Detectors for Linear Colliders: Detector design for a Future Electron-Positron Collider (4/4)
Thomson, Mark
2018-05-21
In this lecture I will discuss the issues related to the overall design and optimization of a detector for ILC and CLIC energies. I will concentrate on the two main detector concepts which are being developed in the context of the ILC. Here there has been much recent progress in developing realistic detector models and in understanding the physics performance of the overall detector concept. In addition, I will discuss the how the differences in the detector requirements for the ILC and CLIC impact the overall detector design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varner, R.L.; Blankenship, J.L.; Beene, J.R.
1998-02-01
Custom monolithic electronic circuits have been developed recently for large detector applications in high energy physics where subsystems require tens of thousands of channels of signal processing and data acquisition. In the design and construction of these enormous detectors, it has been found that monolithic circuits offer significant advantages over discrete implementations through increased performance, flexible packaging, lower power and reduced cost per channel. Much of the integrated circuit design for the high energy physics community is directly applicable to intermediate energy heavy-ion and electron physics. This STTR project conducted in collaboration with researchers at the Holifield Radioactive Ion Beammore » Facility (HRIBF) at Oak Ridge National Laboratory, sought to develop a new integrated circuit chip set for barium fluoride (BaF{sub 2}) detector arrays based upon existing CMOS monolithic circuit designs created for the high energy physics experiments. The work under the STTR Phase 1 demonstrated through the design, simulation, and testing of several prototype chips the feasibility of using custom CMOS integrated circuits for processing signals from BaF{sub 2} detectors. Function blocks including charge-sensitive amplifiers, comparators, one shots, time-to-amplitude converters, analog memory circuits and buffer amplifiers were implemented during Phase 1 effort. Experimental results from bench testing and laboratory testing with sources were documented.« less
A New Simulation Framework for the Electron-Ion Collider
NASA Astrophysics Data System (ADS)
Arrington, John
2017-09-01
Last year, a collaboration between Physics Division and High-Energy Physics at Argonne was formed to enable significantly broader contributions to the development of the Electron-Ion Collider. This includes efforts in accelerator R&D, theory, simulations, and detector R&D. I will give a brief overview of the status of these efforts, with emphasis on the aspects aimed at enabling the community to more easily become involved in evaluation of physics, detectors, and details of spectrometer designs. We have put together a new, easy-to-use simulation framework using flexible software tools. The goal is to enable detailed simulations to evaluate detector performance and compare detector designs. In addition, a common framework capable of providing detailed simulations of different spectrometer designs will allow for fully consistent evaluations of the physics reach of different spectrometer designs or detector systems for a variety of physics channels. In addition, new theory efforts will provide self-consistent models of GPDs (including QCD evolution) and TMDs in nucleons and light nuclei, as well as providing more detailed physics input for the evaluation of some new observables. This material is based upon work supported by Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, Office of Science, of the U.S. Department of Energy under Contract DE-AC02-06CH11357.
The Saskatchewan-Alberta large acceptance detector for photonuclear physics
NASA Astrophysics Data System (ADS)
Cairns, E. B.; Cameron, J.; Choi, W. C.; Fielding, H. W.; Green, P. W.; Greeniaus, L. G.; Hackett, E. D.; Holm, L.; Kolb, N. R.; Korkmaz, E.; Langill, P. P.; McDonald, W. J.; Mack, D.; Olsen, W. C.; Peterson, B. A.; Rodning, N. L.; Soukup, J.; Zhu, J.; Hutcheon, D.; Caplan, H. S.; Pywell, R. E.; Skopik, D. M.; Vogt, J. M.; van Heerden, I. J.
1992-09-01
The Saskatchewan-Alberta Large Acceptance Detector (SALAD) is a 4 π detector designed and built for studies of photonuclear reactions with a tagged photon beam. The design and performance of the detector are described. Its characteristics have been studied by examining p-p elastic scattering with a proton beam at TRIUMF.
NASA Astrophysics Data System (ADS)
Ikegami Andersson, W.; ̅PANDA Collaboration
2016-11-01
The future ̅PANDA detector at FAIR is a state-of-the-art internal target detector designed for strong interaction studies. By utilizing an antiproton beam, a rich and unique physics programme is planned. The ̅PANDA experiment, as well as feasibility studies for hyperon and charmonium physics, are discussed.
2009 Linear Collider Workshop of the Americas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidel, Sally
The 2009 Linear Collider Workshop of the Americas was held on the campus of the University of New Mexico from 29 September to 3 October, 2009. This was a joint meeting of the American Linear Collider Physics Group and the ILC Global Design Effort. Two hundred fifty people attended. The number of scientific contributions was 333. The complete agenda, with links to all of the presentations, is available at physics.unm.edu/LCWA09/. The meeting brought together international experts as well as junior scientists, to discuss the physics potential of the linear collider and advances in detector technology. The validation of detector designsmore » was announced, and the detector design groups planned the next phase of the effort. Detector R&D teams reported on progress on many topics including calorimetry and tracking. Recent accelerator design considerations were discussed in a special session for experimentalists and theorists.« less
Designing a Modern Low Cost Muon Detector to Teach Nuclear Physics
NASA Astrophysics Data System (ADS)
Press, Carly; Kotler, Julia
2016-09-01
In an effort to make it possible for small institutions to train students in nuclear physics, an attempt is made to design a low cost cosmic ray muon detector (perhaps under 600 dollars) capable of measuring flux vs. solid angle and muon lifetime. In order to expose students to current particle detection technologies, silicon photomultipliers will be coupled with plastic scintillator to provide the signals, and an Arduino, Raspberry Pi, or National Instruments device will interface with the detector. Once designed and built, prototypes of the detector will be used in outreach to K-12 students in the Allentown, PA area. This material is based upon work supported by the National Science Foundation under Grant No. 1507841.
Untitled Document [Argonne Logo] [DOE Logo] High Energy Physics Home Division ES&H Personnel Collider Physics Cosmic Frontier Cosmic Frontier Theory & Computing Detector R&D Electronic Design Mechanical Design Neutrino Physics Theoretical Physics Seminars HEP Division Seminar HEP Lunch Seminar HEP
Performance of the PHOBOS silicon sensors
NASA Astrophysics Data System (ADS)
Decowski, M. P.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hołyński, R.; Hofman, D. J.; Holzman, B.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Stephans, G. S. F.; Steinberg, P.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.
2002-02-01
The PHOBOS detector is designed to study the physics of Au+Au collisions at the Relativistic Heavy Ion Collider. The detector is almost entirely made of silicon pad detectors and was fully operational during the first year of operation. The detector is described, and key performance characteristics are summarized.
The CAPTAIN liquid argon neutrino experiment
Liu, Qiuguang
2015-01-01
The CAPTAIN liquid argon experiment is designed to make measurements of scientific importance to long-baseline neutrino physics and physics topics that will be explored by large underground detectors. The experiment employs two detectors – a primary detector with approximately 10-ton of liquid argon that will be deployed at different facilities for physics measurements and a prototype detector with 2-ton of liquid argon for configuration testing. The physics programs for CAPTAIN include measuring neutron interactions at Los Alamos Neutron Science Center, measuring neutrino interactions in medium energy regime (1.5–5 GeV) at Fermilab's NuMI beam, and measuring neutrino interactions in low energymore » regime (< 50 MeV) at stopped pion sources for supernova neutrino studies.« less
Performance studies of the P barANDA planar GEM-tracking detector in physics simulations
NASA Astrophysics Data System (ADS)
Divani Veis, Nazila; Firoozabadi, Mohammad M.; Karabowicz, Radoslaw; Maas, Frank; Saito, Takehiko R.; Voss, Bernd; ̅PANDA Gem-Tracker Subgroup
2018-03-01
The P barANDA experiment will be installed at the future facility for antiproton and ion research (FAIR) in Darmstadt, Germany, to study events from the annihilation of protons and antiprotons. The P barANDA detectors can cover a wide physics program about baryon spectroscopy and nucleon structure as well as the study of hadrons and hypernuclear physics including the study of excited hyperon states. One very specific feature of most hyperon ground states is the long decay length of several centimeters in the forward direction. The central tracking detectors of the P barANDA setup are not sufficiently optimized for these long decay lengths. Therefore, using a set of the planar GEM-tracking detectors in the forward region of interest can improve the results in the hyperon physics-benchmark channel. The current conceptual designed P barANDA GEM-tracking stations contribute the measurement of the particles emitted in the polar angles between about 2 to 22 degrees. For this designed detector performance and acceptance, studies have been performed using one of the important hyperonic decay channel p bar p → Λ bar Λ → p bar pπ+π- in physics simulations. The simulations were carried out using the PandaRoot software packages based on the FairRoot framework.
The Application of SNiPER to the JUNO Simulation
NASA Astrophysics Data System (ADS)
Lin, Tao; Zou, Jiaheng; Li, Weidong; Deng, Ziyan; Fang, Xiao; Cao, Guofu; Huang, Xingtao; You, Zhengyun; JUNO Collaboration
2017-10-01
The JUNO (Jiangmen Underground Neutrino Observatory) is a multipurpose neutrino experiment which is designed to determine neutrino mass hierarchy and precisely measure oscillation parameters. As one of the important systems, the JUNO offline software is being developed using the SNiPER software. In this proceeding, we focus on the requirements of JUNO simulation and present the working solution based on the SNiPER. The JUNO simulation framework is in charge of managing event data, detector geometries and materials, physics processes, simulation truth information etc. It glues physics generator, detector simulation and electronics simulation modules together to achieve a full simulation chain. In the implementation of the framework, many attractive characteristics of the SNiPER have been used, such as dynamic loading, flexible flow control, multiple event management and Python binding. Furthermore, additional efforts have been made to make both detector and electronics simulation flexible enough to accommodate and optimize different detector designs. For the Geant4-based detector simulation, each sub-detector component is implemented as a SNiPER tool which is a dynamically loadable and configurable plugin. So it is possible to select the detector configuration at runtime. The framework provides the event loop to drive the detector simulation and interacts with the Geant4 which is implemented as a passive service. All levels of user actions are wrapped into different customizable tools, so that user functions can be easily extended by just adding new tools. The electronics simulation has been implemented by following an event driven scheme. The SNiPER task component is used to simulate data processing steps in the electronics modules. The electronics and trigger are synchronized by triggered events containing possible physics signals. The JUNO simulation software has been released and is being used by the JUNO collaboration to do detector design optimization, event reconstruction algorithm development and physics sensitivity studies.
ALICE detector in construction phase
NASA Astrophysics Data System (ADS)
Peryt, Wiktor S.
2005-09-01
ALICE1 collaboration, which prepares one of the biggest physics experiments in the history, came into production phase of its detector. The experiment will start at LHC2 at CERN in 2007/2008. In the meantime about 1000 people from ~70 institutions are involved in this enterprise. ALICE detector consists of many sub-detectors, designed and manufactured in many laboratories and commercial firms, located mainly in Europe, but also in U.S., India, China and Korea. To assure appropriate working environment for such a specific task, strictly related to tests of particular components, measurements and assembly procedures Detector Construction Database system has been designed and implemented at CERN and at some labs involved in these activities. In this paper special attention is paid to this topic not only due to fact of innovative approach to the problem. Another reason is the group of young computer scientists (mainly students) from the Warsaw University of Technology, leaded by the author, has designed and developed the system for the whole experiment3. Another very interesting subject is the Data Acquisition System which has to fulfill very hard requirements concerning speed and high bandwidth. Required technical performance is achieved thanks to using PCI bus (usually in previous high energy physics experiments VME standard has been used) and optical links. Very general overview of the whole detector and physics goals of ALICE experiment will also be given.
MoEDAL - a new light on the high-energy frontier
NASA Astrophysics Data System (ADS)
Fairbairn, Malcolm; Pinfold, James L.
2017-01-01
In 2010, the MoEDAL (MOnopole and Exotics Detector at the LHC) experiment at the Large Hadron Collider (LHC) was unanimously approved by European Centre for Nuclear Research's Research Board to start data taking in 2015. MoEDAL is a pioneering experiment designed to search for highly ionising manifestations of new physics such as magnetic monopoles or massive (pseudo-)stable charged particles. Its groundbreaking physics programme defines a number of scenarios that yield potentially revolutionary insights into such foundational questions as: are there extra dimensions or new symmetries; does magnetic charge exist; what is the nature of dark matter; and, how did the Big Bang develop. MoEDAL's purpose is to meet such far-reaching challenges at the frontier of the field. The innovative MoEDAL detector employs unconventional methodologies tuned to the prospect of discovery physics. The largely passive MoEDAL detector, deployed at Point 8 on the LHC ring, has a dual nature. First, it acts like a giant camera, comprised of nuclear track detectors - analysed offline by ultra fast scanning microscopes - sensitive only to new physics. Second, it is uniquely able to trap the particle messengers of physics beyond the Standard Model for further study. MoEDAL's radiation environment is monitored by a state-of-the-art real-time TimePix pixel detector array. A new MoEDAL sub-detector designed to extend MoEDAL reach to mini-charged, minimally ionising particles is under study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Norman A.; /SLAC
Maximizing the physics performance of detectors being designed for the International Linear Collider, while remaining sensitive to cost constraints, requires a powerful, efficient, and flexible simulation, reconstruction and analysis environment to study the capabilities of a large number of different detector designs. The preparation of Letters Of Intent for the International Linear Collider involved the detailed study of dozens of detector options, layouts and readout technologies; the final physics benchmarking studies required the reconstruction and analysis of hundreds of millions of events. We describe the Java-based software toolkit (org.lcsim) which was used for full event reconstruction and analysis. The componentsmore » are fully modular and are available for tasks from digitization of tracking detector signals through to cluster finding, pattern recognition, track-fitting, calorimeter clustering, individual particle reconstruction, jet-finding, and analysis. The detector is defined by the same xml input files used for the detector response simulation, ensuring the simulation and reconstruction geometries are always commensurate by construction. We discuss the architecture as well as the performance.« less
The Mile Deep Muon Detector at Sanford Underground Laboratory
NASA Astrophysics Data System (ADS)
McMahan, Margaret; Gabriel, Steve
2012-03-01
For educating students and teachers about basic nuclear and particle physics, you can't go wrong with cosmic rays muons as a cheap and reliable source of data. A simple and relatively inexpensive detector gives a myriad of possibilities to cover core material in physical science, chemistry, physics, and statistics and gives students opportunities to design their own investigations. At Sanford Underground Laboratory at Homestake, in Lead, SD, cosmic ray muon detectors are being used to answer the first question always asked by any visitor to the facility, ``Why are you building the lab a mile underground'' A conventional Quarknet-style detector is available in the education facility on the surface, with a much larger companion detector, the Mile Deep Muon Detector, set up 4850 feet below the surface. Using the Quarknet data acquisition board, the data will be made available to students and teachers through the Cosmic Ray E-lab website. The detector was tested and installed as part of a summer program for students beginning their first or second year of college.
Limits in point to point resolution of MOS based pixels detector arrays
NASA Astrophysics Data System (ADS)
Fourches, N.; Desforge, D.; Kebbiri, M.; Kumar, V.; Serruys, Y.; Gutierrez, G.; Leprêtre, F.; Jomard, F.
2018-01-01
In high energy physics point-to-point resolution is a key prerequisite for particle detector pixel arrays. Current and future experiments require the development of inner-detectors able to resolve the tracks of particles down to the micron range. Present-day technologies, although not fully implemented in actual detectors, can reach a 5-μm limit, this limit being based on statistical measurements, with a pixel-pitch in the 10 μm range. This paper is devoted to the evaluation of the building blocks for use in pixel arrays enabling accurate tracking of charged particles. Basing us on simulations we will make here a quantitative evaluation of the physical and technological limits in pixel size. Attempts to design small pixels based on SOI technology will be briefly recalled here. A design based on CMOS compatible technologies that allow a reduction of the pixel size below the micrometer is introduced here. Its physical principle relies on a buried carrier-localizing collecting gate. The fabrication process needed by this pixel design can be based on existing process steps used in silicon microelectronics. The pixel characteristics will be discussed as well as the design of pixel arrays. The existing bottlenecks and how to overcome them will be discussed in the light of recent ion implantation and material characterization experiments.
The MPGD-based photon detectors for the upgrade of COMPASS RICH-1
NASA Astrophysics Data System (ADS)
Alexeev, M.; Azevedo, C. D. R.; Birsa, R.; Bradamante, F.; Bressan, A.; Büchele, M.; Chiosso, M.; Ciliberti, P.; Dalla Torre, S.; Dasgupta, S.; Denisov, O.; Finger, M.; Finger, M.; Fischer, H.; Gobbo, B.; Gregori, M.; Hamar, G.; Herrmann, F.; Levorato, S.; Maggiora, A.; Makke, A.; Martin, A.; Menon, G.; Steiger, K.; Novy, J.; Panzieri, D.; Pereira, F. A. B.; Santos, C. A.; Sbrizzai, G.; Schopferer, S.; Slunecka, M.; Steiger, L.; Sulc, M.; Tessarotto, F.; Veloso, J. F. C. A.
2017-12-01
The RICH-1 Detector of the COMPASS experiment at CERN SPS has undergone an important upgrade for the 2016 physics run. Four new photon detectors, based on Micro Pattern Gaseous Detector technology and covering a total active area larger than 1.2 m2 have replaced the previously used MWPC-based photon detectors. The upgrade answers the challenging efficiency and stability quest for the new phase of the COMPASS spectrometer physics programme. The new detector architecture consists in a hybrid MPGD combination of two Thick Gas Electron Multipliers and a MicroMegas stage. Signals, extracted from the anode pad by capacitive coupling, are read-out by analog F-E based on the APV25 chip. The main aspects of the COMPASS RICH-1 photon detectors upgrade are presented focussing on detector design, engineering aspects, mass production, the quality assessment and assembly challenges of the MPGD components. The status of the detector commissioning is also presented.
NASA Astrophysics Data System (ADS)
Wegrzecki, Maciej; Bar, Jan; Budzyński, Tadeusz; CieŻ, Michal; Grabiec, Piotr; Kozłowski, Roman; Kulawik, Jan; Panas, Andrzej; Sarnecki, Jerzy; Słysz, Wojciech; Szmigiel, Dariusz; Wegrzecka, Iwona; Wielunski, Marek; Witek, Krzysztof; Yakushev, Alexander; Zaborowski, Michał
2013-07-01
The paper discusses the design of charged-particle detectors commissioned and developed at the Institute of Electron Technology (ITE) in collaboration with foreign partners, used in international research on transactinide elements and to build personal radiation protection devices in Germany. Properties of these detectors and the results obtained using the devices are also presented. The design of the following epiplanar detector structures is discussed: ♢ 64-element chromatographic arrays for the COMPACT (Cryo On-line Multidetector for Physics And Chemistry of Transactinides) detection system used at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt (GSI) for research on Hassium, Copernicium and Flerovium, as well as elements 119 and 120, ♢ 2-element flow detectors for the COLD (Cryo On-Line Detector) system used for research on Copernicium and Flerovium at the Joint Institute for Nuclear Research, Dubna, ♢ detectors for a radon exposimeter and sensors for a neutron dosimeter developed at the Institut für Strahlenschutz, Helmholtz Zentrum München. The design of planar detectors - single-sided and double-sided strip detectors for the Focal Plane Detector Box used at GSI for research on Flerovium and elements 119 and 120 is also discussed.
CLIC CDR - physics and detectors: CLIC conceptual design report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, E.; Demarteau, M.; Repond, J.
This report forms part of the Conceptual Design Report (CDR) of the Compact LInear Collider (CLIC). The CLIC accelerator complex is described in a separate CDR volume. A third document, to appear later, will assess strategic scenarios for building and operating CLIC in successive center-of-mass energy stages. It is anticipated that CLIC will commence with operation at a few hundred GeV, giving access to precision standard-model physics like Higgs and top-quark physics. Then, depending on the physics landscape, CLIC operation would be staged in a few steps ultimately reaching the maximum 3 TeV center-of-mass energy. Such a scenario would maximizemore » the physics potential of CLIC providing new physics discovery potential over a wide range of energies and the ability to make precision measurements of possible new states previously discovered at the Large Hadron Collider (LHC). The main purpose of this document is to address the physics potential of a future multi-TeV e{sup +}e{sup -} collider based on CLIC technology and to describe the essential features of a detector that are required to deliver the full physics potential of this machine. The experimental conditions at CLIC are significantly more challenging than those at previous electron-positron colliders due to the much higher levels of beam-induced backgrounds and the 0.5 ns bunch-spacing. Consequently, a large part of this report is devoted to understanding the impact of the machine environment on the detector with the aim of demonstrating, with the example of realistic detector concepts, that high precision physics measurements can be made at CLIC. Since the impact of background increases with energy, this document concentrates on the detector requirements and physics measurements at the highest CLIC center-of-mass energy of 3 TeV. One essential output of this report is the clear demonstration that a wide range of high precision physics measurements can be made at CLIC with detectors which are challenging, but considered feasible following a realistic future R&D program.« less
NASA Astrophysics Data System (ADS)
Bruzzi, Mara; Cartiglia, Nicolo; Pace, Emanuele; Talamonti, Cinzia
2015-10-01
The 10th edition of the International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices (RESMDD) was held in Florence, at Dipartimento di Fisica ed Astronomia on October 8-10, 2014. It has been aimed at discussing frontier research activities in several application fields as nuclear and particle physics, astrophysics, medical and solid-state physics. Main topics discussed in this conference concern performance of heavily irradiated silicon detectors, developments required for the luminosity upgrade of the Large Hadron Collider (HL-LHC), ultra-fast silicon detectors design and manufacturing, high-band gap semiconductor detectors, novel semiconductor-based devices for medical applications, radiation damage issues in semiconductors and related radiation-hardening technologies.
Optimization of detectors for the ILC
NASA Astrophysics Data System (ADS)
Suehara, Taikan; ILD Group; SID Group
2016-04-01
International Linear Collider (ILC) is a next-generation e+e- linear collider to explore Higgs, Beyond-Standard-Models, top and electroweak particles with great precision. We are optimizing our two detectors, International Large Detector (ILD) and Silicon Detector (SiD) to maximize the physics reach expected in ILC with reasonable detector cost and good reliability. The optimization study on vertex detectors, main trackers and calorimeters is underway. We aim to conclude the optimization to establish final designs in a few years, to finish detector TDR and proposal in reply to expected ;green sign; of the ILC project.
A GridPix-based X-ray detector for the CAST experiment
NASA Astrophysics Data System (ADS)
Krieger, C.; Kaminski, J.; Lupberger, M.; Desch, K.
2017-09-01
The CAST experiment has been searching for axions and axion-like particles for more than 10 years. The continuous improvements in the detector designs have increased the physics reach of the experiment far beyond what was originally conceived. As part of this development, a new detector based on a GridPix readout had been developed in 2014 and was mounted on the CAST experiment during the end of the data taking period of 2014 and the complete period in 2015. We report on the detector design, its advantages and the performance during both periods.
Design and construction of the MicroBooNE detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acciarri, R.; Adams, C.; An, R.
This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported.
Design and construction of the MicroBooNE detector
Acciarri, R.; Adams, C.; An, R.; ...
2017-02-01
This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported.
On a Three-Channel Cosmic Ray Detector based on Aluminum Blocks
NASA Astrophysics Data System (ADS)
Arceo, L.; Félix, J.
2017-10-01
There are many general purpose cosmic ray detectors based on plastic scintillators and electronic boards from the market. This is a new cosmic ray detector designed on three 2.54 cm × 5.08 cm × 20.32 cm Aluminum blocks in stack arrangement, and three Hamamatsu S12572-100P photodiodes. The photodiode board, the passive electronic board, and the discriminator board are own designed. The electronic signals are stored with a CompactRIO -cRIO- by National Instruments. It is presented the design, the construction, the data acquisition system algorithm, and the preliminary physical results.
The atmosphere as particle detector
NASA Technical Reports Server (NTRS)
Stanev, Todor
1990-01-01
The possibility of using an inflatable, gas-filled balloon as a TeV gamma-ray detector on the moon is considered. By taking an atmosphere of Xenon gas there, or by extracting it on the moon, a layman's detector design is presented. In spite of its shortcomings, the exercise illustrates several of the novel features offered by particle physics on the moon.
The atmosphere as particle detector
NASA Astrophysics Data System (ADS)
Stanev, T.
1990-03-01
The possibility of using an inflatable, gas-filled balloon as a TeV gamma-ray detector on the moon is considered. By taking an atmosphere of Xenon gas there, or by extracting it on the moon, a layman's detector design is presented. In spite of its shortcomings, the exercise illustrates several of the novel features offered by particle physics on the moon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodman, Jordan A.
2008-12-24
The Milagro Gamma-Ray Observatory is the world's first large-area water Cherenkov detector capable of continuously monitoring the overhead sky for sources of TeV gamma rays. The detector's unique design provides for unprecedented sensitivity compared to traditional sparse sampling arrays. As a result, Milagro has made a host of discoveries including the detection of several new gamma-ray sources and the detection of diffuse emission from the Galactic plane. The HAWC detector is a natural extension of the Milagro design. HAWC will be constructed as a joint Mexican-US collaboration on the Sierra Negra Mountain in Mexico at an elevation of 4100 m.more » The design and location of HAWC was optimized using the lessons learned from Milagro and will be 15 times more sensitive than Milagro when completed. In this paper, we briefly review Milagro results and discuss the physics we can do with HAWC.« less
Chekanov, S. V.; Beydler, M.; Kotwal, A. V.; ...
2017-06-13
This paper describes simulations of detector response to multi-TeV physics at the Future Circular Collider (FCC-hh) or Super proton-proton Collider (SppC) which aim to collide proton beams with a centre-of-mass energy of 100 TeV. The unprecedented energy regime of these future experiments imposes new requirements on detector technologies which can be studied using the detailed geant4 simulations presented in this paper. The initial performance of a detector designed for physics studies at the FCC-hh or SppC experiments are described with an emphasis on measurements of single particles up to 33 TeV in transverse momentum. Furthermore, the granularity requirements for calorimetrymore » are investigated using the two-particle spatial resolution achieved for hadron showers.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chekanov, S. V.; Beydler, M.; Kotwal, A. V.
This paper describes simulations of detector response to multi-TeV physics at the Future Circular Collider (FCC-hh) or Super proton-proton Collider (SppC) which aim to collide proton beams with a centre-of-mass energy of 100 TeV. The unprecedented energy regime of these future experiments imposes new requirements on detector technologies which can be studied using the detailed geant4 simulations presented in this paper. The initial performance of a detector designed for physics studies at the FCC-hh or SppC experiments are described with an emphasis on measurements of single particles up to 33 TeV in transverse momentum. Furthermore, the granularity requirements for calorimetrymore » are investigated using the two-particle spatial resolution achieved for hadron showers.« less
The ALICE experiment at the CERN LHC
NASA Astrophysics Data System (ADS)
ALICE Collaboration; Aamodt, K.; Abrahantes Quintana, A.; Achenbach, R.; Acounis, S.; Adamová, D.; Adler, C.; Aggarwal, M.; Agnese, F.; Aglieri Rinella, G.; Ahammed, Z.; Ahmad, A.; Ahmad, N.; Ahmad, S.; Akindinov, A.; Akishin, P.; Aleksandrov, D.; Alessandro, B.; Alfaro, R.; Alfarone, G.; Alici, A.; Alme, J.; Alt, T.; Altinpinar, S.; Amend, W.; Andrei, C.; Andres, Y.; Andronic, A.; Anelli, G.; Anfreville, M.; Angelov, V.; Anzo, A.; Anson, C.; Anticić, T.; Antonenko, V.; Antonczyk, D.; Antinori, F.; Antinori, S.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Aprodu, V.; Arba, M.; Arcelli, S.; Argentieri, A.; Armesto, N.; Arnaldi, R.; Arefiev, A.; Arsene, I.; Asryan, A.; Augustinus, A.; Awes, T. C.; Äysto, J.; Danish Azmi, M.; Bablock, S.; Badalà, A.; Badyal, S. K.; Baechler, J.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baldit, A.; Bán, J.; Barbera, R.; Barberis, P.-L.; Barbet, J. M.; Barnäfoldi, G.; Barret, V.; Bartke, J.; Bartos, D.; Basile, M.; Basmanov, V.; Bastid, N.; Batigne, G.; Batyunya, B.; Baudot, J.; Baumann, C.; Bearden, I.; Becker, B.; Belikov, J.; Bellwied, R.; Belmont-Moreno, E.; Belogianni, A.; Belyaev, S.; Benato, A.; Beney, J. L.; Benhabib, L.; Benotto, F.; Beolé, S.; Berceanu, I.; Bercuci, A.; Berdermann, E.; Berdnikov, Y.; Bernard, C.; Berny, R.; Berst, J. D.; Bertelsen, H.; Betev, L.; Bhasin, A.; Baskar, P.; Bhati, A.; Bianchi, N.; Bielčik, J.; Bielčiková, J.; Bimbot, L.; Blanchard, G.; Blanco, F.; Blanco, F.; Blau, D.; Blume, C.; Blyth, S.; Boccioli, M.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Boldizsár, L.; Bombara, M.; Bombonati, C.; Bondila, M.; Bonnet, D.; Bonvicini, V.; Borel, H.; Borotto, F.; Borshchov, V.; Bortoli, Y.; Borysov, O.; Bose, S.; Bosisio, L.; Botje, M.; Böttger, S.; Bourdaud, G.; Bourrion, O.; Bouvier, S.; Braem, A.; Braun, M.; Braun-Munzinger, P.; Bravina, L.; Bregant, M.; Bruckner, G.; Brun, R.; Bruna, E.; Brunasso, O.; Bruno, G. E.; Bucher, D.; Budilov, V.; Budnikov, D.; Buesching, H.; Buncic, P.; Burns, M.; Burachas, S.; Busch, O.; Bushop, J.; Cai, X.; Caines, H.; Calaon, F.; Caldogno, M.; Cali, I.; Camerini, P.; Campagnolo, R.; Campbell, M.; Cao, X.; Capitani, G. P.; Romeo, G. Cara; Cardenas-Montes, M.; Carduner, H.; Carena, F.; Carena, W.; Cariola, P.; Carminati, F.; Casado, J.; Casanova Diaz, A.; Caselle, M.; Castillo Castellanos, J.; Castor, J.; Catanescu, V.; Cattaruzza, E.; Cavazza, D.; Cerello, P.; Ceresa, S.; Černý, V.; Chambert, V.; Chapeland, S.; Charpy, A.; Charrier, D.; Chartoire, M.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chepurnov, V.; Chernenko, S.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chochula, P.; Chiavassa, E.; Chibante Barroso, V.; Choi, J.; Christakoglou, P.; Christiansen, P.; Christensen, C.; Chykalov, O. A.; Cicalo, C.; Cifarelli-Strolin, L.; Ciobanu, M.; Cindolo, F.; Cirstoiu, C.; Clausse, O.; Cleymans, J.; Cobanoglu, O.; Coffin, J.-P.; Coli, S.; Colla, A.; Colledani, C.; Combaret, C.; Combet, M.; Comets, M.; Conesa Balbastre, G.; Conesa del Valle, Z.; Contin, G.; Contreras, J.; Cormier, T.; Corsi, F.; Cortese, P.; Costa, F.; Crescio, E.; Crochet, P.; Cuautle, E.; Cussonneau, J.; Dahlinger, M.; Dainese, A.; Dalsgaard, H. H.; Daniel, L.; Das, I.; Das, T.; Dash, A.; Da Silva, R.; Davenport, M.; Daues, H.; DeCaro, A.; de Cataldo, G.; DeCuveland, J.; DeFalco, A.; de Gaspari, M.; de Girolamo, P.; de Groot, J.; DeGruttola, D.; DeHaas, A.; DeMarco, N.; DePasquale, S.; DeRemigis, P.; de Vaux, D.; Decock, G.; Delagrange, H.; DelFranco, M.; Dellacasa, G.; Dell'Olio, C.; Dell'Olio, D.; Deloff, A.; Demanov, V.; Dénes, E.; D'Erasmo, G.; Derkach, D.; Devaux, A.; Di Bari, D.; Di Bartelomen, A.; Di Giglio, C.; Di Liberto, S.; Di Mauro, A.; Di Nezza, P.; Dialinas, M.; Diaz, L.; Díaz Valdes, R.; Dietel, T.; Dima, R.; Ding, H.; Dinca, C.; Divià, R.; Dobretsov, V.; Dobrin, A.; Doenigus, B.; Dobrowolski, T.; Domínguez, I.; Dorn, M.; Drouet, S.; Dubey, A. E.; Ducroux, L.; Dumitrache, F.; Dumonteil, E.; Dupieux, P.; Duta, V.; Dutta Majumdar, A.; Dutta Majumdar, M.; Dyhre, Th; Efimov, L.; Efremov, A.; Elia, D.; Emschermann, D.; Engster, C.; Enokizono, A.; Espagnon, B.; Estienne, M.; Evangelista, A.; Evans, D.; Evrard, S.; Fabjan, C. W.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Farano, R.; Fearick, R.; Fedorov, O.; Fekete, V.; Felea, D.; Feofilov, G.; Férnandez Téllez, A.; Ferretti, A.; Fichera, F.; Filchagin, S.; Filoni, E.; Finck, C.; Fini, R.; Fiore, E. M.; Flierl, D.; Floris, M.; Fodor, Z.; Foka, Y.; Fokin, S.; Force, P.; Formenti, F.; Fragiacomo, E.; Fragkiadakis, M.; Fraissard, D.; Franco, A.; Franco, M.; Frankenfeld, U.; Fratino, U.; Fresneau, S.; Frolov, A.; Fuchs, U.; Fujita, J.; Furget, C.; Furini, M.; Fusco Girard, M.; Gaardhøje, J.-J.; Gabrielli, A.; Gadrat, S.; Gagliardi, M.; Gago, A.; Gaido, L.; Gallas Torreira, A.; Gallio, M.; Gandolfi, E.; Ganoti, P.; Ganti, M.; Garabatos, J.; Garcia Lopez, A.; Garizzo, L.; Gaudichet, L.; Gemme, R.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Giolu, G.; Giraudo, G.; Giubellino, P.; Glasow, R.; Glässel, P.; Ferreiro, E. G.; Gonzalez Gutierrez, C.; Gonzales-Trueba, L. H.; Gorbunov, S.; Gorbunov, Y.; Gos, H.; Gosset, J.; Gotovac, S.; Gottschlag, H.; Gottschalk, D.; Grabski, V.; Grassi, T.; Gray, H.; Grebenyuk, O.; Grebieszkow, K.; Gregory, C.; Grigoras, C.; Grion, N.; Grigoriev, V.; Grigoryan, A.; Grigoryan, C.; Grigoryan, S.; Grishuk, Y.; Gros, P.; Grosse-Oetringhaus, J.; Grossiord, J.-Y.; Grosso, R.; Grynyov, B.; Guarnaccia, C.; Guber, F.; Guerin, F.; Guernane, R.; Guerzoni, M.; Guichard, A.; Guida, M.; Guilloux, G.; Gulkanyan, H.; Gulbrandsen, K.; Gunji, T.; Gupta, A.; Gupta, V.; Gustafsson, H.-A.; Gutbrod, H.; Hadjidakis, C.; Haiduc, M.; Hamar, G.; Hamagaki, H.; Hamblen, J.; Hansen, J. C.; Hardy, P.; Hatzifotiadou, D.; Harris, J. W.; Hartig, M.; Harutyunyan, A.; Hayrapetyan, A.; Hasch, D.; Hasegan, D.; Hehner, J.; Heine, N.; Heinz, M.; Helstrup, H.; Herghelegiu, A.; Herlant, S.; Herrera Corral, G.; Herrmann, N.; Hetland, K.; Hille, P.; Hinke, H.; Hippolyte, B.; Hoch, M.; Hoebbel, H.; Hoedlmoser, H.; Horaguchi, T.; Horner, M.; Hristov, P.; Hřivnáčová, I.; Hu, S.; Guo, C. Hu; Humanic, T.; Hurtado, A.; Hwang, D. S.; Ianigro, J. C.; Idzik, M.; Igolkin, S.; Ilkaev, R.; Ilkiv, I.; Imhoff, M.; Innocenti, P. G.; Ionescu, E.; Ippolitov, M.; Irfan, M.; Insa, C.; Inuzuka, M.; Ivan, C.; Ivanov, A.; Ivanov, M.; Ivanov, V.; Jacobs, P.; Jacholkowski, A.; Jančurová, L.; Janik, R.; Jasper, M.; Jena, C.; Jirden, L.; Johnson, D. P.; Jones, G. T.; Jorgensen, C.; Jouve, F.; Jovanović, P.; Junique, A.; Jusko, A.; Jung, H.; Jung, W.; Kadija, K.; Kamal, A.; Kamermans, R.; Kapusta, S.; Kaidalov, A.; Kakoyan, V.; Kalcher, S.; Kang, E.; Kapitan, J.; Kaplin, V.; Karadzhev, K.; Karavichev, O.; Karavicheva, T.; Karpechev, E.; Karpio, K.; Kazantsev, A.; Kebschull, U.; Keidel, R.; Mohsin Khan, M.; Khanzadeev, A.; Kharlov, Y.; Kikola, D.; Kileng, B.; Kim, D.; Kim, D. S.; Kim, D. W.; Kim, H. N.; Kim, J. S.; Kim, S.; Kinson, J. B.; Kiprich, S. K.; Kisel, I.; Kiselev, S.; Kisiel, A.; Kiss, T.; Kiworra, V.; Klay, J.; Klein Bösing, C.; Kliemant, M.; Klimov, A.; Klovning, A.; Kluge, A.; Kluit, R.; Kniege, S.; Kolevatov, R.; Kollegger, T.; Kolojvari, A.; Kondratiev, V.; Kornas, E.; Koshurnikov, E.; Kotov, I.; Kour, R.; Kowalski, M.; Kox, S.; Kozlov, K.; Králik, I.; Kramer, F.; Kraus, I.; Kravčáková, A.; Krawutschke, T.; Krivda, M.; Kryshen, E.; Kucheriaev, Y.; Kugler, A.; Kuhn, C.; Kuijer, P.; Kumar, L.; Kumar, N.; Kumpumaeki, P.; Kurepin, A.; Kurepin, A. N.; Kushpil, S.; Kushpil, V.; Kutovsky, M.; Kvaerno, H.; Kweon, M.; Labbé, J.-C.; Lackner, F.; Ladron de Guevara, P.; Lafage, V.; La Rocca, P.; Lamont, M.; Lara, C.; Larsen, D. T.; Laurenti, G.; Lazzeroni, C.; LeBornec, Y.; LeBris, N.; LeGailliard, C.; Lebedev, V.; Lecoq, J.; Lee, K. S.; Lee, S. C.; Lefévre, F.; Legrand, I.; Lehmann, T.; Leistam, L.; Lenoir, P.; Lenti, V.; Leon, H.; Monzon, I. Leon; Lévai, P.; Li, Q.; Li, X.; Librizzi, F.; Lietava, R.; Lindegaard, N.; Lindenstruth, V.; Lippmann, C.; Lisa, M.; Listratenko, O. M.; Littel, F.; Liu, Y.; Lo, J.; Lobanov, V.; Loginov, V.; López Noriega, M.; López-Ramírez, R.; López Torres, E.; Lorenzo, P. M.; Løvhøiden, G.; Lu, S.; Ludolphs, W.; Lunardon, M.; Luquin, L.; Lusso, S.; Lutz, J.-R.; Luvisetto, M.; Lyapin, V.; Maevskaya, A.; Magureanu, C.; Mahajan, A.; Majahan, S.; Mahmoud, T.; Mairani, A.; Mahapatra, D.; Makarov, A.; Makhlyueva, I.; Malek, M.; Malkiewicz, T.; Mal'Kevich, D.; Malzacher, P.; Mamonov, A.; Manea, C.; Mangotra, L. K.; Maniero, D.; Manko, V.; Manso, F.; Manzari, V.; Mao, Y.; Marcel, A.; Marchini, S.; Mareš, J.; Margagliotti, G. V.; Margotti, A.; Marin, A.; Marin, J.-C.; Marras, D.; Martinengo, P.; Martínez, M. I.; Martinez-Davalos, A.; Martínez Garcia, G.; Martini, S.; Marzari Chiesa, A.; Marzocca, C.; Masciocchi, S.; Masera, M.; Masetti, M.; Maslov, N. I.; Masoni, A.; Massera, F.; Mast, M.; Mastroserio, A.; Matthews, Z. L.; Mayer, B.; Mazza, G.; Mazzaro, M. D.; Mazzoni, A.; Meddi, F.; Meleshko, E.; Menchaca-Rocha, A.; Meneghini, S.; Meoni, M.; Mercado Perez, J.; Mereu, P.; Meunier, O.; Miake, Y.; Michalon, A.; Michinelli, R.; Miftakhov, N.; Mignone, M.; Mikhailov, K.; Milosevic, J.; Minaev, Y.; Minafra, F.; Mischke, A.; Miśkowiec, D.; Mitsyn, V.; Mitu, C.; Mohanty, B.; Moisa, D.; Molnar, L.; Mondal, M.; Mondal, N.; Montaño Zetina, L.; Monteno, M.; Morando, M.; Morel, M.; Moretto, S.; Morhardt, Th; Morsch, A.; Moukhanova, T.; Mucchi, M.; Muccifora, V.; Mudnic, E.; Müller, H.; Müller, W.; Munoz, J.; Mura, D.; Musa, L.; Muraz, J. F.; Musso, A.; Nania, R.; Nandi, B.; Nappi, E.; Navach, F.; Navin, S.; Nayak, T.; Nazarenko, S.; Nazarov, G.; Nellen, L.; Nendaz, F.; Nianine, A.; Nicassio, M.; Nielsen, B. S.; Nikolaev, S.; Nikolic, V.; Nikulin, S.; Nikulin, V.; Nilsen, B.; Nitti, M.; Noferini, F.; Nomokonov, P.; Nooren, G.; Noto, F.; Nouais, D.; Nyiri, A.; Nystrand, J.; Odyniec, G.; Oeschler, H.; Oinonen, M.; Oldenburg, M.; Oleks, I.; Olsen, E. K.; Onuchin, V.; Oppedisano, C.; Orsini, F.; Ortiz-Velázquez, A.; Oskamp, C.; Oskarsson, A.; Osmic, F.; Österman, L.; Otterlund, I.; Ovrebekk, G.; Oyama, K.; Pachr, M.; Pagano, P.; Paić, G.; Pajares, C.; Pal, S.; Pal, S.; Pálla, G.; Palmeri, A.; Pancaldi, G.; Panse, R.; Pantaleo, A.; Pappalardo, G. S.; Pastirčák, B.; Pastore, C.; Patarakin, O.; Paticchio, V.; Patimo, G.; Pavlinov, A.; Pawlak, T.; Peitzmann, T.; Pénichot, Y.; Pepato, A.; Pereira, H.; Peresunko, D.; Perez, C.; Perez Griffo, J.; Perini, D.; Perrino, D.; Peryt, W.; Pesci, A.; Peskov, V.; Pestov, Y.; Peters, A. J.; Petráček, V.; Petridis, A.; Petris, M.; Petrov, V.; Petrov, V.; Petrovici, M.; Peyré, J.; Piano, S.; Piccotti, A.; Pichot, P.; Piemonte, C.; Pikna, M.; Pilastrini, R.; Pillot, P.; Pinazza, O.; Pini, B.; Pinsky, L.; Pinto Morais, V.; Pismennaya, V.; Piuz, F.; Platt, R.; Ploskon, M.; Plumeri, S.; Pluta, J.; Pocheptsov, T.; Podesta, P.; Poggio, F.; Poghosyan, M.; Poghosyan, T.; Polák, K.; Polichtchouk, B.; Polozov, P.; Polyakov, V.; Pommeresch, B.; Pompei, F.; Pop, A.; Popescu, S.; Posa, F.; Pospíšil, V.; Potukuchi, B.; Pouthas, J.; Prasad, S.; Preghenella, R.; Prino, F.; Prodan, L.; Prono, G.; Protsenko, M. A.; Pruneau, C. A.; Przybyla, A.; Pshenichnov, I.; Puddu, G.; Pujahari, P.; Pulvirenti, A.; Punin, A.; Punin, V.; Putschke, J.; Quartieri, J.; Quercigh, E.; Rachevskaya, I.; Rachevski, A.; Rademakers, A.; Radomski, S.; Radu, A.; Rak, J.; Ramello, L.; Raniwala, R.; Raniwala, S.; Rasmussen, O. B.; Rasson, J.; Razin, V.; Read, K.; Real, J.; Redlich, K.; Reichling, C.; Renard, C.; Renault, G.; Renfordt, R.; Reolon, A. R.; Reshetin, A.; Revol, J.-P.; Reygers, K.; Ricaud, H.; Riccati, L.; Ricci, R. A.; Richter, M.; Riedler, P.; Rigalleau, L. M.; Riggi, F.; Riegler, W.; Rindel, E.; Riso, J.; Rivetti, A.; Rizzi, M.; Rizzi, V.; Rodriguez Cahuantzi, M.; Røed, K.; Röhrich, D.; Román-López, S.; Romanato, M.; Romita, R.; Ronchetti, F.; Rosinsky, P.; Rosnet, P.; Rossegger, S.; Rossi, A.; Rostchin, V.; Rotondo, F.; Roukoutakis, F.; Rousseau, S.; Roy, C.; Roy, D.; Roy, P.; Royer, L.; Rubin, G.; Rubio, A.; Rui, R.; Rusanov, I.; Russo, G.; Ruuskanen, V.; Ryabinkin, E.; Rybicki, A.; Sadovsky, S.; Šafařík, K.; Sahoo, R.; Saini, J.; Saiz, P.; Salur, S.; Sambyal, S.; Samsonov, V.; Šándor, L.; Sandoval, A.; Sann, H.; Santiard, J.-C.; Santo, R.; Santoro, R.; Sargsyan, G.; Saturnini, P.; Scapparone, E.; Scarlassara, F.; Schackert, B.; Schiaua, C.; Schicker, R.; Schioler, T.; Schippers, J. D.; Schmidt, C.; Schmidt, H.; Schneider, R.; Schossmaier, K.; Schukraft, J.; Schutz, Y.; Schwarz, K.; Schweda, K.; Schyns, E.; Scioli, G.; Scomparin, E.; Snow, H.; Sedykh, S.; Segato, G.; Sellitto, S.; Semeria, F.; Senyukov, S.; Seppänen, H.; Serci, S.; Serkin, L.; Serra, S.; Sesselmann, T.; Sevcenco, A.; Sgura, I.; Shabratova, G.; Shahoyan, R.; Sharkov, E.; Sharma, S.; Shigaki, K.; Shileev, K.; Shukla, P.; Shurygin, A.; Shurygina, M.; Sibiriak, Y.; Siddi, E.; Siemiarczuk, T.; Sigward, M. H.; Silenzi, A.; Silvermyr, D.; Silvestri, R.; Simili, E.; Simion, V.; Simon, R.; Simonetti, L.; Singaraju, R.; Singhal, V.; Sinha, B.; Sinha, T.; Siska, M.; Sitár, B.; Sitta, M.; Skaali, B.; Skowronski, P.; Slodkowski, M.; Smirnov, N.; Smykov, L.; Snellings, R.; Snoeys, W.; Soegaard, C.; Soerensen, J.; Sokolov, O.; Soldatov, A.; Soloviev, A.; Soltveit, H.; Soltz, R.; Sommer, W.; Soos, C.; Soramel, F.; Sorensen, S.; Soyk, D.; Spyropoulou-Stassinaki, M.; Stachel, J.; Staley, F.; Stan, I.; Stavinskiy, A.; Steckert, J.; Stefanini, G.; Stefanek, G.; Steinbeck, T.; Stelzer, H.; Stenlund, E.; Stocco, D.; Stockmeier, M.; Stoicea, G.; Stolpovsky, P.; Strmeň, P.; Stutzmann, J. S.; Su, G.; Sugitate, T.; Šumbera, M.; Suire, C.; Susa, T.; Sushil Kumar, K.; Swoboda, D.; Symons, J.; Szarka, I.; Szostak, A.; Szuba, M.; Szymanski, P.; Tadel, M.; Tagridis, C.; Tan, L.; Tapia Takaki, D.; Taureg, H.; Tauro, A.; Tavlet, M.; Tejeda Munoz, G.; Thäder, J.; Tieulent, R.; Timmer, P.; Tolyhy, T.; Topilskaya, N.; Torcato de Matos, C.; Torii, H.; Toscano, L.; Tosello, F.; Tournaire, A.; Traczyk, T.; Tröger, G.; Tromeur, W.; Truesdale, D.; Trzaska, W.; Tsiledakis, G.; Tsilis, E.; Tsvetkov, A.; Turcato, M.; Turrisi, R.; Tuveri, M.; Tveter, T.; Tydesjo, H.; Tykarski, L.; Tywoniuk, K.; Ugolini, E.; Ullaland, K.; Urbán, J.; Urciuoli, G. M.; Usai, G. L.; Usseglio, M.; Vacchi, A.; Vala, M.; Valiev, F.; Vande Vyvre, P.; Van Den Brink, A.; Van Eijndhoven, N.; Van Der Kolk, N.; van Leeuwen, M.; Vannucci, L.; Vanzetto, S.; Vanuxem, J.-P.; Vargas, M. A.; Varma, R.; Vascotto, A.; Vasiliev, A.; Vassiliou, M.; Vasta, P.; Vechernin, V.; Venaruzzo, M.; Vercellin, E.; Vergara, S.; Verhoeven, W.; Veronese, F.; Vetlitskiy, I.; Vernet, R.; Victorov, V.; Vidak, L.; Viesti, G.; Vikhlyantsev, O.; Vilakazi, Z.; Villalobos Baillie, O.; Vinogradov, A.; Vinogradov, L.; Vinogradov, Y.; Virgili, T.; Viyogi, Y.; Vodopianov, A.; Volpe, G.; Vranic, D.; Vrláková, J.; Vulpescu, B.; Wabnitz, C.; Wagner, V.; Wallet, L.; Wan, R.; Wang, Y.; Wang, Y.; Wheadon, R.; Weis, R.; Wen, Q.; Wessels, J.; Westergaard, J.; Wiechula, J.; Wiesenaecker, A.; Wikne, J.; Wilk, A.; Wilk, G.; Williams, C.; Willis, N.; Windelband, B.; Witt, R.; Woehri, H.; Wyllie, K.; Xu, C.; Yang, C.; Yang, H.; Yermia, F.; Yin, Z.; Yin, Z.; Ky, B. Yun; Yushmanov, I.; Yuting, B.; Zabrodin, E.; Zagato, S.; Zagreev, B.; Zaharia, P.; Zalite, A.; Zampa, G.; Zampolli, C.; Zanevskiy, Y.; Zarochentsev, A.; Zaudtke, O.; Závada, P.; Zbroszczyk, H.; Zepeda, A.; Zeter, V.; Zgura, I.; Zhalov, M.; Zhou, D.; Zhou, S.; Zhu, G.; Zichichi, A.; Zinchenko, A.; Zinovjev, G.; Zoccarato, Y.; Zubarev, A.; Zucchini, A.; Zuffa, M.
2008-08-01
ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 16 × 16 × 26 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Geynisman, M.; Bremer, J.; Chalifour, M.
The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ~260 tons) and SBN’s Far Detector (SBN-FD, ~760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements formore » the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution presents specific design requirements and typical implementation solutions for each sub-system of the SBND and SBN-FD cryogenic systems.« less
NASA Astrophysics Data System (ADS)
Geynisman, M.; Bremer, J.; Chalifour, M.; Delaney, M.; Dinnon, M.; Doubnik, R.; Hentschel, S.; Kim, M. J.; Montanari, C.; Montanari, D.; Nichols, T.; Norris, B.; Sarychev, M.; Schwartz, F.; Tillman, J.; Zuckerbrot, M.
2017-12-01
The Short-Baseline Neutrino (SBN) physics program at Fermilab and Neutrino Platform (NP) at CERN are part of the international Neutrino Program leading to the development of Long-Baseline Neutrino Facility/Deep Underground Neutrino Experiment (LBNF/DUNE) science project. The SBN program consisting of three Liquid Argon Time Projection Chamber (LAr-TPC) detectors positioned along the Booster Neutrino Beam (BNB) at Fermilab includes an existing detector known as MicroBooNE (170-ton LAr-TPC) plus two new experiments known as SBN’s Near Detector (SBND, ∼260 tons) and SBN’s Far Detector (SBN-FD, ∼760 tons). All three detectors have distinctly different design of their cryostats thus defining specific requirements for the cryogenic systems. Fermilab has already built two new facilities to house SBND and SBN-FD detectors. The cryogenic systems for these detectors are in various stages of design and construction with CERN and Fermilab being responsible for delivery of specific sub-systems. This contribution presents specific design requirements and typical implementation solutions for each sub-system of the SBND and SBN-FD cryogenic systems.
Belle II silicon vertex detector
NASA Astrophysics Data System (ADS)
Adamczyk, K.; Aihara, H.; Angelini, C.; Aziz, T.; Babu, V.; Bacher, S.; Bahinipati, S.; Barberio, E.; Baroncelli, Ti.; Baroncelli, To.; Basith, A. K.; Batignani, G.; Bauer, A.; Behera, P. K.; Bergauer, T.; Bettarini, S.; Bhuyan, B.; Bilka, T.; Bosi, F.; Bosisio, L.; Bozek, A.; Buchsteiner, F.; Casarosa, G.; Ceccanti, M.; Červenkov, D.; Chendvankar, S. R.; Dash, N.; Divekar, S. T.; Doležal, Z.; Dutta, D.; Enami, K.; Forti, F.; Friedl, M.; Hara, K.; Higuchi, T.; Horiguchi, T.; Irmler, C.; Ishikawa, A.; Jeon, H. B.; Joo, C. W.; Kandra, J.; Kang, K. H.; Kato, E.; Kawasaki, T.; Kodyš, P.; Kohriki, T.; Koike, S.; Kolwalkar, M. M.; Kvasnička, P.; Lanceri, L.; Lettenbicher, J.; Maki, M.; Mammini, P.; Mayekar, S. N.; Mohanty, G. B.; Mohanty, S.; Morii, T.; Nakamura, K. R.; Natkaniec, Z.; Negishi, K.; Nisar, N. K.; Onuki, Y.; Ostrowicz, W.; Paladino, A.; Paoloni, E.; Park, H.; Pilo, F.; Profeti, A.; Rashevskaya, I.; Rao, K. K.; Rizzo, G.; Rozanska, M.; Sandilya, S.; Sasaki, J.; Sato, N.; Schultschik, S.; Schwanda, C.; Seino, Y.; Shimizu, N.; Stypula, J.; Suzuki, J.; Tanaka, S.; Tanida, K.; Taylor, G. N.; Thalmeier, R.; Thomas, R.; Tsuboyama, T.; Uozumi, S.; Urquijo, P.; Vitale, L.; Volpi, M.; Watanuki, S.; Watson, I. J.; Webb, J.; Wiechczynski, J.; Williams, S.; Würkner, B.; Yamamoto, H.; Yin, H.; Yoshinobu, T.; Belle II SVD Collaboration
2016-09-01
The Belle II experiment at the SuperKEKB collider in Japan is designed to indirectly probe new physics using approximately 50 times the data recorded by its predecessor. An accurate determination of the decay-point position of subatomic particles such as beauty and charm hadrons as well as a precise measurement of low-momentum charged particles will play a key role in this pursuit. These will be accomplished by an inner tracking device comprising two layers of pixelated silicon detector and four layers of silicon vertex detector based on double-sided microstrip sensors. We describe herein the design, prototyping and construction efforts of the Belle-II silicon vertex detector.
Readout Electronics for the Forward Vertex Detector at PHENIX
NASA Astrophysics Data System (ADS)
Phillips, Michael
2010-11-01
The PHENIX experiment at RHIC at Brookhaven National Laboratory has been providing high quality physics data for over 10 years. The current PHENIX physics program will be significantly enhanced by addition of the Forward Silicon Vertex upgrade detector (FVTX) in the acceptance of existing muon arm detectors. The proposed tracker is planned to be put into operation in 2012. Each arm of the FVTX detector consist of 4 discs of silicon strip sensors combined with FPHX readout chips, designed at FNAL. The full detector consists of over 1 million active mini-strip channels with instantaneous bandwidth topping 3.4 Tb/s. The FPHX chip utilizes data push architecture with 2 serial output streams at 200 MHz. The readout electronics design consists of Read-Out Cards (ROC) located in the vicinity of the detector and Front End Modules (FEM) located in the Counting House. ROC boards combine the data from several chips, synchronizes data streams and send them to FEM over a Fiber Optics Link. The data are buffered in the FEM and then sent to a standard PHENIX DAQ interface upon Level-1 trigger request. We will present the current status of the readout electronics development and testing, including tests with data from production wedges.
Recent Developments in Positron Emission Tomography (PET) Instrumentation
DOE R&D Accomplishments Database
Derenzo, S. E.; Budinger, T. F.
1986-04-01
This paper presents recent detector developments and perspectives for positron emission tomography (PET) instrumentation used for medical research, as well as the physical processes in positron annihilation, photon scattering and detection, tomograph design considerations, and the potentials for new advances in detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulyavtsev, A.; Procario, M.; Russ, J.
2000-05-01
This proposal consists of five parts and two appendices. The first part provides a detailed physics justification for the BTe V experiment. The second part presents the considerations that drive the detector design, followed by a description of the detector itself. The third part summarizes our simulation results which demonstrate that the design does enable us to achieve our physics goals. The fourth part compares BTeV's physics reach to that of other experiments which will be active in B physics in the same time period. The fifth part gives a very brief, high level summary of the cost estimate formore » BTeV. Appendix A has additional technical details about many of the detector subsystems and R&D plans; it is intended to be read primarily by experts in each area. Appendix B contains a roadmap which describes the location in the proposal of the answers to questions posed to the BTeV collaboration by the Fermilab Program Advisory Committee in June of 1999.« less
Predictive modeling of infrared detectors and material systems
NASA Astrophysics Data System (ADS)
Pinkie, Benjamin
Detectors sensitive to thermal and reflected infrared radiation are widely used for night-vision, communications, thermography, and object tracking among other military, industrial, and commercial applications. System requirements for the next generation of ultra-high-performance infrared detectors call for increased functionality such as large formats (> 4K HD) with wide field-of-view, multispectral sensitivity, and on-chip processing. Due to the low yield of infrared material processing, the development of these next-generation technologies has become prohibitively costly and time consuming. In this work, it will be shown that physics-based numerical models can be applied to predictively simulate infrared detector arrays of current technological interest. The models can be used to a priori estimate detector characteristics, intelligently design detector architectures, and assist in the analysis and interpretation of existing systems. This dissertation develops a multi-scale simulation model which evaluates the physics of infrared systems from the atomic (material properties and electronic structure) to systems level (modulation transfer function, dense array effects). The framework is used to determine the electronic structure of several infrared materials, optimize the design of a two-color back-to-back HgCdTe photodiode, investigate a predicted failure mechanism for next-generation arrays, and predict the systems-level measurables of a number of detector architectures.
Design and optimization of a novel 3D detector: The 3D-open-shell-electrode detector
NASA Astrophysics Data System (ADS)
Liu, Manwen; Tan, Jian; Li, Zheng
2018-04-01
A new type of three-dimensional (3D) detector, namely 3D-Open-Shell-Electrode Detector (3DOSED), is proposed in this study. In a 3DOSED, the trench electrode can be etched all the way through the detector thickness, totally eliminating the low electric field region existed in the conventional 3D-Trench-Electrode detector. Full 3D technology computer-aided design (TCAD) simulations have been done on this novel silicon detector structure. Through comparing of the simulation results of the detector, we can obtain the best design of the 3SOSED. In addition, simulation results show that, as compared to the conventional 3D detector, the proposed 3DOSED can improve not only detector charge collection efficiency but also its radiation hardness with regard to solving the trapping problem in the detector bulk. What is more, it has been shown that detector full depletion voltage is also slightly reduced, which can improve the utility aspects of the detector. When compared to the conventional 3D detector, we find that the proposed novel 3DOSED structure has better electric potential and electric field distributions, and better electrical properties such as detector full depletion voltage. In 3DOSED array, each pixel cell is isolated from each other by highly doped trenches, but also electrically and physically connected with each other through the remaining silicon bulk between broken electrodes.
NASA Astrophysics Data System (ADS)
Pérez Lara, Carlos E.
2018-02-01
Our understanding of QCD under extreme conditions has advanced tremendously in the last 20 years with the discovery of the Quark Gluon Plasma and its characterisation in heavy ion collisions at RHIC and LHC. The sPHENIX detector planned at RHIC is designed to further study the microscopic nature of the QGP through precision measurements of jet, upsilon and open heavy flavor probes over a broad pT range. The multi-year sPHENIX physics program will commence in early 2023, using state-of-the art detector technologies to fully exploit the highest RHIC luminosities. The experiment incorporates the 1.4 T former BaBar solenoid magnet, and will feature high precision tracking and vertexing capabilities, provided by a compact TPC, Si-strip intermediate tracker and MAPS vertex detector. This is complemented by highly granular electromagnetic and hadronic calorimetry with full azimuthal coverage. In this document I describe the sPHENIX detector design and physics program, with particular emphasis on the comprehensive open heavy flavour program enabled by the experiment's large coverage, high rate capability and precision vertexing.
International Linear Collider Technical Design Report (Volumes 1 through 4)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison M.
2013-03-27
The design report consists of four volumes: Volume 1, Executive Summary; Volume 2, Physics; Volume 3, Accelerator (Part I, R and D in the Technical Design Phase, and Part II, Baseline Design); and Volume 4, Detectors.
Synthesis and evaluation of phase detectors for active bit synchronizers
NASA Technical Reports Server (NTRS)
Mcbride, A. L.
1974-01-01
Self-synchronizing digital data communication systems usually use active or phase-locked loop (PLL) bit synchronizers. The three main elements of PLL synchronizers are the phase detector, loop filter, and the voltage controlled oscillator. Of these three elements, phase detector synthesis is the main source of difficulty, particularly when the received signals are demodulated square-wave signals. A phase detector synthesis technique is reviewed that provides a physically realizable design for bit synchronizer phase detectors. The development is based upon nonlinear recursive estimation methods. The phase detector portion of the algorithm is isolated and analyzed.
Collider Physics Cosmic Frontier Cosmic Frontier Theory & Computing Detector R&D Electronic Design Theory Seminar Argonne >High Energy Physics Cosmic Frontier Theory & Computing Homepage General Cosmic Frontier Theory & Computing Group led the analysis to begin mapping dark matter. There have
Impact of detector simulation in particle physics collider experiments
NASA Astrophysics Data System (ADS)
Daniel Elvira, V.
2017-06-01
Through the last three decades, accurate simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics (HEP) experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detector simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the precision of the physics results and publication turnaround, from data-taking to submission. It also presents estimates of the cost and economic impact of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data with increasingly complex detectors, taxing heavily the performance of simulation and reconstruction software. Consequently, exploring solutions to speed up simulation and reconstruction software to satisfy the growing demand of computing resources in a time of flat budgets is a matter that deserves immediate attention. The article ends with a short discussion on the potential solutions that are being considered, based on leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering HEP code for concurrency and parallel computing.
Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aad, G.; Abat, E.; Abbott, B.
2011-11-28
The Large Hadron Collider (LHC) at CERN promises a major step forward in the understanding of the fundamental nature of matter. The ATLAS experiment is a general-purpose detector for the LHC, whose design was guided by the need to accommodate the wide spectrum of possible physics signatures. The major remit of the ATLAS experiment is the exploration of the TeV mass scale where groundbreaking discoveries are expected. In the focus are the investigation of the electroweak symmetry breaking and linked to this the search for the Higgs boson as well as the search for Physics beyond the Standard Model. Inmore » this report a detailed examination of the expected performance of the ATLAS detector is provided, with a major aim being to investigate the experimental sensitivity to a wide range of measurements and potential observations of new physical processes. An earlier summary of the expected capabilities of ATLAS was compiled in 1999 [1]. A survey of physics capabilities of the CMS detector was published in [2]. The design of the ATLAS detector has now been finalised, and its construction and installation have been completed [3]. An extensive test-beam programme was undertaken. Furthermore, the simulation and reconstruction software code and frameworks have been completely rewritten. Revisions incorporated reflect improved detector modelling as well as major technical changes to the software technology. Greatly improved understanding of calibration and alignment techniques, and their practical impact on performance, is now in place. The studies reported here are based on full simulations of the ATLAS detector response. A variety of event generators were employed. The simulation and reconstruction of these large event samples thus provided an important operational test of the new ATLAS software system. In addition, the processing was distributed world-wide over the ATLAS Grid facilities and hence provided an important test of the ATLAS computing system - this is the origin of the expression 'CSC studies' ('computing system commissioning'), which is occasionally referred to in these volumes. The work reported does generally assume that the detector is fully operational, and in this sense represents an idealised detector: establishing the best performance of the ATLAS detector with LHC proton-proton collisions is a challenging task for the future. The results summarised here therefore represent the best estimate of ATLAS capabilities before real operational experience of the full detector with beam. Unless otherwise stated, simulations also do not include the effect of additional interactions in the same or other bunch-crossings, and the effect of neutron background is neglected. Thus simulations correspond to the low-luminosity performance of the ATLAS detector. This report is broadly divided into two parts: firstly the performance for identification of physics objects is examined in detail, followed by a detailed assessment of the performance of the trigger system. This part is subdivided into chapters surveying the capabilities for charged particle tracking, each of electron/photon, muon and tau identification, jet and missing transverse energy reconstruction, b-tagging algorithms and performance, and finally the trigger system performance. In each chapter of the report, there is a further subdivision into shorter notes describing different aspects studied. The second major subdivision of the report addresses physics measurement capabilities, and new physics search sensitivities. Individual chapters in this part discuss ATLAS physics capabilities in Standard Model QCD and electroweak processes, in the top quark sector, in b-physics, in searches for Higgs bosons, supersymmetry searches, and finally searches for other new particles predicted in more exotic models.« less
The MoEDAL Experiment at the LHC - a New Light on the Terascale Frontier
NASA Astrophysics Data System (ADS)
Pinfold, J. L.
2015-07-01
MoEDAL is a pioneering experiment designed to search for highly ionizing avatars of new physics such as magnetic monopoles or massive (pseudo-)stable charged particles. Its groundbreaking physics program defines a number of scenarios that yield potentially revolutionary insights into such foundational questions as: are there extra dimensions or new symmetries; what is the mechanism for the generation of mass; does magnetic charge exist; what is the nature of dark matter; and, how did the big-bang develop. MoEDAL's purpose is to meet such far-reaching challenges at the frontier of the field. The innovative MoEDAL detector employs unconventional methodologies tuned to the prospect of discovery physics. The largely passive MoEDAL detector, deployed at Point 8 on the LHC ring, has a dual nature. First, it acts like a giant camera, comprised of nuclear track detectors - analyzed offline by ultra fast scanning microscopes - sensitive only to new physics. Second, it is uniquely able to trap the particle messengers of physics beyond the Standard Model for further study. MoEDAL's radiation environment is monitored by a state-of-the-art real-time TimePix pixel detector array. A new MoEDAL sub-detector to extend MoEDAL's reach to millicharged, minimally ionizing, particles (MMIPs) is under study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The GEM collaboration was formed in June 1991 to develop a major detector for the SSC. The primary physics objectives of GEM are those central to the motivation for the SSC, to study high p{sub T} physics - exemplified by the search for Higgs bosons - and to search for new physics beyond the standard model. The authors present in this Technical Design Report (TDR) a detector with broad capabilities for the discovery and subsequent study of electroweak symmetry breaking, the origin of mass and flavor, and other physics requiring precise measurements of gammas, electrons, and muons - hence themore » name, GEM. In addition, as a design goal, they have taken care to provide the robustness needed to do the physics that requires high luminosity. Finally, good coverage and hermeticity allow the detection of missing transverse energy, E{sub T}. The GEM design emphasizes clean identification and high resolution measurement of the primary physics signatures for high p{sub T} physics. The approach is to make precise energy measurements that maximize the sensitivity to rare narrow resonances, to detect the elementary interaction products (quarks, leptons, and photons), and to build in the features required to reduce backgrounds.« less
A large hadron electron collider at CERN
Abelleira Fernandez, J. L.
2015-04-06
This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and eletron-ion physics. The LHeC is designed to run synchronously withmore » the LHC in the twenties and to achieve an integrated luminosity of O(100)fb –1. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.« less
The CosmicWatch Desktop Muon Detector: a self-contained, pocket sized particle detector
NASA Astrophysics Data System (ADS)
Axani, S. N.; Frankiewicz, K.; Conrad, J. M.
2018-03-01
The CosmicWatch Desktop Muon Detector is a self-contained, hand-held cosmic ray muon detector that is valuable for astro/particle physics research applications and outreach. The material cost of each detector is under 100 and it takes a novice student approximately four hours to build their first detector. The detectors are powered via a USB connection and the data can either be recorded directly to a computer or to a microSD card. Arduino- and Python-based software is provided to operate the detector and an online application to plot the data in real-time. In this paper, we describe the various design features, evaluate the performance, and illustrate the detectors capabilities by providing several example measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calhoon, E.C.; Starring, P.W. eds.
1959-08-01
Lectures given at the Ernest 0. Lawrence Radiation Laboratory on physics, biophysics, and chemistry for high school science teachers are presented. Topics covered include a mathematics review, atomic physics, nuclear physics, solid-state physics, elementary particles, antiparticies, design of experiments, high-energy particle accelerators, survey of particle detectors, emulsion as a particle detector, counters used in high-energy physics, bubble chambers, computer programming, chromatography, the transuranium elements, health physics, photosynthesis, the chemistry and physics of virus, the biology of virus, lipoproteins and heart disease, origin and evolution of the solar system, the role of space satellites in gathering astronomical data, and radiation andmore » life in space. (M.C.G.)« less
NASA Astrophysics Data System (ADS)
Arteche, F.; Rivetta, C.; Iglesias, M.; Echeverria, I.
2016-05-01
Silicon detectors have been used in astrophysics satellites and particle detectors for high energy physics (HEP) experiments. For HEP applications, EMC studies have been conducted in silicon detectors to characterize the impact of external noise on the system. They have shown that problems associated with the new generation of silicon detectors are related with interferences generated by the power supplies and auxiliary equipment connected to the device. Characterization of these interferences along with the coupling and their propagation into the susceptible front-end circuits is required for a successful integration of these systems. This paper presents the analysis of the sensitivity curves and coupling mechanisms between the noise and the front-end electronics that have been observed during the characterization of two silicon detector prototypes: the CMS-Silicon tracker detector (CMS-ST) and Silicon Vertex Detector (Belle II-SVD). As a result of these studies, it is possible to identify critical elements in prototypes to take corrective actions in the design and improve the front-end electronics performance.
