Particle Accelerators Test Cosmological Theory.
ERIC Educational Resources Information Center
Schramm, David N.; Steigman, Gary
1988-01-01
Discusses the symbiotic relationship of cosmology and elementary-particle physics. Presents a brief overview of particle physics. Explains how cosmological considerations set limits on the number of types of elementary particles. (RT)
Teaching Elementary Particle Physics: Part I
ERIC Educational Resources Information Center
Hobson, Art
2011-01-01
I'll outline suggestions for teaching elementary particle physics, often called "high energy physics," in high school or introductory college courses for non-scientists or scientists. Some presentations of this topic simply list the various particles along with their properties, with little overarching structure. Such a laundry list approach is a…
NASA Technical Reports Server (NTRS)
Perkins, D. H.
1986-01-01
Elementary particle physics is discussed. Status of the Standard Model of electroweak and strong interactions; phenomena beyond the Standard Model; new accelerator projects; and possible contributions from non-accelerator experiments are examined.
Quantum Optics, Diffraction Theory, and Elementary Particle Physics
Glauber, Roy
2018-05-22
Physical optics has expanded greatly in recent years. Though it remains part of the ancestry of elementary particle physics, there are once again lessons to be learned from it. I shall discuss several of these, including some that have emerged at CERN and Brookhaven.
Plato's TIMAIOσ (TIMAEUS) and Modern Particle Physics
NASA Astrophysics Data System (ADS)
Machleidt, Ruprecht
2005-04-01
It is generally known that the question, ``What are the smallest particles (elementary particles) that all matter is made from?'', was posed already in the antiquity. The Greek natural philosophers Leucippus and Democritus were the first to suggest that all matter was made from atoms. Therefore, most people perceive them as the ancient fathers of elementary particle physics. It will be the purpose of my contribution to point out that this perception is wrong. Modern particle physics is not just a primitive atomism. More important than the materialistic particles are the underlying symmetries (e. g., SU(3) and SU(6)). A similar idea was first advanced by Plato in his dialog TIMAIOσ (Latin translation: TIMAEUS): Geometric symmetries generate the materialistic particles from a few even more elementary items. Plato's vision is amazingly close to the ideas of modern particle physics. This fact, which is unfortunately little known, has been pointed out repeatedly by Heisenberg (see, e. g., Werner Heisenberg, Across the Frontiers, Harper & Row, New York, 1974).
Plato's Ideas and the Theories of Modern Particle Physics: Amazing Parallels
NASA Astrophysics Data System (ADS)
Machleidt, Ruprecht
2006-05-01
It is generally known that the question, ``What are the most elementary particles that all matter is made from?'', was already posed in the antiquity. The Greek natural philosophers Leucippus and Democritus were the first to suggest that all matter was made from atoms. Therefore, most people perceive them as the ancient fathers of elementary particle physics. However, this perception is wrong. Modern particle physics is not just a simple atomism. The characteristic point of modern particle theory is that it is concerned with the symmetries underlying the particles we discover in experiment. More than 2000 years ago, a similar idea was already advanced by the Greek philosopher Plato in his dialogue Timaeus: Geometric symmetries generate the atoms from just a few even more elementary items. Plato's vision is amazingly close to the ideas of modern particle theory. This fact, which is unfortunately little known, has been pointed out repeatedly by Werner Heisenberg.
Instrumentation for Applied Physics and Industrial Applications
NASA Astrophysics Data System (ADS)
Hillemanns, H.; Le Goff, J.-M.
This document is part of Part 2 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Section '7.3 Instrumentation for Applied Physics and Industrial Applications' of Chapter '7 Applications of Detectors in Technology; Medicine and Other Fields' with the content:
Higgs Particle: The Origin of Mass
NASA Astrophysics Data System (ADS)
Okada, Yasuhiro
2007-11-01
The Higgs particle is a new elementary particle predicted in the Standard Model of the elementary particle physics. It plays a special role in the theory of mass generation of quarks, leptons, and gauge bosons. In this article, theoretical issues on the Higgs mechanism are first discussed, and then experimental prospects on the Higgs particle study at the future collider experiments, LHC and ILC, are reviewed. The Higgs coupling determination is an essential step to establish the mass generation mechanism, which could lead to a deeper understanding of particle physics.
Final Report May 1, 2012 to May 31, 2015: "Theoretical Studies in Elementary Particle Physics"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, John C.; Roiban, Radu
2015-08-19
This final report summarizes work at Penn State University from May 1, 2012 to May 31, 2015. The work was in theoretical elementary particle physics. Many new results in perturbative QCD, in string theory, and in related areas were obtained, with a substantial impact on the experimental program.
ERIC Educational Resources Information Center
Drell, Sidney D.
1978-01-01
Gives a new definition for the concept of the elementary particle in nuclear physics. Explains why the existance of the quark as an elementary particle could be an accepted fact even though it lacks what traditionally identifies a particle. Compares this with the development which took place during the discovery of the neutrino in the early…
A Simple Mathematical Model for Standard Model of Elementary Particles and Extension Thereof
NASA Astrophysics Data System (ADS)
Sinha, Ashok
2016-03-01
An algebraically (and geometrically) simple model representing the masses of the elementary particles in terms of the interaction (strong, weak, electromagnetic) constants is developed, including the Higgs bosons. The predicted Higgs boson mass is identical to that discovered by LHC experimental programs; while possibility of additional Higgs bosons (and their masses) is indicated. The model can be analyzed to explain and resolve many puzzles of particle physics and cosmology including the neutrino masses and mixing; origin of the proton mass and the mass-difference between the proton and the neutron; the big bang and cosmological Inflation; the Hubble expansion; etc. A novel interpretation of the model in terms of quaternion and rotation in the six-dimensional space of the elementary particle interaction-space - or, equivalently, in six-dimensional spacetime - is presented. Interrelations among particle masses are derived theoretically. A new approach for defining the interaction parameters leading to an elegant and symmetrical diagram is delineated. Generalization of the model to include supersymmetry is illustrated without recourse to complex mathematical formulation and free from any ambiguity. This Abstract represents some results of the Author's Independent Theoretical Research in Particle Physics, with possible connection to the Superstring Theory. However, only very elementary mathematics and physics is used in my presentation.
The Birth of Elementary-Particle Physics.
ERIC Educational Resources Information Center
Brown, Laurie M.; Hoddeson, Lillian
1982-01-01
Traces the origin and development of particle physics, concentrating on the roles of cosmic rays and theory. Includes charts highlighting significant events in the development of cosmic-ray physics and quantum field theory. (SK)
Certain problems in the current theory of gravitation
NASA Astrophysics Data System (ADS)
Markov, M. A.
1984-04-01
A number of problems (considered by the author to be the most significant) connected with the possible role of gravitation in the elementary-particle physics and cosmology are examined. Particular attention is given to the problems of self-energy, the limit mass of elementary particles, maximons and the evolution of the universe, the origin of the universe, and the physical meaning of Planck's length.
Current experiments in elementary particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohl, C.G.; Armstrong, F.E., Oyanagi, Y.; Dodder, D.C.
1987-03-01
This report contains summaries of 720 recent and current experiments in elementary particle physics (experiments that finished taking data before 1980 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Moscow Institute of Theoretical and Experimental Physics, Tokyo Institute of Nuclear Studies, KEK, LAMPF, Leningrad Nuclear Physics Institute, Saclay, Serpukhov, SIN, SLAC, and TRIUMF, and also experiments on proton decay. Instructions are given for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.
Physics through the 1990s: Elementary-particle physics
NASA Astrophysics Data System (ADS)
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.
Physics through the 1990s: elementary-particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1986-01-01
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the fieldmore » is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.« less
Physics through the 1990s: Elementary-particle physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume begins with a non-mathematical discussion of the motivation behind, and basic ideas of, elementary-particle physics theory and experiment. The progress over the past two decades with the quark model and unification of the electromagnetic and weak interactions is reviewed. Existing theoretical problems in the field, such as the origin of mass and the unification of the fundamental forces, are detailed, along with experimental programs to test the new theories. Accelerators, instrumentation, and detectors are described for both current and future facilities. Interactions with other areas of both theoretical and applied physics are presented. The sociology of the field is examined regarding the education of graduate students, the organization necessary in large-scale experiments, and the decision-making process involved in high-cost experiments. Finally, conclusions and recommendations for maintaining US excellence in theory and experiment are given. Appendices list both current and planned accelerators, and present statistical data on the US elementary-particle physics program. A glossary is included.
Current experiments in elementary particle physics. Revised
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galic, H.; Wohl, C.G.; Armstrong, B.
This report contains summaries of 584 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1986 are excluded. Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, KEK, LAMPF, Novosibirsk, Paul Scherrer Institut (PSI), Saclay, Serpukhov, SLAC, SSCL, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.
Design Considerations for High Energy Electron -- Positron Storage Rings
DOE R&D Accomplishments Database
Richter, B.
1966-11-01
High energy electron-positron storage rings give a way of making a new attack on the most important problems of elementary particle physics. All of us who have worked in the storage ring field designing, building, or using storage rings know this. The importance of that part of storage ring work concerning tests of quantum electrodynamics and mu meson physics is also generally appreciated by the larger physics community. However, I do not think that most of the physicists working tin the elementary particle physics field realize the importance of the contribution that storage ring experiments can make to our understanding of the strongly interacting particles. I would therefore like to spend the next few minutes discussing the sort of things that one can do with storage rings in the strongly interacting particle field.
Teaching Elementary Particle Physics: Part I1
NASA Astrophysics Data System (ADS)
Hobson, Art
2011-01-01
I'll outline suggestions for teaching elementary particle physics, often called high energy physics, in high school or introductory college courses for non-scientists or scientists. Some presentations of this topic simply list the various particles along with their properties, with little overarching structure. Such a laundry list approach is a great way to make a fascinating topic meaningless. Students need a conceptual framework from which to view the elementary particles. That conceptual framework is quantum field theory (QFT). Teachers and students alike tend to quake at this topic, but bear with me. We're talking here about concepts, not technicalities. My approach will be conceptual and suitable for non-scientists and scientists; if mathematical details are added in courses for future scientists, they should be simple and sparse. Introductory students should not be expected to do QFT, but only to understand its concepts. Those concepts take some getting used to, but they are simple and can be understood by any literate person, be she plumber, attorney, musician, or physicist.
Latest AMS Results on elementary particles in cosmic rays
NASA Astrophysics Data System (ADS)
Kounine, Andrei; AMS Collaboration
2017-01-01
AMS-02 is a particle physics detector collecting data on the International Space Station since May 2011. Precision measurements of all elementary charged cosmic ray particles have been performed by AMS using a data sample of 85 billion cosmic ray events collected during the first five years of operations on the Station. The latest AMS results on the fluxes and flux ratios of the elementary cosmic ray particles are presented. They show unique features that require accurate theoretical interpretation as to their origin, be it from dark matter collisions or new astrophysical sources. On behalf of the AMS Collaboration.
Let's Have a Coffee with the Standard Model of Particle Physics!
ERIC Educational Resources Information Center
Woithe, Julia; Wiener, Gerfried J.; Van der Veken, Frederik F.
2017-01-01
The Standard Model of particle physics is one of the most successful theories in physics and describes the fundamental interactions between elementary particles. It is encoded in a compact description, the so-called "Lagrangian," which even fits on t-shirts and coffee mugs. This mathematical formulation, however, is complex and only…
Current experiments in elementary particle physics. Revision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galic, H.; Armstrong, F.E.; von Przewoski, B.
1994-08-01
This report contains summaries of 568 current and recent experiments in elementary particle physics. Experiments that finished taking data before 1988 are excluded. Included are experiments at BEPC (Beijing), BNL, CEBAF, CERN, CESR, DESY, FNAL, INS (Tokyo), ITEP (Moscow), IUCF (Bloomington), KEK, LAMPF, Novosibirsk, PNPI (St. Petersburg), PSI, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground and underwater experiments. Instructions are given for remote searching of the computer database (maintained under the SLAC/SPIRES system) that contains the summaries.
The Joint Institute for Nuclear Research in Experimental Physics of Elementary Particles
NASA Astrophysics Data System (ADS)
Bednyakov, V. A.; Russakovich, N. A.
2018-05-01
The year 2016 marks the 60th anniversary of the Joint Institute for Nuclear Research (JINR) in Dubna, an international intergovernmental organization for basic research in the fields of elementary particles, atomic nuclei, and condensed matter. Highly productive advances over this long road clearly show that the international basis and diversity of research guarantees successful development (and maintenance) of fundamental science. This is especially important for experimental research. In this review, the most significant achievements are briefly described with an attempt to look into the future (seven to ten years ahead) and show the role of JINR in solution of highly important problems in elementary particle physics, which is a fundamental field of modern natural sciences. This glimpse of the future is full of justified optimism.
Quarks, Leptons, and Bosons: A Particle Physics Primer.
ERIC Educational Resources Information Center
Wagoner, Robert; Goldsmith, Donald
1983-01-01
Presented is a non-technical introduction to particle physics. The material is adapted from chapter 3 of "Cosmic Horizons," (by Robert Wagoner and Don Goldsmith), a lay-person's introduction to cosmology. Among the topics considered are elementary particles, forces and motion, and higher level structures. (JN)
Current experiments in elementary particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohl, C.G.; Armstrong, F.E.; Trippe, T.G.
1989-09-01
This report contains summaries of 736 current and recent experiments in elementary particle physics (experiments that finished taking data before 1982 are excluded). Included are experiments at Brookhaven, CERN, CESR, DESY, Fermilab, Tokyo Institute of Nuclear Studies, Moscow Institute of Theoretical and Experimental Physics, Joint Institute for Nuclear Research (Dubna), KEK, LAMPF, Novosibirsk, PSI/SIN, Saclay, Serpukhov, SLAC, and TRIUMF, and also several underground experiments. Also given are instructions for searching online the computer database (maintained under the SLAC/SPIRES system) that contains the summaries. Properties of the fixed-target beams at most of the laboratories are summarized.
Top Quark and Higgs Boson Physics at LHC-ATLAS
NASA Astrophysics Data System (ADS)
Tomoto, M.
2013-03-01
One of the main goal of the Large Hadron Collider (LHC) experiments at CERN in Switzerland is to aim to solve the "origin of the mass" by discovering the Higgs boson and understanding the interaction of the Higgs boson with the elementary particles. The ATLAS, which is one of the LHC experiments has taken about 5 fb-1 of physics quality data and published several results with regard to the "origin of the mass" since March 2010. This presentation focuses on the latest results of the heaviest elementary particle, namely, top quark physics and the Higgs boson searches from ATLAS.
Martinus Veltman, the Electroweak Theory, and Elementary Particle Physics
Particle Physics Resources with Additional Information Martinus Veltman Courtesy University of Michigan Martinus J.G. Veltman, the John D. MacArthur Professor Emeritus of Physics at the University of Michigan , was awarded the 1999 Nobel Prize in physics "for elucidating the quantum structure of electroweak
ERIC Educational Resources Information Center
Wiener, Gerfried J.; Schmeling, Sascha M.; Hopf, Martin
2015-01-01
This study introduces a teaching concept based on the Standard Model of particle physics. It comprises two consecutive chapters--elementary particles and fundamental interactions. The rationale of this concept is that the fundamental principles of particle physics can run as the golden thread through the whole physics curriculum. The design…
REVIEWS OF TOPICAL PROBLEMS: Contemporary status and prospects of high-energy physics
NASA Astrophysics Data System (ADS)
Okun', Lev B.
1981-05-01
A concise review of the most recent major achievements of elementary-particle physics is given. The successes and problems of gauge theories of the strong and electroweak interactions are discussed. A comparison is made of the possible alternatives in the development of physics in the transition to laboratory energies of the order of a tera-electron-volt. Models of grand unification and superunification of the various types of fundamental interactions are considered. A number of examples are used to demonstrate the connection between the properties of elementary particles and the properties of astronomical objects and of the Universe as a whole.
ERIC Educational Resources Information Center
Ziegler, Robert Edward
This study is concerned with determining the relative effectiveness of a static and dynamic theoretical model in teaching elementary school students to use the particle idea of matter when explaining certain physical phenomena. A clinical method of personal individual interview-testing, teaching, and retesting of a random sample population from…
Donald Glaser, the Bubble Chamber, and Elementary Particles
Effects of Ionizing Radiation on the Formation of Bubbles in Liquids Physical Review, Vol. 87, Issue 4 , 665, August 15, 1952 Characteristics of Bubble Chambers Physical Review, Vol. 97, Issue 2, 474-479 Chambers Physical Review, Vol. 102, Issue 6, 1653-1658, June 15, 1956 Methods of Particle Detection for
Let’s have a coffee with the Standard Model of particle physics!
NASA Astrophysics Data System (ADS)
Woithe, Julia; Wiener, Gerfried J.; Van der Veken, Frederik F.
2017-05-01
The Standard Model of particle physics is one of the most successful theories in physics and describes the fundamental interactions between elementary particles. It is encoded in a compact description, the so-called ‘Lagrangian’, which even fits on t-shirts and coffee mugs. This mathematical formulation, however, is complex and only rarely makes it into the physics classroom. Therefore, to support high school teachers in their challenging endeavour of introducing particle physics in the classroom, we provide a qualitative explanation of the terms of the Lagrangian and discuss their interpretation based on associated Feynman diagrams.
ERIC Educational Resources Information Center
Schewe, Phillip F., Ed.
Information is provided on some of the interesting and newsworthy developments in physics and its related fields during 1983. Areas considered include: (1) acoustics; (2) astrophysics; (3) condensed matter physics; (4) crystallography; (5) physics education; (6) electron and atomic physics; (7) elementary particle physics; (8) fluid dynamics; (9)…
ERIC Educational Resources Information Center
American Inst. of Physics, New York, NY.
Information is provided for students who may be interested in pursuing a career in physics. This information includes the type of work done and areas studied by physicists in the following areas: nuclear physics, solid-state physics, elementary-particle physics, atomic/molecular/electron physics, fluid/plasma physics, space/planetary physics,…
A pedagogical derivation of the matrix element method in particle physics data analysis
NASA Astrophysics Data System (ADS)
Sumowidagdo, Suharyo
2018-03-01
The matrix element method provides a direct connection between the underlying theory of particle physics processes and detector-level physical observables. I am presenting a pedagogically-oriented derivation of the matrix element method, drawing from elementary concepts in probability theory, statistics, and the process of experimental measurements. The level of treatment should be suitable for beginning research student in phenomenology and experimental high energy physics.
@anl.gov Ahmed Ismail Research Associate at the ANL High Energy Physics Theory Group and UIC ELEMENTARY PARTICLE PHYSICS THEORY High Energy Phenomenology Updated October 2013 aismail@anl.gov
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapelain, Antoine
Particle physics aims to give a coherent description of the nature and the behavior of elementary particles of matter. Particle accelerators (colliders) allow pushing back our know- ledge in this domain producing particles that cannot be observed by other means. This thesis work contributes to this research eld and focuses on the study of the top quark which is the latest brick of matter discovered and the heaviest known elementary particle. The property of the top quark studied here, the charge asymmetry of the top quark-antiquark pairs, has driven a lot of attention in 2011 because of measurements released bymore » Tevatron experiments. These measurements showed deviations with the predictions made in the framework of the standard model of particle physics. New measurements of the charge asymmetry performed at the Tevatron (with the D0 detector) and at the LHC (with the ATLAS detector) are presented in this thesis.« less
Teaching Elementary Particle Physics, Part II
ERIC Educational Resources Information Center
Hobson, Art
2011-01-01
In order to explain certain features of radioactive beta decay, Wolfgang Pauli suggested in 1930 that the nucleus emitted, in addition to a beta particle, another particle of an entirely new type. The hypothesized particle, dubbed the neutrino, would not be discovered experimentally for another 25 years. It's not easy to detect neutrinos, because…
75 FR 63865 - Proposal Review Panel for Physics; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-18
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Physics; Notice of Meeting In accordance... announces the following meeting. Name: Michigan State University Site Visit in Physics (1208). Date and Time... Reidy, Program Director for Elementary Particle Physics, National Science Foundation, 4201 Wilson Blvd...
75 FR 63865 - Proposal Review Panel for Physics; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-18
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Physics; Notice of Meeting In accordance... announces the following meeting. Name: University of Chicago Site Visit in Physics (1208). Date and Time..., Program Director for Elementary Particle Physics, National Science Foundation, 4201 Wilson Blvd...
75 FR 3493 - Proposal Review Panel for Physics; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-21
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Physics; Notice of Meeting In accordance... announces the following meeting. Name: University of Nebraska Site Visit in Physics (1208). Date and Time... Director for Elementary Particle Physics, National Science Foundation, 4201 Wilson Blvd., Arlington, VA...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, M.L.
This paper is based upon lectures in which I have described and explored the ways in which experimenters can try to find answers, or at least clues toward answers, to some of the fundamental questions of elementary particle physics. All of these experimental techniques and directions have been discussed fully in other papers, for example: searches for heavy charged leptons, tests of quantum chromodynamics, searches for Higgs particles, searches for particles predicted by supersymmetric theories, searches for particles predicted by technicolor theories, searches for proton decay, searches for neutrino oscillations, monopole searches, studies of low transfer momentum hadron physics atmore » very high energies, and elementary particle studies using cosmic rays. Each of these subjects requires several lectures by itself to do justice to the large amount of experimental work and theoretical thought which has been devoted to these subjects. My approach in these tutorial lectures is to describe general ways to experiment beyond the standard model. I will use some of the topics listed to illustrate these general ways. Also, in these lectures I present some dreams and challenges about new techniques in experimental particle physics and accelerator technology, I call these Experimental Needs. 92 references.« less
An Alternative Proposal for the Graphical Representation of Anticolor Charge
ERIC Educational Resources Information Center
Wiener, Gergried J.; Schmeling, Sascha M.; Hopf, Martin
2017-01-01
We have developed a learning unit based on the Standard Model of particle physics, featuring novel typographic illustrations of elementary particles and particle systems. Since the unit includes antiparticles and systems of antiparticles, a visualization of anticolor charge was required. We propose an alternative to the commonly used…
ERIC Educational Resources Information Center
Pascolini, A.; Pietroni, M.
2002-01-01
We report on an educational project in particle physics based on Feynman diagrams. By dropping the mathematical aspect of the method and keeping just the iconic one, it is possible to convey many different concepts from the world of elementary particles, such as antimatter, conservation laws, particle creation and destruction, real and virtual…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calhoon, E.C.; Starring, P.W. eds.
1959-08-01
Lectures given at the Ernest 0. Lawrence Radiation Laboratory on physics, biophysics, and chemistry for high school science teachers are presented. Topics covered include a mathematics review, atomic physics, nuclear physics, solid-state physics, elementary particles, antiparticies, design of experiments, high-energy particle accelerators, survey of particle detectors, emulsion as a particle detector, counters used in high-energy physics, bubble chambers, computer programming, chromatography, the transuranium elements, health physics, photosynthesis, the chemistry and physics of virus, the biology of virus, lipoproteins and heart disease, origin and evolution of the solar system, the role of space satellites in gathering astronomical data, and radiation andmore » life in space. (M.C.G.)« less
Review of the Elementary Particles Physics in the External Electromagnetic Fields Studies at KEK
NASA Astrophysics Data System (ADS)
Konstantinova, O. Tanaka
2017-03-01
High Energy Accelerator Research Organization (KEK [1]) is a world class accelerator-based research laboratory. The field of its scientific interests spreads widely from the study of fundamental properties of matter, particle physics, nuclear physics to materials science, life science, technical researches, and industrial applications. Research outcomes from the laboratory achieved making use of high-energy particle beams and synchrotron radiation. Two synchrotron facilities of KEK, the Photon Factory (PF) ring and the Photon Factory Advanced Ring (PF-AR) are the second biggest synchrotron light source in Japan. A very wide range of the radiated light, from visible light to X-ray, is provided for a variety of materials science, biology, and life science [2]. KEK strives to work closely with national and international research institutions, promoting collaborative research activities. Advanced research and facilities provision are key factors to be at the frontier of the accelerator science. In this review I am going to discuss KEK overall accelerator-based science, and to consider light sources research and development. The state of arts of the current projects with respect to the elementary particles physics in the external electromagnetic fields is also stressed here.
Prospects for Physics in the 1990's Surveyed.
ERIC Educational Resources Information Center
Robinson, Arthur L.
1986-01-01
A National Academy of Science report ("Physics Through the 1990's") says that American physics has been a highly diversified and productive enterprise, but continued excellence cannot be taken for granted. Progress in six subfields (elementary particle, nuclear, condensed-matter, atomic/molecular, plasma/fluid, and gravitation/cosmology physics)…
75 FR 70952 - Proposal Review Panel for Physics; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Physics; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463, as amended), the National Science Foundation... Director for Elementary Particle Physics, National Science Foundation, 4201 Wilson Blvd., Arlington, VA...
75 FR 70952 - Proposal Review Panel for Physics; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
... NATIONAL SCIENCE FOUNDATION Proposal Review Panel for Physics; Notice of Meeting In accordance with the Federal Advisory Committee Act (Pub. L. 92- 463, as amended), the National Science Foundation... for Elementary Particle Physics, National Science Foundation, 4201 Wilson Blvd., Arlington, VA 22230...
Noncanonical harmonic and anharmonic oscillator in high-energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannussis, A.; Vavougios, D.
1986-09-01
We study the eigenvalues of the noncanonical harmonic and anharmonic oscillator, by using different values of the elementary length l corresponding to typical cross sections for the strong interactions. There is evidence for a correlation between the energies of elementary particles (mesons, baryons, resonances) and the energy eigenvalues of the noncanonical theory.
Correlation energy for elementary bosons: Physics of the singularity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiau, Shiue-Yuan, E-mail: syshiau@mail.ncku.edu.tw; Combescot, Monique; Chang, Yia-Chung, E-mail: yiachang@gate.sinica.edu.tw
2016-04-15
We propose a compact perturbative approach that reveals the physical origin of the singularity occurring in the density dependence of correlation energy: like fermions, elementary bosons have a singular correlation energy which comes from the accumulation, through Feynman “bubble” diagrams, of the same non-zero momentum transfer excitations from the free particle ground state, that is, the Fermi sea for fermions and the Bose–Einstein condensate for bosons. This understanding paves the way toward deriving the correlation energy of composite bosons like atomic dimers and semiconductor excitons, by suggesting Shiva diagrams that have similarity with Feynman “bubble” diagrams, the previous elementary bosonmore » approaches, which hide this physics, being inappropriate to do so.« less
Physics in perspective. Volume 2, part A: The core subfields of physics
NASA Technical Reports Server (NTRS)
1972-01-01
Panel reports to the Survey Committee are presented to provide detailed technical background and documentation for committee findings, and to indicate the vitality and strength of the subfields of physics. Included are the core subfields of acoustics, optics, condensed matter, plasmas and fluids, atomic molecular and electron physics, nuclear physics, and elementary particle physics.
Déliot, Frédéric; Hadley, Nicholas; Parke, Stephen; ...
2014-10-19
We report that the top quark is the heaviest known elementary particle, and it is often seen as a window to search for new physics processes in particle physics. A large program to study the top-quark properties has been performed both at the Tevatron and LHC colliders by the D0, CDF, ATLAS and CMS experiments. The most recent results are discussed here in this article.
Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics
NASA Astrophysics Data System (ADS)
Saviano, G.; Ferrini, M.; Benussi, L.; Bianco, S.; Piccolo, D.; Colafranceschi, S.; KjØlbro, J.; Sharma, A.; Yang, D.; Chen, G.; Ban, Y.; Li, Q.; Grassini, S.; Parvis, M.
2018-03-01
Gas detectors for elementary particles require F-based gases for optimal performance. Recent regulations demand the use of environmentally unfriendly F-based gases to be limited or banned. This work studies properties of potential eco-friendly gas replacements by computing the physical and chemical parameters relevant for use as detector media, and suggests candidates to be considered for experimental investigation.
The Physical Sciences. Report of the National Science Board Submitted to the Congress.
ERIC Educational Resources Information Center
Handler, Philip
Recent advances in the physical sciences, including astronomy, chemical synthesis, chemical dynamics, solid-state sciences, atomic and nuclear science, and elementary particles and high-energy physics are summarized in this report to Congress. The nature of physical science, including its increasing unity, the relationship between science and…
The Discovery of Subatomic Particles Revised Edition
NASA Astrophysics Data System (ADS)
Weinberg, Steven
2003-09-01
This commentary on the discovery of the atom's constituents provides an historical account of key events in the physics of the twentieth century that led to the discoveries of the electron, proton and neutron. Steven Weinberg introduces the fundamentals of classical physics that played crucial roles in these discoveries. Connections are shown throughout the book between the historic discoveries of subatomic particles and contemporary research at the frontiers of physics, including the most current discoveries of new elementary particles. Steven Weinberg was Higgins Professor of Physics at Harvard before moving to The University of Texas at Austin, where he founded its Theory Group. At Texas he holds the Josey Regental Chair of Science and is a member of the Physics and Astronomy Departments. His research has spanned a broad range of topics in quantum field theory, elementary particle physics, and cosmology, and has been honored with numerous awards, including the Nobel Prize in Physics, the National Medal of Science, the Heinemann Prize in Mathematical Physics, the Cresson Medal of the Franklin Institute, the Madison Medal of Princeton University, and the Oppenheimer Prize. In addition to the well-known treatise, Gravitation and Cosmololgy, he has written several books for general readers, including the prize-winning The First Three Minutes (now translated into 22 foreign languages), and most recently Dreams of a Final Theory (Pantheon Books, 1993). He has also written a textbook The Quantum Theory of Fields, Vol.I, Vol. II, and Vol. III (Cambridge).
In search of elementary spin 0 particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krasny, Mieczyslaw Witold, E-mail: krasny@lpnhep.in2p3.fr; Płaczek, Wiesław
2015-01-15
The Standard Model of strong and electroweak interactions uses point-like spin 1/2 particles as the building bricks of matter and point-like spin 1 particles as the force carriers. One of the most important questions to be answered by the present and future particle physics experiments is whether the elementary spin 0 particles exist, and if they do, what are their interactions with the spin 1/2 and spin 1 particles. Spin 0 particles have been searched extensively over the last decades. Several initial claims of their discoveries were finally disproved in the final experimental scrutiny process. The recent observation of themore » excess of events at the LHC in the final states involving a pair of vector bosons, or photons, is commonly interpreted as the discovery of the first elementary scalar particle, the Higgs boson. In this paper we recall examples of claims and subsequent disillusions in precedent searches spin 0 particles. We address the question if the LHC Higgs discovery can already be taken for granted, or, as it turned out important in the past, whether it requires a further experimental scrutiny before the existence of the first ever found elementary scalar particle is proven beyond any doubt. An example of the Double Drell–Yan process for which such a scrutiny is indispensable is discussed in some detail. - Highlights: • We present a short history of searches of spin 0 particles. • We construct a model of the Double Drell–Yan Process (DDYP) at the LHC. • We investigate the contribution of the DDYP to the Higgs searches background.« less
Elementary Particle Physics at Syracuse. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Catterall, Simon; Hubisz, Jay; Balachandran, Aiyalam
2013-01-05
This final report describes the activities of the high energy theory group at Syracuse University for the period 1 January 2010 through April 30 2013. The research conducted by the group includes lattice gauge theory, non-commutative geometry, phenomenology and mathematical physics.
Search for electroweak single top-quark production with the CDF II experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richter, Svenja
2007-11-02
Understanding the world -- This aim drives humankind since the beginning of conscious thinking. Especially the nature of matter has been of major interest. Nowadays, we have a complex image of the constitution of matter. Atoms consist of electrons and nucleons. But even nucleons are not elementary. Their basic constituents are called quarks. Physicists developed a model describing the elementary components of matter as well as the forces between them: the standard model of elementary particle physics. The substructure of matter is only visible in scattering experiments. In high energy physics, these experiments are done at particle accelerators. The world'smore » highest energetic collider, the Tevatron, is hosted by the Fermi National Accelerator Laboratory (FNAL), also called Fermilab, in the vicinity of Chicago. The proton-antiproton collisions with a center-of-mass energy of {radical}s = 1.96 TeV are recorded by two multipurpose detectors, namely D0 and CDF II.« less
Gauge Invariance and the Goldstone Theorem
NASA Astrophysics Data System (ADS)
Guralnik, Gerald S.
This paper was originally created for and printed in the "Proceedings of seminar on unified theories of elementary particles" held in Feldafing, Germany from July 5 to 16, 1965 under the auspices of the Max-Planck-Institute for Physics and Astrophysics in Munich. It details and expands upon the 1964 Guralnik, Hagen, and Kibble paper demonstrating that the Goldstone theorem does not require physical zero mass particles in gauge theories.
From lepton protoplasm to the genesis of hadrons
NASA Astrophysics Data System (ADS)
Eliseev, S. M.; Kosmachev, O. S.
2016-01-01
Theory of matter under extreme conditions opens a new stage in particle physics. It is necessary here to combine Dirac's elementary particle physics with Prigogine's dynamics of nonequilibrium systems. In the article we discuss the problem of the hierarchy of complexity. What can be considered as the lowest level of the organization of extreme matter on the basis of which the self-organization of the complex form occur?
A Physics Show Performed by Students for Kids: "From Mechanics to Elementary Particle Physics"
ERIC Educational Resources Information Center
Dreiner, Herbi K.
2008-01-01
Physics students spend the early part of their training attending physics and mathematics lectures, solving problem sets, and experimenting in laboratory courses. The program is typically intensive and fairly rigid. They have little opportunity to follow their own curiosity or apply their knowledge. There have been many attempts to address this…
GEM Detector Performance Assessment in the BM@N Experiment
NASA Astrophysics Data System (ADS)
Kapishin, Mikhail; Karjavin, Vladimir; Kulish, Elena; Lenivenko, Vasilisa; Makankin, Alexander; Maksymchuk, Anna; Palichik, Vladimir; Vasiliev, Sergey
2018-02-01
The Gas Electron Multiplier (GEM) chambers are developed for modern purposes in the elementary particle physics. In the BM@N experiment, a GEM system is used for the reconstruction of the trajectories of the charged particles. The investigation of GEM performance (efficiency and spatial resolution) is presented.
NASA Astrophysics Data System (ADS)
Kragh, Helge
Abraham Pais made important contributions to the physics of elementary particles and other areas of theoretical physics before he turned, in the 1970s, to the history of modern physics, a field he cultivated energetically and successfully until his death in 2000. Among the best works of the prolific physicist-historian (a better term, in this case, than historian of physics) is the acclaimed Einstein biography Subtle is the Lord (1982) and Inward Bound (1986), a comprehensive chronicle of elementary particle physics. More recently his autobiography, A Tale of Two Continents (1997), appeared, a book to a large extent based on Pais's friendship and acquaintance with many of the greatest physicists of the twentieth century. In the present book, the physicists who appeared as supporting cast in his autobiography are presented in their own right, chapter by chapter. Yet Pais himself is present throughout the book and the reader is constantly reminded of his friendship with the physicists portrayed.
Moments in the Life of a Scientist
NASA Astrophysics Data System (ADS)
Rossi, Bruno
2008-07-01
List of plates; Foreword; Preface; Prehistory; 1. Arcetri (1928-32); 2. Padua, Copenhagen, Manchester; 3. Physics of elementary particles in the Age of Innocence (1939-46); 4. Los Alamos (1943-46); 5. Cosmic rays at MIT (1946- ); 6. Physics in space; Postscript; As for me … Nora Rossi; Index.
Material content of the universe - Introductory survey
NASA Astrophysics Data System (ADS)
Tayler, R. J.
1986-12-01
Matter in the universe can be detected either by the radiation it emits or by its gravitational influence. There is a strong suggestion that the universe contains substantial hidden matter, mass without corresponding light. There are also arguments from elementary particle physics that the universe should have closure density, which would also imply hidden mass. Observations of the chemical composition of the universe interpreted in terms of the hot Big Bang cosmological theory suggest that this hidden matter cannot all be of baryonic form but must consist of weakly interacting elementary particles. A combination of observations and theoretical ideas about the origin of large-scale structure may demand that these particles are of a type which is not yet definitely known to exist.
Elementary process and meteor train spectra
NASA Technical Reports Server (NTRS)
Ovezgeldyev, O. G.
1987-01-01
Mechanisms of excitation of individual spectral line radiation were studied experimentally and theoretically and it was demonstrated that such processes as oxidation, resonant charge exchange, dissociative recombination and others play an important part in the chemistry of excited particles. The foundation was laid toward simulating the elementary processes of meteor physics. Having a number of advantages and possibilities, this method is sure to find a wide use in the future.
Dark matter reflection of particle symmetry
NASA Astrophysics Data System (ADS)
Khlopov, Maxim Yu.
2017-05-01
In the context of the relationship between physics of cosmological dark matter and symmetry of elementary particles, a wide list of dark matter candidates is possible. New symmetries provide stability of different new particles and their combination can lead to a multicomponent dark matter. The pattern of symmetry breaking involves phase transitions in the very early Universe, extending the list of candidates by topological defects and even primordial nonlinear structures.
Proceedings of the 1982 DPF summer study on elementary particle physics and future facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaldson, R.; Gustafson, R.; Paige, F.
1982-01-01
This book presents the papers given at a conference on high energy physics. Topics considered at the conference included synchrotron radiation, testing the standard model, beyond the standard model, exploring the limits of accelerator technology, novel detector ideas, lepton-lepton colliders, lepton-hadron colliders, hadron-hadron colliders, fixed-target accelerators, non-accelerator physics, and sociology.
Twitter use in physics conferences.
Webb, Stephen
An analysis of Twitter use in 116 conferences suggests that the service is used more extensively at PACS10 conferences (those devoted to the physics of elementary particles and fields) and PACS90 conferences (those devoted to geophysics, astronomy, and astrophysics) than at conferences in other fields of physics. Furthermore, Twitter is used in a qualitatively different manner. A possible reason for these differences is discussed.
An Alternative Proposal for the Graphical Representation of Anticolor Charge
NASA Astrophysics Data System (ADS)
Wiener, Gerfried J.; Schmeling, Sascha M.; Hopf, Martin
2017-11-01
We have developed a learning unit based on the Standard Model of particle physics, featuring novel typographic illustrations of elementary particles and particle systems. Since the unit includes antiparticles and systems of antiparticles, a visualization of anticolor charge was required. We propose an alternative to the commonly used complementary-color method, whereby antiparticles and antiparticle systems are identified through the use of stripes instead of a change in color. We presented our proposal to high school students and physics teachers, who evaluated it to be a more helpful way of distinguishing between color charge and anticolor charge.
The Conceptual Foundations of Quantum Mechanics.
ERIC Educational Resources Information Center
Eisenbud, Leonard
This monograph was written for the Conference on the New Instructional Materials in Physics, held at the University of Washington in summer, 1965. It is intended for use by college students at the Junior and Senior levels. There are nine chapters in this monograph. The failure of classical theory in dealing with elementary particles physics is…
Goldstone mode and pair-breaking excitations in atomic Fermi superfluids
NASA Astrophysics Data System (ADS)
Hoinka, Sascha; Dyke, Paul; Lingham, Marcus G.; Kinnunen, Jami J.; Bruun, Georg M.; Vale, Chris J.
2017-10-01
Spontaneous symmetry breaking is a central paradigm of elementary particle physics, magnetism, superfluidity and superconductivity. According to Goldstone's theorem, phase transitions that break continuous symmetries lead to the existence of gapless excitations in the long-wavelength limit. These Goldstone modes can become the dominant low-energy excitation, showing that symmetry breaking has a profound impact on the physical properties of matter. Here, we present a comprehensive study of the elementary excitations in a homogeneous strongly interacting Fermi gas through the crossover from a Bardeen-Cooper-Schrieffer (BCS) superfluid to a Bose-Einstein condensate (BEC) of molecules using two-photon Bragg spectroscopy. The spectra exhibit a discrete Goldstone mode, associated with the broken-symmetry superfluid phase, as well as pair-breaking single-particle excitations. Our techniques yield a direct determination of the superfluid pairing gap and speed of sound in close agreement with strong-coupling theories.
The notions of mass in gravitational and particle physics
NASA Astrophysics Data System (ADS)
Castellani, Gianluca
It is presently thought that the mass of all of the elementary particles is determined by the Higgs field. This scalar field couples directly into the trace of the energy momentum tensor of the elementary particles. The attraction between two or more masses arises from the exchange of gravitational quantum particles of spin 2, called gravitons. The gravitational field couples directly into the energy momentum tensor. Then there is a close connection between the Higgs field, that originates the mass, and the gravitational field that dictates how the masses interact. Our purpose in this thesis is to discuss this close connection in terms of fundamental definitions of inertial and gravitational masses. On a practical level we explore two properties of mass from the viewpoint of coupling into the Higgs field: (i) The coupling of the both the Higgs and gravity to the energy-pressure tensor allows for the decay of the Higgs particle into two gravitons. We use the self energy part of the Higgs propagator to calculate the electromagnetic, weak, fermionic and gravitational decay rate of the Higgs particle. We show that the former process appears to dominate the other decay modes. Since the gravitons are detectable with virtually zero probability, the number of Higgs particles with observable decay products will be much less than previously expected. (ii) Some new experimental results seem to indicate that the mass of the heavy elementary particles like the Z,W+,W- and especially the top quark, depends on the particle environment in which these particles are produced. The presence of a Higgs field due to neighboring particles could be responsible for induced mass shifts. Further measurements of mass shift effects might give an indirect proof of the Higgs particle. Such can be in principle done by re-analyzing some of the production data e +e- → ZZ (or W+W-) already collected at the LEP experiment. About the physical property of the top quark, it is too early to arrive at any conclusion. In the foreseeable future, there will be more extended top quark production statistics from the Tevatron accelerator so that the mass shift hypothesis can be experimentally probed.
From the necessary to the possible: the genesis of the spin-statistics theorem
NASA Astrophysics Data System (ADS)
Blum, Alexander
2014-12-01
The spin-statistics theorem, which relates the intrinsic angular momentum of a single particle to the type of quantum statistics obeyed by a system of many such particles, is one of the central theorems in quantum field theory and the physics of elementary particles. It was first formulated in 1939/40 by Wolfgang Pauli and his assistant Markus Fierz. This paper discusses the developments that led up to this first formulation, starting from early attempts in the late 1920s to explain why charged matter particles obey Fermi-Dirac statistics, while photons obey Bose-Einstein statistics. It is demonstrated how several important developments paved the way from such general philosophical musings to a general (and provable) theorem, most notably the use of quantum field theory, the discovery of new elementary particles, and the generalization of the notion of spin. It is also discussed how the attempts to prove a spin-statistics connection were driven by Pauli from formal to more physical arguments, culminating in Pauli's 1940 proof. This proof was a major success for the beleaguered theory of quantum field theory and the methods Pauli employed proved essential for the renaissance of quantum field theory and the development of renormalization techniques in the late 1940s.
