Inc.
Effect of Turbulence Models on Two Massively-Separated Benchmark Flow Cases
NASA Technical Reports Server (NTRS)
Rumsey, Christopher L.
2003-01-01
Two massively-separated flow cases (the 2-D hill and the 3-D Ahmed body) were computed with several different turbulence models in the Reynolds-averaged Navier-Stokes code CFL3D as part of participation in a turbulence modeling workshop held in Poitiers, France in October, 2002. Overall, results were disappointing, but were consistent with results from other RANS codes and other turbulence models at the workshop. For the 2-D hill case, those turbulence models that predicted separation location accurately ended up yielding a too-long separation extent downstream. The one model that predicted a shorter separation extent in better agreement with LES data did so only by coincidence: its prediction of earlier reattachment was due to a too-late prediction of the separation location. For the Ahmed body, two slant angles were computed, and CFD performed fairly well for one of the cases (the larger slant angle). Both turbulence models tested in this case were very similar to each other. For the smaller slant angle, CFD predicted massive separation, whereas the experiment showed reattachment about half-way down the center of the face. These test cases serve as reminders that state- of-the-art CFD is currently not a reliable predictor of massively-separated flow physics, and that further validation studies in this area would be beneficial.
Simulate what is measured: next steps towards predictive simulations (Conference Presentation)
NASA Astrophysics Data System (ADS)
Bussmann, Michael; Kluge, Thomas; Debus, Alexander; Hübl, Axel; Garten, Marco; Zacharias, Malte; Vorberger, Jan; Pausch, Richard; Widera, René; Schramm, Ulrich; Cowan, Thomas E.; Irman, Arie; Zeil, Karl; Kraus, Dominik
2017-05-01
Simulations of laser matter interaction at extreme intensities that have predictive power are nowadays in reach when considering codes that make optimum use of high performance compute architectures. Nevertheless, this is mostly true for very specific settings where model parameters are very well known from experiment and the underlying plasma dynamics is governed by Maxwell's equations solely. When including atomic effects, prepulse influences, radiation reaction and other physical phenomena things look different. Not only is it harder to evaluate the sensitivity of the simulation result on the variation of the various model parameters but numerical models are less well tested and their combination can lead to subtle side effects that influence the simulation outcome. We propose to make optimum use of future compute hardware to compute statistical and systematic errors rather than just find the mots optimum set of parameters fitting an experiment. This requires to include experimental uncertainties which is a challenge to current state of the art techniques. Moreover, it demands better comparison to experiments as inclusion of simulating the diagnostic's response becomes important. We strongly advocate the use of open standards for finding interoperability between codes for comparison studies, building complete tool chains for simulating laser matter experiments from start to end.
GPU.proton.DOCK: Genuine Protein Ultrafast proton equilibria consistent DOCKing.
Kantardjiev, Alexander A
2011-07-01
GPU.proton.DOCK (Genuine Protein Ultrafast proton equilibria consistent DOCKing) is a state of the art service for in silico prediction of protein-protein interactions via rigorous and ultrafast docking code. It is unique in providing stringent account of electrostatic interactions self-consistency and proton equilibria mutual effects of docking partners. GPU.proton.DOCK is the first server offering such a crucial supplement to protein docking algorithms--a step toward more reliable and high accuracy docking results. The code (especially the Fast Fourier Transform bottleneck and electrostatic fields computation) is parallelized to run on a GPU supercomputer. The high performance will be of use for large-scale structural bioinformatics and systems biology projects, thus bridging physics of the interactions with analysis of molecular networks. We propose workflows for exploring in silico charge mutagenesis effects. Special emphasis is given to the interface-intuitive and user-friendly. The input is comprised of the atomic coordinate files in PDB format. The advanced user is provided with a special input section for addition of non-polypeptide charges, extra ionogenic groups with intrinsic pK(a) values or fixed ions. The output is comprised of docked complexes in PDB format as well as interactive visualization in a molecular viewer. GPU.proton.DOCK server can be accessed at http://gpudock.orgchm.bas.bg/.
Teaching the Thrill of Discovery: Student Exploration of the Large-Scale Structures of the Universe
NASA Astrophysics Data System (ADS)
Juneau, Stephanie; Dey, Arjun; Walker, Constance E.; NOAO Data Lab
2018-01-01
In collaboration with the Teen Astronomy Cafes program, the NOAO Data Lab is developing online Jupyter Notebooks as a free and publicly accessible tool for students and teachers. Each interactive activity teaches students simultaneously about coding and astronomy with a focus on large datasets. Therefore, students learn state-of-the-art techniques at the cross-section between astronomy and data science. During the activity entitled “Our Vast Universe”, students use real spectroscopic data to measure the distance to galaxies before moving on to a catalog with distances to over 100,000 galaxies. Exploring this dataset gives students an appreciation of the large number of galaxies in the universe (2 trillion!), and leads them to discover how galaxies are located in large and impressive filamentary structures. During the Teen Astronomy Cafes program, the notebook is supplemented with visual material conducive to discussion, and hands-on activities involving cubes representing model universes. These steps contribute to build the students’ physical intuition and give them a better grasp of the concepts before using software and coding. At the end of the activity, students have made their own measurements, and have experienced scientific research directly. More information is available online for the Teen Astronomy Cafes (teensciencecafe.org/cafes) and the NOAO Data Lab (datalab.noao.edu).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Y. Q.; Shemon, E. R.; Thomas, J. W.
SHARP is an advanced modeling and simulation toolkit for the analysis of nuclear reactors. It is comprised of several components including physical modeling tools, tools to integrate the physics codes for multi-physics analyses, and a set of tools to couple the codes within the MOAB framework. Physics modules currently include the neutronics code PROTEUS, the thermal-hydraulics code Nek5000, and the structural mechanics code Diablo. This manual focuses on performing multi-physics calculations with the SHARP ToolKit. Manuals for the three individual physics modules are available with the SHARP distribution to help the user to either carry out the primary multi-physics calculationmore » with basic knowledge or perform further advanced development with in-depth knowledge of these codes. This manual provides step-by-step instructions on employing SHARP, including how to download and install the code, how to build the drivers for a test case, how to perform a calculation and how to visualize the results. Since SHARP has some specific library and environment dependencies, it is highly recommended that the user read this manual prior to installing SHARP. Verification tests cases are included to check proper installation of each module. It is suggested that the new user should first follow the step-by-step instructions provided for a test problem in this manual to understand the basic procedure of using SHARP before using SHARP for his/her own analysis. Both reference output and scripts are provided along with the test cases in order to verify correct installation and execution of the SHARP package. At the end of this manual, detailed instructions are provided on how to create a new test case so that user can perform novel multi-physics calculations with SHARP. Frequently asked questions are listed at the end of this manual to help the user to troubleshoot issues.« less
2009-06-12
MASTER OF MILITARY ART AND SCIENCE Military History by CLOYD A. SMITH JR., MAJOR, USA B.S., Education, Slippery Rock University, Slippery...THIS PAGE 19b. PHONE NUMBER (include area code) (U) (U) (U) (U) 143 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. Z39.18 iii MASTER OF...want to thank my mother who has encouraged me throughout my life to always do my best. vi TABLE OF CONTENTS Page MASTER OF MILITARY ART AND
The present status and the future of missile aerodynamics
NASA Technical Reports Server (NTRS)
Nielsen, Jack N.
1989-01-01
Recent developments in the state of the art in missile aerodynamics are reviewed. Among the subjects covered are: (1) Tri-service/NASA data base, (2) wing-body interference, (3) nonlinear controls, (4) hypersonic transition, (5) vortex interference, (6) airbreathers, supersonic inlets, (7) store separation problems, (8) correlation of missile data, (9) CFD codes for complete configurations, (10) engineering prediction methods, and (11) future configurations. Suggestions are made for future research and development to advance the state of the art of missile aerodynamics.
The present status and the future of missile aerodynamics
NASA Technical Reports Server (NTRS)
Nielsen, Jack N.
1988-01-01
Some recent developments in the state of the art in missile aerodynamics are reviewed. Among the subjects covered are: (1) tri-service/NASA data base, (2) wing-body interference, (3) nonlinear controls, (4) hypersonic transition, (5) vortex interference, (6) airbreathers, supersonic inlets, (7) store separation problems, (8) correlation of missile data, (9) CFD codes for complete configurations, (10) engineering prediction methods, and (11) future configurations. Suggestions are made for future research and development to advance the state of the art of missile aerodynamics.
Power, Jennifer; Brown, Graham; Lyons, Anthony; Thorpe, Rachel; Dowsett, Gary W; Lucke, Jayne
2017-01-01
More than 27,000 Australians currently live with HIV. Most of these people have access to quality clinical care and antiretroviral treatment (ART) and can expect good general health. However, HIV-related stigma is a problem and many people living with HIV experience poorer than average mental health. Issues of aging are also of increasing concern. This paper describes the methods and sample for the HIV Futures 8 study, a national survey of people living with HIV in Australia that aimed to identify factors that support health and well-being among this population. HIV Futures 8 forms part of a series of cross-sectional surveys (The "HIV Futures" studies) that have been repeated periodically since 1997. In the most recent survey, participants were able to opt into a prospective longitudinal study. HIV Futures 8 was open to people aged over 17 who were living with HIV. Data were collected in 2015/2016 using a self-complete survey that contained approximately 250 items related to physical and mental health, use of ART, HIV exposure and testing, financial security, social connectedness, relationships, life satisfaction, resilience, stigma, use of health and support services, and health literacy. To enable comparison of cross-sectional data over time, questionnaire items were consistent with those used in previous HIV Futures surveys. In HIV Futures 8, participants were invited to volunteer coded information that will allow longitudinal follow-up when participants complete subsequent HIV Futures surveys. The survey was advertised through the networks of HIV organizations, on social media and through HIV clinics and services. HIV Futures 8 was completed by 895 participants. This represents approximately 3.8% of the total number of people living with diagnosed HIV in Australia in 2014. Findings from HIV Futures 8 will contribute important insights into the complexity of factors that support physical and mental well-being among people living with HIV. The findings will also assist HIV services to align with broader public health goals related to increasing ART use and improving quality of life among people living with HIV.
CONRAD—A software framework for cone-beam imaging in radiology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maier, Andreas; Choi, Jang-Hwan; Riess, Christian
2013-11-15
Purpose: In the community of x-ray imaging, there is a multitude of tools and applications that are used in scientific practice. Many of these tools are proprietary and can only be used within a certain lab. Often the same algorithm is implemented multiple times by different groups in order to enable comparison. In an effort to tackle this problem, the authors created CONRAD, a software framework that provides many of the tools that are required to simulate basic processes in x-ray imaging and perform image reconstruction with consideration of nonlinear physical effects.Methods: CONRAD is a Java-based state-of-the-art software platform withmore » extensive documentation. It is based on platform-independent technologies. Special libraries offer access to hardware acceleration such as OpenCL. There is an easy-to-use interface for parallel processing. The software package includes different simulation tools that are able to generate up to 4D projection and volume data and respective vector motion fields. Well known reconstruction algorithms such as FBP, DBP, and ART are included. All algorithms in the package are referenced to a scientific source.Results: A total of 13 different phantoms and 30 processing steps have already been integrated into the platform at the time of writing. The platform comprises 74.000 nonblank lines of code out of which 19% are used for documentation. The software package is available for download at http://conrad.stanford.edu. To demonstrate the use of the package, the authors reconstructed images from two different scanners, a table top system and a clinical C-arm system. Runtimes were evaluated using the RabbitCT platform and demonstrate state-of-the-art runtimes with 2.5 s for the 256 problem size and 12.4 s for the 512 problem size.Conclusions: As a common software framework, CONRAD enables the medical physics community to share algorithms and develop new ideas. In particular this offers new opportunities for scientific collaboration and quantitative performance comparison between the methods of different groups.« less
Physical Activity and Influenza-Coded Outpatient Visits, a Population-Based Cohort Study
Siu, Eric; Campitelli, Michael A.; Kwong, Jeffrey C.
2012-01-01
Background Although the benefits of physical activity in preventing chronic medical conditions are well established, its impacts on infectious diseases, and seasonal influenza in particular, are less clearly defined. We examined the association between physical activity and influenza-coded outpatient visits, as a proxy for influenza infection. Methodology/Principal Findings We conducted a cohort study of Ontario respondents to Statistics Canada’s population health surveys over 12 influenza seasons. We assessed physical activity levels through survey responses, and influenza-coded physician office and emergency department visits through physician billing claims. We used logistic regression to estimate the risk of influenza-coded outpatient visits during influenza seasons. The cohort comprised 114,364 survey respondents who contributed 357,466 person-influenza seasons of observation. Compared to inactive individuals, moderately active (OR 0.83; 95% CI 0.74–0.94) and active (OR 0.87; 95% CI 0.77–0.98) individuals were less likely to experience an influenza-coded visit. Stratifying by age, the protective effect of physical activity remained significant for individuals <65 years (active OR 0.86; 95% CI 0.75–0.98, moderately active: OR 0.85; 95% CI 0.74–0.97) but not for individuals ≥65 years. The main limitations of this study were the use of influenza-coded outpatient visits rather than laboratory-confirmed influenza as the outcome measure, the reliance on self-report for assessing physical activity and various covariates, and the observational study design. Conclusion/Significance Moderate to high amounts of physical activity may be associated with reduced risk of influenza for individuals <65 years. Future research should use laboratory-confirmed influenza outcomes to confirm the association between physical activity and influenza. PMID:22737242
NASA Astrophysics Data System (ADS)
Sinha, Neeraj; Zambon, Andrea; Ott, James; Demagistris, Michael
2015-06-01
Driven by the continuing rapid advances in high-performance computing, multi-dimensional high-fidelity modeling is an increasingly reliable predictive tool capable of providing valuable physical insight into complex post-detonation reacting flow fields. Utilizing a series of test cases featuring blast waves interacting with combustible dispersed clouds in a small-scale test setup under well-controlled conditions, the predictive capabilities of a state-of-the-art code are demonstrated and validated. Leveraging physics-based, first principle models and solving large system of equations on highly-resolved grids, the combined effects of finite-rate/multi-phase chemical processes (including thermal ignition), turbulent mixing and shock interactions are captured across the spectrum of relevant time-scales and length scales. Since many scales of motion are generated in a post-detonation environment, even if the initial ambient conditions are quiescent, turbulent mixing plays a major role in the fireball afterburning as well as in dispersion, mixing, ignition and burn-out of combustible clouds in its vicinity. Validating these capabilities at the small scale is critical to establish a reliable predictive tool applicable to more complex and large-scale geometries of practical interest.
Toward a Proof of Concept Cloud Framework for Physics Applications on Blue Gene Supercomputers
NASA Astrophysics Data System (ADS)
Dreher, Patrick; Scullin, William; Vouk, Mladen
2015-09-01
Traditional high performance supercomputers are capable of delivering large sustained state-of-the-art computational resources to physics applications over extended periods of time using batch processing mode operating environments. However, today there is an increasing demand for more complex workflows that involve large fluctuations in the levels of HPC physics computational requirements during the simulations. Some of the workflow components may also require a richer set of operating system features and schedulers than normally found in a batch oriented HPC environment. This paper reports on progress toward a proof of concept design that implements a cloud framework onto BG/P and BG/Q platforms at the Argonne Leadership Computing Facility. The BG/P implementation utilizes the Kittyhawk utility and the BG/Q platform uses an experimental heterogeneous FusedOS operating system environment. Both platforms use the Virtual Computing Laboratory as the cloud computing system embedded within the supercomputer. This proof of concept design allows a cloud to be configured so that it can capitalize on the specialized infrastructure capabilities of a supercomputer and the flexible cloud configurations without resorting to virtualization. Initial testing of the proof of concept system is done using the lattice QCD MILC code. These types of user reconfigurable environments have the potential to deliver experimental schedulers and operating systems within a working HPC environment for physics computations that may be different from the native OS and schedulers on production HPC supercomputers.
Status of LANL Efforts to Effectively Use Sequoia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nystrom, William David
2015-05-14
Los Alamos National Laboratory (LANL) is currently working on 3 new production applications, VPC, xRage, and Pagosa. VPIC was designed to be a 3D relativist, electromagnetic Particle-In-Cell code for plasma simulation. xRage, a 3D AMR mesh amd multi physics hydro code. Pagosa, is a 3D structured mesh and multi physics hydro code.
State-of-the-art methods for computing the electromagnetic interaction of lightning with aircraft
NASA Technical Reports Server (NTRS)
Eriksen, F. J.; Perala, R. A.; Corbin, J. C., Jr.
1980-01-01
Nuclear electromagnetic pulse (NEMP) coupling codes and methods are evaluated and summarized. The differences between NEMP and lightning interaction with aircraft are discussed and critical parameters peculiar to lightning are examined.
Searching for Planning and Design Solutions.
ERIC Educational Resources Information Center
Roark, Steven
2001-01-01
Presents the fourth article in a series on the Longview Community College (Kansas City, Missouri) Liberal Arts building project. How architects are revising floor plans, evaluating building systems, deciding on furniture, and dealing with building codes are discussed. (GR)
Braiding by Majorana tracking and long-range CNOT gates with color codes
NASA Astrophysics Data System (ADS)
Litinski, Daniel; von Oppen, Felix
2017-11-01
Color-code quantum computation seamlessly combines Majorana-based hardware with topological error correction. Specifically, as Clifford gates are transversal in two-dimensional color codes, they enable the use of the Majoranas' non-Abelian statistics for gate operations at the code level. Here, we discuss the implementation of color codes in arrays of Majorana nanowires that avoid branched networks such as T junctions, thereby simplifying their realization. We show that, in such implementations, non-Abelian statistics can be exploited without ever performing physical braiding operations. Physical braiding operations are replaced by Majorana tracking, an entirely software-based protocol which appropriately updates the Majoranas involved in the color-code stabilizer measurements. This approach minimizes the required hardware operations for single-qubit Clifford gates. For Clifford completeness, we combine color codes with surface codes, and use color-to-surface-code lattice surgery for long-range multitarget CNOT gates which have a time overhead that grows only logarithmically with the physical distance separating control and target qubits. With the addition of magic state distillation, our architecture describes a fault-tolerant universal quantum computer in systems such as networks of tetrons, hexons, or Majorana box qubits, but can also be applied to nontopological qubit platforms.
Youth Participation and Injury Risk in Martial Arts.
Demorest, Rebecca A; Koutures, Chris
2016-12-01
The martial arts can provide children and adolescents with vigorous levels of physical exercise that can improve overall physical fitness. The various types of martial arts encompass noncontact basic forms and techniques that may have a lower relative risk of injury. Contact-based sparring with competitive training and bouts have a higher risk of injury. This clinical report describes important techniques and movement patterns in several types of martial arts and reviews frequently reported injuries encountered in each discipline, with focused discussions of higher risk activities. Some of these higher risk activities include blows to the head and choking or submission movements that may cause concussions or significant head injuries. The roles of rule changes, documented benefits of protective equipment, and changes in training recommendations in attempts to reduce injury are critically assessed. This information is intended to help pediatric health care providers counsel patients and families in encouraging safe participation in martial arts. Copyright © 2016 by the American Academy of Pediatrics.
ERIC Educational Resources Information Center
Altshuler, Ken
1994-01-01
Presents a method using art classics to teach that a third vector axis is required to represent orientations in three-dimensional space. Helps students understand the importance of perspective, frame of reference, balance, and color theory. (MVL)
Dittrich, Peter
2018-02-01
The organic code concept and its operationalization by molecular codes have been introduced to study the semiotic nature of living systems. This contribution develops further the idea that the semantic capacity of a physical medium can be measured by assessing its ability to implement a code as a contingent mapping. For demonstration and evaluation, the approach is applied to a formal medium: elementary cellular automata (ECA). The semantic capacity is measured by counting the number of ways codes can be implemented. Additionally, a link to information theory is established by taking multivariate mutual information for quantifying contingency. It is shown how ECAs differ in their semantic capacities, how this is related to various ECA classifications, and how this depends on how a meaning is defined. Interestingly, if the meaning should persist for a certain while, the highest semantic capacity is found in CAs with apparently simple behavior, i.e., the fixed-point and two-cycle class. Synergy as a predictor for a CA's ability to implement codes can only be used if context implementing codes are common. For large context spaces with sparse coding contexts synergy is a weak predictor. Concluding, the approach presented here can distinguish CA-like systems with respect to their ability to implement contingent mappings. Applying this to physical systems appears straight forward and might lead to a novel physical property indicating how suitable a physical medium is to implement a semiotic system. Copyright © 2017 Elsevier B.V. All rights reserved.
The Art and Science of Snow Microbiology: Data Paintings of the Finnish Arctic
NASA Astrophysics Data System (ADS)
Reasor, K.; Lipson, D.