Calibrations for Charged Particle Tracking with the GlueX Detector
NASA Astrophysics Data System (ADS)
Staib, Michael; GlueX Collaboration
2015-10-01
Two gas detectors comprise the tracking system for the GlueX experiment, the Central Drift Chamber (CDC) and the Forward Drift Chamber (FDC). The CDC is a cylindrical straw-tube detector covering polar angles between 6° and 168°, delivering spatial resolution of ~150 μm. The FDC is a Cathode Strip Chamber consisting of four packages, each with six alternating layers of anode wires and cathode strips. The FDC is designed to track forward-going charged particles with polar angles between 1° and 20° with a spatial resolution of ~200 μm. Both tracking detectors record timing information and energy loss measurements useful for particle identification. During Fall 2014 and Spring 2015, the first photon beam was delivered on target for commissioning of the GlueX detector in Hall-D at Jefferson Lab. These data are currently being used in a large effort to calibrate the individual detector subsystems to achieve design performance. Methods and results for calibrations of each of the tracking detectors are presented. Techniques for alignment of the tracking system using a combination of cosmic rays and beam data is discussed. Finally, some early results of physics measurements including charged final-state particles are presented. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract DE-AC05-06OR23177.
Design and Technical Study of Neutrino Detector Spacecraft
NASA Technical Reports Server (NTRS)
Solomey, Niclolas
2017-01-01
A neutrino detector is proposed to be developed for use on a space probe in close orbit of the Sun. The detector will also be protected from radiation by a tungsten shield Sun shade, active veto array and passive cosmic shielding. With the intensity of solar neutrinos substantially greater in a close solar orbit than on the Earth only a small 250 kg detector is needed. It is expected that this detector and space probe studying the core of the Sun, its nuclear furnace and particle physics basic properties will bring new knowledge beyond what is currently possible for Earth bound solar neutrino detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gai, Moshe
The Charged Particle Working Group (CPWG) is proposing to construct large area Silicon Strip Detector (SSD), a gas Time Projection Chamber detector read by an electronic readout system (eTPC) and a Bubble Chamber (BC) containing superheated high purity water to be used in measurements utilizing intense gamma-ray beams from the newly constructed ELI-NP facility at Magurele, Bucharest in Romania. We intend to use the SSD and eTPC detectors to address essential problems in nuclear structure physics, such as clustering and the many alpha-decay of light nuclei such as {sup 12}C and {sup 16}O. All three detectors (SSD, eTPC and BC)more » will be used to address central problems in nuclear astrophysics such as the astrophysical cross section factor of the {sup 12}C(α,γ) reaction and other processes central to stellar evolution. The CPWG intends to submit to the ELI-NP facility a Technical Design Report (TDR) for the proposed detectors.« less
A new timing detector for the CT-PPS project
NASA Astrophysics Data System (ADS)
Arcidiacono, R.; Cms; TOTEM Collaborations
2017-02-01
The CT-PPS detector will be installed close to the beam line on both sides of CMS, 200 m downstream the interaction point. This detector will measure forward scattered protons, allowing detailed studies of diffractive hadron physics and Central Exclusive Production. The main components of the CT-PPS detector are a silicon tracking system and a timing system. In this contribution we present the proposal of an innovative solution for the timing system, based on Ultra-Fast Silicon Detectors (UFSD). UFSD are a novel concept of silicon detectors potentially able to obtain the necessary time resolution (∼20 ps on the proton arrival time). The use of UFSD has also other attractive features as its material budget is small and the pixel geometries can be tailored to the precise physics distribution of protons. UFSD prototypes for CT-PPS have been designed by CNM (Barcelona) and FBK (Trento): we will present the status of the sensor productions and of the low-noise front-end electronics currently under development and test.
NASA Astrophysics Data System (ADS)
Takita, Masato
2017-06-01
We have started up the ALPACA (Andes Large area PArticle detector for Cosmic ray physics and Astronomy) project. The ALPACA experiment is composed of an 83,000 m2 air shower array and a 5,400 m2 underground muon detector array to make wide field-of-view high-sensitivity observations of high-energy cosmic rays/cosmic gamma rays on the Cerro Estuqueria highland, 4,740 m above sea level around Mount Chacaltaya, Bolivia. We briefly report on the design concept of the new project and its physics targets.
Technological aspects of GEM detector design and assembling for soft x-ray application
NASA Astrophysics Data System (ADS)
Kowalska-Strzeciwilk, E.; Chernyshova, M.
2016-09-01
Various types of Micro Pattern Gas Detectors (MPGDs) found applications as tracking detectors in high energy particle physics experiments and as well as imaging detectors, especially for soft X-rays. These detectors offer several advantages like high count rate capability, good spatial and energy resolution, low cost and possibility of constructing large area detectors with very small dead area. Construction, like the triple Gas Electron Multiplier (GEM) detector has become a standard detector, which is widely used for different imaging applications. Some examples of such applications are: monitoring the impurity in plasma, imaging system for mapping of some parameters like pigment distributions using X-ray fluorescence technique[1], proton range radiography system for quality assurance in hadron therapy. Measuring of the Soft X-Ray (SXR) radiation of magnetic fusion plasma is a standard way of accessing valuable information, for example, about particle transport and MHD. The paper is focused on the design of GEM based soft Xray radiation detecting system which is under development. It is dedicated to study soft X-ray emission of plasma radiation with focus on tungsten emission lines energy region. The paper presents the designing, construction and assembling of a prototype of two triple-GEM detectors for soft-X ray application on the WEST device.
NASA Technical Reports Server (NTRS)
1975-01-01
Papers are presented dealing with latest advances in the design of scintillation counters, semiconductor radiation detectors, gas and position sensitive radiation detectors, and the application of these detectors in biomedicine, satellite instrumentation, and environmental and reactor instrumentation. Some of the topics covered include entopistic scintillators, neutron spectrometry by diamond detector for nuclear radiation, the spherical drift chamber for X-ray imaging applications, CdTe detectors in radioimmunoassay analysis, CAMAC and NIM systems in the space program, a closed loop threshold calibrator for pulse height discriminators, an oriented graphite X-ray diffraction telescope, design of a continuous digital-output environmental radon monitor, and the optimization of nanosecond fission ion chambers for reactor physics. Individual items are announced in this issue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chekanov, S. V.; Beydler, M.; Kotwal, A. V.
This paper describes simulations of detector response to multi-TeV physics at the Future Circular Collider (FCC-hh) or Super proton-proton Collider (SppC) which aim to collide proton beams with a centre-of-mass energy of 100 TeV. The unprecedented energy regime of these future experiments imposes new requirements on detector technologies which can be studied using the detailed GEANT4 simulations presented in this paper. The initial performance of a detector designed for physics studies at the FCC-hh or SppC experiments is described with an emphasis on measurements of single particles up to 33 TeV in transverse momentum. The reconstruction of hadronic jets hasmore » also been studied in the transverse momentum range from 50 GeV to 26 TeV. The granularity requirements for calorimetry are investigated using the two-particle spatial resolution achieved for hadron showers.« less
Space Detectors for Gamma Rays (100 MeV-100 GeV): from Egret to Fermi LAT
NASA Technical Reports Server (NTRS)
Thompson, David J.
2015-01-01
The design of spaceborne high-energy (E is greater than 100 MeV) gamma-ray detectors depends on two principal factors: (1) the basic physics of detecting and measuring the properties of the gamma rays; and (2) the constraints of operating such a detector in space for an extended period. Improvements in technology have enabled major advances in detector performance, as illustrated by two successful instruments, EGRET on the Compton Gamma Ray Observatory and LAT on the Fermi Gamma-ray Space Telescope.
Design and manufacture of imaging time-of-propagation optics
NASA Astrophysics Data System (ADS)
Albrecht, Mike; Fast, James; Schwartz, Alan
2016-09-01
There are several challenges associated with the design and manufacture of the optics required for the imaging time-of- propagation detector constructed for the Belle II particle physics experiment. This detector uses Cherenkov light radiated in quartz bars to identify subatomic particles: pions, kaons, and protons. The optics are physically large (125 cm x 45 cm x 2 cm bars and 45 cm x 10 cm x 5 cm prisms), all surfaces are optically polished, and there is very little allowance for chamfers or surface defects. In addition to the optical challenges, there are several logistical and handling challenges associated with measuring, assembling, cleaning, packaging, and shipping these delicate precision optics. This paper describes a collaborative effort between Pacific Northwest National Laboratory, the University of Cincinnati, and ZYGO Corporation for the design and manufacture of 48 fused silica optics (30 bars and 18 prisms) for the iTOP Detector. Details of the iTOP detector design that drove the challenging optical requirements are provided, along with material selection considerations. Since the optics are so large, precise, and delicate, special care had to be given to the selection of a manufacturing process capable of achieving the challenging optical and surface defect requirements on such large and high-aspect-ratio (66:1) components. A brief update on the current status and performance of these optics is also provided.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zalesak, Jaroslav; et al.
2014-01-01
The NOνA experiment is a long-baseline neutrino experiment designed to make measurements to determine the neutrino mass hierarchy, neutrino mixing parameters and CP violation in the neutrino sector. In order to make these measurements the NOνA collaboration has designed a highly distributed, synchronized, continuous digitization and readout system that is able to acquire and correlate data from the Fermilab accelerator complex (NuMI), the NOνA near detector at the Fermilab site and the NOνA far detector which is located 810 km away at Ash River, MN. This system has unique properties that let it fully exploit the physics capabilities of themore » NOνA detector. The design of the NOνA DAQ system and its capabilities are discussed in this paper.« less
Design and status of the detector block for the ISO-SWS
NASA Technical Reports Server (NTRS)
Luinge, W.; Beintema, D. A.; Haser, L.; Katterloher, R.; Ploeger, G.
1989-01-01
The Short Wave Spectrometer (SWS) is one of the two spectrometers for the Infrared Space Observatory (ISO). It consists of a pair of grating spectrometers and a Fabry-Perot interferometer. Together, the grating spectrometers cover the wavelength range 2.4 to 45 microns, at a resolution between 1000 and 2000. The Fabry-Perot interferometer, in series with one of the grating spectrometers, provides a resolution of about 20,000 at the wavelengths between 15 and 35 microns. The SWS is being built by the Space Research Organization of the Netherlands and the Max Planck Institute for Extraterrestrial Physics in Garching, Germany. The spectrometer has 52 discrete detectors, most of which are bulk detectors. In the design of the spectrometer, the main emphasis is on the sensitivity of the individual channels, rather than on the number of detectors. This was one of the main reasons to select non-destructive read-out circuits, with a separate heated-JFET pre-amplifier for each individual detector. The signals are amplified and filtered in parallel. The engineering tests on the SWS detector block have not yet been completed. The design of the detector block is described and the present problem areas are indicated.
Design, characterization, and sensitivity of the supernova trigger system at Daya Bay
NASA Astrophysics Data System (ADS)
Wei, Hanyu; Lebanowski, Logan; Li, Fei; Wang, Zhe; Chen, Shaomin
2016-02-01
Providing an early warning of galactic supernova explosions from neutrino signals is important in studying supernova dynamics and neutrino physics. A dedicated supernova trigger system has been designed and installed in the data acquisition system at Daya Bay and integrated into the worldwide Supernova Early Warning System (SNEWS). Daya Bay's unique feature of eight identically-designed detectors deployed in three separate experimental halls makes the trigger system naturally robust against cosmogenic backgrounds, enabling a prompt analysis of online triggers and a tight control of the false-alert rate. The trigger system is estimated to be fully sensitive to 1987A-type supernova bursts throughout most of the Milky Way. The significant gain in sensitivity of the eight-detector configuration over a mass-equivalent single detector is also estimated. The experience of this online trigger system is applicable to future projects with spatially distributed detectors.
Impact of detector simulation in particle physics collider experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elvira, V. Daniel
Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less
Impact of detector simulation in particle physics collider experiments
Elvira, V. Daniel
2017-06-01
Through the last three decades, precise simulation of the interactions of particles with matter and modeling of detector geometries has proven to be of critical importance to the success of the international high-energy physics experimental programs. For example, the detailed detector modeling and accurate physics of the Geant4-based simulation software of the CMS and ATLAS particle physics experiments at the European Center of Nuclear Research (CERN) Large Hadron Collider (LHC) was a determinant factor for these collaborations to deliver physics results of outstanding quality faster than any hadron collider experiment ever before. This review article highlights the impact of detectormore » simulation on particle physics collider experiments. It presents numerous examples of the use of simulation, from detector design and optimization, through software and computing development and testing, to cases where the use of simulation samples made a difference in the accuracy of the physics results and publication turnaround, from data-taking to submission. It also presents the economic impact and cost of simulation in the CMS experiment. Future experiments will collect orders of magnitude more data, taxing heavily the performance of simulation and reconstruction software for increasingly complex detectors. Consequently, it becomes urgent to find solutions to speed up simulation software in order to cope with the increased demand in a time of flat budgets. The study ends with a short discussion on the potential solutions that are being explored, by leveraging core count growth in multicore machines, using new generation coprocessors, and re-engineering of HEP code for concurrency and parallel computing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, Madison Theresa; Bates, Cameron Russell; Mckigney, Edward Allen
Accurate detector modeling is a requirement to design systems in many non-proliferation scenarios; by determining a Detector’s Response Function (DRF) to incident radiation, it is possible characterize measurements of unknown sources. DRiFT is intended to post-process MCNP® output and create realistic detector spectra. Capabilities currently under development include the simulation of semiconductor, gas, and (as is discussed in this work) scintillator detector physics. Energy spectra and pulse shape discrimination (PSD) trends for incident photon and neutron radiation have been reproduced by DRiFT.
TGeoCad: an Interface between ROOT and CAD Systems
NASA Astrophysics Data System (ADS)
Luzzi, C.; Carminati, F.
2014-06-01
In the simulation of High Energy Physics experiment a very high precision in the description of the detector geometry is essential to achieve the required performances. The physicists in charge of Monte Carlo Simulation of the detector need to collaborate efficiently with the engineers working at the mechanical design of the detector. Often, this collaboration is made hard by the usage of different and incompatible software. ROOT is an object-oriented C++ framework used by physicists for storing, analyzing and simulating data produced by the high-energy physics experiments while CAD (Computer-Aided Design) software is used for mechanical design in the engineering field. The necessity to improve the level of communication between physicists and engineers led to the implementation of an interface between the ROOT geometrical modeler used by the virtual Monte Carlo simulation software and the CAD systems. In this paper we describe the design and implementation of the TGeoCad Interface that has been developed to enable the use of ROOT geometrical models in several CAD systems. To achieve this goal, the ROOT geometry description is converted into STEP file format (ISO 10303), which can be imported and used by many CAD systems.
Digital Electronics for Nuclear Physics Experiments
NASA Astrophysics Data System (ADS)
Skulski, Wojtek; Hunter, David; Druszkiewicz, Eryk; Khaitan, Dev Ashish; Yin, Jun; Wolfs, Frank; SkuTek Instrumentation Team; Department of Physics; Astronomy, University of Rochester Team
2015-10-01
Future detectors in nuclear physics will use signal sampling as one of primary techniques of data acquisition. Using the digitized waveforms, the electronics can select events based on pulse shape, total energy, multiplicity, and the hit pattern. The DAQ for the LZ Dark Matter detector, now under development in Rochester, is a good example of the power of digital signal processing. This system, designed around 32-channel, FPGA-based, digital signal processors collects data from more than one thousand channels. The solutions developed for this DAQ can be applied to nuclear physics experiments. Supported by the Department of Energy Office of Science under Grant DE-SC0009543.
The design of the JUNO veto system
NASA Astrophysics Data System (ADS)
Lu, H.; Baussan, E.; experiment, JUNO
2017-09-01
The Jiangmen Underground Neutrino Observatory (JUNO) is a multipurpose 20 kton liquid scintillator detector. The detector will be built in a 700 m deep underground laboratory, and its primary physics goal will be to determine the neutrino mass hierarchy. Due to the low background requirement of the experiment, a multi-veto system for cosmic muon detection and background reduction is designed. The volume outside the central detector is filled with pure water and equipped with 2000 MCP-PMTs (20 inches) to form a water Cherenkov detector for muon tagging. A Top Tracker system will be built by re-using the Target Tracker plastic scintillator modules of the OPERA experiment and will cover half of the top area. This will provide valuable information for cosmic muon induced 9Li/8He study.
A SPECT system simulator built on the SolidWorks TM 3D-Design package.
Li, Xin; Furenlid, Lars R
2014-08-17
We have developed a GPU-accelerated SPECT system simulator that integrates into instrument-design workflow [1]. This simulator includes a gamma-ray tracing module that can rapidly propagate gamma-ray photons through arbitrary apertures modeled by SolidWorks TM -created stereolithography (.STL) representations with a full complement of physics cross sections [2, 3]. This software also contains a scintillation detector simulation module that can model a scintillation detector with arbitrary scintillation crystal shape and light-sensor arrangement. The gamma-ray tracing module enables us to efficiently model aperture and detector crystals in SolidWorks TM and save them as STL file format, then load the STL-format model into this module to generate list-mode results of interacted gamma-ray photon information (interaction positions and energies) inside the detector crystals. The Monte-Carlo scintillation detector simulation module enables us to simulate how scintillation photons get reflected, refracted and absorbed inside a scintillation detector, which contributes to more accurate simulation of a SPECT system.
A SPECT system simulator built on the SolidWorksTM 3D design package
NASA Astrophysics Data System (ADS)
Li, Xin; Furenlid, Lars R.
2014-09-01
We have developed a GPU-accelerated SPECT system simulator that integrates into instrument-design work flow [1]. This simulator includes a gamma-ray tracing module that can rapidly propagate gamma-ray photons through arbitrary apertures modeled by SolidWorksTM-created stereolithography (.STL) representations with a full com- plement of physics cross sections [2, 3]. This software also contains a scintillation detector simulation module that can model a scintillation detector with arbitrary scintillation crystal shape and light-sensor arrangement. The gamma-ray tracing module enables us to efficiently model aperture and detector crystals in SolidWorksTM and save them as STL file format, then load the STL-format model into this module to generate list-mode results of interacted gamma-ray photon information (interaction positions and energies) inside the detector crystals. The Monte-Carlo scintillation detector simulation module enables us to simulate how scintillation photons get reflected, refracted and absorbed inside a scintillation detector, which contributes to more accurate simulation of a SPECT system.
The GlueX Experiment: First Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fanelli, Cristiano
GlueX is a nuclear physics experiment located at the Thomas Jefferson National Accelerator Facility designed to study and understand the nature of confinement in QCD by mapping the spectrum of exotic mesons. The experiment will be able to probe new areas by using photoproduction, i.e. the scattering on nucleon of ~9 GeV linearly polarized photons derived from the recently upgraded CEBAF with a 12 GeV electron beam. Spring 2016 has been characterized by a continued detector commissioning and initial running at the full design energy. The current status of the GlueX detector performance and data collection will be discussed, withmore » a brief overview of first physics results, future run plans, and long term upgrades.« less
The upgraded ATLAS and CMS detectors and their physics capabilities.
Wells, Pippa S
2015-01-13
The update of the European Strategy for Particle Physics from 2013 states that Europe's top priority should be the exploitation of the full potential of the LHC, including the high-luminosity upgrade of the machine and detectors with a view to collecting 10 times more data than in the initial design. The plans for upgrading the ATLAS and CMS detectors so as to maintain their performance and meet the challenges of increasing luminosity are presented here. A cornerstone of the physics programme is to measure the properties of the 125GeV Higgs boson with the highest possible precision, to test its consistency with the Standard Model. The high-luminosity data will allow precise measurements of the dominant production and decay modes, and offer the possibility of observing rare modes including Higgs boson pair production. Direct and indirect searches for additional Higgs bosons beyond the Standard Model will also continue.
New fission-fragment detector for experiments at DANCE
NASA Astrophysics Data System (ADS)
Rusev, G.; Roman, A. R.; Daum, J. K.; Springs, R. K.; Bond, E. M.; Jandel, M.; Baramsai, B.; Bredeweg, T. A.; Couture, A.; Favalli, A.; Ianakiev, K. D.; Iliev, M. L.; Mosby, S.; Ullmann, J. L.; Walker, C. L.
2015-10-01
A fission-fragment detector based on thin scintillating films has been built to serve as a veto/trigger detector in neutron-induced fission measurements at DANCE. The fissile material is surrounded by scintillating films providing a 4 π detection of the fission fragments. The scintillation events caused by the fission fragment interactions in the films are registered with silicon photomultipliers. Design of the detector and test measurements are described. Work supported by the U.S. Department of Energy through the LANL/LDRD Program and the U.S. Department of Energy, Office of Science, Nuclear Physics under the Early Career Award No. LANL20135009.
NASA Astrophysics Data System (ADS)
Lv, Hongkui; He, Huihai; Sheng, Xiangdong; Liu, Jia; Chen, Songzhan; Liu, Ye; Hou, Chao; Zhao, Jing; Zhang, Zhongquan; Wu, Sha; Wang, Yaping; Lhaaso Collaboration
2018-07-01
In the Large High Altitude Air Shower Observatory (LHAASO), one square kilometer array (KM2A), with 5242 electromagnetic particle detectors (EDs) and 1171 muon detectors (MDs), is designed to study ultra-high energy gamma-ray astronomy and cosmic ray physics. The remoteness and numerous detectors extremely demand a robust and automatic calibration procedure. In this paper, a self-calibration method which relies on the measurement of charged particles within the extensive air showers is proposed. The method is fully validated by Monte Carlo simulation and successfully applied in a KM2A prototype array experiment. Experimental results show that the self-calibration method can be used to determine the detector time offset constants at the sub-nanosecond level and the number density of particles collected by each ED with an accuracy of a few percents, which are adequate to meet the physical requirements of LHAASO experiment. This software calibration also offers an ideal method to realtime monitor the detector performances for next generation ground-based EAS experiments covering an area above square kilometers scale.
NASA Technical Reports Server (NTRS)
1986-01-01
The present conference ranges over topics in high energy physics instrumentation, detectors, nuclear medical applications, health physics and environmental monitoring, reactor instrumentation, nuclear spacecraft instrumentation, the 'Fastbus' data acquisition system, circuits and systems for nuclear research facilities, and the development status of nuclear power systems. Specific attention is given to CCD high precision detectors, a drift chamber preamplifier, a Cerenkov ring imaging detector, novel scintillation glasses and scintillating fibers, a modular multidrift vertex detector, radial wire drift chambers, liquid argon polarimeters, a multianode photomultiplier, the reliability of planar silicon detectors, the design and manufacture of wedge and strip anodes, ultrafast triode photodetectors, photomultiplier tubes, a barium fluoride plastic scintillator, a fine grained neutron hodoscope, the stability of low leakage silicon photodiodes for crystal calorimeters, and X-ray proportional counters. Also considered are positron emission tomography, single photon emission computed tomography, nuclear magnetic resonance imaging, Geiger-Muller detectors, nuclear plant safeguards, a 32-bit Fastbus computer, an advanced light water reactor, and nuclear plant maintenance.
ERIC Educational Resources Information Center
Shih, Ching-Hsiang; Chung, Chiao-Chen; Shih, Ching-Tien; Chen, Ling-Che
2011-01-01
The latest researches have adopted software technology turning the Nintendo Wii Balance Board into a high performance standing location detector. This study extended Wii Balance Board functionality to assess whether two people with developmental disabilities would be able to actively perform designated physical activities according to simple…
Design and development of a Gadolinium-doped water Cherenkov detector
NASA Astrophysics Data System (ADS)
Poudyal, Nabin
This thesis describes a research and development project for neutron capture and detection in Gadolinium doped water. The Sanford Underground Research Facility (SURF) is exploring rare event physics, such as neutrinoless double beta decay (MAJORANA Project) and dark-matter detection (LUX experiment). The success of these experiments requires a careful study and understanding of background radiation, including flux and energy spectrum. The background radiation from surface contamination, radioactive decays of U-238, Th-232, Rn-222 in the surrounding rocks and muon induced neutrons have a large impact on the success of rare-event physics. The main objective of this R&D project is to measure the neutron flux contributing to ongoing experiments at SURF and suppress it by identification and capture method. For this purpose, we first modeled and designed a detector with Geant4 software. The approximate dimension of the detector is determined. The neutron capture percentage of the detector is estimated using Monte Carlo. The energy response of the detector is simulated. Next, we constructed the experimental detector, an acrylic rectangular tank (60cm x 30cm x 30cm), filled with Gadolinium-doped deionized water. The tank is coated with high efficient reflector and then taped with black electrical tape to make it opaque. The voltage dividers attached to PMTs are covered with mu-metal. Two 5-inch Hamamatsu Photomultiplier tubes were attached on both sides facing the tank to collect the Cherenkov light produced in the water. The detector utilizes the principle of Cherenkov light emission by a charged particle moving through a water at a speed higher than the speed of light in the water, hence it has an inherent energy threshold of Cherenkov photon production. This property reduces the lower energy backgrounds. Event data are obtained using the Data Acquisition hardware, Flash Analog to digital converter, along with Multi Instance Data Acquisition software. Post-experimental analysis was performed using ROOT software. Position calibration of the detector shows that the detector is position independent. We have designed and constructed the Gd-doped neutron detector which successfully detects the neutrons with low cost and high efficiency.
NASA Astrophysics Data System (ADS)
Yang, Yong-fa; Li, Qi
2014-12-01
In the practical application of terahertz reflection-mode confocal scanning microscopy, the size of detector pinhole is an important factor that determines the performance of spatial resolution characteristic of the microscopic system. However, the use of physical pinhole brings some inconvenience to the experiment and the adjustment error has a great influence on the experiment result. Through reasonably selecting the parameter of matrix detector virtual pinhole (VPH), it can efficiently approximate the physical pinhole. By using this approach, the difficulty of experimental calibration is reduced significantly. In this article, an imaging scheme of terahertz reflection-mode confocal scanning microscopy that is based on the matrix detector VPH is put forward. The influence of detector pinhole size on the axial resolution of confocal scanning microscopy is emulated and analyzed. Then, the parameter of VPH is emulated when the best axial imaging performance is reached.
The MoEDAL experiment at the LHC. Searching beyond the standard model
NASA Astrophysics Data System (ADS)
Pinfold, James L.
2016-11-01
MoEDAL is a pioneering experiment designed to search for highly ionizing avatars of new physics such as magnetic monopoles or massive (pseudo-)stable charged particles. Its groundbreaking physics program defines a number of scenarios that yield potentially revolutionary insights into such foundational questions as: are there extra dimensions or new symmetries; what is the mechanism for the generation of mass; does magnetic charge exist; what is the nature of dark matter; and, how did the big-bang develop. MoEDAL's purpose is to meet such far-reaching challenges at the frontier of the field. The innovative MoEDAL detector employs unconventional methodologies tuned to the prospect of discovery physics. The largely passive MoEDAL detector, deployed at Point 8 on the LHC ring, has a dual nature. First, it acts like a giant camera, comprised of nuclear track detectors - analyzed offline by ultra fast scanning microscopes - sensitive only to new physics. Second, it is uniquely able to trap the particle messengers of physics beyond the Standard Model for further study. MoEDAL's radiation environment is monitored by a state-of-the-art real-time TimePix pixel detector array. A new MoEDAL sub-detector to extend MoEDAL's reach to millicharged, minimally ionizing, particles (MMIPs) is under study Finally we shall describe the next step for MoEDAL called Cosmic MoEDAL, where we define a very large high altitude array to take the search for highly ionizing avatars of new physics to higher masses that are available from the cosmos.
Driving from Chicago to Buenos Aires: instrumentation courses during a road trip across the Americas
NASA Astrophysics Data System (ADS)
Izraelevitch, Federico
2017-01-01
The Escaramujo Project (www.escaramujo.net) was a series of hands-on laboratory courses on High Energy Physics and Astroparticle Instrumentation, in eight Latinamerican Institutions. The Physicist Federico Izraelevitch traveled on a van with his wife and dogs from Chicago to Buenos Aires teaching these courses. During these sessions, groups of advanced undergraduate and graduate students built a modern cosmic ray detector based on plastic scintillators and SiPMs, specifically designed for this project. With the detector as a common thread, they were able to understand the designing principles and the underlying Physics involved, build the device, start it up, characterize it, acquire data and analyze it, in the way of real particle Physics experiment. After the five-days courses, a functional detector remained at each institution to train future students and to support and enable local research activities. About a hundred talented and highly motivated students were reached out with the initiative. Besides the aims to awaken vocations in science, technology and engineering, The Escaramujo Project was an effort to strengthen the integration of academic institutions in Latin America within the international scientific community.
NASA Technical Reports Server (NTRS)
1986-01-01
Progress made in the following areas is discussed: low energy ion and electron experiments; instrument design for current experiments; magnetospheric measurement of particles; ion measurement in the earth plasma sheet; abundance measurement; X-ray data acquisition; high energy physics; extragalactic astronomy; compact object astrophysics; planetology; and high energy photon detector technology.
Commissioning and initial experience with the ALICE on-line
NASA Astrophysics Data System (ADS)
Altini, V.; Anticic, T.; Carena, F.; Carena, W.; Chapeland, S.; Chibante Barroso, V.; Costa, F.; Dénes, E.; Divià, R.; Fuchs, U.; Kiss, T.; Makhlyueva, I.; Roukoutakis, F.; Schossmaier, K.; Soós, C.; Vande Vyvre, P.; von Haller, B.; ALICE Collaboration
2010-04-01
ALICE (A Large Ion Collider Experiment) is the heavy-ion detector designed to study the physics of strongly interacting matter and the quark-gluon plasma at the CERN Large Hadron Collider (LHC). A large bandwidth and flexible Data Acquisition System (DAQ) has been designed and deployed to collect sufficient statistics in the short running time available per year for heavy ions and to accommodate very different requirements originated from the 18 sub-detectors. This paper will present the large scale tests conducted to assess the standalone DAQ performances, the interfaces with the other online systems and the extensive commissioning performed in order to be fully prepared for physics data taking. It will review the experience accumulated since May 2007 during the standalone commissioning of the main detectors and the global cosmic runs and the lessons learned from this exposure on the "battle field". It will also discuss the test protocol followed to integrate and validate each sub-detector with the online systems and it will conclude with the first results of the LHC injection tests and startup in September 2008. Several papers of the same conference present in more details some elements of the ALICE DAQ system.
Designing the detection system for the CORUS project
NASA Astrophysics Data System (ADS)
Kalogirou, A.
2013-05-01
CORUS (Cosmic Rays in UK Schools) will be a network of muon detectors based in schools across the UK. Networks similar to CORUS already exist in other countries, such as the Netherlands and USA. The main aim of the project is to teach high schools students about cosmic rays and experimental physics as well as to motivate them to pursue studies in science. A set of muon detectors will be used for this purpose and the objective of this study is to complete the design of the detectors, construct them and test their capabilities and limitations. The most important component of the muon detector is the electronic card used to collect, analyse and output data. A DAQ card used by QuarkNet, a network of detectors in the USA, has been used in the design of the CORUS detectors. Some readily available photomultiplier tubes have also been used, along with an interface board which connects them to the DAQ board. In this study, I tested whether these two components work well together by conducting a series of experiments, intended to be performed by the students, with the nal detector set-up. The end result is that although a number of improvements is needed before the detectors serve their purpose, this particular set-up does not impose any limitations to the experiments that it is intended to be used for.
Simulation study of pixel detector charge digitization
NASA Astrophysics Data System (ADS)
Wang, Fuyue; Nachman, Benjamin; Sciveres, Maurice; Lawrence Berkeley National Laboratory Team
2017-01-01
Reconstruction of tracks from nearly overlapping particles, called Tracking in Dense Environments (TIDE), is an increasingly important component of many physics analyses at the Large Hadron Collider as signatures involving highly boosted jets are investigated. TIDE makes use of the charge distribution inside a pixel cluster to resolve tracks that share one of more of their pixel detector hits. In practice, the pixel charge is discretized using the Time-over-Threshold (ToT) technique. More charge information is better for discrimination, but more challenging for designing and operating the detector. A model of the silicon pixels has been developed in order to study the impact of the precision of the digitized charge distribution on distinguishing multi-particle clusters. The output of the GEANT4-based simulation is used to train neutral networks that predict the multiplicity and location of particles depositing energy inside one cluster of pixels. By studying the multi-particle cluster identification efficiency and position resolution, we quantify the trade-off between the number of ToT bits and low-level tracking inputs. As both ATLAS and CMS are designing upgraded detectors, this work provides guidance for the pixel module designs to meet TIDE needs. Work funded by the China Scholarship Council and the Office of High Energy Physics of the U.S. Department of Energy under contract DE-AC02-05CH11231.
Physics considerations in MV-CBCT multi-layer imager design.
Hu, Yue-Houng; Fueglistaller, Rony; Myronakis, Marios E; Rottmann, Joerg; Wang, Adam; Shedlock, Daniel; Morf, Daniel; Baturin, Paul; Huber, Pascal; Star-Lack, Josh M; Berbeco, Ross I
2018-05-30
Megavoltage (MV) cone-beam computed tomography (CBCT) using an electronic portal imaging (EPID) offers advantageous features, including 3D mapping, treatment beam registration, high-z artifact suppression, and direct radiation dose calculation. Adoption has been slowed by image quality limitations and concerns about imaging dose. Developments in imager design, including pixelated scintillators, structured phosphors, inexpensive scintillation materials, and multi-layer imager (MLI) architecture have been explored to improve EPID image quality and reduce imaging dose. The present study employs a hybrid Monte Carlo and linear systems model to determine the effect of detector design elements, such as multi-layer architecture and scintillation materials. We follow metrics of image quality including modulation transfer function (MTF) and noise power spectrum (NPS) from projection images to 3D reconstructions to in-plane slices and apply a task based figure-of-merit, the ideal observer signal-to-noise ratio (d') to determine the effect of detector design on object detectability. Generally, detectability was limited by detector noise performance. Deploying an MLI imager with a single scintillation material for all layers yields improvement in noise performance and d' linear with the number of layers. In general, improving x-ray absorption using thicker scintillators results in improved DQE(0). However, if light yield is low, performance will be affected by electronic noise at relatively high doses, resulting in rapid image quality degradation. Maximizing image quality in a heterogenous MLI detector (i.e. multiple different scintillation materials) is most affected by limiting imager noise. However, while a second-order effect, maximizing total spatial resolution of the MLI detector is a balance between the intensity contribution of each layer against its individual MTF. So, while a thinner scintillator may yield a maximal individual-layer MTF, its quantum efficiency will be relatively low in comparison to a thicker scintillator and thus, intensity contribution may be insufficient to noticeably improve the total detector MTF. © 2018 Institute of Physics and Engineering in Medicine.
NASA Technical Reports Server (NTRS)
Howell, L. W.
2001-01-01
A simple power law model consisting of a single spectral index (alpha-1) is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV, with a transition at knee energy (E(sub k)) to a steeper spectral index alpha-2 > alpha-1 above E(sub k). The maximum likelihood procedure is developed for estimating these three spectral parameters of the broken power law energy spectrum from simulated detector responses. These estimates and their surrounding statistical uncertainty are being used to derive the requirements in energy resolution, calorimeter size, and energy response of a proposed sampling calorimeter for the Advanced Cosmic-ray Composition Experiment for the Space Station (ACCESS). This study thereby permits instrument developers to make important trade studies in design parameters as a function of the science objectives, which is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.
A Fast Monte Carlo Simulation for the International Linear Collider Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furse, D.; /Georgia Tech
2005-12-15
The following paper contains details concerning the motivation for, implementation and performance of a Java-based fast Monte Carlo simulation for a detector designed to be used in the International Linear Collider. This simulation, presently included in the SLAC ILC group's org.lcsim package, reads in standard model or SUSY events in STDHEP file format, stochastically simulates the blurring in physics measurements caused by intrinsic detector error, and writes out an LCIO format file containing a set of final particles statistically similar to those that would have found by a full Monte Carlo simulation. In addition to the reconstructed particles themselves, descriptionsmore » of the calorimeter hit clusters and tracks that these particles would have produced are also included in the LCIO output. These output files can then be put through various analysis codes in order to characterize the effectiveness of a hypothetical detector at extracting relevant physical information about an event. Such a tool is extremely useful in preliminary detector research and development, as full simulations are extremely cumbersome and taxing on processor resources; a fast, efficient Monte Carlo can facilitate and even make possible detector physics studies that would be very impractical with the full simulation by sacrificing what is in many cases inappropriate attention to detail for valuable gains in time required for results.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cibinetto, G.
Inner Trackers (IT) are key detectors in Particle Physics experiments; excellent spatial resolution, radiation transparency and hardness, and operability under high occupancies are main requirements. We aim to design, build and commission by 2017 a Cylindrical GEM (CGEM) detector candidate to be the new IT of the BESIII spectrometer, hosted on BEPC2 in IHEP, Beijing; BESIII data taking will last until at least 2020. The IT itself will represent an evolution w.r.t. the state of the art of GEM detectors, since the use of new kind of mechanical supports for the GEM foils will reduce the total radiation length ofmore » the detector and improve its tracking performance; an innovative design of the CGEM anode will allow for smaller capacitance and hence for bigger signals. The relatively strong BESIII magnetic field requires a new analogue readout; full custom front-end electronics, including a dedicated ASIC, will be designed and produced for optimal data collection. Prototype Beam Test results showing the measurement of the spatial resolution in a 1 Tesla magnetic field will be presented among with the mechanical design and simulations. (authors)« less
The NOvA Technical Design Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayres, D.S.; Drake, G.R.; Goodman, M.C.
Technical Design Report (TDR) describes the preliminary design of the NOvA accelerator upgrades, NOvA detectors, detector halls and detector sites. Compared to the March 2006 and November 2006 NOvA Conceptual Design Reports (CDR), critical value engineering studies have been completed and the alternatives still active in the CDR have been narrowed to achieve a preliminary technical design ready for a Critical Decision 2 review. Many aspects of NOvA described this TDR are complete to a level far beyond a preliminary design. In particular, the access road to the NOvA Far Detector site in Minnesota has an advanced technical design atmore » a level appropriate for a Critical Decision 3a review. Several components of the accelerator upgrade and new neutrino detectors also have advanced technical designs appropriate for a Critical Decision 3a review. Chapter 1 is an Executive Summary with a short description of the NOvA project. Chapter 2 describes how the Fermilab NuMI beam will provide a narrow band beam of neutrinos for NOvA. Chapter 3 gives an updated overview of the scientific basis for the NOvA experiment, focusing on the primary goal to extend the search for {nu}{sub {mu}} {yields} {nu}{sub e} oscillations and measure the sin{sup 2}(2{theta}{sub 13}) parameter. This parameter has not been measured in any previous experiment and NOvA would extend the search by about an order of magnitude beyond the current limit. A secondary goal is to measure the dominant mode oscillation parameters, sin{sup 2}(2{theta}{sub 23}) and {Delta}m{sub 32}{sup 2} to a more precise level than previous experiments. Additional physics goals for NOvA are also discussed. Chapter 4 describes the Scientific Design Criteria which the Fermilab accelerator complex, NOvA detectors and NOvA detector sites must satisfy to meet the physics goals discussed in Chapter 3. Chapter 5 is an overview of the NOvA project. The changes in the design relative to the NOvA CDR are discussed. Chapter 6 summarizes the NOvA design performance relative to the Design Criteria set out in Chapter 4. Chapter 7 presents the Work Breakdown Structure dictionary at Level 3 and the Milestone dictionary. Chapters 8 through 17 then take each Level 2 WBS element of the NOvA project and present each part of the design in more detail than the overview given in Chapter 5. Specific technical design criteria are delineated for each part of the project in addition to the scientific design criteria outlined in Chapter 4. Changes in the design since the NOvA CDR are discussed in detail. The work remaining to bring each part of this preliminary design to a final design is outlined. Appendix A is a guide to other NOvA Project documentation with links to those documents.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buchanan, Charles D.; Cline, David B.; Byers, N.
Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics;more » (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R D.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Progress in the various components of the UCLA High-Energy Physics Research program is summarized, including some representative figures and lists of resulting presentations and published papers. Principal efforts were directed at the following: (I) UCLA hadronization model, PEP4/9 e{sup +}e{sup {minus}} analysis, {bar P} decay; (II) ICARUS and astroparticle physics (physics goals, technical progress on electronics, data acquisition, and detector performance, long baseline neutrino beam from CERN to the Gran Sasso and ICARUS, future ICARUS program, and WIMP experiment with xenon), B physics with hadron beams and colliders, high-energy collider physics, and the {phi} factory project; (III) theoretical high-energy physics;more » (IV) H dibaryon search, search for K{sub L}{sup 0} {yields} {pi}{sup 0}{gamma}{gamma} and {pi}{sup 0}{nu}{bar {nu}}, and detector design and construction for the FNAL-KTeV project; (V) UCLA participation in the experiment CDF at Fermilab; and (VI) VLPC/scintillating fiber R & D.« less
Recent developments in PET detector technology
Lewellen, Tom K
2010-01-01
Positron emission tomography (PET) is a tool for metabolic imaging that has been utilized since the earliest days of nuclear medicine. A key component of such imaging systems is the detector modules—an area of research and development with a long, rich history. Development of detectors for PET has often seen the migration of technologies, originally developed for high energy physics experiments, into prototype PET detectors. Of the many areas explored, some detector designs go on to be incorporated into prototype scanner systems and a few of these may go on to be seen in commercial scanners. There has been a steady, often very diverse development of prototype detectors, and the pace has accelerated with the increased use of PET in clinical studies (currently driven by PET/CT scanners) and the rapid proliferation of pre-clinical PET scanners for academic and commercial research applications. Most of these efforts are focused on scintillator-based detectors, although various alternatives continue to be considered. For example, wire chambers have been investigated many times over the years and more recently various solid-state devices have appeared in PET detector designs for very high spatial resolution applications. But even with scintillators, there have been a wide variety of designs and solutions investigated as developers search for solutions that offer very high spatial resolution, fast timing, high sensitivity and are yet cost effective. In this review, we will explore some of the recent developments in the quest for better PET detector technology. PMID:18695301
Advanced Instrumentation for Positron Emission Tomography [PET
DOE R&D Accomplishments Database
Derenzo, S. E.; Budinger, T. F.
1985-04-01
This paper summarizes the physical processes and medical science goals that underlay modern instrumentation design for Positron Emission Tomography. The paper discusses design factors such as detector material, crystalphototube coupling, shielding geometry, sampling motion, electronics design, time-of-flight, and the interrelationships with quantitative accuracy, spatial resolution, temporal resolution, maximum data rates, and cost.
1978-07-01
occurred. The attitude detection system included a three-axis fluxgate vector magnetometer and solar attitude detectors that produced both analog and digital ...heliogoniometer ( digital solar attitudeIsensing system) Three axis analog solar detection - Rubidium vapor magnetometer Three axis fluxgate magnetometer ...Telemetry: 35 channels modulating 150 MHz carrier on command Three axis solar attitude detector system Three axis fluxgate magnetometer system
ERIC Educational Resources Information Center
Lee, Shan-Hu; Mukherjee, Souptik; Brewer, Brittany; Ryan, Raphael; Yu, Huan; Gangoda, Mahinda
2013-01-01
An undergraduate laboratory experiment is described to measure Henry's law constants of organic compounds using a bubble column and gas chromatography flame ionization detector (GC-FID). This experiment is designed for upper-division undergraduate laboratory courses and can be implemented in conjunction with physical chemistry, analytical…
Background levels in the Borexino detector
NASA Astrophysics Data System (ADS)
D'Angelo, Davide; Wurm, Michael; Borexino Collaboration
2008-11-01
The Borexino detector, designed and constructed for sub-MeV solar neutrino spectroscopy, is taking data at the Gran Sasso Laboratory, Italy; since May 2007. The main physics objective of Borexino, based on elastic scattering of neutrinos in organic liquid scintillator, is the real time flux measurement of the 862keV mono-energetic neutrinos from 7Be, which set extremely severe radio-purity requirements in the detector's design and handling. The first year of continous data taking provide now evidence of the extremely low background levels achieved in the construction of the detector and in the purification of the target mass. Several pieces of analysis sense the presence of radioisotopes of the 238U and 232Th chains, of 85Kr and of 210Po out of equilibrium from other Radon daughters. Particular emphasis is given to the detection of the cosmic muon background whose angular distributions have been obtained with the outer detector tracking algorithm and to the possibility of tagging the muon-induced neutron background in the scintillator with the recently enhanced electronics setup.
Fire safety practices in the Shuttle and the Space Station Freedom
NASA Technical Reports Server (NTRS)
Friedman, Robert
1993-01-01
The Shuttle reinforces its policy of fire-preventive measures with onboard smoke detectors and Halon 1301 fire extinguishers. The forthcoming Space Station Freedom will have expanded fire protection with photoelectric smoke detectors, radiation flame detectors, and both fixed and portable carbon dioxide fire extinguishers. Many design and operational issues remain to be resolved for Freedom. In particular, the fire-suppression designs must consider the problems of gas leakage in toxic concentrations, alternative systems for single-failure redundancy, and commonality with the corresponding systems of the Freedom international partners. While physical and engineering requirements remain the primary driving forces for spacecraft fire-safety technology, there are, nevertheless, needs and opportunities for the application of microgravity combustion knowledge to improve and optimize the fire-protective systems.
Design and Construction of Detector and Data Acquisition Elements for Proton Computed Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fermi Research Alliance; Northern Illinois University
2015-07-15
Proton computed tomography (pCT) offers an alternative to x-ray imaging with potential for three-dimensional imaging, reduced radiation exposure, and in-situ imaging. Northern Illinois University (NIU) is developing a second-generation proton computed tomography system with a goal of demonstrating the feasibility of three-dimensional imaging within clinically realistic imaging times. The second-generation pCT system is comprised of a tracking system, a calorimeter, data acquisition, a computing farm, and software algorithms. The proton beam encounters the upstream tracking detectors, the patient or phantom, the downstream tracking detectors, and a calorimeter. The schematic layout of the PCT system is shown. The data acquisition sendsmore » the proton scattering information to an offline computing farm. Major innovations of the second generation pCT project involve an increased data acquisition rate ( MHz range) and development of three-dimensional imaging algorithms. The Fermilab Particle Physics Division and Northern Illinois Center for Accelerator and Detector Development at Northern Illinois University worked together to design and construct the tracking detectors, calorimeter, readout electronics and detector mounting system.« less
PROPOSAL FOR AN EXPERIMENT PROGRAM IN NEUTRINO PHYSICS AND PROTON DECAY IN THE HOMESTAKE LABORATORY.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DIWAN, M.; KETTELL, S.; LITTENBERG, W.
2006-07-24
This report is intended to describe first, the principal physics reasons for an ambitious experimental program in neutrino physics and proton decay based on construction of a series of massive water Cherenkov detectors located deep underground (4850 ft) in the Homestake Mine of the South Dakota Science and Technology Authority (SDSTA); and second, the engineering design of the underground chambers to house the Cherenkov detector modules; and third, the conceptual design of the water Cherenkov detectors themselves for this purpose. In this proposal we show the event rates and physics sensitivity for beams from both FNAL (1300 km distant frommore » Homestake) and BNL (2540 km distant from Homestake). The program we propose will benefit with a beam from FNAL because of the high intensities currently available from the Main Injector with modest upgrades. The possibility of tuning the primary proton energy over a large range from 30 to 120 GeV also adds considerable flexibility to the program from FNAL. On the other hand the beam from BNL over the larger distance will produce very large matter effects, and consequently a hint of new physics (beyond CP violation) can be better tested with that configuration. In this proposal we focus on the CP violation physics. Included in this document are preliminary costs and time-to-completion estimates which have been exposed to acknowledged experts in their respective areas. This presentation is not, however, to be taken as a technical design report with the extensive documentation and contingency costs that a TDR usually entails. Nevertheless, some contingency factors have been included in the estimates given here. The essential ideas expressed here were first laid out in a letter of intent to the interim director of the Homestake Laboratory on July 26, 2001. Since that time, the prospect of a laboratory in the Homestake Mine has been realized, and the design of a long baseline neutrino experiment has been refined. The extrapolation contained in this proposal is within the common domain of thinking in the area of physics discussed here. It needs now only the encouragement of the funding agencies, NSF and DOE.« less
Noise propagation issues in Belle II pixel detector power cable
NASA Astrophysics Data System (ADS)
Iglesias, M.; Arteche, F.; Echeverria, I.; Pradas, A.; Rivetta, C.; Moser, H.-G.; Kiesling, C.; Rummel, S.; Arcega, F. J.
2018-04-01
The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This paper presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impact on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.
The Physics of Superconducting Microwave Resonators
NASA Astrophysics Data System (ADS)
Gao, Jiansong
Over the past decade, low temperature detectors have brought astronomers revolutionary new observational capabilities and led to many great discoveries. Although a single low temperature detector has very impressive sensitivity, a large detector array would be much more powerful and are highly demanded for the study of more difficult and fundamental problems in astronomy. However, current detector technologies, such as transition edge sensors and superconducting tunnel junction detectors, are difficult to integrate into a large array. The microwave kinetic inductance detector (MKID) is a promising new detector technology invented at Caltech and JPL which provides both high sensitivity and an easy solution to the detector integration. It senses the change in the surface impedance of a superconductor as incoming photons break Cooper pairs, by using high-Q superconducting microwave resonators capacitively coupled to a common feedline. This architecture allows thousands of detectors to be easily integrated through passive frequency domain multiplexing. In this thesis, we explore the rich and interesting physics behind these superconducting microwave resonators. The first part of the thesis discusses the surface impedance of a superconductor, the kinetic inductance of a superconducting coplanar waveguide, and the circuit response of a resonator. These topics are related with the responsivity of MKIDs. The second part presents the study of the excess frequency noise that is universally observed in these resonators. The properties of the excess noise, including power, temperature, material, and geometry dependence, have been quantified. The noise source has been identified to be the two-level systems in the dielectric material on the surface of the resonator. A semi-empirical noise model has been developed to explain the power and geometry dependence of the noise, which is useful to predict the noise for a specified resonator geometry. The detailed physical noise mechanism, however, is still not clear. With the theoretical results of the responsivity and the semi-empirical noise model established in this thesis, a prediction of the detector sensitivity (noise equivalent power) and an optimization of the detector design are now possible.
NASA Technical Reports Server (NTRS)
Howell, L. W.
2001-01-01
A simple power law model consisting of a single spectral index alpha-1 is believed to be an adequate description of the galactic cosmic-ray (GCR) proton flux at energies below 10(exp 13) eV. Two procedures for estimating alpha-1 the method of moments and maximum likelihood (ML), are developed and their statistical performance compared. It is concluded that the ML procedure attains the most desirable statistical properties and is hence the recommended statistical estimation procedure for estimating alpha-1. The ML procedure is then generalized for application to a set of real cosmic-ray data and thereby makes this approach applicable to existing cosmic-ray data sets. Several other important results, such as the relationship between collecting power and detector energy resolution, as well as inclusion of a non-Gaussian detector response function, are presented. These results have many practical benefits in the design phase of a cosmic-ray detector as they permit instrument developers to make important trade studies in design parameters as a function of one of the science objectives. This is particularly important for space-based detectors where physical parameters, such as dimension and weight, impose rigorous practical limits to the design envelope.
Long baseline neutrino oscillation experiment at the AGS. Physics design report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beavis, D.; Carroll, A.; Chiang, I.
1995-04-01
The authors present a design for a multi-detector long baseline neutrino oscillation experiment at the BNL AGS. It has been approved by the BNL-HENP-PAC as AGS Experiment 889. The experiment will search for oscillations in the {nu}{sub {mu}}, disappearance channel and the {nu}{sub {mu}} {leftrightarrow} {nu}{sub e} appearance channel by means of four identical neutrino detectors located 1, 3, 24, and 68km from the AGS neutrino source. Observed depletion of the {nu}{sub {mu}} flux (via quasi-elastic muon neutrino events, {nu}{sub {mu}}n {yields} {mu}{sup {minus}}p) in the far detectors not attended by an observed proportional increase of the {nu}{sub e} fluxmore » (via quasi-elastic electron neutrino events, {nu}{sub e}n {yields} e{sup {minus}}p) in those detectors will be prima facie evidence for the oscillation channel {nu}{sub {mu}} {leftrightarrow} {nu}{sub {tau}}. The experiment is directed toward exploration of the region of the neutrino oscillation parameters {Delta}m{sup 2} and sin{sup 2}2{theta}, suggested by the Kamiokande and IMB deep underground detectors but it will also explore a region more than two orders of magnitude larger than that of previous accelerator experiments. The experiment will run in a mode new to BNL. It will receive the fast extracted proton beam on the neutrino target approximately 20 hours per day when the AGS is not filling RHIC. A key aspect of the experimental design involves placing the detectors 1.5 degrees off the center line of the neutrino beam, which has the important advantage that the central value of the neutrino energy ({approx} 1 GeV) and the beam spectral shape are, to a good approximation, the same in all four detectors. The proposed detectors are massive, imaging, water Cherenkov detectors similar in large part to the Kamiokande and IMB detectors. The design has profited from their decade-long experience, and from the detector designs of the forthcoming SNO and SuperKamiokande detectors.« less
Shih, Ching-Hsiang
2011-01-01
This study evaluated whether two people with developmental disabilities would be able to actively perform simple physical activities by controlling their favorite environmental stimulation using Nintendo Wii Balance Boards with a newly developed standing location detection program (SLDP, i.e., a new software program turning a Nintendo Wii Balance Board into a standing location detector). This study was carried out using to an ABAB design. The data showed that both participants significantly increased their simple physical activity (target response) to activate the control system to produce environmental stimulation during the B (intervention) phases. The practical and developmental implications of the findings are discussed. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigg, C.
The author sketches some pressing questions in several active areas of particle physics and outline the challenges they present for the design and operation of detectors. His assignment at the 1999 ICFA Instrumentation School is to survey some current developments in particle physics, and to describe the kinds of experiments they would like to do in the near future and illustrate the demands their desires place on detectors and data analysis. Like any active science, particle physics is in a state of continual renewal. Many of the subjects that seem most fascinating and most promising today simply did not existmore » as recently as twenty-five years ago. Other topics that have preoccupied physicists for many years have been reshaped by recent discoveries and insights, and transformed by new techniques in accelerator science and detector technology. To provide some context for the courses and laboratories at this school, he has chosen three topics that are of high scientific interest, and that place very different demands on instrumental techniques. He hopes that you will begin to see the breadth of opportunities in particle physics, and that you will also look beyond the domain of particle physics for opportunities to apply the lessons you learn here in Istanbul.« less
Detector development for Jefferson Lab's 12GeV Upgrade
Qiang, Yi
2015-05-01
Jefferson Lab will soon finish its highly anticipated 12 GeV Upgrade. With doubled maximum energy, Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF) will enable a new experimental program with substantial discovery potential, addressing important topics in nuclear, hadronic and electroweak physics. In order to take full advantage of the high energy, high luminosity beam, new detectors are being developed, designed and constructed to fit the needs of different physics topics. The paper will give an overview of various new detector technologies to be used for 12 GeV experiments. It will then focus on the development of two solenoid-based spectrometers,more » the GlueX and SoLID spectrometers. The GlueX experiment in Hall D will study the complex properties of gluons through exotic hybrid meson spectroscopy. The GlueX spectrometer, a hermetic detector package designed for spectroscopy and the associated partial wave analysis, is currently in the final stage of construction. Hall A, on the other hand, is developing the SoLID spectrometer to capture the 3D image of the nucleon from semi-inclusive processes and to study the intrinsic properties of quarks through mirror symmetry breaking. Such a spectrometer will have the capability to handle very high event rates while still maintaining a large acceptance in the forward region.« less
Prospects of Measuring Lepton CP-violation with LBNE at DUSEL
NASA Astrophysics Data System (ADS)
Maricic, Jelena; Lbne Collaboration
2010-11-01
Excellent measurement of the neutrino oscillation parameters achieved in recent years has set the scene for probing the size of the leptonic CP-violation angle. The Long Baseline Neutrino Experiment (LBNE) will have an unprecedented sensitivity to CP-violation angle and a range of other physics questions. LBNE will be a massive neutrino detector located at the Deep Underground Science and Engineering Laboratory (DUSEL) in the Homestake mine in the town of Lead, South Dakota, USA. Two independent detector technologies have been utilized for detector design: water Cherenkov and liquid argon time projection chamber (LArTPC) type of detector and both technologies have similar sensitivity to the main physics questions to be answered. The experiment will measure the value of CP-violation phase δ in lepton sector, ordering of neutrino masses and value of the angle θ13. In addition, the LBNE will be able to search for proton decay, get a detailed energy spectrum in the case of galactic supernovae, detect solar and atmospheric neutrinos, possibly geoneutrinos and even measure the relic supernovae neutrino flux. In order to address most of the aforementioned physics questions, the detector will be placed at large depth of 1480 m (WC). The scientific goals require a minimal size of 2×100 kton equivalent water Cherenkov fiducial volume or 2×17 kton LArTPC, or the combination of the both. The LBNE will obtain 3σ C.L. measurement of θ13 at the 0.001 level, for any value of CP-δ phase. In addition LBNE will resolve the neutrino mass hierarchy at 3σ C.L. measurement of the neutrino mass hierarchy if sin22θ13 >= 0.01 for any value of CP-δ phase and measure about 50% of all CP-δ phases with 3σ C.L. for sin2 2θ13 >= 0.01. The experiment will make these measurements using an electron neutrino appearance signal in the muon neutrino beam sent to LBNE from Fermilab, 1300 km away. The beam will be 700 kW and then 2 MW. The experiment will run in both neutrino and anti-neutrino mode. In addition to detectors at DUSEL, a near detector complex at Fermilab is foreseen for beam normalization measurement. The report on the physics reach, design status and current undergoing research and development toward construction of the LBNE.
Vertex detectors: The state of the art and future prospects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Damerell, C.J.S.
1997-01-01
We review the current status of vertex detectors (tracking microscopes for the recognition of charm and bottom particle decays). The reasons why silicon has become the dominant detector medium are explained. Energy loss mechanisms are reviewed, as well as the physics and technology of semiconductor devices, emphasizing the areas of most relevance for detectors. The main design options (microstrips and pixel devices, both CCD`s and APS`s) are discussed, as well as the issue of radiation damage, which probably implies the need to change to detector media beyond silicon for some vertexing applications. Finally, the evolution of key performance parameters overmore » the past 15 years is reviewed, and an attempt is made to extrapolate to the likely performance of detectors working at the energy frontier ten years from now.« less
Level Zero Trigger Processor for the NA62 experiment
NASA Astrophysics Data System (ADS)
Soldi, D.; Chiozzi, S.
2018-05-01
The NA62 experiment is designed to measure the ultra-rare decay K+ arrow π+ ν bar nu branching ratio with a precision of ~ 10% at the CERN Super Proton Synchrotron (SPS). The trigger system of NA62 consists in three different levels designed to select events of physics interest in a high beam rate environment. The L0 Trigger Processor (L0TP) is the lowest level system of the trigger chain. It is hardware implemented using programmable logic. The architecture of the NA62 L0TP system is a new approach compared to existing systems used in high-energy physics experiments. It is fully digital, based on a standard gigabit Ethernet communication between detectors and the L0TP Board. The L0TP Board is a commercial development board, mounting a programmable logic device (FPGA). The primitives generated by sub-detectors are sent asynchronously using the UDP protocol to the L0TP during the entire beam spill period. The L0TP realigns in time the primitives coming from seven different sources and performs a data selection based on the characteristics of the event such as energy, multiplicity and topology of hits in the sub-detectors. It guarantees a maximum latency of 1 ms. The maximum input rate is about 10 MHz for each sub-detector, while the design maximum output trigger rate is 1 MHz. A description of the trigger algorithm is presented here.
X-ray and gamma ray astronomy detectors
NASA Technical Reports Server (NTRS)
Decher, Rudolf; Ramsey, Brian D.; Austin, Robert
1994-01-01
X-ray and gamma ray astronomy was made possible by the advent of space flight. Discovery and early observations of celestial x-rays and gamma rays, dating back almost 40 years, were first done with high altitude rockets, followed by Earth-orbiting satellites> once it became possible to carry detectors above the Earth's atmosphere, a new view of the universe in the high-energy part of the electromagnetic spectrum evolved. Many of the detector concepts used for x-ray and gamma ray astronomy were derived from radiation measuring instruments used in atomic physics, nuclear physics, and other fields. However, these instruments, when used in x-ray and gamma ray astronomy, have to meet unique and demanding requirements related to their operation in space and the need to detect and measure extremely weak radiation fluxes from celestial x-ray and gamma ray sources. Their design for x-ray and gamma ray astronomy has, therefore, become a rather specialized and rapidly advancing field in which improved sensitivity, higher energy and spatial resolution, wider spectral coverage, and enhanced imaging capabilities are all sought. This text is intended as an introduction to x-ray and gamma ray astronomy instruments. It provides an overview of detector design and technology and is aimed at scientists, engineers, and technical personnel and managers associated with this field. The discussion is limited to basic principles and design concepts and provides examples of applications in past, present, and future space flight missions.
Physical characteristics of GE Senographe Essential and DS digital mammography detectors.
Ghetti, Caterina; Borrini, Adriano; Ortenzia, Ornella; Rossi, Raffaella; Ordóñez, Pedro L
2008-02-01
The purpose of this study was to investigate physical characteristics of two full field digital mammography (FFDM) systems (GE Senographe Essential and DS). Both are indirect conversion (x ray to light) alpha-Si flat panels coupled with a CsI(Tl) scintillator. The examined systems have the same pixel size (100 microm) but a different field of view: a conventional size 23 x 19.2 cm2 and a large field 24 X 30.7 cm2, specifically designed to image large breasts. In the GE Senographe Essential model relevant improvements in flat panel design were implemented and new deposition tools for metal, alpha-Si, and CsI(Tl) were introduced by GE. These changes in detector design are expected to be beneficial for advanced applications such as breast tomosynthesis. The presampling modulation transfer function (MTF), normalized noise power spectrum (NNPS), and detective quantum efficiency (DQE) were measured for a wide range of exposure (25-240 microGy) with a RQA-M2 technique (28 kVp with a Mo/Mo target/filter combination and 2 mm of additional aluminum filtration). At 1, 2, and at 4 lp/mm MTF is equal to 0.9, 0.76, and 0.46 for the conventional field detector and to 0.85, 0.59, and 0.24 for the large field detector. The latter detector exhibits an improved NNPS due to a lower electronic noise and a better DQE that reaches 60%. In addition a contrast-detail analysis was performed with CDMAM 3.4 phantom and CDCOM software: GE Senographe DS showed statistically significant poorer detection ability in comparison with the GE Senographe Essential. These results could have been expected, at least qualitatively, considering the relative DQE of the two systems.
NASA Astrophysics Data System (ADS)
Araujo, A. C.; Félix, J.
2016-10-01
In the study of cosmic rays, measurements of time of flight and momentum have been used to identify incident particles from its physical properties, like mass. In this poster we present the design, construction, characterization, and operation of a detector to measure time of flight of cosmic rays. The device is comprised of three plates of plastic scintillator arranged in vertical straight line, they are coupled to one photomultiplier tube. The analogical output has been connected to a data acquisition system to obtain the number of digital pulses per millisecond. We present preliminary results.
Spaceborne electronic imaging systems
NASA Technical Reports Server (NTRS)
1971-01-01
Criteria and recommended practices for the design of the spaceborne elements of electronic imaging systems are presented. A spaceborne electronic imaging system is defined as a device that collects energy in some portion of the electromagnetic spectrum with detector(s) whose direct output is an electrical signal that can be processed (using direct transmission or delayed transmission after recording) to form a pictorial image. This definition encompasses both image tube systems and scanning point-detector systems. The intent was to collect the design experience and recommended practice of the several systems possessing the common denominator of acquiring images from space electronically and to maintain the system viewpoint rather than pursuing specialization in devices. The devices may be markedly different physically, but each was designed to provide a particular type of image within particular limitations. Performance parameters which determine the type of system selected for a given mission and which influence the design include: Sensitivity, Resolution, Dynamic range, Spectral response, Frame rate/bandwidth, Optics compatibility, Image motion, Radiation resistance, Size, Weight, Power, and Reliability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey A Appel
BTeV is a new Fermilab beauty and charm experiment designed to operate in the CZero region of the Tevatron collider. Critical to the success of BTeV is its pixel detector. The unique features of this pixel detector include its proximity to the beam, its operation with a beam crossing time of 132 ns, and the need for the detector information to be read out quickly enough to be used for the lowest level trigger. This talk presents an overview of the pixel detector design, giving the motivations for the technical choices made. The status of the current R&D on detectormore » components is also reviewed. Additional Pixel 2002 talks on the BTeV pixel detector are given by Dave Christian[1], Mayling Wong[2], and Sergio Zimmermann[3]. Table 1 gives a selection of pixel detector parameters for the ALICE, ATLAS, BTeV, and CMS experiments. Comparing the progression of this table, which I have been updating for the last several years, has shown a convergence of specifications. Nevertheless, significant differences endure. The BTeV data-driven readout, horizontal and vertical position resolution better than 9 {micro}m with the {+-} 300 mr forward acceptance, and positioning in vacuum and as close as 6 mm from the circulating beams remain unique. These features are driven by the physics goals of the BTeV experiment. Table 2 demonstrates that the vertex trigger performance made possible by these features is requisite for a very large fraction of the B meson decay physics which is so central to the motivation for BTeV. For most of the physics quantities of interest listed in the table, the vertex trigger is essential. The performance of the BTeV pixel detector may be summarized by looking at particular physics examples; e.g., the B{sub s} meson decay B{sub s} {yields} D{sub s}{sup -} K{sup +}. For that decay, studies using GEANT3 simulations provide quantitative measures of performance. For example, the separation between the B{sub s} decay point and the primary proton-antiproton interaction can be measured with an rms uncertainty of 138 {micro}m. This, with the uncertainty in the decay vertex position, leads to an uncertainty of the B{sub s} proper decay time of 46 fs. Even if the parameter x{sub s} equals 25 (where the current lower limit on x{sub s} is about 15), the corresponding relevant proper time is 400 fs. So, the detector resolution is more than adequate to make an excellent measurement of this parameter.« less
The RICH detector of the CBM experiment
NASA Astrophysics Data System (ADS)
Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höhne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Patel, V.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Schetinin, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.
2017-12-01
The CBM-RICH detector is designed to identify electrons with momenta up to 8 GeV/c and high purity as this is essential for the CBM physics program. The detector consist of a CO2-gaseous radiator, a spherical mirror system, and Multi-Anode PhotoMultiplier Tubes (MAPMT) of type H12700 from Hamamatsu as photon detectors. The detector concept was verified through R&D studies and a laterally scaled prototype. The results were summarized in a TDR, in which open issues were defined concerning the readout electronics, the shielding of the magnetic stray field in the MAPMT region, the radiation hardness of the MAPMT sensors, and the mechanical holding structure of the mirror system. In this article an overview is given on the CBM RICH development with focus on those open issues.
Diamond detectors for the TOTEM timing upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antchev, G.; Aspell, P.; Atanassov, I.
This paper describes the design and the performance of the timing detector developed by the TOTEM Collaboration for the Roman Pots (RPs) to measure the Time-Of-Flight (TOF) of the protons produced in central diffractive interactions at the LHC . The measurement of the TOF of the protons allows the determination of the longitudinal position of the proton interaction vertex and its association with one of the vertices reconstructed by the CMS detectors. The TOF detector is based on single crystal Chemical Vapor Deposition (scCVD) diamond plates and is designed to measure the protons TOF with about 50 ps time precision.more » This upgrade to the TOTEM apparatus will be used in the LHC run 2 and will tag the central diffractive events up to an interaction pileup of about 1. A dedicated fast and low noise electronics for the signal amplification has been developed. The digitization of the diamond signal is performed by sampling the waveform. In conclusion, after introducing the physics studies that will most profit from the addition of these new detectors, we discuss in detail the optimization and the performance of the first TOF detector installed in the LHC in November 2015.« less
Diamond detectors for the TOTEM timing upgrade
Antchev, G.; Aspell, P.; Atanassov, I.; ...
2017-03-09
This paper describes the design and the performance of the timing detector developed by the TOTEM Collaboration for the Roman Pots (RPs) to measure the Time-Of-Flight (TOF) of the protons produced in central diffractive interactions at the LHC . The measurement of the TOF of the protons allows the determination of the longitudinal position of the proton interaction vertex and its association with one of the vertices reconstructed by the CMS detectors. The TOF detector is based on single crystal Chemical Vapor Deposition (scCVD) diamond plates and is designed to measure the protons TOF with about 50 ps time precision.more » This upgrade to the TOTEM apparatus will be used in the LHC run 2 and will tag the central diffractive events up to an interaction pileup of about 1. A dedicated fast and low noise electronics for the signal amplification has been developed. The digitization of the diamond signal is performed by sampling the waveform. In conclusion, after introducing the physics studies that will most profit from the addition of these new detectors, we discuss in detail the optimization and the performance of the first TOF detector installed in the LHC in November 2015.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... byproduct material and designed to protect life or property from fires and airborne hazards, or to initially... submits sufficient information relating to the design, manufacture, prototype testing, quality control... the product and changes in chemical and physical form that may occur during the useful life of the...
Mammalian cochlea as a physics guided evolution-optimized hearing sensor.
Lorimer, Tom; Gomez, Florian; Stoop, Ruedi
2015-07-28
Nonlinear physics plays an essential role in hearing. We demonstrate on a mesoscopic description level that during the evolutionary perfection of the hearing sensor, nonlinear physics led to the unique design of the cochlea observed in mammals, and that this design requests as a consequence the perception of pitch. Our insight challenges the view that mostly genetics is responsible for the uniformity of the construction of the mammalian hearing sensor. Our analysis also suggests that scaleable and non-scaleable arrangements of nonlinear sound detectors may be at the origin of the differences between hearing sensors in amniotic lineages.
The monitoring and data quality assessment of the ATLAS liquid argon calorimeter
NASA Astrophysics Data System (ADS)
Simard, Olivier; ATLAS Liquid Argon Calorimeter Group
2015-02-01
The ATLAS experiment is designed to study the proton-proton (pp) collisions produced at the Large Hadron Collider (LHC) at CERN. Liquid argon (LAr) sampling calorimeters are used for all electromagnetic calorimetry in the pseudo-rapidity region |η| < 3.2, as well as for hadronic calorimetry in the range 1.5 < |η| < 4.9. The electromagnetic calorimeters use lead as passive material and are characterized by an accordion geometry that allows a fast and uniform response without azimuthal gaps. Copper and tungsten were chosen as passive material for the hadronic calorimetry; while a classic parallel-plate geometry was adopted at large polar angles, an innovative design based on cylindrical electrodes with thin liquid argon gaps is employed at low angles, where the particle flux is higher. All detectors are housed in three cryostats maintained at about 88.5 K. The 182,468 cells are read out via front-end boards housed in on-detector crates that also contain monitoring, calibration, trigger and timing boards. In the first three years of LHC operation, approximately 27 fb-1 of pp collision data were collected at centre-of-mass energies of 7-8 TeV. Throughout this period, the calorimeter consistently operated with performances very close to specifications, with high data-taking efficiency. This is in large part due to a sophisticated data monitoring procedure designed to quickly identify issues that would degrade the detector performance, to ensure that only the best quality data are used for physics analysis. After a description of the detector design, main characteristics and operation principles, this paper details the data quality assessment procedures developed during the 2011 and 2012 LHC data-taking periods, when more than 98% of the luminosity recorded by ATLAS had high quality LAr calorimeter data suitable for physics analysis.