Basics of particle therapy I: physics
Park, Seo Hyun
2011-01-01
With the advance of modern radiation therapy technique, radiation dose conformation and dose distribution have improved dramatically. However, the progress does not completely fulfill the goal of cancer treatment such as improved local control or survival. The discordances with the clinical results are from the biophysical nature of photon, which is the main source of radiation therapy in current field, with the lower linear energy transfer to the target. As part of a natural progression, there recently has been a resurgence of interest in particle therapy, specifically using heavy charged particles, because these kinds of radiations serve theoretical advantages in both biological and physical aspects. The Korean government is to set up a heavy charged particle facility in Korea Institute of Radiological & Medical Sciences. This review introduces some of the elementary physics of the various particles for the sake of Korean radiation oncologists' interest. PMID:22984664
Composition in the Quantum World
NASA Astrophysics Data System (ADS)
Hall, Edward Jonathan
This thesis presents a problem for the foundations of quantum mechanics. It arises from the way that theory describes the composition of larger systems in terms of smaller ones, and renders untenable a wide range of interpretations of quantum mechanics. That quantum mechanics is difficult to interpret is old news, given the well-known Measurement Problem. But the problem I raise is quite different, and in important respects more fundamental. In brief: The physical world exhibits mereological structure: physical objects have parts, which in turn have parts, and so on. A natural way to try to represent this structure is by means of a particle theory, according to which the physical world consists entirely enduring physical objects which themselves have no proper parts, but aggregates of which are, or compose, all physical objects. Elementary, non-relativistic quantum mechanics can be cast in this mold--at least, according to the usual expositions of that theory. But herein lies the problem: the standard attempt to give a systematic particle interpretation to elementary quantum mechanics results in nonsense, thanks to the well-established principle of Permutation Invariance, which constrains the quantum -mechanical description of systems containing identical particles. Specifically, it follows from the most minimal principles of a particle interpretation (much weaker than those needed to generate the Measurement Problem), together with Permutation Invariance, that systems identical in composition must have the same physical state. In other words, systems which merely have the same numbers of the same types of particles are therefore, at all times, perfect physical duplicates. This conclusion is absurd: e.g., it is quite plausible that some of those particles which compose my body make up a system identical in composition to some pepperoni pizza. Yet no part of me is a qualitative physical duplicate of any pepperoni pizza. Perhaps "you are what you eat" --but not in this sense! In what follows I develop the principles needed to explore this problem, contrast it with the Measurement Problem, and consider, finally, how it should influence our judgments of the relative merits of the many extant interpretations of quantum mechanics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, M.L.
This article is thoughts from the author on particle physics work from his perspective. It is not a summary of his work on the tau lepton, but rather a look at what makes good science, experimental and theoretical, from his experiences in the field. The section titles give a good summary on the topics the author chooses to touch upon. They are: the state of elementary particle physics; getting good ideas in experimental science; a difficult field; experiments and experimenting; 10% of the money and 30% of the time; the dictatorship of theory; technological dreams; last words.
ERIC Educational Resources Information Center
PELLA, MILTON O.; ZIEGLER, ROBERT E.
THE RELATIVE EFFECTIVENESS OF TWO TYPES OF MECHANICAL MODELS FOR TEACHING ELEMENTARY SCHOOL STUDENTS TO USE THE PARTICLE IDEA OF MATTER TO EXPLAIN CERTAIN PHYSICAL PHENOMENA WAS INVESTIGATED. SUBJECTS WERE RANDOMLY SELECTED FROM STUDENTS ENROLLED IN GRADES TWO THROUGH SIX IN A SCHOOL SYSTEM. A SERIES OF DEMONSTRATIONS AND RELATED QUESTIONS WERE…
Conservation Laws in Weak Interactions
DOE R&D Accomplishments Database
Lee, T. D.
1957-03-01
Notes are presented on four lectures given at Harvard University in March 1957 on elementary particle physics, the theta-tau problem, validity of parity conservation, tests for invariance under P, C, and T, and the two-component theory of the neutrino. (W.D.M.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kayser, Boris
2012-06-01
To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far themore » most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.« less
DOE R&D Accomplishments Database
Friedan, D.; Kadanoff, L.; Nambu, Y.; Shenker, S.
1988-04-01
Progress is reported in the field of condensed matter physics in the area of two-dimensional critical phenomena, specifically results allowing complete classification of all possible two-dimensional critical phenomena in a certain domain. In the field of high energy physics, progress is reported in string and conformal field theory, and supersymmetry.
Advanced Concepts in Quantum Mechanics
NASA Astrophysics Data System (ADS)
Esposito, Giampiero; Marmo, Giuseppe; Miele, Gennaro; Sudarshan, George
2014-11-01
Preface; 1. Introduction: the need for a quantum theory; 2. Experimental foundations of quantum theory; 3. Waves and particles; 4. Schrödinger picture, Heisenberg picture and probabilistic aspects; 5. Integrating the equations of motion; 6. Elementary applications: 1-dimensional problems; 7. Elementary applications: multidimensional problems; 8. Coherent states and related formalism; 9. Introduction to spin; 10. Symmetries in quantum mechanics; 11. Approximation methods; 12. Modern pictures of quantum mechanics; 13. Formulations of quantum mechanics and their physical implications; 14. Exam problems; Glossary of geometric concepts; References; Index.
The Higgs mechanism and the origin of mass
NASA Astrophysics Data System (ADS)
Djouadi, Abdelhak
2012-06-01
The Higgs mechanism plays a key role in the physics of elementary particles: in the context of the Standard Model, the theory which describes in a unified framework the electromagnetic, weak and strong nuclear interactions, it allows for the generation of particle masses while preserving the fundamental symmetries of the theory. This mechanism predicts the existence of a new type of particle, the scalar Higgs boson, with unique characteristics. The detection of this particle and the study of its fundamental properties is a major goal of high-energy particle colliders, such as the CERN Large Hadron Collider or LHC.
The Higgs Mechanism and the Orogin of Mass
NASA Astrophysics Data System (ADS)
Djouadi, Abdelhak
The Higgs mechanism plays a key role in the physics of elementary particles: in the context of the Standard Model, the theory which, describes in a unified framework the electromagnetic, weak, and strong nuclear interactions, it allows for the generation of particle masses while preserving the fundamental symmetries of the theory. This mechanism predicts the existence of a new type of particle, the scalar Higgs boson, with unique characteristics. The detection of this particle and the study of its fundamental properties is a major goal of high-energy particle colliders, such as the CERN Large Hadron Collider or LHC.
Cosmology and particle physics
NASA Technical Reports Server (NTRS)
Turner, Michael S.
1988-01-01
The interplay between cosmology and elementary particle physics is discussed. The standard cosmology is reviewed, concentrating on primordial nucleosynthesis and discussing how the standard cosmology has been used to place constraints on the properties of various particles. Baryogenesis is discussed, showing how a scenario in which the B-, C-, and CP-violating interactions in GUTs provide a dynamical explanation for the predominance of matter over antimatter and for the present baryon-to-photon ratio. It is shown how the very early dynamical evolution of a very weakly coupled scalar field which is initially displaced from the minimum of its potential may explain a handful of very fundamental cosmological facts which are not explained by the standard cosmology.
BOOK REVIEW: Modern Supersymmetry
NASA Astrophysics Data System (ADS)
Kulish, Petr P.
2006-12-01
We have spent more than twenty years applying supersymmetry (SUSY) to elementary particle physics and attempting to find an experimental manifestation of this symmetry. Terning's monograph demonstrates the strong influence of SUSY on theoretical elaborations in the field of elementary particles. It gives both an overview of modern supersymmetry in elementary particle physics and calculation techniques. The author, trying to be closer to applications of SUSY in the real world of elementary particles, is also anticipating the importance of supersymmetry for rigorous study of nonperturbative phenomena in quantum field theory. In particular, he presents the `exact' SUSY β function using instanton methods, phenomena of anomalies and dualities. Supersymmetry algebra is introduced by adding two anticommuting spinor generators to Poincaré algebra and by presenting massive and massless supermultiplets of its representations. The author prefers to use mostly the component description of field contents of the theories in question rather than the superfield formalism. Such a style makes the account closer to physical chartacteristics. Relations required by SUSY among β functions of the gauge, Yukawa and quartic interactions are checked by direct calculations as well as to all orders in perturbation theory, thus demonstrating that SUSY survives quantization. A discussion is included of the hierarchy problem of different scales of weak and strong interactions and its possible solution by the minimal supersymmetric standard model. Different SUSY breaking mechanisms are presented corresponding to a realistic phenomenology. The monograph can also be considered as a guide to `duality' relations connecting different SUSY gauge theories, supergravities and superstrings. This is demonstrated referring to the particular properties and characteristics of these theories (field contents, scaling dimensions of appropriate operators etc). In particular, the last chapter deals with the AdS/CFT correspondence. The author explains clearly most of the arguments in discussions and refers for further details to original papers (with corresponding arXiv numbers), selected lists of which appear at the end of each chapter (there are more than 300 references in the book). Considered as a whole the book covers primers on quantum fields, Feynman diagrams, renormalization procedure and renormalization groups, as well as the representation theory of classical linear Lie algebras. Some necessary information on irreducible representations of su(N), so(N) and sp(2N) is given in an appendix. There are in the text short historical and biographical notes concerning those scientists who made important contributions to the subject of the monograph: S Coleman, Yu Golfand, E Witten and others. Most of the seventeen chapters contain a few exercises to check the reader's understanding of the corresponding material. This monograph will be useful for graduate students and researchers in the field of elementary particles.
UNIVERSITY OF ARIZONA HIGH ENERGY PHYSICS PROGRAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutherfoord, John P.; Johns, Kenneth A.; Shupe, Michael A.
2013-07-29
The High Energy Physics Group at the University of Arizona has conducted forefront research in elementary particle physics. Our theorists have developed new ideas in lattice QCD, SUSY phenomenology, string theory phenomenology, extra spatial dimensions, dark matter, and neutrino astrophysics. The experimentalists produced significant physics results on the ATLAS experiment at CERN's Large Hadron Collider and on the D0 experiment at the Fermilab Tevatron. In addition, the experimentalists were leaders in detector development and construction, and on service roles in these experiments.
Astroparticle physics and cosmology.
Mitton, Simon
2006-05-20
Astroparticle physics is an interdisciplinary field that explores the connections between the physics of elementary particles and the large-scale properties of the universe. Particle physicists have developed a standard model to describe the properties of matter in the quantum world. This model explains the bewildering array of particles in terms of constructs made from two or three quarks. Quarks, leptons, and three of the fundamental forces of physics are the main components of this standard model. Cosmologists have also developed a standard model to describe the bulk properties of the universe. In this new framework, ordinary matter, such as stars and galaxies, makes up only around 4% of the material universe. The bulk of the universe is dark matter (roughly 23%) and dark energy (about 73%). This dark energy drives an acceleration that means that the expanding universe will grow ever larger. String theory, in which the universe has several invisible dimensions, might offer an opportunity to unite the quantum description of the particle world with the gravitational properties of the large-scale universe.
The Mathematical Structure of Elementary Particles.
1983-10-01
Physical Mathematics) *Instituto de Matematica Pura e Aplicada, Estrada Dona Castorina 110, 22460 Rio de Janeiro, Brazil Sponsored by the United...is the basic method of analysis to be employed in this work. *Instituto de Matematica Pura e Aplicada, Estrada Dona Castorina 110, 22460 Rio de Janeiro
go back to my regular existence." The complete interview and Nobel Prize Veltman book Martinus Veltman's book was published in 2003. autobiography are available online. The title of Veltman's colloquium is taken from his recently published book. "Facts and Mysteries in Elementary Particle Physics
A proposed physical analog for a quantum probability amplitude
NASA Astrophysics Data System (ADS)
Boyd, Jeffrey
What is the physical analog of a probability amplitude? All quantum mathematics, including quantum information, is built on amplitudes. Every other science uses probabilities; QM alone uses their square root. Why? This question has been asked for a century, but no one previously has proposed an answer. We will present cylindrical helices moving toward a particle source, which particles follow backwards. Consider Feynman's book QED. He speaks of amplitudes moving through space like the hand of a spinning clock. His hand is a complex vector. It traces a cylindrical helix in Cartesian space. The Theory of Elementary Waves changes direction so Feynman's clock faces move toward the particle source. Particles follow amplitudes (quantum waves) backwards. This contradicts wave particle duality. We will present empirical evidence that wave particle duality is wrong about the direction of particles versus waves. This involves a paradigm shift; which are always controversial. We believe that our model is the ONLY proposal ever made for the physical foundations of probability amplitudes. We will show that our ``probability amplitudes'' in physical nature form a Hilbert vector space with adjoints, an inner product and support both linear algebra and Dirac notation.
Introduction to Elementary Particle Physics
NASA Astrophysics Data System (ADS)
Bettini, Alessandro
The Standard Model is the most comprehensive physical theory ever developed. This textbook conveys the basic elements of the Standard Model using elementary concepts, without the theoretical rigor found in most other texts on this subject. It contains examples of basic experiments, allowing readers to see how measurements and theory interplay in the development of physics. The author examines leptons, hadrons and quarks, before presenting the dynamics and the surprising properties of the charges of the different forces. The textbook concludes with a brief discussion on the recent discoveries of physics beyond the Standard Model, and its connections with cosmology. Quantitative examples are given, and the reader is guided through the necessary calculations. Each chapter ends in the exercises, and solutions to some problems are included in the book. Complete solutions are available to instructors at www.cambridge.org/9780521880213. This textbook is suitable for advanced undergraduate students and graduate students.
Cosmology of Universe Particles and Beyond
NASA Astrophysics Data System (ADS)
Xu, Wei
2016-06-01
For the first time in history, all properties of cosmology particles are uncovered and described concisely and systematically, known as the elementary particles in contemporary physics.Aligning with the synthesis of the virtual and physical worlds in a hierarchical taxonomy of the universe, this theory refines the topology framework of cosmology, and presents a new perspective of the Yin Yang natural laws that, through the processes of creation and reproduction, the fundamental elements generate an infinite series of circular objects and a Yin Yang duality of dynamic fields that are sequenced and transformed states of matter between the virtual and physical worlds.Once virtual objects are transformed, they embody various enclaves of energy states, known as dark energy, quarks, leptons, bosons, protons, and neutrons, characterized by their incentive oscillations of timestate variables in a duality of virtual realities: energy and time, spin and charge, mass and space, symmetry and antisymmetry.As a consequence, it derives the fully-scaled quantum properties of physical particles in accordance with numerous historical experiments, and has overcome the limitations of uncertainty principle and the Standard Model, towards concisely exploring physical nature and beyond...
NASA Technical Reports Server (NTRS)
Jones, F. C. (Compiler)
1986-01-01
Invited talks, rapporteur talks, and highlight talks are included. Topics of the invited and highlight talks include astrophysical jets, gamma-ray line astronomy, cosmic rays and gamma rays in astrophysics, the early universe, elementary particle physics, solar flares and acceleration of energetic particles, cosmogenic nuclei, extragalactic astronomy, composition of solar flare particles, very high energy gamma ray sources, gamma-ray bursts, shock acceleration in the solar wind, cosmic rays in deep underground detectors, spectrum of cosmic rays at 10 to the 19th power eV, and nucleus-nucleus interactions.
Quantum Mechanics, vacuum, particles, Gödel-Cohen incompleteness and the Universe
NASA Astrophysics Data System (ADS)
Gonzalez-Mestres, Luis
2017-12-01
Are the standard laws of Physics really fundamental principles? Does the physical vacuum have a more primordial internal structure? Are quarks, leptons, gauge bosons… ultimate elementary objects? These three basic questions are actually closely related. If the deep vacuum structure and dynamics turn out to be less trivial than usually depicted, the conventional "elementary" particles will most likely be excitations of such a vacuum dynamics that remains by now unknown. We then expect relativity and quantum mechanics to be low-energy limits of a more fundamental dynamical pattern that generates them at a deeper level. It may even happen that vacuum drives the expansion of the Universe from its own inner dynamics. Inside such a vacuum structure, the speed of light would not be the critical speed for vacuum constituents and propagating signals. The natural scenario would be the superbradyon (superluminal preon) pattern we postulated in 1995, with a new critical speed cs much larger than the speed of light c just as c is much larger than the speed of sound. Superbradyons are assumed to be the bradyons of a super-relativity associated to cs (a Lorentz invariance with cs as the critical speed). Similarly, the standard relativistic space-time with four real coordinates would not necessarily hold beyond low-energy and comparatively local distance scales. Instead, the spinorial space-time (SST) with two complex coordinates we introduced in 1996-97 may be the suitable one to describe the internal structure of vacuum and standard "elementary" particles and, simultaneously, Cosmology at very large distance scales. If the constituents of the preonic vacuum are superluminal, quantum entanglement appears as a natural property provided cs ≫ c . The value of cs can even be possibly found experimentally by studying entanglement at large distances. It is not excluded that preonic constituents of vacuum can exist in our Universe as free particles ("free" superbradyons), in which case we expect them to be weakly coupled to standard matter. If a preonic vacuum is actually leading the basic dynamics of Particle Physics and Cosmology, and standard particles are vacuum excitations, the Gödel-Cohen incompleteness will apply to vacuum dynamics whereas the conventional laws of physics will actually be approximate and have error bars. We discuss here the possible role of the superbradyonic vacuum and of the SST in generating Quantum Mechanics, as well as the implications of such a dynamical origin of the conventional laws of Physics and possible evidences in experiments and observations. Black holes, gravitational waves, possible "free" superbradyons or preonic waves, unconventional vacuum radiation… are considered from this point of view paying particular attention to LIGO, VIRGO and CERN experiments. This lecture is dedicated to the memory of John Bell
Electron, Muon, and Tau Heavy Lepton--Are These the Truly Elementary Particles?
ERIC Educational Resources Information Center
Perl, Martin L.
1980-01-01
Discussed is the present concept of the ultimate nature of matter--the elementary particle. An explanation is given for why the lepton family of particles--the electron, muon, and tau--may be truly elementary. The tau lepton is described in more detail. (Author/DS)
NASA Astrophysics Data System (ADS)
Rajantie, Arttu
2018-01-01
The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available. This article is part of the Theo Murphy meeting issue `Higgs cosmology'.
Charting the Course for Elementary Particle Physics
DOE R&D Accomplishments Database
Richter, B.
2007-02-16
"It was the best of times; it was the worst of times" is the way Dickens begins the Tale of Two Cities. The line is appropriate to our time in particle physics. It is the best of times because we are in the midst of a revolution in understanding, the third to occur during my career. It is the worst of times because accelerator facilities are shutting down before new ones are opening, restricting the opportunity for experiments, and because of great uncertainty about future funding. My task today is to give you a view of the most important opportunities for our field under a scenario that is constrained by a tight budget. It is a time when we cannot afford the merely good, but must give first priority to the really important. The defining theme of particle physics is to learn what the universe is made of and how it all works. This definition spans the full range of size from the largest things to the smallest things. This particle physics revolution has its origins in experiments that look at both.
In AppreciationThe Depth and Breadth of John Bell's Physics
NASA Astrophysics Data System (ADS)
Jackiw, Roman; Shimony, Abner
This essay surveys the work of John Stewart Bell, one of the great physicists of the twentieth century. Section 1 is a brief biography, tracing his career from working-class origins and undergraduate training in Belfast, Northern Ireland, to research in accelerator and nuclear physics in the British national laboratories at Harwell and Malvern, to his profound research on elementary particle physics as a member of the Theory Group at CERN and his equally profound ``hobby'' of investigating the foundations of quantum mechanics. Section 2 concerns this hobby, which began in his discontent with Bohr's and Heisenberg's analyses of the measurement process. He was attracted to the program of hidden variables interpretations, but he revolutionized the foundations of quantum mechanics by a powerful negative result: that no hidden variables theory that is ``local'' (in a clear and well-motivated sense) can agree with all the correlations predicted by quantum mechanics regarding well-separated systems. He further deepened the foundations of quantum mechanics by penetrating conceptual analyses of results concerning measurement theory of von Neumann, de Broglie and Bohm, Gleason, Jauch and Piron, Everett, and Ghirardi-Rimini-Weber. Bell's work in particle theory (Section 3) began with a proof of the CPT theorem in his doctoral dissertation, followed by investigations of the phenomenology of CP-violating experiments. At CERN Bell investigated the commutation relations in current algebras from various standpoints. The failure of current algebra combined with partially conserved current algebra to permit the experimentally observed decay of the neutral pi-meson into two photons stimulated the discovery by Bell and Jackiw of anomalous or quantal symmetry breaking, which has numerous implications for elementary particle phenomena. Other late investigations of Bell on elementary particle physics were bound states in quantum chromodynamics (in collaboration with Bertlmann) and estimates for the anomalous magnetic moment of the muon (in collaboration with de Rafael). Section 4 concerns accelerations, starting at Harwell with the algebra of strong focusing and the stability of orbits in linear accelerators and synchrotrons. At CERN he continued to contribute to accelerator physics, and with his wife Mary Bell he wrote on electron cooling and Beamstrahlung. A spectacular late achievement in accelerator physics was the demonstration (in collaboration with Leinaas) that the effective black-body radiation seen by an accelerated observer in an electromagnetic vacuum - the ``Unruh effect''- had already been observed experimentally in the partial depolarization of electrons traversing circular orbits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tannenbaum, Michael J.
The search for the left-handed W± bosons, the proposed quanta of the weak interaction, and the Higgs boson, which spontaneously breaks the symmetry of unification of electromagnetic and weak interactions, has driven elementary-particle physics research from the time that I entered college to the present and has led to many unexpected and exciting discoveries which revolutionized our view of subnuclear physics over that period. In this article I describe how these searches and discoveries have intertwined with my own career.
2013-01-01
definition of 6.1 research apply. Namely, the work is curiosity work with no specific application in mind. The two extramural categories include...direct interest in relativity and gravitation, cosmology , elementary particles, nuclear physics, astronomy, or astrophysics, since they generally have
Research in High Energy Physics at Duke University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotwal, Ashutosh V.; Goshaw, Al; Kruse, Mark
2013-07-29
This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, ve postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM)more » and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the ! e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detec- tor. This water- lled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.« less
Research in High Energy Physics at Duke University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goshaw, Alfred; Kotwal, Ashutosh; Kruse, Mark
2013-07-29
This is the Closeout Report for the research grant in experimental elementary particle physics, carried out by the Duke University High Energy Physics (HEP) group. We re- port on physics results and detector development carried out under this grant, focussing on the recent three-year grant period (2010 to 2013). The Duke HEP group consisted of seven faculty members, two senior scientists, five postdocs and eight graduate students. There were three thrusts of the research program. Measurements at the energy frontier at CDF and ATLAS were used to test aspects of elementary particle theory described by the Stan- dard Model (SM)more » and to search for new forces and particles beyond those contained within the SM. The neutrino sector was explored using data obtained from a large neutrino detector located in Japan, and R & D was conducted on new experiments to be built in the US. The measurements provided information about neutrino masses and the manner in which neutri- nos change species in particle beams. Two years ago we have started a new research program in rare processes based on the Mu2E experiment at Fermilab. This research is motivated by the search for the {mu} {yields} e transition with unprecedented sensitivity, a transition forbidden in the standard model but allowed in supersymmetric and other models of new physics. The high energy research program used proton and antiproton colliding beams. The experiments were done at the Fermilab Tevatron (proton-antiproton collisions at a center of mass energy of 1.96 TeV) and at the CERN Large Hadron Collider (proton-proton collisions at 7-8 TeV). The neutrino program used data obtained from the Super-Kamiokande detector. This water-filled Cherenkov counter was used to detect and measure the properties of neutrinos produced in cosmic ray showers, and from neutrino beams produced from acceler- ators in Japan. The Mu2E experiment will use a special stopped muon beam to be built at Fermilab.« less
Across-horizon scattering and information transfer
NASA Astrophysics Data System (ADS)
Emelyanov, V. A.; Klinkhamer, F. R.
2018-06-01
We address the question whether or not two electrically charged elementary particles can Coulomb scatter if one of these particles is inside the Schwarzschild black-hole horizon and the other outside. It can be shown that the quantum process is consistent with the local energy–momentum conservation law. This result implies that across-horizon scattering is a physical effect, relevant to astrophysical black holes. We propose a Gedankenexperiment which uses the quantum scattering process to transfer information from inside the black-hole horizon to outside.
The symmetry and simplicity of the laws of physics and the Higgs boson
Maldacena, Juan
2015-11-12
We describe the theoretical ideas, developed between the 1950s–1970s, which led to the prediction of the Higgs boson, the particle that was discovered in 2012. The forces of nature are based on symmetry principles. We explain the nature of these symmetries through an economic analogy. We also discuss the Higgs mechanism, which is necessary to avoid some of the naive consequences of these symmetries, and to explain various features of elementary particles.
A White Paper on keV sterile neutrino Dark Matter
Adhikari, R.
2017-01-13
Here, we present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. First, we review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterilemore » neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. Our paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.« less
A White Paper on keV sterile neutrino Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikari, R.
Here, we present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved - cosmology, astrophysics, nuclear, and particle physics - in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. First, we review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterilemore » neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. Our paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.« less
Physics through the 1990s: Gravitation, cosmology and cosmic-ray physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume contains recommendations for space-and ground-based programs in gravitational physics, cosmology, and cosmic-ray physics. The section on gravitation examines current and planned experimental tests of general relativity; the theory behind, and search for, gravitational waves, including sensitive laser-interferometric tests and other observations; and advances in gravitation theory (for example, incorporating quantum effects). The section on cosmology deals with the big-bang model, the standard model from elementary-particle theory, the inflationary model of the Universe. Computational needs are presented for both gravitation and cosmology. Finally, cosmic-ray physics theory (nucleosynthesis, acceleration models, high-energy physics) and experiment (ground and spaceborne detectors) are discussed.
PARTICIPATION IN HIGH ENERGY PHYSICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, Christopher
2012-12-20
This grant funded experimental and theoretical activities in elementary particles physics at the Illinois Institute of Technology (IIT). The experiments in which IIT faculty collaborated included the Daya Bay Reactor Neutrino Experiment, the MINOS experiment, the Double Chooz experiment, and FNAL E871 - HyperCP experiment. Funds were used to support summer salary for faculty, salary for postdocs, and general support for graduate and undergraduate students. Funds were also used for travel expenses related to these projects and general supplies.
Model Independent Search For New Physics At The Tevatron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudalakis, Georgios
2008-04-01
The Standard Model of elementary particles can not be the final theory. There are theoretical reasons to expect the appearance of new physics, possibly at the energy scale of few TeV. Several possible theories of new physics have been proposed, each with unknown probability to be confirmed. Instead of arbitrarily choosing to examine one of those theories, this thesis is about searching for any sign of new physics in a model-independent way. This search is performed at the Collider Detector at Fermilab (CDF). The Standard Model prediction is implemented in all final states simultaneously, and an array of statistical probesmore » is employed to search for significant discrepancies between data and prediction. The probes are sensitive to overall population discrepancies, shape disagreements in distributions of kinematic quantities of final particles, excesses of events of large total transverse momentum, and local excesses of data expected from resonances due to new massive particles. The result of this search, first in 1 fb -1 and then in 2 fb -1, is null, namely no considerable evidence of new physics was found.« less
Lorentz violating Julia-Toulouse mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaete, Patricio; Wotzasek, Clovis; Instituto de Fisica, Universidade Federal do Rio de Janeiro
2007-03-01
We study a Lorentz invariance violating extension for the pure photonic sector of the standard model. A phenomenological proposal is made for the condensation of topological defects in the presence of a constant rank-m tensor in the context of the Julia-Toulouse mechanism. Possible physical consequences leading to direct measurable effects over the confining properties of the elementary particles are explored.
Higgs Boson: god particle or divine comedy?
NASA Astrophysics Data System (ADS)
Rangacharyulu, Chary
2013-10-01
While particle physicists around the world rejoice the announcement of discovery of Higgs particle as a momentous event, it is also an opportune moment to assess the physicists' conception of nature. Particle theorists, in their ingenious efforts to unravel mysteries of the physical universe at a very fundamental level, resort to macroscopic many body theoretical methods of solid state physicists. Their efforts render the universe a superconductor of correlated quasi-particle pairs. Experimentalists, devoted to ascertain the elementary constituents and symmetries, depend heavily on numerical simulations based on those models and conform to theoretical slang in planning and interpretation of measurements . It is to the extent that the boundaries between theory/modeling and experiment are blurred. Is it possible that they are meandering in Dante's Inferno?
The Richtmyer Memorial Lecture--When is a Particle?
ERIC Educational Resources Information Center
Drell, Sidney D.
1978-01-01
Discusses the concept of elementary particles. Reviews the history of the neutrino, and explains why the quarks, although they themselves are not "observed" in isolation, are to be considered elementary particles. (GA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perl, Martin L.
This Fifth International WEIN Symposium is devoted to physics beyond the standard model. This talk is about tau lepton physics, but I begin with the question: do we know how to find new physics in the world of elementary particles? This question is interwoven with the various tau physics topics. These topics are: searching for unexpected tau decay modes; searching for additional tau decay mechanisms; radiative tau decays; tau decay modes of the W, B, and D; decay of the Z{sup 0} to tau pairs; searching for CP violation in tau decay; the tau neutrino, dreams and odd ideas inmore » tau physics; and tau research facilities in the next decades.« less
NASA Astrophysics Data System (ADS)
1993-01-01
Elementary particles and philosophy of scienceEric ScerriDepartment of History and Philosophy of Science, King's College, London, UK Muscle forces and Newton's third lawA H BachmanPhysics Department, City College of New York, NY 10031, USA Science for the year 2000Martin Brown122 Bryansburn Road, Bangor, County Down BT20 3RG, UK More examples of the harmonic meanA TanDepartment of Physics, Alabama A & M University, Normal, AL 35762, USA Science SATsD L Richards16 Purcell Crescent, London SW6 7PB, UK
Changes in concepts of time from Aristotle to Einstein
NASA Astrophysics Data System (ADS)
Sachs, Mendel
1996-03-01
The meaning of time and motion is discussed, at first tracing conceptual changes from Aristotle to Galileo/Newton to Einstein. Different views of ‘time’ in 20th century physics are then examined, with primary focus on the revolutionary changes that came with the theory of general relativity. Implications of its new view in all domains of physics are discussed — from elementary particles to cosmology. The special role of Hamilton's quaternion calculus in equations of motion in general relativity is shown.
Waiting for the W and the Higgs
Tannenbaum, Michael J.
2016-10-06
The search for the left-handed W± bosons, the proposed quanta of the weak interaction, and the Higgs boson, which spontaneously breaks the symmetry of unification of electromagnetic and weak interactions, has driven elementary-particle physics research from the time that I entered college to the present and has led to many unexpected and exciting discoveries which revolutionized our view of subnuclear physics over that period. In this article I describe how these searches and discoveries have intertwined with my own career.
NASA Technical Reports Server (NTRS)
Brown, Laurie M.
1993-01-01
An historical account is given of the circumstances whereby the uncertainty relations were introduced into physics by Heisenberg. The criticisms of QED on measurement-theoretical grounds by Landau and Peierls are then discussed, as well as the response to them by Bohr and Rosenfeld. Finally, some examples are given of how the new freedom to advance radical proposals, in part the result of the revolution brought about by 'uncertainty,' was implemented in dealing with the new phenomena encountered in elementary particle physics in the 1930's.
Waiting for the W. and the Higgs
NASA Astrophysics Data System (ADS)
Tannenbaum, M. J.
2016-12-01
The search for the left-handed W± bosons, the proposed quanta of the weak interaction, and the Higgs boson, which spontaneously breaks the symmetry of unification of electromagnetic and weak interactions, has driven elementary-particle physics research from the time that I entered college to the present and has led to many unexpected and exciting discoveries which revolutionized our view of subnuclear physics over that period. In this article I describe how these searches and discoveries have intertwined with my own career.
A White Paper on keV sterile neutrino Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikari, R.; Agostini, M.; Ky, N. Anh
We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved—cosmology, astrophysics, nuclear, and particle physics—in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arisingmore » from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.« less
A White Paper on keV sterile neutrino Dark Matter
NASA Astrophysics Data System (ADS)
Adhikari, R.; Agostini, M.; Ky, N. Anh; Araki, T.; Archidiacono, M.; Bahr, M.; Baur, J.; Behrens, J.; Bezrukov, F.; Bhupal Dev, P. S.; Borah, D.; Boyarsky, A.; de Gouvea, A.; Pires, C. A. de S.; de Vega, H. J.; Dias, A. G.; Di Bari, P.; Djurcic, Z.; Dolde, K.; Dorrer, H.; Durero, M.; Dragoun, O.; Drewes, M.; Drexlin, G.; Düllmann, Ch. E.; Eberhardt, K.; Eliseev, S.; Enss, C.; Evans, N. W.; Faessler, A.; Filianin, P.; Fischer, V.; Fleischmann, A.; Formaggio, J. A.; Franse, J.; Fraenkle, F. M.; Frenk, C. S.; Fuller, G.; Gastaldo, L.; Garzilli, A.; Giunti, C.; Glück, F.; Goodman, M. C.; Gonzalez-Garcia, M. C.; Gorbunov, D.; Hamann, J.; Hannen, V.; Hannestad, S.; Hansen, S. H.; Hassel, C.; Heeck, J.; Hofmann, F.; Houdy, T.; Huber, A.; Iakubovskyi, D.; Ianni, A.; Ibarra, A.; Jacobsson, R.; Jeltema, T.; Jochum, J.; Kempf, S.; Kieck, T.; Korzeczek, M.; Kornoukhov, V.; Lachenmaier, T.; Laine, M.; Langacker, P.; Lasserre, T.; Lesgourgues, J.; Lhuillier, D.; Li, Y. F.; Liao, W.; Long, A. W.; Maltoni, M.; Mangano, G.; Mavromatos, N. E.; Menci, N.; Merle, A.; Mertens, S.; Mirizzi, A.; Monreal, B.; Nozik, A.; Neronov, A.; Niro, V.; Novikov, Y.; Oberauer, L.; Otten, E.; Palanque-Delabrouille, N.; Pallavicini, M.; Pantuev, V. S.; Papastergis, E.; Parke, S.; Pascoli, S.; Pastor, S.; Patwardhan, A.; Pilaftsis, A.; Radford, D. C.; Ranitzsch, P. C.-O.; Rest, O.; Robinson, D. J.; Rodrigues da Silva, P. S.; Ruchayskiy, O.; Sanchez, N. G.; Sasaki, M.; Saviano, N.; Schneider, A.; Schneider, F.; Schwetz, T.; Schönert, S.; Scholl, S.; Shankar, F.; Shrock, R.; Steinbrink, N.; Strigari, L.; Suekane, F.; Suerfu, B.; Takahashi, R.; Van, N. Thi Hong; Tkachev, I.; Totzauer, M.; Tsai, Y.; Tully, C. G.; Valerius, K.; Valle, J. W. F.; Venos, D.; Viel, M.; Vivier, M.; Wang, M. Y.; Weinheimer, C.; Wendt, K.; Winslow, L.; Wolf, J.; Wurm, M.; Xing, Z.; Zhou, S.; Zuber, K.
2017-01-01
We present a comprehensive review of keV-scale sterile neutrino Dark Matter, collecting views and insights from all disciplines involved—cosmology, astrophysics, nuclear, and particle physics—in each case viewed from both theoretical and experimental/observational perspectives. After reviewing the role of active neutrinos in particle physics, astrophysics, and cosmology, we focus on sterile neutrinos in the context of the Dark Matter puzzle. Here, we first review the physics motivation for sterile neutrino Dark Matter, based on challenges and tensions in purely cold Dark Matter scenarios. We then round out the discussion by critically summarizing all known constraints on sterile neutrino Dark Matter arising from astrophysical observations, laboratory experiments, and theoretical considerations. In this context, we provide a balanced discourse on the possibly positive signal from X-ray observations. Another focus of the paper concerns the construction of particle physics models, aiming to explain how sterile neutrinos of keV-scale masses could arise in concrete settings beyond the Standard Model of elementary particle physics. The paper ends with an extensive review of current and future astrophysical and laboratory searches, highlighting new ideas and their experimental challenges, as well as future perspectives for the discovery of sterile neutrinos.
2018-01-01
The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available. This article is part of the Theo Murphy meeting issue ‘Higgs cosmology’. PMID:29358352
Rajantie, Arttu
2018-03-06
The discovery of the Higgs boson in 2012 and other results from the Large Hadron Collider have confirmed the standard model of particle physics as the correct theory of elementary particles and their interactions up to energies of several TeV. Remarkably, the theory may even remain valid all the way to the Planck scale of quantum gravity, and therefore it provides a solid theoretical basis for describing the early Universe. Furthermore, the Higgs field itself has unique properties that may have allowed it to play a central role in the evolution of the Universe, from inflation to cosmological phase transitions and the origin of both baryonic and dark matter, and possibly to determine its ultimate fate through the electroweak vacuum instability. These connections between particle physics and cosmology have given rise to a new and growing field of Higgs cosmology, which promises to shed new light on some of the most puzzling questions about the Universe as new data from particle physics experiments and cosmological observations become available.This article is part of the Theo Murphy meeting issue 'Higgs cosmology'. © 2018 The Author(s).
Jenni, Peter
2012-02-28
For the past year, experiments at the Large Hadron Collider (LHC) have started exploring physics at the high-energy frontier. Thanks to the superb turn-on of the LHC, a rich harvest of initial physics results have already been obtained by the two general-purpose experiments A Toroidal LHC Apparatus (ATLAS) and the Compact Muon Solenoid (CMS), which are the subject of this report. The initial data have allowed a test, at the highest collision energies ever reached in a laboratory, of the Standard Model (SM) of elementary particles, and to make early searches Beyond the Standard Model (BSM). Significant results have already been obtained in the search for the Higgs boson, which would establish the postulated electro-weak symmetry breaking mechanism in the SM, as well as for BSM physics such as Supersymmetry (SUSY), heavy new particles, quark compositeness and others. The important, and successful, SM physics measurements are giving confidence that the experiments are in good shape for their journey into the uncharted territory of new physics anticipated at the LHC.
The long journey to the Higgs boson and beyond at the LHC: Emphasis on CMS
NASA Astrophysics Data System (ADS)
Virdee, Tejinder Singh
2016-11-01
Since 2010 there has been a rich harvest of results on standard model physics by the ATLAS and CMS experiments operating on the Large Hadron Collider. In the summer of 2012, a spectacular discovery was made by these experiments of a new, heavy particle. All the subsequently analysed data point strongly to the properties of this particle as those expected for the Higgs boson associated with the Brout-Englert-Higgs mechanism postulated to explain the spontaneous symmetry breaking in the electroweak sector, thereby explaining how elementary particles acquire mass. This article focuses on the CMS experiment, the technological challenges encountered in its construction, describing some of the physics results obtained so far, including the discovery of the Higgs boson, and searches for the widely anticipated new physics beyond the standard model, and peer into the future involving the high-luminosity phase of the LHC. This article is complementary to the one by Peter Jenni4 that focuses on the ATLAS experiment.
NASA Astrophysics Data System (ADS)
Gholibeigian, Hassan; Gholibeigian, Zeinab
2015-04-01
Understanding the internal structure of the proton is crucial challenge for QCD, and one important aspect of this is to understand how the spin of the nucleon is build-up from the angular momentum of its quarks and gluons. In this way, what's the origin of differences between angular momentums of fundamental particles? It may be from their substructures. It seems there are four sub-particles of mater, plant, animal and human in substructure of each fundamental particle (string) as the origins of life and cause of differences between spins of those elementary particles. Material's sub-particle always is on and active. When the environmental conditions became ready for creation of each field of the plant, animal and human, sub-particles of their elementary particles became on and active and then, those elementary particles participated in processes of creation in their own field. God, as the main source of information, has been communicated with their sub-particles and transfers a package (bit) of information and laws (plus standard ethics for human sub-particles) to each of them for process and selection (mutation) of the next step of motion and interaction of their fundamental particles with each other in each Plank's time. This is causality for particles' motion in quantum area.
NASA Astrophysics Data System (ADS)
Mu, Cheng-Fu; Sun, Gao-Feng; Zhuang, Peng-Fei
2009-03-01
Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars. Due to the sudden drop of the electron density at thefirst-order chiral phase transition, the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.
Elementary Particle Physics Experiment at the University of Massachusetts, Amherst
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brau, Benjamin; Dallapiccola, Carlo; Willocq, Stephane
2013-07-30
In this progress report we summarize the activities of the University of Massachusetts- Amherst group for the three years of this research project. We are fully engaged in research at the energy frontier with the ATLAS experiment at the CERN Large Hadron Collider. We have made leading contributions in software development and performance studies for the ATLAS Muon Spectrometer, as well as on physics analysis with an emphasis on Standard Model measurements and searches for physics beyond the Standard Model. In addition, we have increased our contributions to the Muon Spectrometer New Small Wheel upgrade project.
Fundamentals of Plasma Physics
NASA Astrophysics Data System (ADS)
Bellan, Paul M.
2008-07-01
Preface; 1. Basic concepts; 2. The Vlasov, two-fluid, and MHD models of plasma dynamics; 3. Motion of a single plasma particle; 4. Elementary plasma waves; 5. Streaming instabilities and the Landau problem; 6. Cold plasma waves in a magnetized plasma; 7. Waves in inhomogeneous plasmas and wave energy relations; 8. Vlasov theory of warm electrostatic waves in a magnetized plasma; 9. MHD equilibria; 10. Stability of static MHD equilibria; 11. Magnetic helicity interpreted and Woltjer-Taylor relaxation; 12. Magnetic reconnection; 13. Fokker-Planck theory of collisions; 14. Wave-particle nonlinearities; 15. Wave-wave nonlinearities; 16. Non-neutral plasmas; 17. Dusty plasmas; Appendix A. Intuitive method for vector calculus identities; Appendix B. Vector calculus in orthogonal curvilinear coordinates; Appendix C. Frequently used physical constants and formulae; Bibliography; References; Index.
Geometrization of quantum physics
NASA Astrophysics Data System (ADS)
Ol'Khov, O. A.
2009-12-01
It is shown that the Dirac equation for free particle can be considered as a description of specific distortion of the space euclidean geometry (space topological defect). This approach is based on possibility of interpretation of the wave function as vector realizing representation of the fundamental group of the closed topological space-time 4-manifold. Mass and spin appear to be topological invariants. Such concept explains all so called “strange” properties of quantum formalism: probabilities, wave-particle duality, nonlocal instantaneous correlation between noninteracting particles (EPR-paradox) and so on. Acceptance of suggested geometrical concept means rejection of atomistic concept where all matter is considered as consisting of more and more small elementary particles. There is no any particles a priori, before measurement: the notions of particles appear as a result of classical interpretation of the contact of the region of the curved space with a device.
A Cosmologist's Tour Through the New Particle Zoo / Candy Shop
NASA Astrophysics Data System (ADS)
Turner, M. S.
Recent developments in elementary particle physics have led to a renaissance in cosmology, in general, and in the study of structure formation, in particular. Already, the study of the very early (t ≤ 10-2s) history of the Universe has provided valuable hints as to the 'initial data' for the structure formation problem - the nature and origin of the primeval density inhomogeneities, the quantity and composition of matter in the Universe today, and numerous candidates for the constituents of the ubiquitous dark matter. The author reviews the multitude of WIMP candidates for the dark matter provided by modern particle physics theories, putting them into context by briefly discussing the theories which predict them. He reviews their various birth sites and birth processes in the early Universe. The author also mentions some very exotic possibilities - unstable WIMPs, cosmic strings, and even the possibility of a relic cosmological term.