2017-12-01
A challenge in science-art collaborations is to create artwork that accurately represents scientific results while standing as an independent art object. Art associated with science may merely be illustrative, serving to decorate a scientific study, or conversely, science-art may only superficially derive from data without addressing its broader scientific meaning. A fully integrated work of science-art requires copious communication between the scientist and artist. Here we present the results of a collaboration between a microbial ecologist and a painter, to study and depict the nature of microbial communities in the snowpack of the Finnish Arctic around Lake Kilpisjärvi. Snow profiles were studied along an altitudinal gradient that spanned the lake, a mountain birch forest, the transitional forest near tree line, and the alpine above tree line on the fell, Saana. Snow from the top, middle and bottom of each profile was characterized physically, chemically and microbiologically. The snowpack provided an insulating layer such that temperatures close to 0°C were found at the base of the snowpack. Windblown areas outside the protective influence of the forest (lake, alpine) had thinner, denser snowpacks. Bacterial cell counts (performed by flow cytometry) were highest in the protected area at the base of the snowpack, lowest in the middle and intermediate at the snow surface. Sequencing of the 16S rRNA gene showed a diverse assemblage of bacteria on the surface that resembled typical soil species, while the base harbored a community dominated by Gammaproteobacteria. The artist chose to depict the results using four pairs of paintings, corresponding to the four elevations. The pairs consist of a landscape oil painting of the site and a "data painting," in which a simplified version of the landscape is shown in grayscale and snow characteristics are overlaid in color. Snow density is shown using value (the lightness or darkness of a color) and temperature is coded in hue (warm to cold colors). Bacterial populations are shown as bright points, with density, color/shape and size indicative of population size, diversity and metabolic activity. The result is a set of paintings that capture the sense of the landscape while also revealing the hidden world where bacterial communities thrive under an insulative blanket of snow.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pask, J E; Sukumar, N; Guney, M
2011-02-28
Over the course of the past two decades, quantum mechanical calculations have emerged as a key component of modern materials research. However, the solution of the required quantum mechanical equations is a formidable task and this has severely limited the range of materials systems which can be investigated by such accurate, quantum mechanical means. The current state of the art for large-scale quantum simulations is the planewave (PW) method, as implemented in now ubiquitous VASP, ABINIT, and QBox codes, among many others. However, since the PW method uses a global Fourier basis, with strictly uniform resolution at all points inmore » space, and in which every basis function overlaps every other at every point, it suffers from substantial inefficiencies in calculations involving atoms with localized states, such as first-row and transition-metal atoms, and requires substantial nonlocal communications in parallel implementations, placing critical limits on scalability. In recent years, real-space methods such as finite-differences (FD) and finite-elements (FE) have been developed to address these deficiencies by reformulating the required quantum mechanical equations in a strictly local representation. However, while addressing both resolution and parallel-communications problems, such local real-space approaches have been plagued by one key disadvantage relative to planewaves: excessive degrees of freedom (grid points, basis functions) needed to achieve the required accuracies. And so, despite critical limitations, the PW method remains the standard today. In this work, we show for the first time that this key remaining disadvantage of real-space methods can in fact be overcome: by building known atomic physics into the solution process using modern partition-of-unity (PU) techniques in finite element analysis. Indeed, our results show order-of-magnitude reductions in basis size relative to state-of-the-art planewave based methods. The method developed here is completely general, applicable to any crystal symmetry and to both metals and insulators alike. We have developed and implemented a full self-consistent Kohn-Sham method, including both total energies and forces for molecular dynamics, and developed a full MPI parallel implementation for large-scale calculations. We have applied the method to the gamut of physical systems, from simple insulating systems with light atoms to complex d- and f-electron systems, requiring large numbers of atomic-orbital enrichments. In every case, the new PU FE method attained the required accuracies with substantially fewer degrees of freedom, typically by an order of magnitude or more, than the current state-of-the-art PW method. Finally, our initial MPI implementation has shown excellent parallel scaling of the most time-critical parts of the code up to 1728 processors, with clear indications of what will be required to achieve comparable scaling for the rest. Having shown that the key remaining disadvantage of real-space methods can in fact be overcome, the work has attracted significant attention: with sixteen invited talks, both domestic and international, so far; two papers published and another in preparation; and three new university and/or national laboratory collaborations, securing external funding to pursue a number of related research directions. Having demonstrated the proof of principle, work now centers on the necessary extensions and optimizations required to bring the prototype method and code delivered here to production applications.« less
Porting plasma physics simulation codes to modern computing architectures using the
NASA Astrophysics Data System (ADS)
Germaschewski, Kai; Abbott, Stephen
2015-11-01
Available computing power has continued to grow exponentially even after single-core performance satured in the last decade. The increase has since been driven by more parallelism, both using more cores and having more parallelism in each core, e.g. in GPUs and Intel Xeon Phi. Adapting existing plasma physics codes is challenging, in particular as there is no single programming model that covers current and future architectures. We will introduce the open-source
Assessment of Current Jet Noise Prediction Capabilities
NASA Technical Reports Server (NTRS)
Hunter, Craid A.; Bridges, James E.; Khavaran, Abbas
2008-01-01
An assessment was made of the capability of jet noise prediction codes over a broad range of jet flows, with the objective of quantifying current capabilities and identifying areas requiring future research investment. Three separate codes in NASA s possession, representative of two classes of jet noise prediction codes, were evaluated, one empirical and two statistical. The empirical code is the Stone Jet Noise Module (ST2JET) contained within the ANOPP aircraft noise prediction code. It is well documented, and represents the state of the art in semi-empirical acoustic prediction codes where virtual sources are attributed to various aspects of noise generation in each jet. These sources, in combination, predict the spectral directivity of a jet plume. A total of 258 jet noise cases were examined on the ST2JET code, each run requiring only fractions of a second to complete. Two statistical jet noise prediction codes were also evaluated, JeNo v1, and Jet3D. Fewer cases were run for the statistical prediction methods because they require substantially more resources, typically a Reynolds-Averaged Navier-Stokes solution of the jet, volume integration of the source statistical models over the entire plume, and a numerical solution of the governing propagation equation within the jet. In the evaluation process, substantial justification of experimental datasets used in the evaluations was made. In the end, none of the current codes can predict jet noise within experimental uncertainty. The empirical code came within 2dB on a 1/3 octave spectral basis for a wide range of flows. The statistical code Jet3D was within experimental uncertainty at broadside angles for hot supersonic jets, but errors in peak frequency and amplitude put it out of experimental uncertainty at cooler, lower speed conditions. Jet3D did not predict changes in directivity in the downstream angles. The statistical code JeNo,v1 was within experimental uncertainty predicting noise from cold subsonic jets at all angles, but did not predict changes with heating of the jet and did not account for directivity changes at supersonic conditions. Shortcomings addressed here give direction for future work relevant to the statistical-based prediction methods. A full report will be released as a chapter in a NASA publication assessing the state of the art in aircraft noise prediction.
Sparse coding for flexible, robust 3D facial-expression synthesis.
Lin, Yuxu; Song, Mingli; Quynh, Dao Thi Phuong; He, Ying; Chen, Chun
2012-01-01
Computer animation researchers have been extensively investigating 3D facial-expression synthesis for decades. However, flexible, robust production of realistic 3D facial expressions is still technically challenging. A proposed modeling framework applies sparse coding to synthesize 3D expressive faces, using specified coefficients or expression examples. It also robustly recovers facial expressions from noisy and incomplete data. This approach can synthesize higher-quality expressions in less time than the state-of-the-art techniques.
Intercomparison of three microwave/infrared high resolution line-by-line radiative transfer codes
NASA Astrophysics Data System (ADS)
Schreier, F.; Garcia, S. Gimeno; Milz, M.; Kottayil, A.; Höpfner, M.; von Clarmann, T.; Stiller, G.
2013-05-01
An intercomparison of three line-by-line (lbl) codes developed independently for atmospheric sounding - ARTS, GARLIC, and KOPRA - has been performed for a thermal infrared nadir sounding application assuming a HIRS-like (High resolution Infrared Radiation Sounder) setup. Radiances for the HIRS infrared channels and a set of 42 atmospheric profiles from the "Garand dataset" have been computed. Results of this intercomparison and a discussion of reasons of the observed differences are presented.
Elementary Art Constructions: A Supplement to the Elementary Art Guide 1968.
ERIC Educational Resources Information Center
Lundman, Donald; And Others
GRADES OR AGES: K-6. SUBJECT MATTER: Elementary Art--Constructions. ORGANIZATION AND PHYSICAL APPEARANCE: After a brief introduction and a scope and sequence chart, the guide is divided into seven sections, one for each grade covered, and these sections contain details for between three and nine projects, including the making of cheese boards,…
ERIC Educational Resources Information Center
Gates, Alexander E.
2017-01-01
A simulated physical model of volcanic processes using a glass art studio greatly enhanced enthusiasm and learning among urban, middle- to high-school aged, largely underrepresented minority students in Newark, New Jersey. The collaboration of a geoscience department with a glass art studio to create a science, technology, engineering, arts, and…
An Exploration of Motivations of Fine Art Students in Relation to Mental and Physical Well-Being
ERIC Educational Resources Information Center
Elias, Damian M. G.; Berg-Cross, Linda
2009-01-01
College art students are an overlooked minority population whose culture, career motivations, and mental health risks have not been studied, and there has been little to no specialized outreach to this population. This article describes the stereotypes associated with fine art students and the data available that confirms or refutes those…
INSTRUCTIONAL TELEVISION FOR THE MIDDLE PRIMARY. A TEACHER GUIDE, SEMESTER II.
ERIC Educational Resources Information Center
DELIKAN, ALFRED; AND OTHERS
INSTRUCTIONAL TELEVISION PROGRAMS FOR THE MIDDLE PRIMARY GRADES WERE DIVIDED INTO THREE AREAS--ART, MUSIC, AND PHYSICAL EDUCATION. THE MAIN OBJECTIVE OF THE ART PROGRAM WAS TO ENCOURAGE INDIVIDUAL CREATIVITY. PUPIL PARTICIPATION WAS TO TAKE PLACE AS SOON AS POSSIBLE AFTER TELECAST VIEWING. ART LESSONS USED A WINTER THEME, STUFFED PAPER FORMS,…
Adaptation effects to attractiveness of face photographs and art portraits are domain-specific
Hayn-Leichsenring, Gregor U.; Kloth, Nadine; Schweinberger, Stefan R.; Redies, Christoph
2013-01-01
We studied the neural coding of facial attractiveness by investigating effects of adaptation to attractive and unattractive human faces on the perceived attractiveness of veridical human face pictures (Experiment 1) and art portraits (Experiment 2). Experiment 1 revealed a clear pattern of contrastive aftereffects. Relative to a pre-adaptation baseline, the perceived attractiveness of faces was increased after adaptation to unattractive faces, and was decreased after adaptation to attractive faces. Experiment 2 revealed similar aftereffects when art portraits rather than face photographs were used as adaptors and test stimuli, suggesting that effects of adaptation to attractiveness are not restricted to facial photographs. Additionally, we found similar aftereffects in art portraits for beauty, another aesthetic feature that, unlike attractiveness, relates to the properties of the image (rather than to the face displayed). Importantly, Experiment 3 showed that aftereffects were abolished when adaptors were art portraits and face photographs were test stimuli. These results suggest that adaptation to facial attractiveness elicits aftereffects in the perception of subsequently presented faces, for both face photographs and art portraits, and that these effects do not cross image domains. PMID:24349690
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-05-17
PelePhysics is a suite of physics packages that provides functionality of use to reacting hydrodynamics CFD codes. The initial release includes an interface to reaction rate mechanism evaluation, transport coefficient evaluation, and a generalized equation of state (EOS) facility. Both generic evaluators and interfaces to code from externally available tools (Fuego for chemical rates, EGLib for transport coefficients) are provided.
Encoded physics knowledge in checking codes for nuclear cross section libraries at Los Alamos
NASA Astrophysics Data System (ADS)
Parsons, D. Kent
2017-09-01
Checking procedures for processed nuclear data at Los Alamos are described. Both continuous energy and multi-group nuclear data are verified by locally developed checking codes which use basic physics knowledge and common-sense rules. A list of nuclear data problems which have been identified with help of these checking codes is also given.
History of science, physics, and art: a complex approach in Brazilian syllabuses
NASA Astrophysics Data System (ADS)
Braga, Marco; Guerra, Andreia; Reis, José Claudio
2013-09-01
This paper is about new contents that can be introduced into science education. It is a description of an experience aimed at introducing a complex approach into the final grade of a Brazilian elementary school. The aim is to show the transformation of the conception of space and time from the Middle Ages with the physics of Aristotle to the 20th century, when a new conception arose with the physics of Einstein. These changes were accompanied by new visions of space and time in both physics and arts. Comparison between these two expressions of human culture is used to introduce science as a human construct inserted into history.
77 FR 13389 - Art Advisory Panel of the Commissioner of Internal Revenue
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-06
... 2512 of the Internal Revenue Code of 1986. In order for the Panel to perform this function, Panel... Administration, has also approved renewal of the Panel. The membership of the Panel is balanced between museum...
nIFTY galaxy cluster simulations - III. The similarity and diversity of galaxies and subhaloes
NASA Astrophysics Data System (ADS)
Elahi, Pascal J.; Knebe, Alexander; Pearce, Frazer R.; Power, Chris; Yepes, Gustavo; Cui, Weiguang; Cunnama, Daniel; Kay, Scott T.; Sembolini, Federico; Beck, Alexander M.; Davé, Romeel; February, Sean; Huang, Shuiyao; Katz, Neal; McCarthy, Ian G.; Murante, Giuseppe; Perret, Valentin; Puchwein, Ewald; Saro, Alexandro; Teyssier, Romain
2016-05-01
We examine subhaloes and galaxies residing in a simulated Λ cold dark matter galaxy cluster (M^crit_{200}=1.1× 10^{15} h^{-1} M_{⊙}) produced by hydrodynamical codes ranging from classic smooth particle hydrodynamics (SPH), newer SPH codes, adaptive and moving mesh codes. These codes use subgrid models to capture galaxy formation physics. We compare how well these codes reproduce the same subhaloes/galaxies in gravity-only, non-radiative hydrodynamics and full feedback physics runs by looking at the overall subhalo/galaxy distribution and on an individual object basis. We find that the subhalo population is reproduced to within ≲10 per cent for both dark matter only and non-radiative runs, with individual objects showing code-to-code scatter of ≲0.1 dex, although the gas in non-radiative simulations shows significant scatter. Including feedback physics significantly increases the diversity. Subhalo mass and Vmax distributions vary by ≈20 per cent. The galaxy populations also show striking code-to-code variations. Although the Tully-Fisher relation is similar in almost all codes, the number of galaxies with 109 h- 1 M⊙ ≲ M* ≲ 1012 h- 1 M⊙ can differ by a factor of 4. Individual galaxies show code-to-code scatter of ˜0.5 dex in stellar mass. Moreover, systematic differences exist, with some codes producing galaxies 70 per cent smaller than others. The diversity partially arises from the inclusion/absence of active galactic nucleus feedback. Our results combined with our companion papers demonstrate that subgrid physics is not just subject to fine-tuning, but the complexity of building galaxies in all environments remains a challenge. We argue that even basic galaxy properties, such as stellar mass to halo mass, should be treated with errors bars of ˜0.2-0.4 dex.
Western Illinois University Shares Facilities and Staff with Inner City Youngsters
ERIC Educational Resources Information Center
Leach, John
1970-01-01
Physical education--as well as other academic areas such as agriculture, language arts, business, music, home economics, art, and commercial skills--made up the curriculum for this 4-week program. (SW)
The Complementary Teaching of Physics and Music Acoustics - The Science of Sound
NASA Astrophysics Data System (ADS)
Milicevic, D.; Markusev, D.; Nesic, Lj.; Djordjevic, G.
2007-04-01
The results of some up-to-date solutions referring to teaching physics as a part of educational reform in Serbia, can be negative in a great deal to content and scope of teaching process which has existed so far. Basic course and characteristics of those solutions mean decreasing the number of classes of full-time physics teaching. Such tendencies are unjustified for many reasons, and the basic one is that physics is the foundation of understanding not only natural science, but also art and music (optics and acoustics respectively) and physical education (statics and dynamics). As a result of all this, there is necessity to have natural lessons of physics with the teachers of subjects such as music, art and physical education. The main objective of it is to conclude one good quality teaching cycle, and make student acquire new as well as revise their knowledge in different subjects.
Numerical comparison of Riemann solvers for astrophysical hydrodynamics
NASA Astrophysics Data System (ADS)
Klingenberg, Christian; Schmidt, Wolfram; Waagan, Knut
2007-11-01
The idea of this work is to compare a new positive and entropy stable approximate Riemann solver by Francois Bouchut with a state-of the-art algorithm for astrophysical fluid dynamics. We implemented the new Riemann solver into an astrophysical PPM-code, the Prometheus code, and also made a version with a different, more theoretically grounded higher order algorithm than PPM. We present shock tube tests, two-dimensional instability tests and forced turbulence simulations in three dimensions. We find subtle differences between the codes in the shock tube tests, and in the statistics of the turbulence simulations. The new Riemann solver increases the computational speed without significant loss of accuracy.
Aesthetic Physics Education: A Symmetry Based, Physics and Fine Arts Curriculum
NASA Astrophysics Data System (ADS)
van der Veen, Jatila; Lubin, P. M.; Cook-Gumperz, J.; Raley, J. D.; Mazur, E.
2006-12-01
Physics education research in the past two decades has focused almost entirely on pedagogical methods, but the curriculum content remains unchanged. In a recent editorial in Physics Today (July, 2006, p. 10) the ability of physicists to “imagine new realities” is correlated with what are traditionally considered non-scientific skills, including imagination and creativity, qualities which are usually associated with fine arts. In view of the new developments in physics of the 21st Century, the importance of developing creativity and imagination through education is gaining recognition. We are investigating the effectiveness of teaching introductory physics from the viewpoint of symmetry, including the foundations of General Relativity and modern cosmology, without the need for the full tensor treatment. We will pilot a new course at UCSB in Winter Quarter, 2007 entitled Symmetry and Aesthetics in Introductory Physics. Our pedagogical model is based on three premises: that the introductory curriculum needs to be modernized; that mathematics should be presented as a language; and that theoretical physics has, at its core, a great deal in common with music, art, and dance. In this talk we will present the contents of our new course, and the means by which we plan to evaluate it in comparison to “regular” introductory courses. It is our hope that this modernized and integrated approach to introductory physics can also serve as a course for future teachers of primary and secondary school. This work is supported by NASA grant #20070268 and the Planck Explorer Mission.
Perception of nurse caring, skills, and knowledge based on appearance.
Thomas, Christine M; Ehret, Abigail; Ellis, Briana; Colon-Shoop, Sara; Linton, Jean; Metz, Stacie
2010-11-01
The objective of the study was to assess differences among perceptions of patients, nurses, nursing faculty, and nursing students regarding nurse caring, skill, and knowledge based on attire and level of visible body art. People often make judgments (positive and negative) based on how a person appears. Given somewhat more flexible dress codes for nurses, we wondered what type of perceptions a variety of stakeholders would have of nurses in different levels of attire. A descriptive comparative design was used. A convenience sample of 240 patients, nurses, students, and faculty were surveyed regarding their perceptions of a nurse based on appearance. Multivariate analyses of variance were calculated to determine if participants' perception of nurse caring, skill, and knowledge differed by scrub type or level of body art. For the entire sample, the nurse wearing the solid scrub was rated significantly more skilled and knowledgeable than a nurse wearing print or T-shirt attire. Students rated the nurse wearing the solid scrub and print scrub significantly more skilled and knowledgeable. They rated the print scrub higher, with faculty rating it lower. Nurses rated the T-shirt attire more caring than faculty. Patients rated the T-shirt attire more skilled than faculty and students. All subjects rated the nurse with the most body art (piercings and visible tattoo) the least caring, skilled, and knowledgeable. Nurses rated the most amount of body art more caring than patients and faculty. Students rated the most amount of body art more caring than patients and faculty. The conflict between the right to self-expression and professional role expectations during nurse and patient interactions is a difficult one. However, because a nurse's appearance can impact perceptions during an encounter, dress codes in the acute care setting should take this into account. To be perceived as skilled and knowledgeable, nurses should wear a solid colored uniform with limited visible body art.
NASA Astrophysics Data System (ADS)
Zamani, K.; Bombardelli, F. A.
2013-12-01
ADR equation describes many physical phenomena of interest in the field of water quality in natural streams and groundwater. In many cases such as: density driven flow, multiphase reactive transport, and sediment transport, either one or a number of terms in the ADR equation may become nonlinear. For that reason, numerical tools are the only practical choice to solve these PDEs. All numerical solvers developed for transport equation need to undergo code verification procedure before they are put in to practice. Code verification is a mathematical activity to uncover failures and check for rigorous discretization of PDEs and implementation of initial/boundary conditions. In the context computational PDE verification is not a well-defined procedure on a clear path. Thus, verification tests should be designed and implemented with in-depth knowledge of numerical algorithms and physics of the phenomena as well as mathematical behavior of the solution. Even test results need to be mathematically analyzed to distinguish between an inherent limitation of algorithm and a coding error. Therefore, it is well known that code verification is a state of the art, in which innovative methods and case-based tricks are very common. This study presents full verification of a general transport code. To that end, a complete test suite is designed to probe the ADR solver comprehensively and discover all possible imperfections. In this study we convey our experiences in finding several errors which were not detectable with routine verification techniques. We developed a test suit including hundreds of unit tests and system tests. The test package has gradual increment in complexity such that tests start from simple and increase to the most sophisticated level. Appropriate verification metrics are defined for the required capabilities of the solver as follows: mass conservation, convergence order, capabilities in handling stiff problems, nonnegative concentration, shape preservation, and spurious wiggles. Thereby, we provide objective, quantitative values as opposed to subjective qualitative descriptions as 'weak' or 'satisfactory' agreement with those metrics. We start testing from a simple case of unidirectional advection, then bidirectional advection and tidal flow and build up to nonlinear cases. We design tests to check nonlinearity in velocity, dispersivity and reactions. For all of the mentioned cases we conduct mesh convergence tests. These tests compare the results' order of accuracy versus the formal order of accuracy of discretization. The concealing effect of scales (Peclet and Damkohler numbers) on the mesh convergence study and appropriate remedies are also discussed. For the cases in which the appropriate benchmarks for mesh convergence study are not available we utilize Symmetry, Complete Richardson Extrapolation and Method of False Injection to uncover bugs. Detailed discussions of capabilities of the mentioned code verification techniques are given. Auxiliary subroutines for automation of the test suit and report generation are designed. All in all, the test package is not only a robust tool for code verification but also it provides comprehensive insight on the ADR solvers capabilities. Such information is essential for any rigorous computational modeling of ADR equation for surface/subsurface pollution transport.
The small stellated dodecahedron code and friends.
Conrad, J; Chamberland, C; Breuckmann, N P; Terhal, B M
2018-07-13
We explore a distance-3 homological CSS quantum code, namely the small stellated dodecahedron code, for dense storage of quantum information and we compare its performance with the distance-3 surface code. The data and ancilla qubits of the small stellated dodecahedron code can be located on the edges respectively vertices of a small stellated dodecahedron, making this code suitable for three-dimensional connectivity. This code encodes eight logical qubits into 30 physical qubits (plus 22 ancilla qubits for parity check measurements) in contrast with one logical qubit into nine physical qubits (plus eight ancilla qubits) for the surface code. We develop fault-tolerant parity check circuits and a decoder for this code, allowing us to numerically assess the circuit-based pseudo-threshold.This article is part of a discussion meeting issue 'Foundations of quantum mechanics and their impact on contemporary society'. © 2018 The Authors.
MATCHED-INDEX-OF-REFRACTION FLOW FACILITY FOR FUNDAMENTAL AND APPLIED RESEARCH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piyush Sabharwall; Carl Stoots; Donald M. McEligot
2014-11-01
Significant challenges face reactor designers with regard to thermal hydraulic design and associated modeling for advanced reactor concepts. Computational thermal hydraulic codes solve only a piece of the core. There is a need for a whole core dynamics system code with local resolution to investigate and understand flow behavior with all the relevant physics and thermo-mechanics. The matched index of refraction (MIR) flow facility at Idaho National Laboratory (INL) has a unique capability to contribute to the development of validated computational fluid dynamics (CFD) codes through the use of state-of-the-art optical measurement techniques, such as Laser Doppler Velocimetry (LDV) andmore » Particle Image Velocimetry (PIV). PIV is a non-intrusive velocity measurement technique that tracks flow by imaging the movement of small tracer particles within a fluid. At the heart of a PIV calculation is the cross correlation algorithm, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. Generally, the displacement is indicated by the location of the largest peak. To quantify these measurements accurately, sophisticated processing algorithms correlate the locations of particles within the image to estimate the velocity (Ref. 1). Prior to use with reactor deign, the CFD codes have to be experimentally validated, which requires rigorous experimental measurements to produce high quality, multi-dimensional flow field data with error quantification methodologies. Computational thermal hydraulic codes solve only a piece of the core. There is a need for a whole core dynamics system code with local resolution to investigate and understand flow behavior with all the relevant physics and thermo-mechanics. Computational techniques with supporting test data may be needed to address the heat transfer from the fuel to the coolant during the transition from turbulent to laminar flow, including the possibility of an early laminarization of the flow (Refs. 2 and 3) (laminarization is caused when the coolant velocity is theoretically in the turbulent regime, but the heat transfer properties are indicative of the coolant velocity being in the laminar regime). Such studies are complicated enough that computational fluid dynamics (CFD) models may not converge to the same conclusion. Thus, experimentally scaled thermal hydraulic data with uncertainties should be developed to support modeling and simulation for verification and validation activities. The fluid/solid index of refraction matching technique allows optical access in and around geometries that would otherwise be impossible while the large test section of the INL system provides better spatial and temporal resolution than comparable facilities. Benchmark data for assessing computational fluid dynamics can be acquired for external flows, internal flows, and coupled internal/external flows for better understanding of physical phenomena of interest. The core objective of this study is to describe MIR and its capabilities, and mention current development areas for uncertainty quantification, mainly the uncertainty surface method and cross-correlation method. Using these methods, it is anticipated to establish a suitable approach to quantify PIV uncertainty for experiments performed in the MIR.« less
ERIC Educational Resources Information Center
Louisiana State Dept. of Education, Baton Rouge.