Designing an Active Target Test Projection Chamber
NASA Astrophysics Data System (ADS)
Koci, James; Tan Ahn Collaboration, Dr.; Nicolas Dixneuf Collaboration
2015-10-01
The development of instrumentation in nuclear physics is crucial for advancing our ability to measure the properties of exotic nuclei. One limitation of the use of exotic nuclei in experiment is their very low production intensities. Recently, detectors, called active-target dectectors, have been developed to address this issue. Active-target detectors use a gas medium to image charged-particle tracks that are emitted in nuclear reactions. Last semester, I designed a vacuum chamber to be used in developing Micro-Pattern Gas detectors that will upgrade the capabilities of an active-target detector called the Prototype AT-TPC. With the exterior of the chamber complete, I have now been using an electric field modeling program, Garfield, developed by CERN to design a field cage to be placed within the vacuum chamber. The field cage will be a box-like apparatus consisting of two parallel metal plates connected with a resistor chain and attached to wires wrapped between them. The cage will provide a uniform electric field within the chamber to drift electrons from nuclear reactions down to the detector in the bottom of the chamber. These signals are then amplified by a proportional counter, and the data is sent to a computer. For the long term, we would like to incorporate a Micro-Pattern Gas Detectors in the interior of the chamber and eventually use the AT-TPC to examine various nuclei. Dr. Ahn is my advising professor.
The Goals and Status of SoLid Experiment
NASA Astrophysics Data System (ADS)
Park, Jaewon
2016-09-01
SoLid is a short baseline sterile neutrino oscillation search experiment using the BR2 compact core reactor in Belgium. Ruling out or confirming sterile neutrino is one of main interests in the neutrino physics field. Highly segmented scintillator cube detector with 6LiF:ZnS(Ag) neutron screen provides high purity neutron tagging by pulse shape discrimination (PSD), and capture position identification. These capabilities from this novel detector are critical to isolate neutrino interactions in a high background environment. The prototype detector (SM1) provides important feedback for validating the performance of the detector design. Recent results from SM1 will be presented. Construction of the SoLid Phase-1 detector is underway. The three-ton detector with three years running will allow us to reach the sterile neutrino exclusion limit of sin2 2 θ < 0 . 03 at Δm2 2eV2 at the 99% confidence level.
Determining Data Quality for the NOvA Experiment
NASA Astrophysics Data System (ADS)
Murphy, Ryan; NOvA Collaboration Collaboration
2016-03-01
NOvA is a long-baseline neutrino oscillation experiment with two liquid scintillator filled tracking calorimeter detectors separated by 809 km. The detectors are located 14.6 milliradians off-axis of Fermilab's NuMI beam. The NOvA experiment is designed to measure the rate of electron-neutrino appearance out of the almost-pure muon-neutrino NuMI beam, with the data measured at the Near Detector being used to accurately determine the expected rate of the Far Detector. It is therefore very important to have automated and accurate monitoring of the data recorded by the detectors so any hardware, DAQ or beam issues arising in the 0.3 million (20k) channels of the far (near) detector which could effect this extrapolation technique are identified and the affected data removed from the physics analysis data set. This poster will cover the techniques and efficiency of selecting good data, describing the selections placed on different data and hardware levels.
A precision device needs precise simulation: Software description of the CBM Silicon Tracking System
NASA Astrophysics Data System (ADS)
Malygina, Hanna; Friese, Volker;
2017-10-01
Precise modelling of detectors in simulations is the key to the understanding of their performance, which, in turn, is a prerequisite for the proper design choice and, later, for the achievement of valid physics results. In this report, we describe the implementation of the Silicon Tracking System (STS), the main tracking device of the CBM experiment, in the CBM software environment. The STS makes uses of double-sided silicon micro-strip sensors with double metal layers. We present a description of transport and detector response simulation, including all relevant physical effects like charge creation and drift, charge collection, cross-talk and digitization. Of particular importance and novelty is the description of the time behaviour of the detector, since its readout will not be externally triggered but continuous. We also cover some aspects of local reconstruction, which in the CBM case has to be performed in real-time and thus requires high-speed algorithms.
Experimental spectroscopy for the high-school Physics curriculum
NASA Astrophysics Data System (ADS)
Kinra, Rajeev; Karpetis, Adonios
2008-11-01
The present work explores the feasibility of including spectroscopic experiments in high-school physics curricula. Two experimental optics ``modules'' were constructed for this purpose: (a) a simple CCD detector, in combination with appropriate filters, was used for the measurement of solar spectra and the determination of the sun's surface temperature; (b) the same detector was used, in combination with a transmissive diffraction grating and some miniature optics, to form a spectrophotometer that can be used for the determination of spectra with high resolution. Both modules were designed and constructed with portability and low cost in mind, and their objective is to introduce experimental spectroscopy to high school students in an intriguing, educational and phase-appropriate manner without sacrificing scientific rigor. A large variety of experiments may be designed around the basic devices that were built during this work, and a number of possible examples will be presented, from research on plant phototropism to human color cognition.
Towards a Future Linear Collider and The Linear Collider Studies at CERN
Heuer, Rolf-Dieter
2018-06-15
During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERNâs linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.
Noise propagation effects in power supply distribution systems for high-energy physics experiments
NASA Astrophysics Data System (ADS)
Arteche, F.; Rivetta, C.; Iglesias, M.; Echeverria, I.; Pradas, A.; Arcega, F. J.
2017-12-01
High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. This paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.
Noise propagation effects in power supply distribution systems for high-energy physics experiments
Arteche, F.; Rivetta, C.; Iglesias, M.; ...
2017-12-05
High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. Here, this paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. Lastly, this analysis is part of the electromagnetic compatibility based design focused onmore » functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less
Noise propagation effects in power supply distribution systems for high-energy physics experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arteche, F.; Rivetta, C.; Iglesias, M.
High-energy physics experiments are supplied by thousands of power supply units placed in distant areas from the front-end electronics. The power supply units and the front-end electronics are connected through long power cables that propagate the output noise from the power supplies to the detector. Here, this paper addresses the effect of long cables on the noise propagation and the impact that those cables have on the conducted emission levels required for the power supplies and the selection of EMI filters for the front-end electronic low-voltage input. Lastly, this analysis is part of the electromagnetic compatibility based design focused onmore » functional safety to define the type of cable, shield connections, EMI filters and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less
Towards a Future Linear Collider and The Linear Collider Studies at CERN
Stapnes, Steinar
2017-12-18
During the week 18-22 October, more than 400 physicists will meet at CERN and in the CICG (International Conference Centre Geneva) to review the global progress towards a future linear collider. The 2010 International Workshop on Linear Colliders will study the physics, detectors and accelerator complex of a linear collider covering both the CLIC and ILC options. Among the topics presented and discussed will be the progress towards the CLIC Conceptual Design Report in 2011, the ILC Technical Design Report in 2012, physics and detector studies linked to these reports, and an increasing numbers of common working group activities. The seminar will give an overview of these topics and also CERNâs linear collider studies, focusing on current activities and initial plans for the period 2011-16. n.b: The Council Chamber is also reserved for this colloquium with a live transmission from the Main Auditorium.
Noise propagation issues in Belle II pixel detector power cable
Iglesias, M.; Arteche, F.; Echeverria, I.; ...
2018-04-26
The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This article presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impactmore » on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less
Noise propagation issues in Belle II pixel detector power cable
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iglesias, M.; Arteche, F.; Echeverria, I.
The vertex detector used in the upgrade of High-Energy physics experiment Belle II includes DEPFET pixel detector (PXD) technology. In this complex topology the power supply units and the front-end electronics are connected through a PXD power cable bundle which may propagate the output noise from the power supplies to the vertex area. This article presents a study of the propagation of noise caused by power converters in the PXD cable bundle based on Multi-conductor Transmission Line (MTL) theory. The work exposes the effect of the complex cable topology and shield connections on the noise propagation, which has an impactmore » on the requirements of the power supplies. This analysis is part of the electromagnetic compatibility based design focused on functional safety to define the shield connections and power supply specifications required to ensure the successful integration of the detector and, specifically, to achieve the designed performance of the front-end electronics.« less
Fundamental limits to single-photon detection determined by quantum coherence and backaction
NASA Astrophysics Data System (ADS)
Young, Steve M.; Sarovar, Mohan; Léonard, François
2018-03-01
Single-photon detectors have achieved impressive performance and have led to a number of new scientific discoveries and technological applications. Existing models of photodetectors are semiclassical in that the field-matter interaction is treated perturbatively and time-separated from physical processes in the absorbing matter. An open question is whether a fully quantum detector, whereby the optical field, the optical absorption, and the amplification are considered as one quantum system, could have improved performance. Here we develop a theoretical model of such photodetectors and employ simulations to reveal the critical role played by quantum coherence and amplification backaction in dictating the performance. We show that coherence and backaction lead to trade-offs between detector metrics and also determine optimal system designs through control of the quantum-classical interface. Importantly, we establish the design parameters that result in a ideal photodetector with 100% efficiency, no dark counts, and minimal jitter, thus paving the route for next-generation detectors.
Monte-Carlo background simulations of present and future detectors in x-ray astronomy
NASA Astrophysics Data System (ADS)
Tenzer, C.; Kendziorra, E.; Santangelo, A.
2008-07-01
Reaching a low-level and well understood internal instrumental background is crucial for the scientific performance of an X-ray detector and, therefore, a main objective of the instrument designers. Monte-Carlo simulations of the physics processes and interactions taking place in a space-based X-ray detector as a result of its orbital environment can be applied to explain the measured background of existing missions. They are thus an excellent tool to predict and optimize the background of future observatories. Weak points of a design and the main sources of the background can be identified and methods to reduce them can be implemented and studied within the simulations. Using the Geant4 Monte-Carlo toolkit, we have created a simulation environment for space-based detectors and we present results of such background simulations for XMM-Newton's EPIC pn-CCD camera. The environment is also currently used to estimate and optimize the background of the future instruments Simbol-X and eRosita.
An educational distributed Cosmic Ray detector network based on ArduSiPM
NASA Astrophysics Data System (ADS)
Bocci, V.; Chiodi, G.; Fresch, P.; Iacoangeli, F.; Recchia, L.
2017-10-01
The advent of high performance microcontrollers equipped with analog and digital peripherals, makes the design of a complete particle detector and a relative acquisition system on a single microcontroller chip possible. The existence of a world wide data infrastructure such as the internet, allows for the conception of a distributed network of cheap detectors able to elaborate and send data as well as to respond to setting commands. The internet infrastructure enables the distribution of the absolute time, with precision of a few milliseconds, to all devices independently of their physical location, when the sky view is accessible it possible to use a GPS module to reach synchronization of tens of nanoseconds. These devices can be far apart from each other and their relative distance can range from a few meters to thousands of kilometers. This allows for the design of a crowdsourcing experiment of citizen science, based on the use of many small scintillation-based particle detectors to monitor the high energetic cosmic ray and the radiation environment.
Directional Antineutrino Detection
NASA Astrophysics Data System (ADS)
Safdi, Benjamin R.; Suerfu, Burkhant
2015-02-01
We propose the first event-by-event directional antineutrino detector using inverse beta decay (IBD) interactions on hydrogen, with potential applications including monitoring for nuclear nonproliferation, spatially mapping geoneutrinos, characterizing the diffuse supernova neutrino background and searching for new physics in the neutrino sector. The detector consists of adjacent and separated target and capture scintillator planes. IBD events take place in the target layers, which are thin enough to allow the neutrons to escape without scattering elastically. The neutrons are detected in the thicker boron-loaded capture layers. The location of the IBD event and the momentum of the positron are determined by tracking the positron's trajectory through the detector. Our design is a straightforward modification of existing antineutrino detectors; a prototype could be built with existing technology.
NASA Astrophysics Data System (ADS)
Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höhne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Patel, V.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Schetinin, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.
2017-12-01
The Compressed Baryonic Matter (CBM) experiment at the future Facility for Anti-proton and Ion Research (FAIR) will investigate the phase diagram of strongly interacting matter at high net-baryon density and moderate temperature in A+A collisions. One of the key detectors of CBM to explore this physics program is a Ring Imaging CHerenkov (RICH) detector for electron identification. For a high performance of the RICH detector precise mirror alignment is essential. A three-step correction cycle has been developed, which will be discussed: First a qualitative, fast check of the mirror positions, second a quantitative determination of possible misalignments and third a software correction routine, allowing a proper functioning of the RICH under misalignment conditions.
Silicon technologies for the CLIC vertex detector
NASA Astrophysics Data System (ADS)
Spannagel, S.
2017-06-01
CLIC is a proposed linear e+e- collider designed to provide particle collisions at center-of-mass energies of up to 3 TeV. Precise measurements of the properties of the top quark and the Higgs boson, as well as searches for Beyond the Standard Model physics require a highly performant CLIC detector. In particular the vertex detector must provide a single point resolution of only a few micrometers while not exceeding the envisaged material budget of around 0.2% X0 per layer. Beam-beam interactions and beamstrahlung processes impose an additional requirement on the timestamping capabilities of the vertex detector of about 10 ns. These goals can only be met by using novel techniques in the sensor and ASIC design as well as in the detector construction. The R&D program for the CLIC vertex detector explores various technologies in order to meet these demands. The feasibility of planar sensors with a thickness of 50-150 μm, including different active edge designs, are evaluated using Timepix3 ASICs. First prototypes of the CLICpix readout ASIC, implemented in 65 nm CMOS technology and with a pixel size of 25×25μm 2, have been produced and tested in particle beams. An updated version of the ASIC with a larger pixel matrix and improved precision of the time-over-threshold and time-of-arrival measurements has been submitted. Different hybridization concepts have been developed for the interconnection between the sensor and readout ASIC, ranging from small-pitch bump bonding of planar sensors to capacitive coupling of active HV-CMOS sensors. Detector simulations based on Geant 4 and TCAD are compared with experimental results to assess and optimize the performance of the various designs. This contribution gives an overview of the R&D program undertaken for the CLIC vertex detector and presents performance measurements of the prototype detectors currently under investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudryavtsev, Vitaly A.
2016-06-09
The Deep Underground Neutrino Experiment (DUNE) is a project to design, construct and operate a next-generation long-baseline neutrino detector with a liquid argon (LAr) target capable also of searching for proton decay and supernova neutrinos. It is a merger of previous efforts of the LBNE and LBNO collaborations, as well as other interested parties to pursue a broad programme with a staged 40-kt LAr detector at the Sanford Underground Research Facility (SURF) 1300 km from Fermilab. This programme includes studies of neutrino oscillations with a powerful neutrino beam from Fermilab, as well as proton decay and supernova neutrino burst searches.more » In this study, we will focus on the underground physics with DUNE.« less
Institute of Theoretical and Experimental Physics (ITEP, Moscow) in the H1 experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efremenko, V. I.
A group of researchers from the Institute of Theoretical and Experimental Physics (ITEP, Moscow) took part at almost all stages of the H1 experiment performed at the HERA collider (Hamburg) in order to study lepton-proton interactions at high energies. Several subdetectors of the H1 detector were developed, designed, and constructed at the ITEP industrial workshop and domestic enterprises. In particular, the ITEP staff participated in assembling and tunning the equipment, servicing the detector and the data acquisition system, and analyzing and presenting the results. Researchers from ITEP have been playing a crucial role at many stages of the experiment tomore » the present day.« less
Simulation studies for the PANDA experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopf, B.
2005-10-26
One main component of the planned Facility for Antiproton and Ion Research (FAIR) is the High Energy Storage Ring (HESR) at GSI, Darmstadt, which will provide cooled antiprotons with momenta between 1.5 and 15 GeV/c. The PANDA experiment will investigate p-barannihilations with internal hydrogen and nuclear targets. Due to the planned extensive physics program a multipurpose detector with nearly complete solid angle coverage, proper particle identification over a large momentum range, and high resolution calorimetry for neutral particles is required. For the optimization of the detector design simulation studies of several benchmark channels are in progress which are covering themore » most relevant physics topics. Some important simulation results are discussed here.« less
Implementation of the P barANDA Planar-GEM tracking detector in Monte Carlo simulations
NASA Astrophysics Data System (ADS)
Divani Veis, Nazila; Ehret, Andre; Firoozabadi, Mohammad M.; Karabowicz, Radoslaw; Maas, Frank; Saito, Nami; Saito, Takehiko R.; Voss, Bernd; PANDA Gem-Tracker Subgroup
2018-02-01
The P barANDA experiment at FAIR will be performed to investigate different aspects of hadron physics using anti-proton beams interacting with a fixed nuclear target. The experimental setup consists of a complex series of detector components covering a large solid angle. A detector with a gaseous active media equipped with gas electron multiplier (GEM) technique will be employed to measure tracks of charged particles at forward direction in order to achieve a high momentum resolution. In this work, a full setup of the GEM tracking detector has been implemented in the P barANDA Monte Carlo simulation package (PandaRoot) based on the current technical and conceptual design, and the expected performance of the P barANDA GEM-tracking detector has been investigated. Furthermore, material-budget studies in terms of the radiation length of the P barANDA GEM-tracking detector have been made in order to investigate the effect of the detector materials and its associated structures to particle measurements.
Fast Readout Architectures for Large Arrays of Digital Pixels: Examples and Applications
Gabrielli, A.
2014-01-01
Modern pixel detectors, particularly those designed and constructed for applications and experiments for high-energy physics, are commonly built implementing general readout architectures, not specifically optimized in terms of speed. High-energy physics experiments use bidimensional matrices of sensitive elements located on a silicon die. Sensors are read out via other integrated circuits bump bonded over the sensor dies. The speed of the readout electronics can significantly increase the overall performance of the system, and so here novel forms of readout architectures are studied and described. These circuits have been investigated in terms of speed and are particularly suited for large monolithic, low-pitch pixel detectors. The idea is to have a small simple structure that may be expanded to fit large matrices without affecting the layout complexity of the chip, while maintaining a reasonably high readout speed. The solutions might be applied to devices for applications not only in physics but also to general-purpose pixel detectors whenever online fast data sparsification is required. The paper presents also simulations on the efficiencies of the systems as proof of concept for the proposed ideas. PMID:24778588
Design and performance of an electromagnetic calorimeter for a FCC-hh experiment
NASA Astrophysics Data System (ADS)
Zaborowska, A.
2018-03-01
The physics reach and feasibility of the Future Circular Collider are currently under investigation. The goal is to collide protons with centre-of-mass energies up to 100 TeV, extending the research carried out at the current HEP facilities. The detectors designed for the FCC experiments need to tackle harsh conditions of the unprecedented collision energy and luminosity. The baseline technology for the calorimeter system of the FCC-hh detector is described. The electromagnetic calorimeter in the barrel, as well as the electromagnetic and hadronic calorimeters in the endcaps and the forward regions, are based on the liquid argon as active material. The detector layout in the barrel region combines the concept of a high granularity calorimeter with precise energy measurements. The calorimeters have to meet the requirements of high radiation hardness and must be able to deal with a very high number of collisions per bunch crossings (pile-up). A very good energy and angular resolution for a wide range of electrons' and photons' momentum is needed in order to meet the demands based on the physics benchmarks. First results of the performance studies with the new liquid argon calorimeter are presented, meeting the energy resolution goal.
Solid-State Photomultiplier with Integrated Front End Electronics
NASA Astrophysics Data System (ADS)
Christian, James; Stapels, Christopher; Johnson, Erik; Mukhopadhyay, Sharmistha; Jie Chen, Xiao; Miskimen, Rory
2009-10-01
The instrumentation cost of physics experiments has been reduced per channel, by the use of solid-state detectors, but these cost-effective techniques have not been translated to scintillation-based detectors. When considering photodetectors, the cost per channel is determined by the use of high-voltage, analog-to-digital converters, BNC cables, and any other ancillary devices. The overhead associated with device operation limits the number of channels for the detector system, while potentially limiting the scope of physics that can be explored. The PRIMEX experiment at JLab, which is being designed to measure the radiative widths of the η and η' pseudo-scalar mesons for a more comprehensive understanding of QCD at low energies, is an example where CMOS solid-state photomultipliers (SSPMs) can be implemented. The ubiquitous nature of CMOS allows for on-chip signal processing to provide front-end electronics within the detector package. We present the results of the device development for the PRIMEX calorimeter, discussing the characteristics of SSPMs, the potential cost savings, and experimental results of on-chip signal processing.
A miniature Joule-Thomson cooler for optical detectors in space.
Derking, J H; Holland, H J; Tirolien, T; ter Brake, H J M
2012-04-01
The utilization of single-stage micromachined Joule-Thomson (JT) coolers for cooling small optical detectors is investigated. A design of a micromachined JT cold stage-detector system is made that focuses on the interface between a JT cold stage and detector, and on the wiring of the detector. Among various techniques, adhesive bonding is selected as most suitable technique for integrating the detector with the JT cold stage. Also, the optimum wiring of the detector is discussed. In this respect, it is important to minimize the heat conduction through the wiring. Therefore, each wire should be optimized in terms of acceptable impedance and thermal heat load. It is shown that, given a certain impedance, the conductive heat load of electrically bad conducting materials is about twice as high as that of electrically good conducting materials. A micromachined JT cold stage is designed and integrated with a dummy detector. The JT cold stage is operated at 100 K with nitrogen as the working fluid and at 140 K with methane. Net cooling powers of 143 mW and 117 mW are measured, respectively. Taking into account a radiative heat load of 40 mW, these measured values make the JT cold stage suitable for cooling a photon detector with a power dissipation up to 50 mW, allowing for another 27 to 53 mW heat load arising from the electrical leads. © 2012 American Institute of Physics
U.C. Davis high energy particle physics research: Technical progress report -- 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Summaries of progress made for this period is given for each of the following areas: (1) Task A--Experiment, H1 detector at DESY; (2) Task C--Experiment, AMY detector at KEK; (3) Task D--Experiment, fixed target detectors at Fermilab; (4) Task F--Experiment, PEP detector at SLAC and pixel detector; (5) Task B--Theory, particle physics; and (6) Task E--Theory, particle physics.
SiD Linear Collider Detector R&D, DOE Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brau, James E.; Demarteau, Marcel
2015-05-15
The Department of Energy’s Office of High Energy Physics supported the SiD university detector R&D projects in FY10, FY11, and FY12 with no-cost extensions through February, 2015. The R&D projects were designed to advance the SiD capabilities to address the fundamental questions of particle physics at the International Linear Collider (ILC): • What is the mechanism responsible for electroweak symmetry breaking and the generation of mass? • How do the forces unify? • Does the structure of space-time at small distances show evidence for extra dimensions? • What are the connections between the fundamental particles and forces and cosmology? Siliconmore » detectors are used extensively in SiD and are well-matched to the challenges presented by ILC physics and the ILC machine environment. They are fast, robust against machine-induced background, and capable of very fine segmentation. SiD is based on silicon tracking and silicon-tungsten sampling calorimetry, complemented by powerful pixel vertex detection, and outer hadronic calorimetry and muon detection. Radiation hard forward detectors which can be read out pulse by pulse are required. Advanced calorimetry based on a particle flow algorithm (PFA) provides excellent jet energy resolution. The 5 Tesla solenoid is outside the calorimeter to improve energy resolution. PFA calorimetry requires fine granularity for both electromagnetic and hadronic calorimeters, leading naturally to finely segmented silicon-tungsten electromagnetic calorimetry. Since silicon-tungsten calorimetry is expensive, the detector architecture is compact. Precise tracking is achieved with the large magnetic field and high precision silicon microstrips. An ancillary benefit of the large magnetic field is better control of the e⁺e⁻ pair backgrounds, permitting a smaller radius beampipe and improved impact parameter resolution. Finally, SiD is designed with a cost constraint in mind. Significant advances and new capabilities have been made and are described in this report.« less
Shih, Ching-Hsiang; Chung, Chiao-Chen; Shih, Ching-Tien; Chen, Ling-Che
2011-01-01
The latest researches have adopted software technology turning the Nintendo Wii Balance Board into a high performance standing location detector. This study extended Wii Balance Board functionality to assess whether two people with developmental disabilities would be able to actively perform designated physical activities according to simple instructions by controlling their favorite environmental stimulation using Nintendo Wii Balance Boards. This study was carried out according to an A-B-A-B design. Data showed that both participants significantly increased their target response (performing a designated physical activity) by activating the control system to produce their preferred environmental stimulation during the intervention phases. Copyright © 2011 Elsevier Ltd. All rights reserved.
The Escaramujo Project: Instrumentation Courses During a Road Trip Across the Americas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izraelevitch, Federico
The Escaramujo Project was a series of eight hands-on laboratory courses on High Energy Physics and Astroparticle Instrumentation, in Latinamerican Institutions. The Physicist Federico Izraelevitch traveled on a van with his wife and dogs from Chicago to Buenos Aires teaching the courses. The sessions took place at Institutions in Mexico, Guatemala, Costa Rica, Colombia, Ecuador, Peru and Bolivia at an advanced undergraduate and graduate level. During these workshops, each group built a modern cosmic ray detector based on plastic scintillator and silicon photomultipliers, designed specifically for this project. After the courses, a functional detector remained at each institution to bemore » used by the faculty to facilitate the training of future students and to support and enable local research activities. The five-days workshops covered topics such as elementary particle and cosmic ray Physics, radiation detection and instrumentation, low-level light sensing with solid state devices, front-end analog electronics and object-oriented data analysis (C++ and ROOT). Throughout this initiative, about a hundred of talented and highly motivated young students were reached. With the detector as a common thread, they were able to understand the designing principles and the underlying Physics involved in it, build the device, start it up, characterize it, take data and analyze it, mimicking the stages of a real elementary particle Physics experiment. Besides the aims to awaken vocations in science, technology and engineering, The Escaramujo Project was an effort to strengthen the integration of Latinamerican academic institutions into the international scientific community.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, A; Little, K; Baad, M
Purpose: To use phantom and simulation experiments to relate technique factors, patient size and antiscatter grid use to image quality in portable digital radiography (DR), in light of advancements in detector design and image processing. Methods: Image contrast-to-noise ratio (CNR) on a portable DR system (MobileDaRt Evolution, Shimadzu) was measured by imaging four aluminum inserts of varying thickness, superimposed on a Lucite slab phantom using a pediatric abdominal protocol. Three thicknesses of Lucite were used: 6.1cm, 12cm, and 18.2cm, with both 55 and 65 kVp beams. The mAs was set so that detector entrance exposure (DEE) was matched between kVpmore » values. Each technique and phantom was used with and without an antiscatter grid (focused linear grid embedded in aluminum with an 8:1 ratio). The CNR-improvement-factor was then used to determine the thickness- and technique-dependent appropriateness of grid use. Finally, the same experiment was performed via Monte Carlo simulation, integrating incident energy fluence at each detector pixel, so that effects of detector design and image processing could be isolated from physical factors upstream of the detector. Results: The physical phantom experiment demonstrated a clear improvement for the lower tube voltage (55kVp), along with substantial CNR benefits with grid use for 12–18cm phantoms. Neither trend was evident with Monte Carlo, suggesting that suboptimal quantum-detection-efficiency and automated grid-removal could explain trends in kVp and grid use, respectively. Conclusion: Physical experiments demonstrate marked improvement in CNR when using a grid for phantoms of 12 and 18cm Lucite thickness (above ∼10cm soft-tissue equivalent). This benefit is likely due to image processing, as this result was not seen with Monte Carlo. The impact of image processing on image resolution should also be investigated, and the CNR benefit of low kVp and grid use should be weighed against the increased exposure time necessary to achieve adequate DEE.« less
UFMulti: A new parallel processing software system for HEP
NASA Astrophysics Data System (ADS)
Avery, Paul; White, Andrew
1989-12-01
UFMulti is a multiprocessing software package designed for general purpose high energy physics applications, including physics and detector simulation, data reduction and DST physics analysis. The system is particularly well suited for installations where several workstation or computers are connected through a local area network (LAN). The initial configuration of the software is currently running on VAX/VMS machines with a planned extension to ULTRIX, using the new RISC CPUs from Digital, in the near future.
The Mu2e experiment at Fermilab: Design and status
Donghia, R.
2017-12-18
The Mu2e experiment at Fermilab will search for coherent, neutrinoless conversion of negative muons into electrons in the field of an aluminum nucleus. The dynamics of such charged lepton flavour violating (CLFV) process is a twobody decay, resulting in a mono-energetic electron with an energy slightly below the muon rest mass. If no events are observed in three years of running, Mu2e will set an upper limit on the ratio between the conversion and the capture rates Rμe of ≤ 6 × 10 -17 (@90% C.L.). This will improve the current limit of four order of magnitudes with respect tomore » the previous best experiment. Mu2e complements and extends the current search for μ → eγ decay at MEG as well as the direct searches for new physics at the LHC. Indeed, such a CLFV process probes new physics at a scale inaccessible to direct searches at either present or planned high energy colliders. Observation of a signal will be a clear evidence for new physics beyond the Standard Model. To search for the muon conversion process, a very intense pulsed beam of negative muons (~ 10 10 μ/s) is stopped on an aluminum target inside a very long solenoid where the detector is also located. The Mu2e detector is composed of a straw tube tracker and an electromagnetic calorimeter consisting of arrays of CsI crystals. An external veto for cosmic rays is surrounding the detector solenoid. In 2016, Mu2e has passed the final approval stage from DOE and has started its construction phase. Data collection is planned for the end of 2021. Lastly, an overview of the physics motivations for Mu2e, the current status of the experiment and design of the muon beam-line and the detector is presented.« less
The Mu2e experiment at Fermilab: Design and status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donghia, R.
The Mu2e experiment at Fermilab will search for coherent, neutrinoless conversion of negative muons into electrons in the field of an aluminum nucleus. The dynamics of such charged lepton flavour violating (CLFV) process is a twobody decay, resulting in a mono-energetic electron with an energy slightly below the muon rest mass. If no events are observed in three years of running, Mu2e will set an upper limit on the ratio between the conversion and the capture rates Rμe of ≤ 6 × 10 -17 (@90% C.L.). This will improve the current limit of four order of magnitudes with respect tomore » the previous best experiment. Mu2e complements and extends the current search for μ → eγ decay at MEG as well as the direct searches for new physics at the LHC. Indeed, such a CLFV process probes new physics at a scale inaccessible to direct searches at either present or planned high energy colliders. Observation of a signal will be a clear evidence for new physics beyond the Standard Model. To search for the muon conversion process, a very intense pulsed beam of negative muons (~ 10 10 μ/s) is stopped on an aluminum target inside a very long solenoid where the detector is also located. The Mu2e detector is composed of a straw tube tracker and an electromagnetic calorimeter consisting of arrays of CsI crystals. An external veto for cosmic rays is surrounding the detector solenoid. In 2016, Mu2e has passed the final approval stage from DOE and has started its construction phase. Data collection is planned for the end of 2021. Lastly, an overview of the physics motivations for Mu2e, the current status of the experiment and design of the muon beam-line and the detector is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leyva, A.; Cabal, A.; Pinera, I.
The present paper synthesizes the results obtained in the evaluation of a 64 microstrips crystalline silicon detector coupled to RX64 ASIC, designed for high-energy physics experiments, as a useful X-ray detector in advanced medical radiography, specifically in digital mammography. Research includes the acquisition of two-dimensional radiography of a mammography phantom using the scanning method, and the comparison of experimental profile with mathematically simulated one. The paper also shows the experimental images of three biological samples taken from breast biopsies, where it is possible to identify the presence of possible pathological tissues.
Studies for a Dedicated B Detector at the Fermilab Collider
NASA Astrophysics Data System (ADS)
McBride, Patricia
1996-06-01
The observation of CP violation in the B system is one of the great experimental challenges of the next decade. Several B factories are already planned, however, there will be many interesting measurements awaiting a second generation of B exeriments. Studies are being carried out to design a dedicated collider B experiment for the Tevatron at Fermilab. A dedicated B detector at a hadron collider will have a physics reach beyond that of experiments scheduled to begin operation before the end of the decade.
Arc detection for the ICRF system on ITER
NASA Astrophysics Data System (ADS)
D'Inca, R.
2011-12-01
The ICRF system for ITER is designed to respect the high voltage breakdown limits. However arcs can still statistically happen and must be quickly detected and suppressed by shutting the RF power down. For the conception of a reliable and efficient detector, the analysis of the mechanism of arcs is necessary to find their unique signature. Numerous systems have been conceived to address the issues of arc detection. VSWR-based detectors, RF noise detectors, sound detectors, optical detectors, S-matrix based detectors. Until now, none of them has succeeded in demonstrating the fulfillment of all requirements and the studies for ITER now follow three directions: improvement of the existing concepts to fix their flaws, development of new theoretically fully compliant detectors (like the GUIDAR) and combination of several detectors to benefit from the advantages of each of them. Together with the physical and engineering challenges, the development of an arc detection system for ITER raises methodological concerns to extrapolate the results from basic experiments and present machines to the ITER scale ICRF system and to conduct a relevant risk analysis.
Elbakri, I A; McIntosh, B J; Rickey, D W
2009-03-21
We investigated the physical characteristics of two complementary metal oxide semiconductor (CMOS) mammography detectors. The detectors featured 14-bit image acquisition, 50 microm detector element (del) size and an active area of 5 cm x 5 cm. One detector was a passive-pixel sensor (PPS) with signal amplification performed by an array of amplifiers connected to dels via data lines. The other detector was an active-pixel sensor (APS) with signal amplification performed at each del. Passive-pixel designs have higher read noise due to data line capacitance, and the APS represents an attempt to improve the noise performance of this technology. We evaluated the detectors' resolution by measuring the modulation transfer function (MTF) using a tilted edge. We measured the noise power spectra (NPS) and detective quantum efficiencies (DQE) using mammographic beam conditions specified by the IEC 62220-1-2 standard. Our measurements showed the APS to have much higher gain, slightly higher MTF, and higher NPS. The MTF of both sensors approached 10% near the Nyquist limit. DQE values near dc frequency were in the range of 55-67%, with the APS sensor DQE lower than the PPS DQE for all frequencies. Our results show that lower read noise specifications in this case do not translate into gains in the imaging performance of the sensor. We postulate that the lower fill factor of the APS is a possible cause for this result.
High intensity neutrino oscillation facilities in Europe
Edgecock, T. R.; Caretta, O.; Davenne, T.; ...
2013-02-20
The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Fréjus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of μ + and μ – beams in a storage ring. The far detector in thismore » case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular 6He and 18Ne, also stored in a ring. The far detector is also the MEMPHYS detector in the Fréjus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. Furthermore, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.« less
Development of the focal plane system for the SEparator for CApture Reactions
NASA Astrophysics Data System (ADS)
Hood, A. A. D.; Blackmon, J. C.; Cottingham, R.; Deibel, C. M.; Good, E.; Joerres, K.; Laminack, A.; Garrity, A.; Secar Collaboration
2017-09-01
The SEparator for CApture Reactions (SECAR) is currently under construction for the National Superconducting Cyclotron Laboratory and future Facility for Rare Isotope Beams. SECAR is designed to conduct sensitive measurements of capture reactions critical to understanding stellar explosions. We have developed a versatile focal plane system that will differentiate reaction recoils from unreacted scattered beam particles in measurements covering a large range of energies and masses. The elements of the focal plane system include two metal-foil, micro-channel plate (MCP) detectors, a variety of diagnostics, and two alternative recoil stopping detectors. The MCP detectors will measure the time-of-flight (and therefore velocity) as well as the position of the recoils. Our primary heavy ion recoil detector is a gas ionization chamber that measures position, total energy and relative energy loss and provides good atomic number discrimination at energies greater than about 0.5 MeV/u. For some cases, this gas counter will be replaced by silicon strip detectors to provide superior energy resolution. We will describe the overall design and report on construction and testing of the detector systems. Supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Awards DE-SC0014384 and DE-FG02-96ER40978.
FastSim: A Fast Simulation for the SuperB Detector
NASA Astrophysics Data System (ADS)
Andreassen, R.; Arnaud, N.; Brown, D. N.; Burmistrov, L.; Carlson, J.; Cheng, C.-h.; Di Simone, A.; Gaponenko, I.; Manoni, E.; Perez, A.; Rama, M.; Roberts, D.; Rotondo, M.; Simi, G.; Sokoloff, M.; Suzuki, A.; Walsh, J.
2011-12-01
We have developed a parameterized (fast) simulation for detector optimization and physics reach studies of the proposed SuperB Flavor Factory in Italy. Detector components are modeled as thin sections of planes, cylinders, disks or cones. Particle-material interactions are modeled using simplified cross-sections and formulas. Active detectors are modeled using parameterized response functions. Geometry and response parameters are configured using xml files with a custom-designed schema. Reconstruction algorithms adapted from BaBar are used to build tracks and clusters. Multiple sources of background signals can be merged with primary signals. Pattern recognition errors are modeled statistically by randomly misassigning nearby tracking hits. Standard BaBar analysis tuples are used as an event output. Hadronic B meson pair events can be simulated at roughly 10Hz.
Scintillator Detector Development at Central Michigan University
NASA Astrophysics Data System (ADS)
McClain, David; Estrade, Alfredo; Neupane, Shree
2017-09-01
Experimental nuclear physics relies both on the accuracy and precision of the instruments for radiation detection used in experimental setups. At Central Michigan University we have setup a lab to work with scintillator detectors for radioactive ion beam experiments, using a Picosecond Laser and radioactive sources for testing. We have tested the resolution for prototypes of large area scintillators that could be used for fast timing measurements in the focal plane of spectrometers, such as the future High Rigidity Spectrometer at the Facility for Rare Isotope Beams (FRIB). We measured the resolution as a function of the length of the detector, and also the position of the beam along the scintillator. We have also designed a scintillating detector to veto light ion background in beta-decay experiments with the Advanced Implantation Detector Array (AIDA) at RIKEN in Japan. We tested different configurations of Silicon Photomultipliers and scintillating fiber optics to find the best detection efficiency.
Development of CANDLES low background HPGe detector and half-life measurement of 180Tam
NASA Astrophysics Data System (ADS)
Chan, W. M.; Kishimoto, T.; Umehara, S.; Matsuoka, K.; Suzuki, K.; Yoshida, S.; Nakajima, K.; Iida, T.; Fushimi, K.; Nomachi, M.; Ogawa, I.; Tamagawa, Y.; Hazama, R.; Takemoto, Y.; Nakatani, N.; Takihira, Y.; Tozawa, M.; Kakubata, H.; Trang, V. T. T.; Ohata, T.; Tetsuno, K.; Maeda, T.; Khai, B. T.; Li, X. L.; Batpurev, T.
2018-01-01
A low background HPGe detector system was developed at CANDLES Experimental Hall for multipurpose use. Various low background techniques were employed, including hermatic shield design, radon gas suppression, and background reduction analysis. A new pulse shape discrimination (PSD) method was specially created for coaxial Ge detector. Using this PSD method, microphonics noise and background event at low energy region less than 200 keV can be rejected effectively. Monte Carlo simulation by GEANT4 was performed to acquire the detection efficiency and study the interaction of gamma-rays with detector system. For rare decay measurement, the detector was utilized to detect the nature's most stable isomer tantalum-180m (180Tam) decay. Two phases of tantalum physics run were completed with total livetime of 358.2 days, which Phase II has upgraded shield configuration. The world most stringent half-life limit of 180Tam has been successfully achieved.
Optical aurora detectors: using natural optics to motivate education and outreach
NASA Astrophysics Data System (ADS)
Shaw, Joseph A.; Way, Jesse M.; Pust, Nathan J.; Nugent, Paul W.; Coate, Hans; Balster, Daniel
2009-06-01
Natural optical phenomena enjoy a level of interest sufficiently high among a wide array of people to provide ideal education and outreach opportunities. The aurora promotes particularly high interest, perhaps because of its relative rarity in the areas of the world where most people live. A project is being conducted at Montana State University to use common interest and curiosity about auroras to motivate learning and outreach through the design and deployment of optical sensor systems that detect the presence of an auroral display and send cell phone messages to alert interested people. Project participants learn about the physics and optics of the aurora, basic principles of optical system design, radiometric calculations and calibrations, electro-optical detectors, electronics, embedded computer systems, and computer software. The project is moving into a stage where it will provide greatly expanded outreach and education opportunities as optical aurora detector kits are created and disbursed to colleges around our region.
Atom Interferometry for Detection of Gravitational Waves: Progress and Prospects
NASA Astrophysics Data System (ADS)
Hogan, Jason
2015-04-01
Gravitational wave astronomy promises to provide a new window into the universe, collecting information about astrophysical systems and cosmology that is difficult or impossible to acquire by other methods. Detector designs based on atom interferometry offer a number of advantages over traditional approaches, including access to conventionally inaccessible frequency ranges and substantially reduced antenna baselines. Atomic physics techniques also make it possible to build a gravitational wave detector with a single linear baseline, potentially offering advantages in cost and design flexibility. In support of these proposals, recent progress in long baseline atom interferometry has enabled observation of matter wave interference with atomic wavepacket separations exceeding 10 cm and interferometer durations of more than 2 seconds. These results are obtained in a 10-meter drop tower incorporating large momentum transfer atom optics. This approach can provide ground-based proof-of-concept demonstrations of many of the technical requirements of both terrestrial and satellite gravitational wave detectors.
The Belle II software—From detector signals to physics results
NASA Astrophysics Data System (ADS)
Kuhr, T.
2017-07-01
The construction of the Belle II detector is being completed and the focus shifts towards the reconstruction of higher level objects from the detector signals with the aim to search for new physics effects in huge data samples. The software is providing the connection between detector hardware and physics analyses. This article describes the development infrastructure and main components of the Belle II software which are essential for the success of the Belle II physics program.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fields, Laura; Genser, Krzysztof; Hatcher, Robert
Geant4 is the leading detector simulation toolkit used in high energy physics to design detectors and to optimize calibration and reconstruction software. It employs a set of carefully validated physics models to simulate interactions of particles with matter across a wide range of interaction energies. These models, especially the hadronic ones, rely largely on directly measured cross-sections and phenomenological predictions with physically motivated parameters estimated by theoretical calculation or measurement. Because these models are tuned to cover a very wide range of possible simulation tasks, they may not always be optimized for a given process or a given material. Thismore » raises several critical questions, e.g. how sensitive Geant4 predictions are to the variations of the model parameters, or what uncertainties are associated with a particular tune of a Geant4 physics model, or a group of models, or how to consistently derive guidance for Geant4 model development and improvement from a wide range of available experimental data. We have designed and implemented a comprehensive, modular, user-friendly software toolkit to study and address such questions. It allows one to easily modify parameters of one or several Geant4 physics models involved in the simulation, and to perform collective analysis of multiple variants of the resulting physics observables of interest and comparison against a variety of corresponding experimental data. Based on modern event-processing infrastructure software, the toolkit offers a variety of attractive features, e.g. flexible run-time configurable workflow, comprehensive bookkeeping, easy to expand collection of analytical components. Design, implementation technology, and key functionalities of the toolkit are presented and illustrated with results obtained with Geant4 key hadronic models.« less
The International Linear Collider Technical Design Report - Volume 2: Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baer, Howard; Barklow, Tim; Fujii, Keisuke
2013-06-26
The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less
Theoretical physics implications of gravitational wave observation with future detectors
NASA Astrophysics Data System (ADS)
Chamberlain, Katie; Yunes, Nicolás
2017-10-01
Gravitational waves encode invaluable information about the nature of the relatively unexplored extreme gravity regime, where the gravitational interaction is strong, nonlinear and highly dynamical. Recent gravitational wave observations by advanced LIGO have provided the first glimpses into this regime, allowing for the extraction of new inferences on different aspects of theoretical physics. For example, these detections provide constraints on the mass of the graviton, Lorentz violation in the gravitational sector, the existence of large extra dimensions, the temporal variability of Newton's gravitational constant, and modified dispersion relations of gravitational waves. Many of these constraints, however, are not yet competitive with constraints obtained, for example, through Solar System observations or binary pulsar observations. In this paper, we study the degree to which theoretical physics inferences drawn from gravitational wave observations will strengthen with detections from future detectors. We consider future ground-based detectors, such as the LIGO-class expansions A + , Voyager, Cosmic Explorer and the Einstein Telescope, as well as space-based detectors, such as various configurations of eLISA and the recently proposed LISA mission. We find that space-based detectors will place constraints on general relativity up to 12 orders of magnitude more stringently than current aLIGO bounds, but these space-based constraints are comparable to those obtained with the ground-based Cosmic Explorer or the Einstein Telescope (A + and Voyager only lead to modest improvements in constraints). We also generically find that improvements in the instrument sensitivity band at low frequencies lead to large improvements in certain classes of constraints, while sensitivity improvements at high frequencies lead to more modest gains. These results strengthen the case for the development of future detectors, while providing additional information that could be useful in future design decisions.
Optimizing the Construction of the A1 Collaboration Neutron Detector
NASA Astrophysics Data System (ADS)
Chinn, Edward; A1 Collaboration
2016-09-01
We report on the design and construction of a frame designed to optimize both the time efficiency and construction quality of the large scintillator elements These elements will be assembled to form a neutron detector for use by the A1 Collaboration at the Institute for Nuclear Physics in Mainz, Germany. The design had to provide adequate support for the 20 kg scintillator bars while gluing light guides and photomultiplier tubes to both sides of the bars using optical cement. The optical cement requires approximately 24 hours to dry and 100 bars have to be glued with this apparatus. To address each of these issues, several different prototypes were designed and reviewed. The selected apparatus minimized size to meet space constraints, with reduced material cost and provided the most time-efficient way to build the neutron detector. Once the schematic design was selected, we produced technical drawings in AutoDesk Inventor. Assembled the structure and completed gluing of the first batch of scintillators, in order to verify the performance. This apparatus was successful at producing high quality scintillators which were evaluated using cosmic rays. National Science Foundation Grant No. IIA-1358175.
MEXnICA, Mexican group in the MPD-NICA experiment at JINR
NASA Astrophysics Data System (ADS)
Rodríguez Cahuantzi, M.;
2017-10-01
The Nuclotron Ion Collider fAcility (NICA) accelerator complex is currently under construction at the Joint Institute for Nuclear Research (JINR) laboratory located in the city of Dubna in the Russian Federation. The main goal of NICA is to collide heavy ion nuclei to study the properties of the phase diagram of strongly interacting matter at high baryon density. In this accelerator complex, two big particle detectors are planned to be installed: Spin Physics Detector (SPD) and Multi-Purpose Detector (MPD). At the design luminosity, the event rate in the MPD interaction region is about 6 kHz; the total charged particle multiplicity would exceeds 1000 in the most central Au+Au collisions at \\sqrt{{sNN}} = 11 {{GeV}}. Since the middle of 2016 a group of researchers and students from Mexican institutions was formed (MEXnICA). The main goal of the MEXnICA group is to collaborate in the experimental efforts of MPD-NICA proposing a BEam-BEam counter detector which we called BEBE. In this written general aspects of MPD-NICA detector and BEBE are discussed. This material was shown in a contributed talk given at the XXXI Annual Meeting of the Mexican Division of Particles and Fields held in the Physics Department of CINVESTAV located in Mexico City during the last week of May 2017.
NASA Astrophysics Data System (ADS)
Finn, Lee Samuel; Mukherjee, Soma
2001-03-01
Interferometric gravitational wave detectors operate by sensing the differential light travel time between free test masses. Correspondingly, they are sensitive to anything that changes the physical distance between the test masses, including physical motion of the masses themselves. In ground-based detectors the test masses are suspended as pendula, in order that they be approximately ``free'' above the pendulumn frequency. Still, thermal or other excitations of the suspension wires' violin modes do impart a force on the masses that appears as a strong, albeit narrow-band, ``signal'' in the detectors waveband. Gravitational waves, on the other hand, change the distance between the test masses without disturbing the suspensions. Consequently, violin modes can confound attempts to observe gravitational waves since ``signals'' that are correlated with a disturbance of the suspension violin modes are not likely due to a passing gravitational wave. Here we describe the design of a Kalman filter that determines the time-dependent vibrational state of a detector's suspension ``violin'' modes from time dependent observations of the detector output. From the estimated state we can predict that component of the detector output due to suspension excitations, thermal or otherwise. The wire state can be examined for evidence of suspension disturbances that might, in the absence of such a diagnostic, be mistaken for gravitational wave signals. Additionally, from the wire state we can subtractively remove the contribution from suspension disturbances, thermal or otherwise, from the detector output, leaving a residual free from this instrumental artifact. We demonstrate the filter's effectiveness both through numerical simulations and application to real data taken on the LIGO 40 M prototype detector.
Astroparticle Physics: Detectors for Cosmic Rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salazar, Humberto; Villasenor, Luis
2006-09-25
We describe the work that we have done over the last decade to design and construct instruments to measure properties of cosmic rays in Mexico. We describe the measurement of the muon lifetime and the ratio of positive to negative muons in the natural background of cosmic ray muons at 2000 m.a.s.l. Next we describe the detection of decaying and crossing muons in a water Cherenkov detector as well as a technique to separate isolated particles. We also describe the detection of isolated muons and electrons in a liquid scintillator detector and their separation. Next we describe the detection ofmore » extensive air showers (EAS) with a hybrid detector array consisting of water Cherenkov and liquid scintillator detectors, located at the campus of the University of Puebla. Finally we describe work in progress to detect EAS at 4600 m.a.s.l. with a water Cherenkov detector array and a fluorescence telescope at the Sierra Negra mountain.« less
A possible layout of the Spin Physics Detector with toroid magnet.
NASA Astrophysics Data System (ADS)
Nagaytsev, A. P.
2017-12-01
The Spin Physics Detector project for carrying out experiments at the 2-nd interaction point of the NICA collider is under preparation. The design of the collider allows reaching collision energy in the c.m.s. as high as √s = 26 GeV for polarized proton-proton collisions and √s = 12 GeV for polarized deuteron-deuteron collisons with a luminosity of up to 1032 cm2 s-1 (for protons) and 1031cm2s-1 for deuterons. Such a high luminosity of polarized beams interactions opens unique possibilities to investigate a variety of polarization phenomena including those related to the nucleon spin structure. A proposal for the experimental set-up based on a toroid type magnet is presented.
First experience of vectorizing electromagnetic physics models for detector simulation
NASA Astrophysics Data System (ADS)
Amadio, G.; Apostolakis, J.; Bandieramonte, M.; Bianchini, C.; Bitzes, G.; Brun, R.; Canal, P.; Carminati, F.; de Fine Licht, J.; Duhem, L.; Elvira, D.; Gheata, A.; Jun, S. Y.; Lima, G.; Novak, M.; Presbyterian, M.; Shadura, O.; Seghal, R.; Wenzel, S.
2015-12-01
The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. The GeantV vector prototype for detector simulations has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth, parallelization needed to achieve optimal performance or memory access latency and speed. An additional challenge is to avoid the code duplication often inherent to supporting heterogeneous platforms. In this paper we present the first experience of vectorizing electromagnetic physics models developed for the GeantV project.
Detectors for Particle Radiation
NASA Astrophysics Data System (ADS)
Kleinknecht, Konrad
1999-01-01
This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.
Study for a Design of Magnet System for the SPD Detector NICA LHEP JINR
NASA Astrophysics Data System (ADS)
Yudin, Ivan P.
2016-02-01
The choice of magnet system for the Spin Physics Detector of the NICA Collider of LHEP JINR is given. The inverse problem of magnetostatics is solved for a magnetic field of 0.5 tesla in the aperture a) ɸ 3 m x 5 m and b) ɸ 3 m x 6 m. We also discuss the design of the magnet with a field of 0.3 T. The paper presents the results obtained for the "warm" and SC versions of the magnetic system: currents (ampere-turns), the geometry (size) of the coil and the iron yoke, weight (on the whole and the individual elements), the magnet transportation and assembly.
Data acquisition system for the Belle experiment
NASA Astrophysics Data System (ADS)
Nakao, M.; Yamauchi, M.; Suzuki, S. Y.; Itoh, R.; Fujii, H.
2000-04-01
We built a data acquisition system for the Belle experiment at the KEK B-factory. The system is designed to record the signals from the detectors at 500 Hz trigger rate with a less than 10% dead time fraction. A typical event size is 30 kbyte, which corresponds to a data transfer rate of 15 Mbyte/s. Main components are two kinds of detector readout systems, an event builder, an online computer farm and a data storage system. The system has been reliably in operation at the design performance for a half year. We have completed cosmic-ray data taking for 2.5 months and have started physics data taking on Jun. 1, 1999.
NASA Astrophysics Data System (ADS)
Bruzzi, Mara; Pace, Emanuele; Talamonti, Cinzia
2013-12-01
The 9th edition of the International Conference on Radiation Effects on Semiconductor Materials, Detectors and Devices (RESMDD), held in Florence, at Dipartimento di Fisica ed Astronomia on October 9-12, 2012, was aimed at discussing frontier research activities in several application fields as in nuclear and particle physics, astrophysics, medical and solid-state physics. Main topics discussed in this conference are tracking performance of heavily irradiated silicon detectors, developments required for the luminosity upgrade of the Large Hadron Collider (HL-LHC), radiation effects on semiconductor materials for medical (radiotherapy dosimeters, imaging devices), astrophysics (UV, X- and γ-ray detectors) and environmental applications, microscopic defect analysis of irradiated semiconductor materials and related radiation hardening technologies. On the first day the conference hosted a short course intended to introduce fundamentals in the development of semiconductor detectors for medical applications to graduate and PhD students, post-docs and young researchers, both engineers and physicists. Directors of the School were Prof. Marta Bucciolini of the University of Florence and INFN, Italy and Dr. Carlo Civinini, INFN Firenze, Italy. Emphasis was placed on the underlying physical principles, instrument design, factors affecting performance, and applications in both the clinical and preclinical applications. The School was attended by nearly 40 students/ young researchers. We warmly thank the Directors for organizing this interesting event and the professors and researchers who gave lessons, for sharing their experience and knowledge with the students.
An extensive air shower trigger station for the Muon Portal detector
NASA Astrophysics Data System (ADS)
Riggi, F.; Blancato, A. A.; La Rocca, P.; Riggi, S.; Santagati, G.
2014-11-01
The Muon Portal project (
Recent Results from the MAJORANA DEMONSTRATOR
NASA Astrophysics Data System (ADS)
Gilliss, T.; Alvis, S. I.; Arnquist, I. J.; Avignone, F. T.; Barabash, A. S.; Barton, C. J.; Bertrand, F. E.; Bode, T.; Brudanin, V.; Busch, M.; Buuck, M.; Caldwell, T. S.; Chan, Y.-D.; Christofferson, C. D.; Chu, P.-H.; Cuesta, C.; Detwiler, J. A.; Dunagan, C.; Efremenko, Yu; Ejiri, H.; Elliott, S. R.; Giovanetti, G. K.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R.; Hehn, L.; Henning, R.; Hoppe, E. W.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Konovalov, S. I.; Kouzes, R. T.; Lopez, A. M.; Martin, R. D.; Massarczyk, R.; Meijer, S. J.; Mertens, S.; Myslik, J.; O’Shaughnessy, C.; Othman, G.; Pettus, W.; Poon, A. W. P.; Radford, D. C.; Rager, J.; Reine, A. L.; Rielage, K.; Robertson, R. G. H.; Ruof, N. W.; Shanks, B.; Shirchenko, M.; Suriano, A. M.; Tedeschi, D.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Yu, C.-H.; Yumatov, V.; Zhitnikov, I.; Zhu, B. X.
The MAJORANA Collaboration has completed construction and is now operating an array of high purity Ge detectors searching for neutrinoless double-beta decay (0νββ) in 76Ge. The array, known as the MAJORANA DEMONSTRATOR, is comprised of 44 kg of Ge detectors (30 kg enriched to 88% in 76Ge) installed in an ultra-low background compact shield at the Sanford Underground Research Facility in Lead, South Dakota. The primary goal of the DEMONSTRATOR is to establish a low-background design that can be scaled to a next-generation tonne-scale experiment. This work reports initial background levels in the 0νββ region of interest. Also presented are recent physics results leveraging P-type point-contact detectors with sub-keV energy thresholds to search for physics beyond the Standard Model; first results from searches for bosonic dark matter, solar axions, Pauli exclusion principle violation, and electron decay have been published. Finally, this work discusses the proposed tonne-scale 76Ge 0νββ LEGEND experiment.
JFET front-end circuits integrated in a detector-grade silicon substrate
NASA Astrophysics Data System (ADS)
Manghisoni, M.; Ratti, L.; Re, V.; Speziali, V.; Traversi, G.; Dalla Betta, G. F.; Boscardin, M.; Batignani, G.; Giorgi, M.; Bosisio, L.
2003-08-01
This paper presents the design and experimental results relevant to front-end circuits integrated on detector-grade high resistivity silicon. The fabrication technology is made available by the Istituto per la Ricerca Scientifica e Tecnologica (ITC-IRST), Trento, Italy and allows using a common substrate for different kinds of active devices, such as N-channel JFETs and MOSFETs, and for pixel, microstrip, and PIN detectors. This research activity is being carried out in the framework of a project aiming at the fabrication of a multichannel mixed analog-digital chip for the readout of solid-state detectors integrated in the same substrate. Possible applications are in the field of medical and industrial imaging and space and high energy physics experiments. An all-JFET charge sensitive amplifier, which can use either a resistive or a nonresistive feedback network, has been characterized. The two configurations have been compared to each other, paying particular attention to noise performances, in view of the design of the complete readout channel. Operation capability in harsh radiation environment has been evaluated through exposure to /spl gamma/-rays from a /sup 60/Co source.
Numerical Device Modeling, Analysis, and Optimization of Extended-SWIR HgCdTe Infrared Detectors
NASA Astrophysics Data System (ADS)
Schuster, J.; DeWames, R. E.; DeCuir, E. A.; Bellotti, E.; Dhar, N.; Wijewarnasuriya, P. S.
2016-09-01
Imaging in the extended short-wavelength infrared (eSWIR) spectral band (1.7-3.0 μm) for astronomy applications is an area of significant interest. However, these applications require infrared detectors with extremely low dark current (less than 0.01 electrons per pixel per second for certain applications). In these detectors, sources of dark current that may limit the overall system performance are fundamental and/or defect-related mechanisms. Non-optimized growth/device processing may present material point defects within the HgCdTe bandgap leading to Shockley-Read-Hall dominated dark current. While realizing contributions to the dark current from only fundamental mechanisms should be the goal for attaining optimal device performance, it may not be readily feasible with current technology and/or resources. In this regard, the U.S. Army Research Laboratory performed physics-based, two- and three-dimensional numerical modeling of HgCdTe photovoltaic infrared detectors designed for operation in the eSWIR spectral band. The underlying impetus for this capability and study originates with a desire to reach fundamental performance limits via intelligent device design.
CEPC-SPPC accelerator status towards CDR
NASA Astrophysics Data System (ADS)
Gao, J.
2017-12-01
In this paper we will give an introduction to the Circular Electron Positron Collider (CEPC). The scientific background, physics goal, the collider design requirements and the conceptual design principle of the CEPC are described. On the CEPC accelerator, the optimization of parameter designs for the CEPC with different energies, machine lengths, single ring and crab-waist collision partial double ring, advanced partial double ring and fully partial double ring options, etc. have been discussed systematically, and compared. The CEPC accelerator baseline and alternative designs have been proposed based on the luminosity potential in relation with the design goals. The CEPC sub-systems, such as the collider main ring, booster, electron positron injector, etc. have also been introduced. The detector and the MAchine-Detector Interface (MDI) design have been briefly mentioned. Finally, the optimization design of the Super Proton-Proton Collider (SppC), its energy and luminosity potentials, in the same tunnel of the CEPC are also discussed. The CEPC-SppC Progress Report (2015-2016) has been published.
Characterization of the Outer Barrel modules for the upgrade of the ALICE Inner Tracking System
NASA Astrophysics Data System (ADS)
Di Ruzza, B.
2017-09-01
ALICE is one of the four large detectors at the CERN LHC collider, designed to address the physics of strongly interacting matter, and in particular the properties of the Quark-Gluon Plasma using proton-proton, proton-nucleus, and nucleus-nucleus collisions. Despite the success already reached in achieving these physics goals, there are several measurements still to be finalized, like high precision measurements of rare probes (D mesons, Lambda baryons and B mesons decays) over a broad range of transverse momenta. In order to achieve these new physics goals, a wide upgrade plan was approved that combined with a significant increase of luminosity will enhance the ALICE physics capabilities enormously and will allow the achievement of these fundamental measurements. The Inner Tracking System (ITS) upgrade of the ALICE detector is one of the major improvements of the experimental set-up that will take place in 2019-2020 when the whole ITS sub-detector will be replaced with one realized using a innovative monolithic active pixel silicon sensor, called ALPIDE. The upgraded ITS will be realized using more than twenty-four thousand ALPIDE chips organized in seven different cylindrical layers, for a total surface of about ten square meters. The main features of the new ITS are a low material budget, high granularity and low power consumption. All these peculiar capabilities will allow for full reconstruction of rare heavy flavour decays and the achievement of the physics goals. In this paper after an overview of the whole ITS upgrade project, the construction procedure of the basic building block of the detector, namely the module, and its characterization in laboratory will be presented.
Range determination for scannerless imaging
Muguira, Maritza Rosa; Sackos, John Theodore; Bradley, Bart Davis; Nellums, Robert
2000-01-01
A new method of operating a scannerless range imaging system (e.g., a scannerless laser radar) has been developed. This method is designed to compensate for nonlinear effects which appear in many real-world components. The system operates by determining the phase shift of the laser modulation, which is a physical quantity related physically to the path length between the laser source and the detector, for each pixel of an image.
Advances in TlBr detector development
NASA Astrophysics Data System (ADS)
Hitomi, Keitaro; Shoji, Tadayoshi; Ishii, Keizo
2013-09-01
Thallium bromide (TlBr) is a promising compound semiconductor for fabrication of gamma-ray detectors. The attractive physical properties of TlBr lie in its high photon stopping power, high resistivity and good charge transport properties. Gamma-ray detectors fabricated from TlBr crystals have exhibited excellent spectroscopic performance. In this paper, advances in TlBr radiation detector development are reviewed with emphasis on crystal growth, detector fabrication, physical properties and detector performance.
NASA Astrophysics Data System (ADS)
Axani, S. N.; Conrad, J. M.; Kirby, C.
2017-12-01
This paper describes the construction of a desktop muon detector, an undergraduate-level physics project that develops machine-shop and electronics-shop technical skills. The desktop muon detector is a self-contained apparatus that employs a plastic scintillator as the detection medium and a silicon photomultiplier for light collection. This detector can be battery powered and is used in conjunction with the provided software. The total cost per detector is approximately 100. We describe physics experiments we have performed, and then suggest several other interesting measurements that are possible, with one or more desktop muon detectors.
NASA Astrophysics Data System (ADS)
Qiao, Yun; Liang, Kun; Chen, Wen-Fei; Han, De-Jun
2013-10-01
The detection of low-level light is a key technology in various experimental scientific studies. As a photon detector, the silicon photomultiplier (SiPM) has gradually become an alternative to the photomultiplier tube (PMT) in many applications in high-energy physics, astroparticle physics, and medical imaging because of its high photon detection efficiency (PDE), good resolution for single-photon detection, insensitivity to magnetic field, low operating voltage, compactness, and low cost. However, primarily because of the geometric fill factor, the PDE of most SiPMs is not very high; in particular, for those SiPMs with a high density of micro cells, the effective area is small, and the bandwidth of the light response is narrow. As a building block of the SiPM, the concept of the backside-illuminated avalanche drift detector (ADD) was first proposed by the Max Planck Institute of Germany eight years ago; the ADD is promising to have high PDE over the full energy range of optical photons, even ultraviolet light and X-ray light, and because the avalanche multiplication region is very small, the ADD is beneficial for the fabrication of large-area SiPMs. However, because of difficulties in design and fabrication, no significant progress had been made, and the concept had not yet been verified. In this paper, preliminary results in the design, fabrication, and performance of a backside-illuminated ADD are reported; the difficulties in and limitations to the backside-illuminated ADD are analyzed.
The International Linear Collider Technical Design Report - Volume 4: Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behnke, Ties
2013-06-26
The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less
School Violence: Physical Security.
ERIC Educational Resources Information Center
Utah State Office of Education, Salt Lake City.
This booklet provides an overview of security technology product areas that might be appropriate and affordable for school applications. Topics cover security concepts and operational issues; security issues when designing for new schools; the role of maintenance; video camera use; walk-through metal detectors; duress alarm devices; and a partial…
Cryogenic readout techniques for germanium detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benato, G.; Cattadori, C.; Di Vacri, A.
High Purity Germanium detectors are used in many applications, from nuclear and astro-particle physics, to homeland security or environment protection. Although quite standard configurations are often used, with cryostats, charge sensitive amplifiers and analog or digital acquisition systems all commercially available, it might be the case that a few specific applications, e.g. satellites, portable devices, cryogenic physics experiments, etc. also require the development of a few additional or complementary techniques. An interesting case is for sure GERDA, the Germanium Detector Array experiment, searching for neutrino-less double beta decay of {sup 76}Ge at the Gran Sasso National Laboratory of INFN -more » Italy. In GERDA the entire detector array, composed of semi-coaxial and BEGe naked crystals, is operated suspended inside a cryostat filled with liquid argon, that acts not only as cooling medium and but also as an active shield, thanks to its scintillation properties. These peculiar circumstances, together with the additional requirement of a very low radioactive background from all the materials adjacent to the detectors, clearly introduce significant constraints on the design of the Ge front-end readout electronics. All the Ge readout solutions developed within the framework of the GERDA collaboration, for both Phase I and Phase II, will be briefly reviewed, with their relative strength and weakness compared together and with respect to ideal Ge readout. Finally, the digital processing techniques developed by the GERDA collaboration for energy estimation of Ge detector signals will be recalled. (authors)« less
Mohanty, P K; Dugad, S R; Gupta, S K
2012-04-01
A detailed description of a compact Monte Carlo simulation code "G3sim" for studying the performance of a plastic scintillator detector with wavelength shifter (WLS) fiber readout is presented. G3sim was developed for optimizing the design of new scintillator detectors used in the GRAPES-3 extensive air shower experiment. Propagation of the blue photons produced by the passage of relativistic charged particles in the scintillator is treated by incorporating the absorption, total internal, and diffuse reflections. Capture of blue photons by the WLS fibers and subsequent re-emission of longer wavelength green photons is appropriately treated. The trapping and propagation of green photons inside the WLS fiber is treated using the laws of optics for meridional and skew rays. Propagation time of each photon is taken into account for the generation of the electrical signal at the photomultiplier. A comparison of the results from G3sim with the performance of a prototype scintillator detector showed an excellent agreement between the simulated and measured properties. The simulation results can be parametrized in terms of exponential functions providing a deeper insight into the functioning of these versatile detectors. G3sim can be used to aid the design and optimize the performance of scintillator detectors prior to actual fabrication that may result in a considerable saving of time, labor, and money spent. © 2012 American Institute of Physics
Compendium of Instrumentation Whitepapers on Frontier Physics Needs for Snowmass 2013
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipton, R.
2013-01-01
Contents of collection of whitepapers include: Operation of Collider Experiments at High Luminosity; Level 1 Track Triggers at HL-LHC; Tracking and Vertex Detectors for a Muon Collider; Triggers for hadron colliders at the energy frontier; ATLAS Upgrade Instrumentation; Instrumentation for the Energy Frontier; Particle Flow Calorimetry for CMS; Noble Liquid Calorimeters; Hadronic dual-readout calorimetry for high energy colliders; Another Detector for the International Linear Collider; e+e- Linear Colliders Detector Requirements and Limitations; Electromagnetic Calorimetry in Project X Experiments The Project X Physics Study; Intensity Frontier Instrumentation; Project X Physics Study Calorimetry Report; Project X Physics Study Tracking Report; The LHCbmore » Upgrade; Neutrino Detectors Working Group Summary; Advanced Water Cherenkov R&D for WATCHMAN; Liquid Argon Time Projection Chamber (LArTPC); Liquid Scintillator Instrumentation for Physics Frontiers; A readout architecture for 100,000 pixel Microwave Kinetic In- ductance Detector array; Instrumentation for New Measurements of the Cosmic Microwave Background polarization; Future Atmospheric and Water Cherenkov ?-ray Detectors; Dark Energy; Can Columnar Recombination Provide Directional Sensitivity in WIMP Search?; Instrumentation Needs for Detection of Ultra-high Energy Neu- trinos; Low Background Materials for Direct Detection of Dark Matter; Physics Motivation for WIMP Dark Matter Directional Detection; Solid Xenon R&D at Fermilab; Ultra High Energy Neutrinos; Instrumentation Frontier: Direct Detection of WIMPs; nEXO detector R&D; Large Arrays of Air Cherenkov Detectors; and Applications of Laser Interferometry in Fundamental Physics Experiments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Hugh H.; Balasubramanian, V.; Bernstein, G.
The University of Pennsylvania elementary particle physics/particle cosmology group, funded by the Department of Energy Office of Science, participates in research in high energy physics and particle cosmology that addresses some of the most important unanswered questions in science. The research is divided into five areas. Energy Frontier - We participate in the study of proton-proton collisions at the Large Hadron Collider in Geneva, Switzerland using the ATLAS detector. The University of Pennsylvania group was responsible for the design, installation, and commissioning of the front-end electronics for the Transition Radiation Tracker (TRT) and plays the primary role in its maintenancemore » and operation. We play an important role in the triggering of ATLAS, and we have made large contributions to the TRT performance and to the study and identification of electrons, photons, and taus. We have been actively involved in searches for the Higgs boson and for SUSY and other exotic particles. We have made significant contributions to measurement of Standard Model processes such as inclusive photon production and WW pair production. We also have participated significantly in R&D for upgrades to the ATLAS detector. Cosmic Frontier - The Dark Energy Survey (DES) telescope will be used to elucidate the nature of dark energy and the distribution of dark matter. Penn has played a leading role both in the use of weak gravitational lensing of distant galaxies and the discovery of large numbers of distant supernovae. The techniques and forecasts developed at Penn are also guiding the development of the proposed Large Synoptic Survey Telescope (LSST).We are also developing a new detector, MiniClean, to search for direct detection of dark matter particles. Intensity Frontier - We are participating in the design and R&D of detectors for the Long Baseline Neutrino Experiment (now DUNE), a new experiment to study the properties of neutrinos. Advanced Techology R&D - We have an extensive involvement in electronics required for sophisticated new detectors at the LHC and are developing electronics for the LSST camera. Theoretical Physics - We are carrying out a broad program studying the fundamental forces of nature and early universe cosmology and mathematical physics. Our activities span the range from model building, formal field theory, and string theory to new paradigms for cosmology and the interface of string theory with mathematics. Our effort combines extensive development of the formal aspects of string theory with a focus on real phenomena in particle physics, cosmology and gravity.« less
NASA Astrophysics Data System (ADS)
Pleskac, R.; Abou-Haidar, Z.; Agodi, C.; Alvarez, M. A. G.; Aumann, T.; Battistoni, G.; Bocci, A.; Böhlen, T. T.; Boudard, A.; Brunetti, A.; Carpinelli, M.; Cirrone, G. A. P.; Cortes-Giraldo, M. A.; Cuttone, G.; De Napoli, M.; Durante, M.; Fernández-García, J. P.; Finck, C.; Golosio, B.; Gallardo, M. I.; Iarocci, E.; Iazzi, F.; Ickert, G.; Introzzi, R.; Juliani, D.; Krimmer, J.; Kurz, N.; Labalme, M.; Leifels, Y.; Le Fevre, A.; Leray, S.; Marchetto, F.; Monaco, V.; Morone, M. C.; Oliva, P.; Paoloni, A.; Piersanti, L.; Quesada, J. M.; Raciti, G.; Randazzo, N.; Romano, F.; Rossi, D.; Rousseau, M.; Sacchi, R.; Sala, P.; Sarti, A.; Scheidenberger, C.; Schuy, C.; Sciubba, A.; Sfienti, C.; Simon, H.; Sipala, V.; Spiriti, E.; Stuttge, L.; Tropea, S.; Younis, H.; Patera, V.