Princeton University High Energy Physics Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marlow, Daniel R.
This is the Final Report on research conducted by the Princeton Elementary Particles group over the approximately three-year period from May 1, 2012 to April 30, 2015. The goal of our research is to investigate the fundamental constituents of matter, their fields, and their interactions; to understand the properties of space and time; and to study the profound relationships between cosmology and particle physics. During the funding period covered by this report, the group has been organized into a subgroup concentrating on the theory of particles, strings, and cosmology; and four subgroups performing major experiments at laboratories around the world: CERN, Daya Bay, Gran Sasso as well as detector R\\&D on the Princeton campus. Highlights in of this research include the discovery of the Higgs Boson at CERN and the measurement ofmore » $$\\sin^22\\theta_{13}$$ by the Daya Bay experiment. In both cases, Princeton researchers supported by this grant played key roles.« less
Numerical studies from quantum to macroscopic scales of carbon nanoparticules in hydrogen plasma
NASA Astrophysics Data System (ADS)
Lombardi, Guillaume; Ngandjong, Alain; Mezei, Zsolt; Mougenot, Jonathan; Michau, Armelle; Hassouni, Khaled; Seydou, Mahamadou; Maurel, François
2016-09-01
Dusty plasmas take part in large scientific domains from Universe Science to nanomaterial synthesis processes. They are often generated by growth from molecular precursor. This growth leads to the formation of larger clusters which induce solid germs nucleation. Particle formed are described by an aerosol dynamic taking into account coagulation, molecular deposition and transport processes. These processes are controlled by the elementary particle. So there is a strong coupling between particle dynamics and plasma discharge equilibrium. This study is focused on the development of a multiscale physic and numeric model of hydrogen plasmas and carbon particles around three essential coupled axes to describe the various physical phenomena: (i) Macro/mesoscopic fluid modeling describing in an auto-coherent way, characteristics of the plasma, molecular clusters and aerosol behavior; (ii) the classic molecular dynamics offering a description to the scale molecular of the chains of chemical reactions and the phenomena of aggregation; (iii) the quantum chemistry to establish the activation barriers of the different processes driving the nanopoarticule formation.
The Origin of Inertia and Matter as a Superradiant Phase Transition of Quantum Vacuum
NASA Astrophysics Data System (ADS)
Maxmilian Caligiuri, Luigi
Mass is one of the most important concepts in physics and its real understanding represents the key for the formulation of any consistent physical theory. During the past years, a very interesting model of inertial and gravitational mass as the result of the reaction interaction between the charged particles (electrons and quarks) contained in a given body and a suitable "fraction" of QED Zero Point Fields confined within an ideal resonant cavity, associated to the same body, has been proposed by Haish, Rueda and Puthoff. More recently, the author showed that this interpretation is consistent with a picture of mass (both inertial and gravitational) as the seat of ZPF standing waves whose presence reduces quantum vacuum energy density inside the resonant cavity ideally associated to the body volume. Nevertheless so far, the ultimate physical origin of such resonant cavity as well as the mechanism able to "select" the fraction of ZPF electromagnetic modes interacting within it, remained unrevealed. In this paper, basing on the framework of QED coherence in condensed matter, we'll show mass can be viewed as the result of a spontaneous superradiant phase transition of quantum vacuum giving rise to a more stable, energetically favored, oscopic quantum state characterized by an ensemble of coherence domains, "trapping" the coherent ZPF fluctuations inside a given volume just acting as a resonant cavity. Our model is then able to explain the "natural" emergence of the ideal resonant cavity speculated by Haish, Rueda and Puthoff and its defining parameters as well as the physical mechanism selecting the fraction of ZPF interacting with the body particles. Finally, a generalization of the model to explain the origin of mass of elementary particles is proposed also suggesting a new understanding of Compton's frequency and De Broglie's wavelength. Our results indicates both inertia and matter could truly originate from coherent interaction between quantum matter-wave and radiation fields condensed from quantum vacuum and also give novel and interesting insights into fundamental physical questions as, for example, the structure of elementary particles and matter stability.
Improving acceptance for Higgs events at CDF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sforza, Federico; /INFN, Pisa
2008-03-01
The Standard Model of elementary particles predicts the existence of the Higgs boson as the responsable of the electroweak symmetry breaking, the process by which fermions and vector bosons acquire mass. The Higgs existence is one of the most important questions in the present high energy physics research. This work concerns the search of W H associate production at the CDF II experiment (Collider Detector at Fermilab).
Electrostatic interaction energy and factor 1.23
NASA Astrophysics Data System (ADS)
Rubčić, A.; Arp, H.; Rubčić, J.
The factor F≫1.23 has originally been found in the redshift of quasars. Recently, it has been found in very different physical phenomena: the life-time of muonium, the masses of elementary particles (leptons, quarks,...), the correlation of atomic weight (A) and atomic number (Z) and the correlation of the sum of masses of all orbiting bodies with the mass of the central body in gravitational systems.
Quantum phases for a charged particle and electric/magnetic dipole in an electromagnetic field
NASA Astrophysics Data System (ADS)
Kholmetskii, Alexander; Yarman, Tolga
2017-11-01
We point out that the known quantum phases for an electric/magnetic dipole moving in an electromagnetic field must be composed from more fundamental quantum phases emerging for moving elementary charges. Using this idea, we have found two new fundamental quantum phases, next to the known magnetic and electric Aharonov-Bohm phases, and discuss their general properties and physical meaning.
NASA Astrophysics Data System (ADS)
Reines, Frederick
Wolfgang Pauli and Enrico Fermi pioneered the hypothesis and characteristics of the weak interaction and the elementary particle called the neutrino. Since its discovery some forty years ago the neutrino has been shown to be a fundamental constituent of matter with a surprisingly rich, and in very many ways unexpected, set of characteristics ranging from basic roles in the generation of energy in the sun to supernovæ.
Report of NRL Progress. Fifty Years of Science for the Navy and the Nation, 1923-1973
1973-07-01
on High Energy Physics in September, 1960. In the decade of the sixties we were gradually to disengage from elementary particle physicsf in ...Progress, July 1973 IQI M. M. SHAPIRO Figure 2 - A high - energy interaction of a nitrogen nucleus in photographic emul- sion. The nitrogen ion from ...particularly as induced by a radiation environment. In the
ERIC Educational Resources Information Center
Butler, John, Ed.
In this unit students are asked to mix materials together and look closely at what happens. From this experience, plus teacher input, they are introduced to the concept that matter is made of small particles which cannot be seen, but can be manipulated. Students learn the difference between a physical and a chemical change and that there are four…
From black holes to quantum gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, N.
1987-01-01
Since modern physics now deals simultaneously with quantum theory, general relativity, cosmology and elementary particle physics, this volume caters to the need for a book of such a wide scope of interest. Aspects of grand unification, the thermodynamics of space-time, the loss of quantum coherence and the problem of time are expertly treated within a unified presentation. Contents: Introduction; The Global Structure of Space-time in the Classical Theory of General Relativity; Connection between the Structure of the Space-time and the Propagation of Quantum Fields; The Different Approaches to Quantization; Outlook and Conclusions.
Nuclear and particle physics in the early universe
NASA Technical Reports Server (NTRS)
Schramm, D. N.
1981-01-01
Basic principles and implications of Big Bang cosmology are reviewed, noting the physical evidence of a previous universe temperature of 10,000 K and theoretical arguments such as grand unification decoupling indicating a primal temperature of 10 to the 15th eV. The Planck time of 10 to the -43rd sec after the Big Bang is set as the limit before which gravity was quantized and nothing is known. Gauge theories of elementary particle physics are reviewed for successful predictions of similarity in weak and electromagnetic interactions and quantum chromodynamic predictions for strong interactions. The large number of photons in the universe relative to the baryons is considered and the grand unified theories are cited as showing the existence of baryon nonconservation as an explanation. Further attention is given to quark-hadron phase transition, the decoupling for the weak interaction and relic neutrinos, and Big Bang nucleosynthesis.
Particle physics in the very early universe
NASA Technical Reports Server (NTRS)
Schramm, D. N.
1981-01-01
Events in the very early big bang universe in which elementary particle physics effects may have been dominant are discussed, with attention to the generation of a net baryon number by way of grand unification theory, and emphasis on the possible role of massive neutrinos in increasing current understanding of various cosmological properties and of the constraints placed on neutrino properties by cosmology. It is noted that when grand unification theories are used to describe very early universe interactions, an initially baryon-symmetrical universe can evolve a net baryon excess of 10 to the -9th to 10 to the -11th per photon, given reasonable parameters. If neutrinos have mass, the bulk of the mass of the universe may be in the form of leptons, implying that the form of matter most familiar to physical science may not be the dominant form of matter in the universe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samios, Nicholas
2009-05-06
The 450th Brookhaven Lecture, to be held today, Wednesday, May 6, will be given by BNL Distinguished Senior Physicist Nicholas Samios, director of the RIKEN BNL Research Center and former Lab Director. Samios will discuss "Personal Reflections on the Interaction of Science and Government and Possible Lessons for the Present Crisis" at 4 p.m. in Berkner Hall. As many members of his prospective audience know, Samios's distinguished achievements in science and administration qualify him more than most to take on this topic. Having received his B.A. and Ph.D. degrees in physics from Columbia University in 1953 and 1957, respectively, hemore » joined the Lab in 1959. In addition to his work in experimental physics, he served as Physics Department Chair from 1975 to 81 and Deputy Director for High-Energy & Nuclear Physics from 1981 to 82. As a researcher, Samios made many of the particle discoveries that have helped define and lead to the acceptance of the "Standard Model" of particle physics, the accepted theory that explains known particle interactions. In particular, he is noted for the discovery of the phi meson and the omega minus hyperon, crucial elements delineating the symmetry of hadrons, which ultimately led to the quark model of elementary particles, a pillar of the Standard Model.« less
Planck's constant and the three waves (TWs) of Einstein's covariant ether
NASA Astrophysics Data System (ADS)
Kostro, L.
1985-11-01
The implications of a three-wave model for elementary particles, satisfying the principles of both quantum mechanics and General Relativity (GR), are discussed. In GR, the ether is the fundamental source of all activity, where particles (waves) arise at singularities. Inertia and gravity are field properties of the ether. In flat regions of the space-time geodesic, wave excitations correspond to the presence of particles. A momentum-carrying excitation which occurs in the ether is a superluminal radiation (phase- or B-waves) which transports neither energy nor mass. Superposition of the B-waves produces soliton-like excitations on the ether to form C-waves, i.e., particles. The particle-waves travel through space-time on D-waves, and experience reflection, refraction and interference only where B-waves have interacted with the ether. The original particles, photons-maximons, existed at the Big Bang and had physical properties which are describable in terms of Planck's quantities.
Searching for new physics at the frontiers with lattice quantum chromodynamics.
Van de Water, Ruth S
2012-07-01
Numerical lattice-quantum chromodynamics (QCD) simulations, when combined with experimental measurements, allow the determination of fundamental parameters of the particle-physics Standard Model and enable searches for physics beyond-the-Standard Model. We present the current status of lattice-QCD weak matrix element calculations needed to obtain the elements and phase of the Cabibbo-Kobayashi-Maskawa (CKM) matrix and to test the Standard Model in the quark-flavor sector. We then discuss evidence that may hint at the presence of new physics beyond the Standard Model CKM framework. Finally, we discuss two opportunities where we expect lattice QCD to play a pivotal role in searching for, and possibly discovery of, new physics at upcoming high-intensity experiments: rare decays and the muon anomalous magnetic moment. The next several years may witness the discovery of new elementary particles at the Large Hadron Collider (LHC). The interplay between lattice QCD, high-energy experiments at the LHC, and high-intensity experiments will be needed to determine the underlying structure of whatever physics beyond-the-Standard Model is realized in nature. © 2012 New York Academy of Sciences.
Research in Lattice Gauge Theory and in the Phenomenology of Neutrinos and Dark Matter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meurice, Yannick L; Reno, Mary Hall
Research in theoretical elementary particle physics was performed by the PI Yannick Meurice and co-PI Mary Hall Reno. New techniques designed for precision calculations of strong interaction physics were developed using the tensor renormalization group method. Large-scale Monte Carlo simulations with dynamical quarks were performed for candidate models for Higgs compositeness. Ab-initio lattice gauge theory calculations of semileptonic decays of B-mesons observed in collider experiments and relevant to test the validity of the standard model were performed with the Fermilab/MILC collaboration. The phenomenology of strong interaction physics was applied to new predictions for physics processes in accelerator physics experiments andmore » to cosmic ray production and interactions. A research focus has been on heavy quark production and their decays to neutrinos. The heavy quark contributions to atmospheric neutrino and muon fluxes have been evaluated, as have the neutrino fluxes from accelerator beams incident on heavy targets. Results are applicable to current and future particle physics experiments and to astrophysical neutrino detectors such as the IceCube Neutrino Observatory.« less
100 years of elementary particles [Beam Line, vol. 27, issue 1, Spring 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pais, Abraham; Weinberg, Steven; Quigg, Chris
1997-04-01
This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe.
100 years of Elementary Particles [Beam Line, vol. 27, issue 1, Spring 1997
DOE R&D Accomplishments Database
Pais, Abraham; Weinberg, Steven; Quigg, Chris; Riordan, Michael; Panofsky, Wolfgang K. H.; Trimble, Virginia
1997-04-01
This issue of Beam Line commemorates the 100th anniversary of the April 30, 1897 report of the discovery of the electron by J.J. Thomson and the ensuing discovery of other subatomic particles. In the first three articles, theorists Abraham Pais, Steven Weinberg, and Chris Quigg provide their perspectives on the discoveries of elementary particles as well as the implications and future directions resulting from these discoveries. In the following three articles, Michael Riordan, Wolfgang Panofsky, and Virginia Trimble apply our knowledge about elementary particles to high-energy research, electronics technology, and understanding the origin and evolution of our Universe.
Beyond Concepts: Transfer From Inquiry-Based Physics To Elementary Classrooms
NASA Astrophysics Data System (ADS)
Harlow, Danielle B.; Otero, Valerie K.
2007-01-01
Physics education researchers have created specialized physics courses to meet the needs of elementary teachers. While there is evidence that such courses help teachers develop physics content knowledge, little is known about what teachers transfer from such courses into their teaching practices. In this study, we examine how one elementary teacher changed her questioning strategies after learning physics in a course for elementary teachers.
Elementary Particle Spectroscopy in Regular Solid Rewrite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trell, Erik
The Nilpotent Universal Computer Rewrite System (NUCRS) has operationalized the radical ontological dilemma of Nothing at All versus Anything at All down to the ground recursive syntax and principal mathematical realisation of this categorical dichotomy as such and so governing all its sui generis modalities, leading to fulfilment of their individual terms and compass when the respective choice sequence operations are brought to closure. Focussing on the general grammar, NUCRS by pure logic and its algebraic notations hence bootstraps Quantum Mechanics, aware that it ''is the likely keystone of a fundamental computational foundation'' also for e.g. physics, molecular biology andmore » neuroscience. The present work deals with classical geometry where morphology is the modality, and ventures that the ancient regular solids are its specific rewrite system, in effect extensively anticipating the detailed elementary particle spectroscopy, and further on to essential structures at large both over the inorganic and organic realms. The geodetic antipode to Nothing is extension, with natural eigenvector the endless straight line which when deployed according to the NUCRS as well as Plotelemeian topographic prescriptions forms a real three-dimensional eigenspace with cubical eigenelements where observed quark-skewed quantum-chromodynamical particle events self-generate as an Aristotelean phase transition between the straight and round extremes of absolute endlessness under the symmetry- and gauge-preserving, canonical coset decomposition SO(3)xO(5) of Lie algebra SU(3). The cubical eigen-space and eigen-elements are the parental state and frame, and the other solids are a range of transition matrix elements and portions adapting to the spherical root vector symmetries and so reproducibly reproducing the elementary particle spectroscopy, including a modular, truncated octahedron nano-composition of the Electron which piecemeal enter into molecular structures or compressed to each other fuse into atomic honeycombs of periodic table signature.« less
Very special conformal field theories and their holographic duals
NASA Astrophysics Data System (ADS)
Nakayama, Yu
2018-03-01
Cohen and Glashow introduced the notion of very special relativity as viable space-time symmetry of elementary particle physics. As a natural generalization of their idea, we study the subgroup of the conformal group, dubbed very special conformal symmetry, which is an extension of the very special relativity. We classify all of them and construct field theory examples as well as holographic realization of the very special conformal field theories.
ERIC Educational Resources Information Center
Rosenberg, Nancy S.
A group is viewed to be one of the simplest and most interesting algebraic structures. The theory of groups has been applied to many branches of mathematics as well as to crystallography, coding theory, quantum mechanics, and the physics of elementary particles. This material is designed to help the user: 1) understand what groups are and why they…
The Escaramujo Project: Instrumentation Courses During a Road Trip Across the Americas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izraelevitch, Federico
The Escaramujo Project was a series of eight hands-on laboratory courses on High Energy Physics and Astroparticle Instrumentation, in Latinamerican Institutions. The Physicist Federico Izraelevitch traveled on a van with his wife and dogs from Chicago to Buenos Aires teaching the courses. The sessions took place at Institutions in Mexico, Guatemala, Costa Rica, Colombia, Ecuador, Peru and Bolivia at an advanced undergraduate and graduate level. During these workshops, each group built a modern cosmic ray detector based on plastic scintillator and silicon photomultipliers, designed specifically for this project. After the courses, a functional detector remained at each institution to bemore » used by the faculty to facilitate the training of future students and to support and enable local research activities. The five-days workshops covered topics such as elementary particle and cosmic ray Physics, radiation detection and instrumentation, low-level light sensing with solid state devices, front-end analog electronics and object-oriented data analysis (C++ and ROOT). Throughout this initiative, about a hundred of talented and highly motivated young students were reached. With the detector as a common thread, they were able to understand the designing principles and the underlying Physics involved in it, build the device, start it up, characterize it, take data and analyze it, mimicking the stages of a real elementary particle Physics experiment. Besides the aims to awaken vocations in science, technology and engineering, The Escaramujo Project was an effort to strengthen the integration of Latinamerican academic institutions into the international scientific community.« less
Research of fundamental interactions with use of ultracold neutrons
NASA Astrophysics Data System (ADS)
Serebrov, A. P.
2017-01-01
Use of ultracold neutrons (UCN) gives unique opportunities of a research of fundamental interactions in physics of elementary particles. Search of the electric dipole moment of a neutron (EDM) aims to test models of CP violation. Precise measurement of neutron lifetime is extremely important for cosmology and astrophysics. Considerable progress in these questions can be reached due to supersource of ultracold neutrons on the basis of superfluid helium which is under construction now in PNPI NRC KI. This source will allow us to increase density of ultracold neutrons approximately by 100 times in respect to the best UCN source at high flux reactor of Institute Laue-Langevin (Grenoble, France). Now the project and basic elements of the source are prepared, full-scale model of the source is tested, the scientific program is developed. Increase in accuracy of neutron EDM measurements by order of magnitude, down to level 10-27 -10-28 e cm is planned. It is highly important for physics of elementary particles. Accuracy of measurement of neutron lifetime can be increased by order of magnitude also. At last, at achievement of UCN density ˜ 103 - 104 cm-3, the experiment search for a neutron-antineutron oscillations using UCN will be possible. The present status of the project and its scientific program will be discussed.
Making the universe safe for historians: Time travel and the laws of physics
NASA Astrophysics Data System (ADS)
Woodward, James F.
1995-02-01
The study of the hypothetical activities of arbitrarily advanced cultures, particularly in the area of space and time travel, as a means of investigating fundamental issues in physics is briefly discussed. Hawking's chronology protection conjecture as it applies to wormhole spacetimes is considered. The nature of time, especially regarding the viability of time travel, as it appears in several “interpretations” of quantum mechanics is investigated. A conjecture on the plausibility of theories of reality that admit relativistically invariant interactions and irreducibly stochastic processes is advanced. A transient inertial reaction effect that makes it technically feasible, fleetingly, to induce large concentrations of negative mass-energy is presented and discussed in the context of macroscopic wormhole formation. Other candidates for chronology protection are examined. It is pointed out that if the strong version of Mach's principle (the gravitational induction of mass) is correct, then wormhole formation employing negative mass-energy is impossible. But if the bare masses of elementary particles are large, finite and negative, as is suggested by a heuristic general relativistic model of elementary particles, then, using the transient effect, it is technically feasible to trigger a non-linear process that may lead to macroscopic wormhole formation. Such wormholes need not be destroyed by the Hawking protection mechanism.
A Physics Show Performed by Students for Kids: From Mechanics to Elementary Particle Physics
NASA Astrophysics Data System (ADS)
Dreiner, Herbi K.
2008-09-01
Physics students spend the early part of their training attending physics and mathematics lectures, solving problem sets, and experimenting in laboratory courses. The program is typically intensive and fairly rigid. They have little opportunity to follow their own curiosity or apply their knowledge. There have been many attempts to address this deficiency, specifically through outreach activities.1-23 For example, since 1984 Clint Sprott (University of Wisconsin) hosts a physics show entitled "The Wonders of Physics!" Dressed up as a circus director and assisted by students, Professor Sprott presents entertaining and educating experiments to a regularly packed auditorium of all age groups.5 This was in turn inspired by the "Chemistry is Fun" presentations of Basam Shakhashiri (University of Wisconsin), where the students are also involved.6
Inclusive reconstruction of hadron resonances in elementary and heavy-ion collisions with HADES
NASA Astrophysics Data System (ADS)
Kornakov, Georgy
2016-11-01
The unambiguous identification of hadron modifications in hot and dense QCD matter is one of the important goals in nuclear physics. In the regime of 1 - 2 GeV kinetic energy per nucleon, HADES has measured rare and penetrating probes in elementary and heavy-ion collisions. The main creation mechanism of mesons is the excitation and decay of baryonic resonances throughout the fireball evolution. The reconstruction of shortlived (≈ 1 fm/c) resonance states through their decay products is notoriously difficult. We have developed a new iterative algorithm, which builds the best hypothesis of signal and background by distortion of individual particle properties. This allows to extract signals with signal-to-background ratios of <1%.
Teaching Elementary Particle Physics, Part II
NASA Astrophysics Data System (ADS)
Hobson, Art
2011-03-01
In order to explain certain features of radioactive beta decay, Wolfgang Pauli suggested in 1930 that the nucleus emitted, in addition to a beta particle, another particle of an entirely new type. The hypothesized particle, dubbed the neutrino, would not be discovered experimentally for another 25 years. It's not easy to detect neutrinos, because they respond to neither the EM force nor the strong force. For example, the mean free path (average penetration distance before it interacts) of a typical beta-decay neutrino moving through solid lead is about 1.5 light years! Enrico Fermi argued that neutrinos indicated a new force was at work. During the 1930s, he quickly adapted ideas from the developing new theory of QED to this new force, dubbed the weak force. Fermi's theory was able to predict the half-lives of beta-emitting nuclei and the range of energies of the emitted beta particles.
Fundamental theories of waves and particles formulated without classical mass
NASA Astrophysics Data System (ADS)
Fry, J. L.; Musielak, Z. E.
2010-12-01
Quantum and classical mechanics are two conceptually and mathematically different theories of physics, and yet they do use the same concept of classical mass that was originally introduced by Newton in his formulation of the laws of dynamics. In this paper, physical consequences of using the classical mass by both theories are explored, and a novel approach that allows formulating fundamental (Galilean invariant) theories of waves and particles without formally introducing the classical mass is presented. In this new formulation, the theories depend only on one common parameter called 'wave mass', which is deduced from experiments for selected elementary particles and for the classical mass of one kilogram. It is shown that quantum theory with the wave mass is independent of the Planck constant and that higher accuracy of performing calculations can be attained by such theory. Natural units in connection with the presented approach are also discussed and justification beyond dimensional analysis is given for the particular choice of such units.
Modern Elementary Particle Physics
NASA Astrophysics Data System (ADS)
Kane, Gordon
2017-02-01
1. Introduction; 2. Relativistic notation, Lagrangians, and interactions; 3. Gauge invariance; 4. Non-abelian gauge theories; 5. Dirac notation for spin; 6. The Standard Model Lagrangian; 7. The electroweak theory and quantum chromodynamics; 8. Masses and the Higgs mechanism; 9. Cross sections, decay widths, and lifetimes: W and Z decays; 10. Production and properties of W± and Zᴼ; 11. Measurement of electroweak and QCD parameters: the muon lifetime; 12. Accelerators - present and future; 13. Experiments and detectors; 14. Low energy and non-accelerator experiments; 15. Observation of the Higgs boson at the CERN LHC: is it the Higgs boson?; 16. Colliders and tests of the Standard Model: particles are pointlike; 17. Quarks and gluons, confinement and jets; 18. Hadrons, heavy quarks, and strong isospin invariance; 19. Coupling strengths depend on momentum transfer and on virtual particles; 20. Quark (and lepton) mixing angles; 21. CP violation; 22. Overview of physics beyond the Standard Model; 23. Grand unification; 24. Neutrino masses; 25. Dark matter; 26. Supersymmetry.
Iterants, Fermions and Majorana Operators
NASA Astrophysics Data System (ADS)
Kauffman, Louis H.
Beginning with an elementary, oscillatory discrete dynamical system associated with the square root of minus one, we study both the foundations of mathematics and physics. Position and momentum do not commute in our discrete physics. Their commutator is related to the diffusion constant for a Brownian process and to the Heisenberg commutator in quantum mechanics. We take John Wheeler's idea of It from Bit as an essential clue and we rework the structure of that bit to a logical particle that is its own anti-particle, a logical Marjorana particle. This is our key example of the amphibian nature of mathematics and the external world. We show how the dynamical system for the square root of minus one is essentially the dynamics of a distinction whose self-reference leads to both the fusion algebra and the operator algebra for the Majorana Fermion. In the course of this, we develop an iterant algebra that supports all of matrix algebra and we end the essay with a discussion of the Dirac equation based on these principles.
NASA Astrophysics Data System (ADS)
Kohn, Walter
It is a melancholy privilege for me to take part in this symposium in honor of my venerated teacher, Julian Schwinger. All of us here know that his brilliant scientific insights and methodologies have l deep imprints across the entire spectrum of theoretical physics, both pure and applied. No doubt his most outstanding work was his monumental relativistically covariant renormalization theory of quantum electrodynamics; other areas which he substantially reshaped include quantum gauge theories, whose significance he was one of the first to realize; nuclear physics — beginning with his first papers written as a teenager and in which he offered perhaps the first comprehensive lecture course; the theory of waveguides, a powerful reformulation during World War II in terms of tensor Green's functions and variational principles; scattering theory; particle accelerators; and, very broadly, the structure of elementary particle theory…
Physics through the 1990s: Nuclear physics
NASA Technical Reports Server (NTRS)
1986-01-01
The volume begins with a non-mathematical introduction to nuclear physics. A description of the major advances in the field follows, with chapters on nuclear structure and dynamics, fundamental forces in the nucleus, and nuclei under extreme conditions of temperature, density, and spin. Impacts of nuclear physics on astrophysics and the scientific and societal benefits of nuclear physics are then discussed. Another section deals with scientific frontiers, describing research into the realm of the quark-gluon plasma; the changing description of nuclear matter, specifically the use of the quark model; and the implications of the standard model and grand unified theories of elementary-particle physics; and finishes with recommendations and priorities for nuclear physics research facilities, instrumentation, accelerators, theory, education, and data bases. Appended are a list of national accelerator facilities, a list of reviewers, a bibliography, and a glossary.
Introducing 12 year-olds to elementary particles
NASA Astrophysics Data System (ADS)
Wiener, Gerfried J.; Schmeling, Sascha M.; Hopf, Martin
2017-07-01
We present a new learning unit, which introduces 12 year-olds to the subatomic structure of matter. The learning unit was iteratively developed as a design-based research project using the technique of probing acceptance. We give a brief overview of the unit’s final version, discuss its key ideas and main concepts, and conclude by highlighting the main implications of our research, which we consider to be most promising for use in the physics classroom.
Particle Physics after the Higgs-Boson Discovery: Opportunities for the Large Hadron Collider
Quigg, Chris
2015-08-24
The first run of the Large Hadron Collider at CERN brought the discovery of the Higgs boson, an apparently elementary scalar particle with a mass of 125 GeV, the avatar of the mechanism that hides the electroweak symmetry. Then, a new round of experimentation is beginning, with the energy of the proton–proton colliding beams raised to 6.5 TeV per beam, from 4 TeV at the end of the first run. I summarize what we have learned about the Higgs boson, and calls attention to some issues that will be among our central concerns in the near future.
Elementary Particle Physics and High Energy Phenomena: Final Report for FY2010-13
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cumalat, John P.; de Alwis, Senarath P.; DeGrand, Thomas A.
2013-06-27
The work under this grant consists of experimental, theoretical, and phenomenological research on the fundamental properties of high energy subnuclear particles. The work is conducted at the University of Colorado, the European Organization for Nuclear Research (CERN), the Japan Proton Accelerator Research Complex (J-PARC), Fermi National Accelerator Laboratory (FNAL), SLAC National Accelerator Laboratory (SLAC), Los Alamos National Laboratory (LANL), and other facilities, employing neutrino-beam experiments, test beams of various particles, and proton-proton collider experiments. It emphasizes mass generation and symmetry-breaking, neutrino oscillations, bottom particle production and decay, detector development, supergravity, supersymmetry, superstrings, quantum chromodynamics, nonequilibrium statistical mechanics, cosmology, phase transitions,more » lattice gauge theory, and anomaly-free theories. The goals are to improve our understanding of the basic building blocks of matter and their interactions. Data from the Large Hadron Collider at CERN have revealed new interactions responsible for particle mass, and perhaps will lead to a more unified picture of the forces among elementary material constituents. To this end our research includes searches for manifestations of theories such as supersymmetry and new gauge bosons, as well as the production and decay of heavy-flavored quarks. Our current work at J-PARC, and future work at new facilities currently under conceptual design, investigate the specifics of how the neutrinos change flavor. The research is integrated with the training of students at all university levels, benefiting both the manpower and intellectual base for future technologies.« less
NASA Astrophysics Data System (ADS)
Nakahata, Masayuki
This document is part of Subvolume A `Theory and Experiments' of Volume 21 `Elementary Particles' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It contains of the Chapter `11 Experimental Results on Neutrino Masses and Mixings' the Section `11.2 Solar Neutrinos' with the content:
ERIC Educational Resources Information Center
McIver, Kerry L.; Brown, William H.; Pfeiffer, Karin A.; Dowda, Marsha; Pate, Russell R.
2016-01-01
Purpose: This study describes the development and pilot testing of the Observational System for Recording Physical Activity-Elementary School (OSRAC-E) Version. Method: This system was developed to observe and document the levels and types of physical activity and physical and social contexts of physical activity in elementary school students…
W.K.H. Panofsky Prize: The Long Journey to the Higgs Boson: CMS
NASA Astrophysics Data System (ADS)
Virdee, Tejinder
2017-01-01
There has been a rich harvest of physics from the experiments at the Large Hadron Collider (LHC). In July 2012, the ground-breaking discovery of the Higgs boson was made by the ATLAS and CMS experiments. This boson is a long-sought particle expected from the mechanism for spontaneous symmetry breaking in the electro-weak sector that provides an explanation of how elementary particles acquire mass. The discovery required experiments of unprecedented capability and complexity. This talk, complementing that of Peter Jenni, will trace the background to the search for the Higgs boson at the LHC, the conception, the construction and the operation of the CMS experiment, and its subsequent discovery of the boson. The SM is considered to be a low energy manifestation of a more complete theory - physics beyond the SM is therefore widely anticipated. Selected CMS results will be presented from the search for physics beyond the SM from the 13 TeV Run-2 at the LHC.
Development of Concepts in the History of Quantum Theory
ERIC Educational Resources Information Center
Heisenberg, Werner
1975-01-01
Traces the development of quantum theory from the concept of the discrete stationary states, to the generalized concept of state, to the search for the elementary particle. States that the concept of the elementary particle should be replaced by the concept of a fundamental symmetry. (MLH)
The expanding materials multiverse
NASA Astrophysics Data System (ADS)
Powell, Ben J.
2018-06-01
High-energy physicists are limited to studying a single vacuum and its excitations, the particles of the standard model. For condensed-matter physicists, every new phase of matter brings a new “‘vacuum.” Remarkably, the low-energy excitations of these new vacua can be very different from the individual electrons, protons, and neutrons that constitute the material. The materials multiverse contains universes where the particle-like excitations carry only a fraction of the elementary electronic charge (1), are magnetic monopoles (2), or are their own antiparticles (3). None of these properties have ever been observed in the particles found in free space. Often, emergent gauge fields accompany these “fractionalized” particles (2, 4, 5), just as electromagnetic gauge fields accompany charged particles. On page 1101 of this issue, Hassan et al. (6) provide a glimpse of the emergent behaviors of a putative new phase of matter, the dipole liquid. What particles live in this universe, and what new physics is found in this and neighboring parts of the multiverse?
NASA Astrophysics Data System (ADS)
Zen Vasconcellos, César; Coelho, Helio T.; Hess, Peter Otto
Walter Greiner (29 October 1935 - 6 October 2016) was a German theoretical physicist. His scientific research interests include the thematic areas of atomic physics, heavy ion physics, nuclear physics, elementary particle physics (particularly quantum electrodynamics and quantum chromodynamics). He is most known in Germany for his series of books in theoretical physics, but he is also well known around the world. Greiner was born on October 29, 1935, in Neuenbau, Sonnenberg, Germany. He studied physics at the University of Frankfurt (Goethe University in Frankfurt Am Main), receiving in this institution a BSci in physics and a Master’s degree in 1960 with a thesis on plasma-reactors, and a PhD in 1961 at the University of Freiburg under Hans Marshal, with a thesis on the nuclear polarization in μ-mesic atoms. During the period of 1962 to 1964 he was assistant professor at the University of Maryland, followed by a position as research associate at the University of Freiburg, in 1964. Starting in 1965, he became a full professor at the Institute for Theoretical Physics at Goethe University until 2003. Greiner has been a visiting professor to many universities and laboratories, including Florida State University, the University of Virginia, the University of California, the University of Melbourne, Vanderbilt University, Yale University, Oak Ridge National Laboratory and Los Alamos National Laboratory. In 2003, with Wolf Singer, he was the founding Director of the Frankfurt Institute for Advanced Studies (FIAS), and gave lectures and seminars in elementary particle physics. He died on October 6, 2016 at the age of 80. Walter Greiner was an excellent teacher, researcher, friend. And he was a great supporter of the series of events known by the acronyms IWARA - International Workshop on Astronomy and Relativistic Astrophysics, STARS - Caribbean Symposium on Cosmology, Gravitation, Nuclear and Astroparticle Physics, and SMFNS - International Symposium on Strong Electromagnetic Fields and Neutron Stars. Walter Greiner left us. But his memory will remain always alive among us who have had the privilege of knowing him and enjoy his wisdom and joy of living.
Landau Levels of Majorana Fermions in a Spin Liquid.
Rachel, Stephan; Fritz, Lars; Vojta, Matthias
2016-04-22
Majorana fermions, originally proposed as elementary particles acting as their own antiparticles, can be realized in condensed-matter systems as emergent quasiparticles, a situation often accompanied by topological order. Here we propose a physical system which realizes Landau levels-highly degenerate single-particle states usually resulting from an orbital magnetic field acting on charged particles-for Majorana fermions. This is achieved in a variant of a quantum spin system due to Kitaev which is distorted by triaxial strain. This strained Kitaev model displays a spin-liquid phase with charge-neutral Majorana-fermion excitations whose spectrum corresponds to that of Landau levels, here arising from a tailored pseudomagnetic field. We show that measuring the dynamic spin susceptibility reveals the Landau-level structure by a remarkable mechanism of probe-induced bound-state formation.
NASA Technical Reports Server (NTRS)
Roychoudhuri, Chandrasekhar; Prasad, Narasimha S.; Peng, Qing
2007-01-01
Any superposition effect as measured (SEM) by us is the summation of simultaneous stimulations experienced by a detector due to the presence of multiple copies of a detectee each carrying different values of the same parameter. We discus the cases with light beams carrying same frequency for both diffraction and multiple beam Fabry-Perot interferometer and also a case where the two superposed light beams carry different frequencies. Our key argument is that if light really consists of indivisible elementary particle, photon, then it cannot by itself create superposition effect since the state vector of an elementary particle cannot carry more than one values of any parameter at the same time. Fortunately, semiclassical model explains all light induced interactions using quantized atoms and classical EM wave packet. Classical physics, with its deeper commitment to Reality Ontology, was better prepared to nurture the emergence of Quantum Mechanics and still can provide guidance to explore nature deeper if we pay careful attention to successful classical formulations like Huygens-Fresnel diffraction integral.
On small beams with large topological charge: II. Photons, electrons and gravitational waves
NASA Astrophysics Data System (ADS)
Krenn, Mario; Zeilinger, Anton
2018-06-01
Beams of light with a large topological charge significantly change their spatial structure when they are focused strongly. Physically, it can be explained by an emerging electromagnetic field component in the direction of propagation, which is neglected in the simplified scalar wave picture in optics. Here we ask: is this a specific photonic behavior, or can similar phenomena also be predicted for other species of particles? We show that the same modification of the spatial structure exists for relativistic electrons as well as for focused gravitational waves. However, this is for different physical reasons: for electrons, which are described by the Dirac equation, the spatial structure changes due to a spin–orbit coupling in the relativistic regime. In gravitational waves described with linearized general relativity, the curvature of space–time between the transverse and propagation direction leads to the modification of the spatial structure. Thus, this universal phenomenon exists for both massive and massless elementary particles with spin 1/2, 1 and 2. It would be very interesting whether other types of particles such as composite systems (neutrons or C60) or neutrinos show a similar behavior and how this phenomenon can be explained in a unified physical way.
On relativistic motion of a pair of particles having opposite signs of masses
NASA Astrophysics Data System (ADS)
Ivanov, Pavel B.
2012-12-01
In this methodological note, we consider, in a weak-fleld limit, the relativistic linear motion of two particles with masses of opposite signs and a small difference between their absolute values: m_{1,2}=+/- (\\mu+/- \\Delta \\mu) , \\mu \\gt 0, \\vert\\Delta \\mu \\vert \\ll\\mu. In 1957, H Bondi showed in the framework of both Newtonian analysis and General Relativity that, when the relative motion of particles is absent, such a pair can be accelerated indefinitely. We generalize the results of his paper to account for the small nonzero difference between the velocities of the particles. Assuming that the weak-field limit holds and the dynamical system is conservative, an elementary treatment of the problem based on the laws of energy and momentum conservation shows that the system can be accelerated indefinitely, or attain very large asymptotic values of the Lorentz factor \\gamma. The system experiences indefinite acceleration when its energy-momentum vector is null and the mass difference \\Delta \\mu \\le 0. When the modulus of the square of the norm of the energy-momentum vector, \\vert N^{\\,2}\\vert, is sufficiently small, the system can be accelerated to very large \\gamma \\propto \\vert N^{\\,2}\\vert^{-1}. It is stressed that, when only leading terms in the ratio of a characteristic gravitational radius to the distance between the particles are retained, our elementary analysis leads to equations of motion equivalent to those derived from relativistic weak-field equations of motion by Havas and Goldberg in 1962. Thus, in the weak-field approximation it is possible to bring the system to the state with extremely high values of \\gamma. The positive energy carried by the particle with positive mass may be conveyed to other physical bodies, say by intercepting this particle with a target. If we suppose that there is a process of production of such pairs and the particles with positive mass are intercepted, while the negative mass particles are expelled from the region of space occupied by the physical bodies of interest, this scheme could provide a persistent transfer of positive energy to the bodies, which may be classified as `perpetual motion of the third kind'. Additionally, we critically evaluate some recent claims regarding the problem.
The Gran Sasso Underground Laboratory
NASA Astrophysics Data System (ADS)
Coccia, Eugenio
2012-12-01
Thirty years have passed since, thanks to Antonino Zichichi, the project for the largest underground laboratory in the world was conceived and brought to the attention of Italian authorities. The Gran Sasso National Laboratories of INFN have become a scientific reality of worldwide pre-eminence, in an expanding area of research where elementary particle physics, astrophysics and cosmology overlap. I briefly present here the main scientific challenges of underground laboratories and the activity and future perspectives of the INFN Gran Sasso Laboratory.
Physical Activity Opportunity in United States Public Elementary Schools
ERIC Educational Resources Information Center
Beaulieu, Lisa; Butterfield, Stephen A.; Pratt, Phillip
2009-01-01
Recent evidence indicates that many elementary schools have curtailed recess and Physical Education (Morrow, Jackson & Payne 1999). These finding are at a variance with the goal of Healthy People 2010 to increase physical activity. The purpose of this study was to examine physical activity opportunities (PAO) in U. S. public elementary schools.…
Vassal, J-P; Orgéas, L; Favier, D; Auriault, J-L; Le Corre, S
2008-01-01
Many analytical and numerical works have been devoted to the prediction of macroscopic effective transport properties in particulate media. Usually, structure and properties of macroscopic balance and constitutive equations are stated a priori. In this paper, the upscaling of the transient diffusion equations in concentrated particulate media with possible particle-particle interfacial barriers, highly conductive particles, poorly conductive matrix, and temperature-dependent physical properties is revisited using the homogenization method based on multiple scale asymptotic expansions. This method uses no a priori assumptions on the physics at the macroscale. For the considered physics and microstructures and depending on the order of magnitude of dimensionless Biot and Fourier numbers, it is shown that some situations cannot be homogenized. For other situations, three different macroscopic models are identified, depending on the quality of particle-particle contacts. They are one-phase media, following the standard heat equation and Fourier's law. Calculations of the effective conductivity tensor and heat capacity are proved to be uncoupled. Linear and steady state continuous localization problems must be solved on representative elementary volumes to compute the effective conductivity tensors for the two first models. For the third model, i.e., for highly resistive contacts, the localization problem becomes simpler and discrete whatever the shape of particles. In paper II [Vassal, Phys. Rev. E 77, 011303 (2008)], diffusion through networks of slender, wavy, entangled, and oriented fibers is considered. Discrete localization problems can then be obtained for all models, as well as semianalytical or fully analytical expressions of the corresponding effective conductivity tensors.
PEAS AND PARTICLES, TEACHER'S GUIDE.
ERIC Educational Resources Information Center
1966
THIS TEACHER'S GUIDE IS DESIGNED FOR USE WITH AN ELEMENTARY SCIENCE STUDY UNIT ON "PEAS AND PARTICLES" WHICH DEALS WITH LARGE NUMBERS AND ESTIMATIONS. ITS PURPOSE IS TO GIVE ELEMENTARY SCHOOL CHILDREN AN UNDERSTANDING OF WHAT LARGE NUMBERS MEAN THROUGH INFORMAL ACTIVITIES INVOLVING FAMILIAR OBJECTS. THE MATERIAL HAS BEEN FOUND SUITABLE…
The uses of isospin in early nuclear and particle physics
NASA Astrophysics Data System (ADS)
Borrelli, Arianna
2017-11-01
This paper reconstructs the early history of isospin up to and including its employment in 1951sbnd 52 to conceptualize high-energy pion-proton scattering. Studying the history of isospin serves as an entry point for investigating the interplay of theoretical and experimental practices in early nuclear and particle physics, showing the complexity of processes of knowledge construction which have often been presented as straightforward both in physicists' recollections and in the historiography of science. The story of isospin has often been told in terms of the discovery of the first ;intrinsic property; of elementary particles, but I will argue that the isospin formalism emerged and was further developed because it proved to be a useful tool to match theory and experiment within the steadily broadening field of high-energy (nuclear) physics. Isospin was variously appropriated and adapted in the course of two decades, before eventually the physical-mathematical implications of its uses started being spelled out. The case study also highlights some interesting features of high-energy physics around 1950: the contribution to post-war research of theoretical methods developed before and during the war, the role of young theoretical post-docs in mediating between theorists and experimenters, and the importance of traditional formalisms such as those of spin and angular momentum as a template both for formalizing and conceptualizing experimental results.