Prepared by the vocational education division of a state department of education and compiled by industrial arts educators, this resource guide provides a conceptual basis for the elementary teacher using industrial arts as a means of introducing children to industrial processes and orienting them to the physical and material world. Included in…
The Effects of a Structured Art Group Experience on Wellness Levels of University Students
ERIC Educational Resources Information Center
Jahimiak, Sarah Anne Eikelberg
2016-01-01
Although art therapy has been used for over 100 years as an adjunctive treatment method for physical and mental health disorders, the research findings regarding the efficacy of this approach have been mixed and inconclusive. Reviews of the current literature on the efficacy of art therapy have noted the field lacks well-controlled studies.…
Collaborative virtual environments art exhibition
NASA Astrophysics Data System (ADS)
Dolinsky, Margaret; Anstey, Josephine; Pape, Dave E.; Aguilera, Julieta C.; Kostis, Helen-Nicole; Tsoupikova, Daria
2005-03-01
This panel presentation will exhibit artwork developed in CAVEs and discuss how art methodologies enhance the science of VR through collaboration, interaction and aesthetics. Artists and scientists work alongside one another to expand scientific research and artistic expression and are motivated by exhibiting collaborative virtual environments. Looking towards the arts, such as painting and sculpture, computer graphics captures a visual tradition. Virtual reality expands this tradition to not only what we face, but to what surrounds us and even what responds to our body and its gestures. Art making that once was isolated to the static frame and an optimal point of view is now out and about, in fully immersive mode within CAVEs. Art knowledge is a guide to how the aesthetics of 2D and 3D worlds affect, transform, and influence the social, intellectual and physical condition of the human body through attention to psychology, spiritual thinking, education, and cognition. The psychological interacts with the physical in the virtual in such a way that each facilitates, enhances and extends the other, culminating in a "go together" world. Attention to sharing art experience across high-speed networks introduces a dimension of liveliness and aliveness when we "become virtual" in real time with others.
Effects of sculpture based art therapy in dementia patients-A pilot study.
Seifert, Kathrin; Spottke, Annika; Fliessbach, Klaus
2017-11-01
Art and art therapy open up interesting possibilities for dementia patients. However, it has not been evaluated scientifically so far, whether the art of sculpting has any benefits. In this non-randomized pilot study with twelve participants, we investigated the feasibility and acceptance of sculptural activity in patients with dementia and the effects on their well-being. A questionnaire was custom-designed to investigate five key aspects of well-being: mental state and concentration, corporeal memory, self-reliance, self-esteem and physicality. Remarkable improvements were seen in several subscales in the sculptural activity group, but not the control group: Mental state and concentration (nine of thirteen key aspects), self-reliance (four of five), self-esteem (one of one) and physicality (two of two). The results of this pilot study indicate the multidimensional effects of sculptural activity on patients living with dementia. The field would benefit greatly from further research.
2010-01-01
Background The role of religious beliefs in the prevention of HIV and attitudes towards the infected has received considerable attention. However, little research has been conducted on Faith Leaders' (FLs) perceptions of antiretroviral therapy (ART) in the developing world. This study investigated FLs' attitudes towards different HIV treatment options (traditional, medical and spiritual) available in a rural Tanzanian ward. Methods Qualitative interviews were conducted with 25 FLs purposively selected to account for all the denominations present in the area. Data was organised into themes using the software package NVIVO-7. The field work guidelines were tailored as new topics emerged and additional codes progressively added to the coding frame. Results Traditional healers (THs) and FLs were often reported as antagonists but duality prevailed and many FLs simultaneously believed in traditional healing. Inter-denomination mobility was high and guided by pragmatism. Praying for the sick was a common practice and over one third of respondents said that prayer could cure HIV. Being HIV-positive was often seen as "a punishment from God" and a consequence of sin. As sinning could result from "the work of Satan", forgiveness was possible, and a "reconciliation with God" deemed as essential for a favourable remission of the disease. Several FLs believed that "evil spirits" inflicted through witchcraft could cause the disease and claimed that they could cast "demons" away. While prayers could potentially cure HIV "completely", ART use was generally not discouraged because God had "only a part to play". The perceived potential superiority of spiritual options could however lead some users to interrupt treatment. Conclusions The roll-out of ART is taking place in a context in which the new drugs are competing with a diversity of existing options. As long as the complementarities of prayers and ART are not clearly and explicitly stated by FLs, spiritual options may be interpreted as a superior alternative and contribute to hampering adherence to ART. In contexts where ambivalent attitudes towards the new drugs prevail, enhancing FLs understanding of ART's strengths and pitfalls is an essential step to engage them as active partners in ART scale-up programs. PMID:20646300
Roura, Maria; Nsigaye, Ray; Nhandi, Benjamin; Wamoyi, Joyce; Busza, Joanna; Urassa, Mark; Todd, Jim; Zaba, Basia
2010-07-20
The role of religious beliefs in the prevention of HIV and attitudes towards the infected has received considerable attention. However, little research has been conducted on Faith Leaders' (FLs) perceptions of antiretroviral therapy (ART) in the developing world. This study investigated FLs' attitudes towards different HIV treatment options (traditional, medical and spiritual) available in a rural Tanzanian ward. Qualitative interviews were conducted with 25 FLs purposively selected to account for all the denominations present in the area. Data was organised into themes using the software package NVIVO-7. The field work guidelines were tailored as new topics emerged and additional codes progressively added to the coding frame. Traditional healers (THs) and FLs were often reported as antagonists but duality prevailed and many FLs simultaneously believed in traditional healing. Inter-denomination mobility was high and guided by pragmatism.Praying for the sick was a common practice and over one third of respondents said that prayer could cure HIV. Being HIV-positive was often seen as "a punishment from God" and a consequence of sin. As sinning could result from "the work of Satan", forgiveness was possible, and a "reconciliation with God" deemed as essential for a favourable remission of the disease. Several FLs believed that "evil spirits" inflicted through witchcraft could cause the disease and claimed that they could cast "demons" away.While prayers could potentially cure HIV "completely", ART use was generally not discouraged because God had "only a part to play". The perceived potential superiority of spiritual options could however lead some users to interrupt treatment. The roll-out of ART is taking place in a context in which the new drugs are competing with a diversity of existing options. As long as the complementarities of prayers and ART are not clearly and explicitly stated by FLs, spiritual options may be interpreted as a superior alternative and contribute to hampering adherence to ART. In contexts where ambivalent attitudes towards the new drugs prevail, enhancing FLs understanding of ART's strengths and pitfalls is an essential step to engage them as active partners in ART scale-up programs.
Improving aircraft conceptual design - A PHIGS interactive graphics interface for ACSYNT
NASA Technical Reports Server (NTRS)
Wampler, S. G.; Myklebust, A.; Jayaram, S.; Gelhausen, P.
1988-01-01
A CAD interface has been created for the 'ACSYNT' aircraft conceptual design code that permits the execution and control of the design process via interactive graphics menus. This CAD interface was coded entirely with the new three-dimensional graphics standard, the Programmer's Hierarchical Interactive Graphics System. The CAD/ACSYNT system is designed for use by state-of-the-art high-speed imaging work stations. Attention is given to the approaches employed in modeling, data storage, and rendering.
1999-12-01
applications, it should be understood that the invention is not limited thereto. Those having - 9 - Navy Case No. 79694 ordinary skill in the art and access...processing. It should also be mentioned that Tecplot is a commercial plotting software package produced by Amtec Engineering, Inc. The following...conditions) 7. Ch (base on edge conditions) -43- 10 Navy Case No. 79694 8. Ch (base on reference conditions) 9 . Momentum thickness 10. Displacement
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacFarlane, Joseph J.; Golovkin, I. E.; Woodruff, P. R.
2009-08-07
This Final Report summarizes work performed under DOE STTR Phase II Grant No. DE-FG02-05ER86258 during the project period from August 2006 to August 2009. The project, “Development of Spectral and Atomic Models for Diagnosing Energetic Particle Characteristics in Fast Ignition Experiments,” was led by Prism Computational Sciences (Madison, WI), and involved collaboration with subcontractors University of Nevada-Reno and Voss Scientific (Albuquerque, NM). In this project, we have: Developed and implemented a multi-dimensional, multi-frequency radiation transport model in the LSP hybrid fluid-PIC (particle-in-cell) code [1,2]. Updated the LSP code to support the use of accurate equation-of-state (EOS) tables generated by Prism’smore » PROPACEOS [3] code to compute more accurate temperatures in high energy density physics (HEDP) plasmas. Updated LSP to support the use of Prism’s multi-frequency opacity tables. Generated equation of state and opacity data for LSP simulations for several materials being used in plasma jet experimental studies. Developed and implemented parallel processing techniques for the radiation physics algorithms in LSP. Benchmarked the new radiation transport and radiation physics algorithms in LSP and compared simulation results with analytic solutions and results from numerical radiation-hydrodynamics calculations. Performed simulations using Prism radiation physics codes to address issues related to radiative cooling and ionization dynamics in plasma jet experiments. Performed simulations to study the effects of radiation transport and radiation losses due to electrode contaminants in plasma jet experiments. Updated the LSP code to generate output using NetCDF to provide a better, more flexible interface to SPECT3D [4] in order to post-process LSP output. Updated the SPECT3D code to better support the post-processing of large-scale 2-D and 3-D datasets generated by simulation codes such as LSP. Updated atomic physics modeling to provide for more comprehensive and accurate atomic databases that feed into the radiation physics modeling (spectral simulations and opacity tables). Developed polarization spectroscopy modeling techniques suitable for diagnosing energetic particle characteristics in HEDP experiments. A description of these items is provided in this report. The above efforts lay the groundwork for utilizing the LSP and SPECT3D codes in providing simulation support for DOE-sponsored HEDP experiments, such as plasma jet and fast ignition physics experiments. We believe that taken together, the LSP and SPECT3D codes have unique capabilities for advancing our understanding of the physics of these HEDP plasmas. Based on conversations early in this project with our DOE program manager, Dr. Francis Thio, our efforts emphasized developing radiation physics and atomic modeling capabilities that can be utilized in the LSP PIC code, and performing radiation physics studies for plasma jets. A relatively minor component focused on the development of methods to diagnose energetic particle characteristics in short-pulse laser experiments related to fast ignition physics. The period of performance for the grant was extended by one year to August 2009 with a one-year no-cost extension, at the request of subcontractor University of Nevada-Reno.« less
Software Certification - Coding, Code, and Coders
NASA Technical Reports Server (NTRS)
Havelund, Klaus; Holzmann, Gerard J.
2011-01-01
We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.
Implicit time-integration method for simultaneous solution of a coupled non-linear system
NASA Astrophysics Data System (ADS)
Watson, Justin Kyle
Historically large physical problems have been divided into smaller problems based on the physics involved. This is no different in reactor safety analysis. The problem of analyzing a nuclear reactor for design basis accidents is performed by a handful of computer codes each solving a portion of the problem. The reactor thermal hydraulic response to an event is determined using a system code like TRAC RELAP Advanced Computational Engine (TRACE). The core power response to the same accident scenario is determined using a core physics code like Purdue Advanced Core Simulator (PARCS). Containment response to the reactor depressurization in a Loss Of Coolant Accident (LOCA) type event is calculated by a separate code. Sub-channel analysis is performed with yet another computer code. This is just a sample of the computer codes used to solve the overall problems of nuclear reactor design basis accidents. Traditionally each of these codes operates independently from each other using only the global results from one calculation as boundary conditions to another. Industry's drive to uprate power for reactors has motivated analysts to move from a conservative approach to design basis accident towards a best estimate method. To achieve a best estimate calculation efforts have been aimed at coupling the individual physics models to improve the accuracy of the analysis and reduce margins. The current coupling techniques are sequential in nature. During a calculation time-step data is passed between the two codes. The individual codes solve their portion of the calculation and converge to a solution before the calculation is allowed to proceed to the next time-step. This thesis presents a fully implicit method of simultaneous solving the neutron balance equations, heat conduction equations and the constitutive fluid dynamics equations. It discusses the problems involved in coupling different physics phenomena within multi-physics codes and presents a solution to these problems. The thesis also outlines the basic concepts behind the nodal balance equations, heat transfer equations and the thermal hydraulic equations, which will be coupled to form a fully implicit nonlinear system of equations. The coupling of separate physics models to solve a larger problem and improve accuracy and efficiency of a calculation is not a new idea, however implementing them in an implicit manner and solving the system simultaneously is. Also the application to reactor safety codes is new and has not be done with thermal hydraulics and neutronics codes on realistic applications in the past. The coupling technique described in this thesis is applicable to other similar coupled thermal hydraulic and core physics reactor safety codes. This technique is demonstrated using coupled input decks to show that the system is solved correctly and then verified by using two derivative test problems based on international benchmark problems the OECD/NRC Three mile Island (TMI) Main Steam Line Break (MSLB) problem (representative of pressurized water reactor analysis) and the OECD/NRC Peach Bottom (PB) Turbine Trip (TT) benchmark (representative of boiling water reactor analysis).
Coherent errors in quantum error correction
NASA Astrophysics Data System (ADS)
Greenbaum, Daniel; Dutton, Zachary
Analysis of quantum error correcting (QEC) codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. We present analytic results for the logical error as a function of concatenation level and code distance for coherent errors under the repetition code. For data-only coherent errors, we find that the logical error is partially coherent and therefore non-Pauli. However, the coherent part of the error is negligible after two or more concatenation levels or at fewer than ɛ - (d - 1) error correction cycles. Here ɛ << 1 is the rotation angle error per cycle for a single physical qubit and d is the code distance. These results support the validity of modeling coherent errors using a Pauli channel under some minimum requirements for code distance and/or concatenation. We discuss extensions to imperfect syndrome extraction and implications for general QEC.
FPGA implementation of advanced FEC schemes for intelligent aggregation networks
NASA Astrophysics Data System (ADS)
Zou, Ding; Djordjevic, Ivan B.
2016-02-01
In state-of-the-art fiber-optics communication systems the fixed forward error correction (FEC) and constellation size are employed. While it is important to closely approach the Shannon limit by using turbo product codes (TPC) and low-density parity-check (LDPC) codes with soft-decision decoding (SDD) algorithm; rate-adaptive techniques, which enable increased information rates over short links and reliable transmission over long links, are likely to become more important with ever-increasing network traffic demands. In this invited paper, we describe a rate adaptive non-binary LDPC coding technique, and demonstrate its flexibility and good performance exhibiting no error floor at BER down to 10-15 in entire code rate range, by FPGA-based emulation, making it a viable solution in the next-generation high-speed intelligent aggregation networks.
Fast Sparse Coding for Range Data Denoising with Sparse Ridges Constraint.
Gao, Zhi; Lao, Mingjie; Sang, Yongsheng; Wen, Fei; Ramesh, Bharath; Zhai, Ruifang
2018-05-06
Light detection and ranging (LiDAR) sensors have been widely deployed on intelligent systems such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) to perform localization, obstacle detection, and navigation tasks. Thus, research into range data processing with competitive performance in terms of both accuracy and efficiency has attracted increasing attention. Sparse coding has revolutionized signal processing and led to state-of-the-art performance in a variety of applications. However, dictionary learning, which plays the central role in sparse coding techniques, is computationally demanding, resulting in its limited applicability in real-time systems. In this study, we propose sparse coding algorithms with a fixed pre-learned ridge dictionary to realize range data denoising via leveraging the regularity of laser range measurements in man-made environments. Experiments on both synthesized data and real data demonstrate that our method obtains accuracy comparable to that of sophisticated sparse coding methods, but with much higher computational efficiency.
Sparse/DCT (S/DCT) two-layered representation of prediction residuals for video coding.
Kang, Je-Won; Gabbouj, Moncef; Kuo, C-C Jay
2013-07-01
In this paper, we propose a cascaded sparse/DCT (S/DCT) two-layer representation of prediction residuals, and implement this idea on top of the state-of-the-art high efficiency video coding (HEVC) standard. First, a dictionary is adaptively trained to contain featured patterns of residual signals so that a high portion of energy in a structured residual can be efficiently coded via sparse coding. It is observed that the sparse representation alone is less effective in the R-D performance due to the side information overhead at higher bit rates. To overcome this problem, the DCT representation is cascaded at the second stage. It is applied to the remaining signal to improve coding efficiency. The two representations successfully complement each other. It is demonstrated by experimental results that the proposed algorithm outperforms the HEVC reference codec HM5.0 in the Common Test Condition.
Competitive region orientation code for palmprint verification and identification
NASA Astrophysics Data System (ADS)
Tang, Wenliang
2015-11-01
Orientation features of the palmprint have been widely investigated in coding-based palmprint-recognition methods. Conventional orientation-based coding methods usually used discrete filters to extract the orientation feature of palmprint. However, in real operations, the orientations of the filter usually are not consistent with the lines of the palmprint. We thus propose a competitive region orientation-based coding method. Furthermore, an effective weighted balance scheme is proposed to improve the accuracy of the extracted region orientation. Compared with conventional methods, the region orientation of the palmprint extracted using the proposed method can precisely and robustly describe the orientation feature of the palmprint. Extensive experiments on the baseline PolyU and multispectral palmprint databases are performed and the results show that the proposed method achieves a promising performance in comparison to conventional state-of-the-art orientation-based coding methods in both palmprint verification and identification.
The Army and Space: Historic Perspectives on Future Prospects.
1986-06-06
of the U.S. Army Command and General Staff College In partial fulfillment of the requirements for the dsgrecy MASTER OF MILITARY ART AND SCIENCE by...By__________ DDistribution/_ tAAvailnb’ility codes jAvail anId/oIr jDist Ispocial ýý 6R-tW rM.,W-MMM HO E ý- M WMM-7 MASTER OF MILITARY ART AND SCIENCE...PACU: HISTORICAL. PERSPECTIVES ON FUTURE PROSPECTS: An arialy .iy.s ,t thi. Ar ry’s early involvement in space to tind historical lessons to help guide
Native American Culture: An Interdisciplinary Approach.
ERIC Educational Resources Information Center
Troisi, Andrea
1995-01-01
Provides suggestions for a literature-based approach when integrating Native American culture into the middle school curriculum. Recommends resources in the following subjects: language arts, mathematics, physical education, health, home and career skills, technology, art, music, and second language. (AEF)
Adapting Art Instruction for Students with Disabilities.
ERIC Educational Resources Information Center
Platt, Jennifer M.; Janeczko, Donna
1991-01-01
This article presents adaptations for teaching art to students with disabilities. Various techniques, methods, and materials are described by category of disability, including students with mental disabilities, visual impairments, hearing impairments, learning disabilities, emotional disabilities, and physical disabilities. (JDD)
Reaching Out: The Bachelor of Arts Degree In Physics
NASA Astrophysics Data System (ADS)
Hobson, Art
1996-05-01
Physics degrees are not only for physicists. Our department believes that it would be healthy if attorneys, physicians, journalists, politicians, businesspeople, and others had undergraduate degrees in physics. Thus, we have begun offering a Bachelor of Arts degree in physics, for students who want to study physics as a background for other fields such as law (patents, environmental law), medical school, business (high-tech firms), journalism (science reporting, environmental reporting), music (accoustics, electronic music), and essentially any other profession. The program reaches outward, outside of physics, rather than pointing toward further work in physics. It begins with the algebra-based introductory course rather than the calculus-based course for future physicists and engineers. Two new courses are being created to provide these pre-professional students with broad science literacy and knowledge of physics-related technologies. The program is more flexible and less technical than the traditional Bachelor of Science program, allowing students time for outside electives and professional requirements in other fields.
Code Verification Capabilities and Assessments in Support of ASC V&V Level 2 Milestone #6035
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doebling, Scott William; Budzien, Joanne Louise; Ferguson, Jim Michael
This document provides a summary of the code verification activities supporting the FY17 Level 2 V&V milestone entitled “Deliver a Capability for V&V Assessments of Code Implementations of Physics Models and Numerical Algorithms in Support of Future Predictive Capability Framework Pegposts.” The physics validation activities supporting this milestone are documented separately. The objectives of this portion of the milestone are: 1) Develop software tools to support code verification analysis; 2) Document standard definitions of code verification test problems; and 3) Perform code verification assessments (focusing on error behavior of algorithms). This report and a set of additional standalone documents servemore » as the compilation of results demonstrating accomplishment of these objectives.« less
MODTRAN6: a major upgrade of the MODTRAN radiative transfer code
NASA Astrophysics Data System (ADS)
Berk, Alexander; Conforti, Patrick; Kennett, Rosemary; Perkins, Timothy; Hawes, Frederick; van den Bosch, Jeannette
2014-06-01
The MODTRAN6 radiative transfer (RT) code is a major advancement over earlier versions of the MODTRAN atmospheric transmittance and radiance model. This version of the code incorporates modern software ar- chitecture including an application programming interface, enhanced physics features including a line-by-line algorithm, a supplementary physics toolkit, and new documentation. The application programming interface has been developed for ease of integration into user applications. The MODTRAN code has been restructured towards a modular, object-oriented architecture to simplify upgrades as well as facilitate integration with other developers' codes. MODTRAN now includes a line-by-line algorithm for high resolution RT calculations as well as coupling to optical scattering codes for easy implementation of custom aerosols and clouds.
Vision, eye disease, and art: 2015 Keeler Lecture
Marmor, M F
2016-01-01
The purpose of this study was to examine normal vision and eye disease in relation to art. Ophthalmology cannot explain art, but vision is a tool for artists and its normal and abnormal characteristics may influence what an artist can do. The retina codes for contrast, and the impact of this is evident throughout art history from Asian brush painting, to Renaissance chiaroscuro, to Op Art. Art exists, and can portray day or night, only because of the way retina adjusts to light. Color processing is complex, but artists have exploited it to create shimmer (Seurat, Op Art), or to disconnect color from form (fauvists, expressionists, Andy Warhol). It is hazardous to diagnose eye disease from an artist's work, because artists have license to create as they wish. El Greco was not astigmatic; Monet was not myopic; Turner did not have cataracts. But when eye disease is documented, the effects can be analyzed. Color-blind artists limit their palette to ambers and blues, and avoid greens. Dense brown cataracts destroy color distinctions, and Monet's late canvases (before surgery) showed strange and intense uses of color. Degas had failing vision for 40 years, and his pastels grew coarser and coarser. He may have continued working because his blurred vision smoothed over the rough work. This paper can barely touch upon the complexity of either vision or art. However, it demonstrates some ways in which understanding vision and eye disease give insight into art, and thereby an appreciation of both art and ophthalmology. PMID:26563659
Vision, eye disease, and art: 2015 Keeler Lecture.
Marmor, M F
2016-02-01
The purpose of this study was to examine normal vision and eye disease in relation to art. Ophthalmology cannot explain art, but vision is a tool for artists and its normal and abnormal characteristics may influence what an artist can do. The retina codes for contrast, and the impact of this is evident throughout art history from Asian brush painting, to Renaissance chiaroscuro, to Op Art. Art exists, and can portray day or night, only because of the way retina adjusts to light. Color processing is complex, but artists have exploited it to create shimmer (Seurat, Op Art), or to disconnect color from form (fauvists, expressionists, Andy Warhol). It is hazardous to diagnose eye disease from an artist's work, because artists have license to create as they wish. El Greco was not astigmatic; Monet was not myopic; Turner did not have cataracts. But when eye disease is documented, the effects can be analyzed. Color-blind artists limit their palette to ambers and blues, and avoid greens. Dense brown cataracts destroy color distinctions, and Monet's late canvases (before surgery) showed strange and intense uses of color. Degas had failing vision for 40 years, and his pastels grew coarser and coarser. He may have continued working because his blurred vision smoothed over the rough work. This paper can barely touch upon the complexity of either vision or art. However, it demonstrates some ways in which understanding vision and eye disease give insight into art, and thereby an appreciation of both art and ophthalmology.
Salko, Robert K.; Schmidt, Rodney C.; Avramova, Maria N.