2012-06-01
The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at the SIS accelerator of GSI laboratory in Darmstadt has been designed for the measurement of ion fragmentation cross-sections at different angles and energies between 100 and 1000 MeV/nucleon. Nuclear fragmentation processes are relevant in several fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The start of the scientific program of the FIRST experiment was on summer 2011 and was focused on the measurement of 400 MeV/nucleon 12C beam fragmentation on thin (8 mm) graphite target. The detector is partly based on an already existing setup made of a dipole magnet (ALADiN), a time projection chamber (TP-MUSIC IV), a neutron detector (LAND) and a time of flight scintillator system (TOFWALL). This pre-existing setup has been integrated with newly designed detectors in the Interaction Region, around the carbon target placed in a sample changer. The new detectors are a scintillator Start Counter, a Beam Monitor drift chamber, a silicon Vertex Detector and a Proton Tagger scintillator system optimized for the detection of light fragments emitted at large angles. In this paper we review the experimental setup, then we present the simulation software, the data acquisition system and finally the trigger strategy of the experiment.
The Salinas Airshower Learning And Discovery Project (SALAD)
NASA Astrophysics Data System (ADS)
Hernandez, Victor; Niduaza, Rommel; Ruiz Castruita, Daniel; Knox, Adrian; Ramos, Daniel; Fan, Sewan; Fatuzzo, Laura
2015-04-01
The SALAD project partners community college and high school STEM students in order to develop and investigate cosmic ray detector telescopes and the physical concepts, using a new light sensor technology based on silicon photomultiplier (SiPM) detectors. Replacing the conventional photomultiplier with the SiPM, offers notable advantages in cost and facilitates more in depth, hands-on learning laboratory activities. The students in the SALAD project design, construct and extensively evaluate the SiPM detector modules. These SiPM modules, can be completed in a short time utilizing cost effective components. We describe our research to implement SiPM as read out light detectors for plastic scintillators in a cosmic ray detector telescope for use in high schools. In particular, we describe our work in the design, evaluation and the assembly of (1) a fast preamplifier, (2) a simple coincidence circuit using fast comparators, to discriminate the SiPM noise signal pulses, and (3) a monovibrator circuit to shape the singles plus the AND logic pulses for subsequent processing. To store the singles and coincidence counts data, an Arduino micro-controller with program sketches can be implemented. Results and findings from our work would be described and presented. US Department of Education Title V Grant Award PO31S090007
Theoretical performance analysis for CMOS based high resolution detectors.
Jain, Amit; Bednarek, Daniel R; Rudin, Stephen
2013-03-06
High resolution imaging capabilities are essential for accurately guiding successful endovascular interventional procedures. Present x-ray imaging detectors are not always adequate due to their inherent limitations. The newly-developed high-resolution micro-angiographic fluoroscope (MAF-CCD) detector has demonstrated excellent clinical image quality; however, further improvement in performance and physical design may be possible using CMOS sensors. We have thus calculated the theoretical performance of two proposed CMOS detectors which may be used as a successor to the MAF. The proposed detectors have a 300 μm thick HL-type CsI phosphor, a 50 μm-pixel CMOS sensor with and without a variable gain light image intensifier (LII), and are designated MAF-CMOS-LII and MAF-CMOS, respectively. For the performance evaluation, linear cascade modeling was used. The detector imaging chains were divided into individual stages characterized by one of the basic processes (quantum gain, binomial selection, stochastic and deterministic blurring, additive noise). Ranges of readout noise and exposure were used to calculate the detectors' MTF and DQE. The MAF-CMOS showed slightly better MTF than the MAF-CMOS-LII, but the MAF-CMOS-LII showed far better DQE, especially for lower exposures. The proposed detectors can have improved MTF and DQE compared with the present high resolution MAF detector. The performance of the MAF-CMOS is excellent for the angiography exposure range; however it is limited at fluoroscopic levels due to additive instrumentation noise. The MAF-CMOS-LII, having the advantage of the variable LII gain, can overcome the noise limitation and hence may perform exceptionally for the full range of required exposures; however, it is more complex and hence more expensive.
Overview of the Liquid Argon Cryogenics for the Short Baseline Neutrino Program (SBN) at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norris, Barry; Bremer, Johan; Chalifour, Michel
2017-01-01
The Short-Baseline Neutrino (SBN) physics program will involve three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. The Program will be composed of an existing and operational detector known as Micro Boone (170 ton LAr mass) plus two new experiments known as the SBN Near Detector (SBND, ~ 260more » ton) and the SBN Far Detector (SBN-FD, ~ 600 tons). Fermilab is now building two new facilities to house the experiments and incorporate all cryogenic and process systems to operate these detectors beginning in the 2018-2019 time frame. The SBN cryogenics are a collaborative effort between Fermilab and CERN. The SBN cryogenic systems for both detectors are composed of several sub-systems: External/Infrastructure (or LN2), Proximity (or LAr), and internal cryogenics. For each detector the External/Infrastructure cryogenics includes the equipment used to store and the cryogenic fluids needed for the operation of the Proximity cryogenics, including the LN2 and LAr storage facilities. The Proximity cryogenics consists of all the systems that take the cryogenic fluids from the external/infrastructure cryogenics and deliver them to the internal at the required pressure, temperature, purity and mass flow rate. It includes the condensers, the LAr and GAr purification systems, the LN2 and LAr phase separators, and the interconnecting piping. The Internal cryogenics is comprised of all the cryogenic equipment located within the cryostats themselves, including the GAr and LAr distribution piping and the piping required to cool down the cryostats and the detectors. These cryogenic systems will be engineered, manufactured, commissioned, and qualified by an international engineering team. This contribution presents the performance, the functional requirements and the modes of operation of the SBN cryogenics, and details the current status of the design, present and future needs.« less
Magnetic monopole search with the MoEDAL test trapping detector
NASA Astrophysics Data System (ADS)
Katre, Akshay
2016-11-01
IMoEDAL is designed to search for monopoles produced in high-energy Large Hadron Collider (LHC) collisions, based on two complementary techniques: nucleartrack detectors for high-ionisation signatures and other highly ionising avatars of new physics, and trapping volumes for direct magnetic charge measurements with a superconducting magnetometer. The MoEDAL test trapping detector array deployed in 2012, consisting of over 600 aluminium samples, was analysed and found to be consistent with zero trapped magnetic charge. Stopping acceptances are obtained from a simulation of monopole propagation in matter for a range of charges and masses, allowing to set modelindependent and model-dependent limits on monopole production cross sections. Multiples of the fundamental Dirac magnetic charge are probed for the first time at the LHC.
Imaging hadron calorimetry for future Lepton Colliders
NASA Astrophysics Data System (ADS)
Repond, José
2013-12-01
To fully exploit the physics potential of a future Lepton Collider requires detectors with unprecedented jet energy and dijet-mass resolution. To meet these challenges, detectors optimized for the application of Particle Flow Algorithms (PFAs) are being designed and developed. The application of PFAs, in turn, requires calorimeters with very fine segmentation of the readout, so-called imaging calorimeters. This talk reviews progress in imaging hadron calorimetry as it is being developed for implementation in a detector at a future Lepton Collider. Recent results from the large prototypes built by the CALICE Collaboration, such as the Scintillator Analog Hadron Calorimeter (AHCAL) and the Digital Hadron Calorimeters (DHCAL and SDHCAL) are being presented. In addition, various R&D efforts beyond the present prototypes are being discussed.
An efficient, movable single-particle detector for use in cryogenic ultra-high vacuum environments.
Spruck, Kaija; Becker, Arno; Fellenberger, Florian; Grieser, Manfred; von Hahn, Robert; Klinkhamer, Vincent; Novotný, Oldřich; Schippers, Stefan; Vogel, Stephen; Wolf, Andreas; Krantz, Claude
2015-02-01
A compact, highly efficient single-particle counting detector for ions of keV/u kinetic energy, movable by a long-stroke mechanical translation stage, has been developed at the Max-Planck-Institut für Kernphysik (Max Planck Institute for Nuclear Physics, MPIK). Both, detector and translation mechanics, can operate at ambient temperatures down to ∼10 K and consist fully of ultra-high vacuum compatible, high-temperature bakeable, and non-magnetic materials. The set-up is designed to meet the technical demands of MPIK's Cryogenic Storage Ring. We present a series of functional tests that demonstrate full suitability for this application and characterise the set-up with regard to its particle detection efficiency.
JFET preamplifiers with different reset techniques on detector-grade high-resistivity silicon
NASA Astrophysics Data System (ADS)
Dalla Betta, G. F.; Manghisoni, M.; Ratti, L.; Re, V.; Speziali, V.
2003-10-01
This paper presents the experimental results relevant to JFET charge preamplifiers fabricated in a detector-compatible technology. This fabrication process, developed at the Istituto per la Ricerca Scientifica e Tecnologica (ITC-IRST), Trento, Italy, is being tuned with the aim of integrating a multichannel mixed analog-digital circuit together with semiconductor detectors in a high-resistivity substrate. Possible applications are in the field of medical and industrial imaging, in space and high energy physics experiments. An all-NJFET charge sensitive amplifier, which can use either a resistive or a nonresistive reset in the feedback network, has been tested. The two configurations have been studied, paying particular attention to noise performances, in view of the design of the complete readout channel.
NASA Astrophysics Data System (ADS)
Faramarzi, F.; De Haan, T.; Kusaka, A.; Lee, A.; Neuhauser, B.; Plambeck, R.; Raum, C.; Suzuki, A.; Westbrook, B.
2018-03-01
Ground-based cosmic microwave background (CMB) experiments are undergoing a period of exponential growth. Current experiments are observing with 1000-10,000 detectors, and the next-generation experiment (CMB stage 4) is proposing to deploy approximately 500,000 detectors. This order of magnitude increase in detector count will require a new approach for readout electronics. We have developed superconducting resonators for next-generation frequency-domain multiplexing (fMUX) readout architecture. Our goal is to reduce the physical size of resonators, such that resonators and detectors can eventually be integrated on a single wafer. To reduce the size of these resonators, we have designed spiral inductors and interdigitated capacitors that resonate around 10-100 MHz, an order of magnitude higher frequency compared to current fMUX readout systems. The higher frequency leads to a wider bandwidth and would enable higher multiplexing factor than the current ˜ 50 detectors per readout channel. We will report on the simulation, fabrication method, characterization technique, and measurement of quality factor of these resonators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyd, M; Erchinger, J; Marianno, C
Potentially, radiation detectors at ports of entry could be mounted on container gantry crane spreaders to monitor cargo containers entering and leaving the country. These detectors would have to withstand the extreme physical environment experienced by these spreaders during normal operations. Physical shock data from the gable ends of a spreader were recorded during the loading and unloading of a cargo ship with two Lansmont SAVER 9X30 units (with padding) and two PCB Piezotronics model 340A50 accelerometers (hard mounted). Physical shocks in the form of rapid acceleration were observed in all accelerometer units with values ranging from 0.20 g’s tomore » 199.99 g’s. The majority of the shocks for all the Lansmont and PCB accelerometers were below 50 g’s. The Lansmont recorded mean shocks of 21.83 ± 13.62 g’s and 24.78 ± 11.49 g’s while the PCB accelerometers experienced mean shocks of 34.39 ± 25.51 g’s and 41.77 ± 22.68 g’s for the landside and waterside units, respectively. Encased detector units with external padding should be designed to withstand at least 200 g’s of acceleration without padding and typical shocks of 30 g’s with padding for mounting on a spreader.« less
The AMS tracking detector for cosmic-ray physics in space
NASA Astrophysics Data System (ADS)
Bourquin, Maurice; AMS Tracker Collaboration
2005-04-01
AMS-02 is a general-purpose spectrometer designed to measure cosmic rays and gamma rays in near-Earth orbit. The main scientific motivations are the search for cosmic anti-matter, the search for dark matter, precision measurements on the relative abundance of different nuclei and isotopes, as well as the measurement of very high-energy gamma rays. Constructed by a large international collaboration of institutes from America, Asia and Europe, it will collect data on the International Space Station for a period of at least three years. In this contribution, I first identify the various detector requirements necessary to carry out this ambitious program. In particular, a large-area silicon microstrip detector inside a 0.8 T superconducting magnet is well suited to measure rigidity p/Z and specific energy loss d E/d x of cosmic rays, as well as the direction and energy of converted gamma rays. I review the advantage of such a silicon-tracking detector, taking into account the constraints of the space environment. The collaboration has gained extensive operating experience with double-sided silicon sensors in beam tests, and above all with AMS-01, a precursor spectrometer flown in the cargo bay of the Shuttle Discovery. During the entire 10-day STS-91 mission, the Silicon Tracker functioned without fault and with good spatial resolution. From the lessons learned with AMS-01, improvements were made to the design and assembly procedure of the 2500 sensors of AMS-02. As a result, the charge identification has been extended from Oxygen ( Z=8) to Iron ( Z=26). The physics reach of the new spectrometer is presented.
Physics, Astrophysics and Cosmology with Gravitational Waves.
Sathyaprakash, B S; Schutz, Bernard F
2009-01-01
Gravitational wave detectors are already operating at interesting sensitivity levels, and they have an upgrade path that should result in secure detections by 2014. We review the physics of gravitational waves, how they interact with detectors (bars and interferometers), and how these detectors operate. We study the most likely sources of gravitational waves and review the data analysis methods that are used to extract their signals from detector noise. Then we consider the consequences of gravitational wave detections and observations for physics, astrophysics, and cosmology.
HgCdTe barrier infrared detectors
NASA Astrophysics Data System (ADS)
Kopytko, M.; Rogalski, A.
2016-05-01
In the last decade, new strategies to achieve high-operating temperature (HOT) detectors have been proposed, including barrier structures such as nBn devices, unipolar barrier photodiodes, and multistage (cascade) infrared detectors. The ability to tune the positions of the conduction and valence band edges independently in a broken-gap type-II superlattices is especially helpful in the design of unipolar barriers. This idea has been also implemented in HgCdTe ternary material system. However, the implementation of this detector structure in HgCdTe material system is not straightforward due to the existence of a valence band discontinuity (barrier) at the absorber-barrier interface. In this paper we present status of HgCdTe barrier detectors with emphasis on technological progress in fabrication of MOCVD-grown HgCdTe barrier detectors achieved recently at the Institute of Applied Physics, Military University of Technology. Their performance is comparable with state-of-the-art of HgCdTe photodiodes. From the perspective of device fabrication their important technological advantage results from less stringent surface passivation requirements and tolerance to threading dislocations.
Qualification and calibration tests of detector modules for the CMS Pixel Phase 1 upgrade
NASA Astrophysics Data System (ADS)
Zhu, D.; Backhaus, M.; Berger, P.; Meinhard, M.; Starodumov, A.; Tavolaro, V.
2018-01-01
In high energy particle physics, accelerator- and detector-upgrades always go hand in hand. The instantaneous luminosity of the Large Hadron Collider will increase to up to L = 2×1034cm-2s-1 during Run 2 until 2023. In order to cope with such luminosities, the pixel detector of the CMS experiment has been replaced early 2017. The so-called CMS Pixel phase 1 upgrade detector consists of 1184 modules with new design. An important production step is the module qualification and calibration, ensuring their proper functionality within the detector. This paper summarizes the qualification and calibration tests and results of modules used in the innermost two detector layers with focus on methods using module-internal calibration signals. Extended characterizations on pixel level such as electronic noise and bump bond connectivity, optimization of operational parameters, sensor quality and thermal stress resistance were performed using a customized setup with controlled environment. It could be shown that the selected modules have on average 0.55‰ ± 0.01‰ defective pixels and that all performance parameters stay within their specifications.
Goulding, F S; Stone, Y
1970-10-16
The past decade has seen the rapid development and exploitation of one of the most significant tools of nuclear physics, the semiconductor radiation detector. Applications of the device to the analysis of materials promises to be one of the major contributions of nuclear research to technology, and may even assist in some aspects of our environmental problems. In parallel with the development of these applications, further developments in detectors for nuclear research are taking place: the use of very thin detectors for heavyion identification, position-sensitive detectors for nuclear-reaction studies, and very pure germanium for making more satisfactory detectors for many applications suggest major future contributions to physics.
NASA Astrophysics Data System (ADS)
Matter, John; Gnanvo, Kondo; Liyanage, Nilanga; Solid Collaboration; Moller Collaboration
2017-09-01
The JLab Parity Violation In Deep Inelastic Scattering (PVDIS) experiment will use the upgraded 12 GeV beam and proposed Solenoidal Large Intensity Device (SoLID) to measure the parity-violating electroweak asymmetry in DIS of polarized electrons with high precision in order to search for physics beyond the Standard Model. Unlike many prior Parity-Violating Electron Scattering (PVES) experiments, PVDIS is a single-particle tracking experiment. Furthermore the experiment's high luminosity combined with the SoLID spectrometer's open configuration creates high-background conditions. As such, the PVDIS experiment has the most demanding tracking detector needs of any PVES experiment to date, requiring precision detectors capable of operating at high-rate conditions in PVDIS's full production luminosity. Developments in large-area GEM detector R&D and SoLID simulations have demonstrated that GEMs provide a cost-effective solution for PVDIS's tracking needs. The integrating-detector-based JLab Measurement Of Lepton Lepton Electroweak Reaction (MOLLER) experiment requires high-precision tracking for acceptance calibration. Large-area GEMs will be used as tracking detectors for MOLLER as well. The conceptual designs of GEM detectors for the PVDIS and MOLLER experiments will be presented.
Analytical modeling and numerical simulation of the short-wave infrared electron-injection detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Movassaghi, Yashar; Fathipour, Morteza; Fathipour, Vala
2016-03-21
This paper describes comprehensive analytical and simulation models for the design and optimization of the electron-injection based detectors. The electron-injection detectors evaluated here operate in the short-wave infrared range and utilize a type-II band alignment in InP/GaAsSb/InGaAs material system. The unique geometry of detectors along with an inherent negative-feedback mechanism in the device allows for achieving high internal avalanche-free amplifications without any excess noise. Physics-based closed-form analytical models are derived for the detector rise time and dark current. Our optical gain model takes into account the drop in the optical gain at high optical power levels. Furthermore, numerical simulation studiesmore » of the electrical characteristics of the device show good agreement with our analytical models as well experimental data. Performance comparison between devices with different injector sizes shows that enhancement in the gain and speed is anticipated by reducing the injector size. Sensitivity analysis for the key detector parameters shows the relative importance of each parameter. The results of this study may provide useful information and guidelines for development of future electron-injection based detectors as well as other heterojunction photodetectors.« less
NASA Astrophysics Data System (ADS)
Barrentine, Emily Margaret
In this thesis the development of a Transition-Edge Hot-Electron Microbolometer (THM) is presented. This detector will have the capacity to make sensitive and broadband astrophysical observations when deployed in large detector arrays in future ground- or space-based instruments, over frequencies ranging from 30-300 GHz (10-1 mm). This thesis focuses on the development of the THM for observations of the Cosmic Microwave Background (CMB), and specifically for observations of the CMB polarization signal. The THM is a micron-sized bolometer that is fabricated photolithographically. It consists of a superconducting Molybdenum/Gold Transition-Edge Sensor (TES) and a thin-film semi-metal Bismuth microwave absorber, both of which are deposited directly on the substrate. The THM employs the decoupling between electrons and phonons at low temperatures (˜100-300 mK) to provide thermal isolation for the bolometer. The devices are read out with Superconducting Quantum Interference Devices (SQUIDs). In this thesis a summary of the thermal and electrical models for the THM detector is presented. The physical processes within the detector, with particular attention to electron-phonon decoupling, and the lateral proximity effect between the superconducting leads and the TES, are also discussed. This understanding of the detector and these models are used to interpret measurements of thermal conductance, noise, responsivity and the transition behaviour of a variety of THM test devices. The optimization of the THM design, based on these models and measurements, is also discussed, and the thesis concludes with a presentation of the recommended THM design for CMB applications. In addition, a planar-microwave circuit design and a quasi-optical scheme for coupling microwave radiation to the THM detector are presented.
Silicon pixel-detector R&D for CLIC
NASA Astrophysics Data System (ADS)
Nürnberg, A.
2016-11-01
The physics aims at the future CLIC high-energy linear e+e- collider set very high precision requirements on the performance of the vertex and tracking detectors. Moreover, these detectors have to be well adapted to the experimental conditions, such as the time structure of the collisions and the presence of beam-induced backgrounds. The principal challenges are: a point resolution of a few μm, ultra-low mass (~ 0.2%X0 per layer for the vertex region and ~ 1%X0 per layer for the outer tracker), very low power dissipation (compatible with air-flow cooling in the inner vertex region) and pulsed power operation, complemented with ~ 10 ns time stamping capabilities. A highly granular all-silicon vertex and tracking detector system is under development, following an integrated approach addressing simultaneously the physics requirements and engineering constraints. For the vertex-detector region, hybrid pixel detectors with small pitch (25 μm) and analog readout are explored. For the outer tracking region, both hybrid concepts and fully integrated CMOS sensors are under consideration. The feasibility of ultra-thin sensor layers is validated with Timepix3 readout ASICs bump bonded to active edge planar sensors with 50 μm to 150 μm thickness. Prototypes of CLICpix readout ASICs implemented in 6525 nm CMOS technology with 25 μm pixel pitch have been produced. Hybridisation concepts have been developed for interconnecting these chips either through capacitive coupling to active HV-CMOS sensors or through bump-bonding to planar sensors. Recent R&D achievements include results from beam tests with all types of hybrid assemblies. Simulations based on Geant4 and TCAD are used to validate the experimental results and to assess and optimise the performance of various detector designs.
Liquefied Noble Gas (LNG) detectors for detection of nuclear materials
NASA Astrophysics Data System (ADS)
Nikkel, J. A.; Gozani, T.; Brown, C.; Kwong, J.; McKinsey, D. N.; Shin, Y.; Kane, S.; Gary, C.; Firestone, M.
2012-03-01
Liquefied-noble-gas (LNG) detectors offer, in principle, very good energy resolution for both neutrons and gamma rays, fast response time (hence high-count-rate capabilities), excellent discrimination between neutrons and gamma rays, and scalability to large volumes. They do, however, need cryogenics. LNG detectors in sizes of interest for fissionable material detection in cargo are reaching a certain level of maturity because of the ongoing extensive R&}D effort in high-energy physics regarding their use in the search for dark matter and neutrinoless double beta decay. The unique properties of LNG detectors, especially those using Liquid Argon (LAr) and Liquid Xenon (LXe), call for a study to determine their suitability for Non-Intrusive Inspection (NII) for Special Nuclear Materials (SNM) and possibly for other threats in cargo. Rapiscan Systems Laboratory, Yale University Physics Department, and Adelphi Technology are collaborating in the investigation of the suitability of LAr as a scintillation material for large size inspection systems for air and maritime containers and trucks. This program studies their suitability for NII, determines their potential uses, determines what improvements in performance they offer and recommends changes to their design to further enhance their suitability. An existing 3.1 liter LAr detector (microCLEAN) at Yale University, developed for R&}D on the detection of weakly interacting massive particles (WIMPs) was employed for testing. A larger version of this detector (15 liters), more suitable for the detection of higher energy gamma rays and neutrons is being built for experimental evaluation. Results of measurements and simulations of gamma ray and neutron detection in microCLEAN and a larger detector (326 liter CL38) are presented.
NASA Astrophysics Data System (ADS)
Grupen, Claus; Shwartz, Boris
2011-09-01
Preface to the first edition; Preface to the second edition; Introduction; 1. Interactions of particles and radiation with matter; 2. Characteristic properties of detectors; 3. Units of radiation measurements and radiation sources; 4. Accelerators; 5. Main physical phenomena used for particle detection and basic counter types; 6. Historical track detectors; 7. Track detectors; 8. Calorimetry; 9. Particle identification; 10. Neutrino detectors; 11. Momentum measurement and muon detection; 12. Ageing and radiation effects; 13. Example of a general-purpose detector: Belle; 14. Electronics; 15. Data analysis; 16. Applications of particle detectors outside particle physics; 17. Glossary; 18. Solutions; 19. Resumé; Appendixes; Index.
NASA Astrophysics Data System (ADS)
Payne, L.; Haas, J. P.; Linard, D.; White, L.
1997-12-01
The Laboratory for Astronomy and Solar Physics at Goddard Space Flight Center uses a variety imaging sensors for its instrumentation programs. This paper describes the detector system for SERTS. The SERTS rocket telescope uses an open faceplate, single plate MCP tube as the primary detector for EUV spectra from the Sun. The optical output of this detector is fiber-optically coupled to a cooled, large format CCD. This CCD is operated using a software controlled Camera controller based upon a design used for the SOHO/CDS mission. This camera is a general purpose design, with a topology that supports multiple types of imaging devices. Multiport devices (up to 4 ports) and multiphase clocks are supportable as well as variable speed operation. Clock speeds from 100KHz to 1MHz have been used, and the topology is currently being extended to support 10MHz operation. The form factor for the camera system is based on the popular VME buss. Because the tube is an open faceplate design, the detector system has an assortment of vacuum doors and plumbing to allow operation in vacuum but provide for safe storage at normal atmosphere. Vac-ion pumps (3) are used to maintain working vacuum at all times. Marshall Space Flight Center provided the SERTS programs with HVPS units for both the vac-ion pumps and the MCP tube. The MCP tube HVPS is a direct derivative of the design used for the SXI mission for NOAA. Auxiliary equipment includes a frame buffer that works either as a multi-frame storage unit or as a photon counting accumulation unit. This unit also performs interface buffering so that the camera may appear as a piece of GPIB instrumentation.
Shih, Ching-Tien; Shih, Ching-Hsiang; Luo, Ching-Hsing
2013-12-01
The latest researchers have employed software technology to turn gyration air mice into a high performance limb detector to detect specific limb movement, and to further collaborate using the preferred environmental stimulation to help people with disabilities to suppress unwanted behaviors or habits and to reward good behaviors. This study extended the functionality of a gyration air mouse, and used the mouse as a precise physical activity detector integrated with the preferred environmental stimulation to assess if this integrated set can be used to help two disabled people who are overweight and lacking in exercise to actively perform physical activities. The study was conducted based on an A-B-A-B design. The results showed that both participants increased significantly the time duration required for them to maintain their physical activity status so that they could obtain their favorite environmental stimulation during the intervention phases. Both the practical and developmental implications of the findings are then discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
The EBIT Calorimeter Spectrometer: a new, permanent user facility at the LLNL EBIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Porter, F S; Beiersdorfer, P; Brown, G V
The EBIT Calorimeter Spectrometer (ECS) is currently being completed and will be installed at the EBIT facility at the Lawrence Livermore National Laboratory in October 2007. The ECS will replace the smaller XRS/EBIT microcalorimeter spectrometer that has been in almost continuous operation since 2000. The XRS/EBIT was based on a spare laboratory cryostat and an engineering model detector system from the Suzaku/XRS observatory program. The new ECS spectrometer was built to be a low maintenance, high performance implanted silicon microcalorimeter spectrometer with 4 eV resolution at 6 keV, 32 detector channels, 10 {micro}s event timing, and capable of uninterrupted acquisitionmore » sessions of over 60 hours at 50 mK. The XRS/EBIT program has been very successful, producing many results on topics such as laboratory astrophysics, atomic physics, nuclear physics, and calibration of the spectrometers for the National Ignition Facility. The ECS spectrometer will continue this work into the future with improved spectral resolution, integration times, and ease-of-use. We designed the ECS instrument with TES detectors in mind by using the same highly successful magnetic shielding as our laboratory TES cryostats. This design will lead to a future TES instrument at the LLNL EBIT. Here we discuss the legacy of the XRS/EBIT program, the performance of the new ECS spectrometer, and plans for a future TES instrument.« less
Carls, Benjamin; Horton-Smith, Glenn; James, Catherine C.; ...
2015-08-26
Detectors in particle physics, particularly when including cryogenic components, are often enclosed in vessels that do not provide any physical or visual access to the detectors themselves after installation. However, it can be desirable for experiments to visually investigate the inside of the vessel. The MicroBooNE cryostat hosts a TPC with sense-wire planes, which had to be inspected for damage such as breakage or sagging. This inspection was performed after the transportation of the vessel with the enclosed detector to its final location, but before filling with liquid argon. Our paper describes an approach to view the inside of themore » MicroBooNE cryostat with a setup of a camera and a mirror through one of its cryogenic service nozzles. The paper also describes the camera and mirror chosen for the operation, the illumination, and the mechanical structure of the setup. It explains how the system was operated and demonstrates its performance.« less
EGRAM- ECHELLE SPECTROGRAPH DESIGN AID
NASA Technical Reports Server (NTRS)
Dantzler, A. A.
1994-01-01
EGRAM aids in the design of spectrographic systems that utilize an echelle-first order cross disperser combination. This optical combination causes a two dimensional echellogram to fall on a detector. EGRAM describes the echellogram with enough detail to allow the user to effectively judge the feasibility of the spectrograph's design. By iteratively altering system parameters, the desired echellogram can be achieved without making a physical model. EGRAM calculates system parameters which are accurate to the first order and compare favorably to results from ray tracing techniques. The spectrographic system modelled by EGRAM consists of an entrance aperture, collimator, echelle, cross dispersion grating, focusing options, and a detector. The system is assumed to be free of aberrations and the echelle, cross disperser, and detector should be planar. The EGRAM program is menu driven and has a HELP facility. The user is prompted for information such as minimum and maximum wavelengths, slit dimensions, ruling frequencies, detector geometry, and angle of incidence. EGRAM calculates the resolving power and range of order numbers covered by the echellogram. A numerical map is also produced. This tabulates the order number, slit bandpass, and high/middle/low wavelengths. EGRAM can also compute the centroid coordinates of a specific wavelength and order (or vice versa). EGRAM is written for interactive execution and is written in Microsoft BASIC A. It has been implemented on an IBM PC series computer operating under DOS. EGRAM was developed in 1985.
Interplanetary Cosmic Ray Intensity: 1972-1984 and Out to 32 AU.
1984-08-01
Blo/BII, C10/C11 , and Dlo/DII. The correspondingly designated detectors on the two spacecraft have virtually identical shielding and physical...B. Decker, and S. M. Krimigis, Radial gradient of cosmic ray intensity from a comparativ study of data from Voyager 1 and 2 and IMP F, J. Geophys
Radiation Hard Active Media R&D for CMS Hadron Endcap Calorimetry
NASA Astrophysics Data System (ADS)
Tiras, Emrah; CMS-HCAL Collaboration
2015-04-01
The High Luminosity LHC era imposes unprecedented radiation conditions on the CMS detectors targeting a factor of 5-10 higher than the LHC design luminosity. The CMS detectors will need to be upgraded in order to withstand these conditions yet maintain/improve the physics measurement capabilities. One of the upgrade options is reconstructing the CMS Endcap Calorimeters with a shashlik design electromagnetic section and replacing active media of the hadronic section with radiation-hard scintillation materials. In this context, we have studied various radiation-hard materials such as Polyethylene Naphthalate (PEN), Polyethylene Terephthalate (PET), HEM and quartz plates coated with various organic materials such as p-Terphenyl (pTp), Gallium doped Zinc Oxide (ZnO:Ga) and Anthracene. Here we discuss the related test beam activities, laboratory measurements and recent developments.
NASA Astrophysics Data System (ADS)
Nellist, C.; Dinu, N.; Gkougkousis, E.; Lounis, A.
2015-06-01
The LHC accelerator complex will be upgraded between 2020-2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented.
Results on the Performance of a Broad Band Focussing Cherenkov Counter
DOE R&D Accomplishments Database
Cester, R.; Fitch, V. L.; Montag, A.; Sherman, S.; Webb, R. C.; Witherell, M. S.
1980-01-01
The field of ring imaging (broad band differential) Cherenkov detectors has become a very active area of interest in detector development at several high energy physics laboratories. Our group has previously reported on a method of Cherenkov ring imaging for a counter with large momentum and angular acceptance using standard photo multipliers. Recently, we have applied this technique to the design of a set of Cherenkov counters for use in a particle search experiment at Fermi National Accelerator Laboratory (FNAL). This new detector operates over the range 0.998 < ..beta.. < 1.000 in velocity with a delta..beta.. approx. 2 x 10{sup -4}. The acceptance in angle is +- 14 mrad in the horizontal and +- 28 mrad in the vertical. We report here on the performance of this counter.
The International Design Study for the Neutrino Factory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, K.
2008-02-21
The International Design Study for a future Neutrino Factory and super-beam facility (the ISS) established the physics case for a high-precision programme of long-baseline neutrino-oscillation measurements. The ISS also identified baseline specifications for the Neutrino Factory accelerator complex and the neutrino detector systems. This paper summarises the objectives of the International Design Study for the Neutrino Factory (the IDS-NF). The IDS-NF will build on the work of the ISS to deliver a Reference Design Report for the Neutrino Factory by 2012/13 and an Interim Design Report by 2010/11.
Borehole Muon Detector Development
NASA Astrophysics Data System (ADS)
Bonneville, A.; Flygare, J.; Kouzes, R.; Lintereur, A.; Yamaoka, J. A. K.; Varner, G. S.
2015-12-01
Increasing atmospheric CO2 concentrations have spurred investigation into carbon sequestration methods. One of the possibilities being considered, storing super-critical CO2 in underground reservoirs, has drawn more attention and pilot projects are being supported worldwide. Monitoring of the post-injection fate of CO2 is of utmost importance. Generally, monitoring options are active methods, such as 4D seismic reflection or pressure measurements in monitoring wells. We propose here to develop a 4-D density tomography of subsurface CO2 reservoirs using cosmic-ray muon detectors deployed in a borehole. Muon detection is a relatively mature field of particle physics and there are many muon detector designs, though most are quite large and not designed for subsurface measurements. The primary technical challenge preventing deployment of this technology in the subsurface is the lack of miniaturized muon-tracking detectors capable of fitting in standard boreholes and that will resist the harsh underground conditions. A detector with these capabilities is being developed by a collaboration supported by the U.S. Department of Energy. Current simulations based on a Monte Carlo modeling code predict that the incoming muon angle can be resolved with an error of approximately two degrees, using either underground or sea level spectra. The robustness of the design comes primarily from the use of scintillating rods as opposed to drift tubes. The rods are arrayed in alternating layers to provide a coordinate scheme. Preliminary testing and measurements are currently being performed to test and enhance the performance of the scintillating rods, in both a laboratory and a shallow underground facility. The simulation predictions and data from the experiments will be presented.
Noble liquid detectors for fundamental physics and applications
NASA Astrophysics Data System (ADS)
Curioni, A.
2009-12-01
Noble liquid detectors come in many sizes and configurations and cover a lot of ground as particle and radiation detectors: from calorimeters for colliders to imaging detectors for neutrino physics and proton decay to WIMP Dark Matter detectors. It turns out that noble liquid detectors are a mature technology for imaging and spectroscopy of gamma rays and for neutron detection, a fact that makes them suitable for applications, e.g. cargo scanning and Homeland Security. In this short paper I will focus on liquid xenon and liquid argon, which make excellent detectors for hypothetical WIMP Dark Matter and neutrinos and for much less exotic gamma rays.
NASA Astrophysics Data System (ADS)
Zhang, Siyuan; Li, Liang; Li, Ruizhe; Chen, Zhiqiang
2017-11-01
We present the design concept and initial simulations for a polychromatic full-field fan-beam x-ray fluorescence computed tomography (XFCT) device with pinhole collimators and linear-array photon counting detectors. The phantom is irradiated by a fan-beam polychromatic x-ray source filtered by copper. Fluorescent photons are stimulated and then collected by two linear-array photon counting detectors with pinhole collimators. The Compton scatter correction and the attenuation correction are applied in the data processing, and the maximum-likelihood expectation maximization algorithm is applied for the image reconstruction of XFCT. The physical modeling of the XFCT imaging system was described, and a set of rapid Monte Carlo simulations was carried out to examine the feasibility and sensitivity of the XFCT system. Different concentrations of gadolinium (Gd) and gold (Au) solutions were used as contrast agents in simulations. Results show that 0.04% of Gd and 0.065% of Au can be well reconstructed with the full scan time set at 6 min. Compared with using the XFCT system with a pencil-beam source or a single-pixel detector, using a full-field fan-beam XFCT device with linear-array detectors results in significant scanning time reduction and may satisfy requirements of rapid imaging, such as in vivo imaging experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowdermilk, W. H.; Brothers, L. J.
This was a collaborative effort by Lawrence Livermore National Security (formerly the University of California)/Lawrence Livermore National Laboratory (LLNL), Valley Forge Composite Technologies, Inc., and the following Russian Institutes: P. N. Lebedev Physical Institute (LPI), Innovative Technologies Center.(AUO CIT), Central Design Bureau-Almas (CDB Almaz), Moscow Instrument Automation Research Institute, and Institute for High Energy Physics (IBEP) to develop equipment and procedures for detecting explosive materials concealed in airline checked baggage and cargo.
Design and Measurement of a Low-Noise 64-Channels Front-End Readout ASIC for CdZnTe Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gan, Bo; Wei, Tingcun; Gao, Wu
Cadmium zinc telluride (CdZnTe) detectors, as one of the principal detectors for the next-generation X-ray and γ-ray imagers, have high energy resolution and supporting electrode patterning in the radiation environment at room-temperature. In the present, a number of internationally renowned research institutions and universities are actively using these detector systems to carry out researches of energy spectrum analysis, medical imaging, materials characterization, high-energy physics, nuclear plant monitoring, and astrophysics. As the most important part of the readout system for the CdZnTe detector, the front-end readout application specific integrated circuit (ASIC) would have an important impact on the performances of themore » whole detector system. In order to ensure the small signal to noise ratio (SNR) and sufficient range of the output signal, it is necessary to design a front-end readout ASIC with very low noise and very high dynamic range. In addition, radiation hardness should be considered when the detectors are utilized in the space applications and high energy physics experiments. In this paper, we present measurements and performances of a novel multi-channel radiation-hardness low-noise front-end readout ASIC for CdZnTe detectors. The readout circuits in each channel consist of charge sensitive amplifier, leakage current compensation circuit (LCC), CR-RC shaper, S-K filter, inverse proportional amplifier, peak detect and hold circuit (PDH), discriminator and trigger logic, time sequence control circuit and driving buffer. All of 64 readout channels' outputs enter corresponding inputs of a 64 channel multiplexer. The output of the mux goes directly out of the chip via the output buffer. The 64-channel readout ASIC is implemented using the TSMC 0.35 μm mixed-signal CMOS technology. The die size of the prototype chip is 2.7 mm x 8 mm. At room temperature, the equivalent noise level of a typical channel reaches 66 e{sup -} (rms) at zero farad for a power consumption of 8 mW per channel. The linearity error is lower than 1% and the overall gain of the readout channel is 165 V/pC. The crosstalk between the channels is less than 3%. By connecting the readout ASIC to a CdZnTe detector, we obtained a γ-ray spectrum, the energy resolution is 5.1% at the 59.5-keV line of {sup 241}Am source. (authors)« less
Overview of the CLIC detector and its physics potential
NASA Astrophysics Data System (ADS)
Ström, Rickard
2017-12-01
The CLIC detector and physics study (CLICdp) is an international collaboration that investigates the physics potential of the Compact Linear Collider (CLIC). CLIC is a high-energy electron-positron collider under development, aiming for centre-of-mass energies from a few hundred GeV to 3 TeV. In addition to physics studies based on full Monte Carlo simulations of signal and background processes, CLICdp performs cuttingedge hardware R&D. In this contribution CLICdp will present recent results from physics prospect studies, emphasising Higgs studies. Additionally the new CLIC detector model and the recently updated CLIC baseline staging scenario will be presented.
The EBIT Calorimeter Spectrometer: A New, Permanent User Facility at the LLNL EBIT
NASA Technical Reports Server (NTRS)
Porter, S.
2007-01-01
The EBIT Calorimeter Spectrometer (ECS) has recently been completed and is currently being installed at the EBIT facility at the Lawrence Livermore National Laboratory. The ECS will replace the smaller XRS/EBIT spectrometer that has been in almost continuous operation since 2000. The XRS/EBIT was based on a spare laboratory cryostat and an engineering model detector system from the Suzaku/XRS observatory. The new ECS spectrometer was built from the ground up to be a low maintenance, high performance microcalorimeter spectrometer with 4 eV resolution at 6 keV, 32 detector channels, 10 us event timing, and capable of uninterrupted acquisition sessions of over 70 hours at 50 mK. The XRSIEBIT program has been extremely successful, producing over two-dozen refereed publications on topics such as laboratory astrophysics, atomic physics, nuclear physics, and calibration of the spectrometers for the National Ignition Facility, with many more publications in preparation. The ECS spectrometer will continue this work into the future with improved spectral resolution, integration times, and ease-of-use. We designed the ECS instrument with TES detectors in mind by using the same highly successful magnetic shielding as our laboratory TES cryostats. This design will lead to a future TES instrument at the LLNL EBIT. This proposed future instrument would include a hybrid detector system with 0.8 eV resolution in the band from 0.1-1.0 keV, 2 eV from 0.1-10 keV, and 30 eV from 0.5-100 keV, with high quantum efficiency in each band. Here we discuss the legacy of the XRS/EBIT program, the performance of the new ECS spectrometer, and plans for a future TES spectrometer.
India-based neutrino observatory (INO): Physics reach and status report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indumathi, D.
We present a review of the physics reach and current status of the proposed India-based Neutrino Observatory (INO). We briefly outline details of the INO location and the present status of detector development. We then present the physics goals and simulation studies of the main detector, the magnetised Iron Calorimeter (ICAL) detector, to be housed in INO. The ICAL detector would make precision measurements of neutrino oscillation parameters with atmospheric neutrinos including a measurement of the neutrino mass hierarchy. Additional synergies with other experiments due to the complete insensitivity of ICAL to the CP phase are also discussed.
NASA Astrophysics Data System (ADS)
Isenhower, Donald
2015-04-01
This talk addresses primary lessons learned during 28 years of work leading to the awarding of this prize for work on designing, building and operating detectors, with most of the work involving over 150 undergraduates during this time period. There are a wide range of skills and knowledge to be learned if a young scientist is interested in following this career route, so the most important subset of these will be described. Part will be how to involve undergraduate students at their fullest potential, and important differences of ACU from many programs, which has led to collaborators to make inquiries as to when will the ``ACU Army'' arrive so that they can time when their detector components will be shipped to the experiments for the testing and setup to be handed over to these students. The size of the detectors constructed have varied from small hodoscopes to the world's largest active cathode strip chambers. The science knowledge needed for detector construction is extremely multidisciplinary, and this must be learned by the professor directing the work as they will not have an engineering or support staff to lean on usually. This will include fields often considered unimportant to physics; however, ignorance of them can lead to failure. Knowing the primary question to ask will show where a significant area of concern will lie in what is being done by a person, group or company on a subsystem for a detector. Textbook descriptions of detectors, electronics, and materials can lead young experimenters astray. It has been learning the correct, fundamental physical processes that determine actual detector performance that has allowed the awardee to make his most important contributions over many years of research. A final lesson to be described will be how to make your undergraduate research program self-sustaining, so that critical knowledge is not lost as students graduate. Research supported in part by grants from the U.S. DOE Office of Science, the NSF, and NATO.
NASA Astrophysics Data System (ADS)
Velicu, S.; Bommena, R.; Morley, M.; Zhao, J.; Fahey, S.; Cowan, V.; Morath, C.
2013-09-01
The development of a broadband IR focal plane array poses several challenges in the area of detector design, material, device physics, fabrication process, hybridization, integration and testing. The purpose of our research is to address these challenges and demonstrate a high-performance IR system that incorporates a HgCdTe-based detector array with high uniformity and operability. Our detector architecture, grown using molecular beam epitaxy (MBE), is vertically integrated, leading to a stacked detector structure with the capability to simultaneously detect in two spectral bands. MBE is the method of choice for multiplelayer HgCdTe growth because it produces material of excellent quality and allows composition and doping control at the atomic level. Such quality and control is necessary for the fabrication of multicolor detectors since they require advanced bandgap engineering techniques. The proposed technology, based on the bandgap-tunable HgCdTe alloy, has the potential to extend the broadband detector operation towards room temperature. We present here our modeling, MBE growth and device characterization results, demonstrating Auger suppression in the LWIR band and diffusion limited behavior in the MWIR band.
NASA Astrophysics Data System (ADS)
Gamer, L.; Schulz, D.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Kempf, S.; Krantz, C.; Novotný, O.; Schwalm, D.; Wolf, A.
2016-08-01
We present the design of MOCCA, a large-area particle detector that is developed for the position- and energy-resolving detection of neutral molecule fragments produced in electron-ion interactions at the Cryogenic Storage Ring at the Max Planck Institute for Nuclear Physics in Heidelberg. The detector is based on metallic magnetic calorimeters and consists of 4096 particle absorbers covering a total detection area of 44.8 mathrm {mm} × 44.8 mathrm {mm}. Groups of four absorbers are thermally coupled to a common paramagnetic temperature sensor where the strength of the thermal link is different for each absorber. This allows attributing a detector event within this group to the corresponding absorber by discriminating the signal rise times. A novel readout scheme further allows reading out all 1024 temperature sensors that are arranged in a 32 × 32 square array using only 16+16 current-sensing superconducting quantum interference devices. Numerical calculations taking into account a simplified detector model predict an energy resolution of Δ E_mathrm {FWHM} le 80 mathrm {eV} for all pixels of this detector.
Focal Plane Detectors for the Advanced Gamma-Ray Imaging System (AGIS)
NASA Astrophysics Data System (ADS)
Otte, A. N.; Byrum, K.; Drake, G.; Falcone, A.; Funk, S.; Horan, D.; Mukherjee, R.; Smith, A.; Tajima, H.; Wagner, R. G.; Williams, D. A.
2008-12-01
The Advanced Gamma-Ray Imaging System (AGIS) is a concept for the next generation observatory in ground-based very high energy gamma-ray astronomy. Design goals are ten times better sensitivity, higher angular resolution, and a lower energy threshold than existing Cherenkov telescopes. Simulations show that a substantial improvement in angular resolution may be achieved if the pixel diameter is reduced to the order of 0.05 deg, i.e. two to three times smaller than the pixel diameter of current Cherenkov telescope cameras. At these dimensions, photon detectors with smaller physical dimensions can be attractive alternatives to the classical photomultiplier tube (PMT). Furthermore, the operation of an experiment with the size of AGIS requires photon detectors that are among other things more reliable, more durable, and possibly higher efficiency photon detectors. Alternative photon detectors we are considering for AGIS include both silicon photomultipliers (SiPMs) and multi-anode photomultipliers (MAPMTs). Here we present results from laboratory testing of MAPMTs and SiPMs along with results from the first incorporation of these devices into cameras on test bed Cherenkov telescopes.
Detector Simulations with DD4hep
NASA Astrophysics Data System (ADS)
Petrič, M.; Frank, M.; Gaede, F.; Lu, S.; Nikiforou, N.; Sailer, A.
2017-10-01
Detector description is a key component of detector design studies, test beam analyses, and most of particle physics experiments that require the simulation of more and more different detector geometries and event types. This paper describes DD4hep, which is an easy-to-use yet flexible and powerful detector description framework that can be used for detector simulation and also extended to specific needs for a particular working environment. Linear collider detector concepts ILD, SiD and CLICdp as well as detector development collaborations CALICE and FCal have chosen to adopt the DD4hep geometry framework and its DDG4 pathway to Geant4 as its core simulation and reconstruction tools. The DDG4 plugins suite includes a wide variety of input formats, provides access to the Geant4 particle gun or general particles source and allows for handling of Monte Carlo truth information, eg. by linking hits and the primary particle that caused them, which is indispensable for performance and efficiency studies. An extendable array of segmentations and sensitive detectors allows the simulation of a wide variety of detector technologies. This paper shows how DD4hep allows to perform complex Geant4 detector simulations without compiling a single line of additional code by providing a palette of sub-detector components that can be combined and configured via compact XML files. Simulation is controlled either completely via the command line or via simple Python steering files interpreted by a Python executable. It also discusses how additional plugins and extensions can be created to increase the functionality.
NASA Astrophysics Data System (ADS)
Lindroos, Mats
2009-06-01
The advance in neutrino oscillation physics is driven by the availability of well characterized and high flux neutrino beams. The three present options for the next generation neutrino oscillation facility are super beams, neutrino factories and beta-beams. A super-beam is a very high intensity classical neutrino beam generated by protons impinging on a target where the neutrinos are generated by the secondary particles decaying in a tunnel down streams of the target. In a neutrino factory the neutrinos are generated from muons decaying in a storage ring with long straight sections pointing towards the detectors. In a beta-beam the neutrinos are also originating from decay in a storage ring but the decaying particles are radioactive ions rather than muons. I will in this presentation review the three options and discuss the pros and cons of each. The present joint design effort for a future high intensity neutrino oscillation in Europe within a common EU supported design study, EURONU, will also be presented. The design study will explore the physics reach, the detectors, the feasibility, the safety issues and the cost for each of the options so that the the community can take a decision on what to build when the facilities presently under exploitation and construction have to be replaced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bower, G.
We summarize the current status and future developments of the North American Group's Java-based system for studying physics and detector design issues at a linear collider. The system is built around Java Analysis Studio (JAS) an experiment-independent Java-based utility for data analysis. Although the system is an integrated package running in JAS, many parts of it are also standalone Java utilities.
Silicon Drift Detectors - A Novel Technology for Vertex Detectors
NASA Astrophysics Data System (ADS)
Lynn, D.
1996-10-01
Silicon Drift Detectors (SDD) are novel position sensing silicon detectors which operate in a manner analogous to gas drift detectors. Single SDD's were shown in the CERN NA45 experiment to permit excellent spatial resolution (< 10 μm), to handle large particle occupancy, and to require a small fraction of the number of electronic channels of an equivalent pixel detector. The Silicon Vertex Tracker (SVT) for the STAR experiment at RHIC is based on this new technology. The SVT will consist of 216 SDD's, each 6.3 cm by 6.3 cm, arranged in a three layer barrel design, covering 2 π in azimuth and ±1 in pseudo-rapidity. Over the last three years we undertook a concentrated R+D effort to optimize the performance of the detector by minimizing the inactive area, the operating voltage and the data volume. We will present test results from several wafer prototypes. The charge produced by the passage of ionizing particles through the bulk of the detectors is collected on segmented anodes, with a pitch of 250 μm, on the far edges of the detector. The anodes are wire-bonded to a thick film multi-chip module which contains preamplifier/shaper chips and CMOS based switched capacitor arrays used as an analog memory pipeline. The ADC is located off-detector. The complete readout chain from the wafer to the DAQ will be presented. Finally we will show physics performance simulations based on the resolution achieved by the SVT prototypes.
A high-speed, eight-wavelength visible light-infrared pyrometer for shock physics experiments
NASA Astrophysics Data System (ADS)
Wang, Rongbo; Li, Shengfu; Zhou, Weijun; Luo, Zhen-Xiong; Meng, Jianhua; Tian, Jianhua; He, Lihua; Cheng, Xianchao
2017-09-01
An eight-channel, high speed pyrometer for precise temperature measurement is designed and realized in this work. The addition of longer-wavelength channels sensitive at lower temperatures highly expands the measured temperature range, which covers the temperature of interest in shock physics from 1500K-10000K. The working wavelength range is 400-1700nm from visible light to near-infrared (NIR). Semiconductor detectors of Si and InGaAs are used as photoelectric devices, whose bandwidths are 50MHz and 150MHz respectively. Benefitting from the high responsivity and high speed of detectors, the time resolution of the pyrometer can be smaller than 10ns. By combining the high-transmittance beam-splitters and narrow-bandwidth filters, the peak spectrum transmissivity of each channel can be higher than 60%. The gray-body temperatures of NaI crystal under shock-loading are successfully measured by this pyrometer.
Graphical Environment Tools for Application to Gamma-Ray Energy Tracking Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todd, Richard A.; Radford, David C.
2013-12-30
Highly segmented, position-sensitive germanium detector systems are being developed for nuclear physics research where traditional electronic signal processing with mixed analog and digital function blocks would be enormously complex and costly. Future systems will be constructed using pipelined processing of high-speed digitized signals as is done in the telecommunications industry. Techniques which provide rapid algorithm and system development for future systems are desirable. This project has used digital signal processing concepts and existing graphical system design tools to develop a set of re-usable modular functions and libraries targeted for the nuclear physics community. Researchers working with complex nuclear detector arraysmore » such as the Gamma-Ray Energy Tracking Array (GRETA) have been able to construct advanced data processing algorithms for implementation in field programmable gate arrays (FPGAs) through application of these library functions using intuitive graphical interfaces.« less
NASA Astrophysics Data System (ADS)
Eremin, V.; Mitina, D.; Fomichev, A.; Kiselev, O.; Egorov, N.; Eremin, I.; Shepelev, A.; Verbitskaya, E.
2018-01-01
Silicon detectors irradiated by 40Ar ions with the energy of 1.62 GeV were studied with the goal to find the parameters of radiation damage induced by ions. The measurements of the I-V characteristics, temperature dependences of the detector bulk current, deep level spectra and current pulse response were carried out for detectors irradiated within the fluence range 5×1010-2.3×1013 ion/cm2 and the obtained results were compared with the corresponding data for detectors irradiated by 23 GeV protons. It is shown that the processes of defect introduction by ions and overall radiation damage are similar to those induced by 23 GeV protons, while the introduction rates of radiation defects and current generation centers are about ten times higher for irradiation by 40Ar ions. The fact that these processes have much in common gives grounds to use the physical models and characteristic parametrization such as those developed earlier for detectors irradiated by protons and neutrons to build the long-term scenario of Si detector operation in the Time-Of-Flight diagnostic system of Super FRagment Separator designed at GSI for the future Facility for Antiproton and Ion Research, FAIR.
Charge Collection Efficiency in a segmented semiconductor detector interstrip region
NASA Astrophysics Data System (ADS)
Alarcon-Diez, V.; Vickridge, I.; Jakšić, M.; Grilj, V.; Schmidt, B.; Lange, H.
2017-09-01
Charged particle semiconductor detectors have been used in Ion Beam Analysis (IBA) for over four decades without great changes in either design or fabrication. However one area where improvement is desirable would be to increase the detector solid angle so as to improve spectrum statistics for a given incident beam fluence. This would allow the use of very low fluences opening the way, for example, to increase the time resolution in real-time RBS or for analysis of materials that are highly sensitive to beam damage. In order to achieve this goal without incurring the costs of degraded resolution due to kinematic broadening or large detector capacitance, a single-chip segmented detector (SEGDET) was designed and built within the SPIRIT EU infrastructure project. In this work we present the Charge Collection Efficiency (CCE) in the vicinity between two adjacent segments focusing on the interstrip zone. Microbeam Ion Beam Induced Charge (IBIC) measurements with different ion masses and energies were used to perform X-Y mapping of (CCE), as a function of detector operating conditions (bias voltage changes, detector housing possibilities and guard ring configuration). We show the (CCE) in the edge region of the active area and have also mapped the charge from the interstrip region, shared between adjacent segments. The results indicate that the electrical extent of the interstrip region is very close to the physical extent of the interstrip and guard ring structure with interstrip impacts contributing very little to the complete spectrum. The interstrip contributions to the spectra that do occur, can be substantially reduced by an offline anti-coincidence criterion applied to list mode data, which should also be easy to implement directly in the data acquisition software.
Representing Misalignments of the STAR Geometry Model using AgML
NASA Astrophysics Data System (ADS)
Webb, Jason C.; Lauret, Jérôme; Perevotchikov, Victor; Smirnov, Dmitri; Van Buren, Gene
2017-10-01
The STAR Heavy Flavor Tracker (HFT) was designed to provide high-precision tracking for the identification of charmed hadron decays in heavy-ion collisions at RHIC. It consists of three independently mounted subsystems, providing four precision measurements along the track trajectory, with the goal of pointing decay daughters back to vertices displaced by less than 100 microns from the primary event vertex. The ultimate efficiency and resolution of the physics analysis will be driven by the quality of the simulation and reconstruction of events in heavy-ion collisions. In particular, it is important that the geometry model properly accounts for the relative misalignments of the HFT subsystems, along with the alignment of the HFT relative to STARs primary tracking detector, the Time Projection Chamber (TPC). The Abstract Geometry Modeling Language (AgML) provides a single description of the STAR geometry, generating both our simulation (GEANT 3) and reconstruction geometries (ROOT). AgML implements an ideal detector model, while misalignments are stored separately in database tables. These have historically been applied at the hit level. Simulated detector hits are projected from their ideal position along the track’s trajectory, until they intersect the misaligned detector volume, where the struck detector element is calculated for hit digitization. This scheme has worked well as hit errors have been negligible compared with the size of sensitive volumes. The precision and complexity of the HFT detector require us to apply misalignments to the detector volumes themselves. In this paper we summarize the extension of the AgML language and support libraries to enable the static misalignment of our reconstruction and simulation geometries, discussing the design goals, limitations and path to full misalignment support in ROOT/VMC-based simulation.
Thermal mock-up studies of the Belle II vertex detector
NASA Astrophysics Data System (ADS)
Ye, H.; Niebuhr, C.; Stever, R.; Gadow, K.; Camien, C.
2018-07-01
The ongoing upgrade of the asymmetric electron-positron collider SuperKEKB at the KEK laboratory, Japan aims at a 40-fold increase of the peak luminosity to 8 × 1035 cm-2s-1. At the same time the complex Belle II detector is being significantly upgraded to be able to cope with the higher background level and trigger rates and to improve overall performance. The goal of the experiment is to explore physics beyond the standard model with a target integrated luminosity of 50 ab-1 in the next decade. The new vertex detector (VXD), comprising two layers of DEPFET pixel detectors (PXD) surrounded by 4 layers of double sided silicon strip detectors (SVD), is indispensable for vertex determination as well as for reconstruction of low momentum tracks that do not reach the central drift chamber (CDC). Within the confined VXD volume the front-end electronics of the two detectors will dissipate about 1 kW of heat. The VXD cooling system has been designed to remove this heat with the constraint to minimize extra dead material in the physics acceptance region. Taking into account additional heat intake from the environment the cooling system must have a cooling capacity of 2-3 kW. To achieve this goal evaporative two-phase CO2 cooling in combination with forced N2 flow is used in the VXD cooling system. In order to verify and optimize the cooling concept and to demonstrate that acceptable operation conditions for the VXD system as well as the surrounding CDC can be obtained, a full size VXD thermal mock-up has been built at DESY. Various thermal and mechanical tests carried out with this mock-up are reported.
Sekar, Yuvaraj; Thoelking, Johannes; Eckl, Miriam; Kalichava, Irakli; Sihono, Dwi Seno Kuncoro; Lohr, Frank; Wenz, Frederik; Wertz, Hansjoerg
2018-04-01
The novel MatriXX FFF (IBA Dosimetry, Germany) detector is a new 2D ionization chamber detector array designed for patient specific IMRT-plan verification including flattening-filter-free (FFF) beams. This study provides a detailed analysis of the characterization and clinical evaluation of the new detector array. The verification of the MatriXX FFF was subdivided into (i) physical dosimetric tests including dose linearity, dose rate dependency and output factor measurements and (ii) patient specific IMRT pre-treatment plan verifications. The MatriXX FFF measurements were compared to the calculated dose distribution of a commissioned treatment planning system by gamma index and dose difference evaluations for 18 IMRT-sequences. All IMRT-sequences were measured with original gantry angles and with collapsing all beams to 0° gantry angle to exclude the influence of the detector's angle dependency. The MatriXX FFF was found to be linear and dose rate independent for all investigated modalities (deviations ≤0.6%). Furthermore, the output measurements of the MatriXX FFF were in very good agreement to reference measurements (deviations ≤1.8%). For the clinical evaluation an average pixel passing rate for γ (3%,3mm) of (98.5±1.5)% was achieved when applying a gantry angle correction. Also, with collapsing all beams to 0° gantry angle an excellent agreement to the calculated dose distribution was observed (γ (3%,3mm) =(99.1±1.1)%). The MatriXX FFF fulfills all physical requirements in terms of dosimetric accuracy. Furthermore, the evaluation of the IMRT-plan measurements showed that the detector particularly together with the gantry angle correction is a reliable device for IMRT-plan verification including FFF. Copyright © 2017. Published by Elsevier GmbH.
Thermophysics modeling of an infrared detector cryochamber for transient operational scenario
NASA Astrophysics Data System (ADS)
Singhal, Mayank; Singhal, Gaurav; Verma, Avinash C.; Kumar, Sushil; Singh, Manmohan
2016-05-01
An infrared detector (IR) is essentially a transducer capable of converting radiant energy in the infrared regime into a measurable form. The benefit of infrared radiation is that it facilitates viewing objects in dark or through obscured conditions by detecting the infrared energy emitted by them. One of the most significant applications of IR detector systems is for target acquisition and tracking of projectile systems. IR detectors also find widespread applications in the industry and commercial market. The performance of infrared detector is sensitive to temperatures and performs best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes increases the complexity in the application of IR detectors. This entails a need for detailed thermophysics analysis to be able to determine the actual cooling load specific to the application and also due to its interaction with the environment. This will enable design of most appropriate cooling methodologies suitable for specific scenarios. The focus of the present work is to develop a robust thermo-physical numerical methodology for predicting IR cryochamber behavior under transient conditions, which is the most critical scenario, taking into account all relevant heat loads including radiation in its original form. The advantage of the developed code against existing commercial software (COMSOL, ANSYS, etc.), is that it is capable of handling gas conduction together with radiation terms effectively, employing a ubiquitous software such as MATLAB. Also, it requires much smaller computational resources and is significantly less time intensive. It provides physically correct results enabling thermal characterization of cryochamber geometry in conjunction with appropriate cooling methodology. The code has been subsequently validated experimentally as the observed cooling characteristics are found to be in close agreement with the results predicted using the developed model thereby proving its efficacy.
Low energy nuclear recoils study in noble liquids for low-mass WIMPs
NASA Astrophysics Data System (ADS)
Wang, Lu; Mei, Dongming
2014-03-01
Detector response to low-energy nuclear recoils is critical to the detection of low-mass dark matter particles-WIMPs (Weakly interacting massive particles). Although the detector response to the processes of low-energy nuclear recoils is subtle and direct experimental calibration is rather difficult, many studies have been performed for noble liquids, NEST is a good example. However, the response of low-energy nuclear recoils, as a critical issue, needs more experimental data, in particular, with presence of electric field. We present a new design using time of flight to calibrate the large-volume xenon detector, such as LUX-Zeplin (LZ) and Xenon1T, energy scale for low-energy nuclear recoils. The calculation and physics models will be discussed based on the available data to predict the performance of the calibration device and set up criteria for the design of the device. A small test bench is built to verify the concepts at The University of South Dakota. This work is supported by DOE grant DE-FG02-10ER46709 and the state of South Dakota.
The MGDO software library for data analysis in Ge neutrinoless double-beta decay experiments
NASA Astrophysics Data System (ADS)
Agostini, M.; Detwiler, J. A.; Finnerty, P.; Kröninger, K.; Lenz, D.; Liu, J.; Marino, M. G.; Martin, R.; Nguyen, K. D.; Pandola, L.; Schubert, A. G.; Volynets, O.; Zavarise, P.
2012-07-01
The Gerda and Majorana experiments will search for neutrinoless double-beta decay of 76Ge using isotopically enriched high-purity germanium detectors. Although the experiments differ in conceptual design, they share many aspects in common, and in particular will employ similar data analysis techniques. The collaborations are jointly developing a C++ software library, MGDO, which contains a set of data objects and interfaces to encapsulate, store and manage physical quantities of interest, such as waveforms and high-purity germanium detector geometries. These data objects define a common format for persistent data, whether it is generated by Monte Carlo simulations or an experimental apparatus, to reduce code duplication and to ease the exchange of information between detector systems. MGDO also includes general-purpose analysis tools that can be used for the processing of measured or simulated digital signals. The MGDO design is based on the Object-Oriented programming paradigm and is very flexible, allowing for easy extension and customization of the components. The tools provided by the MGDO libraries are used by both Gerda and Majorana.
FIRST experiment: Fragmentation of Ions Relevant for Space and Therapy
NASA Astrophysics Data System (ADS)
Agodi, C.; Abou-Haidar, Z.; Alvarez, M. A. G.; Aumann, T.; Balestra, F.; Battistoni, G.; Bocci, A.; Bohlen, T. T.; Bondì, M.; Boudard, A.; Brunetti, A.; Carpinelli, M.; Cappuzzello, F.; Cavallaro, M.; Carbone, D.; Cirrone, G. A. P.; Cortes-Giraldo, M. A.; Cuttone, G.; De Napoli, M.; Durante, M.; Fernandez-Garcia, J. P.; Finck, C.; Foti, A.; Gallardo, M. I.; Golosio, B.; Iarocci, E.; Iazzi, F.; Ickert, G.; Introzzi, R.; Juliani, D.; Krimmer, J.; Kurz, N.; Labalme, M.; Lavagno, A.; Leifels, Y.; Le Fevre, A.; Leray, S.; Marchetto, F.; Monaco, V.; Morone, M. C.; Nicolosi, D.; Oliva, P.; Paoloni, A.; Patera, V.; Piersanti, L.; Pleskac, R.; Quesada, J. M.; Randazzo, N.; Romano, F.; Rossi, D.; Rosso, V.; Rousseau, M.; Sacchi, R.; Sala, P.; Sarti, A.; Scheidenberger, C.; Schuy, C.; Sciubba, A.; Sfienti, C.; Simon, H.; Sipala, V.; Spiriti, E.; Stuttge, L.; Tropea, S.; Younis, H.
2013-03-01
Nuclear fragmentation processes are relevant in different fields of basic research and applied physics and are of particular interest for tumor therapy and for space radiation protection applications. The FIRST (Fragmentation of Ions Relevant for Space and Therapy) experiment at SIS accelerator of GSI laboratory in Darmstadt, has been designed for the measurement of different ions fragmentation cross sections at different energies between 100 and 1000 MeV/nucleon. The experiment is performed by an international collaboration made of institutions from Germany, France, Italy and Spain. The experimental apparatus is partly based on an already existing setup made of the ALADIN magnet, the MUSIC IV TPC, the LAND2 neutron detector and the TOFWALL scintillator TOF system, integrated with newly designed detectors in the interaction Region (IR) around the carbon removable target: a scintillator Start Counter, a Beam Monitor drift chamber, a silicon Vertex Detector and a Proton Tagger for detection of light fragments emitted at large angles (KENTROS). The scientific program of the FIRST experiment started on summer 2011 with the study of the 400 MeV/nucleon 12C beam fragmentation on thin (8mm) carbon target.
The International Linear Collider
NASA Astrophysics Data System (ADS)
List, Benno
2014-04-01
The International Linear Collider (ILC) is a proposed e+e- linear collider with a centre-of-mass energy of 200-500 GeV, based on superconducting RF cavities. The ILC would be an ideal machine for precision studies of a light Higgs boson and the top quark, and would have a discovery potential for new particles that is complementary to that of LHC. The clean experimental conditions would allow the operation of detectors with extremely good performance; two such detectors, ILD and SiD, are currently being designed. Both make use of novel concepts for tracking and calorimetry. The Japanese High Energy Physics community has recently recommended to build the ILC in Japan.
Hand-held microwave search detector
NASA Astrophysics Data System (ADS)
Daniels, David J.; Philippakis, Mike
2005-05-01
This paper describes the further development of a patented, novel, low cost, microwave search detector using noise radar technology operating in the 27-40GHz range of frequencies, initially reported in SPIE 2004. Initial experiments have shown that plastic explosives, ceramics and plastic material hidden on the body can be detected with the system. This paper considers the basic physics of the technique and reports on the development of a initial prototype system for hand search of suspects and addresses the work carried out on optimisation of PD and FAR. The radar uses a novel lens system and the design and modelling of this for optimum depth of field of focus will be reported.
Angular distribution of electrons from powerful accelerators
NASA Astrophysics Data System (ADS)
Stepovik, A. P.; Lartsev, V. D.; Blinov, V. S.
2007-07-01
A technique for measuring the angular distribution of electrons escaping from the center of the window of the IGUR-3 and ÉMIR-M powerful accelerators (designed at the All-Russia Institute of Technical Physics, Russian Federal Nuclear Center) into ambient air is presented, and measurement data are reported. The number of electrons is measured with cable detectors (the solid angle of the collimator of the detector is ≈0.01 sr). The measurements are made in three azimuthal directions in 120° intervals in the polar angle range 0 22°. The angular distributions of the electrons coming out of the accelerators are represented in the form of B splines.
Liquid argon scintillation detection utilizing wavelength-shifting plates and light guides
NASA Astrophysics Data System (ADS)
Howard, B.
2018-02-01
In DUNE, the event timing provided by the detection of the relatively prompt scintillation photons will improve spatial resolution in the drift direction of the time-projection chamber (TPC) and is especially useful for non-beam physics topics such as supernova neutrinos and nucleon decay. The baseline design for the first 10kt single phase TPC fits the photon detector system in the natural gap between the wire planes of adjacent TPC volumes. A prototype photon detector design utilizes wavelength-shifter coated plates to convert the vacuum ultraviolet scintillation light to the optical and commercially-produced wavelength-shifting light guides to trap some of this light and transport it to an array of silicon photomultipliers at the end. This system and the testing performed to characterize the system and determine the efficiency are discussed.
Liquid Argon Scintillation Detection Utilizing Wavelength-Shifting Plates and Light Guides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, B.