Manifestations of the rotation and gravity of the Earth in high-energy physics experiments
NASA Astrophysics Data System (ADS)
Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.
2016-08-01
The inertial (due to rotation) and gravitational fields of the Earth affect the motion of an elementary particle and its spin dynamics. This influence is not negligible and should be taken into account in high-energy physics experiments. Earth's influence is manifest in perturbations in the particle motion, in an additional precession of the spin, and in a change of the constitutive tensor of the Maxwell electrodynamics. Bigger corrections are oscillatory, and their contributions average to zero. Other corrections due to the inhomogeneity of the inertial field are not oscillatory but they are very small and may be important only for the storage ring electric dipole moment experiments. Earth's gravity causes the Newton-like force, the reaction force provided by a focusing system, and additional torques acting on the spin. However, there are no observable indications of the electromagnetic effects due to Earth's gravity.
Topological superfluids with finite-momentum pairing and Majorana fermions.
Qu, Chunlei; Zheng, Zhen; Gong, Ming; Xu, Yong; Mao, Li; Zou, Xubo; Guo, Guangcan; Zhang, Chuanwei
2013-01-01
Majorana fermions (MFs), quantum particles that are their own antiparticles, are not only of fundamental importance in elementary particle physics and dark matter, but also building blocks for fault-tolerant quantum computation. Recently MFs have been intensively studied in solid state and cold atomic systems. These studies are generally based on superconducting pairing with zero total momentum. On the other hand, finite total momentum Cooper pairings, known as Fulde-Ferrell (FF) Larkin-Ovchinnikov (LO) states, were widely studied in many branches of physics. However, whether FF and LO superconductors can support MFs has not been explored. Here we show that MFs can exist in certain types of gapped FF states, yielding a new quantum matter: topological FF superfluids/superconductors. We demonstrate the existence of such topological FF superfluids and the associated MFs using spin-orbit-coupled degenerate Fermi gases and derive their parameter regions. The implementation of topological FF superconductors in semiconductor/superconductor heterostructures is also discussed.
High energy physics in cosmic rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Lawrence W.
2013-02-07
In the first half-century of cosmic ray physics, the primary research focus was on elementary particles; the positron, pi-mesons, mu-mesons, and hyperons were discovered in cosmic rays. Much of this research was carried out at mountain elevations; Pic du Midi in the Pyrenees, Mt. Chacaltaya in Bolivia, and Mt. Evans/Echo Lake in Colorado, among other sites. In the 1960s, claims of the observation of free quarks, and satellite measurements of a significant rise in p-p cross sections, plus the delay in initiating accelerator construction programs for energies above 100 GeV, motivated the Michigan-Wisconsin group to undertake a serious cosmic raymore » program at Echo Lake. Subsequently, with the succession of higher energy accelerators and colliders at CERN and Fermilab, cosmic ray research has increasingly focused on cosmology and astrophysics, although some groups continue to study cosmic ray particle interactions in emulsion chambers.« less
Sun, Haichun; Chen, Ang; Ennis, Catherine; Martin, Robert; Shen, Bo
2015-01-01
It has been demonstrated that situational interest in physical activity may derive from five dimensional sources, Novelty, Optimal Challenge, Attention Demand, Exploration Intent, and Instant Enjoyment. The purpose of this study was to examine the multidimensional sources in elementary school physical education. The five dimensions were measured in 5,717 students in third, fourth, and fifth grades from a random sample of 30 elementary schools. Students’ responses were randomly divided into two samples for a two-step confirmatory factor analysis. The results confirmed that the five dimensions are primary sources of situational interest for elementary school physical education. The findings implied that situational interest should be taken into account as a necessary curricular component in elementary physical education. PMID:18431952
Particles and forces. At the heart of matter. Readings from Scientific American magazine.
NASA Astrophysics Data System (ADS)
Carrigan, R. A., Jr.; Trower, W. P.
In this volume a selection of Scientific American articles chronicles the most recent developments in particle physics. In these twelve articles, distinguished physicists look at the tools, ideas, and experiments that shed light on events at the early moments of the universe, as well as the increasingly sophisticated instruments that will make further developments possible in the years to come. For the companion volume Particle physics in the cosmos see 49.003.059. Contents: Introduction. I. Ideas. 1. Elementary particles and forces (C. Quigg). 2. Quarks with color and flavor (S. L. Glashow). 3. The lattice theory of quark confinement (C. Rebbi). Postscript to Ideas (C. Quigg). II. Tools. 4. The next generation of particle accelerators (R. R. Wilson). 5. The Superconducting Super Collider (J. D. Jackson, M. Tigner, S. Wojcicki). Postscript to Tools (R. A. Carrigan Jr.). III. Weak interactions. 6. Heavy leptons (M. L. Perl, W. T. Kirk). 7. The search for intermediate vector bosons (D. B. Cline, C. Rubbia, S. van der Meer). IV. Strong interactions. 8. The Upsilon particle (L. M. Lederman). 9. Quarkonium (E. D. Bloom, G. J. Feldman). 10. Particles with naked beauty (N. B. Mistry, R. A. Poling, E. H. Thorndike). V. Now and beyond. 11. Superstrings (M. B. Green). 12. The structure of quarks and leptons (H. Harari). Postscript to Now and beyond (R. A. Carrigan Jr., W. P. Trower).
NASA Astrophysics Data System (ADS)
Hermann, Robert
1982-07-01
Recent work by Morrison, Marsden, and Weinstein has drawn attention to the possibility of utilizing the cosymplectic structure of the dual of the Lie algebra of certain infinite dimensional Lie groups to study hydrodynamical and plasma systems. This paper treats certain models arising in elementary particle physics, considered by Lee, Weinberg, and Zumino; Sugawara; Bardacki, Halpern, and Frishman; Hermann; and Dolan. The lie algebras involved are associated with the ''current algebras'' of Gell-Mann. This class of Lie algebras contains certain of the algebras that are called ''Kac-Moody algebras'' in the recent mathematics and mathematical physics literature.
Halyo; Kim; Lee; Lee; Loomba; Perl
2000-03-20
We have carried out a direct search in bulk matter for free fractional electric charge elementary particles using the largest mass single sample ever studied-about 17.4 mg of silicone oil. The search used an improved and highly automated Millikan oil drop technique. No evidence for fractional charge particles was found. The concentration of particles with fractional charge more than 0. 16e ( e being the magnitude of the electron charge) from the nearest integer charge is less than 4.71x10(-22) particles per nucleon with 95% confidence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lacroix, Florent
The standard model of particle physics describes the matter as elementary particles interacting via strong and electroweak interactions. The top quark is the heaviest quark described by this model and has been discovered in 1995 by CDF and D collaborations in proton-antiproton collisions at the Tevatron. This thesis is devoted to the measurement of the top pair production cross-section via the strong interaction, in a final state composed of one lepton, one hadronic tau, two b-jets and missing transverse energy. This analysis uses the 1,2 fb
ERIC Educational Resources Information Center
Chen, Weiyun
2014-01-01
This study examined the relationship between psychological needs satisfaction, motivational regulations in physical education and physical activity intention among elementary school students. A total of 291 elementary school students in grades 3-6 voluntarily completed the three measures. This study indicated that satisfaction of three basic…
The Elementary Physical Education Program: Quality and Sustainability in Pennsylvania
ERIC Educational Resources Information Center
Weimer, Alison
2013-01-01
This study examined enabling conditions related to implementing and sustaining a high-quality physical education program at three elementary schools in Pennsylvania. Physical education is being reduced or removed from elementary curriculums because of reduced school budgets and a strong focus on academic standards. Furthermore, the lack of…
The Strange Friendship of Pauli and Jung - When Physics Met Psychology
Miller, Arthur I.
2018-05-23
At a key time in his scientific development, Pauli was undergoing analysis by Jung. What can we learn about Pauli's discoveries of the exclusion principle and the CPT theorem, as well as his thoughts on non-conservation of parity, and his quest with Heisenberg for a unified field theory of elementary particles from Jungâs analysis of his dreams? A very different Pauli emerges, one at odds with esteemed colleagues such as Niels Bohr and Werner Heisenberg.
The Strange Friendship of Pauli and Jung - When Physics Met Psychology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Arthur I.
At a key time in his scientific development, Pauli was undergoing analysis by Jung. What can we learn about Pauli's discoveries of the exclusion principle and the CPT theorem, as well as his thoughts on non-conservation of parity, and his quest with Heisenberg for a unified field theory of elementary particles from Jung’s analysis of his dreams? A very different Pauli emerges, one at odds with esteemed colleagues such as Niels Bohr and Werner Heisenberg.
Marco Todeschini - Space Dynamics and Psycho-Biophysics
NASA Astrophysics Data System (ADS)
Teodorani, M.
2006-03-01
This book is dedicated to the theoretical and experimental research carried out in the 20-th century, by Italian engineer and technical physicist Marco Todeschini. It describes the subjects of "space dynamics" and "psycho-biophysics" - two related physical sciences - whose foundations lay in the existence of the ether and of the vortexes that all bodies with mass produce in it. An entirely new cosmology is derived in which all the bodies in the universe - elementary particles, astronomical bodies, and the human being - are strictly related together.
NASA Astrophysics Data System (ADS)
Strocchi, Franco
These notes essentially reproduce lectures given at the International School for Advanced Studies (Trieste) and at the Scuola Normale Superiore (Pisa) on various occasions. The scope of the short series of lectures, typically a fraction of a one-semester course, was to explain on general grounds, also to mathematicians, the phenomenon of Spontaneous Symmetry Breaking (SSB), a mechanism which seems at the basis of most of the recent developments in theoretical physics (from Statistical Mechanics to Many-Body theory and to Elementary Particle theory).
Einstein's Biggest Blunder: A Cosmic Mystery Story
Krauss, Lawrence
2018-01-11
The standard model of cosmology built up over 20 years is no longer accepted as accurate. New data suggest that most of the energy density of the universe may be contained in empty space. Remarkably, this is exactly what would be expected if Einstein's cosmological constant really exists. If it does, its origin is the biggest mystery in physics and presents huge challenges for the fundamental theories of elementary particles and fields. Krauss explains Einstein's concept and describes its possible implications.
Dressed photons from the viewpoint of photon localization: the entrance to the off-shell science
NASA Astrophysics Data System (ADS)
Saigo, Hayato; Ojima, Izumi; Ohtsu, Motoichi
2017-12-01
In the present paper, a new aspect of the interplay is examined between mathematical-physical arguments and light-matter fusion technologies in terms of the concept of "effective mass", starting from a question: Who has seen a free photon? Owing to the general results due to Newton-Wigner and to Wightman, a position operator is absent for massless free particles with non-zero finite spins, and hence, we cannot observe free photons in any local space regions. To solve this paradox of "photon localization", the effective mass of a photon needs to be generated through the couplings of photons with matter. Here "polaritons" picture as a basic notion in optical and solid physics is shown to verify this viewpoint, which is seen to apply also to more general settings . Focusing on the role played by nanoparticles, we reach a new look at the notion of "dressed photons" as off-shell particles. The perspective above shows that essential mathematical structure of quantum field theory for the so-called elementary particles in subatomic scale can also be applied to certain phenomena in the nano-scale.
FOREWORD: Corfu Summer Institute on Elementary Particle Physics (CORFU2005)
NASA Astrophysics Data System (ADS)
Anagnostopoulos, Konstantinos; Antoniadis, Ignatios; Fanourakis, George; Kehagias, Alexandros; Savoy-Navarro, Aurore; Wess, Julius; Zoupanos, George
2006-12-01
These are the Proceedings of the Corfu Summer Institute on Elementary Particle Physics (CORFU2005) (http://corfu2005.physics.uoi.gr), which took place in Corfu, Greece from 4 - 26 September 2005. The Corfu Summer Institute has a very long, interesting and successful history, some elements of which can be found in http://www.corfu-summer-institute.gr. In short, the Corfu Meeting started as a Summer School on Elementary Particle Physics (EPP) mostly for Greek graduate students in 1982 and has developed into a leading international Summer Institute in the field of EPP, both experimental and theoretical, providing in addition a very rich outreach programme to teachers and school students. The CORFU2005 Summer Institute on EPP, although based on the general format that has been developed and established in the Corfu Meetings during previous years, is characterized by the fact that it was a full realization of a new idea, which started experimentally in the previous two Corfu Meetings. The successful new ingredient was that three European Marie Curie Research Training Networks decided to hold their Workshops in Corfu during September 2005 and they managed to coordinate the educational part of their meetings to a huge Summer School called `The 8th Hellenic School on Elementary Particle Physics' (4 - 11 September). The European Networks which joined forces to materialize this project and the corresponding dates of their own Workshops are:
Physical Activity and U.S. Public Elementary Schools: Implications for Our Profession
ERIC Educational Resources Information Center
Beaulieu, Lisa; Butterfield, Stephen A.; Mason, Craig A.; Loovis, E. Michael
2012-01-01
Childhood obesity in the U.S. has reached crisis proportion. In response, public elementary schools have embarked on various methods to increase children's physical activity. The purpose of this study was to examine strategies by United States public elementary schools to increase children's physical activity. Of particular concern was how…
Teaching the Conceptual Scheme "The Particle Nature of Matter" in the Elementary School.
ERIC Educational Resources Information Center
Pella, Milton O.; And Others
Conclusions of an extensive project aimed to prepare lessons and associated materials related to teaching concepts included in the scheme "The Particle Nature of Matter" for grades two through six are presented. The hypothesis formulated for the project was that children in elementary schools can learn theoretical concepts related to the particle…
Big Bang Day: 5 Particles - 3. The Anti-particle
None
2017-12-09
Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existence be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.
Big Bang Day: 5 Particles - 3. The Anti-particle
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-10-07
Simon Singh looks at the stories behind the discovery of 5 of the universe's most significant subatomic particles: the Electron, the Quark, the Anti-particle, the Neutrino and the "next particle". 3. The Anti-particle. It appears to be the stuff of science fiction. Associated with every elementary particle is an antiparticle which has the same mass and opposite charge. Should the two meet and combine, the result is annihilation - and a flash of light. Thanks to mysterious processes that occurred after the Big Bang there are a vastly greater number of particles than anti-particles. So how could their elusive existencemore » be proved? At CERN particle physicists are crashing together subatomic particles at incredibly high speeds to create antimatter, which they hope will finally reveal what happened at the precise moment of the Big Bang to create the repertoire of elementary particles and antiparticles in existence today.« less
An Integrated Earth Science, Astronomy, and Physics Course for Elementary Education Majors
ERIC Educational Resources Information Center
Plotnick, Roy E.; Varelas, Maria; Fan, Qian
2009-01-01
Physical World is a one-semester course designed for elementary education majors, that integrates earth science, astronomy, and physics. The course is part of a four-course set that explores science concepts, processes, and skills, along with the nature of scientific practice, that are included in state and national standards for elementary school…
ERIC Educational Resources Information Center
Keating, Xiaofen D.; Shangguan, Rulan; Zhou, Ke; Fan, Yao; Liu, Jingwen; Harrison, Louis
2017-01-01
The purposes of this project were to conduct an overall review of research on preservice physical education (PE) teacher (referred to preservice PE teachers as preservice specialist) and/or preservice elementary teacher (referred to preservice elementary teachers as preservice generalist) PE identities and to identify any new trends in research on…
Elementary particles, dark matter candidate and new extended standard model
NASA Astrophysics Data System (ADS)
Hwang, Jaekwang
2017-01-01
Elementary particle decays and reactions are discussed in terms of the three-dimensional quantized space model beyond the standard model. Three generations of the leptons and quarks correspond to the lepton charges. Three heavy leptons and three heavy quarks are introduced. And the bastons (new particles) are proposed as the possible candidate of the dark matters. Dark matter force, weak force and strong force are explained consistently. Possible rest masses of the new particles are, tentatively, proposed for the experimental searches. For more details, see the conference paper at https://www.researchgate.net/publication/308723916.
Non-equilibrium mechanisms of light in the microwave region
NASA Astrophysics Data System (ADS)
Mortenson, Juliana H. J.
2011-09-01
Quantum mechanics and quantum chemistry have taught for more than 100 years that "photons" associated with microwaves cannot exert photochemical effects because their "photon energies" are smaller than chemical bond energies. Those quantum theories have been strongly contradicted within the last few decades by physical experiments demonstrating non-equilibrium, photochemical and photomaterial activity by microwaves. Reactions among scientists to these real physical models and proofs have varied from disbelief and denial, to acceptance of the real physical phenomena and demands for revisions to quantum theory. At the previous "Nature of Light" meeting, an advance in the foundations of quantum mechanics was presented. Those discoveries have revealed the source of these conflicts between quantum theory and microwave experiments. Critical variables and constants were missing from quantum theory due to a minor mathematical inadvertence in Planck's original quantum work. As a result, erroneous concepts were formed nearly a century ago regarding the energetics and mechanisms of lower frequency light, such as in the microwave region. The new discoveries have revealed that the traditional concept of "photons" mistakenly attributed elementary particle status to what is actually an arbitrarily time-based collection of sub-photonic, elementary particles. In a mathematical dimensional sense, those time-based energy measurements cannot be mathematically equivalent to bond energies as historically believed. Only an "isolated quantity of energy", as De Broglie referred to it, can be equivalent to bond energy. With the aid of the new variables and constants, the non-equilibrium mechanisms of light in the microwave region can now be described. They include resonant absorption, splitting frequency stimulation leading to electronic excitation, and resonant acoustic transduction. Numerous practical engineering applications can be envisioned for non-equilibrium microwaves.
REVIEWS OF TOPICAL PROBLEMS: Elementary particles and cosmology (Metagalaxy and Universe)
NASA Astrophysics Data System (ADS)
Rozental', I. L.
1997-08-01
The close relation between cosmology and the theory of elementary particles is analyzed in the light of prospects of a unified field theory. The unity of their respective problems and solution methodologies is indicated. The difference between the concepts of 'Metagalaxy' and 'Universe' is emphasized and some possible schemes for estimating the size of the Universe are pointed out.
A study of how the particle spectra of SU(N) gauge theories with a fundamental Higgs emerge
NASA Astrophysics Data System (ADS)
Törek, Pascal; Maas, Axel; Sondenheimer, René
2018-03-01
In gauge theories, the physical, experimentally observable spectrum consists only of gauge-invariant states. In the standard model the Fröhlich-Morchio-Strocchi mechanism shows that these states can be adequately mapped to the gauge-dependent elementary W, Z, Higgs, and fermions. In theories with a more general gauge group and Higgs sector, appearing in various extensions of the standard model, this has not to be the case. In this work we determine analytically the physical spectrum of SU(N > 2) gauge theories with a Higgs field in the fundamental representation. We show that discrepancies between the spectrum predicted by perturbation theory and the observable physical spectrum arise. We confirm these analytic findings with lattice simulations for N = 3.
Searches for New Physics in the Top Sector at the Tevatron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Yvonne
2012-05-01
The top quark, discovered in 1995 by the CDF and D0 collaborations at the Tevatron collider at Fermilab, is the heaviest known elementary particle today. Due to its high mass and short lifetime, the top quark plays a special role in searching for physics beyond the Standard Model. In this article, recent results of searches for new physics in the top sector, performed by CDF and D0, are presented. In particular, we discuss the search for ttbar resonances, for tj resonances, the search for heavy fourth generation quarks, for dark matter produced in association with single tops, the study ofmore » anomalous couplings, the search for boosted top quarks as well as the analysis of Lorentz Invariance violation in the top quark sector.« less
A source of antihydrogen for in-flight hyperfine spectroscopy
Kuroda, N.; Ulmer, S.; Murtagh, D. J.; Van Gorp, S.; Nagata, Y.; Diermaier, M.; Federmann, S.; Leali, M.; Malbrunot, C.; Mascagna, V.; Massiczek, O.; Michishio, K.; Mizutani, T.; Mohri, A.; Nagahama, H.; Ohtsuka, M.; Radics, B.; Sakurai, S.; Sauerzopf, C.; Suzuki, K.; Tajima, M.; Torii, H. A.; Venturelli, L.; Wu¨nschek, B.; Zmeskal, J.; Zurlo, N.; Higaki, H.; Kanai, Y.; Lodi Rizzini, E.; Nagashima, Y.; Matsuda, Y.; Widmann, E.; Yamazaki, Y.
2014-01-01
Antihydrogen, a positron bound to an antiproton, is the simplest antiatom. Its counterpart—hydrogen—is one of the most precisely investigated and best understood systems in physics research. High-resolution comparisons of both systems provide sensitive tests of CPT symmetry, which is the most fundamental symmetry in the Standard Model of elementary particle physics. Any measured difference would point to CPT violation and thus to new physics. Here we report the development of an antihydrogen source using a cusp trap for in-flight spectroscopy. A total of 80 antihydrogen atoms are unambiguously detected 2.7 m downstream of the production region, where perturbing residual magnetic fields are small. This is a major step towards precision spectroscopy of the ground-state hyperfine splitting of antihydrogen using Rabi-like beam spectroscopy. PMID:24448273
McIver, Kerry L.; Brown, William H.; Pfeiffer, Karin A.; Dowda, Marsha; Pate, Russell R.
2016-01-01
Purpose This study describes the development and pilot testing of the Observational System for Recording Physical Activity-Elementary School (OSRAC-E) version. Methods This system was developed to observe and document the levels and types of physical activity and physical and social contexts of physical activity in elementary school students during the school day. Inter-observer agreement scores and summary data were calculated. Results All categories had Kappa statistics above 0.80, with the exception of the activity initiator category. Inter-observer agreement scores were 96% or greater. The OSRAC-E was shown to be a reliable observation system that allows researchers to assess physical activity behaviors, the contexts of those behaviors, and the effectiveness of physical activity interventions in the school environment. Conclusion The OSRAC-E can yield data with high interobserver reliability and provide relatively extensive contextual information about physical activity of students in elementary schools. PMID:26889587
ERIC Educational Resources Information Center
Matthews, Tracey D.; O'Neill, Elizabeth; Kostelis, Kimberly T.; Jaffe, Daniel; Vitti, Steven; Quinlan, Melissa; Boland, Michelle
2015-01-01
Background: Identifying lifestyle factors such as physical activity (PA) patterns and eating behaviors of children may be beneficial in implementing interventions in urban elementary schools. Purpose: To examine PA levels and self-efficacy (SE) in PA and health eating (HE) of third, fourth, and fifth graders in 3 low economic elementary schools in…
Teaching College Physics at the Local Elementary School
NASA Astrophysics Data System (ADS)
Hagedorn, Eric A.
2006-12-01
For several years physics faculty at the University of Texas at El Paso (UTEP) have taught physics to pre-service elementary and middle school teachers in an unusual location: the local elementary school! The participating pre-service elementary and middle school teachers are typically in their last semester and are fully immersed in their internships (called "student teaching" elsewhere. See Fig. 1). Rather than bringing the students back to campus for class during four of their field semesters, UTEP sends education, mathematics, and physics faculty out to the schools as part of what is referred to as the "field-based program" (FBP) even though some of this program occurs on campus.
Quantum interference experiments with large molecules
NASA Astrophysics Data System (ADS)
Nairz, Olaf; Arndt, Markus; Zeilinger, Anton
2003-04-01
Wave-particle duality is frequently the first topic students encounter in elementary quantum physics. Although this phenomenon has been demonstrated with photons, electrons, neutrons, and atoms, the dual quantum character of the famous double-slit experiment can be best explained with the largest and most classical objects, which are currently the fullerene molecules. The soccer-ball-shaped carbon cages C60 are large, massive, and appealing objects for which it is clear that they must behave like particles under ordinary circumstances. We present the results of a multislit diffraction experiment with such objects to demonstrate their wave nature. The experiment serves as the basis for a discussion of several quantum concepts such as coherence, randomness, complementarity, and wave-particle duality. In particular, the effect of longitudinal (spectral) coherence can be demonstrated by a direct comparison of interferograms obtained with a thermal beam and a velocity selected beam in close analogy to the usual two-slit experiments using light.
Bosonization of free Weyl fermions
NASA Astrophysics Data System (ADS)
Marino, E. C.
2017-03-01
We generalize the method of bosonization, in its complete form, to a spacetime with 3 + 1 dimensions, and apply it to free Weyl fermion fields, which thereby, can be expressed in terms of a boson field, namely the Kalb-Ramond anti-symmetric tensor gauge field. The result may have interesting consequences both in condensed matter and in particle physics. In the former, the bosonized form of the Weyl chiral currents provides a simple explanation for the angle-dependent magneto-conductance recently observed in materials known as Weyl semimetals. In the latter, conversely, since electrons can be thought of as a combination of left and right Weyl fermions, our result suggests the possibility of a unified description of the elementary particles, which undergo the fundamental interactions, with the mediators of such interactions, namely, the gauge fields. This would fulfill the pioneering attempt of Skyrme, to unify the particles with their interaction mediators (Skyrme 1962 Nucl. Phys. 31 556).
Pair production in the gravitational field of a cosmic string
NASA Astrophysics Data System (ADS)
Harari, Diego D.; Skarzhinsky, Vladimir D.
1990-04-01
We show that many elementary particle physics processes, such as pair production by a high energy photon, that take place in Minkowski space only if a non-uniform external field provides for momentum non-conservation, do occur in the space-time around a straight cosmic string, even though the space is locally flat and there is no local gravitational potential. We exemplify this mechanism through the evaluation of the cross section per unit length of string for the decay of a massless scalar particle into a pair of massive particles. The cross sections for this kind of processes are typically small. Nevertheless, it is interesting to realize how these reactions occur due to topological properties of space, rather than to the action of a local field. V.S. is grateful to Mario Castagnino for hospitality at the Instituto de Astronomía y Física del Espacio during a visit while this work was done.
NASA Technical Reports Server (NTRS)
Canuto, V.
1975-01-01
The papers deal with the role of magnetism in astrophysics and the properties of matter in the presence of unusually large magnetic fields. Topics include a quantum-mechanical treatment of high-energy charged particles radiating in a homogeneous magnetic field, the solution and properties of the Dirac equation for magnetic fields of any strength up to 10 to the 13th power gauss, experimental difficulties encountered and overcome in generating megagauss fields, the effect of strong radiation damping for an ultrarelativistic charge in an external electromagnetic field, magnetic susceptibilities of nuclei and elementary particles, and Compton scattering in strong external electromagnetic fields. Other papers examine static uniform electric and magnetic polarizabilities of the vacuum in arbitrarily strong magnetic fields, quantum-mechanical processes in neutron stars, basic ideas of mean-field magnetohydrodynamics, helical MHD turbulence, relations between cosmic and laboratory plasma physics, and insights into the nature of magnetism provided by relativity and cosmology. Individual items are announced in this issue.
The LHCf experiment at the LHC: Physics Goals and Status
NASA Astrophysics Data System (ADS)
Tricomi, A.; Adriani, O.; Bonechi, L.; Bongi, M.; Castellini, G.; D'Alessandro, R.; Faus, A.; Fukui, K.; Haguenauer, M.; Itow, Y.; Kasahara, K.; Macina, D.; Mase, T.; Masuda, K.; Matsubara, Y.; Menjo, H.; Mizuishi, M.; Muraki, Y.; Papini, P.; Perrot, A. L.; Ricciarini, S.; Sako, T.; Shimizu, Y.; Taki, K.; Tamura, T.; Torii, S.; Turner, W. C.; Velasco, J.; Viciani, A.; Yoshida, K.
2009-12-01
The LHCf experiment is the smallest of the six experiments installed at the Large Hadron Collider (LHC). While the general purpose detectors have been mainly designed to answer the open questions of Elementary Particle Physics, LHCf has been designed as a fully devoted Astroparticle experiment at the LHC. Indeed, thanks to the excellent performances of its double arm calorimeters, LHCf will be able to measure the flux of neutral particles produced in p-p collisions at LHC in the very forward region, thus providing an invaluable help in the calibration of air-shower Monte Carlo codes currently used for modeling cosmic rays interactions in the Earth atmosphere. Depending on the LHC machine schedule, LHCf will take data in an energy range from 900 GeV up to 14 TeV in the centre of mass system (equivalent to 10 eV in the laboratory frame), thus covering one of the most interesting and debated region of the Cosmic Ray spectrum, the region around and beyond the "knee".
Search for an Electric Dipole Moment (EDM) of 199Hg
NASA Astrophysics Data System (ADS)
Heckel, Blayne
2017-04-01
The observation of a non-zero EDM of an atom or elementary particle, at current levels of experimental sensitivity, would imply CP violation beyond the CKM matrix of the standard model of particle physics. Additional sources of CP violation have been proposed to help explain the excess of matter over anti-matter in our universe and the magnitude of ΘQCD, the strength of CP violation in the strong interaction, remains unknown. We have recently completed a set of measurements on the EDM of 199Hg, sensitive to both new sources of CP violation and ΘQCD. The experiment compares the phase accumulated by precessing Hg spins in vapor cells with electric fields parallel and anti-parallel to a common magnetic field. Our new result represents a factor of 5 improvement over previous results. A description of the EDM experiment, data, systematic error considerations will be presented. This work was supported by NSF Grant No. 1306743 and by the DOE Office of Nuclear Physics under Award No. DE-FG02-97ER41020.
[Carl Friedrich von Weizsäcker's design of a unity of physics].
Görnitz, Thomas
2014-01-01
As I learned in many conversations with Carl Friedrich von Weizsäcker, he saw his place in the history of science deriving from his "Theory of Urs". This theory will establish the unity of science on the basis of quantum bits. Any attempts to find some "fundamental bricks"--of whatever kind--must fail because of the antinomies of atomism. An abstract quantum bit is a structure quantum that cannot be conceived as a particle in space and time. However, it is clear, solely for logical reasons, that a quantum bit is an ultimate and indecomposable entity. Weizsäcker's revolutionary goal was--already 50 years ago--to unite quantum theory with cosmology and, on these grounds, proceed to a theory of elementary particles. The article gives a short overview of Weizsäcker's approach to the unity of physics, ending with a brief summary of what has been achieved in that endeavour up to now.
Elementary Particles and Weak Interactions
DOE R&D Accomplishments Database
Lee, T. D.; Yang, C. N.
1957-01-01
Some general patterns of interactions between various elementary particles are reviewed and some general questions concerning the symmetry properties of these particles are studied. Topics are included on the theta-tau puzzle, experimental limits on the validity of parity conservation, some general discussions on the consequences due to possible non-invariance under P, C, and T, various possible experimental tests on invariance under P, C, and T, a two-component theory of the neutrino, a possible law of conservation of leptons and the universal Fermi interactions, and time reversal invariance and Mach's principle. (M.H.R.)
Entropy inequality and hydrodynamic limits for the Boltzmann equation.
Saint-Raymond, Laure
2013-12-28
Boltzmann brought a fundamental contribution to the understanding of the notion of entropy, by giving a microscopic formulation of the second principle of thermodynamics. His ingenious idea, motivated by the works of his contemporaries on the atomic nature of matter, consists of describing gases as huge systems of identical and indistinguishable elementary particles. The state of a gas can therefore be described in a statistical way. The evolution, which introduces couplings, loses part of the information, which is expressed by the decay of the so-called mathematical entropy (the opposite of physical entropy!).
ERIC Educational Resources Information Center
Masin, Sergio Cesare; Crivellaro, Francesco; Varotto, Diego
2014-01-01
The research field of intuitive physics focuses on discrepancies between theoretical and intuitive physical knowledge. Consideration of these discrepancies can help in the teaching of elementary physics. However, evidence shows that theoretical and intuitive physical knowledge may also be congruent. Physics teaching could further benefit from…
Proto-experiences and subjective experiences: classical and quantum concepts.
Vimal, Ram Lakhan Pandey
2008-03-01
Deterministic reductive monism and non-reductive substance dualism are two opposite views for consciousness, and both have serious problems. An alternative view is needed. For this, we hypothesize that strings or elementary particles (fermions and bosons) have two aspects: (i) elemental proto-experiences (PEs) as phenomenal aspect, and (ii) mass, charge, and spin as material aspect. Elemental PEs are hypothesized to be the properties of elementary particles and their interactions, which are composed of irreducible fundamental subjective experiences (SEs)/PEs that are in superimposed form in elementary particles and in their interactions. Since SEs/PEs are superimposed, elementary particles are not specific to any SE/PE; they (and all inert matter) are carriers of SEs/PEs, and hence, appear as non-experiential material entities. Furthermore, our hypothesis is that matter and associated elemental PEs co-evolved and co-developed into neural-nets and associated neural-net PEs (neural Darminism), respectively. The signals related to neural PEs interact in a neural-net and neural-net PEs emerges from random process of self-organization. The neural-net PEs are a set of SEs embedded in the neural-net by a non-computational or non-algorithmic process. The non-specificity of elementary particles is transformed into the specificity of neural-nets by neural Darwinism. The specificity of SEs emerges when feedforward and feedback signal interacts in the neuropil and are dependent on wakefulness (i.e., activation) attention, re-entry between neural populations, working memory, stimulus at above threshold, and neural net PE signals. This PE-SE framework integrates reductive and non-reductive views, complements the existing models, bridges the explanatory gaps, and minimizes the problem of causation.
ERIC Educational Resources Information Center
Park, Yongnam
2017-01-01
This study examines the issues pertaining to South Korea's elementary physical education (PE) performance assessment, using an assessment literacy (Hay & Penney, 2013) perspective to propose future directions. Eight elementary teachers currently teaching PE were selected as participants. Data were collected through semi-structured in-depth…
Cypriot Urban Elementary Students' Attitude toward Physical Education
ERIC Educational Resources Information Center
Constantinides, Panos; Silverman, Stephen
2018-01-01
Purpose: This study examined the attitudes of Cypriot elementary school students toward physical education. Fourth, fifth and sixth grade students (N = 763) from six urban Cypriot elementary schools completed an attitude instrument. Methods: Adapting the attitude instrument for Greek-speaking students an extensive two-step pilot study showed the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zadora, A. S., E-mail: as.zadora@physics.msu.ru
The objective of the present study is to consider in more detail the exotic color-charge-glow effect discovered recently and to analyze its possible physical manifestations associated with the treatment of ensembles of color-charged particles at a classical level. The ways in which this effect may appear in arbitrary systems consisting of pointlike massive particles and admitting the partition into elementary configurations like color charges and color dipoles are studied. The possible influence of this effect on particle dynamics (in particular, on gluon distributions) is also examined. Particle collisions at a given impact parameters are considered for a natural regularization ofmore » emerging expressions. It is shown that, in the case of reasonable impact-parameter values, collisions may proceed in the electrodynamic mode, in which case the charge-glow contribution to field strengths is suppressed in relation to what we have in the electrodynamic picture. From an analysis of the color-echo situation, it follows that the above conclusion remains valid for more complicated particle configurations as well, since hard gluon fields may arise only owing to a direct collision rather than owing to any echo-like effects.« less
Constraining in-medium nucleon-nucleon interactions via nucleus-nucleus reactions
NASA Astrophysics Data System (ADS)
Sammarruca, Francesca; White, Larz
2010-11-01
The nuclear equation of state is a broadly useful tool. Besides being the main input of stellar structure calculations, it allows a direct connection to the physics of nuclei. For instance, an energy functional (such as a mass formula), together with the energy/particle in nuclear matter, can be used to predict nuclear energies and radii [1]. The single-particle properties are also a key point to link infinite nuclear matter and actual nuclei. The parameters of the single-particle potential, in particular the effective mass, enter the calculations of, for instance, in-medium effective cross sections. From the well-known Glauber reaction theory, the total nucleus-nucleus reaction cross section is expressed in terms of the nuclear transparency, which, in turn, depends on the overlap of the nuclear density distributions and the elementary nucleon-nucleon (NN) cross sections. We explore the sensitivity of the reaction calculation to medium modifications of the NN cross sections to estimate the likelihood of constraining the latter through nuclear reactions. Ultimately, we wish to incorporate isospin asymmetry in the reaction model, having in mind connections with rare isotopes. [1] F. Sammarruca, arXiv:1002.00146 [nucl-th]; International Journal of Modern Physics, in press.
The Influence of Physical Education on Physical Activity Levels of Urban Elementary Students
ERIC Educational Resources Information Center
Dauenhauer, Brian D.; Keating, Xiaofen D.
2011-01-01
The purpose of this study was to examine the role of physical education in shaping physical activity patterns. Seventy-one Hispanic and African American elementary students participated in the study. Students attended one 30- and one 60-min physical education class weekly. Pedometer steps were used to estimate physical activity. Data suggest that…
Dogs, Cats, and Kids: Integrating Yoga into Elementary Physical Education
ERIC Educational Resources Information Center
Toscano, Lisa; Clemente, Fran
2008-01-01
This article describes the benefits of integrating yoga into elementary physical education classes. Taught as warm-up exercises or as an entire class, yoga offers children of any age and physical ability the opportunity to experience success in physical activity. Children need to experience joy while participating in physical activity in order to…
ERIC Educational Resources Information Center
Faulkner, Guy E. J.; Dwyer, John J. M.; Irving, Hyacinth; Allison, Kenneth R.; Adlaf, Edward M.; Goodman, Jack
2008-01-01
Research supports the position that specialists are the preferred providers of physical education in elementary (primary) school settings. We examined whether specialists delivered more physical education lessons and provided greater opportunities for moderate and vigorous physical activity and whether barriers to curricular and extracurricular…
ERIC Educational Resources Information Center
Santiago, Jose A.; Disch, James G.; Morales, Julio
2012-01-01
The purpose of this study was to examine elementary physical education teachers' content knowledge of physical activity and health-related fitness. Sixty-four female and 24 male teachers completed the Appropriate Physical Activity and Health-Related Fitness test. Descriptive statistics results indicated that the mean percentage score for the test…
Survey of Physical Activity in Elementary School Classrooms in the State of Virginia
ERIC Educational Resources Information Center
Elmakis, Gail Smith
2010-01-01
Elementary school age children engage in levels of physical activity that are well below recommended guidelines. It has been suggested that classroom teachers can assist in remedying the problem by providing physical activity breaks and physical activity embedded in instruction. This study utilized the instrument, Physical Activity in the…
An Application of the Trans-Contextual Model of Motivation in Elementary School Physical Education
ERIC Educational Resources Information Center
Ntovolis, Yannis; Barkoukis, Vassilis; Michelinakis, Evaggelos; Tsorbatzoudis, Haralambos
2015-01-01
Elementary school physical education can play a prominent role in promoting children's leisure-time physical activity. The trans-contextual model of motivation has been proven effective in describing the process through which school physical education can affect students' leisure-time physical activity. This model has been tested in secondary…
The dark components of the Universe are slowly clarified
NASA Astrophysics Data System (ADS)
Burdyuzha, V. V.
2017-02-01
The dark sector of the Universe is beginning to be clarified step by step. If the dark energy is vacuum energy, then 123 orders of this energy are reduced by ordinary physical processes. For many years, these unexplained orders were called a crisis of physics. There was indeed a "crisis" before the introduction of the holographic principle and entropic force in physics. The vacuum energy was spent on the generation of new quantum states during the entire life of the Universe, but in the initial period of its evolution the vacuum energy (78 orders) were reduced more effectively by the vacuum condensates produced by phase transitions, because the Universe lost the high symmetry during its expansion. Important problems of physical cosmology can be solved if the quarks, leptons, and gauge bosons are composite particles. The dark matter, partially or all consisting of familon-type pseudo-Goldstone bosons with a mass of 10—5-10-3 eV, can be explained in the composite model. Three generations of elementary particles are absolutely necessary in this model. In addition, this model realizes three relativistic phase transitions in a medium of familons at different redshifts, forming a large-scale structure of dark matter that was "repeated" by baryons. We predict the detection of dark energy dynamics, the detection of familons as dark matter particles, and the development of spectroscopy for the dark medium due to the probable presence of dark atoms in it. Other viewpoints on the dark components of the Universe are also discussed briefly.
FINAL REPORT: GEOMETRY AND ELEMENTARY PARTICLE PHYSICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, Isadore M.
2008-03-04
The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists’ quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energymore » for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.« less
The Multi-Universe Cosmos. The Origin and Fate of our Universe
NASA Astrophysics Data System (ADS)
Velan, Karel
18 billion yers ago our Universe, one of many in the Cosmos, emerged from a hot, dense fireball of matter and energy created in the 4-dimensional cosmic space-time from virtual particles receiving their rest mass from a powerful primordial radiation field, the missing link to any viable theory of creation. The cloud of elementary particles and radiation collapsed by gravity into a fireball until its trappped thermal radiation caused a titanic explosion that initiated the expansion and evolution of ours universe. As the universe expanded and cooled it spawned galaxies, stars, planets and life. Proven laws of physics, observationsl data and mathematical computations support the new cosmological model which proposes a large number of universes in the cosmos in varying stages of evolution
Final Report: High Energy Physics Program (HEP), Physics Department, Princeton University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callan, Curtis G.; Gubser, Steven S.; Marlow, Daniel R.
The activities of the Princeton Elementary particles group funded through Department of Energy Grant# DEFG02-91 ER40671 during the period October 1, 1991 through January 31, 2013 are summarized. These activities include experiments performed at Brookhaven National Lab; the CERN Lab in Geneva, Switzerland; Fermilab; KEK in Tsukuba City, Japan; the Stanford Linear Accelerator Center; as well as extensive experimental and the- oretical studies conducted on the campus of Princeton University. Funded senior personnel include: Curtis Callan, Stephen Gubser, Valerie Halyo, Daniel Marlow, Kirk McDonald, Pe- ter Meyers, James Olsen, Pierre Pirou e, Eric Prebys, A.J. Stewart Smith, Frank Shoemaker (deceased),more » Paul Steinhardt, David Stickland, Christopher Tully, and Liantao Wang.« less
ERIC Educational Resources Information Center
Roberts, Simon J.; Fairclough, Stuart J.; Ridgers, Nicola D.; Porteous, Conor
2013-01-01
Objective: The purpose of the present study was to assess children's physical activity, social play behaviour, activity type and social interactions during elementary school recess using a pre-validated systematic observation system. Design: Cross-sectional. Setting: Two elementary schools located in Merseyside, England. Method: Fifty-six…
Physical and Constructive (Limiting) Criterions of Gear Wheels Wear
NASA Astrophysics Data System (ADS)
Fedorov, S. V.