2014-11-23
This study describes major improvements to the computational infrastructure of the CTF subchannel code so that full-core, pincell-resolved (i.e., one computational subchannel per real bundle flow channel) simulations can now be performed in much shorter run-times, either in stand-alone mode or as part of coupled-code multi-physics calculations. These improvements support the goals of the Department Of Energy Consortium for Advanced Simulation of Light Water Reactors (CASL) Energy Innovation Hub to develop high fidelity multi-physics simulation tools for nuclear energy design and analysis.
Statistical physics inspired energy-efficient coded-modulation for optical communications.
Djordjevic, Ivan B; Xu, Lei; Wang, Ting
2012-04-15
Because Shannon's entropy can be obtained by Stirling's approximation of thermodynamics entropy, the statistical physics energy minimization methods are directly applicable to the signal constellation design. We demonstrate that statistical physics inspired energy-efficient (EE) signal constellation designs, in combination with large-girth low-density parity-check (LDPC) codes, significantly outperform conventional LDPC-coded polarization-division multiplexed quadrature amplitude modulation schemes. We also describe an EE signal constellation design algorithm. Finally, we propose the discrete-time implementation of D-dimensional transceiver and corresponding EE polarization-division multiplexed system. © 2012 Optical Society of America
Space Applications of the FLUKA Monte-Carlo Code: Lunar and Planetary Exploration
NASA Technical Reports Server (NTRS)
Anderson, V.; Ballarini, F.; Battistoni, G.; Campanella, M.; Carboni, M.; Cerutti, F.; Elkhayari, N.; Empl, A.; Fasso, A.; Ferrari, A.;
2004-01-01
NASA has recognized the need for making additional heavy-ion collision measurements at the U.S. Brookhaven National Laboratory in order to support further improvement of several particle physics transport-code models for space exploration applications. FLUKA has been identified as one of these codes and we will review the nature and status of this investigation as it relates to high-energy heavy-ion physics.
A Continuum Diffusion Model for Viscoelastic Materials
1988-11-01
ZIP Code) 7b. ADDRESS (CJI. Slow, and ZIP Code) Mechanics Div isi on Office of Naval Research; Code 432 Collge Satio, T as 7843800 Quincy Ave. Collge ...these studies, which involved experimental, analytical, and materials science aspects, were conducted by researchers in the fields of physical and...thermodynamics, with irreversibility stemming from the foregoing variables yr through "growth laws" that correspond to viscous resistance. The physical ageing of
ART-SCIENCE OF THE SPACE AGE: towards a platform for art-science collaborations at ESTEC
NASA Astrophysics Data System (ADS)
Domnitch, E.; Gelfand, D.
2015-10-01
In 2013, in collaboration with ESTEC scientist Bernard Foing and the ArtScience Interfaculty (Royal Academy of the Arts, The Hague), Synergetica Lab (Amsterdam) developed a course, which was repeated in 2015, for bachelor's and master's students aimed at seeding interactions with ESA researchers. The participants created artworks investigating space travel, radio astronomy, microgravity, ecosynthesis as well as extraterrestrial physics and architecture [1] [2]. After their initial presentation at the Royal Academy, these artworks were shown at ESTEC, TodaysArt Festival (The Hague), and TEC ART (Rotterdam). These presentations prompted diverse future collaborations and outreach opportunities, including the European Planetary Science Congress 2014 (Cascais) and the AxS Festival (Los Angeles).
High-speed architecture for the decoding of trellis-coded modulation
NASA Technical Reports Server (NTRS)
Osborne, William P.
1992-01-01
Since 1971, when the Viterbi Algorithm was introduced as the optimal method of decoding convolutional codes, improvements in circuit technology, especially VLSI, have steadily increased its speed and practicality. Trellis-Coded Modulation (TCM) combines convolutional coding with higher level modulation (non-binary source alphabet) to provide forward error correction and spectral efficiency. For binary codes, the current stare-of-the-art is a 64-state Viterbi decoder on a single CMOS chip, operating at a data rate of 25 Mbps. Recently, there has been an interest in increasing the speed of the Viterbi Algorithm by improving the decoder architecture, or by reducing the algorithm itself. Designs employing new architectural techniques are now in existence, however these techniques are currently applied to simpler binary codes, not to TCM. The purpose of this report is to discuss TCM architectural considerations in general, and to present the design, at the logic gate level, or a specific TCM decoder which applies these considerations to achieve high-speed decoding.
Network Coding in Relay-based Device-to-Device Communications
Huang, Jun; Gharavi, Hamid; Yan, Huifang; Xing, Cong-cong
2018-01-01
Device-to-Device (D2D) communications has been realized as an effective means to improve network throughput, reduce transmission latency, and extend cellular coverage in 5G systems. Network coding is a well-established technique known for its capability to reduce the number of retransmissions. In this article, we review state-of-the-art network coding in relay-based D2D communications, in terms of application scenarios and network coding techniques. We then apply two representative network coding techniques to dual-hop D2D communications and present an efficient relay node selecting mechanism as a case study. We also outline potential future research directions, according to the current research challenges. Our intention is to provide researchers and practitioners with a comprehensive overview of the current research status in this area and hope that this article may motivate more researchers to participate in developing network coding techniques for different relay-based D2D communications scenarios. PMID:29503504
ERIC Educational Resources Information Center
Atkinson, Marilyn; And Others
The guide offers a compilation of teacher developed career education materials which may be integrated with secondary level curriculum and, in some cases, complete unit or course outlines are included. Suggested activities and ideas are presented for the following five subject areas and their related units: art, English (activity suggestions for…
ERIC Educational Resources Information Center
Samanian, Kouros; Nedaeifar, Hoda; Karimi, Ma'soumeh
2016-01-01
As previous studies suggest, titles of works of art have generally proven to be influential elements in reading and interpretation of the artworks. In the exhibition context, titles can be considered as a physical component of the museum or art gallery's space. According to the relatively new approaches, learning, being a subcategory of…
ERIC Educational Resources Information Center
Coleman, Mari Beth; Cramer, Elizabeth Stephanie
2015-01-01
Various levels of assistive technology can be used in the art classroom to provide a fulfilling artmaking experience for all levels of learners. The purpose of this article is to add to the body of knowledge by providing ideas generated from collaboration between the fields of special education and art education that the authors feel will benefit…
Draw Your Physics Homework? Art as a Path to Understanding in Physics Teaching
ERIC Educational Resources Information Center
van der Veen, Jatila
2012-01-01
The persistent fear of physics by learners motivated the author to take action to increase all students' interest in the subject via a new curriculum for introductory college physics that applies Greene's model of Aesthetic Education to the study of contemporary physics, utilizing symmetry as the mathematical foundation of physics as well as the…
An examination of college student wellness: A research and liberal arts perspective
Baldwin, Debora R; Towler, Kerry; Oliver, Michael D; Datta, Subimal
2017-01-01
Promoting wellness within academia reduces disease frequency and enhances overall health. This study examined wellness factors among undergraduate students attending a research university (n = 85) or a small liberal arts college (n = 126). Participants were administered surveys which measured physical, emotional, social, intellectual, and occupational wellness. Significant institutional differences emerged on measures of physical and social wellness. When collapsed across academic institutions, students who were gainfully employed reported greater self-efficacy compared with unemployed students. Gender differences emerged on measures of physical and social well-being. Our findings support the need for targeted interventions that facilitate enhanced college student development and well-being. PMID:29379611
An examination of college student wellness: A research and liberal arts perspective.
Baldwin, Debora R; Towler, Kerry; Oliver, Michael D; Datta, Subimal
2017-01-01
Promoting wellness within academia reduces disease frequency and enhances overall health. This study examined wellness factors among undergraduate students attending a research university ( n = 85) or a small liberal arts college ( n = 126). Participants were administered surveys which measured physical, emotional, social, intellectual , and occupational wellness. Significant institutional differences emerged on measures of physical and social wellness. When collapsed across academic institutions, students who were gainfully employed reported greater self-efficacy compared with unemployed students. Gender differences emerged on measures of physical and social well-being. Our findings support the need for targeted interventions that facilitate enhanced college student development and well-being.
Culture and art: Importance of art practice, not aesthetics, to early human culture.
Zaidel, Dahlia W
2018-01-01
Art is expressed in multiple formats in today's human cultures. Physical traces of stone tools and other archaeological landmarks suggest early nonart cultural behavior and symbolic cognition in the early Homo sapiens (HS) who emerged ~300,000-200,000 years ago in Africa. Fundamental to art expression is the neural underpinning for symbolic cognition, and material art is considered its prime example. However, prior to producing material art, HS could have exploited symbolically through art-rooted biological neural pathways for social purpose, namely, those controlling interpersonal motoric coordination and sound codependence. Aesthetics would not have been the primary purpose; arguments for group dance and rhythmical musical sounds are offered here. In addition, triggers for symbolic body painting are discussed. These cultural art formats could well have preceded material art and would have enhanced unity, inclusiveness, and cooperative behavior, contributing significantly to already existing nonart cultural practices. © 2018 Elsevier B.V. All rights reserved.
The purpose of this SOP is to define the coding strategy for coding and coding verification of hand-entered data. It applies to the coding of all physical forms, especially those coded by hand. The strategy was developed for use in the Arizona NHEXAS project and the "Border" st...
Exploring Physics with Computer Animation and PhysGL
NASA Astrophysics Data System (ADS)
Bensky, T. J.
2016-10-01
This book shows how the web-based PhysGL programming environment (http://physgl.org) can be used to teach and learn elementary mechanics (physics) using simple coding exercises. The book's theme is that the lessons encountered in such a course can be used to generate physics-based animations, providing students with compelling and self-made visuals to aid their learning. Topics presented are parallel to those found in a traditional physics text, making for straightforward integration into a typical lecture-based physics course. Users will appreciate the ease at which compelling OpenGL-based graphics and animations can be produced using PhysGL, as well as its clean, simple language constructs. The author argues that coding should be a standard part of lower-division STEM courses, and provides many anecdotal experiences and observations, that include observed benefits of the coding work.
1985-09-01
Code 0 Physics (Calculus-Based) or Physical Science niscioline 0----------------------------------------- lR averaqe...opportunity for fficers with inadequate math- ematical and physical science backgrounds to establish a good math foundation to be able to gualify for a...technical curricu2um [Ref. 5: page 36]. There is also a six week refresher available that is designed to rapidly cover the calculus and physics
A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals
NASA Technical Reports Server (NTRS)
Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.
1994-01-01
Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aly, A.; Avramova, Maria; Ivanov, Kostadin
To correctly describe and predict this hydrogen distribution there is a need for multi-physics coupling to provide accurate three-dimensional azimuthal, radial, and axial temperature distributions in the cladding. Coupled high-fidelity reactor-physics codes with a sub-channel code as well as with a computational fluid dynamics (CFD) tool have been used to calculate detailed temperature distributions. These high-fidelity coupled neutronics/thermal-hydraulics code systems are coupled further with the fuel-performance BISON code with a kernel (module) for hydrogen. Both hydrogen migration and precipitation/dissolution are included in the model. Results from this multi-physics analysis is validated utilizing calculations of hydrogen distribution using models informed bymore » data from hydrogen experiments and PIE data.« less
The ZPIC educational code suite
NASA Astrophysics Data System (ADS)
Calado, R.; Pardal, M.; Ninhos, P.; Helm, A.; Mori, W. B.; Decyk, V. K.; Vieira, J.; Silva, L. O.; Fonseca, R. A.
2017-10-01
Particle-in-Cell (PIC) codes are used in almost all areas of plasma physics, such as fusion energy research, plasma accelerators, space physics, ion propulsion, and plasma processing, and many other areas. In this work, we present the ZPIC educational code suite, a new initiative to foster training in plasma physics using computer simulations. Leveraging on our expertise and experience from the development and use of the OSIRIS PIC code, we have developed a suite of 1D/2D fully relativistic electromagnetic PIC codes, as well as 1D electrostatic. These codes are self-contained and require only a standard laptop/desktop computer with a C compiler to be run. The output files are written in a new file format called ZDF that can be easily read using the supplied routines in a number of languages, such as Python, and IDL. The code suite also includes a number of example problems that can be used to illustrate several textbook and advanced plasma mechanisms, including instructions for parameter space exploration. We also invite contributions to this repository of test problems that will be made freely available to the community provided the input files comply with the format defined by the ZPIC team. The code suite is freely available and hosted on GitHub at https://github.com/zambzamb/zpic. Work partially supported by PICKSC.
Aerodynamic and heat transfer analysis of the low aspect ratio turbine
NASA Astrophysics Data System (ADS)
Sharma, O. P.; Nguyen, P.; Ni, R. H.; Rhie, C. M.; White, J. A.
1987-06-01
The available two- and three-dimensional codes are used to estimate external heat loads and aerodynamic characteristics of a highly loaded turbine stage in order to demonstrate state-of-the-art methodologies in turbine design. By using data for a low aspect ratio turbine, it is found that a three-dimensional multistage Euler code gives good averall predictions for the turbine stage, yielding good estimates of the stage pressure ratio, mass flow, and exit gas angles. The nozzle vane loading distribution is well predicted by both the three-dimensional multistage Euler and three-dimensional Navier-Stokes codes. The vane airfoil surface Stanton number distributions, however, are underpredicted by both two- and three-dimensional boundary value analysis.
An Idealized, Single Radial Swirler, Lean-Direct-Injection (LDI) Concept Meshing Script
NASA Technical Reports Server (NTRS)
Iannetti, Anthony C.; Thompson, Daniel
2008-01-01
To easily study combustor design parameters using computational fluid dynamics codes (CFD), a Gridgen Glyph-based macro (based on the Tcl scripting language) dubbed BladeMaker has been developed for the meshing of an idealized, single radial swirler, lean-direct-injection (LDI) combustor. BladeMaker is capable of taking in a number of parameters, such as blade width, blade tilt with respect to the perpendicular, swirler cup radius, and grid densities, and producing a three-dimensional meshed radial swirler with a can-annular (canned) combustor. This complex script produces a data format suitable for but not specific to the National Combustion Code (NCC), a state-of-the-art CFD code developed for reacting flow processes.
A denoising algorithm for CT image using low-rank sparse coding
NASA Astrophysics Data System (ADS)
Lei, Yang; Xu, Dong; Zhou, Zhengyang; Wang, Tonghe; Dong, Xue; Liu, Tian; Dhabaan, Anees; Curran, Walter J.; Yang, Xiaofeng
2018-03-01
We propose a denoising method of CT image based on low-rank sparse coding. The proposed method constructs an adaptive dictionary of image patches and estimates the sparse coding regularization parameters using the Bayesian interpretation. A low-rank approximation approach is used to simultaneously construct the dictionary and achieve sparse representation through clustering similar image patches. A variable-splitting scheme and a quadratic optimization are used to reconstruct CT image based on achieved sparse coefficients. We tested this denoising technology using phantom, brain and abdominal CT images. The experimental results showed that the proposed method delivers state-of-art denoising performance, both in terms of objective criteria and visual quality.
NASA Astrophysics Data System (ADS)
Mishra, Rohini
Present ultra high power lasers are capable of producing high energy density (HED) plasmas, in controlled way, with a density greater than solid density and at a high temperature of keV (1 keV ˜ 11,000,000° K). Matter in such extreme states is particularly interesting for (HED) physics such as laboratory studies of planetary and stellar astrophysics, laser fusion research, pulsed neutron source etc. To date however, the physics in HED plasma, especially, the energy transport, which is crucial to realize applications, has not been understood well. Intense laser produced plasmas are complex systems involving two widely distinct temperature distributions and are difficult to model by a single approach. Both kinetic and collisional process are equally important to understand an entire process of laser-solid interaction. By implementing atomic physics models, such as collision, ionization, and radiation damping, self consistently, in state-of-the-art particle-in-cell code (PICLS) has enabled to explore the physics involved in the HED plasmas. Laser absorption, hot electron transport, and isochoric heating physics in laser produced hot dense plasmas are studied with a help of PICLS simulations. In particular, a novel mode of electron acceleration, namely DC-ponderomotive acceleration, is identified in the super intense laser regime which plays an important role in the coupling of laser energy to a dense plasma. Geometric effects on hot electron transport and target heating processes are examined in the reduced mass target experiments. Further, pertinent to fast ignition, laser accelerated fast electron divergence and transport in the experiments using warm dense matter (low temperature plasma) is characterized and explained.
I-NERI Quarterly Technical Report (April 1 to June 30, 2005)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang Oh; Prof. Hee Cheon NO; Prof. John Lee
2005-06-01
The objective of this Korean/United States/laboratory/university collaboration is to develop new advanced computational methods for safety analysis codes for very-high-temperature gas-cooled reactors (VHTGRs) and numerical and experimental validation of these computer codes. This study consists of five tasks for FY-03: (1) development of computational methods for the VHTGR, (2) theoretical modification of aforementioned computer codes for molecular diffusion (RELAP5/ATHENA) and modeling CO and CO2 equilibrium (MELCOR), (3) development of a state-of-the-art methodology for VHTGR neutronic analysis and calculation of accurate power distributions and decay heat deposition rates, (4) reactor cavity cooling system experiment, and (5) graphite oxidation experiment. Second quartermore » of Year 3: (A) Prof. NO and Kim continued Task 1. As a further plant application of GAMMA code, we conducted two analyses: IAEA GT-MHR benchmark calculation for LPCC and air ingress analysis for PMR 600MWt. The GAMMA code shows comparable peak fuel temperature trend to those of other country codes. The analysis results for air ingress show much different trend from that of previous PBR analysis: later onset of natural circulation and less significant rise in graphite temperature. (B) Prof. Park continued Task 2. We have designed new separate effect test device having same heat transfer area and different diameter and total number of U-bands of air cooling pipe. New design has smaller pressure drop in the air cooling pipe than the previous one as designed with larger diameter and less number of U-bands. With the device, additional experiments have been performed to obtain temperature distributions of the water tank, the surface and the center of cooling pipe on axis. The results will be used to optimize the design of SNU-RCCS. (C) Prof. NO continued Task 3. The experimental work of air ingress is going on without any concern: With nuclear graphite IG-110, various kinetic parameters and reaction rates for the C/CO2 reaction were measured. Then, the rates of C/CO2 reaction were compared to the ones of C/O2 reaction. The rate equation for C/CO2 has been developed. (D) INL added models to RELAP5/ATHENA to cacilate the chemical reactions in a VHTR during an air ingress accident. Limited testing of the models indicate that they are calculating a correct special distribution in gas compositions. (E) INL benchmarked NACOK natural circulation data. (F) Professor Lee et al at the University of Michigan (UM) Task 5. The funding was received from the DOE Richland Office at the end of May and the subcontract paperwork was delivered to the UM on the sixth of June. The objective of this task is to develop a state of the art neutronics model for determining power distributions and decay heat deposition rates in a VHTGR core. Our effort during the reporting period covered reactor physics analysis of coated particles and coupled nuclear-thermal-hydraulic (TH) calculations, together with initial calculations for decay heat deposition rates in the core.« less
The adaption and use of research codes for performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liebetrau, A.M.
1987-05-01
Models of real-world phenomena are developed for many reasons. The models are usually, if not always, implemented in the form of a computer code. The characteristics of a code are determined largely by its intended use. Realizations or implementations of detailed mathematical models of complex physical and/or chemical processes are often referred to as research or scientific (RS) codes. Research codes typically require large amounts of computing time. One example of an RS code is a finite-element code for solving complex systems of differential equations that describe mass transfer through some geologic medium. Considerable computing time is required because computationsmore » are done at many points in time and/or space. Codes used to evaluate the overall performance of real-world physical systems are called performance assessment (PA) codes. Performance assessment codes are used to conduct simulated experiments involving systems that cannot be directly observed. Thus, PA codes usually involve repeated simulations of system performance in situations that preclude the use of conventional experimental and statistical methods. 3 figs.« less
Techniques and implementation of the embedded rule-based expert system using Ada
NASA Technical Reports Server (NTRS)
Liberman, Eugene M.; Jones, Robert E.
1991-01-01
Ada is becoming an increasingly popular programming language for large Government-funded software projects. Ada with its portability, transportability, and maintainability lends itself well to today's complex programming environment. In addition, expert systems have also assured a growing role in providing human-like reasoning capability and expertise for computer systems. The integration of expert system technology with Ada programming language, specifically a rule-based expert system using an ART-Ada (Automated Reasoning Tool for Ada) system shell is discussed. The NASA Lewis Research Center was chosen as a beta test site for ART-Ada. The test was conducted by implementing the existing Autonomous Power EXpert System (APEX), a Lisp-base power expert system, in ART-Ada. Three components, the rule-based expert system, a graphics user interface, and communications software make up SMART-Ada (Systems fault Management with ART-Ada). The main objective, to conduct a beta test on the ART-Ada rule-based expert system shell, was achieved. The system is operational. New Ada tools will assist in future successful projects. ART-Ada is one such tool and is a viable alternative to the straight Ada code when an application requires a rule-based or knowledge-based approach.
Digitized forensics: retaining a link between physical and digital crime scene traces using QR-codes
NASA Astrophysics Data System (ADS)
Hildebrandt, Mario; Kiltz, Stefan; Dittmann, Jana
2013-03-01
The digitization of physical traces from crime scenes in forensic investigations in effect creates a digital chain-of-custody and entrains the challenge of creating a link between the two or more representations of the same trace. In order to be forensically sound, especially the two security aspects of integrity and authenticity need to be maintained at all times. Especially the adherence to the authenticity using technical means proves to be a challenge at the boundary between the physical object and its digital representations. In this article we propose a new method of linking physical objects with its digital counterparts using two-dimensional bar codes and additional meta-data accompanying the acquired data for integration in the conventional documentation of collection of items of evidence (bagging and tagging process). Using the exemplary chosen QR-code as particular implementation of a bar code and a model of the forensic process, we also supply a means to integrate our suggested approach into forensically sound proceedings as described by Holder et al.1 We use the example of the digital dactyloscopy as a forensic discipline, where currently progress is being made by digitizing some of the processing steps. We show an exemplary demonstrator of the suggested approach using a smartphone as a mobile device for the verification of the physical trace to extend the chain-of-custody from the physical to the digital domain. Our evaluation of the demonstrator is performed towards the readability and the verification of its contents. We can read the bar code despite its limited size of 42 x 42 mm and rather large amount of embedded data using various devices. Furthermore, the QR-code's error correction features help to recover contents of damaged codes. Subsequently, our appended digital signature allows for detecting malicious manipulations of the embedded data.
A Comprehensive Validation Approach Using The RAVEN Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua J
2015-06-01
The RAVEN computer code , developed at the Idaho National Laboratory, is a generic software framework to perform parametric and probabilistic analysis based on the response of complex system codes. RAVEN is a multi-purpose probabilistic and uncertainty quantification platform, capable to communicate with any system code. A natural extension of the RAVEN capabilities is the imple- mentation of an integrated validation methodology, involving several different metrics, that represent an evolution of the methods currently used in the field. The state-of-art vali- dation approaches use neither exploration of the input space through sampling strategies, nor a comprehensive variety of metrics neededmore » to interpret the code responses, with respect experimental data. The RAVEN code allows to address both these lacks. In the following sections, the employed methodology, and its application to the newer developed thermal-hydraulic code RELAP-7, is reported.The validation approach has been applied on an integral effect experiment, representing natu- ral circulation, based on the activities performed by EG&G Idaho. Four different experiment configurations have been considered and nodalized.« less
Symplectic multi-particle tracking on GPUs
NASA Astrophysics Data System (ADS)
Liu, Zhicong; Qiang, Ji
2018-05-01
A symplectic multi-particle tracking model is implemented on the Graphic Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) language. The symplectic tracking model can preserve phase space structure and reduce non-physical effects in long term simulation, which is important for beam property evaluation in particle accelerators. Though this model is computationally expensive, it is very suitable for parallelization and can be accelerated significantly by using GPUs. In this paper, we optimized the implementation of the symplectic tracking model on both single GPU and multiple GPUs. Using a single GPU processor, the code achieves a factor of 2-10 speedup for a range of problem sizes compared with the time on a single state-of-the-art Central Processing Unit (CPU) node with similar power consumption and semiconductor technology. It also shows good scalability on a multi-GPU cluster at Oak Ridge Leadership Computing Facility. In an application to beam dynamics simulation, the GPU implementation helps save more than a factor of two total computing time in comparison to the CPU implementation.