In DUNE, the event timing provided by the detection of the relatively prompt scintillation photons will improve spatial resolution in the drift direction of the time-projection chamber (TPC) and is especially useful for non-beam physics topics such as supernova neutrinos and nucleon decay. The baseline design for the first 10kt single phase TPC fits the photon detector system in the natural gap between the wire planes of adjacent TPC volumes. A prototype photon detector design utilizes wavelength-shifter coated plates to convert the vacuum ultraviolet scintillation light to the optical and commercially-produced wavelength-shifting light guides to trap some of this lightmore » and transport it to an array of silicon photomultipliers at the end. This system and the testing performed to characterize the system and determine the efficiency are discussed.« less
NASA Astrophysics Data System (ADS)
Haakenaasen, Randi; Lovold, Stian
2003-01-01
Infrared technology in Norway started at the Norwegian Defense Research Establishment (FFI) in the 1960s, and has since then spread to universities, other research institutes and industry. FFI has a large, integrated IR activity that includes research and development in IR detectors, optics design, optical coatings, advanced dewar design, modelling/simulation of IR scenes, and image analysis. Part of the integrated activity is a laboratory for more basic research in materials science and semiconductor physics, in which thin films of CdHgTe are grown by molecular beam epitaxy and processed into IR detectors by various techniques. FFI also has a lot of experience in research and development of tunable infrared lasers for various applications. Norwegian industrial activities include production of infrared homing anti-ship missiles, laser rangefinders, various infrared gas sensors, hyperspectral cameras, and fiberoptic sensor systems for structural health monitoring and offshore oil well diagnostics.
Investigation of the quantum efficiency of optical heterodyne detectors
NASA Technical Reports Server (NTRS)
Batchman, T. E.
1984-01-01
The frequency response and quantum efficiency of optical photodetectors for heterodyne receivers is investigated. The measurements utilized two spectral lines from the output of two lasers as input to the photodetectors. These lines are easily measurable in power and frequency and hence serve as known inputs. By measuring the output current of the photodetector the quantum efficiency is determined as a function of frequency separation between the two input signals. An investigation of the theoretical basis and accuracy of this type of measurement relative to similar measurements utilizing risetime is undertaken. A theoretical study of the heterodyne process in photodetectors based on semiconductor physics is included so that higher bandwidth detectors may be designed. All measurements are made on commercially available detectors and manufacturers' specifications for normal photodetector operation are compared to the measured heterodyne characteristics.
Cargo Container Imaging with Gaseous Detectors
NASA Astrophysics Data System (ADS)
Forest, Tony
2006-10-01
The gas electron multiplier (GEM) , developed at CERN by Fabio Sauli, represents the latest innovation in micropattern gaseous detectors and has been utilized as a preamplification stage in applications ranging from fundamental physics experiments to medical imaging. Although cargo container inspection systems are currently in place using gamma-rays or X-rays, they are predominantly designed with a resolution to detect contraband. Current imaging systems also suffer from false alarms due to naturally radioactive cargo when radiation portal monitors are used for passive detection of nuclear materials. Detection of small shielded radioactive elements is even more problematic. Idaho State University has been developing a system to image cargo containers in order to detect small shielded radioactive cargo. The possible application of an imaging system with gas electron multiplication will be shown along with preliminary images using gaseous detectors instead of the scintillators currently in use.
NuLat: 3D Event Reconstruction of a ROL Detector for Neutrino Detection and Background Rejection
NASA Astrophysics Data System (ADS)
Yokley, Zachary; NuLat Collaboration
2015-04-01
NuLat is a proposed very-short baseline reactor antineutrino experiment that employs a unique detector design, a Ragahavan Optical Lattice (ROL), developed for the LENS solar neutrino experiment. The 3D lattice provides high spatial and temporal resolution and allows for energy deposition in each voxel to be determined independently of other voxels, as well as the time sequence associated with each voxel energy deposition. This unique feature arises from two independent means to spatially locate energy deposits: via timing and via optical channeling. NuLat, the first application of a ROL detector targeting physics results, will measure the reactor antineutrino flux at very short baselines via inverse beta decay (IBD). The ROL design of NuLat makes possible the reconstruction of positron energy with little contamination due to the annihilation gammas which smear the positron energy resolution in a traditional detector. IBD events are cleanly tagged via temporal and spatial coincidence of neutron capture in the vertex voxel or nearest neighbors. This talk will present work on IBD event reconstruction in NuLat and its likely impact on sterile neutrino detection via operation in higher background locations enabled by its superior rejection of backgrounds. This research has been funded in part by the National Science Foundation on Award Numbers 1001394 and 1001078.
NASA Astrophysics Data System (ADS)
Kolstein, M.; Chmeissani, M.
2016-01-01
The Voxel Imaging PET (VIP) Pathfinder project presents a novel design using pixelated semiconductor detectors for nuclear medicine applications to achieve the intrinsic image quality limits set by physics. The conceptual design can be extended to a Compton gamma camera. The use of a pixelated CdTe detector with voxel sizes of 1 × 1 × 2 mm3 guarantees optimal energy and spatial resolution. However, the limited time resolution of semiconductor detectors makes it impossible to use Time Of Flight (TOF) with VIP PET. TOF is used in order to improve the signal to noise ratio (SNR) by using only the most probable portion of the Line-Of-Response (LOR) instead of its entire length. To overcome the limitation of CdTe time resolution, we present in this article a simulation study using β+-γ emitting isotopes with a Compton-PET scanner. When the β+ annihilates with an electron it produces two gammas which produce a LOR in the PET scanner, while the additional gamma, when scattered in the scatter detector, provides a Compton cone that intersects with the aforementioned LOR. The intersection indicates, within a few mm of uncertainty along the LOR, the origin of the beta-gamma decay. Hence, one can limit the part of the LOR used by the image reconstruction algorithm.
Development of 2D imaging of SXR plasma radiation by means of GEM detectors
NASA Astrophysics Data System (ADS)
Chernyshova, M.; Czarski, T.; Jabłoński, S.; Kowalska-Strzeciwilk, E.; Poźniak, K.; Kasprowicz, G.; Zabołotny, W.; Wojeński, A.; Byszuk, A.; Burza, M.; Juszczyk, B.; Zienkiewicz, P.
2014-11-01
Presented 2D gaseous detector system has been developed and designed to provide energy resolved fast dynamic plasma radiation imaging in the soft X-Ray region with 0.1 kHz exposure frequency for online, made in real time, data acquisition (DAQ) mode. The detection structure is based on triple Gas Electron Multiplier (GEM) amplification structure followed by the pixel readout electrode. The efficiency of detecting unit was adjusted for the radiation energy region of tungsten in high-temperature plasma, the main candidate for the plasma facing material for future thermonuclear reactors. Here we present preliminary laboratory results and detector parameters obtained for the developed system. The operational characteristics and conditions of the detector were designed to work in the X-Ray range of 2-17 keV. The detector linearity was checked using the fluorescence lines of different elements and was found to be sufficient for good photon energy reconstruction. Images of two sources through various screens were performed with an X-Ray laboratory source and 55Fe source showing a good imaging capability. Finally offline stream-handling data acquisition mode has been developed for the detecting system with timing down to the ADC sampling frequency rate (~13 ns), up to 2.5 MHz of exposure frequency, which could pave the way to invaluable physics information about plasma dynamics due to very good time resolving ability. Here we present results of studied spatial resolution and imaging properties of the detector for conditions of laboratory moderate counting rates and high gain.
One dimensional spatial resolution optimization on a hybrid low field MRI-gamma detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agulles-Pedrós, L., E-mail: lagullesp@unal.edu.co; Abril, A., E-mail: ajabrilf@unal.edu.co
Hybrid systems like Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) and MRI/gamma camera, offer advantages combining the resolution and contrast capability of MRI with the better contrast and functional information of nuclear medicine techniques. However, the radiation detectors are expensive and need an electronic set-up, which can interfere with the MRI acquisition process or viceversa. In order to improve these drawbacks, in this work it is presented the design of a low field NMR system made up of permanent magnets compatible with a gamma radiation detector based on gel dosimetry. The design is performed using the software FEMM for estimation ofmore » the magnetic field, and GEANT4 for the physical process involved in radiation detection and effect of magnetic field. The homogeneity in magnetic field is achieved with an array of NbFeB magnets in a linear configuration with a separation between the magnets, minimizing the effect of Compton back scattering compared with a no-spacing linear configuration. The final magnetic field in the homogeneous zone is ca. 100 mT. In this hybrid proposal, although the gel detector do not have spatial resolution per se, it is possible to obtain a dose profile (1D image) as a function of the position by using a collimator array. As a result, the gamma detector system described allows a complete integrated radiation detector within the low field NMR (lfNMR) system. Finally we present the better configuration for the hybrid system considering the collimator parameters such as height, thickness and distance.« less
Photon counting detector for the personal radiography inspection system "SIBSCAN"
NASA Astrophysics Data System (ADS)
Babichev, E. A.; Baru, S. E.; Grigoriev, D. N.; Leonov, V. V.; Oleynikov, V. P.; Porosev, V. V.; Savinov, G. A.
2017-02-01
X-ray detectors operating in the energy integrating mode are successfully used in many different applications. Nevertheless the direct photon counting detectors, having the superior parameters in comparison with the integrating ones, are rarely used yet. One of the reasons for this is the low value of the electrical signal generated by a detected photon. Silicon photomultiplier (SiPM) based scintillation counters have a high detection efficiency, high electronic gain and compact dimensions. This makes them a very attractive candidate to replace routinely used detectors in many fields. More than 10 years ago the digital scanning radiography system based on multistrip ionization chamber (MIC) was suggested at Budker Institute of Nuclear Physics. The detector demonstrates excellent radiation resistance and parameter stability after 5 year operations and an imaging of up to 1000 persons per day. Currently, the installations operate at several Russian airports and at subway stations in some cities. At the present time we design a new detector operating in the photon counting mode, having superior parameters than the gas one, based on scintillator - SiPM assemblies. This detector has close to zero noise, higher quantum efficiency and a count rate capability of more than 5 MHz per channel (20% losses), which leads to better image quality and improved detection capability. The suggested detector technology could be expanded to medical applications.
NASA Astrophysics Data System (ADS)
Shevchenko, V.
2017-12-01
SHiP (Search for Hidden Particles) is a new general purpose fixed target facility, whose Technical Proposal has been recently reviewed by the CERN SPS Committee and by the CERN Research Board. The two boards recommended that the experiment proceeds further to a Comprehensive Design phase in the context of the new CERNWorking group "Physics Beyond Colliders", aiming at presenting a CERN strategy for the European Strategy meeting of 2019. In the initial phase of SHiP, the 400 GeV proton beam extracted from the SPS will be dumped on a heavy target with the aim of integrating 2×1020 pot in 5 years. A dedicated detector, based on a long vacuum tank followed by a spectrometer and particle identification detectors, will allow probing a variety of models with light long-lived exotic particles and masses below O(10) GeV/c2. The main focus will be the physics of the so-called Hidden Portals, i.e. search for Dark Photons, Light scalars and pseudo-scalars, and Heavy Neutrinos. The sensitivity to Heavy Neutrinos will allow for the first time to probe, in the mass range between the kaon and the charm meson mass, a coupling range for which Baryogenesis and active neutrino masses could also be explained. Another dedicated detector will allow the study of neutrino cross-sections and angular distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britton, C.L.; Jagadish, U.; Bryan, W.L.
An Integrated Circuit (IC) readout chip with four channels arranged so as to receive input charge from the corners of the chip was designed for use with 5- to 7-mm pixel detectors. This Application Specific IC (ASIC) can be used for cold neutron imaging, for study of structural order in materials using cold neutron scattering or for particle physics experiments. The ASIC is fabricated in a 0.5-{micro}m n-well AMI process. The design of the ASIC and the test measurements made is reported. Noise measurements are also reported.
NASA Astrophysics Data System (ADS)
Lockyer, Nigel S.
1998-02-01
This paper reports on the CDF-II B physics goals and new detector systems presently being built for Run-II of the Tevatron collider in the year 2000. The B physics goals are focused towards observing and studying CP violation and B s flavor oscillations. Estimates of expected performance are reported. The new detector systems described are: the 5-layer 3-D silicon vertex detector, the intermedia silicon tracking layers, the central tracking drift chamber, muon system upgrades, and a proposed time-of-flight system.
Muon Neutrino Disappearance in NOvA with a Deep Convolutional Neural Network Classifier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rocco, Dominick Rosario
2016-03-01
The NuMI Off-axis Neutrino Appearance Experiment (NOvA) is designed to study neutrino oscillation in the NuMI (Neutrinos at the Main Injector) beam. NOvA observes neutrino oscillation using two detectors separated by a baseline of 810 km; a 14 kt Far Detector in Ash River, MN and a functionally identical 0.3 kt Near Detector at Fermilab. The experiment aims to provide new measurements of Δm 2 and θ23 and has potential to determine the neutrino mass hierarchy as well as observe CP violation in the neutrino sector. Essential to these analyses is the classification of neutrino interaction events in NOvA detectors.more » Raw detector output from NOvA is interpretable as a pair of images which provide orthogonal views of particle interactions. A recent advance in the field of computer vision is the advent of convolutional neural networks, which have delivered top results in the latest image recognition contests. This work presents an approach novel to particle physics analysis in which a convolutional neural network is used for classification of particle interactions. The approach has been demonstrated to improve the signal efficiency and purity of the event selection, and thus physics sensitivity. Early NOvA data has been analyzed (2.74×10 20 POT, 14 kt equivalent) to provide new best- fit measurements of sin 2(θ23) = 0.43 (with a statistically-degenerate compliment near 0.60) and |Δm2 | = 2.48 × 10 -3 eV 2.« less
Realization of the electrical Sentinel 4 detector integration
NASA Astrophysics Data System (ADS)
Hermsen, M.; Hohn, R.; Skegg, M.; Woffinden, C.; Reulke, R.
2017-09-01
The detectors of the Sentinel 4 multi spectral imager are operated in flight at 215K while the analog electronics is operated at ambient temperature. The detector is cooled by means of a radiator. For thermal reasons no active component has been allowed in the cooled area closest to the detector as the passive radiator is restricted in its size. For thermal decoupling of detector and electronics a long distance between detector and electronics is considered ideal as thermal conductivity decreases with the length of the connection. In contradiction a short connection between detector and electronics is ideal for the electronic signals. Only a short connection ensures the signal integrity of both the weak detector output signal but similarly also the clock signals for driving the detector. From a mechanical and thermal point of view the connection requires a certain minimum length. The selected solution serves all these needs but had to approach the limits of what is electrically, mechanically and thermally feasible. In addition, shielding from internal (self distortion) and external distorting signals has to be realized for the connection between FEE(Front End Electronics) and detectors. At the time of the design of the flex it was not defined whether the mechanical structure between FEE and FPA (Focal Plane Assembly) would act as a shielding structure. The physical separation between CCD detector and the Front-end Electronics, the adverse EMI environment in which the instrument will be operated in (the location of the instrument on the satellite is in vicinity to a down-link K-band communication antenna of the S/C) require at least the video output signals to be shielded. Both detectors (a NIR and a UVVIS detector) are sensitive to contamination and difficult to be cleaned in case of any contamination. This brings up extreme cleanliness requirements for the detector in manufacturing and assembly. Effectively the detector has to be kept in an ISO 5 environment and additionally humidity has to be avoided - which does not comply with the usual clean-room atmosphere. This paper describes how in Sentinel 4 the given challenges have been overcome, how the limited load drive capability of the detector component has been considered on a flex length of about 20 cm (7.87 in) and how EMC shielding of the highly sensitive analog signals of the detector has been realized. Also covered are design/manufacturing aspects and a glance on testing results is provided
A Multi-Contact, Low Capacitance HPGe Detector for High Rate Gamma Spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, Christopher
2014-12-04
The detection, identification and non-destructive assay of special nuclear materials and nuclear fission by-products are critically important activities in support of nuclear non-proliferation programs. Both national and international nuclear safeguard agencies recognize that current accounting methods for spent nuclear fuel are inadequate from a safeguards perspective. Radiation detection and analysis by gamma-ray spectroscopy is a key tool in this field, but no instrument exists that can deliver the required performance (energy resolution and detection sensitivity) in the presence of very high background count rates encountered in the nuclear safeguards arena. The work of this project addresses this critical need bymore » developing a unique gamma-ray detector based on high purity germanium that has the previously unachievable property of operating in the 1 million counts-per-second range while achieving state-of-the-art energy resolution necessary to identify and analyze the isotopes of interest. The technical approach was to design and fabricate a germanium detector with multiple segmented electrodes coupled to multi-channel high rate spectroscopy electronics. Dividing the germanium detector’s signal electrode into smaller sections offers two advantages; firstly, the energy resolution of the detector is potentially improved, and secondly, the detector is able to operate at higher count rates. The design challenges included the following; determining the optimum electrode configuration to meet the stringent energy resolution and count rate requirements; determining the electronic noise (and therefore energy resolution) of the completed system after multiple signals are recombined; designing the germanium crystal housing and vacuum cryostat; and customizing electronics to perform the signal recombination function in real time. In this phase I work, commercial off-the-shelf electrostatic modeling software was used to develop the segmented germanium crystal geometry, which underwent several iterations before an optimal electrode configuration was found. The model was tested and validated against real-world measurements with existing germanium detectors. Extensive modeling of electronic noise was conducted using established formulae, and real-world measurements were performed on candidate front-end electronic components. This initial work proved the feasibility of the design with respect to expected high count rate and energy resolution performance. Phase I also delivered the mechanical design of the detector housing and vacuum cryostat to be built in Phase II. Finally, a Monte Carlo simulation was created to show the response of the complete design to a Cs-137 source. This development presents a significant advance for nuclear safeguards instrumentation with increased speed and accuracy of detection and identification of special nuclear materials. Other significant applications are foreseen for a gamma-ray detector that delivers high energy resolution (1keV FWHM noise) at high count rate (1 Mcps), especially in the areas of physics research and materials analysis.« less
Particle identification for a future EIC detector
NASA Astrophysics Data System (ADS)
Ilieva, Y.; Allison, L.; Barber, C.; Cao, T.; Del Dotto, A.; Gleason, C.; He, X.; Kalicy, G.; McKisson, J.; Nadel-Turonski, P.; Park, K.; Rapoport, J.; Schwarz, C.; Schwiening, J.; Wong, C. P.; Zhao, Zh.; Zorn, C.
2018-03-01
In its latest Long Range Plan for Nuclear Science Research in the U.S., the Nuclear Science Advisory Committee to the Department of Energy recommended that in regards to new nuclear-physics facilities, the construction of an Electron Ion Collider (EIC) be of the highest priority after the completion of the Facility for Rare Isotope Beams. In order to carry out key aspects of the scientific program of the EIC, the EIC central detector must be capable of hadron particle identification (PID) over a broad momentum range of up to 50 GeV/c. The goal of the EIC-PID consortium is to develop an integrated program for PID at EIC, which employs several different technologies for imaging Cherenkov detectors. Here we discuss the conceptual designs and the expected PID performance of two of these detectors, as well as the newest results of gain evaluation studies of photon sensors that are good candidates to read out these detectors. Development of a gas-aerogel dual-radiator Ring Imaging Cherenkov (dRICH) detector with outward focusing mirrors is being pursued for the hadron endcap. Simulations demonstrate that the dRICH can provide a continuous >= 3σ π /K/p separation from 2.5 GeV/c to 50 GeV/c. A modular aerogel Ring Imaging Cherenkov (mRICH) detector with a Fresnel lens as a focusing element is being pursued for the electron endcap. The design provides for hadron identification over a momentum range of 3 GeV/c-10 GeV/c. The working principle of the mRICH design has been proven in a beam test with a first prototype. The location of the sensor readout planes of the Cherenkov detectors in the magnetic field of the central-detector solenoid, which is expected to be within 1.5 T-3 T, makes is necessary to evaluate the limit of the acceptable performance of commercially available photosensors, such as microchannel-plate photomultipliers (MCP PMTs). Here we present the results of gain evaluation of multi-anode MCP PMTs with a pore size of 10 μm. Overall, our preliminary results suggest that the 10-μm pore-size sensors can be operated in a magnetic field with magnitude up to Bmax of 2 T. The value of Bmax depends on the relative orientation between the sensor and the field.
NASA Astrophysics Data System (ADS)
Lazear, Justin Scott
The Inflationary Big Bang model of cosmology generically predicts the existence of a background of gravitational waves due to Inflation, which coupled into the B-mode power spectrum during the epochs of Recombination and Reionization. A measurement of the primordial B-mode spectrum would verify the reality of the Inflationary model and constrain the allowed models of Inflation. In Chapter 1 we describe the background physics of cosmology and Inflation, and the challenges involved with measuring the primordial B-mode spectrum. In Chapter 2 we describe the Primordial Inflation Polarization Explorer (PIPER), a high-altitude balloon-borne microwave polarimeter optimized to measure the B-mode spectrum on large angular scales. We examine the high level design of PIPER and how it addresses the challenges presented in Chapter 1. Following the high level design, we examine in detail the electronics developed for PIPER, both for in-flight operations and for laboratory development. In Chapter 3 we describe the Transition Edge Sensor (TES) bolometers that serve as PIPER's detectors, analyze the Superconducting Quantum Interference Device (SQUID) amplifiers and Mutli-channel Electronics (MCE) detector readout chain, and finally present the characterization of both detector parameters and noise of a single pixel device with a PIPER-like (Backshort Under Grid, BUG) architecture to validate the detector design. In Chapter 4 we present a description of the HKE electronics, used to measure all non-detector science timestreams in PIPER, as well as flight housekeeping and laboratory development. In addition to the operation of the HKE electronics, we develop a model to quantify the performance of the HKE thermometry reader (TRead). A simple simulation pipeline is developed and used to explore the consequences of imperfect foreground removal in Chapter 5. The details of estimating the instrument noise as projected onto a sky map is developed also developed. In particular, we address whether PIPER may be able to get significant science return with only a fraction of its planned flights by optimizing the order that the frequency bands are flown. Additionally, we look at how a spatially varying calibration gain error would affect measurements of the B-mode spectrum. Finally, a series of appendices presents the physics of SQUIDs, develops techniques for estimating noise of circuits and amplifiers, and introduces techniques from control systems. In addition, a few miscellaneous results used throughout the work are derived.
A micron resolution optical scanner for characterization of silicon detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shukla, R. A.; Dugad, S. R., E-mail: dugad@cern.ch; Gopal, A. V.
2014-02-15
The emergence of high position resolution (∼10 μm) silicon detectors in recent times have highlighted the urgent need for the development of new automated optical scanners of micron level resolution suited for characterizing microscopic features of these detectors. More specifically, for the newly developed silicon photo-multipliers (SiPM) that are compact, possessing excellent photon detection efficiency with gain comparable to photo-multiplier tube. In a short time, since their invention the SiPMs are already being widely used in several high-energy physics and astrophysics experiments as the photon readout element. The SiPM is a high quantum efficiency, multi-pixel photon counting detector with fastmore » timing and high gain. The presence of a wide variety of photo sensitive silicon detectors with high spatial resolution requires their performance evaluation to be carried out by photon beams of very compact spot size. We have designed a high resolution optical scanner that provides a monochromatic focused beam on a target plane. The transverse size of the beam was measured by the knife-edge method to be 1.7 μm at 1 − σ level. Since the beam size was an order of magnitude smaller than the typical feature size of silicon detectors, this optical scanner can be used for selective excitation of these detectors. The design and operational details of the optical scanner, high precision programmed movement of target plane (0.1 μm) integrated with general purpose data acquisition system developed for recording static and transient response photo sensitive silicon detector are reported in this paper. Entire functionality of scanner is validated by using it for selective excitation of individual pixels in a SiPM and identifying response of active and dead regions within SiPM. Results from these studies are presented in this paper.« less
Gaseous Electron Multiplier (GEM) Detectors
NASA Astrophysics Data System (ADS)
Gnanvo, Kondo
2017-09-01
Gaseous detectors have played a pivotal role as tracking devices in the field of particle physics experiments for the last fifty years. Recent advances in photolithography and micro processing techniques have enabled the transition from Multi Wire Proportional Chambers (MWPCs) and Drift Chambers to a new family of gaseous detectors refer to as Micro Pattern Gaseous Detectors (MPGDs). MPGDs combine the basic gas amplification principle with micro-structure printed circuits to provide detectors with excellent spatial and time resolution, high rate capability, low material budget and high radiation tolerance. Gas Electron Multiplier (GEMs) is a well-established MPGD technology invented by F. Sauli at CERN in 1997 and deployed various high energy physics (HEP) and nuclear NP experiment for tracking systems of current and future NP experiments. GEM detector combines an exceptional high rate capability (1 MHz / mm2) and robustness against harsh radiation environment with excellent position and timing resolution performances. Recent breakthroughs over the past decade have allowed the possibility for large area GEMs, making them cost effective and high-performance detector candidates to play pivotal role in current and future particle physics experiments. After a brief introduction of the basic principle of GEM technology, I will give a brief overview of the GEM detectors used in particle physics experiments over the past decades and especially in the NP community at Thomas Jefferson National Laboratory (JLab) and Brookhaven National Laboratory (BNL). I will follow by a review of state of the art of the new GEM development for the next generation of colliders such as Electron Ion Collider (EIC) or High Luminosity LHC and future Nuclear Physics experiments. I will conclude with a presentation of the CERN-based RD51 collaboration established in 2008 and its major achievements regarding technological developments and applications of MPGDs.
Design of Force Sensor Leg for a Rocket Thrust Detector
NASA Astrophysics Data System (ADS)
Woten, Douglas; McGehee, Tripp; Wright, Anne
2005-03-01
A hybrid rocket is composed of a solid fuel and a separate liquid or gaseous oxidizer. These rockets may be throttled like liquid rockets, are safer than solid rockets, and are much less complex than liquid rockets. However, hybrid rockets produce thrust oscillations that are not practical for large scale use. A lab scale hybrid rocket at the University of Arkansas at Little Rock (UALR) Hybrid Rocket Facility is used to develop sensors to measure physical properties of hybrid rockets. Research is currently being conducted to design a six degree of freedom force sensor to measure the thrust and torque in all three spacial dimensions. The detector design uses six force sensor legs. Each leg utilizes strain gauges and a Wheatstone bridge to produce a voltage propotional to the force on the leg. The leg was designed using the CAD software ProEngineer and ProMechanica. Computer models of the strains on the single leg will be presented. A prototype leg was built and was tested in an INSTRON and results will be presented.
NASA Astrophysics Data System (ADS)
Schlattauer, Leo; Parali, Levent; Pechousek, Jiri; Sabikoglu, Israfil; Celiktas, Cuneyt; Tektas, Gozde; Novak, Petr; Jancar, Ales; Prochazka, Vit
2017-09-01
This paper reports on the development of a gamma-ray spectroscopic system for the (i) recording and (ii) processing of spectra. The utilized data read-out unit consists of a PCI digital oscilloscope, personal computer and LabVIEW™ programming environment. A pulse-height spectra of various sources were recorded with two NaI(Tl) detectors and analyzed, demonstrating the proper usage of the detectors. A multichannel analyzer implements the Gaussian photopeak fitting. The presented method provides results which are in compliance to the ones taken from commercial spectroscopy systems. Each individual hardware or software unit can be further utilized in different spectrometric user-systems. An application of the developed system for research and teaching purposes regarding the design of digital spectrometric systems has been successfully tested at the laboratories of the Department of Experimental Physics.
Micro-controller based fall detector to assist recovering patients or senior citizens
NASA Astrophysics Data System (ADS)
Páez, Francisco; Asplund, Lars
2010-09-01
Senior citizens and patients recovering from surgery or using strong medications with severe side effects tend to fall unexpectedly. The consequences of such an uncontrolled fall could be worse than the original malady, especially when there is no communication with the care-takers. We describe a fall-detector device capable of distinguishing falls from normal daily activities. Based on three-axis accelerometer and advanced data processing, the microcontroller emits an alarm requesting help in the case of a physical fall. We design and construct the fall-detector prototype for either inside or outside use. In order to determine the device performance, fifty instances of each fall event have been evaluated; all of them detected as fall event. In the case of daily activities, the only movement that produces an alarm is the transition from standing up to lying in 5% of the occurrences.
A Test Apparatus for the MAJORANA DEMONSTRATOR Front-end Electronics
NASA Astrophysics Data System (ADS)
Singh, Harjit; Loach, James; Poon, Alan
2012-10-01
One of the most important experimental programs in neutrino physics is the search for neutrinoless double-beta decay. The MAJORANA collaboration is searching for this rare nuclear process in the Ge-76 isotope using HPGe detectors. Each detector is instrumented with high-performance electronics to read out and amplify the signals. The part of the electronics close to the detectors, consisting of a novel front-end circuit, cables and connectors, is made of radio-pure materials and is exceedingly delicate. In this work a dedicated test apparatus was created to benchmark the performance of the electronics before installation in the experiment. The apparatus was designed for cleanroom use, with fixtures to hold the components without contaminating them, and included the electronics necessary for power and readout. In addition to testing, the station will find longer term use in development of future versions of the electronics.
Demonstrator Detection System for the Active Target and Time Projection Chamber (ACTAR TPC) project
NASA Astrophysics Data System (ADS)
Roger, T.; Pancin, J.; Grinyer, G. F.; Mauss, B.; Laffoley, A. T.; Rosier, P.; Alvarez-Pol, H.; Babo, M.; Blank, B.; Caamaño, M.; Ceruti, S.; Daemen, J.; Damoy, S.; Duclos, B.; Fernández-Domínguez, B.; Flavigny, F.; Giovinazzo, J.; Goigoux, T.; Henares, J. L.; Konczykowski, P.; Marchi, T.; Lebertre, G.; Lecesne, N.; Legeard, L.; Maugeais, C.; Minier, G.; Osmond, B.; Pedroza, J. L.; Pibernat, J.; Poleshchuk, O.; Pollacco, E. C.; Raabe, R.; Raine, B.; Renzi, F.; Saillant, F.; Sénécal, P.; Sizun, P.; Suzuki, D.; Swartz, J. A.; Wouters, C.; Wittwer, G.; Yang, J. C.
2018-07-01
The design, realization and operation of a prototype or "demonstrator" version of an active target and time projection chamber (ACTAR TPC) for experiments in nuclear physics is presented in detail. The heart of the detection system features a MICROMEGAS gas amplifier coupled to a high-density pixelated pad plane with square pad sizes of 2 × 2 mm2. The detector has been thoroughly tested with several different gas mixtures over a wide range of pressures and using a variety of sources of ionizing radiation including laser light, an α-particle source and heavy-ion beams of 24Mg and 58Ni accelerated to energies of 4.0 MeV/u. Results from these tests and characterization of the detector response over a wide range of operating conditions will be described. These developments have served as the basis for the design of a larger detection system that is presently under construction.
High Energy Electron Detectors on Sphinx
NASA Astrophysics Data System (ADS)
Thompson, J. R.; Porte, A.; Zucchini, F.; Calamy, H.; Auriel, G.; Coleman, P. L.; Bayol, F.; Lalle, B.; Krishnan, M.; Wilson, K.
2008-11-01
Z-pinch plasma radiation sources are used to dose test objects with K-shell (˜1-4keV) x-rays. The implosion physics can produce high energy electrons (> 50keV), which could distort interpretation of the soft x-ray effects. We describe the design and implementation of a diagnostic suite to characterize the electron environment of Al wire and Ar gas puff z-pinches on Sphinx. The design used ITS calculations to model detector response to both soft x-rays and electrons and help set upper bounds to the spurious electron flux. Strategies to discriminate between the known soft x-ray emission and the suspected electron flux will be discussed. H.Calamy et al, ``Use of microsecond current prepulse for dramatic improvements of wire array Z-pinch implosion,'' Phys Plasmas 15, 012701 (2008) J.A.Halbleib et al, ``ITS: the integrated TIGER series of electron/photon transport codes-Version 3.0,'' IEEE Trans on Nuclear Sci, 39, 1025 (1992)
The PANDA DIRC detectors at FAIR
NASA Astrophysics Data System (ADS)
Schwarz, C.; Ali, A.; Belias, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Böhm, M.; Britting, A.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kreutzfeld, K.; Kröck, B.; Merle, O.; Rieke, J.; Schmidt, M.; Wasem, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.; Allison, L.; Hyde, C.
2017-07-01
The PANDA detector at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) addresses fundamental questions of hadron physics. An excellent hadronic particle identification (PID) will be accomplished by two DIRC (Detection of Internally Reflected Cherenkov light) counters in the target spectrometer. The design for the barrel region covering polar angles between 22o to 140o is based on the successful BABAR DIRC with several key improvements, such as fast photon timing and a compact imaging region. The novel Endcap Disc DIRC will cover the smaller forward angles between 5o (10o) to 22o in the vertical (horizontal) direction. Both DIRC counters will use lifetime-enhanced microchannel plate PMTs for photon detection in combination with fast readout electronics. Geant4 simulations and tests with several prototypes at various beam facilities have been used to evaluate the designs and validate the expected PID performance of both PANDA DIRC counters.
The design and evaluation of grazing incidence relay optics
NASA Technical Reports Server (NTRS)
Davis, John M.; Chase, R. C.; Silk, J. K.; Krieger, A. S.
1989-01-01
X-ray astronomy, both solar and celestial, has many needs for high spatial resolution observations which have to be performed with electronic detectors. If the resolution is not to be detector limited, plate scales in excess of 25 microns arc/sec, corresponding to focal lengths greater than 5 m, are required. In situations where the physical size is restricted, the problem can be solved by the use of grazing incidence relay optics. A system was developed which employs externally polished hyperboloid-hyperboloid surfaces to be used in conjunction with a Wolter-Schwarzschild primary. The secondary is located in front of the primary focus and provides a magnification of 4, while the system has a plate scale of 28 microns arc/sec and a length of 1.9 m. The design, tolerance specification, fabrication and performance at visible and X-ray wavelengths of this optical system are described.
NASA Astrophysics Data System (ADS)
Cooper, R. J.; Amman, M.; Vetter, K.
2018-04-01
High-resolution gamma-ray spectrometers are required for applications in nuclear safeguards, emergency response, and fundamental nuclear physics. To overcome one of the shortcomings of conventional High Purity Germanium (HPGe) detectors, we have developed a prototype device capable of achieving high event throughput and high energy resolution at very high count rates. This device, the design of which we have previously reported on, features a planar HPGe crystal with a reduced-capacitance strip electrode geometry. This design is intended to provide good energy resolution at the short shaping or digital filter times that are required for high rate operation and which are enabled by the fast charge collection afforded by the planar geometry crystal. In this work, we report on the initial performance of the system at count rates up to and including two million counts per second.
NASA Astrophysics Data System (ADS)
Chen, H.; Briggl, K.; Eckert, P.; Harion, T.; Munwes, Y.; Shen, W.; Stankova, V.; Schultz-Coulon, H. C.
2017-01-01
MuTRiG is a mixed signal Silicon Photomultiplier readout ASIC designed in UMC 180 nm CMOS technology for precise timing and high event rate applications in high energy physics experiments and medical imaging. It is dedicated to the readout of the scintillating fiber detector and the scintillating tile detector of the Mu3e experiment. The MuTRiG chip extends the excellent timing performance of the STiCv3 chip with a fast digital readout for high rate applications. The high timing performance of the fully differential SiPM readout channels and 50 ps time binning TDCs are complemented by an upgraded digital readout logic and a 1.28 Gbps LVDS serial data link. The design of the chip and the characterization results of the analog front-end, TDC and the LVDS data link are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rielage, Keith R; Elliott, Steven R; Boswell, Melissa
2010-12-13
The MAJORANA Collaboration is assembling an array of HPGe detectors to search for neutrinoless double-beta decay in {sup 76}Ge. Initially, MAJORANA aims to construct a prototype module to demonstrate the potential of a future 1-tonne experiment. The design and potential reach of this prototype DEMONSTRATOR module are presented. Our proposed method uses the well-established technique of searching for neutrinoless double-beta decay in high purity Ge-diode radiation detectors that play both roles of source and detector. The use of P-PC Ge detectors present advances in background rejection and a Significantly lower energy threshold than conventional Ge detector technologies. The lower energymore » threshold opens up a broader and exciting physics program including searches for dark matter and axions concurrent with the double-beta decay search. The DEMONSTRATOR should establish that the backgrounds are low enough to justify scaling to tonne-scale experiment, probe the neutrino effective mass region above 100 meV, and search the low energy region with a sensitivity to dark matter. The DEMONSTRATOR will be sited at the 4850-ft level (4200 m.w.e) of the Sanford Underground Laboratory at Homestake and preparations for construction are currently underway.« less
NASA Astrophysics Data System (ADS)
Merčep, Elena; Burton, Neal C.; Deán-Ben, Xosé Luís.; Razansky, Daniel
2017-02-01
The complementary contrast of the optoacoustic (OA) and pulse-echo ultrasound (US) modalities makes the combined usage of these imaging technologies highly advantageous. Due to the different physical contrast mechanisms development of a detector array optimally suited for both modalities is one of the challenges to efficient implementation of a single OA-US imaging device. We demonstrate imaging performance of the first hybrid detector array whose novel design, incorporating array segments of linear and concave geometry, optimally supports image acquisition in both reflection-mode ultrasonography and optoacoustic tomography modes. Hybrid detector array has a total number of 256 elements and three segments of different geometry and variable pitch size: a central 128-element linear segment with pitch of 0.25mm, ideally suited for pulse-echo US imaging, and two external 64-elements segments with concave geometry and 0.6mm pitch optimized for OA image acquisition. Interleaved OA and US image acquisition with up to 25 fps is facilitated through a custom-made multiplexer unit. Spatial resolution of the transducer was characterized in numerical simulations and validated in phantom experiments and comprises 230 and 300 μm in the respective OA and US imaging modes. Imaging performance of the multi-segment detector array was experimentally shown in a series of imaging sessions with healthy volunteers. Employing mixed array geometries allows at the same time achieving excellent OA contrast with a large field of view, and US contrast for complementary structural features with reduced side-lobes and improved resolution. The newly designed hybrid detector array that comprises segments of linear and concave geometries optimally fulfills requirements for efficient US and OA imaging and may expand the applicability of the developed hybrid OPUS imaging technology and accelerate its clinical translation.
DUMBO - A cosmic-ray astrophysics facility in Canada
NASA Astrophysics Data System (ADS)
Hanna, D.
1986-04-01
A deep-underground muon-bundle observatory (DUMBO) is proposed for construction at 700 m depth near Sudbury, Ontario, Canada. The DUMBO design calls for two parallel 3.6 x 21.6-m stacks of multiwire proportional chambers in adjacent mine tunnels (synthesizing a larger-area detector) and a 121-station surface EAS array with variable density to accommodate shower energies in the 100-TeV and 10-PeV ranges. The aims of DUMBO include determining the nuclear composition of cosmic rays, ultrahigh-energy gamma-ray astronomy, and characterizing the point sources of muons observed in recent proton-decay experiments; the physics of these processes and the detector capabilities they imply are discussed. Graphs, diagrams, and drawings are provided.
Energy-resolved fast neutron resonance radiography at CSNS
NASA Astrophysics Data System (ADS)
Tan, Zhixin; Tang, Jingyu; Jing, Hantao; Fan, Ruirui; Li, Qiang; Ning, Changjun; Bao, Jie; Ruan, Xichao; Luan, Guangyuan; Feng, Changqin; Zhang, Xianpeng
2018-05-01
The white neutron beamline at the China Spallation Neutron Source will be used mainly for nuclear data measurements. It will be characterized by high flux and broad energy spectra. To exploit the beamline as a neutron imaging source, we propose a liquid scintillator fiber array for fast neutron resonance radiography. The fiber detector unit has a small exposed area, which will limit the event counts and separate the events in time, thus satisfying the requirements for single-event time-of-flight (SEToF) measurement. The current study addresses the physical design criteria for ToF measurement, including flux estimation and detector response. Future development and potential application of the technology are also discussed.
Precise mapping of the magnetic field in the CMS barrel yoke using cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatrchyan, S.; et al.,
2010-03-01
The CMS detector is designed around a large 4 T superconducting solenoid, enclosed in a 12000-tonne steel return yoke. A detailed map of the magnetic field is required for the accurate simulation and reconstruction of physics events in the CMS detector, not only in the inner tracking region inside the solenoid but also in the large and complex structure of the steel yoke, which is instrumented with muon chambers. Using a large sample of cosmic muon events collected by CMS in 2008, the field in the steel of the barrel yoke has been determined with a precision of 3 tomore » 8% depending on the location.« less
Interactions.org Particle Physics News Image Bank Fermilab in the News Quantum Diaries Mu2e: muon-to-electron works The Mu2e detector is a particle physics detector embedded in a series of superconducting magnets advance research at the Intensity Frontier. The U.S. Particle Physics Project Prioritization Panel, P5
Photoelectric array detectors for use at XUV wavelengths. [for Spacelab solar-physics facilities
NASA Technical Reports Server (NTRS)
Timothy, J. G.
1981-01-01
The characteristics of photoelectric detector systems for use at visible-light, ultraviolet, and X-ray wavelengths are briefly reviewed in the context of the needs of the Spacelab solar-physics facilities. Photoelectric array detectors for use at XUV wavelengths between 90 and 1500 A are described, and their use in the ESA Grazing-Incidence Solar Telescope (GRIST) facility is discussed.
Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics
NASA Astrophysics Data System (ADS)
Saviano, G.; Ferrini, M.; Benussi, L.; Bianco, S.; Piccolo, D.; Colafranceschi, S.; KjØlbro, J.; Sharma, A.; Yang, D.; Chen, G.; Ban, Y.; Li, Q.; Grassini, S.; Parvis, M.
2018-03-01
Gas detectors for elementary particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This work studies properties of potential eco-friendly gas replacements by computing the physical and chemical parameters relevant for use as detector media, and suggests candidates to be considered for experimental investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jezynski, Tomasz; /DESY; Larsen, Raymond
ATCA/{mu}TCA platforms are attractive because of the modern serial link architecture, high availability features and many packaging options. Less-demanding availability applications can be met economically by scaling back speed and redundancy. The ATCA specification was originally targeted for the Telecom industry but has gained recently a much wider user audience. The purpose of this paper is to report on present hardware and software R and D efforts where ATCA and {mu}TCA are planned, already being used or in development using selected examples for accelerator and detectors in the Physics community. It will present also the status of a proposal formore » physics extensions to ATCA/{mu}TCA specifications to promote inter-operability of laboratory and industry designs for physics.« less
Detectors for Linear Colliders: Physics Requirements and Experimental Conditions (1/4)
Battaglia, Marco
2018-01-12
How is the anticipated physics program of a future e+e- collider shaping the R&D; for new detectors in collider particle physics ? This presentation will review the main physics requirements and experimental conditions comparing to LHC and LEP. In particular, I shall discuss how e+e- experimentation is expected to change moving from LEP-2 up to multi-TeV energies.
Georges Charpak, Particle Detectors, and Multiwire Chambers
particle detectors used throughout experimental particle physics. In 1968, he invented and developed the the 2005 International Year of Physics (video) Top Some links on this page may take you to non-federal
The CLAS12-RICH hybrid geometry
NASA Astrophysics Data System (ADS)
Angelini, Giovanni; CLAS12-RICH Collaboration
2017-01-01
A Ring-imaging Cherenkov detector (RICH) has been designed for the CLAS12 spectrometer (JLAB, Hall B) in order to increase the particle identification. Among the approved physics program focused upon 3D imaging of the nucleon, some Semi Inclusive Deep Inelastic Scattering experiments (E12-09-007, E12-09-008, E12-09-009) demand an efficient kaon identification across the momentum range from 3 to 8 GeV/c. The detector exploits a novel elaborated hybrid geometry based on a complex focusing mirror system that will reduce the area instrumented with photon detectors. For forward scattered particles (θ <12°) with momenta p = 3-8 GeV/c, a proximity imaging method with direct Cherenkov light detection will be used. For larger angles of 12° < θ <35° and momenta of p = 3-6 GeV/c, the Cherenkov light will be focused by a spherical mirror, undergo two further passes through the aerogel radiator and will be reflected from planar mirrors before detection. A carefully study on reflections has been performed considering microscopic and macroscopic effects. In addition, a new feature has been introduced in the CLAS12 simulation software in order to generate the geometry of the detector by using a computer-aided design (CAD) file for an accurate geometrical description. U.S. Department of Energy, GWU Columbian College Art and Science Facilitating Fund Award (CCAS CCFF).
ICARUS: An Innovative Large LAR Detector for Neutrino Physics
NASA Astrophysics Data System (ADS)
Vignoli, C.; Barni, D.; Disdier, J. M.; Rampoldi, D.; Icarus Collaboration
2006-04-01
ICARUS is an international project that foresees the installation of very large LAr detectors inside the Gran Sasso underground laboratory in order to be sensitive to rare phenomena of particle physics. The detection technique is based on the collection of electrons produced by particle interactions in LAr by a matrix of thousands of thin wires. At the moment the project foresees the installation of a 600,000-kg vessel (T600). The total amount of LAr can be expanded in a modular way to masses of the order of 106 kg. The T600 houses two identical 300,000-kg Ar sub-cryostats that are aluminum boxes about 20-m long, 4-m high and 4-m wide. Safety requirements for the underground installation have led to a unique design for the vessels to prevent LAr spillages even in the case of inner cryostat failure. Electrons must drift over meters requiring the development of special gas and liquid Ar purification units to provide an extremely high LAr purity (better then 0.1 ppb). The cooling system has been designed to assure a high thermal uniformity in the detector volume (less than 1-K differential). The cryogenic system associated with the final ICARUS configuration is based on three N2 refrigerators, three 30-m3 tanks and pump driven two-phase N2 forced-flow cooling of the various sub-systems. The T600 was successfully tested in Pavia in 2001 and it is now under installation in Gran Sasso for final operation. The future mass expansion strategy is under investigation.
Neutron detection with plastic scintillators coupled to solid state photomultiplier detectors
NASA Astrophysics Data System (ADS)
Christian, James F.; Johnson, Erik B.; Fernandez, Daniel E.; Vogel, Samuel; Frank, Rebecca; Stoddard, Graham; Stapels, Christopher; Pereira, Jorge; Zegers, Remco
2017-09-01
The recent reduction of dark current in Silicon Solid-state photomultipliers (SiSSPMs) makes them an attractive alternative to conventional photomultiplier tubes (PMTs) for scintillation detection applications. Nuclear Physics experiments often require large detector volumes made using scintillation materials, which require sensitive photodetectors, such as a PMTs. PMTs add to the size, fragility, and high-voltage requirements as well as distance requirements for experiments using magnetic fields. This work compares RMD's latest detector modules, denoted as the "year 2 prototype", of plastic scintillators that discriminate gamma and high-energy particle events from neutron events using pulse shape discrimination (PSD) coupled to a SiSSPM to the following two detector modules: a similar "year 1 prototype" and a scintillator coupled to a PMT module. It characterizes the noise floor, relative signal-to-noise ratio (SNR), the timing performance, the PSD figure-of-merit (FOM) and the neutron detection efficiency of RMD's detectors. This work also evaluates the scaling of SiSSPM detector modules to accommodate the volumes needed for many Nuclear Physics experiments. The Si SSPM detector module provides a clear advantage in Nuclear Physics experiments that require the following attributes: discrimination of neutron and gamma-ray events, operation in or near strong magnetic fields, and segmentation of the detector.
Design of 4D x-ray tomography experiments for reconstruction using regularized iterative algorithms
NASA Astrophysics Data System (ADS)
Mohan, K. Aditya
2017-10-01
4D X-ray computed tomography (4D-XCT) is widely used to perform non-destructive characterization of time varying physical processes in various materials. The conventional approach to improving temporal resolution in 4D-XCT involves the development of expensive and complex instrumentation that acquire data faster with reduced noise. It is customary to acquire data with many tomographic views at a high signal to noise ratio. Instead, temporal resolution can be improved using regularized iterative algorithms that are less sensitive to noise and limited views. These algorithms benefit from optimization of other parameters such as the view sampling strategy while improving temporal resolution by reducing the total number of views or the detector exposure time. This paper presents the design principles of 4D-XCT experiments when using regularized iterative algorithms derived using the framework of model-based reconstruction. A strategy for performing 4D-XCT experiments is presented that allows for improving the temporal resolution by progressively reducing the number of views or the detector exposure time. Theoretical analysis of the effect of the data acquisition parameters on the detector signal to noise ratio, spatial reconstruction resolution, and temporal reconstruction resolution is also presented in this paper.
AM06: the Associative Memory chip for the Fast TracKer in the upgraded ATLAS detector
NASA Astrophysics Data System (ADS)
Annovi, A.; Beretta, M. M.; Calderini, G.; Crescioli, F.; Frontini, L.; Liberali, V.; Shojaii, S. R.; Stabile, A.
2017-04-01
This paper describes the AM06 chip, which is a highly parallel processor for pattern recognition in the ATLAS high energy physics experiment. The AM06 contains memory banks that store data organized in 18 bit words; a group of 8 words is called "pattern". Each AM06 chip can store up to 131 072 patterns. The AM06 is a large chip, designed in 65 nm CMOS, and it combines full-custom memory arrays, standard logic cells and serializer/deserializer IP blocks at 2 Gbit/s for input/output communication. The overall silicon area is 168 mm2 and the chip contains about 421 million transistors. The AM06 receives the detector data for each event accepted by Level-1 trigger, up to 100 kHz, and it performs a track reconstruction based on hit information from channels of the ATLAS silicon detectors. Thanks to the design of a new associative memory cell and to the layout optimization, the AM06 consumption is only about 1 fJ/bit per comparison. The AM06 has been fabricated and successfully tested with a dedicated test system.
Online Luminosity Measurement at CMS for Energy Frontier Physics after LS1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stickland, David P.
2015-09-20
This proposal was directed towards the measurement of Bunch-by-Bunch and Total Luminosity in the CMS experiment using Single-Crystal Diamond (sCVD) installed close to the Interaction Point - known as the Fast Beam Conditions Monitor, or BCM1F detector. The proposal was successfully carried out and in February 2015 CMS installed its upgraded BCM1F detector. At first collisions in June 2015 the BCM1F was used as the primary luminometer, then in August 2015 a Van De Meer scan has been carried out and the detailed luminometer calibration is under study. In all aspects of performance measurement the upgraded detector has satisfied itsmore » design parameters and as an overview of its performance in this report will show, we have high expectations that the detector will be a powerful addition to the luminosity measurement at CMS and LHC. The proposed upgrade of BCM1F was a collaboration of CMS Institutes in Germany (DESY-Zeuthen) and the USA (Princeton) and of CERN itself.« less
A Bubble Chamber Simulator: A New Tool for the Physics Classroom
ERIC Educational Resources Information Center
Gagnon, Michel
2011-01-01
Mainly used in the 1960s, bubble chambers played a major role in particle physics. Now replaced with modern electronic detectors, we believe they remain an important didactic tool to introduce particle physics as they provide visual, appealing and insightful pictures. Sadly, this rare type of detector is mostly accessible through open-door events…
Muon Colliders: The Next Frontier
Tourun, Yagmur
2017-12-22
Muon Colliders provide a path to the energy frontier in particle physics but have been regarded to be "at least 20 years away" for 20 years. I will review recent progress in design studies and hardware R&D and show that a Muon Collider can be established as a real option for the post-LHC era if the current vigorous R&D effort revitalized by the Muon Collider Task Force at Fermilab can be supported to its conclusion. All critical technologies are being addressed and no show-stoppers have emerged. Detector backgrounds have been studied in detail and appear to be manageable and the physics can be done with existing detector technology. A muon facility can be built through a staged scenario starting from a low-energy muon source with unprecedented intensity for exquisite reach for rare processes, followed by a Neutrino Factory with ultrapure neutrino beams with unparalleled sensitivity for disentangling neutrino mixing, leading to an energy frontier Muon Collider with excellent energy resolution.
Electromagnetic Physics Models for Parallel Computing Architectures
NASA Astrophysics Data System (ADS)
Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Duhem, L.; Elvira, D.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.
2016-10-01
The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well.
Single optical fiber probe for optogenetics
NASA Astrophysics Data System (ADS)
Falk, Ryan; Habibi, Mohammad; Pashaie, Ramin
2012-03-01
With the advent of optogenetics, all optical control and visualization of the activity of specific cell types is possible. We have developed a fiber optic based probe to control/visualize neuronal activity deep in the brain of awake behaving animals. In this design a thin multimode optical fiber serves as the head of the probe to be inserted into the brain. This fiber is used to deliver excitation/stimulation optical pulses and guide a sample of the emission signal back to a detector. The major trade off in the design of such a system is to decrease the size of the fiber and intensity of input light to minimize physical damage and to avoid photobleaching/phototoxicity but to keep the S/N reasonably high. Here the excitation light, and the associated emission signal, are frequency modulated. Then the output of the detector is passed through a time-lens which compresses the distributed energy of the emission signal and maximizes the instantaneous S/N. By measuring the statistics of the noise, the structure of the time lens can be designed to achieve the global optimum of S/N. Theoretically, the temporal resolution of the system is only limited by the time lens diffraction limit. By adding a second detector, we eliminated the effect of input light fluctuations, imperfection of the optical filters, and back-reflection of the excitation light. We have also designed fibers and micro mechanical assemblies for distributed delivery and detection of light.
The GeantV project: Preparing the future of simulation
Amadio, G.; J. Apostolakis; Bandieramonte, M.; ...
2015-12-23
Detector simulation is consuming at least half of the HEP computing cycles, and even so, experiments have to take hard decisions on what to simulate, as their needs greatly surpass the availability of computing resources. New experiments still in the design phase such as FCC, CLIC and ILC as well as upgraded versions of the existing LHC detectors will push further the simulation requirements. Since the increase in computing resources is not likely to keep pace with our needs, it is therefore necessary to explore innovative ways of speeding up simulation in order to sustain the progress of High Energymore » Physics. The GeantV project aims at developing a high performance detector simulation system integrating fast and full simulation that can be ported on different computing architectures, including CPU accelerators. After more than two years of R&D the project has produced a prototype capable of transporting particles in complex geometries exploiting micro-parallelism, SIMD and multithreading. Portability is obtained via C++ template techniques that allow the development of machine- independent computational kernels. Furthermore, a set of tables derived from Geant4 for cross sections and final states provides a realistic shower development and, having been ported into a Geant4 physics list, can be used as a basis for a direct performance comparison.« less
NASA Astrophysics Data System (ADS)
Kalousis, L. N.;
2017-09-01
The SoLid experiment is a short-baseline project, probing the disappearance of reactor antineutrinos using a novel detector design. Installed at a very short distance of ˜ 5.5 - 10 m from the BR2 research reactor at SCK·CEN in Mol (Belgium) it will be able to search for active-to-sterile neutrino oscillations, exploring most of the allowed parameter region. SoLid will make use of a highly segmented detector, built from 5 cm PVT cubes, interleaved with 6LiF:ZnS(Ag) screens, and read out by optical fibers and Silicon Photomultipliers (SiPMs). The detector granularity allows for the localization of the positron and neutron signals from antineutrino interactions and the robust neutron identification capabilities, offered by the 6LiF:ZnS(Ag) inorganic scintillator, provide background suppression to an unparalleled level. This paper reviews the experimental layout and current status of SoLid. Emphasis is put on the challenges one faces towards this measurement, focusing on the decisions and strategy adapted by the SoLid collaboration. The analysis scheme and the details of the oscillation framework are also presented, highlighting the sensitivity contour and physics potential of SoLid. Finally, other physics topics, such as, reactor monitoring or measurement of the 235U spectrum are also covered.
Developing LAr Scintillation Light Collection Ideas in the Short Baseline Neutrino Detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szelc, A. M.
2016-02-08
Scintillation light is becoming the most rapidly developing feature of Liquid Argon Time Projection Chamber (LArTPC) neutrino detectors due to its capability to enhance and expand their physics reach traditionally based on charge readout. The SBND detector, set to be built on the Booster Neutrino Beam Line at Fermilab, is in a unique position to test novel liquid argon scintillation light readout systems in a detector with physics neutrino events. The different ideas under consideration by the collaboration are described, including an array of PMTs detecting direct light, SiPM coupled lightguide bars and a setup which uses PMTs/SiPMS and wavelengthmore » shifter covered reflector foils, as well as their respective strengths and physics foci and the benchmarks used to compare them.« less
Plastic scintillator detector for pulsed flux measurements
NASA Astrophysics Data System (ADS)
Kadilin, V. V.; Kaplun, A. A.; Taraskin, A. A.
2017-01-01
A neutron detector, providing charged particle detection capability, has been designed. The main purpose of the detector is to measure pulsed fluxes of both charged particles and neutrons during scientific experiments. The detector consists of commonly used neutron-sensitive ZnS(Ag) / 6LiF scintillator screens wrapping a layer of polystyrene based scintillator (BC-454, EJ-254 or equivalent boron loaded plastic). This type of detector design is able to log a spatial distribution of events and may be scaled to any size. Different variations of the design were considered and modelled in specialized toolkits. The article presents a review of the detector design features as well as simulation results.
An Analysis Methodology for the Gamma-ray Large Area Space Telescope
NASA Technical Reports Server (NTRS)
Morris, Robin D.; Cohen-Tanugi, Johann
2004-01-01
The Large Area Telescope (LAT) instrument on the Gamma Ray Large Area Space Telescope (GLAST) has been designed to detect high-energy gamma rays and determine their direction of incidence and energy. We propose a reconstruction algorithm based on recent advances in statistical methodology. This method, alternative to the standard event analysis inherited from high energy collider physics experiments, incorporates more accurately the physical processes occurring in the detector, and makes full use of the statistical information available. It could thus provide a better estimate of the direction and energy of the primary photon.
Tracking at High Level Trigger in CMS
NASA Astrophysics Data System (ADS)
Tosi, M.
2016-04-01
The trigger systems of the LHC detectors play a crucial role in determining the physics capabilities of experiments. A reduction of several orders of magnitude of the event rate is needed to reach values compatible with detector readout, offline storage and analysis capability. The CMS experiment has been designed with a two-level trigger system: the Level-1 Trigger (L1T), implemented on custom-designed electronics, and the High Level Trigger (HLT), a streamlined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a trade-off between the complexity of the algorithms, the sustainable output rate, and the selection efficiency. With the computing power available during the 2012 data taking the maximum reconstruction time at HLT was about 200 ms per event, at the nominal L1T rate of 100 kHz. Track reconstruction algorithms are widely used in the HLT, for the reconstruction of the physics objects as well as in the identification of b-jets and lepton isolation. Reconstructed tracks are also used to distinguish the primary vertex, which identifies the hard interaction process, from the pileup ones. This task is particularly important in the LHC environment given the large number of interactions per bunch crossing: on average 25 in 2012, and expected to be around 40 in Run II. We will present the performance of HLT tracking algorithms, discussing its impact on CMS physics program, as well as new developments done towards the next data taking in 2015.
LANL receiver system development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laubscher, B.; Cooke, B.; Cafferty, M.
1997-08-01
The CALIOPE receiver system development at LANL is the story of two technologies. The first of these technologies consists of off-the-shelf mercury-cadmium-telluride (MCT) detectors and amplifiers. The vendor for this system is Kolmar Technologies. This system was fielded in the Tan Trailer I (TTI) in 1995 and will be referred to in this paper as GEN I. The second system consists of a MCT detector procured from Santa Barbara Research Center (SBRC) and an amplifier designed and built by LANL. This system was fielded in the Tan Trailer II (TTII) system at the NTS tests in 1996 and will bemore » referred to as GEN II. The LANL CALIOPE experimental plan for 1996 was to improve the lidar system by progressing to a higher rep rate laser to perform many shots in a much shorter period of time. In keeping with this plan, the receiver team set a goal of developing a detector system that was background limited for the projected 100 nanosecond (ns) laser pulse. A set of detailed simulations of the DIAL lidar experiment was performed. From these runs, parameters such as optimal detector size, field of view of the receiver system, nominal laser return power, etc. were extracted. With this information, detector physics and amplifier electronic models were developed to obtain the required specifications for each of these components. These derived specs indicated that a substantial improvement over commercially available, off-the-shelf, amplifier and detector technologies would be needed to obtain the goals. To determine if the original GEN I detector was usable, the authors performed tests on a 100 micron square detector at cryogenic temperatures. The results of this test and others convinced them that an advanced detector was required. Eventually, a suitable detector was identified and a number of these single element detectors were procured from SBRC. These single element detectors were witness for the detector arrays built for another DOE project.« less
Modeling and analysis of hybrid pixel detector deficiencies for scientific applications
NASA Astrophysics Data System (ADS)
Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.; Mohseni, Hooman
2015-08-01
Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long. A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to clock distribution etc. can be accurately analyzed to determine ROIC architectural viability and bottlenecks. Hence the impact of the detector parameters on the scientific application can be studied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogomilov, M.; Matev, R.; Tsenov, R.
The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less
Bogomilov, M.; Matev, R.; Tsenov, R.; ...
2014-12-08
The properties of the neutrino provide a unique window on physics beyond that described by the standard model. The study of subleading effects in neutrino oscillations, and the race to discover CP-invariance violation in the lepton sector, has begun with the recent discovery that theta(13) > 0. The measured value of theta(13) is large, emphasizing the need for a facility at which the systematic uncertainties can be reduced to the percent level. The neutrino factory, in which intense neutrino beams are produced from the decay of muons, has been shown to outperform all realistic alternatives and to be capable ofmore » making measurements of the requisite precision. Its unique discovery potential arises from the fact that only at the neutrino factory is it practical to produce high-energy electron (anti) neutrino beams of the required intensity. This paper presents the conceptual design of the neutrino factory accelerator facility developed by the European Commission Framework Programme 7 EURO nu. Design Study consortium. EURO nu coordinated the European contributions to the International Design Study for the Neutrino Factory (the IDS-NF) collaboration. The EURO nu baseline accelerator facility will provide 10(21) muon decays per year from 12.6 GeV stored muon beams serving a single neutrino detector situated at a source-detector distance of between 1 500 km and 2 500 km. A suite of near detectors will allow definitive neutrino-scattering experiments to be performed.« less
Large Scale Underground Detectors in Europe
NASA Astrophysics Data System (ADS)
Katsanevas, S. K.
2006-07-01
The physics potential and the complementarity of the large scale underground European detectors: Water Cherenkov (MEMPHYS), Liquid Argon TPC (GLACIER) and Liquid Scintillator (LENA) is presented with emphasis on the major physics opportunities, namely proton decay, supernova detection and neutrino parameter determination using accelerator beams.
NASA Astrophysics Data System (ADS)
Schmidt, Burkhard
2016-04-01
In the second phase of the LHC physics program, the accelerator will provide an additional integrated luminosity of about 2500/fb over 10 years of operation to the general purpose detectors ATLAS and CMS. This will substantially enlarge the mass reach in the search for new particles and will also greatly extend the potential to study the properties of the Higgs boson discovered at the LHC in 2012. In order to meet the experimental challenges of unprecedented pp luminosity, the experiments will need to address the aging of the present detectors and to improve the ability to isolate and precisely measure the products of the most interesting collisions. The lectures gave an overview of the physics motivation and described the conceptual designs and the expected performance of the upgrades of the four major experiments, ALICE, ATLAS, CMS and LHCb, along with the plans to develop the appropriate experimental techniques and a brief overview of the accelerator upgrade. Only some key points of the upgrade program of the four major experiments are discussed in this report; more information can be found in the references given at the end.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trahan, Alexis Chanel
The objectives of this presentation are to introduce the basic physics of neutron production, interactions and detection; identify the processes that generate neutrons; explain the most common neutron mechanism, spontaneous and induced fission and (a,n) reactions; describe the properties of neutron from different sources; recognize advantages of neutron measurements techniques; recognize common neutrons interactions; explain neutron cross section measurements; describe the fundamental of 3He detector function and designs; and differentiate between passive and active assay techniques.
Photodynamics and Physics behind Tunable Solid-State Lasers
1991-02-28
a fraction of the probe pulse with a beam - splitter - detector combination, is necessary to account for the pulse-tCKpulse energy fluctuation. To...was monitored with a beam splitter and a fast germanium photodiode Dj. The transmitted probe beam was analyzed by a 1/4-meter spectrometer and its...decision, unless so designated by other documentation. 12a. DISTRIBUTION /AVAILABILITY STATEMENT Approved for public release; distribution unlimited
Testing CuO nanowires as a novel X-ray to electron converter for gas-filled radiation detectors
NASA Astrophysics Data System (ADS)
Zarei, H.; Saramad, S.; Razaghi, S.
2017-10-01
Nanowires, due to their special physical properties and also high surface to volume ratio, can have considerable applications in designing and development of novel nanodevices. For the radiation shielding, higher absorption coefficient of nanostructures in comparison to bulk ones is an advantage. In gas detectors, designing a proper converter that absorbs higher energy of gamma and X-rays and convert it to more free electrons is one of the major problems. Since the nanowires have higher surface to volume ratio in comparison to the bulk one, so it is expected that by optimizing the thickness, the generated electrons can have higher chance to escape from the surface. In this work, the random CuO nanowires with diameter of 40 nm are deposited on thin glass slide. This nanostructure with different thicknesses are tested by plastic and CsI scintillators by X-ray tube with HVs in the range of 16 to 25 kV. The results show that for the same thickness, the CuO nanowires can release electrons six times more than the bulk ones and for the same energy the optimum QE of nanoconverter can be three times greater than the bulk converter. This novel nanoconverter with higher detection efficiency can have applications in high energy physics, medical imaging and also astronomy.
The FAZIA project in Europe: R&D phase
NASA Astrophysics Data System (ADS)
Bougault, R.; Poggi, G.; Barlini, S.; Borderie, B.; Casini, G.; Chbihi, A.; Le Neindre, N.; Pârlog, M.; Pasquali, G.; Piantelli, S.; Sosin, Z.; Ademard, G.; Alba, R.; Anastasio, A.; Barbey, S.; Bardelli, L.; Bini, M.; Boiano, A.; Boisjoli, M.; Bonnet, E.; Borcea, R.; Bougard, B.; Brulin, G.; Bruno, M.; Carboni, S.; Cassese, C.; Cassese, F.; Cinausero, M.; Ciolacu, L.; Cruceru, I.; Cruceru, M.; D'Aquino, B.; De Fazio, B.; Degerlier, M.; Desrues, P.; Di Meo, P.; Dueñas, J. A.; Edelbruck, P.; Energico, S.; Falorsi, M.; Frankland, J. D.; Galichet, E.; Gasior, K.; Gramegna, F.; Giordano, R.; Gruyer, D.; Grzeszczuk, A.; Guerzoni, M.; Hamrita, H.; Huss, C.; Kajetanowicz, M.; Korcyl, K.; Kordyasz, A.; Kozik, T.; Kulig, P.; Lavergne, L.; Legouée, E.; Lopez, O.; Łukasik, J.; Maiolino, C.; Marchi, T.; Marini, P.; Martel, I.; Masone, V.; Meoli, A.; Merrer, Y.; Morelli, L.; Negoita, F.; Olmi, A.; Ordine, A.; Paduano, G.; Pain, C.; Pałka, M.; Passeggio, G.; Pastore, G.; Pawłowski, P.; Petcu, M.; Petrascu, H.; Piasecki, E.; Pontoriere, G.; Rauly, E.; Rivet, M. F.; Rocco, R.; Rosato, E.; Roscilli, L.; Scarlini, E.; Salomon, F.; Santonocito, D.; Seredov, V.; Serra, S.; Sierpowski, D.; Spadaccini, G.; Spitaels, C.; Stefanini, A. A.; Tobia, G.; Tortone, G.; Twaróg, T.; Valdré, S.; Vanzanella, A.; Vanzanella, E.; Vient, E.; Vigilante, M.; Vitiello, G.; Wanlin, E.; Wieloch, A.; Zipper, W.
2014-02-01
The goal of the FAZIA Collaboration is the design of a new-generation 4 π detector array for heavy-ion collisions with radioactive beams. This article summarizes the main results of the R&D phase, devoted to the search for significant improvements of the techniques for charge and mass identification of reaction products. This was obtained by means of a systematic study of the basic detection module, consisting of two transmission-mounted silicon detectors followed by a CsI(Tl) scintillator. Significant improvements in ΔE- E and pulse-shape techniques were obtained by controlling the doping homogeneity and the cutting angles of silicon and by putting severe constraints on thickness uniformity. Purposely designed digital electronics contributed to identification quality. The issue of possible degradation related to radiation damage of silicon was also addressed. The experimental activity was accompanied by studies on the physics governing signal evolution in silicon. The good identification quality obtained with the prototypes during the R&D phase, allowed us to investigate also some aspects of isospin physics, namely isospin transport and odd-even staggering. Now, after the conclusion of the R&D period, the FAZIA Collaboration has entered the demonstrator phase, with the aim of verifying the applicability of the devised solutions for the realization of a larger-scale experimental set-up.
A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring
Yang, Che-Chang; Hsu, Yeh-Liang
2010-01-01
Characteristics of physical activity are indicative of one’s mobility level, latent chronic diseases and aging process. Accelerometers have been widely accepted as useful and practical sensors for wearable devices to measure and assess physical activity. This paper reviews the development of wearable accelerometry-based motion detectors. The principle of accelerometry measurement, sensor properties and sensor placements are first introduced. Various research using accelerometry-based wearable motion detectors for physical activity monitoring and assessment, including posture and movement classification, estimation of energy expenditure, fall detection and balance control evaluation, are also reviewed. Finally this paper reviews and compares existing commercial products to provide a comprehensive outlook of current development status and possible emerging technologies. PMID:22163626
Nucifer: A small electron-antineutrino detector for fundamental and safeguard studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letourneau, A.; Bui, V. M.; Cribier, M.
The Nucifer detector will be deployed in the next few months at the Osiris research reactor in France. Nucifer is a 1-ton Gd-doped liquid scintillator detector devoted to reactor antineutrino studies. It will be installed 7 m away from the compact core of the Osiris reactor. The design of such small volume detector has been focused on high detection efficiency and good background rejection. Over the last decades, our understanding of the neutrino properties has been improved and allows today the possibility to apply the detection of antineutrinos to automatic and to non intrusively survey nuclear power plant. This hasmore » triggered the interest of the International Atomic Energy Agency (IAEA), which is interested by developing new safeguard techniques for next generation reactors. The sensitivity of such technique has to be proved and demonstrated. On the other hand there is still some issues in our understanding of the neutrino properties as the observed deficit in the antineutrino rate at short distances (< 100 m) that can not be explained by oscillations in the 3-flavors neutrino model. If a global systematic error is rejected, such anomaly opens the door to new physic that can be assessed with small detectors placed close to the core. Here we review the Nucifer detector in this context and the tests we are performing. (authors)« less
Ultra-thin enhanced-absorption long-wave infrared detectors
NASA Astrophysics Data System (ADS)
Wang, Shaohua; Yoon, Narae; Kamboj, Abhilasha; Petluru, Priyanka; Zheng, Wanhua; Wasserman, Daniel
2018-02-01
We propose an architecture for enhanced absorption in ultra-thin strained layer superlattice detectors utilizing a hybrid optical cavity design. Our detector architecture utilizes a designer-metal doped semiconductor ground plane beneath the ultra-subwavelength thickness long-wavelength infrared absorber material, upon which we pattern metallic antenna structures. We demonstrate the potential for near 50% detector absorption in absorber layers with thicknesses of approximately λ0/50, using realistic material parameters. We investigate detector absorption as a function of wavelength and incidence angle, as well as detector geometry. The proposed device architecture offers the potential for high efficiency detectors with minimal growth costs and relaxed design parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbareschi, Daniele; et al.