2018-01-01
We suggest using a generalized model of friction - the model of elastic-plastic deformation of the body element, which is located on the surface of the friction pairs. This model is based on our new engineering approach to the problem of friction-triboergodynamics. Friction is examined as transformative and dissipative process. Structural-energetic interpretation of friction as a process of elasto-plastic deformation and fracture contact volumes is proposed. The model of Hertzian (heavy-loaded) friction contact evolution is considered. The least wear particle principle is formulated. It is mechanical (nano) quantum. Mechanical quantum represents the least structural form of solid material body in conditions of friction. It is dynamic oscillator of dissipative friction structure and it can be examined as the elementary nanostructure of metal’s solid body. At friction in state of most complete evolution of elementary tribosystem (tribocontact) all mechanical quanta (subtribosystems) with the exception of one, elasticity and reversibly transform energy of outer impact (mechanic movement). In these terms only one mechanical quantum is the lost - standard of wear. From this position we can consider the physical criterion of wear and the constructive (limiting) criterion of gear teeth and other practical examples of tribosystems efficiency with new tribology notion - mechanical (nano) quantum.
Soluyanov, Alexey A; Gresch, Dominik; Wang, Zhijun; Wu, QuanSheng; Troyer, Matthias; Dai, Xi; Bernevig, B Andrei
2015-11-26
Fermions--elementary particles such as electrons--are classified as Dirac, Majorana or Weyl. Majorana and Weyl fermions had not been observed experimentally until the recent discovery of condensed matter systems such as topological superconductors and semimetals, in which they arise as low-energy excitations. Here we propose the existence of a previously overlooked type of Weyl fermion that emerges at the boundary between electron and hole pockets in a new phase of matter. This particle was missed by Weyl because it breaks the stringent Lorentz symmetry in high-energy physics. Lorentz invariance, however, is not present in condensed matter physics, and by generalizing the Dirac equation, we find the new type of Weyl fermion. In particular, whereas Weyl semimetals--materials hosting Weyl fermions--were previously thought to have standard Weyl points with a point-like Fermi surface (which we refer to as type-I), we discover a type-II Weyl point, which is still a protected crossing, but appears at the contact of electron and hole pockets in type-II Weyl semimetals. We predict that WTe2 is an example of a topological semimetal hosting the new particle as a low-energy excitation around such a type-II Weyl point. The existence of type-II Weyl points in WTe2 means that many of its physical properties are very different to those of standard Weyl semimetals with point-like Fermi surfaces.
Theoretical & Experimental Studies of Elementary Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarland, Kevin
2012-10-04
Abstract High energy physics has been one of the signature research programs at the University of Rochester for over 60 years. The group has made leading contributions to experimental discoveries at accelerators and in cosmic rays and has played major roles in developing the theoretical framework that gives us our ``standard model'' of fundamental interactions today. This award from the Department of Energy funded a major portion of that research for more than 20 years. During this time, highlights of the supported work included the discovery of the top quark at the Fermilab Tevatron, the completion of a broad programmore » of physics measurements that verified the electroweak unified theory, the measurement of three generations of neutrino flavor oscillations, and the first observation of a ``Higgs like'' boson at the Large Hadron Collider. The work has resulted in more than 2000 publications over the period of the grant. The principal investigators supported on this grant have been recognized as leaders in the field of elementary particle physics by their peers through numerous awards and leadership positions. Most notable among them is the APS W.K.H. Panofsky Prize awarded to Arie Bodek in 2004, the J.J. Sakurai Prizes awarded to Susumu Okubo and C. Richard Hagen in 2005 and 2010, respectively, the Wigner medal awarded to Susumu Okubo in 2006, and five principal investigators (Das, Demina, McFarland, Orr, Tipton) who received Department of Energy Outstanding Junior Investigator awards during the period of this grant. The University of Rochester Department of Physics and Astronomy, which houses the research group, provides primary salary support for the faculty and has waived most tuition costs for graduate students during the period of this grant. The group also benefits significantly from technical support and infrastructure available at the University which supports the work. The research work of the group has provided educational opportunities for graduate students, undergraduate students and high school students and teachers. Seventy-two graduate students received a Ph.D. in physics for research supported by this grant.« less
Apparent electric charge of protein molecules. Human thyroxine - binding proteins.
Hocman, G; Sadlon, J
1977-01-01
1. By comparison of electrophoretic mobilities of two different charged particles under the same conditions the net elementary electrostatic charge of one particle could be calculated when the charge of the other is known. 2. The electrophoretic mobility of human thyroxine - binding globulin does not depend upon the concentration of Tris - HCl buffer in the range 0.05 to 0.20 molar. The value of this mobility is 0.078 and 0.083 cm2 vol(-1) hour(-1) at pH 7.0 and 8.6, respectively. 3. The net elementary electrostatic charge of the human thyroxine - binding globulin appears to be approximately 22 negative elementary electrostatic units in mild alkaline solutions.
ERIC Educational Resources Information Center
Fletcher, Tim; Mandigo, James; Kosnik, Clare
2013-01-01
Background: In many contexts, elementary physical education (PE) classes are taught by the classroom teacher rather than by a PE specialist. Elementary classroom teachers often cite negative attitudes resulting from experiences as school pupils and inadequate pre-service PE teacher education as barriers to teaching a quality PE programme. Purpose:…
ERIC Educational Resources Information Center
Perera, Thushanthi; Frei, Simone; Frei, Balz; Bobe, Gerd
2015-01-01
A sedentary life style contributes to many chronic diseases and poor educational performance. Since elementary school-aged children spend most wakeful hours in school, classroom teachers are essential for providing physical activity (PA) breaks during school. As first objective, we assessed current PA levels for Oregon public elementary schools…
MPPhys—A many-particle simulation package for computational physics education
NASA Astrophysics Data System (ADS)
Müller, Thomas
2014-03-01
In a first course to classical mechanics elementary physical processes like elastic two-body collisions, the mass-spring model, or the gravitational two-body problem are discussed in detail. The continuation to many-body systems, however, is deferred to graduate courses although the underlying equations of motion are essentially the same and although there is a strong motivation for high-school students in particular because of the use of particle systems in computer games. The missing link between the simple and the more complex problem is a basic introduction to solve the equations of motion numerically which could be illustrated, however, by means of the Euler method. The many-particle physics simulation package MPPhys offers a platform to experiment with simple particle simulations. The aim is to give a principle idea how to implement many-particle simulations and how simulation and visualization can be combined for interactive visual explorations. Catalogue identifier: AERR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERR_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 111327 No. of bytes in distributed program, including test data, etc.: 608411 Distribution format: tar.gz Programming language: C++, OpenGL, GLSL, OpenCL. Computer: Linux and Windows platforms with OpenGL support. Operating system: Linux and Windows. RAM: Source Code 4.5 MB Complete package 242 MB Classification: 14, 16.9. External routines: OpenGL, OpenCL Nature of problem: Integrate N-body simulations, mass-spring models Solution method: Numerical integration of N-body-simulations, 3D-Rendering via OpenGL. Running time: Problem dependent
Bowling for Elementary Students
ERIC Educational Resources Information Center
Curtis, Joyce M.
2005-01-01
Physical education programs at the elementary school level play an important role in developing students' interest and skill in lifelong physical activities. With increasing inactivity, overweight, and obesity among children, school physical education programs are challenged with presenting activities that can be enjoyed in childhood and…
Benefits of Multi-Sports Physical Education in the Elementary School Context
ERIC Educational Resources Information Center
Pesce, Caterina; Faigenbaum, Avery; Crova, Claudia; Marchetti, Rosalba; Bellucci, Mario
2013-01-01
Objective: In many countries, physical education (PE) is taught by classroom teachers (generalists) during the formative years of elementary school. The purpose of this study was to evaluate the physical and psychological outcomes of multi-sports PE taught by qualified PE teachers (specialists) and how they contribute to children's physical and…
The Landscape of Elementary School Physical Education
ERIC Educational Resources Information Center
Graber, Kim C.; Locke, Lawrence F.; Lambdin, Dolly; Solmon, Melinda A.
2008-01-01
Elementary school physical education has repeatedly been shaped by the forces of history. Presently, concerns about the obesity epidemic and the low levels of physical activity in children are exerting a major influence on curriculum. Whereas building physical fitness has been a dominant influence during wartime, the focus today is on (a)…
Physical Exertion and Immediate Classroom Mental Performance Among Elementary School Children.
ERIC Educational Resources Information Center
Gabbard, Carl
This study was designed (1) to investigate the relationship between physical exertion and mental performance in elementary school children and (2) to determine if male or female mental performances are more affected by physical exertion. A total of 95 second graders participated in six treatments of induced physical exertion during their regularly…
ERIC Educational Resources Information Center
Turner, Lindsey; Johnson, Tyler G.; Slater, Sandy J.; Chaloupka, Frank J.
2014-01-01
Purpose: Authorities recommend that schools provide a variety of opportunities for students to obtain physical activity (PA) before, during, and after school. This study assessed the prevalence of several school PA practices--including measures of quantity and quality of physical education (PE)--in elementary schools and examined the associations…
A Comparison of Upper Elementary School Children's Attitudes toward Physical Activity.
ERIC Educational Resources Information Center
Folsom-Meek, Sherry L.
This study was conducted to compare upper elementary school children's attitudes toward physical activity, by grade level and gender across six attitude scale subdomains in order to assist physical education teachers in planning programs designed to foster positive attitudes toward physical activity. Subjects (N=429) were 243 girls and 186 boys in…
Hyperunified field theory and gravitational gauge-geometry duality
NASA Astrophysics Data System (ADS)
Wu, Yue-Liang
2018-01-01
A hyperunified field theory is built in detail based on the postulates of gauge invariance and coordinate independence along with the conformal scaling symmetry. All elementary particles are merged into a single hyper-spinor field and all basic forces are unified into a fundamental interaction governed by the hyper-spin gauge symmetry SP(1, D_h-1). The dimension D_h of hyper-spacetime is conjectured to have a physical origin in correlation with the hyper-spin charge of elementary particles. The hyper-gravifield fiber bundle structure of biframe hyper-spacetime appears naturally with the globally flat Minkowski hyper-spacetime as a base spacetime and the locally flat hyper-gravifield spacetime as a fiber that is viewed as a dynamically emerged hyper-spacetime characterized by a non-commutative geometry. The gravitational origin of gauge symmetry is revealed with the hyper-gravifield that plays an essential role as a Goldstone-like field. The gauge-gravity and gravity-geometry correspondences bring about the gravitational gauge-geometry duality. The basic properties of hyperunified field theory and the issue on the fundamental scale are analyzed within the framework of quantum field theory, which allows us to describe the laws of nature in deriving the gauge gravitational equation with the conserved current and the geometric gravitational equations of Einstein-like type and beyond.
ERIC Educational Resources Information Center
Kahan, David
2008-01-01
Physical education is traditionally thought of as the primary means of providing physical activity in the school environment. However, only 17 to 22 percent of elementary schools offer daily physical education with a cumulative duration of about 85 to 98 minutes per week. Based on pedometer counts of weekday physical activity, lunch recess and…
Using Achievement Goal Theory to Assess an Elementary Physical Education Running Program
ERIC Educational Resources Information Center
Xiang, Ping; Bruene, April McBride, Ron E.
2004-01-01
Using Achievement Goal Theory as a theoretical framework, this study examined an elementary physical education running program called Roadrunners and assessed relationships among achievement goals, perceived motivational climate, and student achievement behavior. Roadrunners promotes cardiovascular health, physical active lifestyles, and mastery…
NASA Astrophysics Data System (ADS)
Brown, Laurie Mark; Dresden, Max; Hoddeson, Lillian
2009-01-01
Part I. Introduction; 1. Pions to quarks: particle physics in the 1950s Laurie M Brown, Max Dresden and Lillian Hoddeson; 2. Particle physics in the early 1950s Chen Ning Yang; 3. An historian's interest in particle physics J. L. Heilbron; Part II. Particle discoveries in cosmic rays; 4. Cosmic-ray cloud-chamber contributions to the discovery of the strange particles in the decade 1947-1957 George D. Rochester; 5. Cosmic-ray work with emulsions in the 1940s and 1950s Donald H. Perkins; Part III. High-energy nuclear physics; Learning about nucleon resonances with pion photoproduction Robert L. Walker; 7. A personal view of nucleon structure as revealed by electron scattering Robert Hofstadter; 8. Comments on electromagnetic form factors of the nucleon Robert G. Sachs and Kameshwar C. Wali; Part IV. The new laboratory; 9. The making of an accelerator physicist Matthew Sands; 10. Accelerator design and construction in the 1950s John P. Blewett; 11. Early history of the Cosmotron and AGS Ernest D. Courant; 12. Panel on accelerators and detectors in the 1950s Lawrence W. Jones, Luis W. Alvarez, Ugo Amaldi, Robert Hofstadter, Donald W. Kerst, Robert R. Wilson; 13. Accelerators and the Midwestern Universities Research Association in the 1950s Donald W. Kerst; 14. Bubbles, sparks and the postwar laboratory Peter Galison; 15. Development of the discharge (spark) chamber in Japan in the 1950s Shuji Fukui; 16. Early work at the Bevatron: a personal account Gerson Goldhaber; 17. The discovery of the antiproton Owen Chamberlain; 18. On the antiproton discovery Oreste Piccioni; Part V. The Strange Particles; 19. The hydrogen bubble chamber and the strange resonances Luis W. Alvarez; 20. A particular view of particle physics in the fifties Jack Steinberger; 21. Strange particles William Chinowsky; 22. Strange particles: production by Cosmotron beams as observed in diffusion cloud chambers William B. Fowler; 23. From the 1940s into the 1950s Abraham Pais; Part VI. Detection of the neutrino Frederick Reines; 25. Recollections on the establishment of the weak-interaction notion Bruno M. Pontecorvo; 26. Symmetry and conservation laws in particle physics in the fifties Louis Michel; 27. A connection between the strong and weak interactions Sam B. Treiman; Part VII. Weak interactions and parity nonconservation; 29. The nondiscovery of parity nonconservation Allan Franklin; 30. K-meson decays and parity violation Richard H. Dalitz; 31. An Experimentalist's Perspective Val L. Fitch; 32. The early experiments leading to the V - A interaction Valentine L. Telegdi; 33. Midcentury adventures in particles physics E. C. G. Sudarshan; Part VIII. The particle physics community; 34. The postwar political economy of high-energy physics Robert Seidel; 35. The history of CERN during the early 1950s Edoardo Amaldi; 36. Arguments pro and contra the European laboratory in the participating countries Armin Hermann; 37. Physics and excellences of the life it brings Abdus Salam; 38. Social aspects of Japanese particle physics in the 1950s Michiji Konuma; Part IX. Theories of hadrons; 39. The early S-matrix theory and its propagation (1942-1952) Helmut Rechenberg; 40. From field theory to phenomenology: the history of dispersion relations Andy Pickering; 41. Particles as S-matrix poles: hadron democracy Geoffrey F. Chew; 42. The general theory of quantised fields in the 1950s Arthur S. Wrightman; 43. The classification and structure of hadrons Yuval Ne'eman; 44. Gauge principle, vector-meson dominance and spontaneous symmetry breaking Yoichiro Nambu; Part X. Personal overviews; 45. Scientific impact of the first decade of the Rochester conferences (1950-1960) Robert E. Marshak; 46. Some reflections on the history of particle physics in the 1950s Silvan S. Schweber; 47. Progress in elementary particle theory 1950-1964 Murray Gell-Mann.
The Wonders of Supersymmetry: From Quantum Mechanics, Topology, and Noise, to (maybe) the LHC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poppitz, Erich
2010-04-07
Supersymmetry, relating bosons and fermions was discovered almost 40 years ago in string theory and in quantum field theory, but the seeds of its 'miraculous' properties could have been seen already in quantum mechanics - which is also where it has found some of its more important applications. This talk introduces supersymmetry via the supersymmetric anharmonic oscillator. We shall see that this seemingly trivial example is sufficiently rich, allowing us to illustrate the uses of supersymmetric concepts in a variety of fields: mathematics, elementary particle physics, critical phenomena, and stochastic dynamics.
NASA Astrophysics Data System (ADS)
Ren, Ji-Rong; Guo, Heng
2009-08-01
By making use of Duan-Ge's decomposition theory of gauge potential and the topological current theory proposed by Prof. Duan Yi-Shi, we study a two-component superfluid Bose condensed system, which is supposed to be realized in the interior of neutron stars in the form of the coexistence of a neutron superfluid and a protonic superconductor. We propose that this system possesses vortex lines. The topological charges of the vortex lines are characterized by the Hopf indices and the Brower degrees of ø-mapping.
The Wonders of Supersymmetry: From Quantum Mechanics, Topology, and Noise, to (maybe) the LHC
Poppitz, Erich
2017-12-22
Supersymmetry, relating bosons and fermions was discovered almost 40 years ago in string theory and in quantum field theory, but the seeds of its 'miraculous' properties could have been seen already in quantum mechanics - which is also where it has found some of its more important applications. This talk introduces supersymmetry via the supersymmetric anharmonic oscillator. We shall see that this seemingly trivial example is sufficiently rich, allowing us to illustrate the uses of supersymmetric concepts in a variety of fields: mathematics, elementary particle physics, critical phenomena, and stochastic dynamics.
Terra Firma: "Physics First" for Teaching Chemistry to Pre-Service Elementary School Teachers
ERIC Educational Resources Information Center
More, Michelle B.
2007-01-01
A pre-service elementary school teacher chemistry class that incorporates the physics first idea is described. This class is taught basic physics followed by introductory chemistry and the students' response indicates that both science literacy and science interest increase using this method.
ERIC Educational Resources Information Center
Holt/Hale, Shirley Ann; Persse, Dan
2015-01-01
It is during the early educational years that skills are developed, habits are formed, and values are shaped. The skills for a lifetime of physical activity are developed through quality teaching, deliberate practice, assessment and reflection. Research supports the importance of elementary physical education experiences and the importance of…
ERIC Educational Resources Information Center
van Zee, Emily H.; Jansen, Henri; Winograd, Kenneth; Crowl, Michele; Devitt, Adam
2013-01-01
We designed a physics course for prospective elementary and middle school teachers to foster aspects of scientific thinking recommended in reform documents. Because the elementary school curriculum focuses heavily on literacy, we also explicitly integrated physics and literacy learning in this course. By integrating physics and literacy learning,…
ERIC Educational Resources Information Center
Weaver, R. Glenn; Webster, Collin; Egan, Catherine; Campos, Carolina; Michael, Robert D.; Crimarco, Anthony
2017-01-01
Objective: This study assessed the impact of Partnerships for Active Children in Elementary Schools (PACES) on children's moderate-to-vigorous physical activity (MVPA) during physical education (PE) and teachers' incorporation of physical activity promotion strategies after one academic semester (i.e. 4 months) of the intervention. Design: Single…
The Discovery of the Tau Lepton and the Changes in Elementary Particle Physics in 40 Years
DOE R&D Accomplishments Database
Perl, M.
2003-10-22
This is a history of my discovery of the tau lepton in the 1970s for which I was awarded the Nobel Prize in Physics. I have previously described some aspects of the discovery. In 1996 in my collection of papers entitled, ''Reflections on Experimental Science,'' I gave a straightforward account of the experimental method and the physics involved in the discovery as an introduction to the collection. In a 2002 paper written with Mary A. Meyer published in the journal ''Theoria et Historia Scientiarum'' I used the story of the discovery to outline my thoughts on the practice of experimental science. That 2002 paper was written primarily for young women and men who are beginning their lives in science and it was based on a lecture given at Los Alamos National Laboratory. Some of the historical material in this paper has appeared in those two earlier papers.
The Latest IceCube Results and the Implications
NASA Astrophysics Data System (ADS)
Mase, Keiichi
IceCube was built at the South Pole and aims to detect high energy neutrinos from the universe mainly above 100 GeV. The transparent ice media allows us to build a 1 km3 large detection volume to detect the rarely interacting particles. Neutrinos are thought to be generated at astrophysical sources such as active galactic nuclei and gamma-ray bursts. Nature of the rare interaction with matters and little deflection by a magnetic field makes it possible to explore such sources located at the deep universe. Since the neutrinos are produced through collisions of hadronic particles, the observation can elucidate the origin of cosmic rays, which is still mystery after the discovery 100 years ago. The detector was completed at the end of 2010 and is running smoothly. Recently, IceCube has found the first evidence of extraterrestrial neutrinos with energies above approximately 60 TeV. IceCube also contributes to elementary particle physics by searching for neutrinos produced in self-annihilation of SUSY particles such as neutralinos and by investigating atmospheric neutrino oscillations. The latest IceCube results and the corresponding implications are presented.
Pulse-shape discrimination techniques for the COBRA double beta-decay experiment at LNGS
NASA Astrophysics Data System (ADS)
Zatschler, S.; COBRA Collaboration
2017-09-01
In modern elementary particle physics several questions arise from the fact that neutrino oscillation experiments have found neutrinos to be massive. Among them is the so far unknown nature of neutrinos: either they act as so-called Majorana particles, where one cannot distinguish between particle and antiparticle, or they are Dirac particles like all the other fermions in the Standard Model. The study of neutrinoless double beta-decay (0νββ-decay), where the lepton number conservation is violated by two units, could answer the question regarding the underlying nature of neutrinos and might also shed light on the mechanism responsible for the mass generation. So far there is no experimental evidence for the existence of 0νββ-decay, hence, existing experiments have to be improved and novel techniques should be explored. One of the next-generation experiments dedicated to the search for this ultra-rare decay is the COBRA experiment. This article gives an overview of techniques to identify and reject background based on pulse-shape discrimination.
ERIC Educational Resources Information Center
Webster, Collin Andrew; Caputi, Peter; Perreault, Melanie; Doan, Rob; Doutis, Panayiotis; Weaver, Robert Glenn
2013-01-01
Physical activity promotion in the academic classroom (PAPAC) is an effective means for increasing children's school-based physical activity. In the context of a South Carolina policy requiring elementary schools to provide children with 90 min of physical activity beyond physical education every week, the purpose of this study was to test a…
Generation of Graphite Particles by Abrasion and Their Characterization
NASA Astrophysics Data System (ADS)
Troy, Raymond Steven
Self-efficacy beliefs that relate to teachers' motivation and performance have been an important area of concern for preservice teacher education. This study used a mixed-methods approach to investigate the changes in preservice elementary teachers' science self-efficacy beliefs and the factors associated in a specialized elementary physics content course. In addition, the study is one of few to investigate the relationship between the changes in science self-efficacy beliefs and changes in physical science conceptual understanding. Participants included fifty-one preservice elementary teachers enrolled in two term of the physical science content course. Data collection and analysis procedures included both qualitative and quantitative measures. Data collection included implementation of Science Teaching Efficacy Belief Instrument-B (STEBI-B) (Bleicher, 2004) and Physical Science Concept Test as pre- and post-test, two semi-structured interviews with 18 participants (nine each semester), classroom observations and artifacts. A pre-post, repeated measures multivariate analysis of variance (MANOVA) design was used to test the significance of differences between the pre- and post-surveys across time. Results indicated statistically significant gains in participants' science self-efficacy beliefs on both scales of STEBI-B - personal science teaching beliefs and outcome expectancy beliefs. Additionally, a positive moderate relationship between science conceptual understandings and personal science teaching efficacy beliefs was found. Post-hoc analysis of the STEBI-B data was used to select 18 participants for interviews. The participants belonged to each group representing the low, medium and high initial levels of self-efficacy beliefs. Participants' responses indicated positive shifts in their science teacher self-image and confidence to teach science in future. Four categories that represented the course-related factors contributing towards science self-efficacy beliefs included: (1) enhanced science conceptual understandings, (2) active learning experiences, (3) teaching strategies, and (4) instructor as a role-model. Findings suggest that despite of the nature of prior science experiences preservice elementary teachers previously had, an exposure to a course that integrates relevant science content along with modeled instructional strategies can positively impact science self-efficacy beliefs. While some course elements such as active learning experiences and teaching models seemed to impact all groups positively, the low group participants were particularly influenced by the multiple representations of the content and the course instructor as a role model. These findings have important implications for preservice science teacher preparation programs.
NASA Astrophysics Data System (ADS)
Goldhaber, Alfred; Requist, Ryan
2003-07-01
As a consequence of the Aharonov-Bohm effect, there is a quantum-induced attraction between a charged particle and a rigid, impenetrable hoop made from an arbitrarily thin tube containing a superconductor quantum of magnetic flux. This is remarkable because in classical physics there is no force between the two objects, and quantum-mechanical effects (associated with uncertainty-principle energy) generally are repulsive rather than attractive. For an incident spinless charged particle in a P wave (in a configuration with total angular momentum zero) we verify a resonance just above threshold using the Kohn variational principle in its S-matrix form. Even if optimistic choices of parameters describing a model system with these properties were feasible, the temperature required to observe the resonance would be far lower than has yet been attained in the laboratory.
Mutual interactions of phonons, rotons, and gravity
NASA Astrophysics Data System (ADS)
Nicolis, Alberto; Penco, Riccardo
2018-04-01
We introduce an effective point-particle action for generic particles living in a zero-temperature superfluid. This action describes the motion of the particles in the medium at equilibrium as well as their couplings to sound waves and generic fluid flows. While we place the emphasis on elementary excitations such as phonons and rotons, our formalism applies also to macroscopic objects such as vortex rings and rigid bodies interacting with long-wavelength fluid modes. Within our approach, we reproduce phonon decay and phonon-phonon scattering as predicted using a purely field-theoretic description of phonons. We also correct classic results by Landau and Khalatnikov on roton-phonon scattering. Finally, we discuss how phonons and rotons couple to gravity, and show that the former tend to float while the latter tend to sink but with rather peculiar trajectories. Our formalism can be easily extended to include (general) relativistic effects and couplings to additional matter fields. As such, it can be relevant in contexts as diverse as neutron star physics and light dark matter detection.
Photonic Weyl degeneracies in magnetized plasma
NASA Astrophysics Data System (ADS)
Gao, Wenlong; Yang, Biao; Lawrence, Mark; Fang, Fengzhou; Béri, Benjamin; Zhang, Shuang
2016-08-01
Weyl particles are elusive relativistic fermionic particles with vanishing mass. While not having been found as an elementary particle, they are found to emerge in solid-state materials where three-dimensional bands develop a topologically protected point-like crossing, a so-called Weyl point. Photonic Weyl points have been recently realised in three-dimensional photonic crystals with complex structures. Here we report the presence of a novel type of plasmonic Weyl points in a naturally existing medium--magnetized plasma, in which Weyl points arise as crossings between purely longitudinal plasma modes and transverse helical propagating modes. These photonic Weyl points are right at the critical transition between a Weyl point with the traditional closed finite equifrequency surfaces and the newly proposed `type II' Weyl points with open equifrequency surfaces. Striking observable features of plasmon Weyl points include a half k-plane chirality manifested in electromagnetic reflection. Our study introduces Weyl physics into homogeneous photonic media, which could pave way for realizing new topological photonic devices.
Augmented standard model and the simplest scenario
NASA Astrophysics Data System (ADS)
Wu, Tai Tsun; Wu, Sau Lan
2015-11-01
The experimental discovery of the Higgs particle in 2012 by the ATLAS Collaboration and the CMS Collaboration at CERN ushers in a new era of particle physics. On the basis of these data, scalar quarks and scalar leptons are added to each generation of quarks and leptons. The resulting augmented standard model has fermion-boson symmetry for each of three generations, but only one Higgs doublet giving masses to all the elementary particles. A specific special case, the simplest scenario, is studied in detail. In this case, there are twenty six quadratic divergences, and all these divergences are cancelled provided that one single relation between the masses is satisfied. This mass relation contains a great deal of information, and in particular determines the masses of all the right-handed scalar quarks and scalar leptons, while gives relations for the masses of the left-handed ones. An alternative procedure is also given with a different starting point and less reliance on the experimental data. The result is of course the same.
ERIC Educational Resources Information Center
Shulman, Marc D.
2013-01-01
This action research project report was conducted because students' lack of sportsmanship skills in elementary school physical education was negatively affecting the physical activity level of many students. The teacher was spending classroom time giving attention to conflicts dealing with negative sportsmanship issues and therefore losing…
Examination of Curricula, Teaching Practices, and Assessment through National Standards
ERIC Educational Resources Information Center
Chen, Weiyun
2005-01-01
This study examined to what degree the existing curricula, teaching practices, and assessments in 15 elementary physical education programs were aligned with the National Standards for Physical Education (NASPE, 1995) in the USA. Fifteen elementary physical education teachers voluntarily participated in this study. Data were gathered through…
Inclusion Practices in Elementary Physical Education: A Social-Cognitive Perspective
ERIC Educational Resources Information Center
An, Jihoun; Meaney, Karen S.
2015-01-01
This study explored inclusion practices in general physical education (GPE) from the experiences and perspectives of elementary physical education teachers. The stories of four teachers (two females, two males) between 27 and 57 years of age were gathered using the phenomenological methods of semi-structured interviews, photographs, school…
Applying Laban's Movement Framework in Elementary Physical Education
ERIC Educational Resources Information Center
Langton, Terence W.
2007-01-01
This article recommends raising the bar in elementary physical education by using Laban's movement framework to develop curriculum content in the areas of games, gymnastics, and dance (with physical fitness concepts blended in) in order to help students achieve the NASPE content standards. The movement framework can permeate and unify an…
Physical Education and Art for Elementary Special Education.
ERIC Educational Resources Information Center
Lambert, Anne; Drage, Darlene
The manual contains approximately 68 physical education activities and 60 art activities to be used with special education students in elementary school. It is explained that the physical education activities are limited to low organization games and team sports. Suggested are procedures for class organization, safety, teaching (such as having a…
Factors Affecting the Social Experiences of Students in Elementary Physical Education Classes.
ERIC Educational Resources Information Center
Suomi, Joanne; Collier, Douglas; Brown, Lou
2003-01-01
Examined factors that had a positive and negative effect on the social experiences of elementary students with and without disabilities in inclusive physical education classrooms. Data from observations and interviews indicated that the physical education teacher had a positive influence on students' social experiences, while cultures, student…
Scale relativity: from quantum mechanics to chaotic dynamics.
NASA Astrophysics Data System (ADS)
Nottale, L.
Scale relativity is a new approach to the problem of the origin of fundamental scales and of scaling laws in physics, which consists in generalizing Einstein's principle of relativity to the case of scale transformations of resolutions. We recall here how it leads one to the concept of fractal space-time, and to introduce a new complex time derivative operator which allows to recover the Schrödinger equation, then to generalize it. In high energy quantum physics, it leads to the introduction of a Lorentzian renormalization group, in which the Planck length is reinterpreted as a lowest, unpassable scale, invariant under dilatations. These methods are successively applied to two problems: in quantum mechanics, that of the mass spectrum of elementary particles; in chaotic dynamics, that of the distribution of planets in the Solar System.
NASA Astrophysics Data System (ADS)
Hecht, Eugene
2011-01-01
Though central to any pedagogical development of physics, the concept of mass is still not well understood. Properly defining mass has proven to be far more daunting than contemporary textbooks would have us believe. And yet today the origin of mass is one of the most aggressively pursued areas of research in all of physics. Much of the excitement surrounding the Large Hadron Collider at CERN is associated with discovering the mechanism responsible for the masses of the elementary particles. This paper will first briefly examine the leading definitions, pointing out their shortcomings. Then, utilizing relativity theory, it will propose—for consideration by the community of physicists—a conceptual definition of mass predicated on the more fundamental concept of energy, more fundamental in that everything that has mass has energy, yet not everything that has energy has mass.
The dark components of the Universe are slowly clarified
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burdyuzha, V. V., E-mail: burdyuzh@asc.rssi.ru
The dark sector of the Universe is beginning to be clarified step by step. If the dark energy is vacuum energy, then 123 orders of this energy are reduced by ordinary physical processes. For many years, these unexplained orders were called a crisis of physics. There was indeed a “crisis” before the introduction of the holographic principle and entropic force in physics. The vacuum energy was spent on the generation of new quantum states during the entire life of the Universe, but in the initial period of its evolution the vacuum energy (78 orders) were reduced more effectively by themore » vacuum condensates produced by phase transitions, because the Universe lost the high symmetry during its expansion. Important problems of physical cosmology can be solved if the quarks, leptons, and gauge bosons are composite particles. The dark matter, partially or all consisting of familon-type pseudo-Goldstone bosons with a mass of 10{sup —5}–10{sup –3} eV, can be explained in the composite model. Three generations of elementary particles are absolutely necessary in this model. In addition, this model realizes three relativistic phase transitions in a medium of familons at different redshifts, forming a large-scale structure of dark matter that was “repeated” by baryons. We predict the detection of dark energy dynamics, the detection of familons as dark matter particles, and the development of spectroscopy for the dark medium due to the probable presence of dark atoms in it. Other viewpoints on the dark components of the Universe are also discussed briefly.« less
Lattice QCD and physics beyond the Standar Model: an experimentalist perspective
NASA Astrophysics Data System (ADS)
Artuso, Marina
2017-01-01
The new frontier in elementary particle physics is to find evidence for new physics that may lead to a deeper understanding of observations such as the baryon-antibaryon asymmetry of the universe, mass hierarchy, dark matter, or dark energy to name a few. Flavor physics provides a wealth of opportunities to find such signatures, and a vast body of data taken at e+e- b-factories and at hadron machines has provided valuable information, and a few tantalizing ``tensions'' with respect to the Standard Model predictions. While the window for new physics is still open, the chance that its manifestations will be subtle is very real. A vibrant experimental program is ongoing, and significant upgrades, such as the upgraded LHCb experiment at LHC and Belle 2 at KEKb, are imminent. One of the challenges in extracting new physics from flavor physics data is the need to relate observed hadron decays to fundamental particles and interactions. The continuous improvement of Lattice QCD predictions is a key element to achieve success in this quest. Improvements in algorithms and hardware have led to predictions of increasing precision on several fundamental matrix elements, and the continuous breaking of new grounds, thus allowing a broader spectrum of measurements to become relevant to this quest. An important aspect of the experiment-lattice synergy is a comparison between lattice predictions with experiment for a variety of hadronic quantities. This talk summarizes current synergies between lattice QCD theory and flavor physics experiments, and gives some highlights of expectations from future upgrades. this work was supported by NSF.
ERIC Educational Resources Information Center
Rutten, Cindy; Boen, Filip; Vissers, Nathalie; Seghers, Jan
2015-01-01
Based on Self-Determination Theory (Deci & Ryan, 2000), this study tested whether changes in autonomous motivation toward physical education (AMPE) during the transition from elementary to secondary school can be predicted by changes in perceived need support from the physical education (PE) teacher and perceived physical school environment.…
Lohbeck, Annette; Tietjens, Maike; Bund, Andreas
2017-09-01
Research on children's physical self-concept (PSC) is increasingly recognised as an important field of psychology. However, there is a lack of instruments suitable for younger children at elementary school age. In the present study, a short German 21-item Physical Self-Concept-Questionnaire for children (PSCQ-C) was tested measuring seven specific facets of elementary school children's PSC (strength, endurance, speed, flexibility, coordination, physical appearance, global sport competence). A number of 770 elementary school children aged 8-12 years completed the PSCQ-C. Results showed good psychometric properties and high reliabilities of the seven scales. Confirmatory factor analysis revealed that the presumed 7-factor model fitted the data best compared to a global 1- and 2-factor model. Also, full measurement invariance was strongly established. Correlations among the seven scales were mainly moderate. Gender differences were suggestive of developmental trends that are consistent with prior studies. These results provide support that the PSCQ-C is a confidential instrument with sound psychometric properties measuring seven specific facets of elementary school children's PSC.
Prospects for colliders and collider physics to the 1 PeV energy scale
NASA Astrophysics Data System (ADS)
King, Bruce J.
2000-08-01
A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing our progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC—one each of e+e- and hadron colliders and three μ+μ- colliders — and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R&D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.
Xiang, Ping; McBride, Ron; Guan, Jianmin; Solmon, Melinda
2003-03-01
This study examined children's motivation in elementary physical education within an expectancy-value model developed by Eccles and her colleagues. Four hundred fourteen students in second and fourth grades completed questionnaires assessing their expectancy-related beliefs, subjective task values, and intention for future participation in physical education. Results indicated that expectancy-related beliefs and subjective task values were clearly distinguishable from one another across physical education and throwing. The two constructs were related to each other positively. Children's intention for future participation in physical education was positively associated with their subjective task values and/or expectancy-related beliefs. Younger children had higher motivation for learning in physical education than older children. Gender differences emerged and the findings provided empirical evidence supporting the validity of the expectancy-value model in elementary physical education.
NASA Astrophysics Data System (ADS)
Wilczek, Frank
2012-10-01
Newtonian mechanics posited mass as a primary quality of matter, incapable of further elucidation. We now see Newtonian mass as an emergent property. That mass-concept is tremendously useful in the approximate description of baryon-dominated matter at low energy — that is, the standard "matter" of everyday life, and of most of science and engineering — but it originates in a highly contingent and non-trivial way from more basic concepts. Most of the mass of standard matter, by far, arises dynamically, from back-reaction of the color gluon fields of quantum chromodynamics (QCD). Additional quantitatively small, though physically crucial, contributions come from the intrinsic masses of elementary quanta (electrons and quarks). The equations for massless particles support extra symmetries — specifically scale, chiral, and gauge symmetries. The consistency of the standard model relies on a high degree of underlying gauge and chiral symmetry, so the observed non-zero masses of many elementary particles ( W and Z bosons, quarks, and leptons) requires spontaneous symmetry breaking. Superconductivity is a prototype for spontaneous symmetry breaking and for mass-generation, since photons acquire mass inside superconductors. A conceptually similar but more intricate form of all-pervasive ( i.e. cosmic) superconductivity, in the context of the electroweak standard model, gives us a successful, economical account of W and Z boson masses. It also allows a phenomenologically successful, though profligate, accommodation of quark and lepton masses. The new cosmic superconductivity, when implemented in a straightforward, minimal way, suggests the existence of a remarkable new particle, the so-called Higgs particle. The mass of the Higgs particle itself is not explained in the theory, but appears as a free parameter. Earlier results suggested, and recent observations at the Large Hadron Collider (LHC) may indicate, the actual existence of the Higgs particle, with mass m H ≈ 125 GeV. In addition to consolidating our understanding of the origin of mass, a Higgs particle with m H ≈ 125 GeV could provide an important clue to the future, as it is consistent with expectations from supersymmetry.
TOPICAL REVIEW: TeV mini black hole decay at future colliders
NASA Astrophysics Data System (ADS)
Casanova, Alex; Spallucci, Euro
2006-02-01
It is generally believed that mini black holes decay by emitting elementary particles with a black body energy spectrum. The original calculation leads to the conclusion that about the 90% of the black hole mass is radiated away in the form of photons, neutrinos and light leptons, mainly electrons and muons. With the advent of string theory, such a scenario must be updated by including new effects coming from the stringy nature of particles and interactions. The main modifications with respect to the original picture of black hole evaporation come from recent developments in non-perturbative string theory globally referred to as TeV-scale gravity. By taking for granted that black holes can be produced in hadronic collisions, then their decay must take into account that: (i) we live in a D3 brane embedded into a higher dimensional bulk spacetime; (ii) fundamental interactions, including gravity, are unified at the TeV energy scale. Thus, the formal description of the Hawking radiation mechanism has to be extended to the case of more than four spacetime dimensions and includes the presence of D-branes. This kind of topological defect in the bulk spacetime fabric acts as a sort of 'cosmic fly-paper' trapping electro-weak standard model elementary particles in our (3 + 1)-dimensional universe. Furthermore, unification of fundamental interactions at an energy scale many orders of magnitude lower than the Planck energy implies that any kind of fundamental particle, not only leptons, is expected to be emitted. A detailed understanding of the new scenario is instrumental for optimal tuning of detectors at future colliders, where, hopefully, this exciting new physics will be tested. In this review, we study higher dimensional black hole decay, considering not only the emission of particles according to the Hawking mechanism, but also their near-horizon QED/QCD interactions. The ultimate motivation is to build up a phenomenologically reliable scenario, allowing a clear experimental signature of the event.
Relationships among Tasks, Time, and Student Practice in Elementary Physical Education
ERIC Educational Resources Information Center
Rasmussen, Jennifer F.; Scrabis-Fletcher, Kristin A.; Silverman, Stephen
2014-01-01
The purpose of this study was to examine how teachers structure class in elementary physical education and the impact their decisions have on the amount of appropriate practice students receive. Participants for this study were 10 third grade physical education teachers and their students. Each teacher taught two successive skill-related lessons…
ERIC Educational Resources Information Center
Larter, Sylvia E.
The experience of 88 physically handicapped and health impaired (PH/HI) children attending Toronto, Canada, regular elementary schools in either regular classes or "integrated" special education classes was assessed with regard to their academic, social, emotional, medical, and physical needs. The integrated classification meant they…
Appropriate Instructional Practices in Elementary Physical Education
ERIC Educational Resources Information Center
Subramaniam, Prithwi Raj
2011-01-01
Teaching and learning in physical education at the elementary level should be a time filled with excitement and fun for both teachers and students. Children by nature are inquisitive and bring an abundance of energy into the learning environment. Physical educators who are able to harness this student energy in positive ways are able to…
ERIC Educational Resources Information Center
Sun, Haichun; Chen, Ang; Ennis, Catherine; Martin, Robert; Shen, Bo
2008-01-01
It has been demonstrated that situational interest in physical activity may derive from five dimensional sources, Novelty, Optimal Challenge, Attention Demand, Exploration Intent, and Instant Enjoyment. The purpose of this study was to examine the multidimensional sources in elementary school physical education. The five dimensions were measured…
Stakeholders' Perceptions of Physical Education at a Selected Elementary School
ERIC Educational Resources Information Center
Gonzales, Monica
2013-01-01
The motivation for this study stemmed from a lack of understanding of why members of an elementary school community did not support the physical education program. The purpose of this study was to understand teachers', administrators', and parents' perceptions about the value and importance of physical education at the school. Guided by the…
Research on the Outcomes of Elementary School Physical Education
ERIC Educational Resources Information Center
Shephard, Roy J.; Trudeau, Francois
2008-01-01
The purpose of this article is to provide an overview of objective assessments of the short- and long-term outcomes of elementary school physical education programs. Evaluations have used a variety of designs, including longitudinal and tracking studies as well as correlational analyses. The short-term effect of physical education on health and…
Physical Education and Health Education for Wyoming Elementary Schools, Grades Kindergarten-Six.
ERIC Educational Resources Information Center
Woods, John B., Ed.
GRADES OR AGES: K-6. SUBJECT MATTER: Physical education and health education. ORGANIZATION AND PHYSICAL APPEARANCE: There are 10 main sections--1) the elementary school program--organization and administration; 2) movement exploration and education; 3) rhythmic activities; 4) games; 5) stunts, tumbling, trampoline, and apparatus; 6) individual,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deporcel, Lilian
2001-04-02
The XXVI SLAC Summer Institute on Particle Physics was held from August 3 to August 14, 1998. The topic, ''Gravity--from the Hubble Length to the Planck Length,'' brought together 179 physicists from 13 countries. The lectures in this volume cover the seven-day school portion of the Institute, which took us from the largest scales of the cosmos, to the Planck length at which gravity might be unified with the other forces of nature. Lectures by Robert Wagoner, Clifford Will, and Lynn Cominsky explored the embedding of gravity into general relativity and the confrontation of this idea with experiments in themore » laboratory and astrophysical settings. Avishai Deckel discussed observations and implications of the large-scale structure of the universe, and Tony Tyson presented the gravitational lensing effect and its use in the ongoing search for signatures of the unseen matter of the cosmos. The hunt for the wave nature of gravity was presented by Sam Finn and Peter Saulson, and Joe Polchinski showed us what gravity might look like in the quantum limit at the Planck scale. The lectures were followed by afternoon discussion sessions, where students could further pursue questions and topics with the day's lecturers. The Institute concluded with a three-day topical conference covering recent developments in theory and experiment from around the world of elementary particle physics and cosmology; its proceedings are also presented in this volume.« less
ERIC Educational Resources Information Center
Orhan, Özlem
2015-01-01
The purpose of this study is to compare the physical activity levels, physical activity types, Body Mass Index (BMI) and body fat percentage (BF%) values of elementary school students living in rural and urban. Body height (BH), body weight (BW), BF% and BMI data were measured. Physical activity questionnaire was conducted to determine the…
ERIC Educational Resources Information Center
Harlow, Danielle; Otero, Valerie K.