System Mass Variation and Entropy Generation in 100k We Closed-Brayton-Cycle Space Power Systems
NASA Technical Reports Server (NTRS)
Barrett, Michael J.; Reid, Bryan M.
2004-01-01
State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9, and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72 percent He at 1.38 MPa peak and 94 percent He at 3.0 MPa peak showed an increase in system mass of 14 percent. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.
Active-duty military service members’ visual representations of PTSD and TBI in masks
Walker, Melissa S.; Kaimal, Girija; Gonzaga, Adele M. L.; Myers-Coffman, Katherine A.; DeGraba, Thomas J.
2017-01-01
ABSTRACT Active-duty military service members have a significant risk of sustaining physical and psychological trauma resulting in traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD). Within an interdisciplinary treatment approach at the National Intrepid Center of Excellence, service members participated in mask making during art therapy sessions. This study presents an analysis of the mask-making experiences of service members (n = 370) with persistent symptoms from combat- and mission-related TBI, PTSD, and other concurrent mood issues. Data sources included mask images and therapist notes collected over a five-year period. The data were coded and analyzed using grounded theory methods. Findings indicated that mask making offered visual representations of the self related to individual personhood, relationships, community, and society. Imagery themes referenced the injury, relational supports/losses, identity transitions/questions, cultural metaphors, existential reflections, and conflicted sense of self. These visual insights provided an increased understanding of the experiences of service members, facilitating their recovery. PMID:28452610
System Mass Variation and Entropy Generation in 100-kWe Closed-Brayton-Cycle Space Power Systems
NASA Technical Reports Server (NTRS)
Barrett, Michael J.; Reid, Bryan M.
2004-01-01
State-of-the-art closed-Brayton-cycle (CBC) space power systems were modeled to study performance trends in a trade space characteristic of interplanetary orbiters. For working-fluid molar masses of 48.6, 39.9, and 11.9 kg/kmol, peak system pressures of 1.38 and 3.0 MPa and compressor pressure ratios ranging from 1.6 to 2.4, total system masses were estimated. System mass increased as peak operating pressure increased for all compressor pressure ratios and molar mass values examined. Minimum mass point comparison between 72 percent He at 1.38 MPa peak and 94 percent He at 3.0 MPa peak showed an increase in system mass of 14 percent. Converter flow loop entropy generation rates were calculated for 1.38 and 3.0 MPa peak pressure cases. Physical system behavior was approximated using a pedigreed NASA Glenn modeling code, Closed Cycle Engine Program (CCEP), which included realistic performance prediction for heat exchangers, radiators and turbomachinery.
Proceedings of the 2004 NASA/ONR Circulation Control Workshop, Part 1
NASA Technical Reports Server (NTRS)
Jones, Gregory S. (Editor); Joslin, Ronald D. (Editor)
2005-01-01
As technological advances influence the efficiency and effectiveness of aerodynamic and hydrodynamic applications, designs and operations, this workshop was intended to address the technologies, systems, challenges and successes specific to Coanda driven circulation control in aerodynamics and hydrodynamics. A major goal of this workshop was to determine the 2004 state-of-the-art in circulation control and understand the roadblocks to its application. The workshop addressed applications, CFD, and experiments related to circulation control, emphasizing fundamental physics, systems analysis, and applied research. The workshop consisted of 34 single session oral presentations and written papers that focused on Naval hydrodynamic vehicles (e.g. submarines), Fixed Wing Aviation, V/STOL platforms, propulsion systems (including wind turbine systems), ground vehicles (automotive and trucks) and miscellaneous applications (e.g., poultry exhaust systems and vacuum systems). Several advanced CFD codes were benchmarked using a two-dimensional NCCR circulation control airfoil. The CFD efforts highlighted inconsistencies in turbulence modeling, separation and performance predictions.
Active-duty military service members' visual representations of PTSD and TBI in masks.
Walker, Melissa S; Kaimal, Girija; Gonzaga, Adele M L; Myers-Coffman, Katherine A; DeGraba, Thomas J
2017-12-01
Active-duty military service members have a significant risk of sustaining physical and psychological trauma resulting in traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD). Within an interdisciplinary treatment approach at the National Intrepid Center of Excellence, service members participated in mask making during art therapy sessions. This study presents an analysis of the mask-making experiences of service members (n = 370) with persistent symptoms from combat- and mission-related TBI, PTSD, and other concurrent mood issues. Data sources included mask images and therapist notes collected over a five-year period. The data were coded and analyzed using grounded theory methods. Findings indicated that mask making offered visual representations of the self related to individual personhood, relationships, community, and society. Imagery themes referenced the injury, relational supports/losses, identity transitions/questions, cultural metaphors, existential reflections, and conflicted sense of self. These visual insights provided an increased understanding of the experiences of service members, facilitating their recovery.
Advanced Computational Methods for Monte Carlo Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
This course is intended for graduate students who already have a basic understanding of Monte Carlo methods. It focuses on advanced topics that may be needed for thesis research, for developing new state-of-the-art methods, or for working with modern production Monte Carlo codes.
The GBS code for tokamak scrape-off layer simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halpern, F.D., E-mail: federico.halpern@epfl.ch; Ricci, P.; Jolliet, S.
2016-06-15
We describe a new version of GBS, a 3D global, flux-driven plasma turbulence code to simulate the turbulent dynamics in the tokamak scrape-off layer (SOL), superseding the code presented by Ricci et al. (2012) [14]. The present work is driven by the objective of studying SOL turbulent dynamics in medium size tokamaks and beyond with a high-fidelity physics model. We emphasize an intertwining framework of improved physics models and the computational improvements that allow them. The model extensions include neutral atom physics, finite ion temperature, the addition of a closed field line region, and a non-Boussinesq treatment of the polarizationmore » drift. GBS has been completely refactored with the introduction of a 3-D Cartesian communicator and a scalable parallel multigrid solver. We report dramatically enhanced parallel scalability, with the possibility of treating electromagnetic fluctuations very efficiently. The method of manufactured solutions as a verification process has been carried out for this new code version, demonstrating the correct implementation of the physical model.« less
Progress towards understanding and predicting convection heat transfer in the turbine gas path
NASA Technical Reports Server (NTRS)
Simoneau, Robert J.; Simon, Frederick F.
1992-01-01
A new era is drawing in the ability to predict convection heat transfer in the turbine gas path. We feel that the technical community now has the capability to mount a major assault on this problem, which has eluded significant progress for a long time. We hope to make a case for this bold statement by reviewing the state of the art in three major heat transfer, configuration-specific experiments, whose data have provided the big picture and guided both the fundamental modeling research and the code development. Following that, we review progress and directions in the development of computer codes to predict turbine gas path heat transfer. Finally, we cite examples and make observations on the more recent efforts to do all this work in a simultaneous, interactive, and more synergistic manner. We conclude with an assessment of progress, suggestions for how to use the current state of the art, and recommendations for the future.
Enhanced Verification Test Suite for Physics Simulation Codes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamm, J R; Brock, J S; Brandon, S T
2008-10-10
This document discusses problems with which to augment, in quantity and in quality, the existing tri-laboratory suite of verification problems used by Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories (SNL). The purpose of verification analysis is demonstrate whether the numerical results of the discretization algorithms in physics and engineering simulation codes provide correct solutions of the corresponding continuum equations. The key points of this document are: (1) Verification deals with mathematical correctness of the numerical algorithms in a code, while validation deals with physical correctness of a simulation in a regime of interest.more » This document is about verification. (2) The current seven-problem Tri-Laboratory Verification Test Suite, which has been used for approximately five years at the DOE WP laboratories, is limited. (3) Both the methodology for and technology used in verification analysis have evolved and been improved since the original test suite was proposed. (4) The proposed test problems are in three basic areas: (a) Hydrodynamics; (b) Transport processes; and (c) Dynamic strength-of-materials. (5) For several of the proposed problems we provide a 'strong sense verification benchmark', consisting of (i) a clear mathematical statement of the problem with sufficient information to run a computer simulation, (ii) an explanation of how the code result and benchmark solution are to be evaluated, and (iii) a description of the acceptance criterion for simulation code results. (6) It is proposed that the set of verification test problems with which any particular code be evaluated include some of the problems described in this document. Analysis of the proposed verification test problems constitutes part of a necessary--but not sufficient--step that builds confidence in physics and engineering simulation codes. More complicated test cases, including physics models of greater sophistication or other physics regimes (e.g., energetic material response, magneto-hydrodynamics), would represent a scientifically desirable complement to the fundamental test cases discussed in this report. The authors believe that this document can be used to enhance the verification analyses undertaken at the DOE WP Laboratories and, thus, to improve the quality, credibility, and usefulness of the simulation codes that are analyzed with these problems.« less
New Physical Constraints for Multi-Frame Blind Deconvolution
2014-12-10
Laboratory) Dr. Julian Christou (Large Binocular Telescope Observatory) REAL ACADEMIA DE CIENCIAS Y ARTES DE BARCELONA RAMBLA DE LOS ESTUDIOS 115... CIENCIAS Y ARTES DE BARCELONA RAMBLA DE LOS ESTUDIOS 115 BARCELONA, 08002 SPAIN 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING
ERIC Educational Resources Information Center
Online-Offline, 1998
1998-01-01
This theme issue on recreation includes annotated listings of Web sites, CD-ROMs, computer software, videos, books, magazines, and professional resources that deal with recreation for K-8 language arts, art/architecture, music/dance, science, math, social studies, and health/physical education. Sidebars discuss fun and games, recess recreation,…
Twenty Years of Symbiosis Between Art and Science
ERIC Educational Resources Information Center
Reichardt, Jasia
1974-01-01
During the past two decades advances in biology, nuclear physics, computer and material sciences, and audiovisual engineering have brought a radically new dimension to most art forms and have stimulated the artist and his innovations to breath-taking levels of achievement. (Editor/JR)
Implementing the Full-Day Kindergarten.
ERIC Educational Resources Information Center
Fromberg, Doris Pronin
1992-01-01
Considerations ranging from lunch counter heights to bus schedules, parent workshops, and adjustment periods must concern principals implementing full-day kindergartens. Many schools will also face doubled art supply budgets and increased staffing costs for specialized library, physical education, music, and art education services. (four…
Teaching Reading in the Secondary School: A Bibliography.
ERIC Educational Resources Information Center
Narang, H. L.
This bibliography of articles, books, and ERIC documents related to reading in the secondary school is divided into eleven sections: general, art, business education, English, industrial arts and vocational education, foreign languages, health and physical education, mathematics, music, science, and social studies. (AA)
Participatory Arts for Older Adults: A Review of Benefits and Challenges
Noice, Tony; Noice, Helga; Kramer, Arthur F.
2014-01-01
This article reviews the scientific literature on the enhancement of healthy aging in older adults through active participation in the arts. Methodologies and conclusions are described for studies of dance, expressive writing, music (singing and instrumental), theatre arts, and visual arts including documentation of mental/physical improvements in memory, creativity, problem solving, everyday competence, reaction time, balance/gait, and quality of life. In addition to these gains in measures of successful aging, the article also provides (in a Supplementary Appendix) some selected examples of arts engagement for remedial purposes. Finally, it offers suggestions for expanding inquiry into this underinvestigated corner of aging research. PMID:24336875
Army Communicator. Volume 36, Number 1, Spring 2011
2011-01-01
Contents Voice of the Signal Regiment Art Director/Illustrator Billy Cheney Photography Billy Cheney, Larry Edmond Cover: Warrant officers come from...standing on two arrows, which symbolize the military arts and sciences. The eagle rising is enclosed within a wreath. Warrant officers of the Tank...255A MOS are not knowledge managers. Our 255A are techni- cal officers who operate in the art , skill, and physical realm. They use practical
NASA Astrophysics Data System (ADS)
Ali, Amjad; Shabbir Naz, G.; Saleem Shahzad, M.; Kouser, R.; Aman-ur-Rehman; Nasim, M. H.
2018-03-01
The energy states of the bound electrons in high energy density systems (HEDS) are significantly affected due to the electric field of the neighboring ions. Due to this effect bound electrons require less energy to get themselves free and move into the continuum. This phenomenon of reduction in potential is termed as ionization potential depression (IPD) or the continuum lowering (CL). The foremost parameter to depict this change is the average charge state, therefore accurate modeling for CL is imperative in modeling atomic data for computation of radiative and thermodynamic properties of HEDS. In this paper, we present an improved model of CL in the screened hydrogenic model with l-splitting (SHML) proposed by G. Faussurier and C. Blancard, P. Renaudin [High Energy Density Physics 4 (2008) 114] and its effect on average charge state. We propose the level charge dependent calculation of CL potential energy and inclusion of exchange and correlation energy in SHML. By doing this, we made our model more relevant to HEDS and free from CL empirical parameter to the plasma environment. We have implemented both original and modified model of SHML in our code named OPASH and benchmark our results with experiments and other state-of-the-art simulation codes. We compared our results of average charge state for Carbon, Beryllium, Aluminum, Iron and Germanium against published literature and found a very reasonable agreement between them.
Representations of Lancet or Phlebotome in Serbian Medieval Art.
Pajić, Sanja; Jurišić, Vladimir
2015-01-01
The topic of this study are representations of lancet or phlebotome in frescoes and icons of Serbian medieval art. The very presence of this medical instrument in Serbian medieval art indicates its usage in Serbian medical practices of the time. Phlebotomy is one of the oldest forms of therapy, widely spread in medieval times. It is also mentioned in Serbian medical texts, such as Chilandar Medical CodexNo. 517 and Hodoch code, i.e. translations from Latin texts originating from Salerno-Montpellier school. Lancet or phlebotome is identified based on archaeological finds from the Roman period, while finds from the Middle Ages and especially from Byzantium have been scarce. Analyses of preserved frescoes and icons has shown that, in comparison to other medical instruments, lancet is indeed predominant in Serbian medieval art, and that it makes for over 80% of all the representations, while other instruments have been depicted to a far lesser degree. Examination of written records and art points to the conclusion that Serbian medieval medicine, both in theory and in practice, belonged entirely to European traditions of the period.
Gontier, Félix; Lagrange, Mathieu; Can, Arnaud; Lavandier, Catherine
2017-01-01
The spreading of urban areas and the growth of human population worldwide raise societal and environmental concerns. To better address these concerns, the monitoring of the acoustic environment in urban as well as rural or wilderness areas is an important matter. Building on the recent development of low cost hardware acoustic sensors, we propose in this paper to consider a sensor grid approach to tackle this issue. In this kind of approach, the crucial question is the nature of the data that are transmitted from the sensors to the processing and archival servers. To this end, we propose an efficient audio coding scheme based on third octave band spectral representation that allows: (1) the estimation of standard acoustic indicators; and (2) the recognition of acoustic events at state-of-the-art performance rate. The former is useful to provide quantitative information about the acoustic environment, while the latter is useful to gather qualitative information and build perceptually motivated indicators using for example the emergence of a given sound source. The coding scheme is also demonstrated to transmit spectrally encoded data that, reverted to the time domain using state-of-the-art techniques, are not intelligible, thus protecting the privacy of citizens. PMID:29186021
ERIC Educational Resources Information Center
Dauenhauer, Brian; Krause, Jennifer; Douglas, Scott; Smith, Mark; Stellino, Megan Babkes
2017-01-01
In response to calls on physical education teacher education (PETE) programs to better prepare teachers for a broadened role in school-based physical activity promotion, the University of Northern Colorado has recently established a Master of Arts in teaching physical education and physical activity leadership (MAT PE-PAL) degree. The…
Study of no-man's land physics in the total-f gyrokinetic code XGC1
NASA Astrophysics Data System (ADS)
Ku, Seung Hoe; Chang, C. S.; Lang, J.
2014-10-01
While the ``transport shortfall'' in the ``no-man's land'' has been observed often in delta-f codes, it has not yet been observed in the global total-f gyrokinetic particle code XGC1. Since understanding the interaction between the edge and core transport appears to be a critical element in the prediction for ITER performance, understanding the no-man's land issue is an important physics research topic. Simulation results using the Holland case will be presented and the physics causing the shortfall phenomenon will be discussed. Nonlinear nonlocal interaction of turbulence, secondary flows, and transport appears to be the key.
Blue, Stanley
2017-07-01
This paper is concerned with the establishment, maintenance, and decline of physical exercise practices. Drawing on experiences and observations taken from a carnal ethnography and rhythmanalysis of the practices involved in training in Mixed Martial Arts (MMA), I argue that maintaining this physical exercise practice is not straightforwardly an outcome of individual commitment, access to facilities, or the availability of free time. It rather depends on the synchronisation of practices: those of MMA, those that support MMA, and those that more broadly make up everyday life. This research suggests that increasing rates of physical activity might be better fostered through facilitating the integration of combinations of healthy activities into everyday life. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BRISC is a developmental prototype for a nextgeneration systems-level integrated performance and safety code (IPSC) for nuclear reactors. Its development served to demonstrate how a lightweight multi-physics coupling approach can be used to tightly couple the physics models in several different physics codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled burner nuclear reactor. For example, the RIO Fluid Flow and Heat transfer code developed at Sandia (SNL: Chris Moen, Dept. 08005) is used in BRISC to model fluid flow and heat transfer, as well as conduction heat transfermore » in solids. Because BRISC is a prototype, its most practical application is as a foundation or starting point for developing a true production code. The sub-codes and the associated models and correlations currently employed within BRISC were chosen to cover the required application space and demonstrate feasibility, but were not optimized or validated against experimental data within the context of their use in BRISC.« less
ecode - Electron Transport Algorithm Testing v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franke, Brian C.; Olson, Aaron J.; Bruss, Donald Eugene
2016-10-05
ecode is a Monte Carlo code used for testing algorithms related to electron transport. The code can read basic physics parameters, such as energy-dependent stopping powers and screening parameters. The code permits simple planar geometries of slabs or cubes. Parallelization consists of domain replication, with work distributed at the start of the calculation and statistical results gathered at the end of the calculation. Some basic routines (such as input parsing, random number generation, and statistics processing) are shared with the Integrated Tiger Series codes. A variety of algorithms for uncertainty propagation are incorporated based on the stochastic collocation and stochasticmore » Galerkin methods. These permit uncertainty only in the total and angular scattering cross sections. The code contains algorithms for simulating stochastic mixtures of two materials. The physics is approximate, ranging from mono-energetic and isotropic scattering to screened Rutherford angular scattering and Rutherford energy-loss scattering (simple electron transport models). No production of secondary particles is implemented, and no photon physics is implemented.« less
A finite-element toolbox for the stationary Gross-Pitaevskii equation with rotation
NASA Astrophysics Data System (ADS)
Vergez, Guillaume; Danaila, Ionut; Auliac, Sylvain; Hecht, Frédéric
2016-12-01
We present a new numerical system using classical finite elements with mesh adaptivity for computing stationary solutions of the Gross-Pitaevskii equation. The programs are written as a toolbox for FreeFem++ (www.freefem.org), a free finite-element software available for all existing operating systems. This offers the advantage to hide all technical issues related to the implementation of the finite element method, allowing to easily code various numerical algorithms. Two robust and optimized numerical methods were implemented to minimize the Gross-Pitaevskii energy: a steepest descent method based on Sobolev gradients and a minimization algorithm based on the state-of-the-art optimization library Ipopt. For both methods, mesh adaptivity strategies are used to reduce the computational time and increase the local spatial accuracy when vortices are present. Different run cases are made available for 2D and 3D configurations of Bose-Einstein condensates in rotation. An optional graphical user interface is also provided, allowing to easily run predefined cases or with user-defined parameter files. We also provide several post-processing tools (like the identification of quantized vortices) that could help in extracting physical features from the simulations. The toolbox is extremely versatile and can be easily adapted to deal with different physical models.
Liu, Shuo; Cui, Tie Jun; Zhang, Lei; Xu, Quan; Wang, Qiu; Wan, Xiang; Gu, Jian Qiang; Tang, Wen Xuan; Qing Qi, Mei; Han, Jia Guang; Zhang, Wei Li; Zhou, Xiao Yang; Cheng, Qiang
2016-10-01
The concept of coding metasurface makes a link between physically metamaterial particles and digital codes, and hence it is possible to perform digital signal processing on the coding metasurface to realize unusual physical phenomena. Here, this study presents to perform Fourier operations on coding metasurfaces and proposes a principle called as scattering-pattern shift using the convolution theorem, which allows steering of the scattering pattern to an arbitrarily predesigned direction. Owing to the constant reflection amplitude of coding particles, the required coding pattern can be simply achieved by the modulus of two coding matrices. This study demonstrates that the scattering patterns that are directly calculated from the coding pattern using the Fourier transform have excellent agreements to the numerical simulations based on realistic coding structures, providing an efficient method in optimizing coding patterns to achieve predesigned scattering beams. The most important advantage of this approach over the previous schemes in producing anomalous single-beam scattering is its flexible and continuous controls to arbitrary directions. This work opens a new route to study metamaterial from a fully digital perspective, predicting the possibility of combining conventional theorems in digital signal processing with the coding metasurface to realize more powerful manipulations of electromagnetic waves.
Exploiting Thread Parallelism for Ocean Modeling on Cray XC Supercomputers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarje, Abhinav; Jacobsen, Douglas W.; Williams, Samuel W.
The incorporation of increasing core counts in modern processors used to build state-of-the-art supercomputers is driving application development towards exploitation of thread parallelism, in addition to distributed memory parallelism, with the goal of delivering efficient high-performance codes. In this work we describe the exploitation of threading and our experiences with it with respect to a real-world ocean modeling application code, MPAS-Ocean. We present detailed performance analysis and comparisons of various approaches and configurations for threading on the Cray XC series supercomputers.
Rotor wake characteristics of a transonic axial flow fan
NASA Technical Reports Server (NTRS)
Hathaway, M. D.; Gertz, J.; Epstein, A.; Strazisar, A. J.
1985-01-01
State of the art turbomachinery flow analysis codes are not capable of predicting the viscous flow features within turbomachinery blade wakes. Until efficient 3D viscous flow analysis codes become a reality there is therefore a need for models which can describe the generation and transport of blade wakes and the mixing process within the wake. To address the need for experimental data to support the development of such models, high response pressure measurements and laser anemometer velocity measurements were obtained in the wake of a transonic axial flow fan rotor.
NASA Astrophysics Data System (ADS)
2006-03-01
WE RECOMMEND It’s About Time: Understanding Einstein’s Relativity An excellent novel explanation of special relativity. The Plane Factory A great way to make projects more quantitative. Spacesaver Microvoltmeter This meter is robust, portable and covers a good range of voltages. Cassell’s Laws of Nature This book covers everything that governs our physical universe. J D Bernal: The Sage of Science Awell researched biography that is hard to put down. AS-Level Physics: The Revision Guide A very good, reasonably priced revision guide. WORTH A LOOK Symmetry and the Beautiful Universe This book on modern physics is fairly readable but a bit haphazard. HANDLE WITH CARE Hover Football An inferior and cheaper version of the Kick Dis. art & science Art students will get more out of this than physics students. WEB WATCH Practicalphysics.org is an excellent site, packed with useful tips and instructions for practical physics experiments. Louisa Jones describes her favourite websites about waves
ERIC Educational Resources Information Center
Keener, Paul L.