We describe a general purpose detector ( "Fourth Concept") at the International Linear Collider (ILC) that can measure with high precision all the fundamental fermions and bosons of the standard model, and thereby access all known physics processes. The 4th concept consists of four basic subsystems: a pixel vertex detector for high precision vertex definitions, impact parameter tagging and near-beam occupancy reduction; a Time Projection Chamber for robust pattern recognition augmented with three high-precision pad rows for precision momentum measurement; a high precision multiple-readout fiber calorimeter, complemented with an EM dual-readout crystal calorimeter, for the energy measurement of hadrons, jets,more » electrons, photons, missing momentum, and the tagging of muons; and, an iron-free dual-solenoid muon system for the inverse direction bending of muons in a gas volume to achieve high acceptance and good muon momentum resolution. The pixel vertex chamber, TPC and calorimeter are inside the solenoidal magnetic field. All four subsytems separately achieve the important scientific goal to be 2-to-10 times better than the already excellent LEP detectors, ALEPH, DELPHI, L3 and OPAL. All four basic subsystems contribute to the identification of standard model partons, some in unique ways, such that consequent physics studies are cogent. As an integrated detector concept, we achieve comprehensive physics capabilities that puts all conceivable physics at the ILC within reach.« less
Detector characterization, optimization, and operation for ACTPol
NASA Astrophysics Data System (ADS)
Grace, Emily Ann
2016-01-01
Measurements of the temperature anisotropies of the Cosmic Microwave Background (CMB) have provided the foundation for much of our current knowledge of cosmology. Observations of the polarization of the CMB have already begun to build on this foundation and promise to illuminate open cosmological questions regarding the first moments of the universe and the properties of dark energy. The primary CMB polarization signal contains the signature of early universe physics including the possible imprint of inflationary gravitational waves, while a secondary signal arises due to late-time interactions of CMB photons which encode information about the formation and evolution of structure in the universe. The Atacama Cosmology Telescope Polarimeter (ACTPol), located at an elevation of 5200 meters in Chile and currently in its third season of observing, is designed to probe these signals with measurements of the CMB in both temperature and polarization from arcminute to degree scales. To measure the faint CMB polarization signal, ACTPol employs large, kilo-pixel detector arrays of transition edge sensor (TES) bolometers, which are cooled to a 100 mK operating temperature with a dilution refrigerator. Three such arrays are currently deployed, two with sensitivity to 150 GHz radiation and one dichroic array with 90 GHz and 150 GHz sensitivity. The operation of these large, monolithic detector arrays presents a number of challenges for both assembly and characterization. This thesis describes the design and assembly of the ACTPol polarimeter arrays and outlines techniques for their rapid characterization. These methods are employed to optimize the design and operating conditions of the detectors, select wafers for deployment, and evaluate the baseline array performance. The results of the application of these techniques to wafers from all three ACTPol arrays is described, including discussion of the measured thermal properties and time constants. Finally, aspects of the characterization and calibration of the deployed detectors during field operations are discussed.
Design of an Experiment to Measure ann Using 3H(γ, pn)n at HIγS★
NASA Astrophysics Data System (ADS)
Friesen, F. Q. L.; Ahmed, M. W.; Crowe, B. J.; Crowell, A. S.; Cumberbatch, L. C.; Fallin, B.; Han, Z.; Howell, C. R.; Malone, R. M.; Markoff, D.; Tornow, W.; Witała, H.
2016-03-01
We provide an update on the development of an experiment at TUNL for determining the 1S0 neutron-neutron (nn) scattering length (ann) from differential cross-section measurements of three-body photodisintegration of the triton. The experiment will be conducted using a linearly polarized gamma-ray beam at the High Intensity Gamma-ray Source (HIγS) and tritium gas contained in thin-walled cells. The main components of the planned experiment are a 230 Ci gas target system, a set of wire chambers and silicon strip detectors on each side of the beam axis, and an array of neutron detectors on each side beyond the silicon detectors. The protons emitted in the reaction are tracked in the wire chambers and their energy and position are measured in silicon strip detectors. The first iteration of the experiment will be simplified, making use of a collimator system, and silicon detectors to interrogate the main region of interest near 90° in the polar angle. Monte-Carlo simulations based on rigorous 3N calculations have been conducted to validate the sensitivity of the experimental setup to ann. This research supported in part by the DOE Office of Nuclear Physics Grant Number DE-FG02-97ER41033
DOE Office of Scientific and Technical Information (OSTI.GOV)
Essick, Reed; Vitale, Salvatore; Katsavounidis, Erik
2015-02-20
The Laser Interferometer Gravitational wave Observatory (LIGO) and Virgo advanced ground-based gravitational-wave detectors will begin collecting science data in 2015. With first detections expected to follow, it is important to quantify how well generic gravitational-wave transients can be localized on the sky. This is crucial for correctly identifying electromagnetic counterparts as well as understanding gravitational-wave physics and source populations. We present a study of sky localization capabilities for two search and parameter estimation algorithms: coherent WaveBurst, a constrained likelihood algorithm operating in close to real-time, and LALInferenceBurst, a Markov chain Monte Carlo parameter estimation algorithm developed to recover generic transientmore » signals with latency of a few hours. Furthermore, we focus on the first few years of the advanced detector era, when we expect to only have two (2015) and later three (2016) operational detectors, all below design sensitivity. These detector configurations can produce significantly different sky localizations, which we quantify in detail. We observe a clear improvement in localization of the average detected signal when progressing from two-detector to three-detector networks, as expected. Although localization depends on the waveform morphology, approximately 50% of detected signals would be imaged after observing 100-200 deg{sup 2} in 2015 and 60-110 deg{sup 2} in 2016, although knowledge of the waveform can reduce this to as little as 22 deg{sup 2}. This is the first comprehensive study on sky localization capabilities for generic transients of the early network of advanced LIGO and Virgo detectors, including the early LIGO-only two-detector configuration.« less
Development of Ultra-Fast Silicon Detectors for 4D tracking
NASA Astrophysics Data System (ADS)
Staiano, A.; Arcidiacono, R.; Boscardin, M.; Dalla Betta, G. F.; Cartiglia, N.; Cenna, F.; Ferrero, M.; Ficorella, F.; Mandurrino, M.; Obertino, M.; Pancheri, L.; Paternoster, G.; Sola, V.
2017-12-01
In this contribution we review the progress towards the development of a novel type of silicon detectors suited for tracking with a picosecond timing resolution, the so called Ultra-Fast Silicon Detectors. The goal is to create a new family of particle detectors merging excellent position and timing resolution with GHz counting capabilities, very low material budget, radiation resistance, fine granularity, low power, insensitivity to magnetic field, and affordability. We aim to achieve concurrent precisions of ~ 10 ps and ~ 10 μm with a 50 μm thick sensor. Ultra-Fast Silicon Detectors are based on the concept of Low-Gain Avalanche Detectors, which are silicon detectors with an internal multiplication mechanism so that they generate a signal which is factor ~10 larger than standard silicon detectors. The basic design of UFSD consists of a thin silicon sensor with moderate internal gain and pixelated electrodes coupled to full custom VLSI chip. An overview of test beam data on time resolution and the impact on this measurement of radiation doses at the level of those expected at HL-LHC is presented. First I-V and C-V measurements on a new FBK sensor production of UFSD, 50 μm thick, with B and Ga, activated at two diffusion temperatures, with and without C co-implantation (in Low and High concentrations), and with different effective doping concentrations in the Gain layer, are shown. Perspectives on current use of UFSD in HEP experiments (UFSD detectors have been installed in the CMS-TOTEM Precision Protons Spectrometer for the forward physics tracking, and are currently taking data) and proposed applications for a MIP timing layer in the HL-LHC upgrade are briefly discussed.
The International Linear Collider Technical Design Report - Volume 3.II: Accelerator Baseline Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adolphsen, Chris
2013-06-26
The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adolphsen, Chris
2013-06-26
The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less
A Blackbody Microwave Source for CMB Polarimeter Development
NASA Astrophysics Data System (ADS)
Lindman, Alec
2014-03-01
I present an evolved design for a thermally isolated blackbody source operating at 90 GHz and 120 GHz, frequencies of interest to Cosmic Microwave Background measurements. The NASA GSFC Experimental Cosmology lab is developing transition edge sensor bolometers for the CLASS and PIPER missions to measure CMB polarization; the source described here is for use in an existing 150 mK test package to quantify the detectors' properties. The design is optimized to minimize heat loading into the ADR and cryocoolers by employing a Kevlar kinematic suspension and additional thermal breaks. The blackbody light is coupled to a detector by means of an electroformed waveguide, which is mated to the source by an ultraprecise ring-centered flange design; this precision is critical to maintain the vacuum gap between the heated source and the cold waveguide, which is an order of magnitude smaller than the allowable misalignment of the standard military-spec microwave flange design. The source will provide at least 50% better thermal isolation than the existing 40 GHz source, as well as a smaller thermal time constant to enable faster measurement cycles. Special thanks to Dr. David Chuss at GSFC, and the Society of Physics Students.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Welliver, Bradford
Recent cosmological evidence suggests most of the mass of the universe takes the form of a type of particle that we have not been able to directly detect. Nearly 80 years that have elapsed since the rst hints of this dark matter started to appear from astronomers without any direct detection. The high precision era of cosmology and unifying models of particle physics developed in the 20 th century have presented us with an exciting mystery at the intersection of these two elds that needs to be solved. SuperCDMS Soudan operates specialized germanium detectors (iZIPs) that are cooled to milliKelvinmore » temperatures deep underground in the Soudan Underground Laboratory with the hope of detecting a rare collision between dark matter and a nucleus. A search for low-mass dark matter comes with multiple unique challenges since the background discrimination abilities of these detectors becomes less powerful at the low energies needed to probe low-mass dark matter since the signal to noise ratio deteriorates. Using a sophisticated background model via a pulse rescaling technique, SuperCDMS Soudan was able to produce a world leading exclusion limit on low-mass dark matter. Effort is to extend the analysis to higher masses require long running times during which many aspects of the detectors or the environment can change. Additional challenges are offered by the powerful background discrimination ability of the iZIP. The background distributions are well separated from the signal region, meaning most of the leakage arises from low-probability tails of the background distributions. In the absence of an enormous dataset, extrapolations from the bulk of the distribution are required. While attempting to obtain a model of gamma induced electron-recoils leaking into the signal region of the detector from high radius a curious asymmetry between the sides of the detectors was discovered potentially indicating an electronics or detector design problem. This thesis describes the physics behind SuperCDMS Soudan, the numerous tasks involved in a low-mass search and the rst iZIP array science results with these new detectors, as well as the developments towards a high-mass search result.« less
EDITORIAL: Proceedings of the Sixth Edoardo Amaldi Conference on Gravitational Waves
NASA Astrophysics Data System (ADS)
Mio, N.
2006-03-01
This issue is published as the Proceedings of the 6th Edoardo Amaldi Conference on Gravitational Waves, held on 20 24 June 2005 at Bankoku Shinryoukan in Okinawa, Japan. Since the first Amaldi conference was held in Frascati in 1994, eleven years have passed and the scale of the conference has grown with the increasing activity in the field of gravitational waves. As the centenary celebration of Einstein's `miracle year', 2005 was called `World Year of Physics'. Among his breakthroughs published in 1905, the special theory of relativity is recognized as the most significant revolution in physics, completely changing our views concerning time and space. Ten years later, Einstein proposed the general theory of relativity, by which he predicted the existence of gravitational waves (GWs). At that time, it was only a dream to observe a GW because its effect was so small. Efforts to detect GWs, pioneered by Weber, have continued for almost 40 years, yet their detection remained a dream. However, the presentations at this conference have convinced us that it is no longer a dream. The GW detector projects have made extraordinary advances; in particular, the significant sensitivity improvement of LIGO and the completion of the VIRGO detector mark the beginning of the new era of GW physics. Firm developments in theories and source estimations were also reported. In particular, the data analysis session was very active and various discussions were held. Elaborate experimental techniques were presented, some of them already achieving the requirements for the next generation of detectors, such as Advanced LIGO and LCGT. In addition to the earth-based detectors, many presentations concerning space detectors were contributed; they indicated that space would become the new stage for GW physics and astronomy. This issue brings together the papers which were presented at this exciting conference. The proceedings comprise two volumes; the largest part is published as a volume of Journal of Physics: Conference Series and the other is a special issue of Classical and Quantum Gravity (CQG), presenting the highlights of the conference. This is the first time this format has been used and selecting the highlights for CQG was a difficult task as the quality of the papers submitted was so high. The issue has been published thanks to the excellent work of the reviewers who gave precise and appropriate comments to the Editors. We strongly believe this issue to be a milestone in the inception of GW astronomy. The conference organizers would like to acknowledge the financial support of IUPAP, Okinawa prefecture, Inoue Foundation for Science, The Foundation for Promotion of Astronomy and a Grant-in-Aid for Scientific Research on Priority Areas (415) of the Ministry of Education, Culture, Sports, Science and Technology. The conference scientific programme was organized with the help of the session conveners. Their collaboration was indispensable for the success of the conference. We also appreciate the members of the international advisory committee and the local organizing committee; in particular, we thank Dr Akiteru Takamori for designing the fascinating poster of the conference and the image for the CD of this issue. The miscellaneous duties that were necessary for the conference were carried out with the help of ICS Convention Design Inc. with special thanks due to Ms Makiko Uwato and Mr Hiroyuki Suzuki. The proceedings are published by Institute of Physics Publishing; we would like to express our deep appreciation to Ms Judith Adams for her efficient management of the proceedings. Finally, we thank all of the excellent participants who made the conference so successful.
NASA Astrophysics Data System (ADS)
Kolesnikov, V. I.
2017-06-01
The NICA (Nuclotron-based Ion Collider fAcility) project is aimed in the construction at JINR (Dubna) a modern accelerator complex equipped with three detectors: the MultiPurpose Detector (MPD) and the Spin Physics Detector (SPD) at the NICA collider, as well as a fixed target experiment BM&N which will be use extracted beams from the Nuclotron accelerator. In this report, an overview of the main physics objectives of the NICA heavy-ion program will be given and the recent progress in the NICA construction (both accelerator complex and detectors) will be described.
NASA Technical Reports Server (NTRS)
Woeller, F. H.; Kojiro, D. R.; Carle, G. C.
1984-01-01
The present investigation is concerned with a miniature metastable ionization detector featuring an unconventional electrode configuration, whose performance characteristics parallel those of traditional design. The ionization detector is to be incorporated in a flight gas chromatograph (GC) for use in the Space Shuttle. The design of the detector is discussed, taking into account studies which verified the sensitivity of the detector. The triaxial design of the detector is compared with a flat-plate style. The obtained results show that the principal goal of developing a miniature, highly sensitive ionization detector for flight applications was achieved. Improved fabrication techniques will utilize glass-to-metal seals and brazing procedures.
NASA Astrophysics Data System (ADS)
Barriga, P.; Blair, D. G.; Coward, D.; Davidson, J.; Dumas, J.-C.; Howell, E.; Ju, L.; Wen, L.; Zhao, C.; McClelland, D. E.; Scott, S. M.; Slagmolen, B. J. J.; Inta, R.; Munch, J.; Ottaway, D. J.; Veitch, P.; Hosken, D.; Melatos, A.; Chung, C.; Sammut, L.; Galloway, D. K.; Marx, J.; Whitcomb, S.; Shoemaker, D.; Hughes, S. A.; Reitze, D. H.; Iyer, B. R.; Dhurandhar, S. V.; Souradeep, T.; Unnikrishnan, C. S.; Rajalakshmi, G.; Man, C. N.; Heidmann, A.; Cohadon, P.-F.; Briant, T.; Grote, H.; Danzmann, K.; Lück, H.; Willke, B.; Strain, K. A.; Sathyaprakash, B. S.; Cao, J.; Cheung, Y.-K. E.; Zhang, Y.
2010-04-01
This paper describes the proposed AIGO detector for the worldwide array of interferometric gravitational wave detectors. The first part of the paper summarizes the benefits that AIGO provides to the worldwide array of detectors. The second part gives a technical description of the detector, which will follow closely the Advanced LIGO design. Possible technical variations in the design are discussed.
NASA Astrophysics Data System (ADS)
Williams, Arnold C.; Pachowicz, Peter W.
2004-09-01
Current mine detection research indicates that no single sensor or single look from a sensor will detect mines/minefields in a real-time manner at a performance level suitable for a forward maneuver unit. Hence, the integrated development of detectors and fusion algorithms are of primary importance. A problem in this development process has been the evaluation of these algorithms with relatively small data sets, leading to anecdotal and frequently over trained results. These anecdotal results are often unreliable and conflicting among various sensors and algorithms. Consequently, the physical phenomena that ought to be exploited and the performance benefits of this exploitation are often ambiguous. The Army RDECOM CERDEC Night Vision Laboratory and Electron Sensors Directorate has collected large amounts of multisensor data such that statistically significant evaluations of detection and fusion algorithms can be obtained. Even with these large data sets care must be taken in algorithm design and data processing to achieve statistically significant performance results for combined detectors and fusion algorithms. This paper discusses statistically significant detection and combined multilook fusion results for the Ellipse Detector (ED) and the Piecewise Level Fusion Algorithm (PLFA). These statistically significant performance results are characterized by ROC curves that have been obtained through processing this multilook data for the high resolution SAR data of the Veridian X-Band radar. We discuss the implications of these results on mine detection and the importance of statistical significance, sample size, ground truth, and algorithm design in performance evaluation.
The MiniPET: a didactic PET system
NASA Astrophysics Data System (ADS)
Pedro, R.; Silva, J.; Gurriana, L.; Silva, J. M.; Maio, A.; Soares Augusto, J.
2013-03-01
The MiniPET project aims to design and build a small PET system. It consists of two 4 × 4 matrices of 16 LYSO scintillator crystals and two PMTs with 16 channels resulting in a low cost system with the essential functionality of a clinical PET instrument. It is designed to illustrate the physics of the PET technique and to provide a didactic platform for the training of students and nuclear imaging professionals as well as for scientific outreach. The PET modules can be configured to test for the coincidence of 511 keV gamma rays. The model has a flexible mechanical setup [1] and can simulate 14 diferent ring geometries, from a configuration with as few as 18 detectors per ring (ring radius phi=51 mm), up to a geometry with 70 detectors per ring (phi=200 mm). A second version of the electronic system [2] allowed measurement and recording of the energy deposited in 4 detector channels by photons from a 137Cs radioactive source and by photons resulting of the annihilation of positrons from a 22Na radioactive source. These energy spectra are used for detector performance studies, as well as angular dependency studies. In this paper, the mechanical setup, the front-end high-speed analog electronics, the digital acquisition and control electronics implemented in a FPGA, as well as the data-transfer interface between the FPGA board and a host PC are described. Recent preliminary results obtained with the 4 active channels in the prototype are also presented.
Thermal and Structural Analysis of Beamline Components in the Mu2e Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, Luke Daniel
2016-01-01
Fermi National Accelerator Laboratory will be conducting the high energy particle physics experiment Muons to Electrons (Mu2e). In this experiment, physicists will attempt to witness and understand an ultra-rare process which is the conversion of a muon into the lighter mass electron, without creating additional neutrinos. The experiment is conducted by first generating a proton beam which will be collided into a target within the production solenoid (PS). This creates a high-intensity muon beam which passes through a transport solenoid (TS) and into the detector solenoid (DS). In the detector solenoid the muons will be stopped in an aluminum targetmore » and a series of detectors will measure the electrons produced. These components have been named the DS train since they are coupled and travel on a rail system when being inserted or extracted from the DS. To facilitate the installation and removal of the DS train, a set of external stands and a support stand for the instrumentation feed-through bulkhead (IFB) have been designed. Full analysis of safety factors and performance of these two designs has been completed. The detector solenoid itself will need to be maintained to a temperature of 22°C ± 10°C. This will minimize thermal strain and ensure the accurate position of the components is maintained to the tolerance of 2 mm. To reduce the thermal gradient, a passive heating system has been developed and reported.« less
Different Detector Types Used in Plasma Physics Experiment
NASA Astrophysics Data System (ADS)
Balovnev, A. V.; Manokhin, I. L.; Grigoryeva, I. G.; Kostyushin, V. A.; Savelov, A. S.; Salakhutdinov, G. Kh.
2017-12-01
We analyzed the possibility of using different detector types (semiconductor, scintillator, thermoluminescent, nuclear emulsions) for plasma diagnostics. We investigated the main characteristics of such detectors, on the basis of which an X-ray spectrometer complex was created.
NASA Astrophysics Data System (ADS)
Acharya, B.; Alexandre, J.; Baines, S.; Benes, P.; Bergmann, B.; Bernabéu, J.; Branzas, H.; Campbell, M.; Caramete, L.; Cecchini, S.; de Montigny, M.; De Roeck, A.; Ellis, J. R.; Fairbairn, M.; Felea, D.; Flores, J.; Frank, M.; Frekers, D.; Garcia, C.; Hirt, A. M.; Janecek, J.; Kalliokoski, M.; Katre, A.; Kim, D.-W.; Kinoshita, K.; Korzenev, A.; Lacarrère, D. H.; Lee, S. C.; Leroy, C.; Lionti, A.; Mamuzic, J.; Margiotta, A.; Mauri, N.; Mavromatos, N. E.; Mermod, P.; Mitsou, V. A.; Orava, R.; Parker, B.; Pasqualini, L.; Patrizii, L.; Pǎvǎlaş, G. E.; Pinfold, J. L.; Popa, V.; Pozzato, M.; Pospisil, S.; Rajantie, A.; Ruiz de Austri, R.; Sahnoun, Z.; Sakellariadou, M.; Sarkar, S.; Semenoff, G.; Shaa, A.; Sirri, G.; Sliwa, K.; Soluk, R.; Spurio, M.; Srivastava, Y. N.; Suk, M.; Swain, J.; Tenti, M.; Togo, V.; Tuszyński, J. A.; Vento, V.; Vives, O.; Vykydal, Z.; Whyntie, T.; Widom, A.; Willems, G.; Yoon, J. H.; Zgura, I. S.; MoEDAL Collaboration
2017-02-01
MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV p p collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.
Detecting single-electron events in TEM using low-cost electronics and a silicon strip sensor.
Gontard, Lionel C; Moldovan, Grigore; Carmona-Galán, Ricardo; Lin, Chao; Kirkland, Angus I
2014-04-01
There is great interest in developing novel position-sensitive direct detectors for transmission electron microscopy (TEM) that do not rely in the conversion of electrons into photons. Direct imaging improves contrast and efficiency and allows the operation of the microscope at lower energies and at lower doses without loss in resolution, which is especially important for studying soft materials and biological samples. We investigate the feasibility of employing a silicon strip detector as an imaging detector for TEM. This device, routinely used in high-energy particle physics, can detect small variations in electric current associated with the impact of a single charged particle. The main advantages of using this type of sensor for direct imaging in TEM are its intrinsic radiation hardness and large detection area. Here, we detail design, simulation, fabrication and tests in a TEM of the front-end electronics developed using low-cost discrete components and discuss the limitations and applications of this technology for TEM.
Bielecki, J; Drozdowicz, K; Dworak, D; Igielski, A; Janik, W; Kulinska, A; Marciniak, L; Scholz, M; Turzanski, M; Wiacek, U; Woznicka, U; Wójcik-Gargula, A
2017-12-11
Plastic organic scintillators such as the blue-emitting BCF-12 are versatile and inexpensive tools. Recently, BCF-12 scintillators have been foreseen for investigation of the spatial distribution of neutrons emitted from dense magnetized plasma. For this purpose, small-area (5 mm × 5 mm) detectors based on BCF-12 scintillation rods and Hamamatsu photomultiplier tubes were designed and constructed at the Institute of Nuclear Physics. They will be located inside the neutron pinhole camera of the PF-24 plasma focus device. Two different geometrical layouts and approaches to the construction of the scintillation element were tested. The aim of this work was to determine the efficiency of the detectors. For this purpose, the experimental investigations using a neutron generator and a Pu-Be source were combined with Monte Carlo computations using the Geant4 code. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Electromagnetic physics models for parallel computing architectures
Amadio, G.; Ananya, A.; Apostolakis, J.; ...
2016-11-21
The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part ofmore » the GeantV project. Finally, the results of preliminary performance evaluation and physics validation are presented as well.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lecomte, Roger; Arpin, Louis; Beaudoin, Jean-Franç
Purpose: LabPET II is a new generation APD-based PET scanner designed to achieve sub-mm spatial resolution using truly pixelated detectors and highly integrated parallel front-end processing electronics. Methods: The basic element uses a 4×8 array of 1.12×1.12 mm{sup 2} Lu{sub 1.9}Y{sub 0.1}SiO{sub 5}:Ce (LYSO) scintillator pixels with one-to-one coupling to a 4×8 pixelated monolithic APD array mounted on a ceramic carrier. Four detector arrays are mounted on a daughter board carrying two flip-chip, 64-channel, mixed-signal, application-specific integrated circuits (ASIC) on the backside interfacing to two detector arrays each. Fully parallel signal processing was implemented in silico by encoding time andmore » energy information using a dual-threshold Time-over-Threshold (ToT) scheme. The self-contained 128-channel detector module was designed as a generic component for ultra-high resolution PET imaging of small to medium-size animals. Results: Energy and timing performance were optimized by carefully setting ToT thresholds to minimize the noise/slope ratio. ToT spectra clearly show resolved 511 keV photopeak and Compton edge with ToT resolution well below 10%. After correction for nonlinear ToT response, energy resolution is typically 24±2% FWHM. Coincidence time resolution between opposing 128-channel modules is below 4 ns FWHM. Initial imaging results demonstrate that 0.8 mm hot spots of a Derenzo phantom can be resolved. Conclusion: A new generation PET scanner featuring truly pixelated detectors was developed and shown to achieve a spatial resolution approaching the physical limit of PET. Future plans are to integrate a small-bore dedicated mouse version of the scanner within a PET/CT platform.« less
Kinetic inductance detectors for far-infrared spectroscopy
NASA Astrophysics Data System (ADS)
Barlis, Alyssa; Aguirre, James; Stevenson, Thomas
2016-07-01
The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many of the luminous galaxies present during the period of peak star formation (between redshifts 1 and 3) were heavily enshrouded in dust, which makes observing their properties difficult at optical wavelengths. However, many spectral lines exist at far-infrared wavelengths that serve as tracers of star formation during that period, in particular fine structure lines of nitrogen, carbon, and oxygen, as well as the carbon monoxide molecule. Using an observation technique known as intensity mapping, it would be possible to observe the total line intensity for a given redshift range even without detecting individual sources. Here, we describe a detector system suitable for a balloonborne spectroscopic intensity mapping experiment at far-infrared wavelengths. The experiment requires an "integralfield" type spectrograph, with modest spectral resolution (R 100) for each of a number of spatial pixels spanning several octaves in wavelength. The detector system uses lumped-element kinetic inductance detectors (LEKIDs), which have the potential to achieve the high sensitivity, low noise, and high multiplexing factor required for this experiment. We detail the design requirements and considerations, and the fabrication process for a prototype LEKID array of 1600 pixels. The pixel design is driven by the need for high responsivity, which requires a small physical volume for the LEKID inductor. In order to minimize two-level system noise, the resonators include large-area interdigitated capacitors. High quality factor resonances are required for a large frequency multiplexing factor. Detectors were fabricated using both trilayer TiN/Ti/TiN recipes and thin-film Al, and are operated at base temperatures near 250 mK.
NASA Astrophysics Data System (ADS)
Andersson, P.; Valldor-Blücher, J.; Andersson Sundén, E.; Sjöstrand, H.; Jacobsson-Svärd, S.
2014-08-01
The FANTOM system is a tabletop sized fast-neutron radiography and tomography system newly developed at the Applied Nuclear Physics Division of Uppsala University. The main purpose of the system is to provide time-averaged steam-and-water distribution measurement capability inside the metallic structures of two-phase test loops for light water reactor thermal-hydraulic studies using a portable fusion neutron generator. The FANTOM system provides a set of 1D neutron transmission data, which may be inserted into tomographic reconstruction algorithms to achieve a 2D mapping of the steam-and-water distribution. In this paper, the selected design of FANTOM is described and motivated. The detector concept is based on plastic scintillator elements, separated for spatial resolution. Analysis of pulse heights on an event-to-event basis is used for energy discrimination. Although the concept allows for close stacking of a large number of detector elements, this demonstrator is equipped with only three elements in the detector and one additional element for monitoring the yield from the neutron generator. The first measured projections on test objects of known configurations are presented. These were collected using a Sodern Genie 16 neutron generator with an isotropic yield of about 1E8 neutrons per second, and allowed for characterization of the instrument's capabilities. At an energy threshold of 10 MeV, the detector offered a count rate of about 500 cps per detector element. The performance in terms of spatial resolution was validated by fitting a Gaussian Line Spread Function to the experimental data, a procedure that revealed a spatial unsharpness in good agreement with the predicted FWHM of 0.5 mm.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, V.E.; Carmony, D.D.; Garfinkel, A.F.
This report discusses: The CDF for {bar p}-p Collisions at FNAL; The L3 Detector for e{sup +}e{sup {minus}} Collisions at CERN; The SCD Detector for pp Collisions at the SSCL (calorimeters); The SDC Detector for pp Collisions at the SSCL (muon detector); The CO experiment for {bar p}-p Collisions at FNAL; and Accelerator Physics at Fermilab.
Detectors for Linear Colliders: Tracking and Vertexing (2/4)
Battaglia, Marco
2018-04-16
Efficient and precise determination of the flavour of partons in multi-hadron final states is essential to the anticipated LC physics program. This makes tracking in the vicinity of the interaction region of great importance. Tracking extrapolation and momentum resolution are specified by precise physics requirements. The R&D; towards detectors able to meet these specifications will be discussed, together with some of their application beyond particle physics.
Novel scintillators and silicon photomultipliers for nuclear physics and applications
NASA Astrophysics Data System (ADS)
Jenkins, David
2015-06-01
Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such "medium-resolution" spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen.
2006-03-01
Evaluation of fully 3D emission mammotomography with a compact cadmium zinc telluride detector,” IEEE Trans. Med. Imag. (Submitted) 2005. [16] M.P...times over a few months, and the degradation due to compromised adipose tissue boundaries as well as other physical breast features are becoming...breast lesions, especially in radiographically dense breasts,2,11-13 through the removal of contrast-reducing overlying tissue ; (2) uncompressed
Fabrication of Superconducting Detectors for Studying the Universe
NASA Technical Reports Server (NTRS)
Brown, Ari-David
2012-01-01
Superconducting detectors offer unparalleled means of making astronomical/cosmological observations. Fabrication of these detectors is somewhat unconventional; however, a lot of novel condensed matter physics/materials scientific discoveries and semiconductor fabrication processes can be generated in making these devices.
Characterization and development of an event-driven hybrid CMOS x-ray detector
NASA Astrophysics Data System (ADS)
Griffith, Christopher
2015-06-01
Hybrid CMOS detectors (HCD) have provided great benefit to the infrared and optical fields of astronomy, and they are poised to do the same for X-ray astronomy. Infrared HCDs have already flown on the Hubble Space Telescope and the Wide-Field Infrared Survey Explorer (WISE) mission and are slated to fly on the James Webb Space Telescope (JWST). Hybrid CMOS X-ray detectors offer low susceptibility to radiation damage, low power consumption, and fast readout time to avoid pile-up. The fast readout time is necessary for future high throughput X-ray missions. The Speedster-EXD X-ray HCD presented in this dissertation offers new in-pixel features and reduces known noise sources seen on previous generation HCDs. The Speedster-EXD detector makes a great step forward in the development of these detectors for future space missions. This dissertation begins with an overview of future X-ray space mission concepts and their detector requirements. The background on the physics of semiconductor devices and an explanation of the detection of X-rays with these devices will be discussed followed by a discussion on CCDs and CMOS detectors. Next, hybrid CMOS X-ray detectors will be explained including their advantages and disadvantages. The Speedster-EXD detector and its new features will be outlined including its ability to only read out pixels which contain X-ray events. Test stand design and construction for the Speedster-EXD detector is outlined and the characterization of each parameter on two Speedster-EXD detectors is detailed including read noise, dark current, interpixel capacitance crosstalk (IPC), and energy resolution. Gain variation is also characterized, and a Monte Carlo simulation of its impact on energy resolution is described. This analysis shows that its effect can be successfully nullified with proper calibration, which would be important for a flight mission. Appendix B contains a study of the extreme tidal disruption event, Swift J1644+57, to search for periodicities in its X-ray light curve. iii.
LCFIPlus: A framework for jet analysis in linear collider studies
NASA Astrophysics Data System (ADS)
Suehara, Taikan; Tanabe, Tomohiko
2016-02-01
We report on the progress in flavor identification tools developed for a future e+e- linear collider such as the International Linear Collider (ILC) and Compact Linear Collider (CLIC). Building on the work carried out by the LCFIVertex collaboration, we employ new strategies in vertex finding and jet finding, and introduce new discriminating variables for jet flavor identification. We present the performance of the new algorithms in the conditions simulated using a detector concept designed for the ILC. The algorithms have been successfully used in ILC physics simulation studies, such as those presented in the ILC Technical Design Report.
New Optimizations of Microcalorimeter Arrays for High-Resolution Imaging X-ray Spectroscopy
NASA Astrophysics Data System (ADS)
Kilbourne, Caroline
We propose to continue our successful research program in developing arrays of superconducting transition-edge sensors (TES) for x-ray astrophysics. Our standard 0.3 mm TES pixel achieves better than 2.5-eV resolution, and we now make 32x32 arrays of such pixels. We have also achieved better than 1-eV resolution in smaller pixels, and promising performance in a range of position-sensitive designs. We propose to continue to advance the designs of both the single-pixel and position-sensitive microcalorimeters so that we can produce arrays suitable for several x-ray spectroscopy observatories presently in formulation. We will also investigate various array and pixel optimizations such as would be needed for large arrays for surveys, large- pixel arrays for diffuse soft x-ray measurements, or sub-arrays of fast pixels optimized for neutron-star burst spectroscopy. In addition, we will develop fabrication processes for integrating sub-arrays with very different pixel designs into a monolithic focal-plane array to simplify the design of the focal-plane assembly and make feasible new detector configurations such as the one currently baselined for AXSIO. Through a series of measurements on test devices, we have improved our understanding of the weak-link physics governing the observed resistive transitions in TES detectors. We propose to build on that work and ultimately use the results to improve the immunity of the detector to environmental magnetic fields, as well as its fundamental performance, in each of the targeted optimizations we are developing.
NASA Astrophysics Data System (ADS)
Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chervenak, James A.; Chiao, Meng P.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Masimilliano; Grein, Christoph; Jhabvala, Christine A.; Kelly, Daniel; Leutenegger, Maurice A.; McCammon, Dan; Scott Porter, F.; Szymkowiak, Andrew E.; Watanabe, Tomomi; Zhao, Jun
2018-01-01
The calorimeter array of the JAXA Astro-H (renamed Hitomi) soft x-ray spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS had a square array of 36 x-ray calorimeters at the focal plane. These calorimeters consisted of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistor-bearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector was located behind the calorimeter array and served to reject events due to cosmic rays. We will briefly describe this anticoincidence detector and its performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milic, A.
The high luminosities of L > 10{sup 34} cm{sup -2}s{sup -1} at the Large Hadron Collider (LHC) at CERN produce an intense radiation environment that the detectors and their electronics must withstand. The ATLAS detector is a multi-purpose apparatus constructed to explore the new particle physics regime opened by the LHC. Of the many decay particles observed by the ATLAS detector, the energy of the created electrons and photons is measured by a sampling calorimeter technique that uses Liquid Argon (LAr) as its active medium. The front end (FE) electronic readout of the ATLAS LAr calorimeter located on the detectormore » itself consists of a combined analog and digital processing system. In order to exploit the higher luminosity while keeping the same trigger bandwidth of 100 kHz, higher transverse granularity, higher resolution and longitudinal shower shape information will be provided from the LAr calorimeter to the Level-l trigger processors. New trigger readout electronics have been designed for this purpose, which will withstand the radiation dose levels expected for an integrated luminosity of 3000 fb{sup -1} during the high luminosity LHC (HL-LHC), which is well above the original LHC design qualifications. (authors)« less
NASA Technical Reports Server (NTRS)
Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chiao, Meng P.; Chervenak, James A.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Masimilliano; Grein, Christoph; Jhabvala, Christine A.;
2016-01-01
The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS has a square array of 36 microcalorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistor-bearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance.
Measurement and Modeling of Blocking Contacts for Cadmium Telluride Gamma Ray Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beck, Patrick R.
2010-01-07
Gamma ray detectors are important in national security applications, medicine, and astronomy. Semiconductor materials with high density and atomic number, such as Cadmium Telluride (CdTe), offer a small device footprint, but their performance is limited by noise at room temperature; however, improved device design can decrease detector noise by reducing leakage current. This thesis characterizes and models two unique Schottky devices: one with an argon ion sputter etch before Schottky contact deposition and one without. Analysis of current versus voltage characteristics shows that thermionic emission alone does not describe these devices. This analysis points to reverse bias generation current ormore » leakage through an inhomogeneous barrier. Modeling the devices in reverse bias with thermionic field emission and a leaky Schottky barrier yields good agreement with measurements. Also numerical modeling with a finite-element physics-based simulator suggests that reverse bias current is a combination of thermionic emission and generation. This thesis proposes further experiments to determine the correct model for reverse bias conduction. Understanding conduction mechanisms in these devices will help develop more reproducible contacts, reduce leakage current, and ultimately improve detector performance.« less
NASA Technical Reports Server (NTRS)
Moision, Bruce; Erkmen, Baris I.; Farr, William; Dolinar, Samuel J.; Birnbaum, Kevin M.
2012-01-01
An ideal intensity-modulated photon-counting channel can achieve unbounded photon information efficiencies (PIEs). However, a number of limitations of a physical system limit the practically achievable PIE. In this paper, we discuss several of these limitations and illustrate their impact on the channel. We show that, for the Poisson channel, noise does not strictly bound PIE, although there is an effective limit, as the dimensional information efficiency goes as e[overline] e PIE beyond a threshold PIE. Since the Holevo limit is bounded in the presence of noise, this illustrates that the Poisson approximation is invalid at large PIE for any number of noise modes. We show that a finite transmitter extinction ratio bounds the achievable PIE to a maximum that is logarithmic in the extinction ratio. We show how detector jitter limits the ability to mitigate noise in the PPM signaling framework. We illustrate a method to model detector blocking when the number of detectors is large, and illustrate mitigation of blocking with spatial spreading and altering. Finally, we illustrate the design of a high photon efficiency system using state-of-the-art photo-detectors and taking all these effects into account.
DARWIN: towards the ultimate dark matter detector
NASA Astrophysics Data System (ADS)
Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Amsler, C.; Aprile, E.; Arazi, L.; Arneodo, F.; Barrow, P.; Baudis, L.; Benabderrahmane, M. L.; Berger, T.; Beskers, B.; Breskin, A.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Bütikofer, L.; Calvén, J.; Cardoso, J. M. R.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; Diglio, S.; Drexlin, G.; Duchovni, E.; Erdal, E.; Eurin, G.; Ferella, A.; Fieguth, A.; Fulgione, W.; Gallo Rosso, A.; Di Gangi, P.; Di Giovanni, A.; Galloway, M.; Garbini, M.; Geis, C.; Glueck, F.; Grandi, L.; Greene, Z.; Grignon, C.; Hasterok, C.; Hannen, V.; Hogenbirk, E.; Howlett, J.; Hilk, D.; Hils, C.; James, A.; Kaminsky, B.; Kazama, S.; Kilminster, B.; Kish, A.; Krauss, L. M.; Landsman, H.; Lang, R. F.; Lin, Q.; Linde, F. L.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Mayani, D.; Messina, M.; Micheneau, K.; Molinario, A.; Morå, K. D.; Morteau, E.; Murra, M.; Naganoma, J.; Newstead, J. L.; Ni, K.; Oberlack, U.; Pakarha, P.; Pelssers, B.; de Perio, P.; Persiani, R.; Piastra, F.; Piro, M. C.; Plante, G.; Rauch, L.; Reichard, S.; Rizzo, A.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schumann, M.; Schreiner, J.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Silva, M. C.; Simgen, H.; Sissol, P.; von Sivers, M.; Thers, D.; Thurn, J.; Tiseni, A.; Trotta, R.; Tunnell, C. D.; Valerius, K.; Vargas, M. A.; Wang, H.; Wei, Y.; Weinheimer, C.; Wester, T.; Wulf, J.; Zhang, Y.; Zhu, T.; Zuber, K.
2016-11-01
DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/c2, such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions. It will search for solar axions, galactic axion-like particles and the neutrinoless double-beta decay of 136Xe, as well as measure the low-energy solar neutrino flux with < 1% precision, observe coherent neutrino-nucleus interactions, and detect galactic supernovae. We present the concept of the DARWIN detector and discuss its physics reach, the main sources of backgrounds and the ongoing detector design and R&D efforts.
DARWIN: towards the ultimate dark matter detector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aalbers, J.; Breur, P.A.; Brown, A.
2016-11-01
DARk matter WImp search with liquid xenoN (DARWIN) will be an experiment for the direct detection of dark matter using a multi-ton liquid xenon time projection chamber at its core. Its primary goal will be to explore the experimentally accessible parameter space for Weakly Interacting Massive Particles (WIMPs) in a wide mass-range, until neutrino interactions with the target become an irreducible background. The prompt scintillation light and the charge signals induced by particle interactions in the xenon will be observed by VUV sensitive, ultra-low background photosensors. Besides its excellent sensitivity to WIMPs above a mass of 5 GeV/ c {supmore » 2}, such a detector with its large mass, low-energy threshold and ultra-low background level will also be sensitive to other rare interactions. It will search for solar axions, galactic axion-like particles and the neutrinoless double-beta decay of {sup 136}Xe, as well as measure the low-energy solar neutrino flux with < 1% precision, observe coherent neutrino-nucleus interactions, and detect galactic supernovae. We present the concept of the DARWIN detector and discuss its physics reach, the main sources of backgrounds and the ongoing detector design and R and D efforts.« less
Computer Model Of Fragmentation Of Atomic Nuclei
NASA Technical Reports Server (NTRS)
Wilson, John W.; Townsend, Lawrence W.; Tripathi, Ram K.; Norbury, John W.; KHAN FERDOUS; Badavi, Francis F.
1995-01-01
High Charge and Energy Semiempirical Nuclear Fragmentation Model (HZEFRG1) computer program developed to be computationally efficient, user-friendly, physics-based program for generating data bases on fragmentation of atomic nuclei. Data bases generated used in calculations pertaining to such radiation-transport applications as shielding against radiation in outer space, radiation dosimetry in outer space, cancer therapy in laboratories with beams of heavy ions, and simulation studies for designing detectors for experiments in nuclear physics. Provides cross sections for production of individual elements and isotopes in breakups of high-energy heavy ions by combined nuclear and Coulomb fields of interacting nuclei. Written in ANSI FORTRAN 77.
A physical zero-knowledge object-comparison system for nuclear warhead verification
Philippe, Sébastien; Goldston, Robert J.; Glaser, Alexander; d'Errico, Francesco
2016-01-01
Zero-knowledge proofs are mathematical cryptographic methods to demonstrate the validity of a claim while providing no further information beyond the claim itself. The possibility of using such proofs to process classified and other sensitive physical data has attracted attention, especially in the field of nuclear arms control. Here we demonstrate a non-electronic fast neutron differential radiography technique using superheated emulsion detectors that can confirm that two objects are identical without revealing their geometry or composition. Such a technique could form the basis of a verification system that could confirm the authenticity of nuclear weapons without sharing any secret design information. More broadly, by demonstrating a physical zero-knowledge proof that can compare physical properties of objects, this experiment opens the door to developing other such secure proof-systems for other applications. PMID:27649477
A physical zero-knowledge object-comparison system for nuclear warhead verification.
Philippe, Sébastien; Goldston, Robert J; Glaser, Alexander; d'Errico, Francesco
2016-09-20
Zero-knowledge proofs are mathematical cryptographic methods to demonstrate the validity of a claim while providing no further information beyond the claim itself. The possibility of using such proofs to process classified and other sensitive physical data has attracted attention, especially in the field of nuclear arms control. Here we demonstrate a non-electronic fast neutron differential radiography technique using superheated emulsion detectors that can confirm that two objects are identical without revealing their geometry or composition. Such a technique could form the basis of a verification system that could confirm the authenticity of nuclear weapons without sharing any secret design information. More broadly, by demonstrating a physical zero-knowledge proof that can compare physical properties of objects, this experiment opens the door to developing other such secure proof-systems for other applications.
A physical zero-knowledge object-comparison system for nuclear warhead verification
NASA Astrophysics Data System (ADS)
Philippe, Sébastien; Goldston, Robert J.; Glaser, Alexander; D'Errico, Francesco
2016-09-01
Zero-knowledge proofs are mathematical cryptographic methods to demonstrate the validity of a claim while providing no further information beyond the claim itself. The possibility of using such proofs to process classified and other sensitive physical data has attracted attention, especially in the field of nuclear arms control. Here we demonstrate a non-electronic fast neutron differential radiography technique using superheated emulsion detectors that can confirm that two objects are identical without revealing their geometry or composition. Such a technique could form the basis of a verification system that could confirm the authenticity of nuclear weapons without sharing any secret design information. More broadly, by demonstrating a physical zero-knowledge proof that can compare physical properties of objects, this experiment opens the door to developing other such secure proof-systems for other applications.
A physical zero-knowledge object-comparison system for nuclear warhead verification
Philippe, Sébastien; Goldston, Robert J.; Glaser, Alexander; ...
2016-09-20
Zero-knowledge proofs are mathematical cryptographic methods to demonstrate the validity of a claim while providing no further information beyond the claim itself. The possibility of using such proofs to process classified and other sensitive physical data has attracted attention, especially in the field of nuclear arms control. Here we demonstrate a non-electronic fast neutron differential radiography technique using superheated emulsion detectors that can confirm that two objects are identical without revealing their geometry or composition. Such a technique could form the basis of a verification system that could confirm the authenticity of nuclear weapons without sharing any secret design information.more » More broadly, by demonstrating a physical zero-knowledge proof that can compare physical properties of objects, this experiment opens the door to developing other such secure proof-systems for other applications.« less
A physical zero-knowledge object-comparison system for nuclear warhead verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Philippe, Sébastien; Goldston, Robert J.; Glaser, Alexander
Zero-knowledge proofs are mathematical cryptographic methods to demonstrate the validity of a claim while providing no further information beyond the claim itself. The possibility of using such proofs to process classified and other sensitive physical data has attracted attention, especially in the field of nuclear arms control. Here we demonstrate a non-electronic fast neutron differential radiography technique using superheated emulsion detectors that can confirm that two objects are identical without revealing their geometry or composition. Such a technique could form the basis of a verification system that could confirm the authenticity of nuclear weapons without sharing any secret design information.more » More broadly, by demonstrating a physical zero-knowledge proof that can compare physical properties of objects, this experiment opens the door to developing other such secure proof-systems for other applications.« less
NASA Astrophysics Data System (ADS)
Souza, D. M.; Costa, I. A.; Nóbrega, R. A.
2017-10-01
This document presents a detailed study of the performance of a set of digital filters whose implementations are based on the best linear unbiased estimator theory interpreted as a constrained optimization problem that could be relaxed depending on the input signal characteristics. This approach has been employed by a number of recent particle physics experiments for measuring the energy of particle events interacting with their detectors. The considered filters have been designed to measure the peak amplitude of signals produced by their detectors based on the digitized version of such signals. This study provides a clear understanding of the characteristics of those filters in the context of particle physics and, additionally, it proposes a phase related constraint based on the second derivative of the Taylor expansion in order to make the estimator less sensitive to phase variation (phase between the analog signal shaping and its sampled version), which is stronger in asynchronous experiments. The asynchronous detector developed by the ν-Angra Collaboration is used as the basis for this work. Nevertheless, the proposed analysis goes beyond, considering a wide range of conditions related to signal parameters such as pedestal, phase, sampling rate, amplitude resolution, noise and pile-up; therefore crossing the bounds of the ν-Angra Experiment to make it interesting and useful for different asynchronous and even synchronous experiments.
A Comparison of Video-Based and Interaction-Based Affect Detectors in Physics Playground
ERIC Educational Resources Information Center
Kai, Shiming; Paquette, Luc; Baker, Ryan S.; Bosch, Nigel; D'Mello, Sidney; Ocumpaugh, Jaclyn; Shute, Valerie; Ventura, Matthew
2015-01-01
Increased attention to the relationships between affect and learning has led to the development of machine-learned models that are able to identify students' affective states in computerized learning environments. Data for these affect detectors have been collected from multiple modalities including physical sensors, dialogue logs, and logs of…
46 CFR 76.27-10 - Location and spacing of detectors.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 3 2014-10-01 2014-10-01 false Location and spacing of detectors. 76.27-10 Section 76... PROTECTION EQUIPMENT Electric Fire Detecting System, Details § 76.27-10 Location and spacing of detectors. (a) The detectors shall be located close to the overhead in the space protected. Where liable to physical...
46 CFR 76.27-10 - Location and spacing of detectors.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 3 2013-10-01 2013-10-01 false Location and spacing of detectors. 76.27-10 Section 76... PROTECTION EQUIPMENT Electric Fire Detecting System, Details § 76.27-10 Location and spacing of detectors. (a) The detectors shall be located close to the overhead in the space protected. Where liable to physical...
46 CFR 76.27-10 - Location and spacing of detectors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 3 2012-10-01 2012-10-01 false Location and spacing of detectors. 76.27-10 Section 76... PROTECTION EQUIPMENT Electric Fire Detecting System, Details § 76.27-10 Location and spacing of detectors. (a) The detectors shall be located close to the overhead in the space protected. Where liable to physical...
46 CFR 76.27-10 - Location and spacing of detectors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 3 2011-10-01 2011-10-01 false Location and spacing of detectors. 76.27-10 Section 76... PROTECTION EQUIPMENT Electric Fire Detecting System, Details § 76.27-10 Location and spacing of detectors. (a) The detectors shall be located close to the overhead in the space protected. Where liable to physical...
46 CFR 76.27-10 - Location and spacing of detectors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 3 2010-10-01 2010-10-01 false Location and spacing of detectors. 76.27-10 Section 76... PROTECTION EQUIPMENT Electric Fire Detecting System, Details § 76.27-10 Location and spacing of detectors. (a) The detectors shall be located close to the overhead in the space protected. Where liable to physical...
The TUS Detector of Extreme Energy Cosmic Rays on Board the Lomonosov Satellite
NASA Astrophysics Data System (ADS)
Klimov, P. A.; Panasyuk, M. I.; Khrenov, B. A.; Garipov, G. K.; Kalmykov, N. N.; Petrov, V. L.; Sharakin, S. A.; Shirokov, A. V.; Yashin, I. V.; Zotov, M. Y.; Biktemerova, S. V.; Grinyuk, A. A.; Grebenyuk, V. M.; Lavrova, M. V.; Tkachev, L. G.; Tkachenko, A. V.; Park, I. H.; Lee, J.; Jeong, S.; Martinez, O.; Salazar, H.; Ponce, E.; Saprykin, O. A.; Botvinko, A. A.; Senkovsky, A. N.; Puchkov, A. E.
2017-11-01
The origin and nature of extreme energy cosmic rays (EECRs), which have energies above the 5\\cdot10^{19} eV—the Greisen-Zatsepin-Kuzmin (GZK) energy limit, is one of the most interesting and complicated problems in modern cosmic-ray physics. Existing ground-based detectors have helped to obtain remarkable results in studying cosmic rays before and after the GZK limit, but have also produced some contradictions in our understanding of cosmic ray mass composition. Moreover, each of these detectors covers only a part of the celestial sphere, which poses problems for studying the arrival directions of EECRs and identifying their sources. As a new generation of EECR space detectors, TUS (Tracking Ultraviolet Set-up), KLYPVE and JEM-EUSO, are intended to study the most energetic cosmic-ray particles, providing larger, uniform exposures of the entire celestial sphere. The TUS detector, launched on board the Lomonosov satellite on April 28, 2016 from Vostochny Cosmodrome in Russia, is the first of these. It employs a single-mirror optical system and a photomultiplier tube matrix as a photo-detector and will test the fluorescent method of measuring EECRs from space. Utilizing the Earth's atmosphere as a huge calorimeter, it is expected to detect EECRs with energies above 10^{20} eV. It will also be able to register slower atmospheric transient events: atmospheric fluorescence in electrical discharges of various types including precipitating electrons escaping the magnetosphere and from the radiation of meteors passing through the atmosphere. We describe the design of the TUS detector and present results of different ground-based tests and simulations.
NASA Astrophysics Data System (ADS)
Geraksiev, N. S.; MPD Collaboration
2018-05-01
The Nuclotron-based Ion Collider fAcility (NICA) is a new accelerator complex being constructed at the Joint Institute for Nuclear Research (JINR). The general objective of the project is to provide beams for the experimental study of hot and dense strongly interacting QCD matter. The heavy ion programme includes two planned detectors: BM@N (Baryonic Matter at Nuclotron) a fixed target experiment with extracted Nuclotron beams; and MPD (MultiPurpose Detector) a collider mode experiment at NICA. The accelerated particles can range from protons and light nuclei to gold ions. Beam energies will span\\sqrt{s}=12-27 GeV with luminosity L ≥ 1 × 1030 cm‑2s‑1 and \\sqrt{{s}NN}=4-11 GeV and average luminosity L = 1 × 1027cm‑2 s ‑1(for 197Au79+), respectively. A third experiment for spin physics is planned with the SPD (Spin Physics Detector) at the NICA collider in polarized beams mode. A brief overview of the MPD is presented along with several observables in the MPD physics programme.
Development of Low-Noise High Value Chromium Silicide Resistors for Cryogenic Detector Applications
NASA Technical Reports Server (NTRS)
Jhabvala, Murzy; Babu, Sachi; Monroy, Carlos; Darren, C.; Krebs, Carolyn A. (Technical Monitor)
2001-01-01
Extremely high sensitivity detectors, such as silicon bolometers are required in many NASA missions for detection of photons from the x-ray to the far infrared regions. Typically, these detectors are cooled to well below the liquid helium (LHe) temperature (4.2 K) to achieve the maximum detection performance. As photoconductors, they are generally operated with a load resistor and a pre-set bias voltage, which is then coupled to the input gate of a source-follower Field Effect Transistor (FET) circuit. It is imperative that the detector system signal to noise performance be limited by the noise of the detector and not by the noise of the external components. The load resistor value is selected to optimize the detector performance. These two criteria tend to be contradictory in that these detectors require load resistors in the hundreds of megaohms, which leads to a higher Johnson noise. Additionally, the physical size of the resistor must be small for device integration as required by such missions as the NASA High Resolution Airborne Wide-Band Camera (HAWC) instrument and the Submillimeter High Angular Resolution Camera (SHARC) for the Caltech Submillimeter Observatory (CSO). We have designed, fabricated and characterized thin film resistors using a CrSi/TiW/Al metal system on optical quality quartz substrates. The resistor values range from 100 megaohms to over 650 megaohms and are Johnson noise limited at LHe temperatures. The resistor film is sputtered with a sheet resistance ranging from 300 ohms to 1600 ohms and the processing sequence developed for these devices allows for chemically fine tuning the sheet resistance in-situ. The wafer fabrication process was of sufficiently high yield (>80%) providing clusters of good resistors for integrated multiple detector channels, a very important feature in the assembly of these two instruments.
Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz.
Moustakas, Theodore D; Paiella, Roberto
2017-10-01
This paper reviews the device physics and technology of optoelectronic devices based on semiconductors of the GaN family, operating in the spectral regions from deep UV to Terahertz. Such devices include LEDs, lasers, detectors, electroabsorption modulators and devices based on intersubband transitions in AlGaN quantum wells (QWs). After a brief history of the development of the field, we describe how the unique crystal structure, chemical bonding, and resulting spontaneous and piezoelectric polarizations in heterostructures affect the design, fabrication and performance of devices based on these materials. The heteroepitaxial growth and the formation and role of extended defects are addressed. The role of the chemical bonding in the formation of metallic contacts to this class of materials is also addressed. A detailed discussion is then presented on potential origins of the high performance of blue LEDs and poorer performance of green LEDs (green gap), as well as of the efficiency reduction of both blue and green LEDs at high injection current (efficiency droop). The relatively poor performance of deep-UV LEDs based on AlGaN alloys and methods to address the materials issues responsible are similarly addressed. Other devices whose state-of-the-art performance and materials-related issues are reviewed include violet-blue lasers, 'visible blind' and 'solar blind' detectors based on photoconductive and photovoltaic designs, and electroabsorption modulators based on bulk GaN or GaN/AlGaN QWs. Finally, we describe the basic physics of intersubband transitions in AlGaN QWs, and their applications to near-infrared and terahertz devices.
Optoelectronic device physics and technology of nitride semiconductors from the UV to the terahertz
NASA Astrophysics Data System (ADS)
Moustakas, Theodore D.; Paiella, Roberto
2017-10-01
This paper reviews the device physics and technology of optoelectronic devices based on semiconductors of the GaN family, operating in the spectral regions from deep UV to Terahertz. Such devices include LEDs, lasers, detectors, electroabsorption modulators and devices based on intersubband transitions in AlGaN quantum wells (QWs). After a brief history of the development of the field, we describe how the unique crystal structure, chemical bonding, and resulting spontaneous and piezoelectric polarizations in heterostructures affect the design, fabrication and performance of devices based on these materials. The heteroepitaxial growth and the formation and role of extended defects are addressed. The role of the chemical bonding in the formation of metallic contacts to this class of materials is also addressed. A detailed discussion is then presented on potential origins of the high performance of blue LEDs and poorer performance of green LEDs (green gap), as well as of the efficiency reduction of both blue and green LEDs at high injection current (efficiency droop). The relatively poor performance of deep-UV LEDs based on AlGaN alloys and methods to address the materials issues responsible are similarly addressed. Other devices whose state-of-the-art performance and materials-related issues are reviewed include violet-blue lasers, ‘visible blind’ and ‘solar blind’ detectors based on photoconductive and photovoltaic designs, and electroabsorption modulators based on bulk GaN or GaN/AlGaN QWs. Finally, we describe the basic physics of intersubband transitions in AlGaN QWs, and their applications to near-infrared and terahertz devices.
NASA Astrophysics Data System (ADS)
Ladner, D. R.; Martinez-Galarce, D. S.; McCammon, D.
2006-04-01
An X-ray detection instrument to be flown on a sounding rocket experiment (the Advanced Technology Solar Spectroscopic Imager - ATSSI) for solar physics observations is being developed by the Lockheed Martin Solar and Astrophysics Laboratory (LMSAL). The detector is a novel class of microcalorimeter, a superconducting Transition-Edge Sensor (TES), that coupled with associated SQUID and feedback electronics requires high temperature stability at ~70 mK to resolve the energy of absorbed X-ray photons emitted from the solar corona. The cooling system incorporates an existing Adiabatic Demagnetization Refrigerator (ADR) developed at the University of Wisconsin (UW), which was previously flown to study the diffuse cosmic X-ray background. The Si thermistor detectors for that project required 130 K shielded JFET electronic components that are much less sensitive to the external field of the ADR solenoid than are the 1st (~70 mK) and 2nd (~2 K) SQUID stages used with TESs for solar observations. Modification of the Wisconsin ADR design, including TES focal plane and electronics re-positioning, therefore requires a tradeoff between the existing ADR solenoid nulling coil geometry and a low mass passive solenoid shield, while preserving the vibration isolation features of the existing design. We have developed models to accurately compute the magnetic field with and without shielding or nulling coils at critical locations to guide the re-design of the detector subsystem. The models and their application are described.
Particle and nuclear physics instrumentation and its broad connections
Demarteau, Marcel; Lipton, Ron; Nicholson, Howard; ...
2016-12-20
Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector researchmore » and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. Finally, this symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.« less
Particle and nuclear physics instrumentation and its broad connections
NASA Astrophysics Data System (ADS)
Demarteau, M.; Lipton, R.; Nicholson, H.; Shipsey, I.
2016-10-01
Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector research and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. This symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.
Particle and nuclear physics instrumentation and its broad connections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demarteau, Marcel; Lipton, Ron; Nicholson, Howard
Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector researchmore » and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. Finally, this symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.« less
Modeling digital breast tomosynthesis imaging systems for optimization studies
NASA Astrophysics Data System (ADS)
Lau, Beverly Amy
Digital breast tomosynthesis (DBT) is a new imaging modality for breast imaging. In tomosynthesis, multiple images of the compressed breast are acquired at different angles, and the projection view images are reconstructed to yield images of slices through the breast. One of the main problems to be addressed in the development of DBT is the optimal parameter settings to obtain images ideal for detection of cancer. Since it would be unethical to irradiate women multiple times to explore potentially optimum geometries for tomosynthesis, it is ideal to use a computer simulation to generate projection images. Existing tomosynthesis models have modeled scatter and detector without accounting for oblique angles of incidence that tomosynthesis introduces. Moreover, these models frequently use geometry-specific physical factors measured from real systems, which severely limits the robustness of their algorithms for optimization. The goal of this dissertation was to design the framework for a computer simulation of tomosynthesis that would produce images that are sensitive to changes in acquisition parameters, so an optimization study would be feasible. A computer physics simulation of the tomosynthesis system was developed. The x-ray source was modeled as a polychromatic spectrum based on published spectral data, and inverse-square law was applied. Scatter was applied using a convolution method with angle-dependent scatter point spread functions (sPSFs), followed by scaling using an angle-dependent scatter-to-primary ratio (SPR). Monte Carlo simulations were used to generate sPSFs for a 5-cm breast with a 1-cm air gap. Detector effects were included through geometric propagation of the image onto layers of the detector, which were blurred using depth-dependent detector point-spread functions (PRFs). Depth-dependent PRFs were calculated every 5-microns through a 200-micron thick CsI detector using Monte Carlo simulations. Electronic noise was added as Gaussian noise as a last step of the model. The sPSFs and detector PRFs were verified to match published data, and noise power spectrum (NPS) from simulated flat field images were shown to match empirically measured data from a digital mammography unit. A novel anthropomorphic software breast phantom was developed for 3D imaging simulation. Projection view images of the phantom were shown to have similar structure as real breasts in the spatial frequency domain, using the power-law exponent beta to quantify tissue complexity. The physics simulation and computer breast phantom were used together, following methods from a published study with real tomosynthesis images of real breasts. The simulation model and 3D numerical breast phantoms were able to reproduce the trends in the experimental data. This result demonstrates the ability of the tomosynthesis physics model to generate images sensitive to changes in acquisition parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Womersley, J.; DiGiacomo, N.; Killian, K.
1990-04-01
Detailed detector design has traditionally been divided between engineering optimization for structural integrity and subsequent physicist evaluation. The availability of CAD systems for engineering design enables the tasks to be integrated by providing tools for particle simulation within the CAD system. We believe this will speed up detector design and avoid problems due to the late discovery of shortcomings in the detector. This could occur because of the slowness of traditional verification techniques (such as detailed simulation with GEANT). One such new particle simulation tool is described. It is being used with the I-DEAS CAD package for SSC detector designmore » at Martin-Marietta Astronautics and is to be released through the SSC Laboratory.« less
Khatchadourian, R; Davis, S; Evans, M; Licea, A; Seuntjens, J; Kildea, J
2012-07-01
Photoneutrons are a major component of the equivalent dose in the maze and near the door of linac bunkers. Physical measurements and Monte Carlo (MC) calculations of neutron dose are key for validating bunker design with respect to health regulations. We attempted to use bubble detectors and a 3 He neutron spectrometer to measure neutron equivalent dose and neutron spectra in the maze and near the door of one of our bunkers. We also ran MC simulations with MCNP5 to measure the neutron fluence in the same region. Using a point source of neutrons, a Clinac 1800 linac operating at 10 MV was simulated and the fluence measured at various locations of interest. We describe the challenges faced when measuring dose with bubble detectors in the maze and the complexity of photoneutron spectrometry with linacs operating in pulsed mode. Finally, we report on the development of a userfriendly GUI for shielding calculations based on the NCRP 151 formalism. © 2012 American Association of Physicists in Medicine.
Experiment to demonstrate separation of Cherenkov and scintillation signals
Caravaca, J.; Descamps, F. B.; Land, B. J.; ...
2017-05-05
The ability to separately identify the Cherenkov and scintillation light components produced in scintillating mediums holds the potential for a major breakthrough in neutrino detection technology, allowing development of a large, low-threshold, directional detector with a broad physics program. Furthermore, the CHESS (CHErenkov/Scintillation Separation) experiment employs an innovative detector design with an array of small, fast photomultiplier tubes and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillating medium based on photon hit time and detected photoelectron density. Our paper describes the physical properties and calibration of CHESS along with first results. The ability to reconstructmore » Cherenkov rings are demonstrated in a water target, and a time precision of 338 ± 12 ps FWHM is achieved. Finally, Monte Carlo–based predictions for the ring imaging sensitivity with a liquid scintillator target predict an efficiency for identifying Cherenkov hits of 94 ± 1 % and 81 ± 1 % in pure linear alkyl benzene (LAB) and LAB loaded with 2 g/L of a fluor, PPO, respectively, with a scintillation contamination of 12 ± 1 % and 26 ± 1 % .« less
Experiment to demonstrate separation of Cherenkov and scintillation signals
NASA Astrophysics Data System (ADS)
Caravaca, J.; Descamps, F. B.; Land, B. J.; Wallig, J.; Yeh, M.; Orebi Gann, G. D.
2017-05-01
The ability to separately identify the Cherenkov and scintillation light components produced in scintillating mediums holds the potential for a major breakthrough in neutrino detection technology, allowing development of a large, low-threshold, directional detector with a broad physics program. The CHESS (CHErenkov/Scintillation Separation) experiment employs an innovative detector design with an array of small, fast photomultiplier tubes and state-of-the-art electronics to demonstrate the reconstruction of a Cherenkov ring in a scintillating medium based on photon hit time and detected photoelectron density. This paper describes the physical properties and calibration of CHESS along with first results. The ability to reconstruct Cherenkov rings is demonstrated in a water target, and a time precision of 338 ±12 ps FWHM is achieved. Monte Carlo-based predictions for the ring imaging sensitivity with a liquid scintillator target predict an efficiency for identifying Cherenkov hits of 94 ±1 % and 81 ±1 % in pure linear alkyl benzene (LAB) and LAB loaded with 2 g/L of a fluor, PPO, respectively, with a scintillation contamination of 12 ±1 % and 26 ±1 % .
NASA Astrophysics Data System (ADS)
Min, Byung Jun; Choi, Yong; Lee, Nam-Yong; Lee, Kisung; Ahn, Young Bok; Joung, Jinhun
2009-07-01
The aim of this study was to design a multipinhole (MP) collimator with lead vertical septa coupled to a high-resolution detector module containing silicon drift detectors (SDDs) with an intrinsic resolution approaching the sub-millimeter level. Monte Carlo simulations were performed to determine pinhole parameters such as pinhole diameter, focal length, and number of pinholes. Effects of parallax error and collimator penetration were investigated for the new MP collimator design. The MP detector module was evaluated using reconstructed images of resolution and mathematical cardiac torso (MCAT) phantoms. In addition, the reduced angular sampling effect was investigated over 180°. The images were reconstructed using dedicated maximum likelihood expectation maximization (MLEM) algorithm. An MP collimator with 81-pinhole was designed with a 2-mm-diameter pinhole and a focal length of 40 mm . Planar sensitivity and resolution obtained using the devised MP collimator were 3.9 cps/μCi and 6 mm full-width at half-maximum (FWHM) at a 10 cm distance. The parallax error and penetration ratio were significantly improved using the proposed MP collimation design. The simulation results demonstrated that the proposed MP detector provided enlarged imaging field of view (FOV) and improved the angular sampling effect in resolution and MCAT phantom studies. Moreover, the novel design enables tomography images by simultaneously obtaining eight projections with eight-detector modules located along the 180° orbit surrounding a patient, which allows designing of a stationary cardiac SPECT. In conclusion, the MP collimator with lead vertical septa was designed to have comparable system resolution and sensitivity to those of the low-energy high-resolution (LEHR) collimator per detector. The system sensitivity with an eight-detector configuration would be four times higher than that with a standard dual-detector cardiac SPECT.
Performance of the LHCb RICH detectors during the LHC Run II
NASA Astrophysics Data System (ADS)
Papanestis, A.; D'Ambrosio, C.; LHCb RICH Collaboration
2017-12-01
The LHCb RICH system provides hadron identification over a wide momentum range (2-100 GeV/c). This detector system is key to LHCb's precision flavour physics programme, which has unique sensitivity to physics beyond the standard model. This paper reports on the performance of the LHCb RICH in Run II, following significant changes in the detector and operating conditions. The changes include the refurbishment of significant number of photon detectors, assembled using new vacuum technologies, and the removal of the aerogel radiator. The start of Run II of the LHC saw the beam energy increase to 6.5 TeV per beam and a new trigger strategy for LHCb with full online detector calibration. The RICH information has also been made available for all trigger streams in the High Level Trigger for the first time.
2008-01-30
that will use conventional diode- or hotomultiplier-tube-based optical detectors , which are xtremely sensitive . . HEATING AND FREE-CARRIER IMITATIONS...CONTRACT NUMBER IN-HOUSE Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides 5b. GRANT...B 261Design of a tunable, room temperature, continuous-wave terahertz source and detector using silicon waveguides T. Baehr-Jones,1,* M. Hochberg,1,3
NASA Astrophysics Data System (ADS)
Zelenyi, Lev; Rodin, V.; Gurevich, A.; Alferov, A.; Getsov, P.