2005-01-01
What happens when university curriculum developers are mixed with motivated elementary teachers? ? An awesome learning collaboration that benefits researchers, teachers, and students! That's what the authors discovered when they--university researchers involved in the Physics for Elementary Teachers (PET) project--teamed up with local elementary…
NASA Astrophysics Data System (ADS)
Grieder, P. K. F.
In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological and medical aspects of the cosmic radiation because of it ionizing character and the inevitable irradiation to which we are exposed. This book is a reference manual for researchers and students of cosmic ray physics and associated fields and phenomena. It is not intended to be a tutorial. However, the book contains an adequate amount of background materials that its content should be useful to a broad community of scientists and professionals. The present book contains chiefly a data collection in compact form that covers the cosmic radiation in the vicinity of the Earth, in the Earth's atmosphere, at sea level and underground. Included are predominantly experimental but also theoretical data. In addition the book contains related data, definitions and important relations. The aim of this book is to offer the reader in a single volume a readily available comprehensive set of data that will save him the need of frequent time consuming literature searches.
ERIC Educational Resources Information Center
Morse, Margaret; And Others
The appendix to the report of the minimum objective system of the Hinesburg Elementary School (Vermont) includes objectives for science, physical education, music, and library skills, from the kindergarten through grade 6 levels. Most objectives are presented in the format of condition (or task), student behavior, and criteria. Also included are…
ERIC Educational Resources Information Center
Hart, Melanie A.
2005-01-01
With an increase concern for childhood obesity, many individuals and organizations are emphasizing the importance of quality physical education. The need for quality physical education at the elementary level is extremely important as research has shown a relationship between the performance of fundamental movement skills and children's body…
ERIC Educational Resources Information Center
Tjomsland, Hege Eikland
2010-01-01
This study examines an elementary school which during enrollment in the European Network of Health Promoting Schools, 1993-2003, and the Norwegian Physical Activity and Healthy Meals Project, 2004-2006, selected physical activity (PA) as a prioritized area. Survey data, school documents, and focus group data were collected and analyzed through a…
Research on Social Issues in Elementary School Physical Education
ERIC Educational Resources Information Center
Solmon, Melinda A.; Lee, Amelia M.
2008-01-01
The social and cultural norms children learn in schools can have a powerful effect on a variety of lifestyle decisions that will affect their physical and mental health. In this article we examine research on social issues in elementary school physical education. We provide an overview of how teachers' actions and behaviors affect what children…
ERIC Educational Resources Information Center
Harlow, Danielle B.; Swanson, Lauren H.; Otero, Valerie K.
2014-01-01
We investigated how prospective teachers used physics content knowledge when analyzing the talk of elementary children during special activities in an undergraduate physics content course designed for prospective teachers. We found that prospective teachers used content knowledge to reflect on their own learning and to identify students'…
Final Report of DOE Grant No. DE-FG02-04ER41306
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandi, Satyanarayan; Babu, Kaladi S; Rizatdinova, Flera
2013-12-10
Project: Theoretical and Experimental Research in Weak, Electromagnetic and Strong Interactions: Investigators: S. Nandi, K.S. Babu, F. Rizatdinova Institution: Oklahoma State University, Stillwater, OK 74078 This completed project focused on the cutting edge research in theoretical and experimental high energy physics. In theoretical high energy physics, the two investigators (Nandi and Babu) worked on a variety of topics in model-building and phenomenological aspects of elementary particle physics. This includes unification of particles and forces, neutrino physics, Higgs boson physics, proton decay, supersymmetry, and collider physics. Novel physics ideas beyond the Standard Model with testable consequences at the LHC have beenmore » proposed. These ideas have stimulated the experimental community to look for new signals. The contributions of the experimental high energy physics group has been at the D0 experiment at the Fermilab Tevatraon and the ATLAS experiment at the Large Hadron Collider. At the D0 experiment, the main focus was search for the Higgs boson in the WH channel, where improved limits were obtained. At the LHC, the OSU group has made significant contributions to the top quark physics, and the calibration of the b-tagging algorithms. The group is also involved in the pixel detector upgrade. This DOE supported grant has resulted in 5 PhD degrees during the past three years. Three postdoctoral fellows were supported as well. In theoretical research over 40 refereed publications have resulted in the past three years, with several involving graduate students and postdoctoral fellows. It also resulted in over 30 conference presentations in the same time period. We are also involved in outreach activities through the Quarknet program, where we engage Oklahoma school teachers and students in our research.« less
NASA Astrophysics Data System (ADS)
Tovbin, Yu. K.
2018-06-01
An analysis is presented of one of the key concepts of physical chemistry of condensed phases: the theory self-consistency in describing the rates of elementary stages of reversible processes and the equilibrium distribution of components in a reaction mixture. It posits that by equating the rates of forward and backward reactions, we must obtain the same equation for the equilibrium distribution of reaction mixture components, which follows directly from deducing the equation in equilibrium theory. Ideal reaction systems always have this property, since the theory is of a one-particle character. Problems arise in considering interparticle interactions responsible for the nonideal behavior of real systems. The Eyring and Temkin approaches to describing nonideal reaction systems are compared. Conditions for the self-consistency of the theory for mono- and bimolecular processes in different types of interparticle potentials, the degree of deviation from the equilibrium state, allowing for the internal motions of molecules in condensed phases, and the electronic polarization of the reagent environment are considered within the lattice gas model. The inapplicability of the concept of an activated complex coefficient for reaching self-consistency is demonstrated. It is also shown that one-particle approximations for considering intermolecular interactions do not provide a theory of self-consistency for condensed phases. We must at a minimum consider short-range order correlations.
Can there be massive photons? A pedagogical glance at the origin of mass
NASA Astrophysics Data System (ADS)
Robles, P.; Claro, F.
2012-09-01
Among the most startling experiences a student encounters is learning that, unlike electrons and other elementary particles, photons have no mass. Under certain circumstances, however, the light quantum behaves as if it did have a finite mass. Starting from Maxwell's equations, we discuss how this arises when light interacts with a charged plasma, or travels along a waveguide. The motion of such photons is analysed using kinematic concepts of special relativity, and we show how a cutoff frequency for effective propagation appears. Seeing how an environment may yield an apparent dynamic mass to the photon paves the way for later understanding: might the Higgs boson field provide other particles, such as the electron, with a mass? This paper is addressed to mid-level physics students, teachers and lecturers, requiring only a knowledge of classical electromagnetic and special relativity theories.
Introduction to Big Bang nucleosynthesis - Open and closed models, anisotropies
NASA Astrophysics Data System (ADS)
Tayler, R. J.
1982-10-01
A variety of observations suggest that the universe had a hot dense origin and that the pregalactic composition of the universe was determined by nuclear reactions that occurred in the first few minutes. There is no unique hot Big Bang theory, but the simplest version produces a primeval chemical composition that is in good qualitative agreement with the abundances deduced from observation. Whether or not any Big Bang theory will provide quantitative agreement with observations depends on a variety of factors in elementary particle physics (number and masses of stable or long-lived particles, half-life of neutron, structure of grand unified theories) and from observational astronomy (present mean baryon density of the universe, the Hubble constant and deceleration parameter). The influence of these factors on the abundances is discussed, as is the effect of departures from homogeneity and isotropy in the early universe.
Many-particle-effects in the theory of the extended X-ray absorption fine structure
NASA Astrophysics Data System (ADS)
Tran Thoai, D. B.; Ekardt, W.
1981-10-01
The Lee-Beni-procedure for the calculation of the extended X-ray absorption fine structure (EXAFS) is extended so as to include the effects of the electronic charge density outside the localized muffin-tin potentials. In our scheme EXAFS is caused by back-scattering of an elementary excitation of a homogeneous electron gas by localized energy dependent many-particle muffin-tin potentials. The difference between the two schemes is negligible at large k's, as expected from physical grounds. However, at small and intermediate k-values the difference is quite large. The effect of the outer electrons as compared to the Lee-Beni-model is twofold. First, they renormalize the scattered electron in the usual way. Second, they are missing within the scattering muffin-tins. Hence, we avoid to count some of the electrons twice. Results are presented for Cu as an example.
About Essence of the Wave Function on Atomic Level and in Superconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nikulov, A. V.
The wave function was proposed for description of quantum phenomena on the atomic level. But now it is well known that quantum phenomena are observed not only on atomic level and the wave function is used for description of macroscopic quantum phenomena, such as superconductivity. The essence of the wave function on level elementary particles was and is the subject of heated argument among founders of quantum mechanics and other physicists. This essence seems more clear in superconductor. But impossibility of probabilistic interpretation of wave function in this case results to obvious contradiction of quantum principles with some fundamental principlesmore » of physics.« less
Hadron collider searches for diboson resonances
NASA Astrophysics Data System (ADS)
Dorigo, Tommaso
2018-05-01
This review covers results of searches for new elementary particles that decay into boson pairs (dibosons), performed at the CERN Large Hadron Collider in proton-proton collision data collected by the ATLAS and CMS experiments at 7-, 8-, and 13-TeV center-of-mass energy until the year 2017. The available experimental results of the analysis of final states including most of the possible two-object combinations of W and Z bosons, photons, Higgs bosons, and gluons place stringent constraints on a variety of theoretical ideas that extend the standard model, pushing into the multi-TeV region the scale of allowed new physics phenomena.
Representation of the contextual statistical model by hyperbolic amplitudes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khrennikov, Andrei
We continue the development of a so-called contextual statistical model (here context has the meaning of a complex of physical conditions). It is shown that, besides contexts producing the conventional trigonometric cos-interference, there exist contexts producing the hyperbolic cos-interference. Starting with the corresponding interference formula of total probability we represent such contexts by hyperbolic probabilistic amplitudes or in the abstract formalism by normalized vectors of a hyperbolic analogue of the Hilbert space. There is obtained a hyperbolic Born's rule. Incompatible observables are represented by noncommutative operators. This paper can be considered as the first step towards hyperbolic quantum probability. Wemore » also discuss possibilities of experimental verification of hyperbolic quantum mechanics: in physics of elementary particles, string theory as well as in experiments with nonphysical systems, e.g., in psychology, cognitive sciences, and economy.« less
Representation of the contextual statistical model by hyperbolic amplitudes
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
2005-06-01
We continue the development of a so-called contextual statistical model (here context has the meaning of a complex of physical conditions). It is shown that, besides contexts producing the conventional trigonometric cos-interference, there exist contexts producing the hyperbolic cos-interference. Starting with the corresponding interference formula of total probability we represent such contexts by hyperbolic probabilistic amplitudes or in the abstract formalism by normalized vectors of a hyperbolic analogue of the Hilbert space. There is obtained a hyperbolic Born's rule. Incompatible observables are represented by noncommutative operators. This paper can be considered as the first step towards hyperbolic quantum probability. We also discuss possibilities of experimental verification of hyperbolic quantum mechanics: in physics of elementary particles, string theory as well as in experiments with nonphysical systems, e.g., in psychology, cognitive sciences, and economy.
NASA Astrophysics Data System (ADS)
Lach, Theodore
2017-01-01
The Checkerboard model of the Nucleus has been in the public domain for over 20 years. Over those years it has been described by nuclear and particle physicists as; cute, ``the Bohr model of the nucleus'' and ``reminiscent of the Eightfold Way''. It has also been ridiculed as numerology, laughed at, and even worse. In 2000 the theory was taken to the next level by attempting to explain why the mass of the ``up'' and ``dn'' quarks were significantly heavier than the SM ``u'' and ``d'' quarks. This resulted in a paper published on arXiv.nucl-th/0008026 in 2000, predicting 5 generations of quarks, each quark and negative lepton particle related to each other by a simple geometric mean. The CBM predicts that the radii of the elementary particles are proportional to the cube root of their masses. This was realized Pythagorean musical intervals (octave, perfect 5th, perfect 4th plus two others). Therefore each generation can be explained by a simple right triangle and the height of the hypotenuse. Notice that the height of a right triangle breaks the hypotenuse into two line segments. The geometric mean of those two segments equals the length of the height of this characteristic triangle. Therefore the CBM theory now predicts that all the elementary particles mass are proportion to the cube of their radii. Therefore the mass density of all elementary particles (and perhaps black holes too) are a constant of nature.
ERIC Educational Resources Information Center
Haines, Michael S.; Kim, Danny H.
2013-01-01
Background: Children with moderate persistent asthma are often reluctant to engage in physical activity and as a result are more prone to obesity and increased incidence of asthma attacks. Purpose: This study developed an asthma program that included physical activity and asthma management education for elementary school children with moderate…
ERIC Educational Resources Information Center
Hollett, Nikki; Sluder, J. Brandon; Taunton, Sally; Howard-Shaughnessy, Candice
2016-01-01
Studies have found that movement can have a positive effect on the linguistic and intellectual capabilities of the brain, proving that physical fitness is related to academic performance. By allowing elementary students to move around and be involved in physical activity at school, the brain is able to make stronger connections with the material…
Dark-matter QCD-axion searches
Rosenberg, Leslie J.
2015-01-12
In the late 20th century, cosmology became a precision science. At the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the darkmore » matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10 -(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. But, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. Our paper is a selective overview of the current generation of sensitive axion searches. Finally, not all techniques and experiments are discussed, but I hope to give a sense of the current experimental landscape of the search for dark-matter axions.« less
Dark-matter QCD-axion searches.
Rosenberg, Leslie J
2015-10-06
In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There's no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10(-(6-3)) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments are discussed, but I hope to give a sense of the current experimental landscape of the search for dark-matter axions.
Dark-matter QCD-axion searches
Rosenberg, Leslie J
2015-01-01
In the late 20th century, cosmology became a precision science. Now, at the beginning of the next century, the parameters describing how our universe evolved from the Big Bang are generally known to a few percent. One key parameter is the total mass density of the universe. Normal matter constitutes only a small fraction of the total mass density. Observations suggest this additional mass, the dark matter, is cold (that is, moving nonrelativistically in the early universe) and interacts feebly if at all with normal matter and radiation. There’s no known such elementary particle, so the strong presumption is the dark matter consists of particle relics of a new kind left over from the Big Bang. One of the most important questions in science is the nature of this dark matter. One attractive particle dark-matter candidate is the axion. The axion is a hypothetical elementary particle arising in a simple and elegant extension to the standard model of particle physics that nulls otherwise observable CP-violating effects (where CP is the product of charge reversal C and parity inversion P) in quantum chromo dynamics (QCD). A light axion of mass 10−(6–3) eV (the invisible axion) would couple extraordinarily weakly to normal matter and radiation and would therefore be extremely difficult to detect in the laboratory. However, such an axion is a compelling dark-matter candidate and is therefore a target of a number of searches. Compared with other particle dark-matter candidates, the plausible range of axion dark-matter couplings and masses is narrowly constrained. This focused search range allows for definitive searches, where a nonobservation would seriously impugn the dark-matter QCD-axion hypothesis. Axion searches use a wide range of technologies, and the experiment sensitivities are now reaching likely dark-matter axion couplings and masses. This article is a selective overview of the current generation of sensitive axion searches. Not all techniques and experiments are discussed, but I hope to give a sense of the current experimental landscape of the search for dark-matter axions. PMID:25583487
Aguilar, M; Ali Cavasonza, L; Alpat, B; Ambrosi, G; Arruda, L; Attig, N; Aupetit, S; Azzarello, P; Bachlechner, A; Barao, F; Barrau, A; Barrin, L; Bartoloni, A; Basara, L; Başeǧmez-du Pree, S; Battarbee, M; Battiston, R; Bazo, J; Becker, U; Behlmann, M; Beischer, B; Berdugo, J; Bertucci, B; Bindi, V; Boella, G; de Boer, W; Bollweg, K; Bonnivard, V; Borgia, B; Boschini, M J; Bourquin, M; Bueno, E F; Burger, J; Cadoux, F; Cai, X D; Capell, M; Caroff, S; Casaus, J; Castellini, G; Cernuda, I; Cervelli, F; Chae, M J; Chang, Y H; Chen, A I; Chen, G M; Chen, H S; Cheng, L; Chou, H Y; Choumilov, E; Choutko, V; Chung, C H; Clark, C; Clavero, R; Coignet, G; Consolandi, C; Contin, A; Corti, C; Coste, B; Creus, W; Crispoltoni, M; Cui, Z; Dai, Y M; Delgado, C; Della Torre, S; Demirköz, M B; Derome, L; Di Falco, S; Dimiccoli, F; Díaz, C; von Doetinchem, P; Dong, F; Donnini, F; Duranti, M; D'Urso, D; Egorov, A; Eline, A; Eronen, T; Feng, J; Fiandrini, E; Finch, E; Fisher, P; Formato, V; Galaktionov, Y; Gallucci, G; García, B; García-López, R J; Gargiulo, C; Gast, H; Gebauer, I; Gervasi, M; Ghelfi, A; Giovacchini, F; Goglov, P; Gómez-Coral, D M; Gong, J; Goy, C; Grabski, V; Grandi, D; Graziani, M; Guerri, I; Guo, K H; Habiby, M; Haino, S; Han, K C; He, Z H; Heil, M; Hoffman, J; Hsieh, T H; Huang, H; Huang, Z C; Huh, C; Incagli, M; Ionica, M; Jang, W Y; Jinchi, H; Kang, S C; Kanishev, K; Kim, G N; Kim, K S; Kirn, Th; Konak, C; Kounina, O; Kounine, A; Koutsenko, V; Krafczyk, M S; La Vacca, G; Laudi, E; Laurenti, G; Lazzizzera, I; Lebedev, A; Lee, H T; Lee, S C; Leluc, C; Li, H S; Li, J Q; Li, J Q; Li, Q; Li, T X; Li, W; Li, Z H; Li, Z Y; Lim, S; Lin, C H; Lipari, P; Lippert, T; Liu, D; Liu, Hu; Lu, S Q; Lu, Y S; Luebelsmeyer, K; Luo, F; Luo, J Z; Lv, S S; Majka, R; Mañá, C; Marín, J; Martin, T; Martínez, G; Masi, N; Maurin, D; Menchaca-Rocha, A; Meng, Q; Mo, D C; Morescalchi, L; Mott, P; Nelson, T; Ni, J Q; Nikonov, N; Nozzoli, F; Nunes, P; Oliva, A; Orcinha, M; Palmonari, F; Palomares, C; Paniccia, M; Pauluzzi, M; Pensotti, S; Pereira, R; Picot-Clemente, N; Pilo, F; Pizzolotto, C; Plyaskin, V; Pohl, M; Poireau, V; Putze, A; Quadrani, L; Qi, X M; Qin, X; Qu, Z Y; Räihä, T; Rancoita, P G; Rapin, D; Ricol, J S; Rodríguez, I; Rosier-Lees, S; Rozhkov, A; Rozza, D; Sagdeev, R; Sandweiss, J; Saouter, P; Schael, S; Schmidt, S M; Schulz von Dratzig, A; Schwering, G; Seo, E S; Shan, B S; Shi, J Y; Siedenburg, T; Son, D; Song, J W; Sun, W H; Tacconi, M; Tang, X W; Tang, Z C; Tao, L; Tescaro, D; Ting, Samuel C C; Ting, S M; Tomassetti, N; Torsti, J; Türkoğlu, C; Urban, T; Vagelli, V; Valente, E; Vannini, C; Valtonen, E; Vázquez Acosta, M; Vecchi, M; Velasco, M; Vialle, J P; Vitale, V; Vitillo, S; Wang, L Q; Wang, N H; Wang, Q L; Wang, X; Wang, X Q; Wang, Z X; Wei, C C; Weng, Z L; Whitman, K; Wienkenhöver, J; Willenbrock, M; Wu, H; Wu, X; Xia, X; Xiong, R Q; Xu, W; Yan, Q; Yang, J; Yang, M; Yang, Y; Yi, H; Yu, Y J; Yu, Z Q; Zeissler, S; Zhang, C; Zhang, J; Zhang, J H; Zhang, S D; Zhang, S W; Zhang, Z; Zheng, Z M; Zhu, Z Q; Zhuang, H L; Zhukov, V; Zichichi, A; Zimmermann, N; Zuccon, P
2016-08-26
A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49×10^{5} antiproton events and 2.42×10^{9} proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ∼60 to ∼500 GV, the antiproton p[over ¯], proton p, and positron e^{+} fluxes are found to have nearly identical rigidity dependence and the electron e^{-} flux exhibits a different rigidity dependence. Below 60 GV, the (p[over ¯]/p), (p[over ¯]/e^{+}), and (p/e^{+}) flux ratios each reaches a maximum. From ∼60 to ∼500 GV, the (p[over ¯]/p), (p[over ¯]/e^{+}), and (p/e^{+}) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.
NASA Astrophysics Data System (ADS)
Aguilar, M.; Ali Cavasonza, L.; Alpat, B.; Ambrosi, G.; Arruda, L.; Attig, N.; Aupetit, S.; Azzarello, P.; Bachlechner, A.; Barao, F.; Barrau, A.; Barrin, L.; Bartoloni, A.; Basara, L.; Başeǧmez-du Pree, S.; Battarbee, M.; Battiston, R.; Bazo, J.; Becker, U.; Behlmann, M.; Beischer, B.; Berdugo, J.; Bertucci, B.; Bindi, V.; Boella, G.; de Boer, W.; Bollweg, K.; Bonnivard, V.; Borgia, B.; Boschini, M. J.; Bourquin, M.; Bueno, E. F.; Burger, J.; Cadoux, F.; Cai, X. D.; Capell, M.; Caroff, S.; Casaus, J.; Castellini, G.; Cernuda, I.; Cervelli, F.; Chae, M. J.; Chang, Y. H.; Chen, A. I.; Chen, G. M.; Chen, H. S.; Cheng, L.; Chou, H. Y.; Choumilov, E.; Choutko, V.; Chung, C. H.; Clark, C.; Clavero, R.; Coignet, G.; Consolandi, C.; Contin, A.; Corti, C.; Coste, B.; Creus, W.; Crispoltoni, M.; Cui, Z.; Dai, Y. M.; Delgado, C.; Della Torre, S.; Demirköz, M. B.; Derome, L.; Di Falco, S.; Dimiccoli, F.; Díaz, C.; von Doetinchem, P.; Dong, F.; Donnini, F.; Duranti, M.; D'Urso, D.; Egorov, A.; Eline, A.; Eronen, T.; Feng, J.; Fiandrini, E.; Finch, E.; Fisher, P.; Formato, V.; Galaktionov, Y.; Gallucci, G.; García, B.; García-López, R. J.; Gargiulo, C.; Gast, H.; Gebauer, I.; Gervasi, M.; Ghelfi, A.; Giovacchini, F.; Goglov, P.; Gómez-Coral, D. M.; Gong, J.; Goy, C.; Grabski, V.; Grandi, D.; Graziani, M.; Guerri, I.; Guo, K. H.; Habiby, M.; Haino, S.; Han, K. C.; He, Z. H.; Heil, M.; Hoffman, J.; Hsieh, T. H.; Huang, H.; Huang, Z. C.; Huh, C.; Incagli, M.; Ionica, M.; Jang, W. Y.; Jinchi, H.; Kang, S. C.; Kanishev, K.; Kim, G. N.; Kim, K. S.; Kirn, Th.; Konak, C.; Kounina, O.; Kounine, A.; Koutsenko, V.; Krafczyk, M. S.; La Vacca, G.; Laudi, E.; Laurenti, G.; Lazzizzera, I.; Lebedev, A.; Lee, H. T.; Lee, S. C.; Leluc, C.; Li, H. S.; Li, J. Q.; Li, J. Q.; Li, Q.; Li, T. X.; Li, W.; Li, Z. H.; Li, Z. Y.; Lim, S.; Lin, C. H.; Lipari, P.; Lippert, T.; Liu, D.; Liu, Hu; Lu, S. Q.; Lu, Y. S.; Luebelsmeyer, K.; Luo, F.; Luo, J. Z.; Lv, S. S.; Majka, R.; Mañá, C.; Marín, J.; Martin, T.; Martínez, G.; Masi, N.; Maurin, D.; Menchaca-Rocha, A.; Meng, Q.; Mo, D. C.; Morescalchi, L.; Mott, P.; Nelson, T.; Ni, J. Q.; Nikonov, N.; Nozzoli, F.; Nunes, P.; Oliva, A.; Orcinha, M.; Palmonari, F.; Palomares, C.; Paniccia, M.; Pauluzzi, M.; Pensotti, S.; Pereira, R.; Picot-Clemente, N.; Pilo, F.; Pizzolotto, C.; Plyaskin, V.; Pohl, M.; Poireau, V.; Putze, A.; Quadrani, L.; Qi, X. M.; Qin, X.; Qu, Z. Y.; Räihä, T.; Rancoita, P. G.; Rapin, D.; Ricol, J. S.; Rodríguez, I.; Rosier-Lees, S.; Rozhkov, A.; Rozza, D.; Sagdeev, R.; Sandweiss, J.; Saouter, P.; Schael, S.; Schmidt, S. M.; Schulz von Dratzig, A.; Schwering, G.; Seo, E. S.; Shan, B. S.; Shi, J. Y.; Siedenburg, T.; Son, D.; Song, J. W.; Sun, W. H.; Tacconi, M.; Tang, X. W.; Tang, Z. C.; Tao, L.; Tescaro, D.; Ting, Samuel C. C.; Ting, S. M.; Tomassetti, N.; Torsti, J.; Türkoǧlu, C.; Urban, T.; Vagelli, V.; Valente, E.; Vannini, C.; Valtonen, E.; Vázquez Acosta, M.; Vecchi, M.; Velasco, M.; Vialle, J. P.; Vitale, V.; Vitillo, S.; Wang, L. Q.; Wang, N. H.; Wang, Q. L.; Wang, X.; Wang, X. Q.; Wang, Z. X.; Wei, C. C.; Weng, Z. L.; Whitman, K.; Wienkenhöver, J.; Willenbrock, M.; Wu, H.; Wu, X.; Xia, X.; Xiong, R. Q.; Xu, W.; Yan, Q.; Yang, J.; Yang, M.; Yang, Y.; Yi, H.; Yu, Y. J.; Yu, Z. Q.; Zeissler, S.; Zhang, C.; Zhang, J.; Zhang, J. H.; Zhang, S. D.; Zhang, S. W.; Zhang, Z.; Zheng, Z. M.; Zhu, Z. Q.; Zhuang, H. L.; Zhukov, V.; Zichichi, A.; Zimmermann, N.; Zuccon, P.; AMS Collaboration
2016-08-01
A precision measurement by AMS of the antiproton flux and the antiproton-to-proton flux ratio in primary cosmic rays in the absolute rigidity range from 1 to 450 GV is presented based on 3.49 ×1 05 antiproton events and 2.42 ×1 09 proton events. The fluxes and flux ratios of charged elementary particles in cosmic rays are also presented. In the absolute rigidity range ˜60 to ˜500 GV , the antiproton p ¯, proton p , and positron e+ fluxes are found to have nearly identical rigidity dependence and the electron e- flux exhibits a different rigidity dependence. Below 60 GV, the (p ¯/p ), (p ¯/e+), and (p /e+) flux ratios each reaches a maximum. From ˜60 to ˜500 GV , the (p ¯/p ), (p ¯/e+), and (p /e+) flux ratios show no rigidity dependence. These are new observations of the properties of elementary particles in the cosmos.
NASA Astrophysics Data System (ADS)
Hilton, John Martin
This study investigates why physical therapy assistant majors engage and perform better than elementary education majors in an inquiry-based conceptual physics course at Mid-Atlantic Community College. The students from each major are demographically similar, both courses are similar in depth and structure, and each course supports the students' program. However, there is an observed difference in the levels of engagement with the curriculum and performance on writing-based assessments between the two groups. To explore possible explanations for the difference, I examine students' affinity for science, their beliefs about the nature of science and scientific knowledge in the classroom, and their perception of the usefulness of science to their program. During semi-structured interviews, students from both majors displayed nearly identical weak affinities for science, epistemological beliefs, and uncertainty about the usefulness of the class. However, the physical therapy majors' ability to see the relevance of the physics course experience to their program enhanced their interest and motivation. In contrast, the elementary education students do not see connections between the course and their program, and do not see a purpose for their learning of physics content. To improve the program, I propose a two-pronged approach - designing a faded-scaffolded-inquiry approach for both classes, and developing a field-based/seminar class for the elementary education majors. The scaffolded inquiry will help both groups develop better orientations toward lab activities, and the structured observations and reflection will help the elementary group connect the material to their program.
EDITORIAL: Metrological Aspects of Accelerator Technology and High Energy Physics Experiments
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.; Pozniak, Krzysztof T.
2007-08-01
The subject of this special feature in Measurement Science and Technology concerns measurement methods, devices and subsystems, both hardware and software aspects, applied in large experiments of high energy physics (HEP) and superconducting RF accelerator technology (SRF). These experiments concern mainly the physics of elementary particles or the building of new machines and detectors. The papers present practical examples of applied solutions in large, contemporary, international research projects such as HERA, LHC, FLASH, XFEL, ILC and others. These machines are unique in their global scale and consist of extremely dedicated apparatus. The apparatus is characterized by very large dimensions, a considerable use of resources and a high level of overall technical complexity. They possess a large number of measurement channels (ranging from thousands to over 100 million), are characterized by fast of processing of measured data and high measurement accuracies, and work in quite adverse environments. The measurement channels cooperate with a large number of different sensors of momenta, energies, trajectories of elementary particles, electron, proton and photon beam profiles, accelerating fields in resonant cavities, and many others. The provision of high quality measurement systems requires the designers to use only the most up-to-date technical solutions, measurement technologies, components and devices. Research work in these demanding fields is a natural birthplace of new measurement methods, new data processing and acquisition algorithms, complex, networked measurement system diagnostics and monitoring. These developments are taking place in both hardware and software layers. The chief intention of this special feature is that the papers represent equally some of the most current metrology research problems in HEP and SRF. The accepted papers have been divided into four topical groups: superconducting cavities (4 papers), low level RF systems (8 papers), ionizing radiation (5 papers) and HEP experiments (8 papers). The editors would like to thank cordially all the authors who accepted our invitation to present their very recent results. A number of authors of the papers in this issue are active in the 6th European Framework Research Program CARE—Coordinated Accelerators Research in Europe and ELAN—the European Linear Accelerator Network. Some authors are active in research programs of a global extent such as the LHC, ILC and GDE—the Global Design Effort for the International Linear Collider. We also would like to thank personally, as well as on behalf of all the authors, the Editorial Board of Measurement Science and Technology for accepting this very exciting field of contemporary metrology. This field seems to be really a birthplace of a host of new metrological technologies, where the driving force is the incredibly high technical requirements that must soon be fulfilled if we dream of building new accelerators for elementary particles, new biological materials and medicine alike. Special thanks are due to Professor R S Jachowicz of Warsaw University of Technology for initiating this issue and for continuous support and advice during our work.
Dynamic Physical Education for Elementary School Children.
ERIC Educational Resources Information Center
Dauer, Victor P.; Pangrazi, Robert P.
This guide offers a functional, child-tested physical education program for elementary students. Chapters in the book discuss the following topics: (a) current educational and sociological trends; (b) rationale for the program; (c) guidelines for program planning; (d) organization for effective teaching; (e) basis of movement learning and…
Physics with a High Intensity Proton Source at Fermilab: Project X Golden Book
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appel, Jeffrey; /Fermilab; Asner, David
2008-02-03
Within the next ten years the Standard Model will likely have to be modified to encompass a wide range of newly discovered phenomena, new elementary particles, new symmetries, and new dynamics. These phenomena will be revealed through experiment with high energy particle accelerators, mainly the LHC. This will represent a revolution in our understanding of nature, and will either bring us closer to an understanding of all phenomena, through existing ideas such as supersymmetry to superstrings, or will cause us to scramble to find new ideas and a new sense of direction. We are thus entering a dramatic and importantmore » time in the quest to understand the fundamental laws of nature and their role in shaping the universe. The energy scales now probed by the Tevatron, of order hundreds of GeV, will soon be subsumed by the LHC and extended up to a few TeV. We expect the unknown structure of the mysterious symmetry breaking of the Standard Model to be revealed. We will then learn the answer to a question that has a fundamental bearing upon our own existence: 'What is the origin of mass?' All modern theories of 'electroweak symmetry breaking' involve many new particles, mainly to provide a 'naturalness' rationale for the weak scale. Supersymmetry (SUSY) represents extra (fermionic) dimensions of space, leading to a doubling of the number of known elementary particles and ushering in many additional new particles and phenomena associated with the various symmetry breaking sectors. The possibility of additional bosonic dimensions of space would likewise usher in an even greater multitude of new states and new phenomena. Alternatively, any new spectroscopy may indicate new principles we have not yet anticipated, and we may see new strong forces and/or a dynamical origin of mass. The wealth of new particles, parameters, CP-phases, and other phenomena carries important implications for precision quark flavor physics experiments that are uniquely sensitive probes of new phenomena. We have already begun to see the enlargement of the Standard Model in the leptonic sector. Neutrino masses and mixing angles, which in the early 1990's were unknown, must now be incorporated into our full description of nature. In a minimal scenario of Majorana masses and mixings amongst the three known left-handed neutrinos, we see a strong hint of a new and very large mass scale, possibly associated with grand unification or the scale of quantum gravity, the Planck mass. We are not yet sure what the proper description of neutrino masses and mixing angles will be. Experiments may reveal additional unexpected particles coupled to the neutrino sector. New phenomena, such as leptonic CP-violation, will be major focal points of our expanding understanding of the lepton sector. There is much to be done with experiment to attack the issues that neutrinos now present. Already, developments in neutrino physics and the possibility of a novel source of CP-violation in the lepton sector have spawned hopes that the cosmic matter-antimatter asymmetry may be explained through leptogenesis. Neutrino physics, together with the search for new energy frontier physics, offers the possibility of experimental handles on the questions of dark matter and dark energy. Without the discovery of new particles in accelerator experiments, the telescope-based cosmological observations of the early universe would remain unexplained puzzles. The process of understanding the laws of physics in greater detail through accelerator-based high energy physics will potentially have incisive impact on our understanding of dark matter and dark energy. Precision flavor physics in both the quark and the lepton sectors offers a window on the sensitive entanglement of beyond-the-Standard-Model physics with rare processes, through quantum loop effects involving known or new states. Flavor physics offers sensitive indirect probes and may be the first place to reveal additional key components of the post-Standard Model physics. The main arenas for quark flavor physics include strange, charm and beauty, hence kaons, D-mesons, B-mesons and heavy baryons. A remarkable historical paradigm for the importance of flavor physics is the well known suppression of flavor-changing neutral currents. The analysis of the K{sub L}-K{sub S} mass difference by Gaillard and Lee, 35 years ago in the Fermilab Theory Group, led to the confirmation of the GIM mechanism and predicted the mass of the charm quark, m{sub c} {approx} 1.5 GeV, definitively and prior to its discovery. This, today, implies an astonishing constraint on SUSY models, e.g., that the down and strange squarks are mass degenerate to 1:10{sup 5}. This, in turn, has spawned a new working hypothesis called 'Minimal Flavor Violation' (MFV). But is MFV really a true principle operating in nature and, if so, where does it come from? Such questions can only be addressed in precision flavor physics experiments.« less
ERIC Educational Resources Information Center
Wingfield, Robert Joshua; Graziano, Paulo A.; McNamara, Joseph P. H., Janicke, David M.
2011-01-01
The purpose of this study was to investigate relationships between body mass index (BMI), physical fitness, and academic performance in elementary school students. Specifically, BMI and scores on the President's Challenge Physical Activity and Fitness Awards Program, a physical fitness test, were compared to reading and mathematics scores on the…
ERIC Educational Resources Information Center
Jones, Margaret A., Ed.
At the final session of the January conference on Contemporary Elementary and Middle School Physical Education, 40 discussions and workshops centered on physical fitness, health, safety, and adapting athletics for the disabled child. Other topics covered were creative dance, water activities, lifetime sports, and teacher resource materials and…
ERIC Educational Resources Information Center
Jones, Margaret A., Ed.
The second session of the January conference on Contemporary Elementary and Middle School Physical Education was devoted to over 35 workshops and demonstrations of games and sports that could be used by teachers with their classes. Emphasis was placed on the development of individual skills, physical fitness through sports, and noncompetitive…
ERIC Educational Resources Information Center
Jones, Margaret A., Ed.
The second session of the Contemporary Elementary and Middle School Physical Education Conference was devoted to over 35 workshops and demonstrations of games and sports that may be used by teachers. Emphasis was placed on the development of individual skills, physical fitness through sports, and non-competitive games. Position papers were also…
ERIC Educational Resources Information Center
American Alliance for Health, Physical Education, Recreation and Dance (NJ1), 2006
2006-01-01
It is the position of the National Association for Sport and Physical Education (NASPE) that all elementary school children should be provided with at least one daily period of recess of at least 20 minutes in length. Various cited organizations support school recess as an integral component of a child's physical, social, and academic development,…
Exergaming: Comparison of On-Game and Off-Game Physical Activity in Elementary Physical Education
ERIC Educational Resources Information Center
Reynolds, Craig; Benham-Deal, Tami; Jenkins, Jayne M.; Wilson, Margaret
2018-01-01
The purpose of this study was to describe fifth grade students' physical activity (PA) while playing a dance-based video game, Just Dance 4, and to examine the influence direct feedback about their performance had on their level of activity. Twenty-seven students in the 5th grade from an elementary school in the Rocky Mountain West participated.…
Particles, Feynman Diagrams and All That
ERIC Educational Resources Information Center
Daniel, Michael
2006-01-01
Quantum fields are introduced in order to give students an accurate qualitative understanding of the origin of Feynman diagrams as representations of particle interactions. Elementary diagrams are combined to produce diagrams representing the main features of the Standard Model.
Duality and 'particle' democracy
NASA Astrophysics Data System (ADS)
Castellani, Elena
2017-08-01
Weak/strong duality is usually accompanied by what seems a puzzling ontological feature: the fact that under this kind of duality what is viewed as 'elementary' in one description gets mapped to what is viewed as 'composite' in the dual description. This paper investigates the meaning of this apparent 'particle democracy', as it has been called, by adopting an historical approach. The aim is to clarify the nature of the correspondence between 'dual particles' in the light of a historical analysis of the developments of the idea of weak/strong duality, starting with Dirac's electric-magnetic duality and its successive generalizations in the context of (Abelian and non-Abelian) field theory, to arrive at its first extension to string theory. This analysis is then used as evidential basis for discussing the 'elementary/composite' divide and, after taking another historical detour by analyzing an instructive analogy case (DHS duality and related nuclear democracy), drawing some conclusions on the particle-democracy issue.
Particle dark matter searches in the anisotropic sky
NASA Astrophysics Data System (ADS)
Fornengo, Nicolao; Regis, Marco
2014-02-01
Anisotropies in the electromagnetic emission produced by dark matter annihilation or decay in the extragalactic sky are a recent tool in the quest for a particle dark matter evidence. We review the formalism to compute the two-point angular power spectrum in the halo-model approach and discuss the features and the relative size of the various auto- and cross-correlation signals that can be envisaged for anisotropy studies. From the side of particle dark matter signals, we consider the full multi-wavelength spectrum, from the radio emission to X-ray and gamma-ray productions. We discuss the angular power spectra of the auto-correlation of each of these signals and of the cross-correlation between any pair of them. We then extend the search to comprise specific gravitational tracers of dark matter distribution in the Universe: weak-lensing cosmic shear, large-scale-structure matter distribution and CMB-lensing. We have shown that cross-correlating a multi-wavelength dark matter signal (which is a direct manifestation of its particle physics nature) with a gravitational tracer (which is a manifestation of the presence of large amounts of unseen matter in the Universe) may offer a promising tool to demonstrate that what we call DM is indeed formed by elementary particles.
Elementary particles in the early Universe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gromov, N.A., E-mail: gromov@dm.komisc.ru
The high-temperature limit of the Standard Model generated by the contractions of gauge groups is discussed. Contraction parameters of gauge group SU(2) of the Electroweak Model and gauge group SU(3) of Quantum Chromodynamics are taken identical and tending to zero when the temperature increases. Properties of the elementary particles change drastically at the infinite temperature limit: all particles lose masses, all quarks are monochromatic. Electroweak interactions become long-range and are mediated by neutral currents. Particles of different kind do not interact. It looks like some stratification with only one sort of particles in each stratum. The Standard Model passes inmore » this limit through several stages, which are distinguished by the powers of the contraction parameter. For any stage intermediate models are constructed and the exact expressions for the respective Lagrangians are presented. The developed approach describes the evolution of the Standard Model in the early Universe from the Big Bang up to the end of several nanoseconds.« less
The Archetypes and Philosophical Motivations of Urban Elementary Physical Educators
ERIC Educational Resources Information Center
Culp, Brian
2011-01-01
Brookfield (1990), Brown (2002) and Weiner (2006) have advocated for the study of teachers' philosophies as integral to understanding motivation for teaching in urban settings. The purpose of this study investigates the teaching philosophies of 13 experienced urban elementary physical educators. Content analysis of the data collected from teachers…
Developmental Bouldering for Elementary School Students
ERIC Educational Resources Information Center
Martinez, Ray; Fader, Tim
2004-01-01
Physical educators have an opportunity to promote outdoor activities to students. In elementary school, physical educators can introduce non-mechanized activities that students can then enjoy in outdoor environments. One of these activities is bouldering, which is climbing or traversing across a climbing wall a few feet off the ground. Bouldering…
Fourth Graders' Motivation in an Elementary Physical Education Running Program
ERIC Educational Resources Information Center
Xiang, Ping; McBride, Ron E.; Bruene, April
2004-01-01
In this study we examined students' motivation in an elementary physical education running program using achievement goal theory and an expectancy-value model of achievement choice as theoretical frameworks. Fourth graders (N = 119) completed questionnaires assessing their achievement goals, expectancy-related beliefs, subjective task values, and…
Rep. Baca, Joe [D-CA-43
2011-01-25
House - 02/25/2011 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:
Content Specificity of Expectancy Beliefs and Task Values in Elementary Physical Education
ERIC Educational Resources Information Center
Chen, Ang; Martin, Robert; Ennis, Catherine D.; Sun, Haichun
2008-01-01
The curriculum may superimpose a content-specific context that mediates motivation (Bong, 2001). This study examined content specificity of the expectancy-value motivation in elementary school physical education. Students' expectancy beliefs and perceived task values from a cardiorespiratory fitness unit, a muscular fitness unit, and a traditional…
NASA Astrophysics Data System (ADS)
Zel'dovich, Ya B.; Khlopov, M. Yu
1981-09-01
Some theoretical aspects of a nonzero value for the neutrino rest mass and its possible implications for physics are discussed. The nature of the neutrino mass is analyzed, as well as the physical consequences that may derive from the existence of new helicity states for the neutrino or from lepton charge nonconservation if the mass is of Dirac or Majorana character, respectively. Massive neutrinos are examined in the context of grand unified theories combining the weak, strong, and electromagnetic interactions. Searches for neutrino-mass effects in β decay and for neutrino oscillations are reviewed. Several astrophysical effects of the neutrino mass are described: solar-neutrino oscillations, the decay of primordial neutrinos, the feasibility of detecting massive primordial neutrinos experimentally. The predictions of big bang theory regarding the neutrino number density in the universe are analyzed, and a discussion is given of the influence neutrino oscillations might have on the neutrino density and on cosmological nucleosynthesis.