Capitalizing on the resources available in an urban city block, this resource guide for the emotionally handicapped (K-6) presents a resource list and objectives and activities relative to teaching language arts (reading, English, listening, speaking, and writing). The resource list is comprised of approximately 150 physical facilities (e.g.,…
34 CFR 600.5 - Proprietary institution of higher education.
Code of Federal Regulations, 2013 CFR
2013-07-01
...-designed programs, individualized programs, and unstructured studies: (1) A program that is a structured combination of the arts, biological and physical sciences, social sciences, and humanities, emphasizing breadth of study. (2) An undifferentiated program that includes instruction in the general arts or general...
34 CFR 600.5 - Proprietary institution of higher education.
Code of Federal Regulations, 2014 CFR
2014-07-01
...-designed programs, individualized programs, and unstructured studies: (1) A program that is a structured combination of the arts, biological and physical sciences, social sciences, and humanities, emphasizing breadth of study. (2) An undifferentiated program that includes instruction in the general arts or general...
34 CFR 600.5 - Proprietary institution of higher education.
Code of Federal Regulations, 2011 CFR
2011-07-01
...-designed programs, individualized programs, and unstructured studies: (1) A program that is a structured combination of the arts, biological and physical sciences, social sciences, and humanities, emphasizing breadth of study. (2) An undifferentiated program that includes instruction in the general arts or general...
34 CFR 600.5 - Proprietary institution of higher education.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-designed programs, individualized programs, and unstructured studies: (1) A program that is a structured combination of the arts, biological and physical sciences, social sciences, and humanities, emphasizing breadth of study. (2) An undifferentiated program that includes instruction in the general arts or general...
Storytelling Figures: A Pueblo Tradition.
ERIC Educational Resources Information Center
Kraus, Nancy
1997-01-01
In a collaborative unit on pueblo storytelling figures involving art, music, language arts, and physical education, a teacher describes how she helped second graders understand the Pueblo pottery tradition by reading aloud literature covering the past and present. Lists folklore, fiction, poetry, nonfiction, professional resources, videos, CDs,…
Austin ISD. Integrated Lesson Plans.
ERIC Educational Resources Information Center
East Texas State Univ., Commerce. Educational Development and Training Center.
This packet contains 14 lesson plans for integrated academic and vocational education courses. Lesson plans for the following courses are included: integrated physics and principles of technology; algebra and principles of technology; principles of technology, language arts, and economics; physics and industrial electronics; physics and…
NASA Technical Reports Server (NTRS)
Watson, Andrew B.
1990-01-01
All vision systems, both human and machine, transform the spatial image into a coded representation. Particular codes may be optimized for efficiency or to extract useful image features. Researchers explored image codes based on primary visual cortex in man and other primates. Understanding these codes will advance the art in image coding, autonomous vision, and computational human factors. In cortex, imagery is coded by features that vary in size, orientation, and position. Researchers have devised a mathematical model of this transformation, called the Hexagonal oriented Orthogonal quadrature Pyramid (HOP). In a pyramid code, features are segregated by size into layers, with fewer features in the layers devoted to large features. Pyramid schemes provide scale invariance, and are useful for coarse-to-fine searching and for progressive transmission of images. The HOP Pyramid is novel in three respects: (1) it uses a hexagonal pixel lattice, (2) it uses oriented features, and (3) it accurately models most of the prominent aspects of primary visual cortex. The transform uses seven basic features (kernels), which may be regarded as three oriented edges, three oriented bars, and one non-oriented blob. Application of these kernels to non-overlapping seven-pixel neighborhoods yields six oriented, high-pass pyramid layers, and one low-pass (blob) layer.
Scheduling observational and physical practice: influence on the coding of simple motor sequences.
Ellenbuerger, Thomas; Boutin, Arnaud; Blandin, Yannick; Shea, Charles H; Panzer, Stefan
2012-01-01
The main purpose of the present experiment was to determine the coordinate system used in the development of movement codes when observational and physical practice are scheduled across practice sessions. The task was to reproduce a 1,300-ms spatial-temporal pattern of elbow flexions and extensions. An intermanual transfer paradigm with a retention test and two effector (contralateral limb) transfer tests was used. The mirror effector transfer test required the same pattern of homologous muscle activation and sequence of limb joint angles as that performed or observed during practice, and the non-mirror effector transfer test required the same spatial pattern movements as that performed or observed. The test results following the first acquisition session replicated the findings of Gruetzmacher, Panzer, Blandin, and Shea (2011) . The results following the second acquisition session indicated a strong advantage for participants who received physical practice in both practice sessions or received observational practice followed by physical practice. This advantage was found on both the retention and the mirror transfer tests compared to the non-mirror transfer test. These results demonstrate that codes based in motor coordinates can be developed relatively quickly and effectively for a simple spatial-temporal movement sequence when participants are provided with physical practice or observation followed by physical practice, but physical practice followed by observational practice or observational practice alone limits the development of codes based in motor coordinates.
A case report: using SNOMED CT for grouping Adverse Drug Reactions Terms.
Alecu, Iulian; Bousquet, Cedric; Jaulent, Marie-Christine
2008-10-27
WHO-ART and MedDRA are medical terminologies used for the coding of adverse drug reactions in pharmacovigilance databases. MedDRA proposes 13 Special Search Categories (SSC) grouping terms associated to specific medical conditions. For instance, the SSC "Haemorrhage" includes 346 MedDRA terms among which 55 are also WHO-ART terms. WHO-ART itself does not provide such groupings. Our main contention is the possibility of classifying WHO-ART terms in semantic categories by using knowledge extracted from SNOMED CT. A previous paper presents the way WHO-ART term definitions have been automatically generated in a description logics formalism by using their corresponding SNOMED CT synonyms. Based on synonymy and relative position of WHO-ART terms in SNOMED CT, specialization or generalization relationships could be inferred. This strategy is successful for grouping the WHO-ART terms present in most MedDRA SSCs. However the strategy failed when SSC were organized on other basis than taxonomy. We propose a new method that improves the previous WHO-ART structure by integrating the associative relationships included in SNOMED CT. The new method improves the groupings. For example, none of the 55 WHO-ART terms in the Haemorrhage SSC were matched using the previous method. With the new method, we improve the groupings and obtain 87% coverage of the Haemorrhage SSC. SNOMED CT's terminological structure can be used to perform automated groupings in WHO-ART. This work proves that groupings already present in the MedDRA SSCs (e.g. the haemorrhage SSC) may be retrieved using classification in SNOMED CT.
A case report: using SNOMED CT for grouping Adverse Drug Reactions Terms
Alecu, Iulian; Bousquet, Cedric; Jaulent, Marie-Christine
2008-01-01
Background WHO-ART and MedDRA are medical terminologies used for the coding of adverse drug reactions in pharmacovigilance databases. MedDRA proposes 13 Special Search Categories (SSC) grouping terms associated to specific medical conditions. For instance, the SSC "Haemorrhage" includes 346 MedDRA terms among which 55 are also WHO-ART terms. WHO-ART itself does not provide such groupings. Our main contention is the possibility of classifying WHO-ART terms in semantic categories by using knowledge extracted from SNOMED CT. A previous paper presents the way WHO-ART term definitions have been automatically generated in a description logics formalism by using their corresponding SNOMED CT synonyms. Based on synonymy and relative position of WHO-ART terms in SNOMED CT, specialization or generalization relationships could be inferred. This strategy is successful for grouping the WHO-ART terms present in most MedDRA SSCs. However the strategy failed when SSC were organized on other basis than taxonomy. Methods We propose a new method that improves the previous WHO-ART structure by integrating the associative relationships included in SNOMED CT. Results The new method improves the groupings. For example, none of the 55 WHO-ART terms in the Haemorrhage SSC were matched using the previous method. With the new method, we improve the groupings and obtain 87% coverage of the Haemorrhage SSC. Conclusion SNOMED CT's terminological structure can be used to perform automated groupings in WHO-ART. This work proves that groupings already present in the MedDRA SSCs (e.g. the haemorrhage SSC) may be retrieved using classification in SNOMED CT. PMID:19007441
A practical implementation of physics quality assurance for photon adaptive radiotherapy.
Cai, Bin; Green, Olga L; Kashani, Rojano; Rodriguez, Vivian L; Mutic, Sasa; Yang, Deshan
2018-03-14
The fast evolution of technology in radiotherapy (RT) enabled the realization of adaptive radiotherapy (ART). However, the new characteristics of ART pose unique challenges for efficiencies and effectiveness of quality assurance (QA) strategies. In this paper, we discuss the necessary QAs for ART and introduce a practical implementation. A previously published work on failure modes and effects analysis (FMEA) of ART is introduced first to explain the risks associated with ART sub-processes. After a brief discussion of QA challenges, we review the existing QA strategies and tools that might be suitable for each ART step. By introducing the MR-guided online ART QA processes developed at our institute, we demonstrate a practical implementation. The limitations and future works to develop more robust and efficient QA strategies are discussed at the end. Copyright © 2018. Published by Elsevier GmbH.
Fundamental Studies in the Molecular Basis of Laser Induced Retinal Damage
1988-01-01
Cornell University School of Applied & Engineering Physics Ithaca, NY 14853 DOD DISTRIBUTION STATEMENT Approved for public release; distribution unlimited...Code) 7b. ADDRESS (City, State, and ZIP Code) School of Applied & Engineering Physics Ithaca, NY 14853 8a. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL
Fundamental Studies in the Molecular Basis of Laser Induced Retinal Damage
1988-01-01
Cornell University .LECT l School of Applied & Engineering PhysicsIthaca, NY 14853 0 JAN 198D DOD DISTRIBUTION STATEMENT Approved for public release...State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) School of Applied & Engineering Physics Ithaca, NY 14853 Ba. NAME OF FUNDING/ SPONSORING
29 CFR 1910.144 - Safety color code for marking physical hazards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the basic color for the identification of: (i) Fire protection equipment and apparatus. [Reserved] (ii... 29 Labor 5 2011-07-01 2011-07-01 false Safety color code for marking physical hazards. 1910.144 Section 1910.144 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH...
The Uses of Reason in Times of Technical Mediation.
Dorrestijn, Steven
2017-01-01
The art of living idiom suits well a practice-oriented approach in ethics of technology. But what remains or becomes of the functioning and use of reason in ethics? In reaction to the comments by Huijer this reply elaborates in more detail how Foucault's art of living can be adapted for a critical contemporary ethics of technology. And the aesthetic-political rationality in Foucault's ethics is compared with Wellner's suggestions of holding on to the notion of code but with a new meaning. Foucault's fourfold scheme of subjectivation and a distinction of "below and above reason" structure the argument.
ERIC Educational Resources Information Center
Hildreth, David P.; Matthews, Catherine E.
1997-01-01
Describes a number of demonstrations for physics that employ techniques of the martial arts to illustrate Newton's second law of motion. Demonstrations focus on the breaking of wooden boards using weights. (DDR)
Master of Arts in Physics Education (MAPE) Program
NASA Astrophysics Data System (ADS)
Lindgren, Richard A.; Thornton, Stephen T.
2001-11-01
In the past 15 years, the Department of Physics at the University of Virginia in collaboration with the Curry School of Education has supported numerous summer high school physics and physical science teacher enrichment programs through the School of Continuing and Professional Studies. As a result of this accumulated experience in working with teachers, we created the Master of Arts in Physics Education (MAPE) program to address the needs of the high school physics teacher of the present and future. Through distance learning and summer study at UVa, participants earn the 30 hours needed for the Masters degree within 2 1/2 years while maintaining their current teaching position. Summer study includes the calculus based primary physics courses 631, 632, and 633 and associated laboratory courses. Summer physics course assignments and responsibilities do not terminate until late in the fall. Distance learning during the academic year is accomplished via the Internet using WebAssign, chat rooms, email, videotapes, and streamline video. Although recently approved in the spring 2000, 12 teachers have already graduated with the MAPE degree.
NASA Astrophysics Data System (ADS)
Lindgren, Richard; Thornton, Stephen
2010-02-01
Professional development courses offered in physical/Earth science and physics by the Department of Physics are delivered by different venues to accommodate the needs of the K-12 teaching community. The majority of teachers take our courses off-site or through our distance-learning web-based program on the Internet for endorsement or recertification, but with a gradually increasing number enrolling in our 30 credit Masters of Arts in Physics Education degree (MAPE) program. The purpose of the Masters program is to provide increased physics content to those teachers who feel inadequately prepared to teach high school physics. The increase in numbers and success of this program is partly due to the convenience of taking online web-based courses which is made possible by using the latest communication technologies on the high speed internet. There is also a residential component of the MAPE program, which requires the candidates to earn 14 credits of calculus-based core physics in residence in the summer at the University. We have graduated a total of 91 teachers since the program began in 2000. )
1981-09-01
BROADCASTING Gq CO4MUNICATIONS X4 FILmwTV PRODUCTION 81 PUBLIC RELATIONS/JOURNALISM 14 ADVERTISING 51 JOURNALISM L6 CINEMATOGRAPHY 27 DRAMATICS A2 ART ...categories: (1) engineering and architecture, (2) business management, (3) physical sciences, (4) social sciences, (5) arts and humanities, and (6) trades and... arts and humanities categories, into a nontechnical category. Final school grade (FSG) means and standard deviations for sample members in the
Modeling coherent errors in quantum error correction
NASA Astrophysics Data System (ADS)
Greenbaum, Daniel; Dutton, Zachary
2018-01-01
Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.
Numerical Studies of Impurities in Fusion Plasmas
DOE R&D Accomplishments Database
Hulse, R. A.
1982-09-01
The coupled partial differential equations used to describe the behavior of impurity ions in magnetically confined controlled fusion plasmas require numerical solution for cases of practical interest. Computer codes developed for impurity modeling at the Princeton Plasma Physics Laboratory are used as examples of the types of codes employed for this purpose. These codes solve for the impurity ionization state densities and associated radiation rates using atomic physics appropriate for these low-density, high-temperature plasmas. The simpler codes solve local equations in zero spatial dimensions while more complex cases require codes which explicitly include transport of the impurity ions simultaneously with the atomic processes of ionization and recombination. Typical applications are discussed and computational results are presented for selected cases of interest.
Using New-Antiquarian Photographic Processes to Integrate Art and Science
NASA Astrophysics Data System (ADS)
Beaver, J.
2017-12-01
In this session we describe an interdisciplinary course, The Art and Science of Photography (ASP), and its accompanying textbook and associated project-based activities, offered at the University of Wisconsin - Fox Valley in Menasha, Wisconsin. ASP uses photography as a point of departure to inspire students to ask fundamental questions about the nature of art, and to consider physics and astronomy as part of the study of nature. In turn, aspects of art and physics/astronomy are chosen in part for their direct relevance to the fundamentals of photography. For example, the subtle nature of shadows on a sunny day is related to the geometry of eclipses.ASP is offered as a 4-credit lecture/lab/studio course, and the students have a choice of registration for either art or natural-science credit. A large majority of students register for natural-science credit, and we suggest that ASP may be particularly useful as an entry point for students who view themselves as lacking ability in the sciences.Combining art with science in an introductory course is a particularly fruitful way to increase student engagement, as there is a perception that to be "artistic" precludes success in science. But it is of equal importance that students sometimes perceive that being "science-minded" precludes success in art.Part of the aim of ASP is to integrate art and science to such a degree that a student is always doing both, while still maintaining the integrity and rigor of each discipline. Towards this end, we have developed several unique hands-on practices that often use antiquarian photographic processes in a new way.Some of these hybrid techniques are little known or not previously described. Yet they allow for unique artistic expression, while also highlighting - in a way that ordinary digital photography does not - prinicpals of the interaction between light, atmosphere, weather, and the physical photographic substrate. These newly-described processes are accessible and inexpensive, but also artisticly versatile and to-the-point regarding the understanding of fundamental principals.
Teaching Art to High Risk Groups.
ERIC Educational Resources Information Center
Rossol, Monona
The role of art therapy is considered in working with such high risk groups as the institutionalized, mentally retarded, elderly, visually impaired, physically handicapped, asthmatic, hyper- and hypo-active children, hearing impaired, and patients on mind altering drugs. The special risks of infectious diseases (such as serum hepatitis), and…
34 CFR Appendix to Part 648 - Academic Areas
Code of Federal Regulations, 2010 CFR
2010-07-01
..., Electronic, and Communications Engineering 14.11Engineering Mechanics 14.12Engineering Physics 14.13Engineering Science 14.14Environmental/Environmental Health Engineering 14.15Geological Engineering 14... Arts and Art Studies 50.09Music 51.Health Professions and Related Sciences 51.01Chiropractic (D.C., D.C...
ERIC Educational Resources Information Center
Onn, David G.; Berg, Richard A.
1974-01-01
Describes the offering of a physics course where a mixture of teaching techniques and a wide variety of phenomena associated with light are used to attract students majoring in art, art history, psychology, photography etc. Indicates that the course is characterized by its in-depth and non-mathematical nature. (CC)
Betsy Byars'"The Summer of the Swans."
ERIC Educational Resources Information Center
Scales, Pat
1996-01-01
Summarizes the plot of "The Summer of the Swans," the 1971 Newbery Medal winner; provides discussion questions; outlines activities in drama, art, and language arts; and provides an annotated bibliography of picture books, fiction, and nonfiction dealing with physical, mental, and emotional disabilities. Includes an interview with Betsy…
Occupational Listings Arranged by Cluster and Subject Matter Areas.
ERIC Educational Resources Information Center
Schwarz, Otto
Approximately 850 occupations are listed under 27 occupational clusters. The Dictionary of Occupational Title (DOT) number is specified for occupations in the clusters of business training and distributive education, chemistry, general shop and industrial arts, home economics, foreign language, music, social studies, art, agriculture, physics, and…
Zakumumpa, Henry; Taiwo, Modupe Oladunni; Muganzi, Alex; Ssengooba, Freddie
2016-10-19
Human resources for health (HRH) constraints are a major barrier to the sustainability of antiretroviral therapy (ART) scale-up programs in Sub-Saharan Africa. Many prior approaches to HRH constraints have taken a top-down trend of generalized global strategies and policy guidelines. The objective of the study was to examine the human resources for health strategies adopted by front-line providers in Uganda to sustain ART delivery beyond the initial ART scale-up phase between 2004 and 2009. A two-phase mixed-methods approach was adopted. In the first phase, a survey of a nationally representative sample of health facilities (n = 195) across Uganda was conducted. The second phase involved in-depth interviews (n = 36) with ART clinic managers and staff of 6 of the 195 health facilities purposively selected from the first study phase. Quantitative data was analysed based on descriptive statistics, and qualitative data was analysed by coding and thematic analysis. The identified strategies were categorized into five themes: (1) providing monetary and non-monetary incentives to health workers on busy ART clinic days; (2) workload reduction through spacing ART clinic appointments; (3) adopting training workshops in ART management as a motivation strategy for health workers; (4) adopting non-physician-centred staffing models; and (5) devising ART program leadership styles that enhanced health worker commitment. Facility-level strategies for responding to HRH constraints are feasible and can contribute to efforts to increase country ownership of HIV programs in resource-limited settings. Consideration of the human resources for health strategies identified in the study by ART program planners and managers could enhance the long-term sustainment of ART programs by providers in resource-limited settings.
Online Particle Physics Information - Education Sites
General Sites Background Knowledge Physics Lessons & Activities Astronomy Lessons & Activities Ask provides sub-lists of online resources in the following areas: History of Physics and Astronomy; Essays on the interface between science, art, religion and philosophy; Astronomy; Graduate School and Student
Patient perceptions of a 1-h art-making experience during blood and marrow transplant treatment.
Mische Lawson, L; Cline, J; French, A; Ismael, N
2017-09-01
Patients with various forms of cancer receiving blood and marrow transplant (BMT) treatment at an outpatient clinic develop chemotherapy-related symptoms and an increased desire to use complementary and alternative medicine in order to address these symptoms. Art-making offers an inexpensive way to pass time and relieve symptoms during long hours in treatment. Twenty-one BMT patients painted a tile and participated in research. Researchers used semi-structured interviews to understand patients' experiences with art-making. Interviews were recorded, transcribed and coded independently by researchers who met to agree on themes. Ten themes emerged from the data including, meaningful activity (32.2%), expression (18.7%), passing time (13.2%), BMT process (12.1%), social outlet (8.1%), therapy-related symptoms (7.3%), negative aspects of painting (5.9%) and encouragement to paint (2.6%). The results of this study revealed that art-making experience can provide patients a meaningful activity during treatment and an outlet to express their feelings. © 2016 John Wiley & Sons Ltd.
Litwin, Lindsay E; Makumbi, Frederick E; Gray, Ronald; Wawer, Maria; Kigozi, Godfrey; Kagaayi, Joseph; Nakigozi, Gertrude; Lutalo, Tom; Serwada, David; Brahmbhatt, Heena
2015-07-01
To assess fertility desires by availability and use of antiretroviral therapy and prevention of mother-to-child transmission (ART/PMTCT) services in Rakai, Uganda. Retrospective analyses of longitudinal data from the Rakai Community Cohort Study. Study participants were retrospectively identified and categorized by HIV status. Availability of ART/PMTCT services in Rakai was defined in three periods: (1) pre-ART/PMTCT (<2005), (2) ART/PMTCT rollout (2005-2006), and (3) universal ART/PMTCT (>2006); and use of ART/PMTCT was coded as yes if the woman received services. Trends in fertility desires were assessed by χ. "Modified" Poisson regression was performed using generalized linear models with a log link and Poisson family to estimate prevalence rate ratios (PRRs) and 95% confidence intervals (CIs) of desire for another child among previously and currently pregnant women; PRRs were adjusted for demographic and behavioral factors. A total of 4227 sexually active women in Rakai, including 436 HIV+ women, contributed 13,970 observations over 5 survey rounds. Fertility desires increased in the population in the ART/PMTCT rollout [adjusted (adj.) PRR: 1.08, 95% CI: 1.04 to 1.13] and the universal availability periods (adj. PRR: 1.11, 95% CI: 1.08 to 1.14) compared with pre-ART/PMTCT period. A total of 862 woman observations used ART/PMTCT services. Fertility desires were similar among ART/PMTCT service users and nonusers in cross-sectional analysis (adj. PRR: 0.84, 95% CI: 0.62 to 1.14) and 1 year after ART/PMTCT use (adj. PRR: 1.27, 95% CI: 0.83 to 1.94). Availability of ART/PMTCT may increase fertility desires of previously pregnant women in Rakai, Uganda. Use of ART/PMTCT services was not correlated with fertility desires of previously or current pregnant women.
Airfoil Vibration Dampers program
NASA Technical Reports Server (NTRS)
Cook, Robert M.
1991-01-01
The Airfoil Vibration Damper program has consisted of an analysis phase and a testing phase. During the analysis phase, a state-of-the-art computer code was developed, which can be used to guide designers in the placement and sizing of friction dampers. The use of this computer code was demonstrated by performing representative analyses on turbine blades from the High Pressure Oxidizer Turbopump (HPOTP) and High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). The testing phase of the program consisted of performing friction damping tests on two different cantilever beams. Data from these tests provided an empirical check on the accuracy of the computer code developed in the analysis phase. Results of the analysis and testing showed that the computer code can accurately predict the performance of friction dampers. In addition, a valuable set of friction damping data was generated, which can be used to aid in the design of friction dampers, as well as provide benchmark test cases for future code developers.