Design and manufacturing of micro-satellite ( 50 kg) platforms for the fundamental and applied research of the Earth and near-earth outer space is a problem which is complex both scientifically and technically. Main point is to define the scientific task which could be effectively solved by micro-satellite instrumentation. It is necessary also to carry out an integral approach in the course of the spacecraft development: find methods to introduce the contemporary technological-design, use the achievements of advanced physical instrument manufacturing , microelectronics and micromechanics. Technical solutions should provide the required accuracy of spacecraft orientation and stabilization. Space Research and Physical Institutes RAS with participation of Moscow University developed the model composition and technical design of micro satellite "CHIBIS" (small bird LAPWING in Russian) with two options for scientific payload: A. The complex of scientific instruments N1 for the monitoring of Global warming and the electromagnetic environment of the Earth: spectrometer for measurements of the total content of greenhouse gases (CO2 and CH4); optical camera (spatial resolution 300 m); lowfrequency flux-gate magnetometer (DC - 64 Hz); high-frequency search-coil magnetometer (0.1 - 40 kHz); analyzer of the electromagnetic emissions (0.1 - 40 kHz); detector of ionospheric plasma. B. The complex of scientific instruments N2 for investigation of fine scale physics of lightning discharges: X-ray - gamma detector (range of X-ray and gamma emission - 50-500 keV); UV detector (range UV - emission - 300-450 nm); radiofrequency analyzer (20 - 50 MHz); optical camera. Spacecraft manufacturing and scientific experiments are prepared mostly by the institutes of Russian academy of sciences without traditional involvement of large scale space industry. So this activity serves as a substantial driver of Academic capacity building for the independent research of space science problems. Further extension of this program is planned now to be within the framework of collaboration between Russian and Bulgarian Academies of Sciences on "BalkanSat" project. Recently ((3/7 -09-2007) special international workshop on the Use of Micro-Satellite Technologies for Environmental Monitoring and Impact to Human Health was held by United Nations, IKI , RAS and ESA in the small city TARUSA near Moscow. Proceedings are available at http://www.iki.rssi.ru/ This work was partially supported of the RFBR grants 06-02-08076 and 06-02-08244
NASA Technical Reports Server (NTRS)
Hill, Joanne E.; Black, J. Kevin; Emmett, Thomas J.; Enoto, Teruaki; Jahoda, Keith M.; Kaaret, Philip; Nolan, David S.; Tamagawa, Toru
2014-01-01
The design of the Time-Projection Chamber (TPC) Polarimeter for the Gravity and Extreme Magnetism Small Explorer (GEMS) was demonstrated to Technology Readiness Level 6 (TRL-6)3 and the flight detectors fabricated, assembled and performance tested. A single flight detector was characterized at the Brookhaven National Laboratory Synchrotron Light Source with polarized X-rays at 10 energies from 2.3-8.0 keV at five detector positions. The detector met all of the GEMS performance requirements. Lifetime measurements have shown that the existing flight design has 23 years of lifetime4, opening up the possibility of relaxing material requirements, in particular the consideration of the use of epoxy, to reduce risk elsewhere. We report on design improvements to the GEMS detector to enable a narrower transfer gap that, when operated with a lower transfer field, reduces asymmetries in the detector response. In addition, the new design reduces cost and risk by simplifying the assembly and reducing production time. Finally, we report on the performance of the narrow-gap detector in response to polarized and unpolarized X-rays.
The DarkSide-50 outer detectors
NASA Astrophysics Data System (ADS)
Westerdale, S.; Agnes, P.; Agostino, L.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Arisaka, K.; Back, H. O.; Baldin, B.; Biery, K.; Bonfini, G.; Bossa, M.; Bottino, B.; Brigatti, A.; Brodsky, J.; Budano, F.; Bussino, S.; Cadeddu, M.; Cadonati, L.; Cadoni, M.; Calaprice, F.; Canci, N.; Candela, A.; Cao, H.; Cariello, M.; Carlini, M.; Catalanotti, S.; Cavalcante, P.; Chepurnov, A.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; Davini, S.; De Cecco, S.; De Deo, M.; De Vincenzi, M.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Foster, G.; Franco, D.; Gabriele, F.; Galbiati, C.; Giganti, C.; Goretti, A. M.; Granato, F.; Grandi, L.; Gromov, M.; Guan, M.; Guardincerri, Y.; Hackett, B. R.; Herner, K. R.; Hungerford, E. V.; Aldo, Ianni; Andrea, Ianni; James, I.; Jollet, C.; Keeter, K.; Kendziora, C. L.; Kobychev, V.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Li, X.; Lissia, M.; Lombardi, P.; Luitz, S.; Ma, Y.; Machulin, I. N.; Mandarano, A.; Mari, S. M.; Maricic, J.; Marini, L.; Martoff, C. J.; Meregaglia, A.; Meyers, P. D.; Miletic, T.; Milincic, R.; Montanari, D.; Monte, A.; Montuschi, M.; Monzani, M. E.; Mosteiro, P.; Mount, B. J.; Muratova, V. N.; Musico, P.; Napolitano, J.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pantic, E.; Parmeggiano, S.; Pelczar, K.; Pelliccia, N.; Perasso, S.; Pocar, A.; Pordes, S.; Pugachev, D. A.; Qian, H.; Randle, K.; Ranucci, G.; Razeto, A.; Reinhold, B.; Renshaw, A. L.; Romani, A.; Rossi, B.; Rossi, N.; Rountree, S. D.; Sablone, D.; Saggese, P.; Saldanha, R.; Sands, W.; Sangiorgio, S.; Savarese, C.; Segreto, E.; Semenov, D. A.; Shields, E.; Singh, P. N.; DSkorokhvatov, M.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Suvorov, Y.; Tartaglia, R.; Tatarowicz, J.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Vishneva, A.; Vogelaar, B.; Wada, M.; Walker, S.; Wang, H.; Wang, Y.; Watson, A. W.; Wilhelmi, J.; Wojcik, M. M.; Xiang, X.; Xu, J.; Yang, C.; Yoo, J.; Zavatarelli, S.; Zec, A.; Zhong, W.; Zhu, C.; Zuzel, G.; DarkSide Collaboration
2016-05-01
DarkSide-50 is a dark matter detection experiment searching for Weakly Interacting Massive Particles (WIMPs), in Gran Sasso National Laboratory. For experiments like DarkSide-50, neutrons are one of the primary backgrounds that can mimic WIMP signals. The experiment consists of three nested detectors: a liquid argon time projection chamber surrounded by two outer detectors. The outermost detector is a 10 m by 11 m cylindrical water Cherenkov detector with 80 PMTs, designed to provide shielding and muon vetoing. Inside the water Cherenkov detector is the 4 m diameter spherical boron-loaded liquid scintillator veto, with a cocktail of pseudocumene, trimethyl borate, and PPO wavelength shifter, designed to provide shielding, neutron vetoing, and in situ measurements of the TPC backgrounds. We present design and performance details of the DarkSide-50 outer detectors.
NASA Astrophysics Data System (ADS)
Magazzù, G.; Borgese, G.; Costantino, N.; Fanucci, L.; Incandela, J.; Saponara, S.
2013-02-01
In many research fields as high energy physics (HEP), astrophysics, nuclear medicine or space engineering with harsh operating conditions, the use of fast and flexible digital communication protocols is becoming more and more important. The possibility to have a smart and tested top-down design flow for the design of a new protocol for control/readout of front-end electronics is very useful. To this aim, and to reduce development time, costs and risks, this paper describes an innovative design/verification flow applied as example case study to a new communication protocol called FF-LYNX. After the description of the main FF-LYNX features, the paper presents: the definition of a parametric SystemC-based Integrated Simulation Environment (ISE) for high-level protocol definition and validation; the set up of figure of merits to drive the design space exploration; the use of ISE for early analysis of the achievable performances when adopting the new communication protocol and its interfaces for a new (or upgraded) physics experiment; the design of VHDL IP cores for the TX and RX protocol interfaces; their implementation on a FPGA-based emulator for functional verification and finally the modification of the FPGA-based emulator for testing the ASIC chipset which implements the rad-tolerant protocol interfaces. For every step, significant results will be shown to underline the usefulness of this design and verification approach that can be applied to any new digital protocol development for smart detectors in physics experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szymanski, J.J.; Amann, J.F.; Baker, K.
The MEGA experiment is designed to search for the rare decay {mu}{r_arrow}{ital e}{gamma} with a branching ratio sensitivity of {similar_to}5{times}10{sup {minus}13}. Production data have been taken during 1992 and 1993, and the detector is working as expected. Following a complete analysis, the present data set should represent an improvement of 12--15 in sensitivity over the previous limit of {mu}{r_arrow}{ital e}{gamma}. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.
Calibration of the SNO+ experiment
NASA Astrophysics Data System (ADS)
Maneira, J.; Falk, E.; Leming, E.; Peeters, S.; SNO+ Collaboration.
2017-09-01
The main goal of the SNO+ experiment is to perform a low-background and high-isotope-mass search for neutrinoless double-beta decay, employing 780 tonnes of liquid scintillator loaded with tellurium, in its initial phase at 0.5% by mass for a total mass of 1330 kg of 130Te. The SNO+ physics program includes also measurements of geo- and reactor neutrinos, supernova and solar neutrinos. Calibrations are an essential component of the SNO+ data-taking and analysis plan. The achievement of the physics goals requires both an extensive and regular calibration. This serves several goals: the measurement of several detector parameters, the validation of the simulation model and the constraint of systematic uncertainties on the reconstruction and particle identification algorithms. SNO+ faces stringent radiopurity requirements which, in turn, largely determine the materials selection, sealing and overall design of both the sources and deployment systems. In fact, to avoid frequent access to the inner volume of the detector, several permanent optical calibration systems have been developed and installed outside that volume. At the same time, the calibration source internal deployment system was re-designed as a fully sealed system, with more stringent material selection, but following the same working principle as the system used in SNO. This poster described the overall SNO+ calibration strategy, discussed the several new and innovative sources, both optical and radioactive, and covered the developments on source deployment systems.
Overview of the Calcium-45 Beta Spectrum Measurement at Los Alamos National Laboratory
NASA Astrophysics Data System (ADS)
Royse, Camen; Nab/UNCB Teams Collaboration
2017-09-01
One smoking gun of BSM physics would be the observation of a non-zero Fierz interference term, a feature in the beta spectrum produced by scalar and tensor couplings. Calcium-45 is an almost ideal candidate with which to search for a Fierz term. It is a pure beta emitter with a low endpoint of 256 keV and a simple decay scheme, with a 7 / 2 - -> 7 / 2 - g.s. to g.s. branching ratio of 99.9981(11)%. Isospin selection rules ensure the decay is greater than about 98.5% pure Gamow-Teller and the integrated effect of the weak magnetism over the entire spectrum is expected to be only 0.13%. An experiment designed to precisely measure the beta spectrum of Ca-45 has been run over the past two summers at Los Alamos National Laboratory. The experiment is composed of a 4 π-capture magnetic spectrometer between two segmented arrays of hexagonal silicon detectors (similar to the Nab experiment), a helium gas cooling system, front end electronics and amplifiers, and a data acquisition system which synchronizes the timing from the signals coming from both detector arrays. Data is analyzed to account for the pile-up of signals and other physical and calibration factors. An overview of the design and execution of the experiment as divided into the above topics will be presented.
Delay-Line Three-Dimensional Position Sensitive Radiation Detection
NASA Astrophysics Data System (ADS)
Jeong, Manhee
High-resistivity silicon(Si) in large volumes and with good charge carrier transport properties has been produced and achieved success as a radiation detector material over the past few years due to its relatively low cost as well as the availability of well-established processing technologies. One application of that technology is in the fabrication of various position-sensing topologies from which the incident radiation's direction can be determined. We have succeeded in developing the modeling tools for investigating different position-sensing schemes and used those tools to examine both amplitude-based and time-based methods, an assessment that indicates that fine position-sensing can be achieved with simpler readout designs than are conventionally deployed. This realization can make ubiquitous and inexpensive deployment of special nuclear materials (SNM) detecting technology becomes more feasible because if one can deploy position-sensitive semiconductor detectors with only one or two contacts per side. For this purpose, we have described the delay-line radiation detector and its optimized fabrication. The semiconductor physics were simulated, the results from which guided the fabrication of the guard ring structure and the detector electrode, both of which included metal-field-plates. The measured improvement in the leakage current was confirmed with the fabricated devices, and the structures successfully suppressed soft-breakdown. We also demonstrated that fabricating an asymmetric strip-line structure successfully minimizing the pulse shaping and increases the distance through which one can propagate the information of the deposited charge distribution. With fabricated delay-line detectors we can acquire alpha spectra (Am-241) and gamma spectra (Ba-133, Co-57 and Cd-109). The delay-line detectors can therefore be used to extract the charge information from both ion and gamma-ray interactions. Furthermore, standard charge-sensitive circuits yield high SNR pulses. The detectors and existing electronics can therefore be used to yield imaging instruments for neutron and gamma-rays, in the case of silicon. For CZT, we would prefer to utilize current sensing to be able to clearly isolate the effects of the various charge-transport non-idealities, the full realization of which awaits the fabrication of the custom-designed TIA chip.
Investigation of Advanced Dose Verification Techniques for External Beam Radiation Treatment
NASA Astrophysics Data System (ADS)
Asuni, Ganiyu Adeniyi
Intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) have been introduced in radiation therapy to achieve highly conformal dose distributions around the tumour while minimizing dose to surrounding normal tissues. These techniques have increased the need for comprehensive quality assurance tests, to verify that customized patient treatment plans are accurately delivered during treatment. in vivo dose verification, performed during treatment delivery, confirms that the actual dose delivered is the same as the prescribed dose, helping to reduce treatment delivery errors. in vivo measurements may be accomplished using entrance or exit detectors. The objective of this project is to investigate a novel entrance detector designed for in vivo dose verification. This thesis is separated into three main investigations, focusing on a prototype entrance transmission detector (TRD) developed by IBA Dosimetry, Germany. First contaminant electrons generated by the TRD in a 6 MV photon beam were investigated using Monte Carlo (MC) simulation. This study demonstrates that modification of the contaminant electron model in the treatment planning system is required for accurate patient dose calculation in buildup regions when using the device. Second, the ability of the TRD to accurately measure dose from IMRT and VMAT was investigated by characterising the spatial resolution of the device. This was accomplished by measuring the point spread function with further validation provided by MC simulation. Comparisons of measured and calculated doses show that the spatial resolution of the TRD allows for measurement of clinical IMRT fields within acceptable tolerance. Finally, a new general research tool was developed to perform MC simulations for VMAT and IMRT treatments, simultaneously tracking dose deposition in both the patient CT geometry and an arbitrary planar detector system, generalized to handle either entrance or exit orientations. It was demonstrated that the tool accurately simulates dose to the patient CT and planar detector geometries. The tool has been made freely available to the medical physics research community to help advance the development of in vivo planar detectors. In conclusion, this thesis presents several investigations that improve the understanding of a novel entrance detector designed for patient in vivo dosimetry.
Arabi, Hosein; Asl, Ali Reza Kamali; Ay, Mohammad Reza; Zaidi, Habib
2011-03-01
The variable resolution x-ray (VRX) CT scanner provides substantial improvement in the spatial resolution by matching the scanner's field of view (FOV) to the size of the object being imaged. Intercell x-ray cross-talk is one of the most important factors limiting the spatial resolution of the VRX detector. In this work, a new cell arrangement in the VRX detector is suggested to decrease the intercell x-ray cross-talk. The idea is to orient the detector cells toward the opening end of the detector. Monte Carlo simulations were used for performance assessment of the oriented cell detector design. Previously published design parameters and simulation results of x-ray cross-talk for the VRX detector were used for model validation using the GATE Monte Carlo package. In the first step, the intercell x-ray cross-talk of the actual VRX detector model was calculated as a function of the FOV. The obtained results indicated an optimum cell orientation angle of 28 degrees to minimize the x-ray cross-talk in the VRX detector. Thereafter, the intercell x-ray cross-talk in the oriented cell detector was modeled and quantified. The intercell x-ray cross-talk in the actual detector model was considerably high, reaching up to 12% at FOVs from 24 to 38 cm. The x-ray cross-talk in the oriented cell detector was less than 5% for all possible FOVs, except 40 cm (maximum FOV). The oriented cell detector could provide considerable decrease in the intercell x-ray cross-talk for the VRX detector, thus leading to significant improvement in the spatial resolution and reduction in the spatial resolution nonuniformity across the detector length. The proposed oriented cell detector is the first dedicated detector design for the VRX CT scanners. Application of this concept to multislice and flat-panel VRX detectors would also result in higher spatial resolution.
NuLat: A Novel Design for a Reactor Anti-Neutrino Detector
NASA Astrophysics Data System (ADS)
Rountree, S. Derek; NuLat Collaboration
2015-04-01
NuLat is a proposed very-short baseline (3-10m) reactor electron antineutrino (anti-νe) experiment that will probe the current best fit for light sterile neutrino mixing, the 5 MeV excess seen in current short baseline reactor experiments, and serve as a portable surface detector for cooperative (~ 30m baseline) surface monitoring of reactors. The NuLat detector will use an optically segmented 3D Raghavan optical lattice (ROL) detector that channels light via total internal reflection from a scintillation event down the 3 primary axes to the detector faces. The high degree of segmentation allows for each voxel's energy to be determined independently of other voxels, thus providing high temporal and spatial resolution and energy reconstruction independent of position. NuLat detects anti-νe via inverse beta decay (IBD), which produces a positron and a neutron. Most of the time, the positron deposits its kinetic energy into a single voxel allowing superior derivation of the incident anti-νe's energy. The final state neutron is captured via (n, α) on 6 Li or 10 B after a characteristic delay time giving a coincidence tag. This talk will discuss the physics reach of NuLat using a solid loaded scintillator, and the timeline of the NuLat reactor anti-νe program. This research has been funded in part by the National Science Foundation on Award Numbers 1001394 and 1001078.
NASA Astrophysics Data System (ADS)
White, Travis L.; Miller, William H.
1999-02-01
Researchers at the University of Missouri - Columbia have developed a three-crystal phoswich detector coupled to a digital pulse shape discrimination system for use in alpha/beta/gamma spectroscopy. Phoswich detectors use a sandwich of scintillators viewed by a single photomultiplier tube to simultaneously detect multiple types of radiation. Separation of radiation types is based upon pulse shape difference among the phosphors, which has historically been performed with analog circuitry. The system uses a GaGe CompuScope 1012, 12 bit, 10 MHz computer-based oscilloscope that digitally captures the pulses from a phoswich detector and subsequently performs pulse shape discrimination with cross-correlation analysis. The detector, based partially on previous phoswich designs by Usuda et al., uses a 10 mg/cm 2 thick layer of ZnS(Ag) for alpha detection, followed by a 0.254 cm CaF 2(Eu) crystal for beta detection, all backed by a 2.54 cm NaI(Tl) crystal for gamma detection. Individual energy spectra and count rate information for all three radiation types are displayed and updated periodically. The system shows excellent charged particle discrimination with an accuracy of greater than 99%. Future development will include a large area beta probe with gamma-ray discrimination, systems for low-energy photon detection (e.g. Bremsstrahlung or keV-range photon emissions), and other health physics instrumentation.
SONTRAC: A solar neutron track chamber detector
NASA Technical Reports Server (NTRS)
Frye, G. M., Jr.; Jenkins, T. L.; Owens, A.
1985-01-01
The recent detection on the solar maximum mission (SMM) satellite of high energy neutrons emitted during large solar flares has provided renewed incentive to design a neutron detector which has the sensitivity, energy resolution, and time resolution to measure the neutron time and energy spectra with sufficient precision to improve our understanding of the basic flare processes. Over the past two decades a variety of neutron detectors has been flown to measure the atmospheric neutron intensity above 10 MeV and to search for solar neutrons. The SONTRAC (Solar Neutron Track Chamber) detector, a new type of neutron detector which utilizes n-p scattering and has a sensitivity 1-3 orders of magnitude greater than previous instruments in the 20-200 MeV range is described. The energy resolution is 1% for neutron kinetic energy, T sub n 50 MeV. When used with a coded aperture mask at 50 m (as would be possible on the space station) an angular resolution of approx. 4 arc sec could be achieved, thereby locating the sites of high energy nuclear interactions with an angular precision comparable to the existing x-ray experiments on SMM. The scintillation chamber is investigated as a track chamber for high energy physics, either by using arrays of scintillating optical fibers or by optical imaging of particle trajectories in a block of scintillator.
FINAL SCIENTIFIC REPORT - PROTON RADIOGRAPHY: CROSS SECTION MEASUREMENTS AND DETECTOR DEVELOPMENT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Longo, Michael J.; Gustafson, H. Richard.; Rajaram, Durga
2007-05-11
Proton radiography offers significant advantages over conventional X-ray radiography, including the capability of looking into thick, dense materials, better contrast for a wide range of materials, sensitivity to different materials of similar density, and better resolution because of the ability to focus beams. In order to achieve this capability it is crucial to understand the background due to neutrons and photons and to develop techniques to reduce it to tolerable levels. The physics goal of this project is to measure forward production of neutrons and photons produced by high-energy proton beams striking a variety of targets. This work is beingmore » carried out in conjunction with the Fermilab Experiment 907 (MIPP) collaboration including physicists from Lawrence Livermore Laboratory. Our group is responsible for the E907 forward neu-tron/photon calorimeters. These are the only detectors in the experiment that provide informa-tion on neutrons and photons. We are taking a leading role in obtaining and analyzing the for-ward production data and in developing an optimal detector for proton radiography. With the support of our Stewardship Science Academic Alliances grant, we were able to design, build, and commission the calorimeters on budget and ahead of schedule. E-907 officially started physics running at Fermilab in January 2005, and data taking continued through February 2006. Data were taken on a range of targets, from liquid hydrogen to uranium, at beam energies from 5 GeV/c to 120 GeV/c. The analysis of the data is challenging because data from many different detector systems must be understood and merged and over 31 million events were accumulated. Our recent efforts have been devoted to the calibration of the neutron and photon detectors, to track and shower reconstruction, identification of forward-going neutrons, and simulation of the calorimeters in a Monte Carlo. Reconstruction of the data with improved tracking is underway.« less
NASA Astrophysics Data System (ADS)
Friedman, Peter
2017-09-01
The plasma panel sensor (PPS) is a novel micropattern gas detector inspired by plasma display panels (PDPs), the core component of plasma-TVs. A PDP comprises millions of discrete cells per square meter, each of which, when provided with a signal pulse, can initiate and sustain a plasma discharge. Configured as a detector, a pixel or cell is biased to discharge when a free-electron is generated in the gas. The PPS consists of an array of small plasma discharge pixels, and can be configured to have either an ``open-cell'' or ``closed-cell'' structure, operating with high gain in the Geiger region. We describe both configurations and their application to particle physics. The open-cell PPS lends itself to ultra-low-mass, ultrathin structures, whereas the closed-cell microhexcavity PPS is capable of higher performance. For the ultrathin-PPS, we are fabricating 3-inch devices based on two types of extremely thin, inorganic, transparent, substrate materials: one being 8-10 µm thick, and the other 25-27 µm thick. These gas-filled ultrathin devices are designed to operate in a beam-line vacuum environment, yet must be hermetically-sealed and gas-filled in an ambient environment at atmospheric pressure. We have successfully fabricated high resolution, submillimeter pixel electrodes on both types of ultrathin substrates. We will also report on the fabrication, staging and operation of the first microhexcavity detectors (µH-PPS). The first µH-PPS prototype devices have a 16 by 16 matrix of closed packed hexagon pixels, each having a 2 mm width. Initial tests of these detectors, conducted with Ne based gases at atmospheric pressure, indicate that each pixel responds independent of its neighboring cells, producing volt level pulse amplitudes in response to ionizing radiation. Results will include the hit rate response to a radioactive beta source, cosmic ray muons, the background from spontaneous discharge, pixel isolation and uniformity, and efficiency measurements. This work was funded in part by a DOE Office of Nuclear Physics SBIR Phase-II Grant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahim, Farah; Deptuch, Grzegorz W.; Hoff, James R.
Semiconductor hybrid pixel detectors often consist of a pixellated sensor layer bump bonded to a matching pixelated readout integrated circuit (ROIC). The sensor can range from high resistivity Si to III-V materials, whereas a Si CMOS process is typically used to manufacture the ROIC. Independent, device physics and electronic design automation (EDA) tools are used to determine sensor characteristics and verify functional performance of ROICs respectively with significantly different solvers. Some physics solvers provide the capability of transferring data to the EDA tool. However, single pixel transient simulations are either not feasible due to convergence difficulties or are prohibitively long.more » A simplified sensor model, which includes a current pulse in parallel with detector equivalent capacitor, is often used; even then, spice type top-level (entire array) simulations range from days to weeks. In order to analyze detector deficiencies for a particular scientific application, accurately defined transient behavioral models of all the functional blocks are required. Furthermore, various simulations, such as transient, noise, Monte Carlo, inter-pixel effects, etc. of the entire array need to be performed within a reasonable time frame without trading off accuracy. The sensor and the analog front-end can be modeling using a real number modeling language, as complex mathematical functions or detailed data can be saved to text files, for further top-level digital simulations. Parasitically aware digital timing is extracted in a standard delay format (sdf) from the pixel digital back-end layout as well as the periphery of the ROIC. For any given input, detector level worst-case and best-case simulations are performed using a Verilog simulation environment to determine the output. Each top-level transient simulation takes no more than 10-15 minutes. The impact of changing key parameters such as sensor Poissonian shot noise, analog front-end bandwidth, jitter due to clock distribution etc. can be accurately analyzed to determine ROIC architectural viability and bottlenecks. Hence the impact of the detector parameters on the scientific application can be studied.« less
NASA Astrophysics Data System (ADS)
Rubbia, André
2009-06-01
The current focus of the CERN program is the Large Hadron Collider (LHC), however, CERN is engaged in long baseline neutrino physics with the CNGS project and supports T2K as recognized CERN RE13, and for good reasons: a number of observed phenomena in high-energy physics and cosmology lack their resolution within the Standard Model of particle physics; these puzzles include the origin of neutrino masses, CP-violation in the leptonic sector, and baryon asymmetry of the Universe. They will only partially be addressed at LHC. A positive measurement of sin2 2θ13 > 0.01 would certainly give a tremendous boost to neutrino physics by opening the possibility to study CP violation in the lepton sector and the determination of the neutrino mass hierarchy with upgraded conventional super-beams. These experiments (so called 'Phase II') require, in addition to an upgraded beam power, next generation very massive neutrino detectors with excellent energy resolution and high detection efficiency in a wide neutrino energy range, to cover 1st and 2nd oscillation maxima, and excellent particle identification and p0 background suppression. Two generations of large water Cherenkov detectors at Kamioka (Kamiokande and Super-Kamiokande) have been extremely successful. And there are good reasons to consider a third generation water Cherenkov detector with an order of magnitude larger mass than Super-Kamiokande for both non-accelerator (proton decay, supernovae,...) and accelerator-based physics. On the other hand, a very massive underground liquid Argon detector of about 100 kton could represent a credible alternative for the precision measurements of 'Phase II' and aim at significantly new results in neutrino astroparticle and non-accelerator-based particle physics (e.g. proton decay).
Liang, Yicheng; Peng, Hao
2015-02-07
Depth-of-interaction (DOI) poses a major challenge for a PET system to achieve uniform spatial resolution across the field-of-view, particularly for small animal and organ-dedicated PET systems. In this work, we implemented an analytical method to model system matrix for resolution recovery, which was then incorporated in PET image reconstruction on a graphical processing unit platform, due to its parallel processing capacity. The method utilizes the concepts of virtual DOI layers and multi-ray tracing to calculate the coincidence detection response function for a given line-of-response. The accuracy of the proposed method was validated for a small-bore PET insert to be used for simultaneous PET/MR breast imaging. In addition, the performance comparisons were studied among the following three cases: 1) no physical DOI and no resolution modeling; 2) two physical DOI layers and no resolution modeling; and 3) no physical DOI design but with a different number of virtual DOI layers. The image quality was quantitatively evaluated in terms of spatial resolution (full-width-half-maximum and position offset), contrast recovery coefficient and noise. The results indicate that the proposed method has the potential to be used as an alternative to other physical DOI designs and achieve comparable imaging performances, while reducing detector/system design cost and complexity.
Gamma-Ray Detectors: From Homeland Security to the Cosmos (443rd Brookhaven Lecture)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolotnikov, Aleksey
2008-12-03
Many radiation detectors are first developed for homeland security or industrial applications. Scientists, however, are continuously realizing new roles that these detectors can play in high-energy physics and astrophysics experiments. On Wednesday, December 3, join presenter Aleksey Bolotnikov, a physicist in the Nonproliferation and National Security Department (NNSD) and a co-inventor of the cadmium-zinc-telluride Frisch-ring (CdZnTe) detector, for the 443rd Brookhaven Lecture, entitled Gamma-Ray Detectors: From Homeland Security to the Cosmos. In his lecture, Bolotnikov will highlight two primary radiation-detector technologies: CdZnTe detectors and fluid-Xeon (Xe) detectors.
Development of an advanced antineutrino detector for reactor monitoring
Classen, T.; Bernstein, A.; Bowden, N. S.; ...
2014-11-05
We present the development of a compact antineutrino detector for the purpose of nuclear reactor monitoring, improving upon a previously successful design. Our paper will describe the design improvements of the detector which increases the antineutrino detection efficiency threefold over the previous effort. There are two main design improvements over previous generations of detectors for nuclear reactor monitoring: dual-ended optical readout and single volume detection mass. The dual-ended optical readout eliminates the need for fiducialization and increases the uniformity of the detector's optical response. The containment of the detection mass in a single active volume provides more target mass permore » detector footprint, a key design criteria for operating within a nuclear power plant. This technology could allow for real-time monitoring of the evolution of a nuclear reactor core, independent of reactor operator declarations of fuel inventories, and may be of interest to the safeguards community.« less
Positional glow curve simulation for thermoluminescent detector (TLD) system design
NASA Astrophysics Data System (ADS)
Branch, C. J.; Kearfott, K. J.
1999-02-01
Multi- and thin element dosimeters, variable heating rate schemes, and glow-curve analysis have been employed to improve environmental and personnel dosimetry using thermoluminescent detectors (TLDs). Detailed analysis of the effects of errors and optimization of techniques would be highly desirable. However, an understanding of the relationship between TL light production, light attenuation, and precise heating schemes is made difficult because of experimental challenges involved in measuring positional TL light production and temperature variations as a function of time. This work reports the development of a general-purpose computer code, thermoluminescent detector simulator, TLD-SIM, to simulate the heating of any TLD type using a variety of conventional and experimental heating methods including pulsed focused or unfocused lasers with Gaussian or uniform cross sections, planchet, hot gas, hot finger, optical, infrared, or electrical heating. TLD-SIM has been used to study the impact on the TL light production of varying the input parameters which include: detector composition, heat capacity, heat conductivity, physical size, and density; trapped electron density, the frequency factor of oscillation of electrons in the traps, and trap-conduction band potential energy difference; heating scheme source terms and heat transfer boundary conditions; and TL light scatter and attenuation coefficients. Temperature profiles and glow curves as a function of position time, as well as the corresponding temporally and/or spatially integrated glow values, may be plotted while varying any of the input parameters. Examples illustrating TLD system functions, including glow curve variability, will be presented. The flexible capabilities of TLD-SIM promises to enable improved TLD system design.
The Luminosity Measurement for the DZERO Experiment at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snow, Gregory R.
Primary project objective: The addition of University of Nebraska-Lincoln (UNL) human resources supported by this grant helped ensure that Fermilab’s DZERO experiment had a reliable luminosity measurement through the end of Run II data taking and an easily-accessible repository of luminosity information for all collaborators performing physics analyses through the publication of its final physics results. Secondary project objective: The collaboration between the UNL Instrument Shop and Fermilab’s Scintillation Detector Development Center enhanced the University of Nebraska’s future role as a particle detector R&D and production facility for future high energy physics experiments. Overall project objective: This targeted project enhancedmore » the University of Nebraska’s presence in both frontier high energy physics research in DZERO and particle detector development, and it thereby served the goals of the DOE Office of Science and the Experimental Program to Stimulate Competitive Research (EPSCoR) for the state of Nebraska.« less
Melinscak, Filip; Montesano, Luis; Minguez, Javier
2016-02-01
Attention is known to modulate the plasticity of the motor cortex, and plasticity is crucial for recovery in motor rehabilitation. This study addresses the possibility of using an EEG-based brain-computer interface (BCI) to detect kinesthetic attention to movement. A novel experiment emulating physical rehabilitation was designed to study kinesthetic attention. The protocol involved continuous mobilization of lower limbs during which participants reported levels of attention to movement-from focused kinesthetic attention to mind wandering. For this protocol an asynchronous BCI detector of kinesthetic attention and deliberate mind wandering was designed. EEG analysis showed significant differences in theta, alpha, and beta bands, related to the attentional state. These changes were further pinpointed to bands relative to the frequency of the individual alpha peak. The accuracy of the designed BCI ranged between 60.8% and 68.4% (significantly above chance level), depending on the used analysis window length, i.e. acceptable detection delay. This study shows it is possible to use self-reporting to study attention-related changes in EEG during continuous mobilization. Such a protocol is used to develop an asynchronous BCI detector of kinesthetic attention, with potential applications to motor rehabilitation.
NASA Astrophysics Data System (ADS)
Melinscak, Filip; Montesano, Luis; Minguez, Javier
2016-02-01
Objective. Attention is known to modulate the plasticity of the motor cortex, and plasticity is crucial for recovery in motor rehabilitation. This study addresses the possibility of using an EEG-based brain-computer interface (BCI) to detect kinesthetic attention to movement. Approach. A novel experiment emulating physical rehabilitation was designed to study kinesthetic attention. The protocol involved continuous mobilization of lower limbs during which participants reported levels of attention to movement—from focused kinesthetic attention to mind wandering. For this protocol an asynchronous BCI detector of kinesthetic attention and deliberate mind wandering was designed. Main results. EEG analysis showed significant differences in theta, alpha, and beta bands, related to the attentional state. These changes were further pinpointed to bands relative to the frequency of the individual alpha peak. The accuracy of the designed BCI ranged between 60.8% and 68.4% (significantly above chance level), depending on the used analysis window length, i.e. acceptable detection delay. Significance. This study shows it is possible to use self-reporting to study attention-related changes in EEG during continuous mobilization. Such a protocol is used to develop an asynchronous BCI detector of kinesthetic attention, with potential applications to motor rehabilitation.
The International Linear Collider Technical Design Report - Volume 1: Executive Summary
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behnke, Ties; Brau, James E.; Foster, Brian
2013-06-26
The International Linear Collider Technical Design Report (TDR) describes in four volumes the physics case and the design of a 500 GeV centre-of-mass energy linear electron-positron collider based on superconducting radio-frequency technology using Niobium cavities as the accelerating structures. The accelerator can be extended to 1 TeV and also run as a Higgs factory at around 250 GeV and on the Z0 pole. A comprehensive value estimate of the accelerator is give, together with associated uncertainties. It is shown that no significant technical issues remain to be solved. Once a site is selected and the necessary site-dependent engineering is carriedmore » out, construction can begin immediately. The TDR also gives baseline documentation for two high-performance detectors that can share the ILC luminosity by being moved into and out of the beam line in a "push-pull" configuration. These detectors, ILD and SiD, are described in detail. They form the basis for a world-class experimental programme that promises to increase significantly our understanding of the fundamental processes that govern the evolution of the Universe.« less
The Borexino nylon film and the third counting test facility
NASA Astrophysics Data System (ADS)
McCarty, Kevin B.
The Borexino solar neutrino detector should begin operations in late 2006. This scintillation-based detector will observe low-energy neutrinos, in real time, down to about 250 keV. The experiment should further tighten constraints on the neutrino oscillation parameters, and confirm the Standard Solar Model of solar neutrino production. It may also observe geoneutrinos; supernova neutrinos, should the timing of the experiment be fortunate; and perhaps other processes beyond the scope of the Standard Model of particle physics. At the heart of Borexino lie 300 tons of organic scintillator fluid, contained by a spherical vessel composed of transparent nylon film. Roughly 300 tons of passive buffer fluid lie between this inner vessel and a second outer nylon vessel. Both vessels are located inside a steel sphere that also supports over 2000 inward-pointing photomultiplier tubes. The two most vital components of Borexino are these nylon vessels and the scintillator itself. Numerous measurements made at Princeton of the physical and radiochemical properties of the vessel film are reported in this thesis. A 4-ton prototype of Borexino, the CTF, has been used to study scintillator radiopurity for over ten years. However, certain peculiarities of its design make determining the spatial positions of radioactive decays within the detector difficult. The development of a new position reconstruction code that takes these problems into account is reported herein. Several studies of radiopurity in the latest version of CTF were made using this new code. These include a proposal for individually tagging decays of radon and four daughter isotopes; an attempt to detect convection using the radon daughters; a hypothesis to explain peculiar behavior of the crucial isotope 210 Po; and an analysis of 40 K contamination inside the detector based on models of the spatial distribution of external g rays, leading to a somewhat concerning result. A final distillation test of the scintillator will take place shortly, and will match as closely as possible the procedure used to purify scintillator for the full Borexino detector. Analyses run on CTF data collected after this test should prove vital in understanding the detector sensitivity of Borexino.
Photonic sources and detectors for quantum information protocols: A trilogy in eight parts
NASA Astrophysics Data System (ADS)
Rangarajan, Radhika
Quantum information processing (QIP) promises to revolutionize existing methods of manipulating data, via truly unique paradigms based on fundamental nonclassical physical phenomenon. However, the eventual success of optical QIP depends critically on the available technologies. Currently, creating multiple-photon states is extremely inefficient because almost no source thus far has been well optimized. Additionally, high-efficiency single-photon detectors can drastically improve multi-photon QIP (typical efficiencies are ˜70%). In fact, it has been shown that scalable linear optical quantum computing is possible only if the product of the source and detector efficiencies exceeds ˜67%. The research presented here focuses on developing optimized source and detector technologies for enabling scalable QIP. The goal of our source research is to develop an ideal " indistinguishable" source of ultrabright polarization-entangled but spatially- and spectrally-unentangled photon pairs. We engineer such an ideal source by first designing spatio-spectrally unentangled photons using optimized and group-velocity matched spontaneous parametric down conversion (SPDC). Next, we generate polarization-entangled photons using the engineered SPDC. Here we present solutions to the various challenges encountered during the indistinguishable source development. We demonstrate high-fidelity ultrafast pulsed and cw-diode laser-pumped sources of polarization-entangled photons, as well as the first production of polarization-entanglement directly from the highly nonlinear biaxial crystal BiB3O6 (BiBO). We also discuss the first experimental confirmation of the emission-angle dependence of the downconversion polarization (the Migdall effect), and a novel scheme for polarization-dependent focusing. The goal of our single-photon detector research is to develop a very high-efficiency detection system that can also resolve incident photon number, a feature absent from the typical detectors employed for QIP. We discuss the various cryogenic, optical and electronic challenges encountered en route to detector development and present details on detector characterization, ultra-short electronics design and photon-number-resolution studies. The source and detector technologies developed here share a common goal: to enhance the efficiency of existing quantum protocols and pave the way for new ones. Here we discuss some of the possible benefits via a popular quantum protocol---teleportation---as well as a novel quantum communication technique---hyper-fingerprinting. Taken as a whole, this dissertation explores viable technological options for enhancing optical quantum information protocols, offers a perspective on the current status and limitations of existing technologies, and highlights the possibilities enabled by optimized photonic sources and detectors.
A gamma beam profile imager for ELI-NP Gamma Beam System
NASA Astrophysics Data System (ADS)
Cardarelli, P.; Paternò, G.; Di Domenico, G.; Consoli, E.; Marziani, M.; Andreotti, M.; Evangelisti, F.; Squerzanti, S.; Gambaccini, M.; Albergo, S.; Cappello, G.; Tricomi, A.; Veltri, M.; Adriani, O.; Borgheresi, R.; Graziani, G.; Passaleva, G.; Serban, A.; Starodubtsev, O.; Variola, A.; Palumbo, L.
2018-06-01
The Gamma Beam System of ELI-Nuclear Physics is a high brilliance monochromatic gamma source based on the inverse Compton interaction between an intense high power laser and a bright electron beam with tunable energy. The source, currently being assembled in Magurele (Romania), is designed to provide a beam with tunable average energy ranging from 0.2 to 19.5 MeV, rms energy bandwidth down to 0.5% and flux of about 108 photons/s. The system includes a set of detectors for the diagnostic and complete characterization of the gamma beam. To evaluate the spatial distribution of the beam a gamma beam profile imager is required. For this purpose, a detector based on a scintillator target coupled to a CCD camera was designed and a prototype was tested at INFN-Ferrara laboratories. A set of analytical calculations and Monte Carlo simulations were carried out to optimize the imager design and evaluate the performance expected with ELI-NP gamma beam. In this work the design of the imager is described in detail, as well as the simulation tools used and the results obtained. The simulation parameters were tuned and cross-checked with the experimental measurements carried out on the assembled prototype using the beam from an x-ray tube.
Comparison of CdZnTe neutron detector models using MCNP6 and Geant4
NASA Astrophysics Data System (ADS)
Wilson, Emma; Anderson, Mike; Prendergasty, David; Cheneler, David
2018-01-01
The production of accurate detector models is of high importance in the development and use of detectors. Initially, MCNP and Geant were developed to specialise in neutral particle models and accelerator models, respectively; there is now a greater overlap of the capabilities of both, and it is therefore useful to produce comparative models to evaluate detector characteristics. In a collaboration between Lancaster University, UK, and Innovative Physics Ltd., UK, models have been developed in both MCNP6 and Geant4 of Cadmium Zinc Telluride (CdZnTe) detectors developed by Innovative Physics Ltd. Herein, a comparison is made of the relative strengths of MCNP6 and Geant4 for modelling neutron flux and secondary γ-ray emission. Given the increasing overlap of the modelling capabilities of MCNP6 and Geant4, it is worthwhile to comment on differences in results for simulations which have similarities in terms of geometries and source configurations.
Physics of cardiac imaging with multiple-row detector CT.
Mahesh, Mahadevappa; Cody, Dianna D
2007-01-01
Cardiac imaging with multiple-row detector computed tomography (CT) has become possible due to rapid advances in CT technologies. Images with high temporal and spatial resolution can be obtained with multiple-row detector CT scanners; however, the radiation dose associated with cardiac imaging is high. Understanding the physics of cardiac imaging with multiple-row detector CT scanners allows optimization of cardiac CT protocols in terms of image quality and radiation dose. Knowledge of the trade-offs between various scan parameters that affect image quality--such as temporal resolution, spatial resolution, and pitch--is the key to optimized cardiac CT protocols, which can minimize the radiation risks associated with these studies. Factors affecting temporal resolution include gantry rotation time, acquisition mode, and reconstruction method; factors affecting spatial resolution include detector size and reconstruction interval. Cardiac CT has the potential to become a reliable tool for noninvasive diagnosis and prevention of cardiac and coronary artery disease. (c) RSNA, 2007.
Initial Results from the Majorana Demonstrator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elliott, S. R.; Abgrall, N.; Arnquist, I. J.
The Majorana Collaboration has assembled an array of high purity Ge detectors to search for neutrinoless double-beta decay in 76Ge with the goal of establishing the required background and scalability of a Ge-based next-generation tonne-scale experiment. The Majorana Demonstrator consists of 44 kg of high-purity Ge (HPGe) detectors (30 kg enriched in 76Ge) with a low-noise p-type point contact (PPC) geometry. The detectors are split between two modules which are contained in a single lead and high-purity copper shield at the Sanford Underground Research Facility in Lead, South Dakota. Following a commissioning run that started in June 2015, the fullmore » detector array has been acquiring data since August 2016. We will discuss the status of the Majorana Demonstrator and initial results from the first physics run; including current background estimates, exotic low-energy physics searches, projections on the physics reach of the Demonstrator, and implications for a tonne-scale Ge based Neutrinoless double-beta decay search.« less
Cherenkov Water Detectors in Particle Physics and Cosmic Rays
NASA Astrophysics Data System (ADS)
Petrukhin, A. A.; Yashin, I. I.
2017-12-01
Among various types of Cherenkov detectors (solid, liquid and gaseous) created for different studies, the most impressive development was gained by water detectors: from the first detector with a volume of several liters in which the Cherenkov radiation was discovered, to the IceCube detector with a volume of one cubic kilometer. The review of the development of Cherenkov water detectors for various purposes and having different locations - ground-based, underground and underwater-is presented in the paper. The prospects of their further development are also discussed.
Experimental High Energy Physics Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hohlmann, Marcus
This final report summarizes activities of the Florida Tech High Energy Physics group supported by DOE under grant #DE-SC0008024 during the period June 2012 – March 2015. We focused on one of the main HEP research thrusts at the Energy Frontier by participating in the CMS experiment. We were exploiting the tremendous physics opportunities at the Large Hadron Collider (LHC) and prepared for physics at its planned extension, the High-Luminosity LHC. The effort comprised a physics component with analysis of data from the first LHC run and contributions to the CMS Phase-2 upgrades in the muon endcap system (EMU) formore » the High-Luminosity LHC. The emphasis of our hardware work was the development of large-area Gas Electron Multipliers (GEMs) for the CMS forward muon upgrade. We built a production and testing site for such detectors at Florida Tech to complement future chamber production at CERN. The first full-scale CMS GE1/1 chamber prototype ever built outside of CERN was constructed at Florida Tech in summer 2013. We conducted two beam tests with GEM prototype chambers at CERN in 2012 and at FNAL in 2013 and reported the results at conferences and in publications. Principal Investigator Hohlmann served as chair of the collaboration board of the CMS GEM collaboration and as co-coordinator of the GEM detector working group. He edited and authored sections of the detector chapter of the Technical Design Report (TDR) for the GEM muon upgrade, which was approved by the LHCC and the CERN Research Board in 2015. During the course of the TDR approval process, the GEM project was also established as an official subsystem of the muon system by the CMS muon institution board. On the physics side, graduate student Kalakhety performed a Z' search in the dimuon channel with the 2011 and 2012 CMS datasets that utilized 20.6 fb⁻¹ of p-p collisions at √s = 8 TeV. For the dimuon channel alone, the 95% CL lower limits obtained on the mass of a Z' resonance are 2770 GeV for a Z' with the same standard-model couplings as the Z boson. Our student team operated a Tier-3 cluster on the Open Science Grid (OSG) to support local CMS physics analysis and remote OSG activity. As a service to the HEP community, Hohlmann participated in the Snowmass effort over the course of 2013. Specifically, he acted as a liaison for gaseous detectors between the Instrumentation Frontier and the Energy Frontier and contributed to five papers and reports submitted to the summer study.« less
NASA Astrophysics Data System (ADS)
Happacher, F.
2017-09-01
The Mu2e Experiment at Fermilab will search for coherent, neutrino-less conversion of negative muons into electrons in the field of an Aluminum nucleus, μ- + Al → e- +Al. Data collection start is planned for the end of 2021. The dynamics of such charged lepton flavour violating (CLFV) process is well modelled by a two-body decay, resulting in a mono-energetic electron with an energy slightly below the muon rest mass. If no events are observed in three years of running, Mu2e will set an upper limit on the ratio between the conversion and the capture rates Rμ e = μ- + A(Z,N) → e- +A(Z,N)/μ- + A(Z,N) → νμ - +A(Z-1,N) of <= 6 × 10-17 (@ 90% C.L.). This will improve the current limit of four order of magnitudes with respect to the previous best experiment. Mu2e complements and extends the current search for μ → e γ decay at MEG as well as the direct searches for new physics at the LHC . The observation of such CLFV process could be clear evidence for New Physics beyond the Standard Model. Given its sensitivity, Mu2e will be able to probe New Physics at a scale inaccessible to direct searches at either present or planned high energy colliders. To search for the muon conversion process, a very intense pulsed beam of negative muons (~ 1010 μ/ sec) is stopped on an Aluminum target inside a very long solenoid where the detector is also located. The Mu2e detector is composed of a straw tube tracker and a CsI crystals electromagnetic calorimeter. An external veto for cosmic rays surrounds the detector solenoid. In 2016, Mu2e has passed the final approval stage from DOE and has started its construction phase. An overview of the physics motivations for Mu2e, the current status of the experiment and the required performances and design details of the calorimeter are presented.
NASA Astrophysics Data System (ADS)
Atanov, N.; Budagov, J.; Cervelli, F.; Colao, F.; Cordelli, M.; Corradi, G.; Danè, E.; Davidov, Y.; Di Falco, S.; Diociaiuti, E.; Donati, S.; Donghia, R.; Echenard, B.; Giovannella, S.; Glagolev, V.; Grancagnolo, F.; Happacher, F.; Hitlin, D.; Martini, M.; Miscetti, S.; Miyashita, T.; Morescalchi, L.; Murat, P.; Pedreschi, E.; Pezzullo, G.; Porter, F.; Saputi, A.; Sarra, I.; Spinella, F.; Tassielli, G.; Mu2e Collaboration
2017-09-01
The Mu2e Experiment at Fermilab will search for coherent, neutrino-less conversion of negative muons into electrons in the field of an Aluminum nucleus, μ- + Al → e- +Al. Data collection start is planned for the end of 2021. The dynamics of such charged lepton flavour violating (CLFV) process is well modelled by a two-body decay, resulting in a mono-energetic electron with an energy slightly below the muon rest mass. If no events are observed in three years of running, Mu2e will set an upper limit on the ratio between the conversion and the capture rates Rμe = μ- + A(Z,N) → e- + A(Z,N)/μ- + A(Z,N) → νμ- + A(Z-1,N) of <= 6 × 10-17 (@ 90% C.L.). This will improve the current limit of four order of magnitudes with respect to the previous best experiment. Mu2e complements and extends the current search for μ → e γ decay at MEG as well as the direct searches for new physics at the LHC . The observation of such CLFV process could be clear evidence for New Physics beyond the Standard Model. Given its sensitivity, Mu2e will be able to probe New Physics at a scale inaccessible to direct searches at either present or planned high energy colliders. To search for the muon conversion process, a very intense pulsed beam of negative muons (~ 1010 μ/sec) is stopped on an Aluminum target inside a very long solenoid where the detector is also located. The Mu2e detector is composed of a straw tube tracker and a CsI crystals electromagnetic calorimeter. An external veto for cosmic rays surrounds the detector solenoid. In 2016, Mu2e has passed the final approval stage from DOE and has started its construction phase. An overview of the physics motivations for Mu2e, the current status of the experiment and the required performances and design details of the calorimeter are presented.
First results with charmless two-body B-decays at LHCb, and future prospects
Vagnoni, Vincenzo
2018-04-27
LHCb is an experiment which is designed to perform flavour physics measurements at the LHC. Charged two-body charmless B decays (e.g. B^0 -> Kpi, pipi, B_s->KK, etc) receive significant contributions from loop diagrams and are thus sensitive probes of New Physics. Study of these modes is therefore an important physics goal of LHCb. First results will be presented, using around 37 pb^{-1} of data collected at \\sqrt{s}=7 TeV in 2010. These results illustrate the power of the LHCb trigger system and particle identification capabilities of the RICH detectors in isolating clean samples of each final state, and include preliminary measurements of direct CP-violation in certain key modes. The prospects for these measurements in the coming run will be presented. A brief survey will also be given of results and prospect in other areas of the LHCb physics programme.
Frog: The fast & realistic OpenGL event displayer
NASA Astrophysics Data System (ADS)
Quertenmont, Loïc
2010-04-01
FROG [1] [2] is a generic framework dedicated to visualisation of events in high energy physics experiment. It is suitable to any particular physics experiment or detector design. The code is light (< 3 MB) and fast (browsing time ~ 20 events per second for a large High Energy Physics experiment) and can run on various operating systems, as its object-oriented structure (C++) relies on the cross-platform OpenGL[3] and Glut [4] libraries. Moreover, Frog does not require installation of heavy third party libraries for the visualisation. This documents describes the features and principles of Frog version 1.106, its working scheme and numerous functionalities such as: 3D and 2D visualisation, graphical user interface, mouse interface, configuration files, production of pictures of various format, integration of personal objects, etc. Finally the application of FROG for physic experiment/environement, such as Gastof, CMS, ILD, Delphes will be presented for illustration.
1993-09-01
designed to respond to. No data exists on spectral irradiances in the IR or UV spectral bands where the current detectors operate. A need exists to...appropriate fire/explosion detection spectral bands. Setting a pyrotechnic fire and testing the responses of commercial UV and IR detectors that are designed...PNZ B. DETECTOR BACKGROUND ............... 30 C. UV DETECTORS . . ............ . . . 32 D. IR DETECTORS . . . ......... . . ... 34 E. MACHINE VISION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yelton, John
The project involved data analysis of data taken with the Belle detector operating at KEKB accelerator, Japan. In addition commissionin of the Belle II detector, which is destined to replace the Belle detector.
The vertex and large angle detectors of a spectrometer system for high energy muon physics
NASA Astrophysics Data System (ADS)
Albanese, J. P.; Allkofer, O. C.; Arneodo, M.; Aubert, J. J.; Becks, K. H.; Bee, C.; Benchouk, C.; Bernaudin, B.; Bertsch, Y.; Bianchi, F.; Bibby, J.; Bird, I.; Blum, D.; Böhm, E.; Botterill, D.; De Bouard, X.; Brasse, F. W.; Braun, H.; Broll, C.; Brown, S.; Brück, H.; Callebaut, D.; Carr, J.; Clifft, R.; Cobb, J. H.; Coignet, G.; Combley, F.; Cornelssen, M.; Costa, F.; Coughlan, J.; Court, G. R.; D'Agostini, G.; Dau, W. D.; Davies, J. K.; Davis, A.; Dengler, F.; Derado, I.; Dobinson, R. W.; Dosselli, U.; Drees, J.; Dumont, J. J.; Eckardt, V.; Edwards, A.; Edwards, M.; Falley, G.; Favier, J.; Ferrero, M. I.; Figiel, J.; Flauger, W.; Gabathuler, E.; Gamet, R.; Gayler, J.; Gebauer, H. J.; Gössling, C.; Haas, J.; Hasert, F. J.; Hayman, P.; Heusse, P.; Jaffré, M.; Janata, F.; Jancso, G.; Johnson, A. S.; Kabuss, E. M.; Kahl, T.; Kellner, G.; Koll, J.; Korbel, V.; Krüger, J.; Landgraf, U.; Lanske, D.; Lebeau, M.; Loken, J.; Maire, M.; Manz, A.; Mermet-Guyennet, M.; Minssieux, H.; Mohr, W.; Montanet, F.; Montgomery, H. E.; Moser, K.; Mount, R. P.; Moynot, M.; Müller, H.; Nagy, E.; Nassalski, J.; Noppe, J. M.; Norton, P. R.; Osborne, A. M.; Pascaud, C.; Paul, L.; Payre, P.; Peroni, C.; Perrot, G.; Pessard, H.; Pettingale, J.; Pötsch, M.; Preissner, H.; Renton, P.; Ribarics, P.; Rith, K.; Röhner, F.; Rondio, E.; Rousseau, M. D.; Schlagböhmer, A.; Schmitz, N.; Scaramelli, A.; Schneegans, M.; Schultze, K.; Scory, M.; Shiers, J.; Singer, G.; Sloan, T.; Smith, R.; Sproston, M.; Stier, H. E.; Stockhausen, W.; Studt, M.; Thénard, J. M.; Thiele, K.; Thompson, J. C.; De La Torre, A.; Wahlen, H.; Wallucks, W.; Watson, E.; Whalley, M.; Williams, D. A.; Williams, W. S. C.; Wimpenny, S.; Windmolders, R.; Winklmüller, G.; Wolf, G.; Zank, P.; European Muon Collaboration
1983-07-01
A description is given of the detector system which forms the large angle spectrometer and vertex detector of the EMC spectrometer. The apparatus is used in the NA9 experiment which studies the complete hadronic final state from the interaction of high energy muons.
Instrumentation for Applied Physics and Industrial Applications
NASA Astrophysics Data System (ADS)
Hillemanns, H.; Le Goff, J.-M.
This document is part of Part 2 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '7.3 Instrumentation for Applied Physics and Industrial Applications' of Chapter '7 Applications of Detectors in Technology; Medicine and Other Fields' with the content:
R&D of the CEPC scintillator-tungsten ECAL
NASA Astrophysics Data System (ADS)
Dong, M. Y.
2018-03-01
The circular electron and positron collider (CEPC) was proposed as a future Higgs factory. To meet the physics requirements, a particle flow algorithm-oriented calorimeter system with high energy resolution and precise reconstruction is considered. A sampling calorimeter with scintillator-tungsten sandwich structure is selected as one of the electromagnetic calorimeter (ECAL) options due to its good performance and relatively low cost. We present the design, the test and the optimization of the scintillator module read out by silicon photomultiplier (SiPM), including the design and the development of the electronics. To estimate the performance of the scintillator and SiPM module for particles with different energy, the beam test of a mini detector prototype without tungsten shower material was performed at the E3 beams in Institute of High Energy Physics (IHEP). The results are consistent with the expectation. These studies provide a reference and promote the development of particle flow electromagnetic calorimeter for the CEPC.
NASA Astrophysics Data System (ADS)
Jiang, Xiao-Pan; Zhang, Zi-Liang; Qin, Xiu-Bo; Yu, Run-Sheng; Wang, Bao-Yi
2010-12-01
Positronium time of flight spectroscopy (Ps-TOF) is an effective technique for porous material research. It has advantages over other techniques for analyzing the porosity and pore tortuosity of materials. This paper describes a design for Ps-TOF apparatus based on the Beijing intense slow positron beam, supplying a new material characterization technique. In order to improve the time resolution and increase the count rate of the apparatus, the detector system is optimized. For 3 eV o-Ps, the time broadening is 7.66 ns and the count rate is 3 cps after correction.
A history of hybrid pixel detectors, from high energy physics to medical imaging
NASA Astrophysics Data System (ADS)
Delpierre, P.
2014-05-01
The aim of this paper is to describe the development of hybrid pixel detectors from the origin to the application on medical imaging. We are going to recall the need for fast 2D detectors in the high energy physics experiments and to follow the different pixel electronic circuits created to satisfy this demand. The adaptation of these circuits for X-rays will be presented as well as their industrialization. Today, a number of applications are open for these cameras, particularly for biomedical imaging applications. Some developments for clinical CT will also be shown.
Scintillation Detector for the Measurement of Ultra-Heavy Cosmic Rays on the Super-TIGER Experiment
NASA Technical Reports Server (NTRS)
Link, Jason
2011-01-01
We discuss the design and construction of the scintillation detectors for the Super-TIGER experiment. Super-TIGER is a large-area (5.4sq m) balloon-borne experiment designed to measure the abundances of cosmic-ray nuclei between Z= 10 and Z=56. It is based on the successful TIGER experiment that flew in Antarctica in 2001 and 2003. Super-TIGER has three layers of scintillation detectors, two Cherenkov detectors and a scintillating fiber hodoscope. The scintillation detector employs four wavelength shifter bars surrounding the edges of the scintillator to collect the light from particles traversing the detector. PMTs are optically coupled at both ends of the bars for light collection. We report on laboratory performance of the scintillation counters using muons. In addition we discuss the design challenges and detector response over this broad charge range including the effect of scintilator saturation.
Particle and Smoke Detection on ISS for Next Generation Smoke Detectors
NASA Technical Reports Server (NTRS)
Urban, David L.; Ruff, Gary; Yuan, Zeng-guang; Sheredy, William; Funk, Greg
2007-01-01
Rapid fire detection requires the ability to differentiate fire signatures from background conditions and nuisance sources. Proper design of a fire detector requires detailed knowledge of all of these signal sources so that a discriminating detector can be designed. Owing to the absence of microgravity smoke data, all current spacecraft smoke detectors were designed based upon normal-g conditions. The removal of buoyancy reduces the velocities in the high temperature zones in flames, increasing the residence time of smoke particles and consequently allowing longer growth time for the particles. Recent space shuttle experiments confirmed that, in some cases, increased particles sizes are seen in low-gravity and that the relative performance of the ISS (International Space Station) and space-shuttle smoke-detectors changes in low-gravity; however, sufficient particle size information to design new detectors was not obtained. To address this issue, the SAME (Smoke Aerosol Measurement Experiment) experiment is manifested to fly on the ISS in 2007. The SAME experiment will make measurements of the particle size distribution of the smoke particulate from several typical spacecraft materials providing quantitative design data for spacecraft smoke detectors. A precursor experiment (DAFT: Dust Aerosol measurement Feasibility Test) flew recently on the ISS and provided the first measurement of the background smoke particulate levels on the ISS. These background levels are critical to the design of future smoke detectors. The ISS cabin was found to be a very clean environment with particulate levels substantially below the space shuttle and typical ground-based environments.
Novel detectors for silicon based microdosimetry, their concepts and applications
NASA Astrophysics Data System (ADS)
Rosenfeld, Anatoly B.
2016-02-01
This paper presents an overview of the development of semiconductor microdosimetry and the most current (state-of-the-art) Silicon on Insulator (SOI) detectors for microdosimetry based mainly on research and development carried out at the Centre for Medical Radiation Physics (CMRP) at the University of Wollongong with collaborators over the last 18 years. In this paper every generation of CMRP SOI microdosimeters, including their fabrication, design, and electrical and charge collection characterisation are presented. A study of SOI microdosimeters in various radiation fields has demonstrated that under appropriate geometrical scaling, the response of SOI detectors with the well-known geometry of microscopically sensitive volumes will record the energy deposition spectra representative of tissue cells of an equivalent shape. This development of SOI detectors for microdosimetry with increased complexity has improved the definition of microscopic sensitive volume (SV), which is modelling the deposition of ionising energy in a biological cell, that are led from planar to 3D SOI detectors with an array of segmented microscopic 3D SVs. The monolithic ΔE-E silicon telescope, which is an alternative to the SOI silicon microdosimeter, is presented, and as an example, applications of SOI detectors and ΔE-E monolithic telescope for microdosimetery in proton therapy field and equivalent neutron dose measurements out of field are also presented. An SOI microdosimeter "bridge" with 3D SVs can derive the relative biological effectiveness (RBE) in 12C ion radiation therapy that matches the tissue equivalent proportional counter (TEPC) quite well, but with outstanding spatial resolution. The use of SOI technology in experimental microdosimetry offers simplicity (no gas system or HV supply), high spatial resolution, low cost, high count rates, and the possibility of integrating the system onto a single device with other types of detectors.
Ring-based ultrasonic virtual point detector with applications to photoacoustic tomography
NASA Astrophysics Data System (ADS)
Yang, Xinmai; Li, Meng-Lin; Wang, Lihong V.
2007-06-01
An ultrasonic virtual point detector is constructed using the center of a ring transducer. The virtual point detector provides ideal omnidirectional detection free of any aperture effect. Compared with a real point detector, the virtual one has lower thermal noise and can be scanned with its center inside a physically inaccessible medium. When applied to photoacoustic tomography, the virtual point detector provides both high spatial resolution and high signal-to-noise ratio. It can also be potentially applied to other ultrasound-related technologies.
The SeaQuest Spectrometer at Fermilab
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aidala, C.A.; et al.
The SeaQuest spectrometer at Fermilab was designed to detect oppositely-charged pairs of muons (dimuons) produced by interactions between a 120 GeV proton beam and liquid hydrogen, liquid deuterium and solid nuclear targets. The primary physics program uses the Drell-Yan process to probe antiquark distributions in the target nucleon. The spectrometer consists of a target system, two dipole magnets and four detector stations. The upstream magnet is a closed-aperture solid iron magnet which also serves as the beam dump, while the second magnet is an open aperture magnet. Each of the detector stations consists of scintillator hodoscopes and a high-resolution trackingmore » device. The FPGA-based trigger compares the hodoscope signals to a set of pre-programmed roads to determine if the event contains oppositely-signed, high-mass muon pairs.« less
MO detector (MOD): a dual-function optical modulator-detector for on-chip communication
NASA Astrophysics Data System (ADS)
Sun, Shuai; Zhang, Ruoyu; Peng, Jiaxin; Narayana, Vikram K.; Dalir, Hamed; El-Ghazawi, Tarek; Sorger, Volker J.
2018-04-01
Physical challenges at the device and interconnect level limit both network and computing energy efficiency. While photonics is being considered to address interconnect bottlenecks, optical routing is still limited by electronic circuitry, requiring substantial overhead for optical-electrical-optical conversion. Here we show a novel design of an integrated broadband photonic-plasmonic hybrid device termed MODetector featuring dual light modulation and detection function to act as an optical transceiver in the photonic network-on-chip. With over 10 dB extinction ratio and 0.8 dB insertion loss at the modulation state, this MODetector provides 0.7 W/A responsivity in the detection state with 36 ps response time. This multi-functional device: (i) eliminates OEO conversion, (ii) reduces optical losses from photodetectors when not needed, and (iii) enables cognitive routing strategies for network-on-chips.
CCD-based vertex detector for ILC
NASA Astrophysics Data System (ADS)
Stefanov, Konstantin D.
2006-12-01
Charge Coupled Devices (CCDs) have been successfully used in several high-energy physics experiments over the last 20 years. Their small pixel size and excellent precision provide a superb tool for studying of short-lived particles and understanding the nature at fundamental level. Over the last few years the Linear Collider Flavour Identification (LCFI) collaboration has developed Column-Parallel CCDs (CPCCD) and CMOS readout chips, to be used for the vertex detector at the International Linear Collider (ILC). The CPCCDs are very fast devices capable of satisfying the challenging requirements imposed by the beam structure of the superconducting accelerator. The first set of prototype devices have been successfully designed, manufactured and tested, with second generation chips on the way. Another idea for CCD-based device, the In-situ Storage Image Sensor (ISIS) is also under development and the first prototype has been manufactured.
NASA Astrophysics Data System (ADS)
Flaschel, Nils; Ariza, Dario; Díez, Sergio; Gerboles, Marta; Gregor, Ingrid-Maria; Jorda, Xavier; Mas, Roser; Quirion, David; Tackmann, Kerstin; Ullan, Miguel
2017-08-01
Micro-channel cooling initially aiming at small-sized high-power integrated circuits is being transferred to the field of high energy physics. Today's prospects of micro-fabricating silicon opens a door to a more direct cooling of detector modules. The challenge in high energy physics is to save material in the detector construction and to cool large areas. In this paper, we are investigating micro-channel cooling as a candidate for a future cooling system for silicon detectors in a generic research and development approach. The work presented in this paper includes the production and the hydrodynamic and thermal testing of a micro-channel equipped prototype optimized to achieve a homogeneous flow distribution. Furthermore, the device was simulated using finite element methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabrera, Blas; Gratta, Giorgio
2013-08-30
Dark Matter Search - During the period of performance, our group continued the search for dark matter in the form of weakly interacting massive particles or WIMPs. As a key member of the CDMS (Cryogenic Dark Matter Search) collaboration, we completed the CDMS II experiment which led the field in sensitivity for more than five years. We fabricated all detectors, and participated in detector testing and verification. In addition, we participated in the construction and operation of the facility at the Soudan Underground Laboratory and played key roles in the data acquisition and analysis. Towards the end of the performancemore » period, we began operating the SuperCDMS Soudan experiment, which consists of 15 advanced Ge (9 kg) detectors. The advanced detector design called iZIP grew out of our earlier DOE Particle Detector R&D program which demonstrated the rejection of surface electrons to levels where they are no longer the dominant source of background. Our group invented this advanced design and these larger detectors were fabricated on the Stanford campus in collaboration with the SLAC CDMS group and the Santa Clara University group. The sensitivity reach is expected to be up to 5 times better than CDMS II after two years of operation. We will check the new limits on WIMPs set by XENON100, and we expect improved sensitivity for light mass WIMPs beyond that of any other existing experiment. Our group includes the Spokesperson for SuperCDMS and continues to make important contributions to improvements in the detector technology which are enabling the very low trigger thresholds used to explore the low mass WIMP region. We are making detailed measurements of the charge transport and trapping within Ge crystals, measuring the diffusive trapping distance of the quasiparticle excitations within the Al phonon collector fins on the detector surface, and we are contributing to the development of much improved detector Monte Carlos which are essential to guide the detector design and optimize the analysis. Neutrino Physics – In the period of performance the neutrino group successfully completed the construction of EXO-200 and commissioned the detector. Science data taking started on Jun 1, 2011. With the discovery of the 2-neutrino double-beta decay in 136-Xe and the first measurement of the 0-neutrino mode resulting in the most stringent limit of Majorana masses, our group continues to be a leading innovator in the field of neutrino physics which is central to DOE-HEP Intensity Frontier program. The phenomenon of neutrino oscillations, in part elucidated by our earlier efforts with the Palo Verde and KamLAND experiments, provides the crucial information that neutrino masses are non-zero and, yet, it contains no information on the value of the neutrino mass scale. In recent times our group has therefore shifted its focus to a high sensitivity 0-neutrino double beta decay program, EXO. The 0-neutrino double beta decay provides the best chance of extending the sensitivity to the neutrino mass scale below 10 meV but, maybe more importantly, it tests the nature of the neutrino wave function, providing the most sensitive probe for Majorana particles and lepton number violation. The EXO program, formulated by our group several years ago, plans to use up to tonnes of the isotope 136-Xe to study the 0-neutrino double beta decay mode. The EXO-200 detector is the first step in this program and it represents the only large US-led and based experiment taking data. The EXO-200 isotope enrichment program broke new grounds for the enterprise of double beta decay. The detector design and material selection program paid off, resulting in a background that is among the very best in the field. The “first light" of EXO-200 was very exciting with the discovery -in the first month of data- of the rarest 2-neutrino double beta decay mode ever observed. The lower limit on the 0-neutrino double beta decay half-life, published in Phys. Rev. Lett. and based on the first 120 days of data is the second best but, when translated into a Majorana mass scale, it is one of the most stringent constraint we have on neutrino masses. Indeed, such a limit was the first result to contradict a claim of discovery in 76-Ge for most nuclear matrix elements calculations. As we continue data taking and plan some modest upgrades to EXO-200 our group is also very active in the design of nEXO, a 5 tonne detector based on the technology demonstrated by EXO-200. Over the years we have made it a tradition to explore the frontier and not to be shy about looking in new directions and re-inventing ourselves to best take advantage of the precious few opportunities provided by Nature. We have also cultivated a number of young people at all levels and, by now, many of the undergraduates, graduate students and postdocs educated by this group have leading positions in academia and industry around the world.« less
Development of mining guidance and control systems
NASA Technical Reports Server (NTRS)
1979-01-01
New fundamental interface sensor concepts were identified and investigated including tabulation of the physical and performance characteristics of two new interface detector concepts: - natural background radiation and magnetic spin resonance. Studies of guidance and control techniques for the longwall miner identified three basic systems for use in automated/remote controlled longwall mining. The following projects were initiated: system study which will more completely define the longwall guidance and control system design concepts; integration of the various control functions (vertical, yaw, and roll); and hardware technical requirements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haber, H.E.
1984-09-01
If new heavy charged and/or neutral gauge bosons exist with masses below 5 to 10 TeV, they can be observed at the SSC. In this report, we summarize the work of the New W/Z Physics Subgroup. The expected properties of new heavy gauge bosons (such as new W's and Z's or horizontal gauge bosons) are summarized. We then discuss various signatures of these new gauge bosons and their implications for detector designers. Suggestions for future work are indicated. 60 references.
Status of the PAMELA silicon tracker
NASA Astrophysics Data System (ADS)
Bonechi, L.; Adriani, O.; Bongi, M.; Bottai, S.; Castellini, G.; Fedele, D.; Grandi, M.; Papini, P.; Ricciarini, S.; Spillantini, P.; Straulino, S.; Taddei, E.; Vannuccini, E.