NASA Astrophysics Data System (ADS)
Kumar, David D.; Morris, John D.
2005-12-01
A multiple regression analysis of the relationship between prospective teachers' scientific understanding and Gender, Education Level (High School, College), Courses in Science (Biology, Chemistry, Physics, Earth Science, Astronomy, and Agriculture), Attitude Towards Science, and Attitude Towards Mathematics is reported. Undergraduate elementary science students ( N = 176) in an urban doctoral-level university in the United States participated in this study. The results of this study showed Gender, completion of courses in High School Chemistry and Physics, College Chemistry and Physics, and Attitudes Toward Mathematics and Science significantly correlated with scientific understanding. Based on a regression model, Gender, and College Chemistry and Physics experiences added significant predictive accuracy to scientific understanding among prospective elementary teachers compared to the other variables.
ERIC Educational Resources Information Center
Widick, Paul R.
1969-01-01
Described are activities that are designed to help elementary children understand the possibility of the particle theory of matter. Children work with beads, marbles, B-B shot and sand; by mixing these materials and others they are led to see that it is highly possible for the existence of particles which are not visible. (BR)
ERIC Educational Resources Information Center
Malone, Mark R., Comp.
Mounting research evidence has shown that an activity centered approach to elementary and middle school science education can be quite effective. This sourcebook, developed for teachers by teachers, presents many activity oriented science lessons that could be done in any elementary or middle school classroom with minimal additional experience.…
ERIC Educational Resources Information Center
Evans, Miriam Jones
2012-01-01
This study explores factors associated with implementation of the physical education and physical activity standards of the South Carolina Students Health and Fitness Act of 2005 in Title I elementary schools. The study was framed using selected components of the diffusion of innovations theory, which looked at characteristics of the law and their…
ERIC Educational Resources Information Center
Goh, Tan Leng
2014-01-01
Physical inactivity is an increasing problem among children and adolescents. The TAKE 10!® program, which integrates physical activity (PA) into academic subjects, was implemented in one elementary school in Magna, Utah to increase children's daily in-school PA. A three-study approach was used to examine: (a) effects of TAKE 10!® on elementary…
Physical Education Facilities for Elementary Schools.
ERIC Educational Resources Information Center
Ontario Dept. of Education, Toronto. School Planning and Building Research Section.
This brochure deals with three basic types of elementary schools: K-6, K-8, and senior elementary. Floor plans and sketches illustrate specifications for the school gymnasium, dressing rooms, drying rooms, boys' and girls' shower rooms, washrooms, instructors' offices, storage areas, stage, and playing fields. (Author/MLF)
The Co-Construction of Cooperative Learning in Physical Education with Elementary Classroom Teachers
ERIC Educational Resources Information Center
Dyson, Ben P.; Colby, Rachel; Barratt, Mark
2016-01-01
The purpose of this study was to investigate generalist classroom elementary teachers' implementation of the Cooperative Learning (CL) pedagogical model into their physical education classes. The study used multiple sources of data drawing on qualitative data collection and data analysis research traditions (Miles, Huberman, & Saldana, 2014).…
Teaching Physical Science through Children's Literature. 20 Complete Lessons for Elementary Grades.
ERIC Educational Resources Information Center
Gertz, Susan E.; Portman, Dwight J.; Sarquis, Mickey
This guide focuses on teaching hands-on, discovery-oriented physical science in the elementary classroom using children's literature. Each lesson is an integrated learning episode with a clearly defined science content objective which is supported and enriched through literature, writing, and mathematics. The three sections are: (1) "Properties of…
School-Based Functional Assessments for Children with Physical Disabilities in Grades K-12
ERIC Educational Resources Information Center
Johnson, Richard W.
2012-01-01
The purpose of this study was to develop three school-based assessments and determine the content validity for each assessment. The School Activities and Participation Analysis-Elementary (SAPA-E) measures functional movement performance in children with physical disability attending the elementary school, and the School Activities and…
Fourth-Grade Students' Motivational Changes in an Elementary Physical Education Running Program
ERIC Educational Resources Information Center
Xiang, Ping; McBride, Ron E.; Bruene, April
2006-01-01
Achievement goal theory and the expectancy-value model of achievement choice were used to examine fourth-grade students' motivational changes in an elementary physical education running program. In fall and spring of the school year, participants (N = 113; 66 boys, 47 girls) completed questionnaires assessing achievement goals, expectancy beliefs,…
Children's Motivation in Elementary Physical Education: A Longitudinal Study
ERIC Educational Resources Information Center
Xiang, Ping; McBride, Ron; Guan, Jianmin
2004-01-01
The present study examined relationships among variables drawn from achievement goal theory and the expectancy-value model of achievement choice as well as mean level changes of these variables over time in elementary physical education. Participants (N = 207) completed questionnaires over a 2-year period: once while in the second and fourth…
ERIC Educational Resources Information Center
Foran, Christine A.; Mannion, Cynthia; Rutherford, Gayle
2017-01-01
The aim of our study was to explore the perceptions of elementary teachers who routinely prioritized physical activity in their classrooms. Researchers are reporting improved student academic test results following physical activity sessions, however, classroom teachers are challenged in balancing curricular and other expectations. Hence, teachers…
The Ecology of Cooperative Learning in Elementary Physical Education Classes
ERIC Educational Resources Information Center
Dyson, Ben P.; Linehan, Nicole Rhodes; Hastie, Peter A.
2010-01-01
The purpose of this study was to describe and interpret the instructional ecology of Cooperative Learning in elementary physical education classes. Data collection included a modified version of the task structure system (Siedentop, 1994), interviews, field notes, and a teacher's journal. T-tests of the quantitative data revealed that instruction…
ERIC Educational Resources Information Center
Mayfield, Carlene A.; Child, Stephanie; Weaver, Robert G.; Zarrett, Nicole; Beets, Michael W.; Moore, Justin B.
2017-01-01
Background: We examined the effectiveness of Peaceful Playgrounds™ (P2) to decrease antisocial behaviors (ASB) while increasing physical activity (PA) and prosocial behaviors (PSB) in elementary school children. Methods: A longitudinal, cluster-randomized design was employed in 4 elementary school playgrounds where students (third to fifth) from 2…
Elementary Students' Accounts of Optimal Challenge in Physical Education
ERIC Educational Resources Information Center
Mandigo, James L.; Holt, Nicholas L.
2006-01-01
The purpose of this study was to examine elementary school students' accounts of optimal challenge. Twenty-seven children (aged 7-9 years) participated in semi-structured interviews during which they were shown a video-recording of their participation in a physical education class and invited to describe their experiences of optimally challenging…
The Mississippi Catalog of Competencies for Public Elementary and Secondary Physical Education.
ERIC Educational Resources Information Center
Mississippi State Dept. of Education, Jackson.
Phase III of a five-phase project which has implications for the improvement of instructional programs in Mississippi's elementary and secondary schools is described. In phase III, specifically stated objectives or competencies in physical education, designed to accomplish the objectives stated in phase II, are cataloged. The competencies are…
Elementary Particles and the Universe
NASA Astrophysics Data System (ADS)
Schwarz, John H.
2005-07-01
1. Excess baggage J. Hartle; 2. Through the clouds E. Witten; 3. Covariant foundations of the superparticle L. Brink; 4. Chiral symmetry and confinement T. Goldman; 5. The original fifth interaction Y. Neeman; 6. The mass hierarchy of leptons and quarks H. Fritzsch; 7. Spacetime duality in string theory J. H. Schwarz; 8. Symmetry and quasi-symmetry Y. Nambu; 9. On an exceptional non-associative superspace M. Gunaydin; 10. Algebra of reparametrization-invariant and normal ordered operators in open string field theory P. Ramond; 11. Superconductivity of an ideal charged boson system T. D. Lee; 12. Some remarks on the symmetry approach to nuclear rotational motion L. C. Biedebharn and P. Truini; 13. Uncomputability, intractability and the efficiency of heat engines S. Lloyd; 14. The new mathematical physics I. Singer; 15. For the birds V. Telegdi; 16. Gell-Mann's approach to physics A. Salam; 17. Remarks M. Goldberger.
Topological semimetal in honeycomb lattice LnSI
NASA Astrophysics Data System (ADS)
Nie, Simin; Xu, Gang; Prinz, Fritz B.; Zhang, Shou-cheng
2017-10-01
Recognized as elementary particles in the standard model, Weyl fermions in condensed matter have received growing attention. However, most of the previously reported Weyl semimetals exhibit rather complicated electronic structures that, in turn, may have raised questions regarding the underlying physics. Here, we report promising topological phases that can be realized in specific honeycomb lattices, including ideal Weyl semimetal structures, 3D strong topological insulators, and nodal-line semimetal configurations. In particular, we highlight a semimetal featuring both Weyl nodes and nodal lines. Guided by this model, we showed that GdSI, the long-perceived ideal Weyl semimetal, has two pairs of Weyl nodes residing at the Fermi level and that LuSI (YSI) is a 3D strong topological insulator with the right-handed helical surface states. Our work provides a mechanism to study topological semimetals and proposes a platform for exploring the physics of Weyl semimetals as well as related device designs.
Topological semimetal in honeycomb lattice LnSI.
Nie, Simin; Xu, Gang; Prinz, Fritz B; Zhang, Shou-Cheng
2017-10-03
Recognized as elementary particles in the standard model, Weyl fermions in condensed matter have received growing attention. However, most of the previously reported Weyl semimetals exhibit rather complicated electronic structures that, in turn, may have raised questions regarding the underlying physics. Here, we report promising topological phases that can be realized in specific honeycomb lattices, including ideal Weyl semimetal structures, 3D strong topological insulators, and nodal-line semimetal configurations. In particular, we highlight a semimetal featuring both Weyl nodes and nodal lines. Guided by this model, we showed that GdSI, the long-perceived ideal Weyl semimetal, has two pairs of Weyl nodes residing at the Fermi level and that LuSI (YSI) is a 3D strong topological insulator with the right-handed helical surface states. Our work provides a mechanism to study topological semimetals and proposes a platform for exploring the physics of Weyl semimetals as well as related device designs.
Topological semimetal in honeycomb lattice LnSI
Nie, Simin; Xu, Gang; Prinz, Fritz B.; Zhang, Shou-cheng
2017-01-01
Recognized as elementary particles in the standard model, Weyl fermions in condensed matter have received growing attention. However, most of the previously reported Weyl semimetals exhibit rather complicated electronic structures that, in turn, may have raised questions regarding the underlying physics. Here, we report promising topological phases that can be realized in specific honeycomb lattices, including ideal Weyl semimetal structures, 3D strong topological insulators, and nodal-line semimetal configurations. In particular, we highlight a semimetal featuring both Weyl nodes and nodal lines. Guided by this model, we showed that GdSI, the long-perceived ideal Weyl semimetal, has two pairs of Weyl nodes residing at the Fermi level and that LuSI (YSI) is a 3D strong topological insulator with the right-handed helical surface states. Our work provides a mechanism to study topological semimetals and proposes a platform for exploring the physics of Weyl semimetals as well as related device designs. PMID:28928149
One-loop renormalization of a gravity-scalar system
NASA Astrophysics Data System (ADS)
Park, I. Y.
2017-05-01
Extending the renormalizability proposal of the physical sector of 4D Einstein gravity, we have recently proposed renormalizability of the 3D physical sector of gravity-matter systems. The main goal of the present work is to conduct systematic one-loop renormalization of a gravity-matter system by applying our foliation-based quantization scheme. In this work we explicitly carry out renormalization of a gravity-scalar system with a Higgs-type potential. With the fluctuation part of the scalar field gauged away, the system becomes renormalizable through a metric field redefinition. We use dimensional regularization throughout. One of the salient aspects of our analysis is how the graviton propagator acquires the "mass" term. One-loop calculations lead to renormalization of the cosmological and Newton constants. We discuss other implications of our results as well: time-varying vacuum energy density and masses of the elementary particles as well as the potential relevance of Neumann boundary condition for black hole information.
NASA Astrophysics Data System (ADS)
Zoupanos, G.
These are the Proceedings of the scientific activities of CORFU2016, the 16th Hellenic School and Workshops on Elementary Particle Physics and Gravity, which took place from August 31st till September 23rd, 2016. The School and Workshops were hosted by the European Institute for Sciences and their Applications (EISA) at the conference center of the ex-Royal Palace garden of Mon Repos in Corfu, Greece. The scientific activities consisted of a series of three events, the Summer School and Workshop on the Standard Model and Beyond, the Recent Developments in Strings and Gravity, the ATLAS Hadronic Calibration Workshop 2016 and a rich set of outreach activities ( TV and radio interviews, Master Classes, series of lectures to High School teachers and talks for the public). We refer to the website www.physics.ntua.gr/corfu2016 for the various organizational and practical details. These proceedings are dedicated to our beloved friend and colleague Giannis (Ioannis) Bakas who passed away on Tuesday, Aug 30, 2016.
Elementary Particles and Forces.
ERIC Educational Resources Information Center
Quigg, Chris
1985-01-01
Discusses subatomic particles (quarks, leptons, and others) revealed by higher accelerator energies. A connection between forces at this subatomic level has been established, and prospects are good for a description of forces that encompass binding atomic nuclei. Colors, fundamental interactions, screening, camouflage, electroweak symmetry, and…
ERIC Educational Resources Information Center
McIntyre, Patrick J.
1974-01-01
Reported is a study to verify the pattern of bias associated with the Model Identification Test and to determine its source. This instrument is a limited verbal science test designed to determine the knowledge possessed by elementary school children of selected concepts related to "the particle nature of matter." (PEB)
NASA Technical Reports Server (NTRS)
Braginsky, V. B.; Vorontsov, Y. I.; Thorne, K. S.
1979-01-01
Future gravitational wave antennas will be approximately 100 kilogram cylinders, whose end-to-end vibrations must be measured so accurately (10 to the -19th power centimeters) that they behave quantum mechanically. Moreover, the vibration amplitude must be measured over and over again without perturbing it (quantum nondemolition measurement). This contrasts with quantum chemistry, quantum optics, or atomic, nuclear, and elementary particle physics where measurements are usually made on an ensemble of identical objects, and care is not given to whether any single object is perturbed or destroyed by the measurement. Electronic techniques required for quantum nondemolition measurements are described as well as the theory underlying them.
Stern, Ady
2010-03-11
Quantum mechanics classifies all elementary particles as either fermions or bosons, and this classification is crucial to the understanding of a variety of physical systems, such as lasers, metals and superconductors. In certain two-dimensional systems, interactions between electrons or atoms lead to the formation of quasiparticles that break the fermion-boson dichotomy. A particularly interesting alternative is offered by 'non-Abelian' states of matter, in which the presence of quasiparticles makes the ground state degenerate, and interchanges of identical quasiparticles shift the system between different ground states. Present experimental studies attempt to identify non-Abelian states in systems that manifest the fractional quantum Hall effect. If such states can be identified, they may become useful for quantum computation.
Particle Diffusion in an Inhomogeneous Medium
ERIC Educational Resources Information Center
Bringuier, E.
2011-01-01
This paper is an elementary introduction to particle diffusion in a medium where the coefficient of diffusion varies with position. The introduction is aimed at third-year university courses. We start from a simple model of particles hopping on a discrete lattice, in one or more dimensions, and then take the continuous-space limit so as to obtain…
"Loops and Legs in Quantum Field Theory", 12th DESY Workshop on Elementary Particle Physics
NASA Astrophysics Data System (ADS)
The bi-annual international conference "Loops and Legs in Quantum Field Theory" has been held at Weimar, Germany, from April 27 to May 02, 2014. It has been the 12th conference of this series, started in 1992. The main focus of the conference are precision calculations of multi- loop and multi-leg processes in elementary particle physics for processes at present and future high-energy facilities within and beyond the Standard Model. At present many physics questions studied deal with processes at the LHC and future facilities like the ILC. A growing number of contributions deals with important developments in the field of computational technologies and algorithmic methods, including large-scale computer algebra, efficient methods to compute large numbers of Feynman diagrams, analytic summation and integration methods of various kinds, new related function spaces, precise numerical methods and Monte Carlo simulations. The present conference has been attended by more than 110 participants from all over the world, presenting more than 75 contributions, most of which have been written up for these pro- ceedings. The present volume demonstrates in an impressive way the enormous development of the field during the last few years, reaching the level of 5-loop calculations in QCD and a like- wise impressive development in massive next-to-leading order and next-to-next-to-leading order processes. Computer algebraic and numerical calculations require terabyte storage and many CPU years, even after intense parallelization, to obtain state-of-the-art theoretical predictions. The city of Weimar gave a suitable frame to the conference, with its rich history, especially in literature, music, arts, and architecture. Goethe, Schiller, Wieland, Herder, Bach and Liszt lived there and created many of their masterpieces. The many young participants signal that our field is prosperous and faces an exciting future. The conference hotel "Kaiserin Augusta" offered a warm hospitality and excellent working conditions. We would like to thank Martina Mende for all her work in helping to organize this conference. Details of the conference can be found under: https://indico.desy.de/conferenceDisplay.py?confId=8107
ERIC Educational Resources Information Center
Laherto, Antti; Laherto, Jussi
2018-01-01
Addressing the widely reported deficiencies in elementary teachers' competence in technology use and in inquiry-based science instruction, we present and assess a novel teaching experiment conducted in a university-school collaboration. Preservice elementary teachers planned and produced teaching videos in which they gave instructions on…
A Survey Assessment of Florida's Fit To Achieve Program.
ERIC Educational Resources Information Center
Sander, Allan N.; And Others
This study examined the impact of a Florida State Department of Education project entitled Fit to Achieve--a cardiovascular fitness education program for elementary school children. Of the teachers implementing the program, 24 elementary physical educators and 134 elementary classroom teachers responded to a survey that asked for information on…
Elementary Physical Education Teachers' Experiences in Teaching English Language Learners
ERIC Educational Resources Information Center
Sato, Takahiro; Hodge, Samuel R.
2016-01-01
The purpose of the current study was to describe and explain the views on teaching English Language Learners (ELLs) held by six elementary physical education (PE) teachers in the Midwest region of the United States. Situated in positioning theory, the research approach was descriptive-qualitative. The primary sources of data were face-to-face…
Creating a Positive Social-Emotional Climate in Your Elementary Physical Education Program
ERIC Educational Resources Information Center
Gagnon, Amy G.
2016-01-01
Creating a positive social-emotional climate must be the backbone of a quality elementary physical education program. The need to belong, have friends, and feel emotionally safe are basic needs everyone has, but meeting these needs in the classroom can be challenging at times. Strategies regarding how to implement a positive social-emotional…
The Status of Daily Physical Activity in Northern Ontario's Elementary Public Schools
ERIC Educational Resources Information Center
Rickwood, Greg
2015-01-01
The importance of daily physical activity (DPA) for children and youth is highlighted in Canada's Active Healthy Kids annual report on fitness. Since 2005, this report has revealed that elementary-aged students are spending most of their waking hours stationary, in front of screens (phones, televisions, computers). To counteract this trend, the…
ERIC Educational Resources Information Center
Crosby, Glenn; And Others
A group of scientists and science educators of Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Chemistry block of the physical science courses developed by the group. Included are…
ERIC Educational Resources Information Center
Koc, Yakup
2017-01-01
The aim of this study is to examine relationship between the physical education course sportsmanship behaviors, tendency to violence, and empathetic ability for elementary school students. The sample of study consists of randomly selected 919 elementary school students attending state schools in the province of Erzincan in 2013-2014 academic year.…
ERIC Educational Resources Information Center
Hall, Amber M.; Larson, Jessyka; Heinemann, Angela; Brusseau, Timothy A.
2015-01-01
Unqualified paraprofessionals are teaching many elementary physical education (PE) programs around the United States. These teachers have neither the experience nor the education to provide quality instruction to students. Few researchers have identified the essential nature of teacher feedback in teaching motor skills, and it has been…
ERIC Educational Resources Information Center
Colombo-Dougovito, Andrew M.
2013-01-01
The purpose of this investigation was to analyze the possible differences of the physical fitness performance of elementary-aged students with and without attention deficit hyperactivity disorder (ADHD). Little research has been produced in the area of youth with ADHD and motor development; this research paper further investigates the effects of…
ERIC Educational Resources Information Center
Goldstein, Olzan
2016-01-01
This paper describes the impact of the project-based learning (PBL) approach on learning and teaching physics from the perspective of pre-service elementary school teacher education students and an instructor. This approach promoted meaningful learning (mainly in the scope of projects), higher motivation, and active involvement of students in…
ERIC Educational Resources Information Center
Webster, Gary
A group of scientists and science educators at Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Geology block of the physical science courses developed by the group. Included are…
ERIC Educational Resources Information Center
Lutz, Julie H.; Orlich, Donald C.
A group of scientists and science educators at Washington State University has developed and pilot tested an integrated physical science program designed for preservice elementary school teachers. This document includes the syllabus and class materials for the Astronomy block of the physical science courses developed by the group. Included are…
ERIC Educational Resources Information Center
Woodruff, Elizabeth A.; Curtner-Smith, Matthew D.
2007-01-01
The purpose of this study was to examine scary stories that young American adults recalled being told about physical education as they transferred from elementary school to secondary school. Participants were 70 undergraduate students. They were required to write about any scary stories concerning (a) secondary schooling in general, and (b)…
Theoretical & Experimental Research in Weak, Electromagnetic & Strong Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandi, Satyanarayan; Babu, Kaladi; Rizatdinova, Flera
The conducted research spans a wide range of topics in the theoretical, experimental and phenomenological aspects of elementary particle interactions. Theory projects involve topics in both the energy frontier and the intensity frontier. The experimental research involves energy frontier with the ATLAS Collaboration at the Large Hadron Collider (LHC). In theoretical research, novel ideas going beyond the Standard Model with strong theoretical motivations were proposed, and their experimental tests at the LHC and forthcoming neutrino facilities were outlined. These efforts fall into the following broad categories: (i) TeV scale new physics models for LHC Run 2, including left-right symmetry andmore » trinification symmetry, (ii) unification of elementary particles and forces, including the unification of gauge and Yukawa interactions, (iii) supersummetry and mechanisms of supersymmetry breaking, (iv) superworld without supersymmetry, (v) general models of extra dimensions, (vi) comparing signals of extra dimensions with those of supersymmetry, (vii) models with mirror quarks and mirror leptons at the TeV scale, (viii) models with singlet quarks and singlet Higgs and their implications for Higgs physics at the LHC, (ix) new models for the dark matter of the universe, (x) lepton flavor violation in Higgs decays, (xi) leptogenesis in radiative models of neutrino masses, (xii) light mediator models of non-standard neutrino interactions, (xiii) anomalous muon decay and short baseline neutrino anomalies, (xiv) baryogenesis linked to nucleon decay, and (xv) a new model for recently observed diboson resonance at the LHC and its other phenomenological implications. The experimental High Energy Physics group has been, and continues to be, a successful and productive contributor to the ATLAS experiment at the LHC. Members of the group performed search for gluinos decaying to stop and top quarks, new heavy gauge bosons decaying to top and bottom quarks, and vector-like quarks produced in pairs and decaying to light quarks. Members of the OSU group played a leading role in the detailed optimization studies for the future ATLAS Inner Tracker (ITk), which will be installed during the Phase-II upgrade, replacing the current tracking system. The proposed studies aim to enhance the ATLAS discovery potential in the high-luminosity LHC era. The group members have contributed to the calibration of algorithms for identifying boosted vector bosons and b-jets, which will help expand the ATLAS reach in many searches for new physics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Hugh H.; Balasubramanian, V.; Bernstein, G.
The University of Pennsylvania elementary particle physics/particle cosmology group, funded by the Department of Energy Office of Science, participates in research in high energy physics and particle cosmology that addresses some of the most important unanswered questions in science. The research is divided into five areas. Energy Frontier - We participate in the study of proton-proton collisions at the Large Hadron Collider in Geneva, Switzerland using the ATLAS detector. The University of Pennsylvania group was responsible for the design, installation, and commissioning of the front-end electronics for the Transition Radiation Tracker (TRT) and plays the primary role in its maintenancemore » and operation. We play an important role in the triggering of ATLAS, and we have made large contributions to the TRT performance and to the study and identification of electrons, photons, and taus. We have been actively involved in searches for the Higgs boson and for SUSY and other exotic particles. We have made significant contributions to measurement of Standard Model processes such as inclusive photon production and WW pair production. We also have participated significantly in R&D for upgrades to the ATLAS detector. Cosmic Frontier - The Dark Energy Survey (DES) telescope will be used to elucidate the nature of dark energy and the distribution of dark matter. Penn has played a leading role both in the use of weak gravitational lensing of distant galaxies and the discovery of large numbers of distant supernovae. The techniques and forecasts developed at Penn are also guiding the development of the proposed Large Synoptic Survey Telescope (LSST).We are also developing a new detector, MiniClean, to search for direct detection of dark matter particles. Intensity Frontier - We are participating in the design and R&D of detectors for the Long Baseline Neutrino Experiment (now DUNE), a new experiment to study the properties of neutrinos. Advanced Techology R&D - We have an extensive involvement in electronics required for sophisticated new detectors at the LHC and are developing electronics for the LSST camera. Theoretical Physics - We are carrying out a broad program studying the fundamental forces of nature and early universe cosmology and mathematical physics. Our activities span the range from model building, formal field theory, and string theory to new paradigms for cosmology and the interface of string theory with mathematics. Our effort combines extensive development of the formal aspects of string theory with a focus on real phenomena in particle physics, cosmology and gravity.« less
Tensor methodology and computational geometry in direct computational experiments in fluid mechanics
NASA Astrophysics Data System (ADS)
Degtyarev, Alexander; Khramushin, Vasily; Shichkina, Julia
2017-07-01
The paper considers a generalized functional and algorithmic construction of direct computational experiments in fluid dynamics. Notation of tensor mathematics is naturally embedded in the finite - element operation in the construction of numerical schemes. Large fluid particle, which have a finite size, its own weight, internal displacement and deformation is considered as an elementary computing object. Tensor representation of computational objects becomes strait linear and uniquely approximation of elementary volumes and fluid particles inside them. The proposed approach allows the use of explicit numerical scheme, which is an important condition for increasing the efficiency of the algorithms developed by numerical procedures with natural parallelism. It is shown that advantages of the proposed approach are achieved among them by considering representation of large particles of a continuous medium motion in dual coordinate systems and computing operations in the projections of these two coordinate systems with direct and inverse transformations. So new method for mathematical representation and synthesis of computational experiment based on large particle method is proposed.
Inertial mass of an elementary particle from the holographic scenario
NASA Astrophysics Data System (ADS)
Giné, Jaume
2017-03-01
Various attempts have been made to fully explain the mechanism by which a body has inertial mass. Recently, it has been proposed that this mechanism is as follows: when an object accelerates in one direction, a dynamical Rindler event horizon forms in the opposite direction, suppressing Unruh radiation on that side by a Rindler-scale Casimir effect whereas the radiation on the other side is only slightly reduced by a Hubble-scale Casimir effect. This produces a net Unruh radiation pressure force that always opposes the acceleration, just like inertia, although the masses predicted are twice those expected, see Ref. 17. In a later work, an error was corrected so that its prediction improves to within 26% of the Planck mass, see Ref. 10. In this paper, the expression of the inertial mass of a elementary particle is derived from the holographic scenario giving the exact value of the mass of a Planck particle when it is applied to a Planck particle.
Safety Action; Traffic and Pedestrian Safety. A Guide for Teachers in the Elementary Schools.
ERIC Educational Resources Information Center
Department of Transportation, Washington, DC.
GRADES OR AGES: Elementary, grades 1-6. SUBJECT MATTER: Safety action, traffic and pedestrian safety. ORGANIZATION AND PHYSICAL APPEARANCE: After introductory material explaining the philosophy of the guide, the elementary school child, characteristics of children as related to safety, and the responsibility of the safety team, the guide has…
NASA Astrophysics Data System (ADS)
Auriemma, Giulio
2003-12-01
The origin of the asymmetry between matter and antimatter that is evident in our part of the Universe is one of the open questions in cosmology, because the CPT symmetry between matter and antimatter seems to be absolutely conserved at microscopic level. We repeat here the classical proofs which exclude the viability of a Universe baryon symmetric on the average, or the observed asymmetry as an initial conditions. The current understanding is that the asymmetry should have been dynamically generated before nucleosynthesis, by B, C, and CP violating processes, acting out of thermodynamical equilibrium, as suggested by Sakharov in the 70's. The physical realizations of these conditions would be possible, in principle, also in the framework of the Standard Model of elementary particles, but the present limits on the mass of the higgs particle exclude this possibility. Finally we present the model of baryogenesis through leptogenesis, which is allowed by a minimal extension of the Standard Model, which has the appeal of being testable in future long-baseline neutrino oscillation experiments.
NASA Astrophysics Data System (ADS)
Auriemma, G.
2005-06-01
The origin of the asymmetry between matter and antimatter that is evident in our part of the Universe is one of the open questions in cosmology, because the CPT symmetry between matter and antimatter seems to be absolutely conserved at microscopic level. We repeat here the classical proofs which exclude the viability of a Universe baryon symmetric on the average, or the observed asymmetry as an initial condition. The current understanding is that the asymmetry should have been dynamically generated before nucleosynthesis, by B, C, and CP-violating processes, acting out of thermodynamical equilibrium, as suggested by Sakharov in the 70's. The physical realizations of these conditions would be possible, in principle, also in the framework of the Standard Model of elementary particles, but the present limits on the mass of the Higgs particle exclude this possibility. Finally we present the model of baryogenesis through leptogenesis, which is allowed by a minimal extension of the Standard Model, which has the appeal of being testable in future long-baseline neutrino oscillation experiments.
Goldstone-like phonon modes in a (111)-strained perovskite
NASA Astrophysics Data System (ADS)
Marthinsen, A.; Griffin, S. M.; Moreau, M.; Grande, T.; Tybell, T.; Selbach, S. M.
2018-01-01
Goldstone modes are massless particles resulting from spontaneous symmetry breaking. Although such modes are found in elementary particle physics as well as in condensed-matter systems like superfluid helium, superconductors, and magnons, structural Goldstone modes are rare. Epitaxial strain in thin films can induce structures and properties not accessible in bulk and has been intensively studied for (001)-oriented perovskite oxides. Here we predict Goldstone-like phonon modes in (111)-strained SrMn O3 by first-principles calculations. Under compressive strain the coupling between two in-plane rotational instabilities gives rise to a Mexican hat-shaped energy surface characteristic of a Goldstone mode. Conversely, large tensile strain induces in-plane polar instabilities with no directional preference, giving rise to a continuous polar ground state. Such phonon modes with U (1) symmetry could emulate structural condensed-matter Higgs modes. The mass of this Higgs boson, given by the shape of the Mexican hat energy surface, can be tuned by strain through proper choice of substrate.
The Stability of Self-Concept between Elementary and Junior High School in Catholic School Children
ERIC Educational Resources Information Center
Scott, Amy; Santos de Barona, Maryann
2011-01-01
Researchers have found that self-concept in students fluctuates during times of change, such as the physical transition between elementary school and junior high. Since Catholic school students typically do not have the physical transition or social network changes in junior high, it was hypothesized that their self-concepts would not fluctuate.…
ERIC Educational Resources Information Center
Magnus, Douglas Leslie
This research was conducted to compare the learning which occurred in a preservice elementary education course using two teaching-learning methods (teacher-directed instruction and student self-directed study). Areas investigated were: (1) knowledge of physical science content, (2) development and application of the processes of science, (3)…
ERIC Educational Resources Information Center
Leptokaridou, Elisavet T.; Vlachopoulos, Symeon P.; Papaioannou, Athanasios G.
2016-01-01
The present study examined the efficacy of autonomy-supportive teaching during elementary school physical education (PE) in influencing pupils' enjoyment, fear of failure, boredom and effort. A sample of 54 pupils attending fifth and sixth grades comprised the control group (typical instruction; n = 27) and the experimental group…
ERIC Educational Resources Information Center
Webber, Larry S.; Rice, Janet C.; Johnson, Carolyn C.; Rose, Donald; Srinivasan, Sathanur R.; Berenson, Gerald S.
2012-01-01
Background: Although the prevalence of obesity is increasing during adulthood, there have been few assessments of obesity, cardiovascular risk factors, and levels of physical activity among adult elementary school staff. Methods: Data were collected from 745 African-American and White female school personnel in a suburban school district in…
Ready for Recess: A Pilot Study to Increase Physical Activity in Elementary School Children
ERIC Educational Resources Information Center
Huberty, Jennifer L.; Siahpush, Mohammad; Beighle, Aaron; Fuhrmeister, Erin; Silva, Pedro; Welk, Greg
2011-01-01
Background: Creating an optimal environment at recess may be necessary to maximize physical activity (PA) participation in youth. The purpose of this study was to determine the initial effectiveness of an elementary school recess intervention on the amount of moderate PA (MPA) and vigorous PA (VPA) during recess and the school day. Methods: This…
ERIC Educational Resources Information Center
Harlow, Danielle B.
2014-01-01
This paper reports the results of an investigation of how a professional development content course based on the Physics and Everyday Thinking (PET) curriculum affected the teaching practices of five case study elementary school teachers. The findings of this study highlight different ways that teachers use what they learn in content courses to…
ERIC Educational Resources Information Center
Cawley, John; Frisvold, David; Meyerhoefer, Chad
2012-01-01
In response to the dramatic rise in childhood obesity, the Centers for Disease Control (CDC) and other organizations have advocated increasing the time that elementary school children spend in physical education (PE) classes. However, little is known about the effect of PE on child weight. This paper measures that effect by instrumenting for child…
ERIC Educational Resources Information Center
Barney, David; Deutsch, Joe
2012-01-01
An elementary classroom teacher (ECT) has a busy day. The teachers teach their class, prepare class materials, and may supervise the lunchroom or the playground at recess time (Daily Physical Activity in School, 2005), attend meetings with parents and perform a number of other responsibilities. For this reason planning time is a very important…
IMPROVEMENT OF MOTOR DEVELOPMENT AND PHYSICAL FITNESS IN ELEMENTARY SCHOOL CHILDREN.
ERIC Educational Resources Information Center
GLASSOW, RUTH B.; AND OTHERS
CHILDREN IN THE FIRST, THIRD, AND FIFTH GRADES IN A SELECTED ELEMENTARY SCHOOL WERE EXPOSED TO AN EXPERIMENTALLY DEVELOPED PROGRAM OF MOTOR ACTIVITIES AS PART OF A PHYSICAL EDUCATION CURRICULUM DESIGNED TO CHALLENGE A CHILD. PERFORMANCE MEASURES IN THE STANDING BROAD JUMP, THE 30-YARD DASH, THE OVER ARM THROW, THE PULL-UP, AND SHUTTLE RUN WERE…
ERIC Educational Resources Information Center
Boyraz, Sirin; Ozbar, Nurper; Yetgin, Meral Kucuk; Koksalan, Burke
2015-01-01
A total of 437 volunteers including 54 teachers, 218 6th grade students and 102 parents from Beykoz Elementary Schools participated in this study to understand the perspectives of students, families and teachers on Physical Education classes. The perspectives of students, families and teachers of other branches are identified by survey method.…
Exciton-exciton scattering: Composite boson versus elementary boson
NASA Astrophysics Data System (ADS)
Combescot, M.; Betbeder-Matibet, O.; Combescot, R.
2007-05-01
This paper shows the necessity of introducing a quantum object, the “coboson,” to properly describe, through a fermion scheme, any composite particle, such as the exciton, which is made of two fermions. Although commonly dealt with as elementary bosons, these composite bosons—cobosons in short—differ from them due to their composite nature which makes the handling of their many-body effects quite different from the existing treatments valid for elementary bosons. As a direct consequence of this composite nature, there is no correct way to describe the interaction between cobosons as a potential V . This is rather dramatic because, with the Hamiltonian not written as H=H0+V , all the usual approaches to many-body effects fail. In particular, the standard form of the Fermi golden rule, written in terms of V , cannot be used to obtain the transition rates of two cobosons. To get them, we have had to construct an unconventional expression for this Fermi golden rule in which H only appears. Making use of this expression, we give here a detailed calculation of the time evolution of two excitons. We compare the results of this exact approach with the ones obtained by using an effective bosonic Hamiltonian in which the excitons are considered as elementary bosons with effective scatterings between them, these scatterings resulting from an elaborate mapping between the two-fermion space and the ideal boson space. We show that the relation between the inverse lifetime and the sum of the transition rates for elementary bosons differs from the one of the composite bosons by a factor of 1/2 , so that it is impossible to find effective scatterings between bosonic excitons giving these two physical quantities correctly, whatever the mapping from composite bosons to elementary bosons is. The present paper thus constitutes a strong mathematical proof that, in spite of a widely spread belief, we cannot forget the composite nature of these cobosons, even in the extremely low-density limit of just two excitons. This paper also shows the (unexpected) cancellation in the Born approximation of the two-exciton transition rate for a finite value of the momentum transfer.
SO(10) supersymmetric grand unified theories
NASA Astrophysics Data System (ADS)
Dermisek, Radovan
The origin of the fermion mass hierarchy is one of the most challenging problems in elementary particle physics. In the standard model fermion masses and mixing angles are free parameters. Supersymmetric grand unified theories provide a beautiful framework for physics beyond the standard model. In addition to gauge coupling unification these theories provide relations between quark and lepton masses within families, and with additional family symmetry the hierarchy between families can be generated. We present a predictive SO(10) supersymmetric grand unified model with D 3 x U(1) family symmetry. The hierarchy in fermion masses is generated by the family symmetry breaking D 3 x U(1) → ZN → nothing. This model fits the low energy data in the charged fermion sector quite well. We discuss the prediction of this model for the proton lifetime in light of recent SuperKamiokande results and present a clear picture of the allowed spectra of supersymmetric particles. Finally, the detailed discussion of the Yukawa coupling unification of the third generation particles is provided. We find a narrow region is consistent with t, b, tau Yukawa unification for mu > 0 (suggested by b → sgamma and the anomalous magnetic moment of the muon) with A0 ˜ -1.9m16, m10 ˜ 1.4m16, m16 ≳ 1200 GeV and mu, M1/2 ˜ 100--500 GeV. Demanding Yukawa unification thus makes definite predictions for Higgs and sparticle masses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haxton, Wick C.; Holstein, Barry R.; Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01003
2000-01-01
The basic concepts of neutrino physics are presented at a level appropriate for integration into elementary courses on quantum mechanics and/or modern physics. (c) 2000 American Association of Physics Teachers.
PREFACE: 16th Russian Youth Conference on Physics and Astronomy (PhysicA.SPb/2013)
NASA Astrophysics Data System (ADS)
2014-12-01
The sixteenth Russian Conference on Physics and Astronomy PhysicA.SPb was held 23-24 October 2013 in Saint-Petersburg, Russia. The Conference continues the tradition of Saint-Petersburg Seminars on Physics and Astronomy originating from mid-90s. Since then PhysicA.SPb maintains both scientific and educational quality of contributions delivered to the young audience. This is the main feature of the Conference that makes it possible to combine the whole spectrum of modern Physics and Astronomy within one event. PhysicA.SPb/2013 has brought together about 200 students, young scientists and their colleague professors from many universities and research institutes across whole Russia as well as from Belarus, Ukraine, Switzerland, Turkey, Finland and France. Oral and poster presentations were combined into a few well-defined sections among which one should name Astronomy and Astrophysics, Plasma physics, hydro- and aero-dynamics, Physics of quantum-sized structures, Nanostructured and thin-film materials, Biophysics, THz and UHF materials and devices, Optoelectronic devices, Optics and spectroscopy, Atomic and elementary particles physics, Defects and impurities in solid state, Physics and technology of the alternative energetics. This issue of the Journal of Physics: Conference Series presents the extended contributions from participants of PhysicA.SPb/2013 that were peer-reviewed by expert referees through processes administered by the Presiders of the Organising and Programme Committees to the best professional and scientific standards. The Editors: Nikita S. Averkiev, Sergey A. Poniaev and Grigorii S. Sokolovskii
NASA Astrophysics Data System (ADS)
Koc, Isil
The present study was conducted to investigate the extent to which preservice elementary teachers held alternative conceptions in fundamental elementary science concepts from earth/space science, life science, and physical science along with their self-efficacy beliefs about science teaching and to determine the relationship between these two issues. Eighty-six preservice elementary education majors enrolled in the four sections of the course titled "07E:162 Methods Elementary School Science" offered in the Science Education Center, College of Education, the University of Iowa during the 2005-2006 academic year participated in this study. Twelve preservice elementary teachers participated in follow-up interviews. Data were collected through the use of Alternative Conceptions in Science Instrument constructed by Schoon and Boone (1998), Science Teaching Efficacy Belief Instrument (STEBI-B) constructed by Enochs and Riggs (1990), a participant information form, and through utilization of interviews. The results from the alternative conception instrument indicated that the majority of preservice elementary teachers held a number of alternative conceptions with most being in the physical sciences followed by earth/space, and then life science. Various sources of alternative conceptions emerged during the interview sessions. Participants mainly cited science teachers, science textbooks, and previous science experiences as sources of their alternative conceptions. On the other hand, the analysis of the self-efficacy instrument and follow-up interviews revealed generally positive self-efficacy beliefs. Findings from the study also confirmed that science courses completed in high school and college do not seem to have influenced participants' number and types of alternative conceptions regarding earth/space science, life science, and physical science and self-efficacy beliefs about science teaching. The results also indicate that participants with the lowest number of alternative conceptions regarding earth/space science, physical science, and life science have a relatively high personal science teaching efficacy. Overall, the results of the study regarding self-efficacy beliefs propose that consideration be given to identification and modification of preservice elementary teachers' science alternative conceptions if they are expected to teach science effectively.