Ferlaino, Michael; Rogers, Mark F.; Shihab, Hashem A.; Mort, Matthew; Cooper, David N.; Gaunt, Tom R.; Campbell, Colin
2018-01-01
Background Small insertions and deletions (indels) have a significant influence in human disease and, in terms of frequency, they are second only to single nucleotide variants as pathogenic mutations. As the majority of mutations associated with complex traits are located outside the exome, it is crucial to investigate the potential pathogenic impact of indels in non-coding regions of the human genome. Results We present FATHMM-indel, an integrative approach to predict the functional effect, pathogenic or neutral, of indels in non-coding regions of the human genome. Our method exploits various genomic annotations in addition to sequence data. When validated on benchmark data, FATHMM-indel significantly outperforms CADD and GAVIN, state of the art models in assessing the pathogenic impact of non-coding variants. FATHMM-indel is available via a web server at indels.biocompute.org.uk. Conclusions FATHMM-indel can accurately predict the functional impact and prioritise small indels throughout the whole non-coding genome. PMID:28985712
Fast Sparse Coding for Range Data Denoising with Sparse Ridges Constraint
Lao, Mingjie; Sang, Yongsheng; Wen, Fei; Zhai, Ruifang
2018-01-01
Light detection and ranging (LiDAR) sensors have been widely deployed on intelligent systems such as unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs) to perform localization, obstacle detection, and navigation tasks. Thus, research into range data processing with competitive performance in terms of both accuracy and efficiency has attracted increasing attention. Sparse coding has revolutionized signal processing and led to state-of-the-art performance in a variety of applications. However, dictionary learning, which plays the central role in sparse coding techniques, is computationally demanding, resulting in its limited applicability in real-time systems. In this study, we propose sparse coding algorithms with a fixed pre-learned ridge dictionary to realize range data denoising via leveraging the regularity of laser range measurements in man-made environments. Experiments on both synthesized data and real data demonstrate that our method obtains accuracy comparable to that of sophisticated sparse coding methods, but with much higher computational efficiency. PMID:29734793
Ferlaino, Michael; Rogers, Mark F; Shihab, Hashem A; Mort, Matthew; Cooper, David N; Gaunt, Tom R; Campbell, Colin
2017-10-06
Small insertions and deletions (indels) have a significant influence in human disease and, in terms of frequency, they are second only to single nucleotide variants as pathogenic mutations. As the majority of mutations associated with complex traits are located outside the exome, it is crucial to investigate the potential pathogenic impact of indels in non-coding regions of the human genome. We present FATHMM-indel, an integrative approach to predict the functional effect, pathogenic or neutral, of indels in non-coding regions of the human genome. Our method exploits various genomic annotations in addition to sequence data. When validated on benchmark data, FATHMM-indel significantly outperforms CADD and GAVIN, state of the art models in assessing the pathogenic impact of non-coding variants. FATHMM-indel is available via a web server at indels.biocompute.org.uk. FATHMM-indel can accurately predict the functional impact and prioritise small indels throughout the whole non-coding genome.
NASA Astrophysics Data System (ADS)
Sullivan, Gary J.; Topiwala, Pankaj N.; Luthra, Ajay
2004-11-01
H.264/MPEG-4 AVC is the latest international video coding standard. It was jointly developed by the Video Coding Experts Group (VCEG) of the ITU-T and the Moving Picture Experts Group (MPEG) of ISO/IEC. It uses state-of-the-art coding tools and provides enhanced coding efficiency for a wide range of applications, including video telephony, video conferencing, TV, storage (DVD and/or hard disk based, especially high-definition DVD), streaming video, digital video authoring, digital cinema, and many others. The work on a new set of extensions to this standard has recently been completed. These extensions, known as the Fidelity Range Extensions (FRExt), provide a number of enhanced capabilities relative to the base specification as approved in the Spring of 2003. In this paper, an overview of this standard is provided, including the highlights of the capabilities of the new FRExt features. Some comparisons with the existing MPEG-2 and MPEG-4 Part 2 standards are also provided.
Effects of Visual/Verbal Associations.
ERIC Educational Resources Information Center
Martin, Anna C.
Different effects of instructional strategies on recall and comprehension of terms frequently used in formal analysis of art were examined. The study looked at a synthesis of three theoretical positions: dual-coding theory, schema theory, and elaboration theory. Two-hundred and fifty sixth-grade students were randomly assigned to three groups:…
Bud's World. Grade 3. New York Agriculture in the Classroom.
ERIC Educational Resources Information Center
Wolanyk, Betty
This collection of classroom exercises was designed to maximize teacher time, while creating an awareness of our food and fiber system among New York third graders. The materials are color-coded, falling into four categories: language arts, mathematics, science, and social studies. Each exercise includes background information, concepts, and…
Elementary School Students' Perceptions of Technology in their Pictorial Representations
ERIC Educational Resources Information Center
Eristi, Suzan Duygu; Kurt, Adile Askim
2011-01-01
The current study aimed to reveal elementary school students' perceptions of technology through their pictorial representations and their written expressions based on their pictorial representations. Content analysis based on the qualitative research method along with art-based inquiry was applied. The "coding system for the concepts revealed…
ERIC Educational Resources Information Center
Language Teaching, 2013
2013-01-01
In 1975 (Vol. 8.4, 201-218), S. P. Corder, during the course of his state-of-the-art review "Error analysis, interlanguage and second language acquisition," focused on the recent literature on simplified linguistic systems and suggested that research had shown that interlanguage systems often resemble other simple codes such as pidgins…
New York Agriculture in the Classroom. Grade 4.
ERIC Educational Resources Information Center
Wolanyk, Betty
These classroom exercises have been designed to maximize teacher time, while creating an awareness of our food and fiber system among New York fourth graders. The materials are color-coded, falling into four categories: language arts, mathematics, science, and social studies. Each exercise includes background information, concepts, and objectives…
New York Agriculture in the Classroom. Grade 6.
ERIC Educational Resources Information Center
Wolanyk, Betty
These classroom exercises have been designed to maximize teacher time, while creating an awareness of our food and fiber system among New York sixth graders. The materials are color-coded, falling into four categories: language arts, mathematics, science, and social studies. Each exercise includes background information, concepts, and objectives…
Guidance Systems across Europe: Heritage, Change and the Art of Becoming
ERIC Educational Resources Information Center
Moreno da Fonseca, Pedro
2015-01-01
Guidance systems exist within learning, working and welfare cultures, which are upheld by prevailing institutions and stakeholders. Implementing a lifelong approach questions rooted codes and idiosyncrasies of the sectors across which guidance is distributed. To support individuals' careers, unlock their potential and increase their contribution…
Bringing Out Head Start Talents (BOHST). Talent Programming.
ERIC Educational Resources Information Center
Amundsen, Jane; And Others
Designed for preschoolers identified as talented by the Bringing Out Head Start Talents (BOHST) project, the small-group lessons contained in this manual focus on nine areas of talent programming and are presented in color-coded sections: creative, intellectual, leadership, art, music, reading, math, science, and psychomotor talent development.…
New York Agriculture in the Classroom. Grade 5.
ERIC Educational Resources Information Center
Wolanyk, Betty
These classroom exercises have been designed to maximize teacher time, while creating an awareness of our food and fiber system among New York fifth graders. The materials are color-coded, falling into four categories: language arts, mathematics, science, and social studies. Each exercise includes background information, concepts, and objectives…
Overview of Fluid Dynamics Activities at the Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Garcia, Roberto; Griffin, Lisa W.; Wang, Ten-See
1999-01-01
Since its inception 40 years ago, Marshall Space Flight Center (MSFC) has had the need to maintain and advance state-of-the-art flow analysis and cold-flow testing capability to support its roles and missions. This overview discusses the recent organizational changes that have occurred at MSFC with emphasis on the resulting three groups that form the core of fluid dynamics expertise at MSFC: the Fluid Physics and Dynamics Group, the Applied Fluid Dynamics Analysis Group, and the Experimental Fluid Dynamics Group. Recently completed activities discussed include the analysis and flow testing in support of the Fastrac engine design, the X-33 vehicle design, and the X34 propulsion system design. Ongoing activities include support of the RLV vehicle design, Liquid Fly Back Booster aerodynamic configuration definition, and RLV focused technologies development. Other ongoing activities discussed are efforts sponsored by the Center Director's Discretionary Fund (CDDF) to develop an advanced incompressible flow code and to develop optimization techniques. Recently initiated programs and their anticipated required fluid dynamics support are discussed. Based on recent experiences and on the anticipated program needs, required analytical and experimental technique improvements are presented. Due to anticipated budgetary constraints, there is a strong need to leverage activities and to pursue teaming arrangements in order to advance the state-of-the-art and to adequately support concept development. Throughout this overview there is discussion of the lessons learned and of the capabilities demonstrated and established in support of the hardware development programs.
Learning Short Binary Codes for Large-scale Image Retrieval.
Liu, Li; Yu, Mengyang; Shao, Ling
2017-03-01
Large-scale visual information retrieval has become an active research area in this big data era. Recently, hashing/binary coding algorithms prove to be effective for scalable retrieval applications. Most existing hashing methods require relatively long binary codes (i.e., over hundreds of bits, sometimes even thousands of bits) to achieve reasonable retrieval accuracies. However, for some realistic and unique applications, such as on wearable or mobile devices, only short binary codes can be used for efficient image retrieval due to the limitation of computational resources or bandwidth on these devices. In this paper, we propose a novel unsupervised hashing approach called min-cost ranking (MCR) specifically for learning powerful short binary codes (i.e., usually the code length shorter than 100 b) for scalable image retrieval tasks. By exploring the discriminative ability of each dimension of data, MCR can generate one bit binary code for each dimension and simultaneously rank the discriminative separability of each bit according to the proposed cost function. Only top-ranked bits with minimum cost-values are then selected and grouped together to compose the final salient binary codes. Extensive experimental results on large-scale retrieval demonstrate that MCR can achieve comparative performance as the state-of-the-art hashing algorithms but with significantly shorter codes, leading to much faster large-scale retrieval.
Physical Model for the Evolution of the Genetic Code
NASA Astrophysics Data System (ADS)
Yamashita, Tatsuro; Narikiyo, Osamu
2011-12-01
Using the shape space of codons and tRNAs we give a physical description of the genetic code evolution on the basis of the codon capture and ambiguous intermediate scenarios in a consistent manner. In the lowest dimensional version of our description, a physical quantity, codon level is introduced. In terms of the codon levels two scenarios are typically classified into two different routes of the evolutional process. In the case of the ambiguous intermediate scenario we perform an evolutional simulation implemented cost selection of amino acids and confirm a rapid transition of the code change. Such rapidness reduces uncomfortableness of the non-unique translation of the code at intermediate state that is the weakness of the scenario. In the case of the codon capture scenario the survival against mutations under the mutational pressure minimizing GC content in genomes is simulated and it is demonstrated that cells which experience only neutral mutations survive.
NASA Astrophysics Data System (ADS)
Edge, Ronald
2001-05-01
Just what is happening when a surfer taps into the energy of a breaking wave and rides to shore? It's sport, it's art, it's skill, stamina, and drama. It is also physics — hydrodynamics, wave propagation, kinematics, and dynamics.
Health facility challenges to the provision of Option B+ in western Kenya: a qualitative study
Akama, Eliud; Bukusi, Elizabeth A; Musoke, Pamela; Nalwa, Wafula Z; Odeny, Thomas A; Onono, Maricianah; Spangler, Sydney A; Turan, Janet M; Wanga, Iris; Abuogi, Lisa L
2017-01-01
Current WHO guidelines recommend lifelong antiretroviral therapy (ART) for all HIV-positive individuals, including pregnant and breastfeeding women (Option B+) in settings with generalized HIV epidemics. While Option B+ is scaled-up in Kenya, insufficient adherence and retention to care could undermine the expected positive impact of Option B+. To explore challenges to the provision of Option B+ at the health facility level, we conducted forty individual gender-matched in-depth interviews with HIV-positive pregnant/postpartum women and their male partners, and four focus groups with thirty health care providers at four health facilities in western Kenya between September-November 2014. Transcripts were coded with the Dedoose software using a coding framework based on the literature, topics from interview guides, and emerging themes from transcripts. Excerpts from broad codes were then fine-coded using an inductive approach. Three major themes emerged: 1) Option B+ specific challenges (same-day initiation into treatment, health care providers unconvinced of the benefits of Option B+, insufficient training); 2) facility resource constraints (staff and drug shortages, long queues, space limitations); and 3) lack of client-friendly services (scolding of patients, inconvenient operating hours, lack of integration of services, administrative requirements). This study highlights important challenges at the health facility level related to Option B+ rollout in western Kenya. Addressing these specific challenges may increase linkage, retention and adherence to life-long ART treatment for pregnant HIV-positive women in Kenya, contribute towards elimination of mother-to-child HIV transmission, and improve maternal and child outcomes. PMID:28207061
Health facility challenges to the provision of Option B+ in western Kenya: a qualitative study.
Helova, Anna; Akama, Eliud; Bukusi, Elizabeth A; Musoke, Pamela; Nalwa, Wafula Z; Odeny, Thomas A; Onono, Maricianah; Spangler, Sydney A; Turan, Janet M; Wanga, Iris; Abuogi, Lisa L
2017-03-01
Current WHO guidelines recommend lifelong antiretroviral therapy (ART) for all HIV-positive individuals, including pregnant and breastfeeding women (Option B+) in settings with generalized HIV epidemics. While Option B+ is scaled-up in Kenya, insufficient adherence and retention to care could undermine the expected positive impact of Option B+. To explore challenges to the provision of Option B+ at the health facility level, we conducted forty individual gender-matched in-depth interviews with HIV-positive pregnant/postpartum women and their male partners, and four focus groups with thirty health care providers at four health facilities in western Kenya between September-November 2014. Transcripts were coded with the Dedoose software using a coding framework based on the literature, topics from interview guides, and emerging themes from transcripts. Excerpts from broad codes were then fine-coded using an inductive approach. Three major themes emerged: 1) Option B+ specific challenges (same-day initiation into treatment, health care providers unconvinced of the benefits of Option B+, insufficient training); 2) facility resource constraints (staff and drug shortages, long queues, space limitations); and 3) lack of client-friendly services (scolding of patients, inconvenient operating hours, lack of integration of services, administrative requirements). This study highlights important challenges at the health facility level related to Option B+ rollout in western Kenya. Addressing these specific challenges may increase linkage, retention and adherence to life-long ART treatment for pregnant HIV-positive women in Kenya, contribute towards elimination of mother-to-child HIV transmission, and improve maternal and child outcomes.
INSTRUCTIONAL TELEVISION FOR THE FOURTH GRADE. A TEACHER GUIDE SEMESTER II.
ERIC Educational Resources Information Center
PELIKAN, ALFRED; AND OTHERS
PROGRAMS FOR FOURTH GRADE ARE DIVIDED INTO FOUR AREAS--ART, MUSIC PHYSICAL EDUCATION AND SCIENCE. ART LESSONS INCLUDE THE PAPER CONSTRUCTION OF ROCKETS AND SPACESHIPS, FINGER PUPPETS, SANDPAPER PRINTS AND GLASS ADDITIVE PRINTS. EACH LESSON IS PRESENTED COMPLETE WITH PURPOSES, PROCESS AND MEDIUM, SUBJECT, MATERIALS, PROPOSED SEQUENCE, AND…
Curriculum Guide Functional Level A Exceptional Child Program.
ERIC Educational Resources Information Center
Pinellas County District School Board, Clearwater, FL.
Presented is the Pinellas County, Florida, curriculum guide for the instruction of educable mentally handicapped 6- and 9-year-old children. Subject areas included are language arts, mathematics, social studies, science, health, safety, physical education, art, and music. Instructional objectives for each subject area are listed with one or more…
Early Years Educators at Play: A Research-Based Early Childhood Professional Development Program
ERIC Educational Resources Information Center
Kilinc, Sultan; Kelley, Michael F.; Millinger, Jenny; Adams, Korbi
2016-01-01
Every culture has developed some version of performance art. Children especially appreciate performance; their innate openness, forgiveness, and self-love make them delightful performers and audience members. Every time they engage with performance art, children are learning about storytelling, history, sociability, artistry, and physicality.…
ERIC Educational Resources Information Center
Needelman, Bert; Weiner, Norman L.
1976-01-01
Argues that artistic viewpoints significantly influence our perceptions of everyday life; the arts have been a major force in the construction of the deviant role and physical appearance has been a prime artistic device in concretizing this image. As populations continue to become more educated and sophisticated the great mass of people will…
Visual Links: Discovery in Art and Science.
ERIC Educational Resources Information Center
Dake, Dennis M.
Some specific aspects of the process of discovery are explored as they are experienced in the visual arts and the physical sciences. Both fields use the same visual/brain processing system, and both disciplines share an imaginative and productive interest in the disciplined use of imagistic thinking. Many productive interactions between visual…
Dance Education in American Public Schools.
ERIC Educational Resources Information Center
Knowles, Patricia
1993-01-01
Reviews issues related to preservice teacher education in dance. Asserts that the development of national standards in arts education has led to a consensus on teacher education. Maintains that, for the first time in U.S. educational history, dance is included in the fine arts curriculum, rather than in physical education. (CFR)
Introduction to Vocations: Building Occupational Exploration at the Middle School Level.
ERIC Educational Resources Information Center
Rutgers, The State Univ., New Brunswick, NJ. Dept. of Vocational-Technical Education.
This handbook uses the 15 occupational clusters for infusing career exploration into an existing school curriculum for sixth-, seventh-, and eighth-grade students. Each grade's program explores designated occupational clusters through the basic curriculum of language arts, mathematics, science, social studies, art, music, and physical education. A…
A Solar Furnace for Your School
ERIC Educational Resources Information Center
Meyer, Edwin C.
1978-01-01
Industrial arts students at Litchfield (Minnesota) High School designed and built a solar furnace for research and experimentation and to help heat the industrial arts department. A teacher describes the construction process and materials and the temperature record keeping by the physics classes. Student and community interest has been high. (MF)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merzari, E.; Yuan, Haomin; Kraus, A.
The NEAMS program aims to develop an integrated multi-physics simulation capability “pellet-to-plant” for the design and analysis of future generations of nuclear power plants. In particular, the Reactor Product Line code suite's multi-resolution hierarchy is being designed to ultimately span the full range of length and time scales present in relevant reactor design and safety analyses, as well as scale from desktop to petaflop computing platforms. Flow-induced vibration (FIV) is widespread problem in energy systems because they rely on fluid movement for energy conversion. Vibrating structures may be damaged as fatigue or wear occurs. Given the importance of reliable componentsmore » in the nuclear industry, flow-induced vibration has long been a major concern in safety and operation of nuclear reactors. In particular, nuclear fuel rods and steam generators have been known to suffer from flow-induced vibration and related failures. Advanced reactors, such as integral Pressurized Water Reactors (PWRs) considered for Small Modular Reactors (SMR), often rely on innovative component designs to meet cost and safety targets. One component that is the subject of advanced designs is the steam generator, some designs of which forego the usual shell-and-tube architecture in order to fit within the primary vessel. In addition to being more cost- and space-efficient, such steam generators need to be more reliable, since failure of the primary vessel represents a potential loss of coolant and a safety concern. A significant amount of data exists on flow-induced vibration in shell-and-tube heat exchangers, and heuristic methods are available to predict their occurrence based on a set of given assumptions. In contrast, advanced designs have far less data available. Advanced modeling and simulation based on coupled structural and fluid simulations have the potential to predict flow-induced vibration in a variety of designs, reducing the need for expensive experimental programs, especially at the design stage. Over the past five years, the Reactor Product Line has developed the integrated multi-physics code suite SHARP. The goal of developing such a tool is to perform multi-physics neutronics, thermal/fluid, and structural mechanics modeling of the components inside the full reactor core or portions of it with a user-specified fidelity. In particular SHARP contains high-fidelity single-physics codes Diablo for structural mechanics and Nek5000 for fluid mechanics calculations. Both codes are state-of-the-art, highly scalable tools that have been extensively validated. These tools form a strong basis on which to build a flow-induced vibration modeling capability. In this report we discuss one-way coupled calculations performed with Nek5000 and Diablo aimed at simulating available FIV experiments in helical steam generators in the turbulent buffeting regime. In this regime one-way coupling is judged sufficient because the pressure loads do not cause substantial displacements. It is also the most common source of vibration in helical steam generators at the low flows expected in integral PWRs. The legacy data is obtained from two datasets developed at Argonne and B&W.« less
Adaptive bit plane quadtree-based block truncation coding for image compression
NASA Astrophysics Data System (ADS)
Li, Shenda; Wang, Jin; Zhu, Qing
2018-04-01
Block truncation coding (BTC) is a fast image compression technique applied in spatial domain. Traditional BTC and its variants mainly focus on reducing computational complexity for low bit rate compression, at the cost of lower quality of decoded images, especially for images with rich texture. To solve this problem, in this paper, a quadtree-based block truncation coding algorithm combined with adaptive bit plane transmission is proposed. First, the direction of edge in each block is detected using Sobel operator. For the block with minimal size, adaptive bit plane is utilized to optimize the BTC, which depends on its MSE loss encoded by absolute moment block truncation coding (AMBTC). Extensive experimental results show that our method gains 0.85 dB PSNR on average compare to some other state-of-the-art BTC variants. So it is desirable for real time image compression applications.
Individually Identifiable Surface Acoustic Wave Sensors, Tags and Systems
NASA Technical Reports Server (NTRS)
Hines, Jacqueline H. (Inventor); Solie, Leland P. (Inventor); Tucker, Dana Y. G. (Inventor); Hines, Andrew T. (Inventor)
2017-01-01
A surface-launched acoustic wave sensor tag system for remotely sensing and/or providing identification information using sets of surface acoustic wave (SAW) sensor tag devices is characterized by acoustic wave device embodiments that include coding and other diversity techniques to produce groups of sensors that interact minimally, reducing or alleviating code collision problems typical of prior art coded SAW sensors and tags, and specific device embodiments of said coded SAW sensor tags and systems. These sensor/tag devices operate in a system which consists of one or more uniquely identifiable sensor/tag devices and a wireless interrogator. The sensor device incorporates an antenna for receiving incident RF energy and re-radiating the tag identification information and the sensor measured parameter(s). Since there is no power source in or connected to the sensor, it is a passive sensor. The device is wirelessly interrogated by the interrogator.
Proceeding On : Parallelisation Of Critical Code Passages In PHOENIX/3D
NASA Astrophysics Data System (ADS)
Arkenberg, Mario; Wichert, Viktoria; Hauschildt, Peter H.
2016-10-01
Highly resolved state-of-the-art 3D atmosphere simulations will remain computationally extremely expensive for years to come. In addition to the need for more computing power, rethinking coding practices is necessary. We take a dual approach here, by introducing especially adapted, parallel numerical methods and correspondingly parallelising time critical code passages. In the following, we present our work on PHOENIX/3D.While parallelisation is generally worthwhile, it requires revision of time-consuming subroutines with respect to separability of localised data and variables in order to determine the optimal approach. Of course, the same applies to the code structure. The importance of this ongoing work can be showcased by recently derived benchmark results, which were generated utilis- ing MPI and OpenMP. Furthermore, the need for a careful and thorough choice of an adequate, machine dependent setup is discussed.
In what ways do communities support optimal antiretroviral treatment in Zimbabwe?