2007-01-01
PAMELA is a composite particle detector which will be launched during the first half of 2006 on board the Russian satellite Resurs DK-1 from Baikonur cosmodrome in Kazakhstan. This experiment is mainly conceived for the study of cosmic-ray antiparticles and for the search for light antinuclei, but other issues related to the cosmic-ray physics will be investigated. In this work the structure of the whole apparatus is shortly discussed with particular attention to the magnetic spectrometer, which has been designed and built in Firenze.
NASA Technical Reports Server (NTRS)
Potter, A. E. (Editor); Wilson, T. L. (Editor)
1990-01-01
The present conference on physics and astrophysics from a lunar base encompasses space physics, cosmic ray physics, neutrino physics, experiments in gravitation and general relativity, gravitational radiation physics, cosmic background radiation, particle astrophysics, surface physics, and the physics of gamma rays and X-rays. Specific issues addressed include space-plasma physics research at a lunar base, prospects for neutral particle imaging, the atmosphere as particle detector, medium- and high-energy neutrino physics from a lunar base, muons on the moon, a search for relic supernovae antineutrinos, and the use of clocks in satellites orbiting the moon to test general relativity. Also addressed are large X-ray-detector arrays for physics experiments on the moon, and the measurement of proton decay, arcsec-source locations, halo dark matter and elemental abundances above 10 exp 15 eV at a lunar base.
Acharya, B; Alexandre, J; Baines, S; Benes, P; Bergmann, B; Bernabéu, J; Branzas, H; Campbell, M; Caramete, L; Cecchini, S; de Montigny, M; De Roeck, A; Ellis, J R; Fairbairn, M; Felea, D; Flores, J; Frank, M; Frekers, D; Garcia, C; Hirt, A M; Janecek, J; Kalliokoski, M; Katre, A; Kim, D-W; Kinoshita, K; Korzenev, A; Lacarrère, D H; Lee, S C; Leroy, C; Lionti, A; Mamuzic, J; Margiotta, A; Mauri, N; Mavromatos, N E; Mermod, P; Mitsou, V A; Orava, R; Parker, B; Pasqualini, L; Patrizii, L; Păvălaş, G E; Pinfold, J L; Popa, V; Pozzato, M; Pospisil, S; Rajantie, A; Ruiz de Austri, R; Sahnoun, Z; Sakellariadou, M; Sarkar, S; Semenoff, G; Shaa, A; Sirri, G; Sliwa, K; Soluk, R; Spurio, M; Srivastava, Y N; Suk, M; Swain, J; Tenti, M; Togo, V; Tuszyński, J A; Vento, V; Vives, O; Vykydal, Z; Whyntie, T; Widom, A; Willems, G; Yoon, J H; Zgura, I S
2017-02-10
MoEDAL is designed to identify new physics in the form of long-lived highly ionizing particles produced in high-energy LHC collisions. Its arrays of plastic nuclear-track detectors and aluminium trapping volumes provide two independent passive detection techniques. We present here the results of a first search for magnetic monopole production in 13 TeV proton-proton collisions using the trapping technique, extending a previous publication with 8 TeV data during LHC Run 1. A total of 222 kg of MoEDAL trapping detector samples was exposed in the forward region and analyzed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges exceeding half the Dirac charge are excluded in all samples and limits are placed for the first time on the production of magnetic monopoles in 13 TeV pp collisions. The search probes mass ranges previously inaccessible to collider experiments for up to five times the Dirac charge.
3D reconstruction of nuclear reactions using GEM TPC with planar readout
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bihałowicz, Jan Stefan
2015-02-24
The research program of the Extreme Light Infrastructure – Nuclear Physics (ELI-NP) laboratory under construction in Magurele, Romania facilities the need of developing a gaseous active-target detector providing 3D reconstruction of charged products of nuclear reactions induced by gamma beam. The monoenergetic, high-energy (E{sub γ} > 19 MeV) gamma beam of intensity 10{sup 13}γ/s allows studying nuclear reactions in astrophysics. A Time Projection Chamber with crossed strip readout (eTPC) is proposed as one of the imaging detectors. The special feature of the readout electrode structure is a 2D reconstruction based on the information read out simultaneously from three arrays ofmore » strips that form virtual pixels. It is expected to reach similar spatial resolution as for pixel readout at largely reduced cost of electronics. The paper presents the current progress and first results of the small scale prototype TPC which is a one of implementation steps towards eTPC detector proposed in the Technical Design Report of Charged Particles Detection at ELI-NP.« less
Upgrade project and plans for the ATLAS detector and trigger
NASA Astrophysics Data System (ADS)
Pastore, Francesca; Atlas Collaboration
2013-08-01
The LHC is expected to under go upgrades over the coming years in order to extend its scientific potential. Through two different phases (namely Phase-I and Phase-II), the average luminosity will be increased by a factor 5-10 above the design luminosity, 1034 cm-2 s-1. Consequently, the LHC experiments will need upgraded detectors and new infrastructure of the trigger and DAQ systems, to take into account the increase of radiation level and of particle rates foreseen at such high luminosity. In this paper we describe the planned changes and the investigations for the ATLAS experiment, focusing on the requirements for the trigger system to handle the increase rate of collisions per beam crossing, while maintaining widely inclusive selections. In different steps, the trigger detectors will improve their selectivity by benefiting from increased granularity. To improve the flexibility of the system, the use of the tracking information in the lower levels of the trigger selection is also discussed. Lastly different scenarios are compared, based on the expected physics potential of ATLAS in this high luminosity regime.
Intense ion beam diagnostics for ICF
NASA Astrophysics Data System (ADS)
Yasuike, K.; Cuneo, M. E.; Wenger, D. F.; Bailey, J. E.; Hanson, D. L.; Mehlhorn, T. A.; Imasaki, K.; Nakai, S.; Mima, K.
1998-11-01
Development of diagnostic methods for high intensity ion beams for ICF is crucial for understanding the ion diode physics. At Osaka University, an arrayed pinhole camera (APC) diagnostic method had been developed to measure the proton beams with an energy of 1 MeV and a J_i. of 100 A/cm^2. on Reiden-SHVS. The APC measures spatial distributions of the beam divergence in r and θ drection and the intensity distribution. An ion image detector capable to acquire a whole temporal evolution within a shot is necessary to measure the higher intensity beams. A fast scintillator with photo-multiplier tubes has been chosen as the image detector. The detector is being tested on a single pinhole camera using a Lithium beam with a particle energy of 5 MeV, a J_i. of 0.5-1 kA/cm^2. and duration of 50 ns, which are very close to the parameters required from ICF, on the SABRE at Sandia National Labs. We will present the diagnostic design and preliminary experiments from SABRE and also present the experimental results from Reiden-SHVS.
Neutron capture reactions at DANCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bredeweg, T. A.
2008-05-12
The Detector for Advanced Neutron Capture Experiments (DANCE) is a 4{pi} BaF{sub 2} array consisting of 160 active detector elements. The primary purpose of the array is to perform neutron capture cross section measurements on small (> or approx.100 {mu}g) and/or radioactive (< or approx. 100 mCi) species. The measurements made possible with this array will be useful in answering outstanding questions in the areas of national security, threat reduction, nuclear astrophysics, advanced reactor design and accelerator transmutation of waste. Since the commissioning of DANCE we have performed neutron capture cross section measurements on a wide array of medium tomore » heavy mass nuclides. Measurements to date include neutron capture cross sections on {sup 241,243}Am, neutron capture and neutron-induced fission cross sections and capture-to-fission ratio ({alpha} = {sigma}{sub {gamma}}/{sigma}{sub f}) for {sup 235}U using a new fission-tagging detector as well as neutron capture cross sections for several astrophysics branch-point nuclei. Results from several of these measurements will be presented along with a discussion of additional physics information that can be extracted from the DANCE data.« less
Investigation of CMOS pixel sensor with 0.18 μm CMOS technology for high-precision tracking detector
NASA Astrophysics Data System (ADS)
Zhang, L.; Fu, M.; Zhang, Y.; Yan, W.; Wang, M.
2017-01-01
The Circular Electron Positron Collider (CEPC) proposed by the Chinese high energy physics community is aiming to measure Higgs particles and their interactions precisely. The tracking detector including Silicon Inner Tracker (SIT) and Forward Tracking Disks (FTD) has driven stringent requirements on sensor technologies in term of spatial resolution, power consumption and readout speed. CMOS Pixel Sensor (CPS) is a promising candidate to approach these requirements. This paper presents the preliminary studies on the sensor optimization for tracking detector to achieve high collection efficiency while keeping necessary spatial resolution. Detailed studies have been performed on the charge collection using a 0.18 μm CMOS image sensor process. This process allows high resistivity epitaxial layer, leading to a significant improvement on the charge collection and therefore improving the radiation tolerance. Together with the simulation results, the first exploratory prototype has bee designed and fabricated. The prototype includes 9 different pixel arrays, which vary in terms of pixel pitch, diode size and geometry. The total area of the prototype amounts to 2 × 7.88 mm2.
NASA Astrophysics Data System (ADS)
Michalak, Matthew K.
The objectives of the work presented here include understanding key operating principles and providing precise data sets that can be used to test inertial electrostatic confinement (IEC) fusion theory and optimize IEC device operation. The underlying physical behavior was separated from superficial trends observed in an IEC device at the University of Wisconsin-Madison (UW). The effects of changing voltage (30-170 kV) and current (30-100 mA) were thoroughly explored, pressure effects (0.15-1.25 mTorr) were mapped, and the effect of impurities in the system was quantified. The most challenging part of this work was designing a high voltage feedthrough that could reliably operate at higher voltages for far longer times than previously attained. A system to detect conventional explosives using fusion neutrons was also designed, constructed, and tested. Precise data sets were created by taking into account and minimizing the effects of short and long term trends in the experiment. Detailed meter current scans were taken that showed a linear relationship of the neutron production rate with current. Cathode voltage scans were slightly greater than linear in the neutron rate from 30 to 170 kV, but the rate increase diminished to near linear as 170 kV was approached. A new high voltage feedthrough was designed that surpassed the performance of past UW IEC lab feedthroughs and shows promise for long duration operation at still higher voltages. Limitations of other equipment in the IEC lab prevented testing the feedthrough to voltages above 175 kV. A more robust construction of the feedthrough and reducing the consequences of a feedthrough failure were also important design criteria that were met. A detector array was made to detect explosives via the 10.8 MeV neutron capture prompt gamma from nitrogen. Signals from four separate detectors were combined to make the individual detectors act similar to one large detector. The detector signals were both summed and combined to compare the performance of the two methods. An overwhelming background radiation signal and insufficient time resolution were two factors that led to the combined signal not performing as well as the summed signal.
[Design of longitudinal auto-tracking of the detector on X-ray in digital radiography].
Yu, Xiaomin; Jiang, Tianhao; Liu, Zhihong; Zhao, Xu
2018-04-01
One algorithm is designed to implement longitudinal auto-tracking of the the detector on X-ray in the digital radiography system (DR) with manual collimator. In this study, when the longitudinal length of field of view (LFOV) on the detector is coincided with the longitudinal effective imaging size of the detector, the collimator half open angle ( Ψ ), the maximum centric distance ( e max ) between the center of X-ray field of view and the projection center of the focal spot, and the detector moving distance for auto-traking can be calculated automatically. When LFOV is smaller than the longitudinal effective imaging size of the detector by reducing Ψ , the e max can still be used to calculate the detector moving distance. Using this auto-tracking algorithm in DR with manual collimator, the tested results show that the X-ray projection is totally covered by the effective imaging area of the detector, although the center of the field of view is not aligned with the center of the effective imaging area of the detector. As a simple and low-cost design, the algorithm can be used for longitudinal auto-tracking of the detector on X-ray in the manual collimator DR.
Strontium Iodide Radiation Instrumentation (SIRI)
NASA Astrophysics Data System (ADS)
Mitchell, Lee J.; Phlips, Bernard F.; Woolf, Richard S.; Finne, Theodore T.; Johnson, W. Neil; Jackson, Emily G.
2017-08-01
The Strontium Iodide Radiation Instrumentation (SIRI) is designed to space-qualify new gamma-ray detector technology for space-based astrophysical and defense applications. This new technology offers improved energy resolution, lower power consumption and reduced size compared to similar systems. The SIRI instrument consists of a single europiumdoped strontium iodide (SrI2:Eu) scintillation detector. The crystal has an energy resolution of 3% at 662 keV compared to the 6.5% of traditional sodium iodide and was developed for terrestrial-based weapons of mass destruction (WMD) detection. SIRI's objective is to study the internal activation of the SrI2:Eu material and measure the performance of the silicon photomultiplier (SiPM) readouts over a 1-year mission. The combined detector and readout measure the gammaray spectrum over the energy range of 0.04 - 4 MeV. The SIRI mission payoff is a space-qualified compact, highsensitivity gamma-ray spectrometer with improved energy resolution relative to previous sensors. Scientific applications in solar physics and astrophysics include solar flares, Gamma Ray Bursts, novae, supernovae, and the synthesis of the elements. Department of Defense (DoD) and security applications are also possible. Construction of the SIRI instrument has been completed, and it is currently awaiting integration onto the spacecraft. The expected launch date is May 2018 onboard STPSat-5. This work discusses the objectives, design details and the STPSat-5 mission concept of operations of the SIRI spectrometer.
Cryostat and CCD for MEGARA at GTC
NASA Astrophysics Data System (ADS)
Castillo-Domínguez, E.; Ferrusca, D.; Tulloch, S.; Velázquez, M.; Carrasco, E.; Gallego, J.; Gil de Paz, A.; Sánchez, F. M.; Vílchez Medina, J. M.
2012-09-01
MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is the new integral field unit (IFU) and multi-object spectrograph (MOS) instrument for the GTC. The spectrograph subsystems include the pseudo-slit, the shutter, the collimator with a focusing mechanism, pupil elements on a volume phase holographic grating (VPH) wheel and the camera joined to the cryostat through the last lens, with a CCD detector inside. In this paper we describe the full preliminary design of the cryostat which will harbor the CCD detector for the spectrograph. The selected cryogenic device is an LN2 open-cycle cryostat which has been designed by the "Astronomical Instrumentation Lab for Millimeter Wavelengths" at INAOE. A complete description of the cryostat main body and CCD head is presented as well as all the vacuum and temperature sub-systems to operate it. The CCD is surrounded by a radiation shield to improve its performance and is placed in a custom made mechanical mounting which will allow physical adjustments for alignment with the spectrograph camera. The 4k x 4k pixel CCD231 is our selection for the cryogenically cooled detector of MEGARA. The characteristics of this CCD, the internal cryostat cabling and CCD controller hardware are discussed. Finally, static structural finite element modeling and thermal analysis results are shown to validate the cryostat model.
LIGO: The instruments that launched gravitational-wave astronomy
NASA Astrophysics Data System (ADS)
Fritschel, Peter; LIGO Scientific Collaboration
2018-01-01
After decades of development, the advanced gravitational wave detectors are now in the business of making detections of the types of astrophysical sources they were designed for. And yet these detectors still have a ways to go to reach their designed sensitivity levels. This talk will cover the design and performance of these advanced detectors, with emphasis on Advanced LIGO. I will lay out the path to reaching design sensitivity, and then turn to plans for future improvements to the existing LIGO detectors’ sensitivity. Looking even further into the future, I will discuss concepts for a new generation of detectors that will be needed to probe much deeper into the cosmos.
Geo-PET: A novel generic organ-pet for small animal organs and tissues
NASA Astrophysics Data System (ADS)
Sensoy, Levent
Reconstructed tomographic image resolution of small animal PET imaging systems is improving with advances in radiation detector development. However the trend towards higher resolution systems has come with an increase in price and system complexity. Recent developments in the area of solid-state photomultiplication devices like silicon photomultiplier arrays (SPMA) are creating opportunities for new high performance tools for PET scanner design. Imaging of excised small animal organs and tissues has been used as part of post-mortem studies in order to gain detailed, high-resolution anatomical information on sacrificed animals. However, this kind of ex-vivo specimen imaging has largely been limited to ultra-high resolution muCT. The inherent limitations to PET resolution have, to date, excluded PET imaging from these ex-vivo imaging studies. In this work, we leverage the diminishing physical size of current generation SPMA designs to create a very small, simple, and high-resolution prototype detector system targeting ex-vivo tomographic imaging of small animal organs and tissues. We investigate sensitivity, spatial resolution, and the reconstructed image quality of a prototype small animal PET scanner designed specifically for imaging of excised murine tissue and organs. We aim to demonstrate that a cost-effective silicon photomultiplier (SiPM) array based design with thin crystals (2 mm) to minimize depth of interaction errors might be able to achieve sub-millimeter resolution. We hypothesize that the substantial decrease in sensitivity associated with the thin crystals can be compensated for with increased solid angle detection, longer acquisitions, higher activity and wider acceptance energy windows (due to minimal scatter from excised organs). The constructed system has a functional field of view (FoV) of 40 mm diameter, which is adequate for most small animal specimen studies. We perform both analytical (3D-FBP) and iterative (ML-EM) methods in order to reconstruct tomographic images. Results demonstrate good agreement between the simulation and the prototype. Our detector system with pixelated crystals is able to separate small objects as close as 1.25 mm apart, whereas spatial resolution converges to the theoretical limit of 1.6 mm (half the size of the smallest detecting element), which is to comparable to the spatial resolution of the existing commercial small animal PET systems. Better system spatial resolution is achievable with new generation SiPM detector boards with 1 mm x 1 mm cell dimensions. We demonstrate through Monte Carlo simulations that it is possible to achieve sub-millimeter spatial image resolution (0.7 mm for our scanner) in complex objects using monolithic crystals and exploiting the light-sharing mechanism among the neighboring detector cells. Results also suggest that scanner (or object) rotation minimizes artifacts arising from poor angular sampling, which is even more significant in smaller PET designs as the gaps between the sensitive regions of the detector have a more exaggerated effect on the overall reconstructed image quality when the design is more compact. Sensitivity of the system, on the other hand, can be doubled by adding two additional detector heads resulting in a, fully closed, 4? geometry.
NASA Astrophysics Data System (ADS)
Morozov, A.; Defendi, I.; Engels, R.; Fraga, F. A. F.; Fraga, M. M. F. R.; Guerard, B.; Jurkovic, M.; Kemmerling, G.; Manzin, G.; Margato, L. M. S.; Niko, H.; Pereira, L.; Petrillo, C.; Peyaud, A.; Piscitelli, F.; Raspino, D.; Rhodes, N. J.; Sacchetti, F.; Schooneveld, E. M.; Van Esch, P.; Zeitelhack, K.
2012-08-01
A custom and fully interactive simulation package ANTS (Anger-camera type Neutron detector: Toolkit for Simulations) has been developed to optimize the design and operation conditions of secondary scintillation Anger-camera type gaseous detectors for thermal neutron imaging. The simulation code accounts for all physical processes related to the neutron capture, energy deposition pattern, drift of electrons of the primary ionization and secondary scintillation. The photons are traced considering the wavelength-resolved refraction and transmission of the output window. Photo-detection accounts for the wavelength-resolved quantum efficiency, angular response, area sensitivity, gain and single-photoelectron spectra of the photomultipliers (PMTs). The package allows for several geometrical shapes of the PMT photocathode (round, hexagonal and square) and offers a flexible PMT array configuration: up to 100 PMTs in a custom arrangement with the square or hexagonal packing. Several read-out patterns of the PMT array are implemented. Reconstruction of the neutron capture position (projection on the plane of the light emission) is performed using the center of gravity, maximum likelihood or weighted least squares algorithm. Simulation results reproduce well the preliminary results obtained with a small-scale detector prototype. ANTS executables can be downloaded from http://coimbra.lip.pt/~andrei/.
Optimizing the Timing Resolution for the NEXT Array
NASA Astrophysics Data System (ADS)
Engelhardt, A.; Shadrick, S.; Rajabali, M.; Schmitt, K.; Grzywacz, R.
2016-09-01
In nuclear physics studies there are very few detectors capable of measuring neutron energies in the 0.1-10 MeV energy range with a reasonable resolution. The VANDLE array is the premier detector array for these measurements, yet VANDLE is limited by the its thickness (2.9 cm minimum).The Neutron dEtector with Tracking (NEXT) array would be capable of surpassing the limitations caused by the large size of VANDLE bars. A proposed configuration of each neutron detector consists of ten 3-mm thick plastic scintillators with two or more silicon photomultipliers (SiPMs) attached at each end. To achieve the desired energy resolution for neutron energy measurements through time of flight, the timing resolution between these SiPMs needs to be below 200 ps. A SiPM was placed on each end of a plastic scintillator inside a light-tight electrical box along with a 137Cs source. An analog circuit was designed in order to measure the timing difference between the two SiPMs. Different configurations of SiPM sizes, scintillator sizes, and wrappings were tested in order to determine the configuration that yields the best timing resolution. Details of the testing procedures and results will be presented. Research Supported by the National Nuclear Security Administration.
High-Z Sensitized Plastic Scintillators: A Review.
Hajagos, Tibor Jacob; Liu, Chao; Cherepy, Nerine J; Pei, Qibing
2018-05-07
The need for affordable and reliable radiation detectors has prompted significant investment in new radiation detector materials, due to concerns about national security and nuclear nonproliferation. Plastic scintillators provide an affordable approach to large volume detectors, yet their performance for high-energy gamma radiation is severely limited by the small radiation stopping power inherent to their low atomic number. Although some sensitization attempts with organometallics were made in the 1950s to 1960s, the concomitant decrease in light yield has limited the usefulness of these sensitized detectors. Recently, with new knowledge gained during the rapid development of organic optoelectronics and nanotechnology, there has been a revived interest in the field of heavy element sensitized plastic scintillators. Here, the recent efforts on sensitized plastic scintillators are summarized. Basic scintillator physics is first reviewed. The discussion then focuses on two major thrusts in the field: sensitization with: (1) organometallics and (2) oxide and fluoride nanoparticles. The design rationales and major results are examined in detail, with existing limitations and possible future pathways discussed. Special attention is paid to the underlying energy deposition and transfer processes, as these determine the key performance metrics such as light yield and radioluminescence decay lifetime. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Moody, John A.; Martin, Richard G.
2015-01-01
Overland flow detectors (OFDs) were deployed in 2012 on a hillslope burned by the 2010 Fourmile Canyon fire near Boulder, Colorado, USA. These detectors were simple, electrical resistor-type instruments that output a voltage (0–2·5 V) and were designed to measure and record the time of runoff initiation, a signal proportional to water depth, and the runoff hydrograph during natural convective rainstorms.Initiation of runoff was found to be spatially complex and began at different times in different locations on the hillslope. Runoff started first at upstream detectors 56% of the time, at the mid-stream detectors 6%, and at the downstream detectors 38% of the time. Initiation of post-wildfire runoff depended on the time-to-ponding, travel time between points, and the time to fill surface depression storage. These times ranged from 0·5–54, 0·4–1·1, and 0·2–14 minutes, respectively, indicating the importance of the ponding process in controlling the initiation of runoff at this site. Time-to-ponding was modeled as a function of the rainfall acceleration (i.e. the rate of change of rainfall intensity) and either the cumulative rainfall at the start of runoff or the soil–water deficit.Measurements made by the OFDs provided physical insight into the spatial and temporal initiation of post-wildfire runoff during unsteady flow in response to time varying natural rainfall. They also provided data that can be telemetered and used to determine critical input parameters for hydrologic rainfall–runoff models.
Development of an underground HPGe array facility for ultra low radioactivity measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sala, E.; Kang, W. G.; Kim, Y. D.
Low Level Counting techniques using low background facilities are continuously under development to increase the possible sensitivity needed for rare physics events experiments. The CUP (Center for Underground Physics) group of IBS is developing, in collaboration with Canberra, a ultra low background instrument composed of two arrays facing each other with 7 HPGe detectors each. The low radioactive background of each detector has been evaluated and improved by the material selection of the detector components. Samples of all the building materials have been provided by the manufacturer and the contaminations had been measured using an optimized low background 100% HPGemore » with a dedicated shielding. The evaluation of the intrinsic background has been performed using MonteCarlo simulations and considering the contribution of each material with the measured contamination. To further reduce the background, the instrument will be placed in the new underground laboratory at YangYang exploiting the 700m mountain coverage and radon-free air supplying system. The array has been designed to perform various Ultra Low background measurements; the sensitivity we are expecting will allow not only low level measurements of Ra and Th contaminations in Copper or other usually pure materials, but also the search for rare decays. In particular some possible candidates and configurations to detect the 0νECEC (for example {sup 106}Cd and {sup 156}Dy) and rare β decays ({sup 96}Zr, {sup 180m}Ta , etc ) are under study.« less
NASA Astrophysics Data System (ADS)
Chernyshova, M.; Malinowski, K.; Kowalska-Strzęciwilk, E.; Czarski, T.; Linczuk, P.; Wojeński, A.; Krawczyk, R. D.
2017-12-01
The advanced Soft X-ray (SXR) diagnostics setup devoted to studies of the SXR plasma emissivity is at the moment a highly relevant and important for ITER/DEMO application. Especially focusing on the energy range of tungsten emission lines, as plasma contamination by W and its transport in the plasma must be understood and monitored for W plasma-facing material. The Gas Electron Multiplier, with a spatial and energy-resolved photon detecting chamber, based SXR radiation detection system under development by our group may become such a diagnostic setup considering and solving many physical, technical and technological aspects. This work presents the results of simulations aimed to optimize a design of the detector's internal chamber and its performance. The study of the effect of electrodes alignment allowed choosing the gap distances which maximizes electron transmission and choosing the optimal magnitudes of the applied electric fields. Finally, the optimal readout structure design was identified suitable to collect a total formed charge effectively, basing on the range of the simulated electron cloud at the readout plane which was in the order of ~ 2 mm.
LENS: Science Scope and Development Stages
NASA Astrophysics Data System (ADS)
Vogelaar, R. Bruce
2013-04-01
The Low-Energy Neutrino Spectroscopy (LENS) experiment will resolve the solar metallicity question via measurement of the CNO neutrino flux, as well as test the predicted equivalence of solar luminosity as measured by photon versus neutrinos. The LENS detector uses charged-current interaction of neutrinos on Indium-115 (loaded in a scintillator, InLS) to reveal the complete solar neutrino spectrum. LENS's optically segmented 3D lattice geometry achieves precise time and spatial resolution and unprecedented background rejection and sensitivity for low-energy neutrino events. This first-of-a-kind lattice design is also suited for a range of other applications where high segmentation and large light collection are required (eg: sterile neutrinos with sources, double beta decay, and surface detection of reactor neutrinos). The physics scope, detector design, and logic driving the microLENS and miniLENS prototyping stages will be presented. The collaboration is actively running programs; building, operating, developing, and simulating these prototypes using the Kimballton Underground Research Facility (KURF). New members are welcome to the LENS Collaboration, and interested parties should contact R. Bruce Vogelaar.
The “Puck” energetic charged particle detector: Design, heritage, and advancements
Cohen, I.; Westlake, J. H.; Andrews, G. B.; Brandt, P.; Gold, R. E.; Gkioulidou, M. A.; Hacala, R.; Haggerty, D.; Hill, M. E.; Ho, G. C.; Jaskulek, S. E.; Kollmann, P.; Mauk, B. H.; McNutt, R. L.; Mitchell, D. G.; Nelson, K. S.; Paranicas, C.; Paschalidis, N.; Schlemm, C. E.
2016-01-01
Abstract Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low‐resource missions in the past, the need was recognized for a low‐resource but highly capable, mass‐species‐discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the “Puck” EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of ~10 keV to several MeV. This sensor makes simultaneous angular measurements of electron fluxes from the tens of keV to about 1 MeV. The same measurements can be extended down to approximately 1 keV/nucleon, with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high‐voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions. PMID:27867799
The "Puck" energetic charged particle detector: Design, heritage, and advancements.
Clark, G; Cohen, I; Westlake, J H; Andrews, G B; Brandt, P; Gold, R E; Gkioulidou, M A; Hacala, R; Haggerty, D; Hill, M E; Ho, G C; Jaskulek, S E; Kollmann, P; Mauk, B H; McNutt, R L; Mitchell, D G; Nelson, K S; Paranicas, C; Paschalidis, N; Schlemm, C E
2016-08-01
Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low-resource missions in the past, the need was recognized for a low-resource but highly capable, mass-species-discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the "Puck" EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of ~10 keV to several MeV. This sensor makes simultaneous angular measurements of electron fluxes from the tens of keV to about 1 MeV. The same measurements can be extended down to approximately 1 keV/nucleon, with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high-voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions.
The "Puck" Energetic Charged Particle Detector: Design, Heritage, and Advancements
NASA Technical Reports Server (NTRS)
Clark, G.; Cohen, I.; Westlake, J. H.; Andrews, G. B.; Brandt, P.; Gold, R. E.; Gkioulidou, M. A.; Hacala, R.; Haggerty, D.; Hill, M. E.;
2016-01-01
Energetic charged particle detectors characterize a portion of the plasma distribution function that plays critical roles in some physical processes, from carrying the currents in planetary ring currents to weathering the surfaces of planetary objects. For several low-resource missions in the past, the need was recognized for a low-resource but highly capable, mass-species-discriminating energetic particle sensor that could also obtain angular distributions without motors or mechanical articulation. This need led to the development of a compact Energetic Particle Detector (EPD), known as the "Puck" EPD (short for hockey puck), that is capable of determining the flux, angular distribution, and composition of incident ions between an energy range of approximately 10 kiloelectronvolts to several megaelectronvolts. This sensor makes simultaneous angular measurements of electron fluxes from the tens of kiloelectronvolts to about 1 megaelectronvolt. The same measurements can be extended down to approximately 1 kiloelectronvolt per nucleon,with some composition ambiguity. These sensors have a proven flight heritage record that includes missions such as MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and New Horizons, with multiple sensors on each of Juno, Van Allen Probes, and Magnetospheric Multiscale. In this review paper we discuss the Puck EPD design, its heritage, unexpected results from these past missions and future advancements. We also discuss high-voltage anomalies that are thought to be associated with the use of curved foils, which is a new foil manufacturing processes utilized on recent Puck EPD designs. Finally, we discuss the important role Puck EPDs can potentially play in upcoming missions.
NASA Astrophysics Data System (ADS)
Greensill, Colin V.; Walsh, Kerry B.
2000-12-01
Near infrared spectroscopy can be employed in the non-invasive assessment of intact fruit for eating quality attributes such as soluble solid content (SSC). Rapid sorting is dependent on a suitable non-contact geometry of fruit, light source and detector assembly, optimized for a given fruit commodity. An optical system was designed with reference to distribution of SSC and light penetration into rockmelon fruit. SSC of mesocarp tissue was not significantly different over the greater part of the proximal-distal axis of the fruit, particularly in the vicinity of the fruit equator. There was also no consistent variation in SSC of mesocarp tissue with respect to radial position of sampling. Mesocarp SSC was higher (~3% w/v) closer to the seed cavity. The optical sampling system was therefore designed to assess an equatorial position on the fruit. Light penetrating a rockmelon fruit was empirically assessed to be diffuse at a depth of <15 mm from the fruit surface. Signal decreased in an exponential proportionality with depth into the fruit, but was still detectable at depths in excess of the seed cavity of rockmelons. A partial transmittance optical design was employed, with a collimated light source interrupted by a central light stop, and a detector viewing the shadowed region of the sample. This system did not physically contact the sample. It was compared to a system with a light excluding `contacting' shroud between the detector and the fruit surface. The performance of calibrations generated using the non-contact configuration was not significantly different than for the configuration requiring contact.
Detector Developments for the High Luminosity LHC Era (4/4)
Bortoletto, Daniela
2018-02-09
Tracking Detectors - Part II. Calorimetry, muon detection, vertexing, and tracking will play a central role in determining the physics reach for the High Luminosity LHC Era. In these lectures we will cover the requirements, options, and the R&D; efforts necessary to upgrade the current LHC detectors and enabling discoveries.
Detector Developments for the High Luminosity LHC Era (3/4)
Bortoletto, Daniela
2018-01-23
Tracking Detectors - Part I. Calorimetry, muon detection, vertexing, and tracking will play a central role in determining the physics reach for the High Luminosity LHC Era. In these lectures we will cover the requirements, options, and the R&D; efforts necessary to upgrade the current LHC detectors and enabling discoveries.
Large-area field-ionization detector for the study of Rydberg atoms.
Jones, A C L; Piñeiro, A M; Roeder, E E; Rutbeck-Goldman, H J; Tom, H W K; Mills, A P
2016-11-01
We describe here the development and characterization of a micro-channel plate (MCP) based detector designed for the efficient collection and detection of Rydberg positronium (Ps) atoms for use in a time-of-flight apparatus. The designed detector collects Rydberg atoms over a large area (∼4 times greater than the active area of the MCP), ionizing incident atoms and then collecting and focusing the freed positrons onto the MCP. Here we discuss the function, design, and optimization of the device. The detector has an efficiency for Rydberg Ps that is two times larger than that of the γ-ray scintillation detector based scheme it has been designed to replace, with half the background signal. In principle, detectors of the type described here could be readily employed for the detection of any Rydberg atom species, provided a sufficient field can be applied to achieve an ionization rate of ≥10 8 /s. In such cases, the best time resolution would be achieved by collecting ionized electrons rather than the positive ions.
Go Pink! The Effect of Secondary Quanta on Detective Quantum Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, Scott
2017-09-05
Photons are never directly observable. Consequently, we often use photoelectric detectors (eg CCDs) to record associated photoelectrons statistically. Nonetheless, it is an implicit goal of radiographic detector designers to achieve the maximum possible detector efficiency1. In part the desire for ever higher efficiency has been due to the fact that detectors are far less expensive than associated accelerator facilities (e.g. DARHT and PHERMEX2). In addition, higher efficiency detectors often have better spatial resolution. Consequently, the optimization of the detector, not the accelerator, is the system component with the highest leverage per dollar. In recent years, imaging scientists have adopted themore » so-called Detective Quantum Efficiency, or DQE as a summary measure of detector performance. Unfortunately, owing to the complex nature of the trade-space associated with detector components, and the natural desire for simplicity and low(er) cost, there has been a recent trend in Los Alamos to focus only on the zerofrequency efficiency, or DQE(0), when designing such systems. This narrow focus leads to system designs that neglect or even ignore the importance of high-spatial-frequency image components. In this paper we demonstrate the significant negative impact of these design choices on the Noise Power Spectrum1 (NPS) and recommend a more holistic approach to detector design. Here we present a statistical argument which indicates that a very large number (>20) of secondary quanta (typically visible light and/or recorded photo-electrons) are needed to take maximum advantage of the primary quanta (typically x-rays or protons) which are available to form an image. Since secondary particles come in bursts, they are not independent. In short, we want to maximize the pink nature of detector noise at DARHT.« less
Interior micro-CT with an offset detector
Sharma, Kriti Sen; Gong, Hao; Ghasemalizadeh, Omid; Yu, Hengyong; Wang, Ge; Cao, Guohua
2014-01-01
Purpose: The size of field-of-view (FOV) of a microcomputed tomography (CT) system can be increased by offsetting the detector. The increased FOV is beneficial in many applications. All prior investigations, however, have been focused to the case in which the increased FOV after offset-detector acquisition can cover the transaxial extent of an object fully. Here, the authors studied a new problem where the FOV of a micro-CT system, although increased after offset-detector acquisition, still covers an interior region-of-interest (ROI) within the object. Methods: An interior-ROI-oriented micro-CT scan with an offset detector poses a difficult reconstruction problem, which is caused by both detector offset and projection truncation. Using the projection completion techniques, the authors first extended three previous reconstruction methods from offset-detector micro-CT to offset-detector interior micro-CT. The authors then proposed a novel method which combines two of the extended methods using a frequency split technique. The authors tested the four methods with phantom simulations at 9.4%, 18.8%, 28.2%, and 37.6% detector offset. The authors also applied these methods to physical phantom datasets acquired at the same amounts of detector offset from a customized micro-CT system. Results: When the detector offset was small, all reconstruction methods showed good image quality. At large detector offset, the three extended methods gave either visible shading artifacts or high deviation of pixel value, while the authors’ proposed method demonstrated no visible artifacts and minimal deviation of pixel value in both the numerical simulations and physical experiments. Conclusions: For an interior micro-CT with an offset detector, the three extended reconstruction methods can perform well at a small detector offset but show strong artifacts at a large detector offset. When the detector offset is large, the authors’ proposed reconstruction method can outperform the three extended reconstruction methods by suppressing artifacts and maintaining pixel values. PMID:24877826
Leman, Steven W
2012-09-01
This review discusses detector physics and Monte Carlo techniques for cryogenic, radiation detectors that utilize combined phonon and ionization readout. A general review of cryogenic phonon and charge transport is provided along with specific details of the Cryogenic Dark Matter Search detector instrumentation. In particular, this review covers quasidiffusive phonon transport, which includes phonon focusing, anharmonic decay, and isotope scattering. The interaction of phonons in the detector surface is discussed along with the downconversion of phonons in superconducting films. The charge transport physics include a mass tensor which results from the crystal band structure and is modeled with a Herring-Vogt transformation. Charge scattering processes involve the creation of Neganov-Luke phonons. Transition-edge-sensor (TES) simulations include a full electric circuit description and all thermal processes including Joule heating, cooling to the substrate, and thermal diffusion within the TES, the latter of which is necessary to model normal-superconducting phase separation. Relevant numerical constants are provided for these physical processes in germanium, silicon, aluminum, and tungsten. Random number sampling methods including inverse cumulative distribution function (CDF) and rejection techniques are reviewed. To improve the efficiency of charge transport modeling, an additional second order inverse CDF method is developed here along with an efficient barycentric coordinate sampling method of electric fields. Results are provided in a manner that is convenient for use in Monte Carlo and references are provided for validation of these models.
Phonon Sensor Dynamics for Cryogenic Dark Matter Search Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yen, Jeffrey
Understanding the quasiparticle diffusion process inside sputtered aluminum (Al thin films (~ 0.1-1 μm is critical for the Cryogenic Dark Matter Search (CDMS experiment to further optimize its detectors to directly search for dark matter. An initial study with Al films was undertaken by our group ~ 20 years ago, but some important questions were not answered at the time. This thesis can be considered a continuation of that critical study. The CDMS experiment utilizes high purity silicon and germanium crystals to simultaneously measure ionization and phonons created by particle interactions. In addition to describing some of the rich physicsmore » involved in simultaneously detecting ionization and phonons with a CDMS detector, this thesis focuses on the detailed physics of the phonon sensors themselves, which are patterned onto CDMS detector surfaces. CDMS detectors use thin sputtered Al films to collect phonon energy when it propagates to the surfaces of the detector crystals. The phonon energy breaks Cooper pairs and creates quasiparticles (qps). These qps diffuse until they get trapped in an proximitized “overlap” region where lower-Tc tungsten films connect to the Al film. These tungsten films are the transition edge sensors (W-TESs CDMS uses to readout phonon signals. We performed a wide range of experiments using several sets of test devices designed and fabricated specifically for this work. The devices were used mostly to study quasiparticle (qp transport in Al films and qp transmission through Al/W interfaces. The results of this work are being used to optimize the design of detectors for SuperCDMS SNOLAB. This thesis is intended for CDMS collaborators who are interested in knowing more about the detailed fundamentals of how our phonon sensors work so they can take full advantage of their benefits. However, this work can also be read by general readers who are interested in particle detection using TES technology. This thesis contains eight chapters. The first chapter gives basic background information about dark matter and searches for it. We then describe the basic CDMS detector technology in Chapter two. Chapter three focuses on superconductivity and explains some of the solid state physic most relevant to our Al and W film studies. We then turn our attention to the fabrication processes used to make test devices, and describe some of the studies done to characterize our W and Al film properties. Chapter five explains the experimental setup including how a 3He/4He dilution refrigerator works, and how our electronics were configured. We then get to chapter six where we present key experimental results. Chapter seven covers the TES model we used for our test devices to simulate the data pulse shapes and reconstruct the pulse energies. We also describe the diffusion models used to fit our data. Finally, we end with a short summary of our findings and provide a few suggestions for future studies.« less
An improved maximum permissible exposure meter for safety assessments of laser radiation
NASA Astrophysics Data System (ADS)
Corder, D. A.; Evans, D. R.; Tyrer, J. R.
1997-12-01
Current interest in laser radiation safety requires demonstration that a laser system has been designed to prevent exposure to levels of laser radiation exceeding the Maximum Permissible Exposure. In some simple systems it is possible to prove this by calculation, but in most cases it is preferable to confirm calculated results with a measurement. This measurement may be made with commercially available equipment, but there are limitations with this approach. A custom designed instrument is presented in which the full range of measurement issues have been addressed. Important features of the instrument are the design and optimisation of detector heads for the measurement task, and consideration of user interface requirements. Three designs for detector head are presented, these cover the majority of common laser types. Detector heads are designed to optimise the performance of relatively low cost detector elements for this measurement task. The three detector head designs are suitable for interfacing to photodiodes, low power thermopiles and pyroelectric detectors. Design of the user interface was an important aspect of the work. A user interface which is designed for the specific application minimises the risk of user error or misinterpretation of the measurement results. A palmtop computer was used to provide an advanced user interface. User requirements were considered in order that the final implement was well matched to the task of laser radiation hazard audits.
DarkSide-20k: A 20 tonne two-phase LAr TPC for direct dark matter detection at LNGS
NASA Astrophysics Data System (ADS)
Aalseth, C. E.; Acerbi, F.; Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alici, A.; Alton, A. K.; Antonioli, P.; Arcelli, S.; Ardito, R.; Arnquist, I. J.; Asner, D. M.; Ave, M.; Back, H. O.; Barrado Olmedo, A. I.; Batignani, G.; Bertoldo, E.; Bettarini, S.; Bisogni, M. G.; Bocci, V.; Bondar, A.; Bonfini, G.; Bonivento, W.; Bossa, M.; Bottino, B.; Boulay, M.; Bunker, R.; Bussino, S.; Buzulutskov, A.; Cadeddu, M.; Cadoni, M.; Caminata, A.; Canci, N.; Candela, A.; Cantini, C.; Caravati, M.; Cariello, M.; Carlini, M.; Carpinelli, M.; Castellani, A.; Catalanotti, S.; Cataudella, V.; Cavalcante, P.; Cavuoti, S.; Cereseto, R.; Chepurnov, A.; Cicalò, C.; Cifarelli, L.; Citterio, M.; Cocco, A. G.; Colocci, M.; Corgiolu, S.; Covone, G.; Crivelli, P.; D'Antone, I.; D'Incecco, M.; D'Urso, D.; Da Rocha Rolo, M. D.; Daniel, M.; Davini, S.; de Candia, A.; De Cecco, S.; De Deo, M.; De Filippis, G.; De Guido, G.; De Rosa, G.; Dellacasa, G.; Della Valle, M.; Demontis, P.; Derbin, A.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Dolgov, A.; Dormia, I.; Dussoni, S.; Empl, A.; Fernandez Diaz, M.; Ferri, A.; Filip, C.; Fiorillo, G.; Fomenko, K.; Franco, D.; Froudakis, G. E.; Gabriele, F.; Gabrieli, A.; Galbiati, C.; Garcia Abia, P.; Gendotti, A.; Ghisi, A.; Giagu, S.; Giampa, P.; Gibertoni, G.; Giganti, C.; Giorgi, M. A.; Giovanetti, G. K.; Gligan, M. L.; Gola, A.; Gorchakov, O.; Goretti, A. M.; Granato, F.; Grassi, M.; Grate, J. W.; Grigoriev, G. Y.; Gromov, M.; Guan, M.; Guerra, M. B. B.; Guerzoni, M.; Gulino, M.; Haaland, R. K.; Hallin, A.; Harrop, B.; Hoppe, E. W.; Horikawa, S.; Hosseini, B.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, An.; Jillings, C.; Johnson, T. N.; Keeter, K.; Kendziora, C. L.; Kim, S.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Kuss, M.; Kuźniak, M.; La Commara, M.; Lehnert, B.; Li, X.; Lissia, M.; Lodi, G. U.; Loer, B.; Longo, G.; Loverre, P.; Lussana, R.; Luzzi, L.; Ma, Y.; Machado, A. A.; Machulin, I. N.; Mandarano, A.; Mapelli, L.; Marcante, M.; Margotti, A.; Mari, S. M.; Mariani, M.; Maricic, J.; Martoff, C. J.; Mascia, M.; Mayer, M.; McDonald, A. B.; Messina, A.; Meyers, P. D.; Milincic, R.; Moggi, A.; Moioli, S.; Monroe, J.; Monte, A.; Morrocchi, M.; Mount, B. J.; Mu, W.; Muratova, V. N.; Murphy, S.; Musico, P.; Nania, R.; Navrer Agasson, A.; Nikulin, I.; Nosov, V.; Nozdrina, A. O.; Nurakhov, N. N.; Oleinik, A.; Oleynikov, V.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Palmas, S.; Pandola, L.; Pantic, E.; Paoloni, E.; Paternoster, G.; Pavletcov, V.; Pazzona, F.; Peeters, S.; Pelczar, K.; Pellegrini, L. A.; Pelliccia, N.; Perotti, F.; Perruzza, R.; Pesudo, V.; Piemonte, C.; Pilo, F.; Pocar, A.; Pollmann, T.; Portaluppi, D.; Pugachev, D. A.; Qian, H.; Radics, B.; Raffaelli, F.; Ragusa, F.; Razeti, M.; Razeto, A.; Regazzoni, V.; Regenfus, C.; Reinhold, B.; Renshaw, A. L.; Rescigno, M.; Retière, F.; Riffard, Q.; Rivetti, A.; Rizzardini, S.; Romani, A.; Romero, L.; Rossi, B.; Rossi, N.; Rubbia, A.; Sablone, D.; Salatino, P.; Samoylov, O.; Sánchez García, E.; Sands, W.; Sanfilippo, S.; Sant, M.; Santorelli, R.; Savarese, C.; Scapparone, E.; Schlitzer, B.; Scioli, G.; Segreto, E.; Seifert, A.; Semenov, D. A.; Shchagin, A.; Shekhtman, L.; Shemyakina, E.; Sheshukov, A.; Simeone, M.; Singh, P. N.; Skensved, P.; Skorokhvatov, M. D.; Smirnov, O.; Sobrero, G.; Sokolov, A.; Sotnikov, A.; Speziale, F.; Stainforth, R.; Stanford, C.; Suffritti, G. B.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Tonazzo, A.; Tosi, A.; Trinchese, P.; Unzhakov, E. V.; Vacca, A.; Vázquez-Jáuregui, E.; Verducci, M.; Viant, T.; Villa, F.; Vishneva, A.; Vogelaar, B.; Wada, M.; Wahl, J.; Walding, J.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Williams, R.; Wojcik, M. M.; Wu, S.; Xiang, X.; Xiao, X.; Yang, C.; Ye, Z.; Yllera de Llano, A.; Zappa, F.; Zappalà, G.; Zhu, C.; Zichichi, A.; Zullo, M.; Zullo, A.; Zuzel, G.
2018-03-01
Building on the successful experience in operating the DarkSide-50 detector, the DarkSide Collaboration is going to construct DarkSide-20k, a direct WIMP search detector using a two-phase Liquid Argon Time Projection Chamber (LAr TPC) with an active (fiducial) mass of 23 t (20 t). This paper describes a preliminary design for the experiment, in which the DarkSide-20k LAr TPC is deployed within a shield/veto with a spherical Liquid Scintillator Veto (LSV) inside a cylindrical Water Cherenkov Veto (WCV). This preliminary design provides a baseline for the experiment to achieve its physics goals, while further development work will lead to the final optimization of the detector parameters and an eventual technical design. Operation of DarkSide-50 demonstrated a major reduction in the dominant 39Ar background when using argon extracted from an underground source, before applying pulse shape analysis. Data from DarkSide-50, in combination with MC simulation and analytical modeling, shows that a rejection factor for discrimination between electron and nuclear recoils of >3 × 109 is achievable. This, along with the use of the veto system and utilizing silicon photomultipliers in the LAr TPC, are the keys to unlocking the path to large LAr TPC detector masses, while maintaining an experiment in which less than < 0.1 events (other than ν-induced nuclear recoils) is expected to occur within the WIMP search region during the planned exposure. DarkSide-20k will have ultra-low backgrounds than can be measured in situ, giving sensitivity to WIMP-nucleon cross sections of 1.2 × 10^{-47} cm2 (1.1 × 10^{-46} cm2) for WIMPs of 1 TeV/c 2 (10 TeV/c 2) mass, to be achieved during a 5 yr run producing an exposure of 100 t yr free from any instrumental background.
Code of Federal Regulations, 2013 CFR
2013-07-01
... output from bag leak detector. COM or Design and install in accordance with PS-1; collect data in... Detection Guidance c; record voltage output from bag leak detector. COM Design and Install in accordance... Guidance” c; record output voltage from bag leak detector. COM Design and install in accordance with PS-1...
Code of Federal Regulations, 2012 CFR
2012-07-01
... output from bag leak detector. COM or Design and install in accordance with PS-1; collect data in... Detection Guidance c; record voltage output from bag leak detector. COM Design and Install in accordance... Guidance” c; record output voltage from bag leak detector. COM Design and install in accordance with PS-1...
NASA Astrophysics Data System (ADS)
List of Posters: Dark matter annihilation in the Galactic galo, by Dokuchaev Vyacheslav, et al. NEMO developments towards km3 telescope in the Mediterranean Sea. The NEMO project. Neutrino Mediterranean Observatory By Antonio Capone, NEMO Collaboration. Alignment as a result from QCD jet production or new still unknown physics at LHC? By Alexander Snigirev. Small-scale fluctuations of extensive air showers: systematics in energy and muon density estimation By Grigory Rubtsov. SHINIE: Simulation of High-Energy Neutrino Interacting with the Earth By Lin Guey-Lin, et al.. Thermodynamics of rotating solutions in n+1 dimensional Einstein - Maxwell -dilation gravity By Ahmad Sheykhi, et al.. Supernova neutrino physics with future large Cherenkov detectors By Daniele Montanino. Crossing of the Cosmological Constant Barrier in the string Inspired Dark Energy Model By S. Yu. Vernov. Calculations of radio signals produced by ultra-high and extremely high energy neutrino induced cascades in Antarctic ice By D. Besson, et al.. Inflation, Cosmic Acceleration and string Gravity By Ischwaree Neupane. Neutrino Physics: Charm and J/Psi production in the atmosphere By Liudmila Volkova. Three generation flavor transitions and decays of supernova relic neutrinos By Daniele Montanino. Lattice calculations & computational quantum field theory: Sonification of Quark and Baryon Spectra By Markum Harald, et al.. Generalized Kramers-Wannier Duality for spin systems with non-commutative symmetry By V. M. Buchstaber, et al.. Heavy ion collisions & quark matter: Nuclear matter jets and multifragmentation By Danut Argintaru, et al.. QCD hard interactions: The qT-spectrum of the Higgs and Slepton-pairs at the LHC By Guiseppe Bozzi. QCD soft interactions: Nonperturbative effects in Single-Spin Asymmetries: Instantons and TMD-parton distributions By Igor Cherednikov, et al.. Gluon dominance model and high multiplicity By Elena Kokoulina. Resonances in eta pi- pi- pi+ system By Dmitry Ryabchikov. Saturation effects in diffractive scattering at LHC By Oleg Selugin. A nonperturbative expansion method in QCD and R-related quantities By Igor Solovtsov. Z-scaling and high multiplicity particle Production in bar pp/pp & AA collisions at Tevatron and RHIC By Mikhail Tokarev. Scaling behaviour of the reactionsdd - > p↑ /3H and pd - > pd with pT at energy I-2 GeV By Yuri Uzikov. [ADS Note: Title formula can not be rendered correctly in ASCII.] CP violation, rare decays, CKM: Precision Measurements of the Mass of the Top Quark at CDF (Precision Top Mass Measurements at CDF) By Daniel Whiteson. Measurement of the Bs Oscillation at CDF By Luciano Ristori. The Bs mixing phase at LHCb By J. J. van Hunen. ATLAS preparations for precise measurements of semileptonic rare B decays By K. Toms. Hadron spectroscopy & exotics: Searches for radial excited states of charmonium in experiments using cooled antiproton beams By M. Yu. Barabanov. Retardation effects in the rotating string model By Fabien Buisseret and Claude Semay. Final results from VEPP-2M (CMD-2 and SND) By G. V. Fedotovich. Heavy Quark Physics: Prospects for B physics measurements using the CMS detector at the LHC By Andreev Valery. Heavy flavour production at HERA-B By Andrey Bogatyrev. B-Meson subleading form factors in the Heavy Quark Effective Theory (HQET) By Frederic Jugeau. Beyond the Standard Model: Monopole Decay in a Variable External Field By Andrey Zayakin. Two-Loop matching coefficients for the strong coupling in the MSSM By Mihaila Luminita. Test of lepton flavour violation at LHC By Hidaka Keisho. Looking at New Physics through 4 jets and no ET By Maity Manas. Are Preons Dyons? Naturalness of Three Generations By Das Chitta Ranjan. SUSY Dark Matter at Linear Collider By Sezen Sekmen, Mehmet Zeyrek. MSSM light Higgs boson scenario and its test at hadron colliders By Alexander Belyaev. Antiscalar Approach to Gravity and Standard Model By E. Mychelkin. GRID distributed analysis in high energy physics: PAX: Physics Analysis Design and Application on the GRID By Martin Erdmann, et al.. D0 and the (SAM) GRID: An ongoing success story DO Collaboration. R & D for future accelerators, detectors & new facilities: High Level Trigger Selection in the CMS experiment By Monica Vazquez Acosta. R&D for a Helical Undulator Based Positron Source for the International Linear Collider By Phil Allport. Muon Detection, Reconstruction and Identification in CMS By Ivan Belotelov. Acoustic Measurements for EeV Neutrino Detection at the South Pole By Sebastian Böser. The PSI source of ultracold neutrons (UCN) By Manfred Daum. The LHCb Pixel Hybrid Photon Detectors (Characterization of Nybrig Photon Detectors for the LHCb experiment) By Neville Harnew, et al.. Semi-Insulating GaN-radiation hard semiconductor for ionizing radiation detectors By Juozas Vaitkus. Monitored Drift Tube end-cap spectrometer for the ATLAS detector By Dmitri Kotchetkov. Development of Focusing Aerogel RICH By Sergey Kononov, et al.. Electromagnetic Calibration of the Hadronic Tile Calorimeter Modules of the ATLAS detector at the LHC By Iouri Koultchitski. A Study of Proximity focusing RICH with Multiple Refractive Index Aerogel Radiator By Peter Krizan. The Heavy Flavor Tracker (HFT) for STAR By Vasil Kuspil. ATLAS Liquid Argon Calorimeter ATLAS Collaboration: Field Emission in HEP Colliders Initiated by a Relativistic Positively Charged Bunch of Particles By Boris Levchenko. MICE: the international Muon Ionization Cooling Experiment By Kenneth Long. In situ calibration of the CMS electromagnetic calorimeter By Augustino Lorenzo. The Transition Radiation Tracker for the ATLAS experiment at the LHC By Victor Maleev. Resonance depolarization and Compton-Backscattering technique for beam energy measurement of VEPP-4M collider By Ivan Nikolaev, et al.. CCD - based Pixel Detectors by LCFI By Andrei Nomerotski. The SiD Detector Concept for the International Linear Collider By Dmitry Onoprienko. CMS Hadron Calorimetry, Calibration, and Jets/Missing Transverse Energy Measurements By Sergey Petrushanko. The CMS Silicon Tracker By Oliver Pooth. Drift Chamber for CMD-3 detector By Alexandr Popov, et al.. Vacuum Phototriods for the CMS ECAL Endcap crystal calorimeter By Vladimir Postoev. CMS Silicon Tracker: Track Reconstruction and Alignment By Frank-Peter Schilling. eRHIC - A precision electron-proton/ion collider facility at Brookhaven National Laboratory By Bernd Surrow. Development of tracking detectors with industrially produced GEM foils By Bernd Surrow, et al.. A Linear Collider Facility with High Intensity e+e- beams (A high intensity e+e- Linear Collider Facility at low energy) By Andre Schoening. Construction of the BESIII detector for tau-charm physics By Yifang Wang. The HERMES Recoil Detector By Sergey Yashchenko. Simulation of MICE in G4 MICE MICE Experiment: The new DO Layer O silicon detector The DO trigger upgrade for RUNIIb The Do Collaboration. Operational experiences with the silicon detector at CDF By Jeannine Wagner. Mathematical aspects of QFT & string theory: Electron in superstrong Coulomb field By D. Gitman. Stability of a non-commutative Jackiw-Teitelboim gravity By Fresneda Rodrigo, et al.. 4d gravity localized on thick branes: the complete mass spectrum By Alfredo Herrera-Aguilar. On Emergence of Quantum Mechanics By L. V. Prokhorov.
Novel scintillation detector design and performance for proton radiography and computed tomography.
Bashkirov, V A; Schulte, R W; Hurley, R F; Johnson, R P; Sadrozinski, H F-W; Zatserklyaniy, A; Plautz, T; Giacometti, V
2016-02-01
Proton computed tomography (pCT) will enable accurate prediction of proton and ion range in a patient while providing the benefit of lower radiation exposure than in x-ray CT. The accuracy of the range prediction is essential for treatment planning in proton or ion therapy and depends upon the detector used to evaluate the water-equivalent path length (WEPL) of a proton passing through the object. A novel approach is presented for an inexpensive WEPL detector for pCT and proton radiography. A novel multistage detector with an aperture of 10 × 37.5 cm was designed to optimize the accuracy of the WEPL measurements while simplifying detector construction and the performance requirements of its components. The design of the five-stage detector was optimized through simulations based on the geant4 detector simulation toolkit, and the fabricated prototype was calibrated in water-equivalent millimeters with 200 MeV protons in the research beam line of the clinical proton synchrotron at Loma Linda University Medical Center. A special polystyrene step phantom was designed and built to speed up and simplify the calibration procedure. The calibrated five-stage detector was tested in the 200 MeV proton beam as part of the pCT head scanner, using a water phantom and polystyrene slabs to verify the WEPL reconstruction accuracy. The beam-test results demonstrated excellent performance of the new detector, in good agreement with the simulation results. The WEPL measurement accuracy is about 3.0 mm per proton in the 0-260 mm WEPL range required for a pCT head scan with a 200 MeV proton beam. The new multistage design approach to WEPL measurements for proton CT and radiography has been prototyped and tested. The test results show that the design is competitive with much more expensive calorimeter and range-counter designs.
Novel scintillation detector design and performance for proton radiography and computed tomography
Schulte, R. W.; Hurley, R. F.; Johnson, R. P.; Sadrozinski, H. F.-W.; Zatserklyaniy, A.; Plautz, T.; Giacometti, V.
2016-01-01
Purpose: Proton computed tomography (pCT) will enable accurate prediction of proton and ion range in a patient while providing the benefit of lower radiation exposure than in x-ray CT. The accuracy of the range prediction is essential for treatment planning in proton or ion therapy and depends upon the detector used to evaluate the water-equivalent path length (WEPL) of a proton passing through the object. A novel approach is presented for an inexpensive WEPL detector for pCT and proton radiography. Methods: A novel multistage detector with an aperture of 10 × 37.5 cm was designed to optimize the accuracy of the WEPL measurements while simplifying detector construction and the performance requirements of its components. The design of the five-stage detector was optimized through simulations based on the geant4 detector simulation toolkit, and the fabricated prototype was calibrated in water-equivalent millimeters with 200 MeV protons in the research beam line of the clinical proton synchrotron at Loma Linda University Medical Center. A special polystyrene step phantom was designed and built to speed up and simplify the calibration procedure. The calibrated five-stage detector was tested in the 200 MeV proton beam as part of the pCT head scanner, using a water phantom and polystyrene slabs to verify the WEPL reconstruction accuracy. Results: The beam-test results demonstrated excellent performance of the new detector, in good agreement with the simulation results. The WEPL measurement accuracy is about 3.0 mm per proton in the 0–260 mm WEPL range required for a pCT head scan with a 200 MeV proton beam. Conclusions: The new multistage design approach to WEPL measurements for proton CT and radiography has been prototyped and tested. The test results show that the design is competitive with much more expensive calorimeter and range-counter designs. PMID:26843230
Earth radiation budget measurement from a spinning satellite: Conceptual design of detectors
NASA Technical Reports Server (NTRS)
Sromovsky, L. A.; Revercomb, H. E.; Suomi, V. E.
1975-01-01
The conceptual design, sensor characteristics, sensor performance and accuracy, and spacecraft and orbital requirements for a spinning wide-field-of-view earth energy budget detector were investigated. The scientific requirements for measurement of the earth's radiative energy budget are presented. Other topics discussed include the observing system concept, solar constant radiometer design, plane flux wide FOV sensor design, fast active cavity theory, fast active cavity design and error analysis, thermopile detectors as an alternative, pre-flight and in-flight calibration plane, system error summary, and interface requirements.
Millimeter-Wave Polarimeters Using Kinetic Inductance Detectors for TolTEC and Beyond
NASA Astrophysics Data System (ADS)
Austermann, J. E.; Beall, J. A.; Bryan, S. A.; Dober, B.; Gao, J.; Hilton, G.; Hubmayr, J.; Mauskopf, P.; McKenney, C. M.; Simon, S. M.; Ullom, J. N.; Vissers, M. R.; Wilson, G. W.
2018-05-01
Microwave kinetic inductance detectors (MKIDs) provide a compelling path forward to the large-format polarimeter, imaging, and spectrometer arrays needed for next-generation experiments in millimeter-wave cosmology and astronomy. We describe the development of feedhorn-coupled MKID detectors for the TolTEC millimeter-wave imaging polarimeter being constructed for the 50-m Large Millimeter Telescope (LMT). Observations with TolTEC are planned to begin in early 2019. TolTEC will comprise ˜ 7000 polarization-sensitive MKIDs and will represent the first MKID arrays fabricated and deployed on monolithic 150 mm diameter silicon wafers—a critical step toward future large-scale experiments with over 10^5 detectors. TolTEC will operate in observational bands at 1.1, 1.4, and 2.0 mm and will use dichroic filters to define a physically independent focal plane for each passband, thus allowing the polarimeters to use simple, direct-absorption inductive structures that are impedance matched to incident radiation. This work is part of a larger program at NIST-Boulder to develop MKID-based detector technologies for use over a wide range of photon energies spanning millimeter-waves to X-rays. We present the detailed pixel layout and describe the methods, tools, and flexible design parameters that allow this solution to be optimized for use anywhere in the millimeter and sub-millimeter bands. We also present measurements of prototype devices operating in the 1.1 mm band and compare the observed optical performance to that predicted from models and simulations.
Precision tracking with a single gaseous pixel detector
NASA Astrophysics Data System (ADS)
Tsigaridas, S.; van Bakel, N.; Bilevych, Y.; Gromov, V.; Hartjes, F.; Hessey, N. P.; de Jong, P.; Kluit, R.
2015-09-01
The importance of micro-pattern gaseous detectors has grown over the past few years after successful usage in a large number of applications in physics experiments and medicine. We develop gaseous pixel detectors using micromegas-based amplification structures on top of CMOS pixel readout chips. Using wafer post-processing we add a spark-protection layer and a grid to create an amplification region above the chip, allowing individual electrons released above the grid by the passage of ionising radiation to be recorded. The electron creation point is measured in 3D, using the pixel position for (x, y) and the drift time for z. The track can be reconstructed by fitting a straight line to these points. In this work we have used a pixel-readout-chip which is a small-scale prototype of Timepix3 chip (designed for both silicon and gaseous detection media). This prototype chip has several advantages over the existing Timepix chip, including a faster front-end (pre-amplifier and discriminator) and a faster TDC which reduce timewalk's contribution to the z position error. Although the chip is very small (sensitive area of 0.88 × 0.88mm2), we have built it into a detector with a short drift gap (1.3 mm), and measured its tracking performance in an electron beam at DESY. We present the results obtained, which lead to a significant improvement for the resolutions with respect to Timepix-based detectors.
NASA Astrophysics Data System (ADS)
Autiero, D.; Äystö, J.; Badertscher, A.; Bezrukov, L.; Bouchez, J.; Bueno, A.; Busto, J.; Campagne, J.-E.; Cavata, Ch; Chaussard, L.; de Bellefon, A.; Déclais, Y.; Dumarchez, J.; Ebert, J.; Enqvist, T.; Ereditato, A.; von Feilitzsch, F.; Fileviez Perez, P.; Göger-Neff, M.; Gninenko, S.; Gruber, W.; Hagner, C.; Hess, M.; Hochmuth, K. A.; Kisiel, J.; Knecht, L.; Kreslo, I.; Kudryavtsev, V. A.; Kuusiniemi, P.; Lachenmaier, T.; Laffranchi, M.; Lefievre, B.; Lightfoot, P. K.; Lindner, M.; Maalampi, J.; Maltoni, M.; Marchionni, A.; Marrodán Undagoitia, T.; Marteau, J.; Meregaglia, A.; Messina, M.; Mezzetto, M.; Mirizzi, A.; Mosca, L.; Moser, U.; Müller, A.; Natterer, G.; Oberauer, L.; Otiougova, P.; Patzak, T.; Peltoniemi, J.; Potzel, W.; Pistillo, C.; Raffelt, G. G.; Rondio, E.; Roos, M.; Rossi, B.; Rubbia, A.; Savvinov, N.; Schwetz, T.; Sobczyk, J.; Spooner, N. J. C.; Stefan, D.; Tonazzo, A.; Trzaska, W.; Ulbricht, J.; Volpe, C.; Winter, J.; Wurm, M.; Zalewska, A.; Zimmermann, R.
2007-11-01
This document reports on a series of experimental and theoretical studies conducted to assess the astro-particle physics potential of three future large scale particle detectors proposed in Europe as next generation underground observatories. The proposed apparatuses employ three different and, to some extent, complementary detection techniques: GLACIER (liquid argon TPC), LENA (liquid scintillator) and MEMPHYS (water Cherenkov), based on the use of large mass of liquids as active detection media. The results of these studies are presented along with a critical discussion of the performance attainable by the three proposed approaches coupled to existing or planned underground laboratories, in relation to open and outstanding physics issues such as the search for matter instability, the detection of astrophysical neutrinos and geo-neutrinos and to the possible use of these detectors in future high intensity neutrino beams.
Determination of calibration parameters of a VRX CT system using an “Amoeba” algorithm
Jordan, Lawrence M.; DiBianca, Frank A.; Melnyk, Roman; Choudhary, Apoorva; Shukla, Hemant; Laughter, Joseph; Gaber, M. Waleed
2008-01-01
Efforts to improve the spatial resolution of CT scanners have focused mainly on reducing the source and detector element sizes, ignoring losses from the size of the secondary-ionization charge “clouds” created by the detected x-ray photons, i.e., the “physics limit.” This paper focuses on implementing a technique called “projective compression.” which allows further reduction in effective cell size while overcoming the physics limit as well. Projective compression signifies detector geometries in which the apparent cell size is smaller than the physical cell size, allowing large resolution boosts. A realization of this technique has been developed with a dual-arm “variable-resolution x-ray” (VRX) detector. Accurate values of the geometrical parameters are needed to convert VRX outputs to formats ready for optimal image reconstruction by standard CT techniques. The required calibrating data are obtained by scanning a rotating pin and fitting a theoretical parametric curve (using a multi-parameter minimization algorithm) to the resulting pin sinogram. Excellent fits are obtained for both detector-arm sections with an average (maximum) fit deviation of ~0.05 (0.1) detector cell width. Fit convergence and sensitivity to starting conditions are considered. Pre- and post-optimization reconstructions of the alignment pin and a biological subject reconstruction after calibration are shown. PMID:19430581
Determination of calibration parameters of a VRX CT system using an "Amoeba" algorithm.
Jordan, Lawrence M; Dibianca, Frank A; Melnyk, Roman; Choudhary, Apoorva; Shukla, Hemant; Laughter, Joseph; Gaber, M Waleed
2004-01-01
Efforts to improve the spatial resolution of CT scanners have focused mainly on reducing the source and detector element sizes, ignoring losses from the size of the secondary-ionization charge "clouds" created by the detected x-ray photons, i.e., the "physics limit." This paper focuses on implementing a technique called "projective compression." which allows further reduction in effective cell size while overcoming the physics limit as well. Projective compression signifies detector geometries in which the apparent cell size is smaller than the physical cell size, allowing large resolution boosts. A realization of this technique has been developed with a dual-arm "variable-resolution x-ray" (VRX) detector. Accurate values of the geometrical parameters are needed to convert VRX outputs to formats ready for optimal image reconstruction by standard CT techniques. The required calibrating data are obtained by scanning a rotating pin and fitting a theoretical parametric curve (using a multi-parameter minimization algorithm) to the resulting pin sinogram. Excellent fits are obtained for both detector-arm sections with an average (maximum) fit deviation of ~0.05 (0.1) detector cell width. Fit convergence and sensitivity to starting conditions are considered. Pre- and post-optimization reconstructions of the alignment pin and a biological subject reconstruction after calibration are shown.
Advanced testing of the DEPFET minimatrix particle detector
NASA Astrophysics Data System (ADS)
Andricek, L.; Kodyš, P.; Koffmane, C.; Ninkovic, J.; Oswald, C.; Richter, R.; Ritter, A.; Rummel, S.; Scheirich, J.; Wassatsch, A.
2012-01-01
The DEPFET (DEPleted Field Effect Transistor) is an active pixel particle detector with a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) integrated in each pixel, providing first amplification stage of readout electronics. Excellent signal over noise performance is gained this way. The DEPFET sensor will be used as a vertex detector in the Belle II experiment at SuperKEKB, electron-positron collider in Japan. The vertex detector will be composed of two layers of pixel detectors (DEPFET) and four layers of strip detectors. The DEPFET sensor requires switching and current readout circuits for its operation. These circuits have been designed as ASICs (Application Specific Integrated Circuits) in several different versions, but they provide insufficient flexibility for precise detector testing. Therefore, a test system with a flexible control cycle range and minimal noise has been designed for testing and characterizing of small detector prototypes (Minimatrices). Sensors with different design layouts and thicknesses are produced in order to evaluate and select the one with the best performance for the Belle II application. Description of the test system as well as measurement results are presented.
NASA Technical Reports Server (NTRS)
Prochzaka, Ivan; Kodat, Jan; Blazej, Josef; Sun, Xiaoli (Editor)
2015-01-01
We are reporting on a design, construction and performance of photon-counting detector packages based on silicon avalanche photodiodes. These photon-counting devices have been optimized for extremely high stability of their detection delay. The detectors have been designed for future applications in fundamental metrology and optical time transfer in space. The detectors have been qualified for operation in space missions. The exceptional radiation tolerance of the detection chip itself and of all critical components of a detector package has been verified in a series of experiments.