Scott, K; Campbell, C; Madanhire, C; Skovdal, M; Nyamukapa, C; Gregson, S
2014-12-01
Little research has been conducted on how pre-existing indigenous community resources, especially social networks, affect the success of externally imposed HIV interventions. Antiretroviral treatment (ART), an externally initiated biomedical intervention, is being rolled out across sub-Saharan Africa. Understanding the ways in which community networks are working to facilitate optimal ART access and adherence will enable policymakers to better engage with and bolster these pre-existing resources. We conducted 67 interviews and eight focus group discussions with 127 people from three key population groups in Manicaland, eastern Zimbabwe: healthcare workers, adults on ART and carers of children on ART. We also observed over 100 h of HIV treatment sites at local clinics and hospitals. Our research sought to determine how indigenous resources were enabling people to achieve optimal ART access and adherence. We analysed data transcripts using thematic network technique, coding references to supportive community networks that enable local people to achieve ART access and adherence. People on ART or carers of children on ART in Zimbabwe report drawing support from a variety of social networks that enable them to overcome many obstacles to adherence. Key support networks include: HIV groups; food and income support networks; home-based care, church and women's groups; family networks; and relationships with healthcare providers. More attention to the community context in which HIV initiatives occur will help ensure that interventions work with and benefit from pre-existing social capital. © The Author (2013). Published by Oxford University Press.
In what ways do communities support optimal antiretroviral treatment in Zimbabwe?
Scott, K.; Campbell, C.; Madanhire, C.; Skovdal, M.; Nyamukapa, C.; Gregson, S.
2014-01-01
Little research has been conducted on how pre-existing indigenous community resources, especially social networks, affect the success of externally imposed HIV interventions. Antiretroviral treatment (ART), an externally initiated biomedical intervention, is being rolled out across sub-Saharan Africa. Understanding the ways in which community networks are working to facilitate optimal ART access and adherence will enable policymakers to better engage with and bolster these pre-existing resources. We conducted 67 interviews and eight focus group discussions with 127 people from three key population groups in Manicaland, eastern Zimbabwe: healthcare workers, adults on ART and carers of children on ART. We also observed over 100 h of HIV treatment sites at local clinics and hospitals. Our research sought to determine how indigenous resources were enabling people to achieve optimal ART access and adherence. We analysed data transcripts using thematic network technique, coding references to supportive community networks that enable local people to achieve ART access and adherence. People on ART or carers of children on ART in Zimbabwe report drawing support from a variety of social networks that enable them to overcome many obstacles to adherence. Key support networks include: HIV groups; food and income support networks; home-based care, church and women's groups; family networks; and relationships with healthcare providers. More attention to the community context in which HIV initiatives occur will help ensure that interventions work with and benefit from pre-existing social capital. PMID:23503291
Physical-layer network coding in coherent optical OFDM systems.
Guan, Xun; Chan, Chun-Kit
2015-04-20
We present the first experimental demonstration and characterization of the application of optical physical-layer network coding in coherent optical OFDM systems. It combines two optical OFDM frames to share the same link so as to enhance system throughput, while individual OFDM frames can be recovered with digital signal processing at the destined node.
NASA Astrophysics Data System (ADS)
Cashman, K. V.; Rust, A.; Stibbon, E.; Harris, R.
2016-12-01
Earth materials are fundamental to art. They are pigments, they are clay, they provide form and color. Earth scientists, however, rarely attempt to make the physical properties of Earth materials visible through art, and similarly many artists use Earth materials without fully understanding their physical and chemical properties. Here we explore the intersection between art and science through study of the physical properties of Earth materials as characterized in the laboratory, and as transferred to paper using different techniques and suspending media. One focus of this collaboration is volcanic ash. Ash is interesting scientifically because its form provides information on the fundamental processes that drive volcanic eruptions, and determines its transport properties, and thus its potential to affect populations far downwind of the volcano. Ash properties also affect its behavior as an art material. From an aesthetic point of view, ash lends a granular surface to the image; it is also uncontrollable, and thus requires engagement between artist and medium. More fundamentally, using ash in art creates an exchange between the medium and the subject matter, and imparts something of the physical, visceral experience of volcanic landscapes to the viewer. Another component of this work uses powdered rock as a printing medium for geologic maps. Because different types of rock create powders with different properties (grain size distributions and shapes), the geology is communicated not only as color, but also by the physical characteristics of the material as it interacts with the paper. More importantly, the use of actual rocks samples as printing material for geologic maps not only makes a direct connection between the map and the material it represents, but also provides an emotional connection between the map, the viewer and the landscape, its colors, textures and geological juxtapositions. Both case studies provide examples not only of ways in which artists can help scientists to visualize materials, but also how artists and scientists can work together to learn from each other. To illustrate this point, our poster will provide opportunities for hands on experimentation with earth materials as artistic media.
Raw, Anni; Mantecón, Ana Rosas
2014-01-01
Background This paper draws on new research exploring community-based, participatory arts practice in Northern England and Mexico City to discuss contextual influences on artists’ practice, and whether a common practice model can be identified. The international comparison is used to interrogate whether such a practice model is transnational, displaying shared characteristics that transcend contextual differences. Methods The study used multi-site ethnography to investigate the participatory practice of more than 40 artists. Participant observation and extended individual and group dialogues provided data on practice in a diverse range of art forms and settings, analysed using open coding and grounded theory principles. Results Findings locate differences in practitioners’ motivations, and perceptions of the work’s function; however, key similarities emerge across both sites, in practitioners’ workshop methodologies and crucially in their creative strategies for catalysing change. A model is presented distilling the key elements of a common practice methodology, found across the study and across art forms. Conclusions The discussion notes where divergences echo nationalities of contributors, drawing inferences about the level of influence of national context in this work, and concludes with the implications of these findings for potential international collaboration, to face challenges within the community arts and health sector globally. PMID:25729411
King, L; Tulandi, T; Whitley, R; Constantinescu, T; Ells, C; Zelkowitz, P
2014-06-01
Infertility and its treatment is the subject of considerable media coverage. In order to evaluate the representation of assisted reproductive technology (ART) in the popular media, we conducted a content analysis of North American newspaper articles. We also explored whether different themes emerged in relation to the implementation of public funding for ART in Quebec, Canada. Print and online newspaper articles from 2005 to 2011 were retrieved using the terms "in-vitro fertilization", "infertility treatment", "assisted reproductive technology", and "IVF treatment". Totally, 719 newspaper articles met inclusion criteria and were coded according to predetermined categories. Risks (63%) and ethical issues (61%) related to ART were most commonly featured. Quebec-based articles were mostly concerned with the politics and financial issues governing ART, and were less likely to report the risks and emotional impact of ART than other North American press. Newspapers tended to emphasize extreme scenarios as well as controversial cases that may not represent the everyday realities of ART. Changes in public policy may also engender shifts in the tone and content of media reports. It is important to establish resources that can inform the public as well as prospective infertility patients about their condition and potential treatment options.
Sauer, Philip E; Fopma-Loy, Joan; Kinney, Jennifer M; Lokon, Elizabeth
2016-09-01
During a 15-month period between February 2010 and April 2011, video data on (n = 38) people with dementia were collected during a person-centered and intergenerational arts activity program called Opening Minds through Art (OMA) at three different long-term care facilities in Ohio. A subsample of the OMA participants (n = 10) were also video recorded during traditional visual arts activities (e.g. coloring books, scrapbooking). A modified version of the Greater Cincinnati Chapter Well-Being Observation Tool© was used to code the intensity and frequency of observed domains of well-being (i.e. social interest, engagement, and pleasure) and ill-being (i.e. disengagement, negative affect, sadness, and confusion). Descriptive results indicate a high percentage of moderate or high intensities of well-being during OMA sessions with little to no ill-being. Paired-sample t-tests comparing OMA vs. traditional visual arts activities showed significantly higher intensity scores for OMA in the domain of engagement and pleasure, as well as significantly lower intensity scores for disengagement. The findings of this exploratory study contribute to the overall discussion about the impact of person-centered, creative-expressive arts activities on people with dementia. © The Author(s) 2014.
Cantu, Adelita G; Fleuriet, K Jill
2018-06-01
Document psychosocial and mental well-being outcomes across artistic mediums and classes of a community-based, professionally taught arts program for older adults. One hundred and thirty-eight students completed pre and post class surveys about expectations/experiences when creating art in four mediums (painting, drawing, mixed media, creative writing). In addition, 162 students composed one-paragraph biographical narratives describing their relationships to art and creative engagement. Text was coded for a priori and emergent themes to identify and explain well-being outcomes. Results of this new study supported and expanded our earlier model of improved psychosocial and mental well-being due to creative engagement: impact of class-cognitive focus and outcome of class-cognitive focus, happiness as component of mental and social well-being due to creative engagement, and robust sense of calmness during the creative process. Results suggest that professionally taught arts programming can contribute to well-being and may contribute to brain health through promoting an enhanced ability to focus. Holistic nursing treats creativity as healing, and results suggest that creative engagement should be a priority in therapeutic programming, and individual counseling for older adults to begin engaging in some form of art making suited to their abilities should be incorporated into nursing practice.
Gitai go: the art of deepening everyday life through exceeding codes.
Traversa, Rosa
2010-06-01
The present commentary is focused on exploring holistic ways to approach sense-making processes by following the usage of specific Japanese mimic words, Gitai go, and describing how its functioning cannot be disengaged from an embodied lens to approach language-in-use. In fact, according to Komatsu's (2010) discussion about the extension of meaning derived from Gitai go and its intrinsic flexible characteristics, it is possible--in terms of semiotics--to inquire into vaguely coded systems of mutual understanding, trying to make sense of the general functioning of signs through their peculiar ambiguity as well as their potential to evoke a vivid negotiation of meaning. This seems to show the openness of meaning highlighted by Gitai go, as it is to be referred to the logic of multiplicity deeply linked with the actors' feelings in the setting that could in general terms be labeled as the carnal knowledge. Furthermore, it has been arguing about the complexity of daily life experience and its close relation to a concept of "ordinary art", as the active involvement people show in imagining, changing and creating their personal experience of the world is always performed in their day-by-day frameworks, deeply suggesting a unique strive for appropriating-negotiating-contesting networks of meanings. And this is to be approached as an artistic mode of experiencing, since art too is just embedded in this ever-emerging ambivalence coming from the complex we call "ordinary life" and relating to our deep feelings of facing our futures. Along these lines I suggest that a particular role exists in communicative messages for what is labeled as "redundant" or "superfluous"--since the ambivalence of those messages explicates the dialogical frame of sense-making, in everyday life as a concept of art.
Math and Movement: Practical Ways to Incorporate Math into Physical Education
ERIC Educational Resources Information Center
Wade, Marcia
2016-01-01
Each year, physical educators are asked to incorporate even more math, language arts, science and social studies into their curriculum. The challenge is how to do this without sacrificing the essential health and life skills provided by a quality physical education program. One program, Math & Movement, is a great aid for physical educators to…
Ideas Exchange: What Is the Role of Dance in the Secondary Physical Education Program?
ERIC Educational Resources Information Center
Lorenzi, David G. (Comp.)
2010-01-01
This article presents ideas and views of educators regarding the role of dance in the secondary physical education program. One educator believes that dance education is an excellent complement to the traditional physical education program at the secondary level. Another educator defines physical education as the "art and science of human…
Processing module operating methods, processing modules, and communications systems
McCown, Steven Harvey; Derr, Kurt W.; Moore, Troy
2014-09-09
A processing module operating method includes using a processing module physically connected to a wireless communications device, requesting that the wireless communications device retrieve encrypted code from a web site and receiving the encrypted code from the wireless communications device. The wireless communications device is unable to decrypt the encrypted code. The method further includes using the processing module, decrypting the encrypted code, executing the decrypted code, and preventing the wireless communications device from accessing the decrypted code. Another processing module operating method includes using a processing module physically connected to a host device, executing an application within the processing module, allowing the application to exchange user interaction data communicated using a user interface of the host device with the host device, and allowing the application to use the host device as a communications device for exchanging information with a remote device distinct from the host device.
High-fidelity plasma codes for burn physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooley, James; Graziani, Frank; Marinak, Marty
Accurate predictions of equation of state (EOS), ionic and electronic transport properties are of critical importance for high-energy-density plasma science. Transport coefficients inform radiation-hydrodynamic codes and impact diagnostic interpretation, which in turn impacts our understanding of the development of instabilities, the overall energy balance of burning plasmas, and the efficacy of self-heating from charged-particle stopping. Important processes include thermal and electrical conduction, electron-ion coupling, inter-diffusion, ion viscosity, and charged particle stopping. However, uncertainties in these coefficients are not well established. Fundamental plasma science codes, also called high-fidelity plasma codes, are a relatively recent computational tool that augments both experimental datamore » and theoretical foundations of transport coefficients. This paper addresses the current status of HFPC codes and their future development, and the potential impact they play in improving the predictive capability of the multi-physics hydrodynamic codes used in HED design.« less
Selection of a computer code for Hanford low-level waste engineered-system performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGrail, B.P.; Mahoney, L.A.
Planned performance assessments for the proposed disposal of low-level waste (LLW) glass produced from remediation of wastes stored in underground tanks at Hanford, Washington will require calculations of radionuclide release rates from the subsurface disposal facility. These calculations will be done with the aid of computer codes. Currently available computer codes were ranked in terms of the feature sets implemented in the code that match a set of physical, chemical, numerical, and functional capabilities needed to assess release rates from the engineered system. The needed capabilities were identified from an analysis of the important physical and chemical process expected tomore » affect LLW glass corrosion and the mobility of radionuclides. The highest ranked computer code was found to be the ARES-CT code developed at PNL for the US Department of Energy for evaluation of and land disposal sites.« less
DNA as a Binary Code: How the Physical Structure of Nucleotide Bases Carries Information
ERIC Educational Resources Information Center
McCallister, Gary
2005-01-01
The DNA triplet code also functions as a binary code. Because double-ring compounds cannot bind to double-ring compounds in the DNA code, the sequence of bases classified simply as purines or pyrimidines can encode for smaller groups of possible amino acids. This is an intuitive approach to teaching the DNA code. (Contains 6 figures.)
Deep Hashing for Scalable Image Search.
Lu, Jiwen; Liong, Venice Erin; Zhou, Jie
2017-05-01
In this paper, we propose a new deep hashing (DH) approach to learn compact binary codes for scalable image search. Unlike most existing binary codes learning methods, which usually seek a single linear projection to map each sample into a binary feature vector, we develop a deep neural network to seek multiple hierarchical non-linear transformations to learn these binary codes, so that the non-linear relationship of samples can be well exploited. Our model is learned under three constraints at the top layer of the developed deep network: 1) the loss between the compact real-valued code and the learned binary vector is minimized, 2) the binary codes distribute evenly on each bit, and 3) different bits are as independent as possible. To further improve the discriminative power of the learned binary codes, we extend DH into supervised DH (SDH) and multi-label SDH by including a discriminative term into the objective function of DH, which simultaneously maximizes the inter-class variations and minimizes the intra-class variations of the learned binary codes with the single-label and multi-label settings, respectively. Extensive experimental results on eight widely used image search data sets show that our proposed methods achieve very competitive results with the state-of-the-arts.
Development of a new lattice physics code robin for PWR application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, S.; Chen, G.
2013-07-01
This paper presents a description of methodologies and preliminary verification results of a new lattice physics code ROBIN, being developed for PWR application at Shanghai NuStar Nuclear Power Technology Co., Ltd. The methods used in ROBIN to fulfill various tasks of lattice physics analysis are an integration of historical methods and new methods that came into being very recently. Not only these methods like equivalence theory for resonance treatment and method of characteristics for neutron transport calculation are adopted, as they are applied in many of today's production-level LWR lattice codes, but also very useful new methods like the enhancedmore » neutron current method for Dancoff correction in large and complicated geometry and the log linear rate constant power depletion method for Gd-bearing fuel are implemented in the code. A small sample of verification results are provided to illustrate the type of accuracy achievable using ROBIN. It is demonstrated that ROBIN is capable of satisfying most of the needs for PWR lattice analysis and has the potential to become a production quality code in the future. (authors)« less
Extension of the XGC code for global gyrokinetic simulations in stellarator geometry
NASA Astrophysics Data System (ADS)
Cole, Michael; Moritaka, Toseo; White, Roscoe; Hager, Robert; Ku, Seung-Hoe; Chang, Choong-Seock
2017-10-01
In this work, the total-f, gyrokinetic particle-in-cell code XGC is extended to treat stellarator geometries. Improvements to meshing tools and the code itself have enabled the first physics studies, including single particle tracing and flux surface mapping in the magnetic geometry of the heliotron LHD and quasi-isodynamic stellarator Wendelstein 7-X. These have provided the first successful test cases for our approach. XGC is uniquely placed to model the complex edge physics of stellarators. A roadmap to such a global confinement modeling capability will be presented. Single particle studies will include the physics of energetic particles' global stochastic motions and their effect on confinement. Good confinement of energetic particles is vital for a successful stellarator reactor design. These results can be compared in the core region with those of other codes, such as ORBIT3d. In subsequent work, neoclassical transport and turbulence can then be considered and compared to results from codes such as EUTERPE and GENE. After sufficient verification in the core region, XGC will move into the stellarator edge region including the material wall and neutral particle recycling.
Adaptive Scaling of Cluster Boundaries for Large-Scale Social Media Data Clustering.
Meng, Lei; Tan, Ah-Hwee; Wunsch, Donald C
2016-12-01
The large scale and complex nature of social media data raises the need to scale clustering techniques to big data and make them capable of automatically identifying data clusters with few empirical settings. In this paper, we present our investigation and three algorithms based on the fuzzy adaptive resonance theory (Fuzzy ART) that have linear computational complexity, use a single parameter, i.e., the vigilance parameter to identify data clusters, and are robust to modest parameter settings. The contribution of this paper lies in two aspects. First, we theoretically demonstrate how complement coding, commonly known as a normalization method, changes the clustering mechanism of Fuzzy ART, and discover the vigilance region (VR) that essentially determines how a cluster in the Fuzzy ART system recognizes similar patterns in the feature space. The VR gives an intrinsic interpretation of the clustering mechanism and limitations of Fuzzy ART. Second, we introduce the idea of allowing different clusters in the Fuzzy ART system to have different vigilance levels in order to meet the diverse nature of the pattern distribution of social media data. To this end, we propose three vigilance adaptation methods, namely, the activation maximization (AM) rule, the confliction minimization (CM) rule, and the hybrid integration (HI) rule. With an initial vigilance value, the resulting clustering algorithms, namely, the AM-ART, CM-ART, and HI-ART, can automatically adapt the vigilance values of all clusters during the learning epochs in order to produce better cluster boundaries. Experiments on four social media data sets show that AM-ART, CM-ART, and HI-ART are more robust than Fuzzy ART to the initial vigilance value, and they usually achieve better or comparable performance and much faster speed than the state-of-the-art clustering algorithms that also do not require a predefined number of clusters.
Light element opacities of astrophysical interest from ATOMIC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colgan, J.; Kilcrease, D. P.; Magee, N. H. Jr.
We present new calculations of local-thermodynamic-equilibrium (LTE) light element opacities from the Los Alamos ATOMIC code for systems of astrophysical interest. ATOMIC is a multi-purpose code that can generate LTE or non-LTE quantities of interest at various levels of approximation. Our calculations, which include fine-structure detail, represent a systematic improvement over previous Los Alamos opacity calculations using the LEDCOP legacy code. The ATOMIC code uses ab-initio atomic structure data computed from the CATS code, which is based on Cowan's atomic structure codes, and photoionization cross section data computed from the Los Alamos ionization code GIPPER. ATOMIC also incorporates a newmore » equation-of-state (EOS) model based on the chemical picture. ATOMIC incorporates some physics packages from LEDCOP and also includes additional physical processes, such as improved free-free cross sections and additional scattering mechanisms. Our new calculations are made for elements of astrophysical interest and for a wide range of temperatures and densities.« less
WDEC: A Code for Modeling White Dwarf Structure and Pulsations
NASA Astrophysics Data System (ADS)
Bischoff-Kim, Agnès; Montgomery, Michael H.
2018-05-01
The White Dwarf Evolution Code (WDEC), written in Fortran, makes models of white dwarf stars. It is fast, versatile, and includes the latest physics. The code evolves hot (∼100,000 K) input models down to a chosen effective temperature by relaxing the models to be solutions of the equations of stellar structure. The code can also be used to obtain g-mode oscillation modes for the models. WDEC has a long history going back to the late 1960s. Over the years, it has been updated and re-packaged for modern computer architectures and has specifically been used in computationally intensive asteroseismic fitting. Generations of white dwarf astronomers and dozens of publications have made use of the WDEC, although the last true instrument paper is the original one, published in 1975. This paper discusses the history of the code, necessary to understand why it works the way it does, details the physics and features in the code today, and points the reader to where to find the code and a user guide.
Adapting Physical Education Activities.
ERIC Educational Resources Information Center
Bundschuh, Ernest; And Others
Designed to meet the requirements of recent federal legislation, the booklet describes Project DART, which provides services in adapted physical education for handicapped children in Georgia. The first section examines the state of the art in adapted physical education and reviews the mandates of Public Law 94-142 (the Education for All…
Integration and Physical Education: A Review of Research
ERIC Educational Resources Information Center
Marttinen, Risto Harri Juhani; McLoughlin, Gabriella; Fredrick, Ray, III; Novak, Dario
2017-01-01
The Common Core State Standards Initiative has placed an increased focus on mathematics and English language arts. A relationship between physical activity and academic achievement is evident, but research on integration of academic subjects with physical education is still unclear. This literature review examined databases for the years…
How Integration Can Benefit Physical Education
ERIC Educational Resources Information Center
Wilson-Parish, Nichelle; Parish, Anthony
2016-01-01
One method for physical educators to increase their contact hours with their students is curricular integration, which consists of combining two or more subject areas with the goal of fostering enhanced learning in each subject area. This article provides an example of a possible integrated lesson plan involving physical education and art.
Active Gaming: Is "Virtual" Reality Right for Your Physical Education Program?
ERIC Educational Resources Information Center
Hansen, Lisa; Sanders, Stephen W.
2012-01-01
Active gaming is growing in popularity and the idea of increasing children's physical activity by using technology is largely accepted by physical educators. Teachers nationwide have been providing active gaming equipment such as virtual bikes, rhythmic dance machines, virtual sporting games, martial arts simulators, balance boards, and other…
Weiser, Sheri D; Gupta, Reshma; Tsai, Alexander C; Frongillo, Edward A; Grede, Nils; Kumbakumba, Elias; Kawuma, Annet; Hunt, Peter W; Martin, Jeffrey N; Bangsberg, David R
2012-10-01
To investigate whether time on antiretroviral therapy (ART) is associated with improvements in food security and nutritional status, and the extent to which associations are mediated by improved physical health status. The Uganda AIDS Rural Treatment Outcomes study, a prospective cohort of HIV-infected adults newly initiating ART in Mbarara, Uganda. Participants initiating ART underwent quarterly structured interview and blood draws. The primary explanatory variable was time on ART, constructed as a set of binary variables for each 3-month period. Outcomes were food insecurity, nutritional status, and PHS. We fit multiple regression models with cluster-correlated robust estimates of variance to account for within-person dependence of observations over time, and analyses were adjusted for clinical and sociodemographic characteristics. Two hundred twenty-eight ART-naive participants were followed for up to 3 years, and 41% were severely food insecure at baseline. The mean food insecurity score progressively declined (test for linear trend P < 0.0001), beginning with the second quarter (b = -1.6; 95% confidence interval: -2.7 to -0.45) and ending with the final quarter (b = -6.4; 95% confidence interval: -10.3 to -2.5). PHS and nutritional status improved in a linear fashion over study follow-up (P < 0.001). Inclusion of PHS in the regression model attenuated the relationship between ART duration and food security. Among HIV-infected individuals in Uganda, food insecurity decreased and nutritional status and PHS improved over time after initiation of ART. Changes in food insecurity were partially explained by improvements in PHS. These data support early initiation of ART in resource-poor settings before decline in functional status to prevent worsening food insecurity and its detrimental effects on HIV treatment outcomes.