NASA Astrophysics Data System (ADS)
Lopez-Yglesias, Xerxes
Part I: Particles are a key feature of planetary atmospheres. On Earth they represent the greatest source of uncertainty in the global energy budget. This uncertainty can be addressed by making more measurement, by improving the theoretical analysis of measurements, and by better modeling basic particle nucleation and initial particle growth within an atmosphere. This work will focus on the latter two methods of improvement. Uncertainty in measurements is largely due to particle charging. Accurate descriptions of particle charging are challenging because one deals with particles in a gas as opposed to a vacuum, so different length scales come into play. Previous studies have considered the effects of transition between the continuum and kinetic regime and the effects of two and three body interactions within the kinetic regime. These studies, however, use questionable assumptions about the charging process which resulted in skewed observations, and bias in the proposed dynamics of aerosol particles. These assumptions affect both the ions and particles in the system. Ions are assumed to be point monopoles that have a single characteristic speed rather than follow a distribution. Particles are assumed to be perfect conductors that have up to five elementary charges on them. The effects of three body interaction, ion-molecule-particle, are also overestimated. By revising this theory so that the basic physical attributes of both ions and particles and their interactions are better represented, we are able to make more accurate predictions of particle charging in both the kinetic and continuum regimes. The same revised theory that was used above to model ion charging can also be applied to the flux of neutral vapor phase molecules to a particle or initial cluster. Using these results we can model the vapor flux to a neutral or charged particle due to diffusion and electromagnetic interactions. In many classical theories currently applied to these models, the finite size of the molecule and the electromagnetic interaction between the molecule and particle, especially for the neutral particle case, are completely ignored, or, as is often the case for a permanent dipole vapor species, strongly underestimated. Comparing our model to these classical models we determine an "enhancement factor" to characterize how important the addition of these physical parameters and processes is to the understanding of particle nucleation and growth. Part II: Whispering gallery mode (WGM) optical biosensors are capable of extraordinarily sensitive specific and non-specific detection of species suspended in a gas or fluid. Recent experimental results suggest that these devices may attain single-molecule sensitivity to protein solutions in the form of stepwise shifts in their resonance wavelength, lambdaR, but present sensor models predict much smaller steps than were reported. This study examines the physical interaction between a WGM sensor and a molecule adsorbed to its surface, exploring assumptions made in previous efforts to model WGM sensor behavior, and describing computational schemes that model the experiments for which single protein sensitivity was reported. The resulting model is used to simulate sensor performance, within constraints imposed by the limited material property data. On this basis, we conclude that nonlinear optical effects would be needed to attain the reported sensitivity, and that, in the experiments for which extreme sensitivity was reported, a bound protein experiences optical energy fluxes too high for such effects to be ignored.
A grand unified model for liganded gold clusters
NASA Astrophysics Data System (ADS)
Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi
2016-12-01
A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three `flavours' (namely, bottom, middle and top) to represent three possible valence states. The `composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design.
Albijanic, Boris; Ozdemir, Orhan; Nguyen, Anh V; Bradshaw, Dee
2010-08-11
Bubble-particle attachment in water is critical to the separation of particles by flotation which is widely used in the recovery of valuable minerals, the deinking of wastepaper, the water treatment and the oil recovery from tar sands. It involves the thinning and rupture of wetting thin films, and the expansion and relaxation of the gas-liquid-solid contact lines. The time scale of the first two processes is referred to as the induction time, whereas the time scale of the attachment involving all the processes is called the attachment time. This paper reviews the experimental studies into the induction and attachment times between minerals and air bubbles, and between oil droplets and air bubbles. It also focuses on the experimental investigations and mathematical modelling of elementary processes of the wetting film thinning and rupture, and the three-phase contact line expansion relevant to flotation. It was confirmed that the time parameters, obtained by various authors, are sensitive enough to show changes in both flotation surface chemistry and physical properties of solid surfaces of pure minerals. These findings should be extended to other systems. It is proposed that measurements of the bubble-particle attachment can be used to interpret changes in flotation behaviour or, in conjunction with other factors, such as particle size and gas dispersion, to predict flotation performance. Copyright 2010 Elsevier B.V. All rights reserved.
Li, Meng; Gogos, Costas G; Ioannidis, Nicolas
2015-01-15
The dissolution rate of the active pharmaceutical ingredients in pharmaceutical hot-melt extrusion is the most critical elementary step during the extrusion of amorphous solid solutions - total dissolution has to be achieved within the short residence time in the extruder. Dissolution and dissolution rates are affected by process, material and equipment variables. In this work, we examine the effect of one of the material variables and one of the equipment variables, namely, the API particle size and extruder screw configuration on the API dissolution rate, in a co-rotating, twin-screw extruder. By rapidly removing the extruder screws from the barrel after achieving a steady state, we collected samples along the length of the extruder screws that were characterized by polarized optical microscopy (POM) and differential scanning calorimetry (DSC) to determine the amount of undissolved API. Analyses of samples indicate that reduction of particle size of the API and appropriate selection of screw design can markedly improve the dissolution rate of the API during extrusion. In addition, angle of repose measurements and light microscopy images show that the reduction of particle size of the API can improve the flowability of the physical mixture feed and the adhesiveness between its components, respectively, through dry coating of the polymer particles by the API particles. Copyright © 2014. Published by Elsevier B.V.
1988-12-01
individual particles. They mix the powders with water and perform tests with heat, iodine, and vinegar in order to gain additional information about the...illusions ; light ; fermentation ; chromatography ; moon ; astronomy AN SCIENCE - A PROCESS APPROACH, PART G focuses on experimentation, incorporating all...skills ; flowers plants astronomy ; animals ; sensory perception ; vision ; optical illusions ; eyes ; density ; viscosity ; fermentation ; moon
ERIC Educational Resources Information Center
Knecht, Paul S.
The Children's Lab at Northern State University (South Dakota) is a science concept development laboratory for use by students in a physical science course for preservice elementary teachers. Its function is to develop science content knowledge in preservice elementary teachers, with the ultimate goal of developing science literacy in children.…
ERIC Educational Resources Information Center
Akarsu, Bayram
2007-01-01
This study investigates relationships between understanding of nature of science and four key factors elementary science teachers possess, which are: (1) Their specializations in different science areas (Physics, chemistry, and biology), (2) Gender issues, (3) How long they have been teaching in elementary school environments, (4) Their…
Elementary Art Constructions: A Supplement to the Elementary Art Guide 1968.
ERIC Educational Resources Information Center
Lundman, Donald; And Others
GRADES OR AGES: K-6. SUBJECT MATTER: Elementary Art--Constructions. ORGANIZATION AND PHYSICAL APPEARANCE: After a brief introduction and a scope and sequence chart, the guide is divided into seven sections, one for each grade covered, and these sections contain details for between three and nine projects, including the making of cheese boards,…
Relative locality and the soccer ball problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amelino-Camelia, Giovanni; Freidel, Laurent; Smolin, Lee
We consider the behavior of macroscopic bodies within the framework of relative locality [G. Amelino-Camelia, L. Freidel, J. Kowalski-Glikman, and L. Smolin, arXiv:1101.0931]. This is a recent proposal for Planck scale modifications of the relativistic dynamics of particles which are described as arising from deformations in the geometry of momentum space. We consider and resolve a common objection against such proposals, which is that, even if the corrections are small for elementary particles in current experiments, they are huge when applied to composite systems such as soccer balls, planets, and stars, with energies E{sub macro} much larger than M{sub P}.more » We show that this soccer ball problem does not arise within the framework of relative locality because the nonlinear effects for the dynamics of a composite system with N elementary particles appear at most of order E{sub macro}/N{center_dot}M{sub P}.« less
Creating the Primordial Quark-Gluon Plasma at the LHC
NASA Astrophysics Data System (ADS)
Harris, John W.
2013-04-01
Ultra-relativistic collisions of heavy ions at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) create an extremely hot system at temperatures (T) expected only within the first microseconds after the Big Bang. At these temperatures (T ˜ 2 x 10^12 K), a few hundred thousand times hotter than the sun's core, the known ``elementary'' particles cannot exist and matter ``melts'' to form a ``soup'' of quarks and gluons, called the quark-gluon plasma (QGP). This ``soup'' flows easily, with extremely low viscosity, suggesting a nearly perfect hot liquid of quarks and gluons. Furthermore, the liquid is dense, highly interacting and opaque to energetic probes (fast quarks or gluons). RHIC has been in operation for twelve years and has established an impressive set of findings. Recent results from heavy ion collisions at the LHC extend the study of the QGP to higher temperatures and harder probes, such as jets (energetic clusters of particles), particles with extremely large transverse momenta and those containing heavy quarks. I will present a motivation for physics in the field and an overview of the new LHC heavy ion results in relation to results from RHIC.
Particle physics meets cosmology - The search for decaying neutrinos
NASA Technical Reports Server (NTRS)
Henry, R. C.
1982-01-01
The fundamental physical implications of the possible detection of massive neutrinos are discussed, with an emphasis on the Grand Unified Theories (GUTs) of matter. The Newtonian and general-relativistic pictures of the fundamental forces are compared, and the reduction of electromagnetic and weak forces to one force in the GUTs is explained. The cosmological consequences of the curved-spacetime gravitation concept are considered. Quarks, leptons, and neutrinos are characterized in a general treatment of elementary quantum mechanics. The universe is described in terms of quantized fields, the noninteractive 'particle' fields and the force fields, and cosmology becomes the study of the interaction of gravitation with the other fields, of the 'freezing out' of successive fields with the expansion and cooling of the universe. While the visible universe is the result of the clustering of the quark and electron fields, the distribution of the large number of quanta in neutrino field, like the mass of the neutrino, are unknown. Cosmological models which attribute anomalies in the observed motions of galaxies and stars to clusters or shells of massive neutrinos are shown to be consistent with a small but nonzero neutrino mass and a universe near the open/closed transition point, but direct detection of the presence of massive neutrinos by the UV emission of their decay is required to verify these hypotheses.
EuCARD 2010: European coordination of accelerator research and development
NASA Astrophysics Data System (ADS)
Romaniuk, Ryszard S.
2010-09-01
Accelerators are basic tools of the experimental physics of elementary particles, nuclear physics, light sources of the fourth generation. They are also used in myriad other applications in research, industry and medicine. For example, there are intensely developed transmutation techniques for nuclear waste from nuclear power and atomic industries. The European Union invests in the development of accelerator infrastructures inside the framework programs to build the European Research Area. The aim is to build new accelerator research infrastructures, develop the existing ones, and generally make the infrastructures more available to competent users. The paper summarizes the first year of activities of the EU FP7 Project Capacities EuCARD -European Coordination of Accelerator R&D. EuCARD is a common venture of 37 European Accelerator Laboratories, Institutes, Universities and Industrial Partners involved in accelerator sciences and technologies. The project, initiated by ESGARD, is an Integrating Activity co-funded by the European Commission under Framework Program 7 - Capacities for a duration of four years, starting April 1st, 2009. Several teams from this country participate actively in this project. The contribution from Polish research teams concerns: photonic and electronic measurement - control systems, RF-gun co-design, thin-film superconducting technology, superconducting transport infrastructures, photon and particle beam measurements and control.
Spark and HPC for High Energy Physics Data Analyses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sehrish, Saba; Kowalkowski, Jim; Paterno, Marc
A full High Energy Physics (HEP) data analysis is divided into multiple data reduction phases. Processing within these phases is extremely time consuming, therefore intermediate results are stored in files held in mass storage systems and referenced as part of large datasets. This processing model limits what can be done with interactive data analytics. Growth in size and complexity of experimental datasets, along with emerging big data tools are beginning to cause changes to the traditional ways of doing data analyses. Use of big data tools for HEP analysis looks promising, mainly because extremely large HEP datasets can be representedmore » and held in memory across a system, and accessed interactively by encoding an analysis using highlevel programming abstractions. The mainstream tools, however, are not designed for scientific computing or for exploiting the available HPC platform features. We use an example from the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) in Geneva, Switzerland. The LHC is the highest energy particle collider in the world. Our use case focuses on searching for new types of elementary particles explaining Dark Matter in the universe. We use HDF5 as our input data format, and Spark to implement the use case. We show the benefits and limitations of using Spark with HDF5 on Edison at NERSC.« less
Attitudes of Elementary Schools Pupils to the Physical and Sport Education
ERIC Educational Resources Information Center
Kolofík, Tomáš
2015-01-01
The aim of the research was to find out the attitudes of the pupils of the seventh, eighth and ninth year-classes of the elementary schools in Banská Bystrica to the physical and sport education. The research sample comprised 1092 pupils, out of which 584 were boys and 508 were girls. A standardised questionnaire according to Sivák et al. (2000)…
Physical Education, Teacher's Guide, Elementary (Grades 1-5).
ERIC Educational Resources Information Center
Lefevre, M. D.; And Others
This is a guide for teachers of physical education in the elementary schools of Vietnam. It consists of the following chapters: (1) Definition and Objectives of P.E. and the Teacher's Role; (2) Organization and Orientation of the P.E. program; (3) Methods for Teaching P.E.; (4) P.E. for grades 1 to 5; (5) P.E. for handicapped children; (6) Sports.…
ERIC Educational Resources Information Center
Langley, Katherine; Kulinna, Pamela Hodges
2018-01-01
The purpose of this article is to explore staff physical activity programs in the school setting, describe a viable option for a staff walking program in an elementary school, and determine elementary school staff members' participation and perceptions in one such program. Previous research has shown that placing a focus on staff involvement and…
Atmospheric neutrinos and discovery of neutrino oscillations
Kajita, Takaaki
2010-01-01
Neutrino oscillation was discovered through studies of neutrinos produced by cosmic-ray interactions in the atmosphere. These neutrinos are called atmospheric neutrinos. They are produced as decay products in hadronic showers resulting from collisions of cosmic rays with nuclei in the atmosphere. Electron-neutrinos and muon-neutrinos are produced mainly by the decay chain of charged pions to muons to electrons. Atmospheric neutrino experiments observed zenith-angle and energy dependent deficit of muon-neutrino events. Neutrino oscillations between muon-neutrinos and tau-neutrinos explain these data well. Neutrino oscillations imply that neutrinos have small but non-zero masses. The small neutrino masses have profound implications to our understanding of elementary particle physics and the Universe. This article discusses the experimental discovery of neutrino oscillations. PMID:20431258
Cosmology: from Pomeranchuk to the present day
NASA Astrophysics Data System (ADS)
Dolgov, A. D.
2014-02-01
A review of half a century of cosmology is presented for an intended audience of elementary particle physicists. The review is based on a half-hour seminar talk (at the Institute of Theoretical and Experimental Physics, ITEP) and is therefore brief and superficial. The introductory historical section is mostly devoted to the fundamental work done in, but not always known outside, Russia (USSR). Foundational works and astronomical observations instrumental in shaping the field are discussed, as are inflation, baryosynthesis, dark matter and dark energy, vacuum energy, large-scale gravity modifications, and microwave background angular fluctuations. The presentation is admittedly not entirely objective but rather is given from the Russian (ITEP) perspective and is influenced by the author's personal views and biases.
Integrable particle systems vs solutions to the KP and 2D Toda equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruijsenaars, S.N.
Starting from the relation between integrable relativistic N-particle systems with hyperbolic interactions and elementary N-soliton solutions to the KP and 2D Toda equations, we show how fusion properties of the soliton solutions are mirrored by fusion properties of the Poisson commuting particle dynamics. We also obtain previously known relations between elliptic solutions and integrable N-particle systems with elliptic interactions, without invoking finite-gap integration theory. {copyright} 1997 Academic Press, Inc.
Open problems in active chaotic flows: Competition between chaos and order in granular materials.
Ottino, J. M.; Khakhar, D. V.
2002-06-01
There are many systems where interaction among the elementary building blocks-no matter how well understood-does not even give a glimpse of the behavior of the global system itself. Characteristic for these systems is the ability to display structure without any external organizing principle being applied. They self-organize as a consequence of synthesis and collective phenomena and the behavior cannot be understood in terms of the systems' constitutive elements alone. A simple example is flowing granular materials, i.e., systems composed of particles or grains. How the grains interact with each other is reasonably well understood; as to how particles move, the governing law is Newton's second law. There are no surprises at this level. However, when the particles are many and the material is vibrated or tumbled, surprising behavior emerges. Systems self-organize in complex patterns that cannot be deduced from the behavior of the particles alone. Self-organization is often the result of competing effects; flowing granular matter displays both mixing and segregation. Small differences in either size or density lead to flow-induced segregation and order; similar to fluids, noncohesive granular materials can display chaotic mixing and disorder. Competition gives rise to a wealth of experimental outcomes. Equilibrium structures, obtained experimentally in quasi-two-dimensional systems, display organization in the presence of disorder, and are captured by a continuum flow model incorporating collisional diffusion and density-driven segregation. Several open issues remain to be addressed. These include analysis of segregating chaotic systems from a dynamical systems viewpoint, and understanding three-dimensional systems and wet granular systems (slurries). General aspects of the competition between chaos-enhanced mixing and properties-induced de-mixing go beyond granular materials and may offer a paradigm for other kinds of physical systems. (c) 2002 American Institute of Physics.
NASA Technical Reports Server (NTRS)
Schramm, David N.
1989-01-01
Nuclear physics has provided one of two critical observational tests of all Big Bang cosmology, namely Big Bang Nucleosynthesis. Furthermore, this same nuclear physics input enables a prediction to be made about one of the most fundamental physics questions of all, the number of elementary particle families. The standard Big Bang Nucleosynthesis arguments are reviewed. The primordial He abundance is inferred from He-C and He-N and He-O correlations. The strengthened Li constraint as well as D-2 plus He-3 are used to limit the baryon density. This limit is the key argument behind the need for non-baryonic dark matter. The allowed number of neutrino families, N(nu), is delineated using the new neutron lifetime value of tau(n) = 890 + or - 4s (tau(1/2) = 10.3 min). The formal statistical result is N(nu) = 2.6 + or - 0.3 (1 sigma), providing a reasonable fit (1.3 sigma) to three families but making a fourth light (m(nu) less than or equal to 10 MeV) neutrino family exceedly unlikely (approx. greater than 4.7 sigma). It is also shown that uncertainties induced by postulating a first-order quark-baryon phase transition do not seriously affect the conclusions.
NASA Astrophysics Data System (ADS)
Straumann, Norbert
2007-10-01
During the 'World Year of Physics' much has been written on the epoch-making 1905 papers of Albert Einstein and his later great contributions to physics. Why another book on the enormous impact of Einstein's work on 20th-century physics? The short answer is that the present collection of 13 relatively short essays on the legacy of Einstein by outstanding scientists is very pleasant to read and should be of interest to physicists of all branches. Beside looking back, most articles present later and topical developments, whose initiation began with the work of Einstein. During the year 2005, the growing recognition among physicists, historians, and philosophers of Einstein's revolutionary role in quantum theory was often emphasized. It is truly astonishing that most active physicists were largely unaware of this before. Fortunately, the article 'Einstein and the quantum' by V Singh puts the subject in perspective and describes all the main steps, beginning with the truly revolutionary 1905 paper on the light-quantum hypothesis and ending with Einstein's extension of the particle-wave duality to atoms and other particles in 1924 1925. The only point which, in my opinion, is not sufficiently emphasized in the discussion of the 1916 1917 papers on absorption and emission of radiation is the part on the momentum transfer in each elementary process. Einstein's result that there is a directed recoil hν/c—also for spontaneous emission—in complete contrast to classical theory, was particularly important to him. I enjoyed reading the articles on Brownian motion (S Majumdar), Bose Einstein condensation (N Kumar) and strongly correlated electrons (T Ramakrishnan), which are all written for non-experts. Connected with Einstein's most lasting work—general relativity—there are two articles on cosmology. The one by J Narlikar gives a brief historical account of the development that was initiated by the 1917 paper of Einstein. S Sarkar's essay emphasizes the remarkable recent observational progress in cosmology and the emergence of the 'cosmic concordance model', with dark matter and dark energy as the dominant components of the current universe. Their discovery is widely considered as the most direct evidence for fundamental physics beyond the standard model of particle physics. In an introductory section Sarkar recalls the main reasons why the cosmological constant (vacuum energy) problem is of a very profound nature. In spite of some interesting ideas, no satisfactory solution is in sight. The article by B Sathyapakhash on gravitational radiation provides a readable introduction to the status of current detectors and astronomical sources of gravitational radiation. Of great cosmological interest are planned searches for a stochastic background of gravitational waves that is expected to have been produced by quantum processes in the very early universe. More than the first third of the book is devoted to current speculative attempts at creating a quantum theory of gravity, possibly within a unified coherent description of the known four fundamental interactions. Thanks to the enormously large value of the Planck energy in comparison to elementary particle masses, physicists may maintain for a long time, with success, a schizophrenic attitude in working within the framework of our present understanding, based on quantum field theory and classical general relativity. That physics cannot stay with that was already pointed out by Einstein in 1916, as A Ashtekar recalls in his essay. 'Einstein and the search for unification' by D Gross is the first article of the present book. In this he describes the reasons why, for those working in speculative areas, 'Einstein remains an inspiration for his foresight, and his unyielding determination and courage'. This inspiration is also manifest in the essays by M Atiyah, A Sen, and A Dabholkar on string theory. Hopefully, this book will find many readers, especially among graduate students, who can get valuable impressions of what is interesting in physics and what some of the main open problems for future research are.
Support for Physical Education as a Core Subject in Urban Elementary Schools.
Castillo, Jacqueline C; Clark, B Ruth; Butler, Carling E; Racette, Susan B
2015-11-01
Physical inactivity and childhood obesity are prevalent in American children, with increased vulnerability in minority, low-resource populations. The aim of this study was to quantify the impact of physical education (PE) on in-school physical activity quantity and intensity in urban minority children attending public elementary schools. This observational study included elementary children (N=212; mean age, 9.9 years; 81.7% black) in Grades 2-5 attending urban public schools with high eligibility for the National School Lunch Program. In-school physical activity was quantified during 4 school weeks across 4 months (January-April 2012) using Omron HJ-151 accelerometer-pedometers. Fitness was assessed with the 20-meter Progressive Aerobic Cardiovascular Endurance Run. Data were analyzed in 2013 using generalized estimating equations to determine the influence of PE and sex on total in-school steps and moderate to vigorous physical activity (MVPA) steps. Based on 3,379 observation days (mean, 15.9 school days/student), students achieved higher in-school physical activity on days with PE (4,979 steps) than on days without PE (3,683 steps, p<0.0001). Likewise, MVPA steps were greater on days with PE than on days without PE (p<0.0001). Boys were more active than girls, but both accumulated more steps on days with PE. Low aerobic fitness was observed in 29.0% of students and overweight/obesity in 31.1%. PE significantly increases total in-school and MVPA steps in urban minority elementary children. PE as a core subject can provide opportunities for urban, minority public school children in low-resource areas to achieve age-appropriate physical activity and fitness goals. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.
Summer Science: A Teacher's Handbook for a Summertime Program in Elementary Electricity.
ERIC Educational Resources Information Center
McVoy, K. W.
This publication was designed to serve as a teacher's handbook for a four week "shop" adventure in elementary electricity for 12- or 13-year-old boys who would ordinarily not take an interest in electrical things. These projects could easily be adapted to aid any elementary physics treatment of electronics. Projects were designed to meet two main…
Issues related to the Fermion mass problem
NASA Astrophysics Data System (ADS)
Murakowski, Janusz Adam
1998-09-01
This thesis is divided into three parts. Each illustrates a different aspect of the fermion mass issue in elementary particle physics. In the first part, the possibility of chiral symmetry breaking in the presence of uniform magnetic and electric fields is investigated. The system is studied nonperturbatively with the use of basis functions compatible with the external field configuration, the parabolic cylinder functions. It is found that chiral symmetry, broken by a uniform magnetic field, is restored by electric field. Obtained result is nonperturbative in nature: even the tiniest deviation of the electric field from zero restores chiral symmetry. In the second part, heavy quarkonium systems are investigated. To study these systems, a phenomenological nonrelativistic model is built. Approximate solutions to this model are found with the use of a specially designed Pade approximation and by direct numerical integration of Schrodinger equation. The results are compared with experimental measurements of respective meson masses. Good agreement between theoretical calculations and experimental results is found. Advantages and shortcommings of the new approximation method are analysed. In the third part, an extension of the standard model of elementary particles is studied. The extension, called the aspon model, was originally introduced to cure the so called strong CP problem. In addition to fulfilling its original purpose, the aspon model modifies the couplings of the standard model quarks to the Z boson. As a result, the decay rates of the Z boson to quarks are altered. By using the recent precise measurements of the decay rates Z → bb and Z /to [/it c/=c], new constraints on the aspon model parameters are found.
Elementary school practices and children's objectively measured physical activity during school.
Carlson, Jordan A; Sallis, James F; Norman, Gregory J; McKenzie, Thomas L; Kerr, Jacqueline; Arredondo, Elva M; Madanat, Hala; Mignano, Alexandra M; Cain, Kelli L; Elder, John P; Saelens, Brian E
2013-11-01
To examine the relation of physical activity practices covering physical education (PE), recess, and classroom time in elementary schools to children's objectively measured physical activity during school. Participants were 172 children from 97 elementary schools in the San Diego, CA and Seattle, WA USA regions recruited in 2009-2010. Children's moderate-to-vigorous physical activity (MVPA) during school was assessed via accelerometry, and school practices were assessed via survey of school informants. Multivariate linear mixed models were adjusted for participant demographics and unstandardized regression coefficients are reported. The 5 practices with the strongest associations with physical activity were combined into an index to investigate additive effects of these practices on children's MVPA. Providing ≥ 100 min/week of PE (B=6.7 more min/day; p=.049), having ≤ 75 students/supervisor in recess (B=6.4 fewer min/day; p=.031), and having a PE teacher (B=5.8 more min/day; p=.089) were related to children's MVPA during school. Children at schools with 4 of the 5 practices in the index had 20 more min/day of MVPA during school than children at schools with 0 or 1 of the 5 practices (p<.001). The presence of multiple school physical activity practices doubled children's physical activity during school. © 2013.
ERIC Educational Resources Information Center
Stuebing, Susan; And Others
This paper reviews an ongoing study on the physical settings of education with technology at the elementary and high school levels. The study, which is multi-disciplinary in nature, is based in sites in the process of change in teaching strategies, using learning technology as a catalyst for this change to take place. The focus of the study is on…
ERIC Educational Resources Information Center
Pan, Chien-Yu; Tsai, Chia-Liang; Hsieh, Kai-Wen; Chu, Chia-Hua; Li, Ya-Lin; Huang, Shih-Tse
2011-01-01
To examine age-related physical activity (PA) patterns between- and within-day in elementary school-aged children with autism spectrum disorders (ASD). PA was recorded every 5-s by uniaxial accelerometry in 35 children (grades 1-2, n = 13; grades 3-4, n = 13; grades 5-6, n = 9) for up to five weekdays and two weekend days. Younger children were…
Systematics of Charged Particle Production in Heavy-Ion Collisions with the PHOBOS Detector at Rhic
NASA Astrophysics Data System (ADS)
Steinberg, Peter A.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Corbo, J.; Decowski, M. P.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Henderson, C.; Hicks, D.; Hofman, D.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Rafelski, M.; Rbeiz, M.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sagerer, J.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Steinberg, P.; Stephans, G. S. F.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.
2002-03-01
The multiplicity of charged particles produced in Au+Au collisions as a function of energy, centrality, rapidity and azimuthal angle has been measured with the PHOBOS detector at RHIC. These results contribute to our understanding of the initial state of heavy ion collisions and provide a means to compare basic features of particle production in nuclear collisions with more elementary systems.
NASA Astrophysics Data System (ADS)
Griffin, Leslie Little
The purpose of this study was to determine the relationship of selected cognitive abilities and physical science misconceptions held by preservice elementary teachers. The cognitive abilities under investigation were: formal reasoning ability as measured by the Lawson Classroom Test of Formal Reasoning (Lawson, 1978); working memory capacity as measured by the Figural Intersection Test (Burtis & Pascual-Leone, 1974); verbal intelligence as measured by the Acorn National Academic Aptitude Test: Verbal Intelligence (Kobal, Wrightstone, & Kunze, 1944); and field dependence/independence as measured by the Group Embedded Figures Test (Witkin, Oltman, & Raskin, 1971). The number of physical science misconceptions held by preservice elementary teachers was measured by the Misconceptions in Science Questionnaire (Franklin, 1992). The data utilized in this investigation were obtained from 36 preservice elementary teachers enrolled in two sections of a science methods course at a small regional university in the southeastern United States. Multiple regression techniques were used to analyze the collected data. The following conclusions were reached following an analysis of the data. The variables of formal reasoning ability and verbal intelligence were identified as having significant relationships, both individually and in combination, to the dependent variable of selected physical science misconceptions. Though the correlations were not high enough to yield strong predictors of physical science misconceptions or strong relationships, they were of sufficient magnitude to warrant further investigation. It is recommended that further investigation be conducted replicating this study with a larger sample size. In addition, experimental research should be implemented to explore the relationships suggested in this study between the cognitive variables of formal reasoning ability and verbal intelligence and the dependent variable of selected physical science misconceptions. Further research should also focus on the detection of a broad range of science misconceptions among preservice elementary teachers.
Nonthermal Supermassive Dark Matter
NASA Technical Reports Server (NTRS)
Chung, Daniel J. H.; Kolb, Edward W.; Riotto, Antonio
1999-01-01
We discuss several cosmological production mechanisms for nonthermal supermassive dark matter and argue that dark matter may he elementary particles of mass much greater than the weak scale. Searches for dark matter should ma be limited to weakly interacting particles with mass of the order of the weak scale, but should extend into the supermassive range as well.
ERIC Educational Resources Information Center
Martinek, Thomas J.; Karper, William B.
1984-01-01
This study determined multivariate relationships of the impression cues of attractiveness and effort with teacher expectations and dyadic interaction in two groups of elementary school children. (Author/JMK)
Elementary Excitations in Quantum Liquids.
ERIC Educational Resources Information Center
Pines, David
1981-01-01
Discusses elementary excitations and their role in condensed matter physics, focusing on quantum plasma, helium liquids, and superconductors. Considers research primarily conducted in the 1950s and concludes with a brief survey of some closely related further developments. (Author/JN)
Investigating a redesigned physics course for future elementary teachers
NASA Astrophysics Data System (ADS)
Fracchiolla, Claudia
There is a growing concern that the number of students graduating with a STEM major in the U.S. is insufficient to fill the growing demand in STEM careers. In order to fulfill that demand, it is important to increase student retention in STEM majors and also to attract more students to pursue careers in those areas. Previous research has indicated that children start losing interest in science at the elementary level because science is taught with a focus on learning vocabulary and ideas rather than learning through inquiry-based techniques. A factor that affects the quality of science education at the elementary level is the preparation of elementary teachers. Many elementary teachers feel unprepared to teach science because they lack adequate content knowledge as well as the pedagogical content knowledge (PCK) for teaching the subject. Previous studies of teacher preparation in science identified some areas with which pre-service teachers need assistance. One of these areas is understanding children's ideas of science. To address that issue, this dissertation investigates whether the use of an instructional approach that teaches physics phenomena along with an understanding of how children think about the physical phenomena promotes changes in students' knowledge of children's ideas and use of those ideas in instructional and assessment strategies. Results indicated that students who were explicitly exposed to knowledge of children's ideas more often incorporated those ideas into their own microteaching and demonstrated higher levels of sophistication of knowledge of children's ideas, instructional strategies, and assessment strategies that incorporated those ideas. This research explores an instructional model for blending physics content and pedagogical content knowledge.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ruili; Liu, Jian; Xiao, Jianyuan
2016-07-15
The two-stream instability is probably the most important elementary example of collective instabilities in plasma physics and beam-plasma systems. For a warm plasma with two charged particle species, the instability diagram of the two-stream instability based on a 1D warm-fluid model exhibits an interesting band structure that has not been explained. We show that the band structure for this instability is the consequence of the Hamiltonian nature of the warm two-fluid system. Interestingly, the Hamiltonian nature manifests as a complex G-Hamiltonian structure in wave-number space, which directly determines the instability diagram. Specifically, it is shown that the boundaries between themore » stable and unstable regions are locations for Krein collisions between eigenmodes with different Krein signatures. In terms of physics, this rigorously implies that the system is destabilized when a positive-action mode resonates with a negative-action mode, and that this is the only mechanism by which the system can be destabilized. It is anticipated that this physical mechanism of destabilization is valid for other collective instabilities in conservative systems in plasma physics, accelerator physics, and fluid dynamics systems, which admit infinite-dimensional Hamiltonian structures.« less
The Final Results from the Sudbury Neutrino Observatory
Bellerive, Alain
2017-12-15
The Sudbury Neutrino Observatory (SNO) was a water Cherenkov detector dedicated to investigate elementary particles called neutrinos. It successfully took data between 1999 and 2006. The detector was unique in its use of heavy water as a detection medium, permitting it to make a solar model-independent test of solar neutrino mixing. In fact, SNO conclusively showed that solar neutrinos oscillate on their way from the core of the Sun to the Earth. This groundbreaking observation was made during three independent phases of the experiment. Even if data taking ended, SNO is still in a mode of precise determination of the solar neutrino oscillation parameters because all along SNO had developed several methods to tell charged-current events apart from neutral-current events. This ability is crucial for the final and ultimate data analysis of all the phases. The physics reach of a combined three-phase solar analysis will be reviewed together with results and subtleties about solar neutrino physics.
Källén-Lehmann spectroscopy for (un)physical degrees of freedom
NASA Astrophysics Data System (ADS)
Dudal, David; Oliveira, Orlando; Silva, Paulo J.
2014-01-01
We consider the problem of "measuring" the Källén-Lehmann spectral density of a particle (be it elementary or bound state) propagator by means of 4D lattice data. As the latter are obtained from operations at (Euclidean momentum squared) p2≥0, we are facing the generically ill-posed problem of converting a limited data set over the positive real axis to an integral representation, extending over the whole complex p2 plane. We employ a linear regularization strategy, commonly known as the Tikhonov method with the Morozov discrepancy principle, with suitable adaptations to realistic data, e.g. with an unknown threshold. An important virtue over the (standard) maximum entropy method is the possibility to also probe unphysical spectral densities, for example, of a confined gluon. We apply our proposal here to "physical" mock spectral data as a litmus test and then to the lattice SU(3) Landau gauge gluon at zero temperature.
Triply degenerate nodal points and topological phase transitions in NaCu3Te2
NASA Astrophysics Data System (ADS)
Xia, Yunyouyou; Li, Gang
2017-12-01
Quasiparticle excitations of free electrons in condensed-matter physics, characterized by the dimensionality of the band crossing, can find their elementary-particle analogs in high-energy physics, such as Majorana, Weyl, and Dirac fermions, while crystalline symmetry allows more quasiparticle excitations and exotic fermions to emerge. Using symmetry analysis and ab initio calculations, we propose that the three-dimensional honeycomb crystal NaCu3Te2 hosts triply degenerate nodal points (TDNPs) residing at the Fermi level. Furthermore, in this system we find a tunable phase transition between a trivial insulator, a TDNP phase, and a weak topological insulator (TI), triggered by a symmetry-allowed perturbation and the spin-orbital coupling (SOC). Such a topological nontrivial ternary compound not only serves as a perfect candidate for studying three-component fermions, but also provides an excellent playground for understanding the topological phase transitions between TDNPs, TIs, and trivial insulators, which distinguishes this system from other TDNP candidates.
Differential drift of plasma clouds in the magnetosphere: an update
NASA Astrophysics Data System (ADS)
Lemaire, J. F.
2001-07-01
First, Brice's (Journal of Geophysical Research 72 (1967) 5193) original theory for the formation of the plasmapause is recalled. Next, the motivation for writing a modification to this early theory is pointed out. The key aspects of Brice's manuscript are outlined and discussed. The mechanism of interchange driven by gravitational forces, centrifugal effects and kinetic pressure is considered in the cases when the integrated Pedersen conductivity is (i) negligibly small (as in Chandrasekhar's, Plasma Physics, University of Chicago Press, Chicago, 1960, 217 pp. and Longmire's, Elementary Plasma Physics, Wiley Interscience, New York, 1963, 296 pp., textbooks), (ii) infinitely large (as in many magnetospheric convection models), or (iii) has a finite value of the order of 0.2 mho, as in the Earth's ionosphere. Updates of this theory of interchange resulting from the existence of weak double layers, from quasi-interchange, or from the effects of an additional population of energetic ring-current particles forming the extended tail of the velocity distribution function, have also been reexamined.
A measurement of the helicity of W bosons produced in top-quark decays
NASA Astrophysics Data System (ADS)
Goldschmidt, Nathan J.
2005-11-01
The Standard Model of particle physics is a remarkably successful description of nature. One aspect of the theory that is not well-understood is the nature and the origin of the mechanism which breaks the gauge symmetry of the electroweak interaction. According to the theory, this mechanism gives rise to the masses of elementary particles. However, we have yet to directly probe these phenomena. The top quark is the most massive known elementary particle; it decays almost exclusively via the electroweak interaction. By studying the kinematics of top-quark decays, we can indirectly probe the electroweak symmetry breaking mechanism at the highest energies presently attainable. We measure the fraction of longitudinally-polarized W bosons produced in top-quark decays by analyzing the transverse momentum spectrum of charged-lepton arising from the process t → W+b → ℓ+nu ℓb. Top-quark pairs are produced in proton-antiproton collisions with a center-of-mass energy s = 1.96 GeV at the Tevtron synchrotron at the Fermi National Accelerator Laboratory in Batavia Illinois. Top-quark candidate events are isolated in 200 pb-1 of data using the newly-upgraded CDF II detector. These data indicate that the fraction of W bosons with longitudinal polarization is F0 = 0.88+0.12-0.47 (stat. + syst.), F0 > 0.24 95% CL in events where only one W decays leptonically; F 0 < 0.52 95% CL, F0 < 0.94 99% CL in events where both W's decay leptonically, and F0 = 0.27+0.35-0.21 (stat. + syst.), F0 < 0.88 95% CL in the combined analysis. The Standard Model prediction, given a top-quark mass of 175 GeV, is F0 = 0.703. The discrepancy in the dilepton sample is suggestive of new phenomena, while the result in the single-lepton sample is fully consistent with the Standard Model expectation. Clearly, these results warrant further investigation.
Vehicular air pollution, playgrounds, and youth athletic fields.
Rundell, Kenneth W; Caviston, Renee; Hollenbach, Amanda M; Murphy, Kerri
2006-07-01
In spite of epidemiological evidence concerning vehicular air pollution and adverse respiratory/cardiovascular health, many athletic fields and school playgrounds are adjacent to high traffic roadways and could present long-term health risks for exercising children and young adults. Particulate matter (PM(1),0.02-1.0 microm diameter) number counts were taken serially at four elementary school athletic/playground fields and at one university soccer field. Elementary school PM1 measurements were taken over 17 days; measurements at the university soccer field were taken over 62 days. The high-traffic-location elementary school field demonstrated higher 17-day [PM1] than the moderate and 2 low traffic elementary school fields (48,890 +/- 34,260, 16,730 +/- 10,550, 11,960 +/- 6680, 10,030 +/- 6280, respective mean counts; p < .05). The 62-day mean PM1 values at the university soccer field ranged from 115,000 to 134,000 particles cm(-3). Lowest mean values were recorded at measurement sites furthest from the highway (approximately 34,000 particles cm(-3)) and followed a second-order logarithmic decay (R2 = .999) with distance away from the highway. Mean NO2 and SO2 levels were below 100 ppb, mean CO was 0.33 +/- 1.87 ppm, and mean O3 was 106 +/- 47 ppb. Ozone increased with rising temperature and was highest in the warmer afternoon hours (R = .61). Although the consequence of daily recess play and athletic activities by school children and young athletes in high ambient [PM1] conditions has not yet been clearly defined, this study is a critical component to evaluating functional effects of chronic combustion-derived PM exposure on these exercising schoolchildren and young adults. Future studies should examine threshold limits and mechanistic actions of real-world particle exposure.
Lattice QCD Thermodynamics and RHIC-BES Particle Production within Generic Nonextensive Statistics
NASA Astrophysics Data System (ADS)
Tawfik, Abdel Nasser
2018-05-01
The current status of implementing Tsallis (nonextensive) statistics on high-energy physics is briefly reviewed. The remarkably low freezeout-temperature, which apparently fails to reproduce the firstprinciple lattice QCD thermodynamics and the measured particle ratios, etc. is discussed. The present work suggests a novel interpretation for the so-called " Tsallis-temperature". It is proposed that the low Tsallis-temperature is due to incomplete implementation of Tsallis algebra though exponential and logarithmic functions to the high-energy particle-production. Substituting Tsallis algebra into grand-canonical partition-function of the hadron resonance gas model seems not assuring full incorporation of nonextensivity or correlations in that model. The statistics describing the phase-space volume, the number of states and the possible changes in the elementary cells should be rather modified due to interacting correlated subsystems, of which the phase-space is consisting. Alternatively, two asymptotic properties, each is associated with a scaling function, are utilized to classify a generalized entropy for such a system with large ensemble (produced particles) and strong correlations. Both scaling exponents define equivalence classes for all interacting and noninteracting systems and unambiguously characterize any statistical system in its thermodynamic limit. We conclude that the nature of lattice QCD simulations is apparently extensive and accordingly the Boltzmann-Gibbs statistics is fully fulfilled. Furthermore, we found that the ratios of various particle yields at extreme high and extreme low energies of RHIC-BES is likely nonextensive but not necessarily of Tsallis type.
Range assessment in particle therapy based on prompt γ-ray timing measurements
NASA Astrophysics Data System (ADS)
Golnik, Christian; Hueso-González, Fernando; Müller, Andreas; Dendooven, Peter; Enghardt, Wolfgang; Fiedler, Fine; Kormoll, Thomas; Roemer, Katja; Petzoldt, Johannes; Wagner, Andreas; Pausch, Guntram
2014-09-01
Proton and ion beams open up new vistas for the curative treatment of tumors, but adequate technologies for monitoring the compliance of dose delivery with treatment plans in real time are still missing. Range assessment, meaning the monitoring of therapy-particle ranges in tissue during dose delivery (treatment), is a continuous challenge considered a key for tapping the full potential of particle therapies. In this context the paper introduces an unconventional concept of range assessment by prompt-gamma timing (PGT), which is based on an elementary physical effect not considered so far: therapy particles penetrating tissue move very fast, but still need a finite transit time—about 1-2 ns in case of protons with a 5-20 cm range—from entering the patient’s body until stopping in the target volume. The transit time increases with the particle range. This causes measurable effects in PGT spectra, usable for range verification. The concept was verified by proton irradiation experiments at the AGOR cyclotron, KVI-CART, University of Groningen. Based on the presented kinematical relations, we describe model calculations that very precisely reproduce the experimental results. As the clinical treatment conditions entail measurement constraints (e.g. limited treatment time), we propose a setup, based on clinical irradiation conditions, capable of determining proton range deviations within a few seconds of irradiation, thus allowing for a fast safety survey. Range variations of 2 mm are expected to be clearly detectable.
Indirect detection of dark matter with γ rays.
Funk, Stefan
2015-10-06
The details of what constitutes the majority of the mass that makes up dark matter in the Universe remains one of the prime puzzles of cosmology and particle physics today-80 y after the first observational indications. Today, it is widely accepted that dark matter exists and that it is very likely composed of elementary particles, which are weakly interacting and massive [weakly interacting massive particles (WIMPs)]. As important as dark matter is in our understanding of cosmology, the detection of these particles has thus far been elusive. Their primary properties such as mass and interaction cross sections are still unknown. Indirect detection searches for the products of WIMP annihilation or decay. This is generally done through observations of γ-ray photons or cosmic rays. Instruments such as the Fermi large-area telescope, high-energy stereoscopic system, major atmospheric gamma-ray imaging Cherenkov, and very energetic radiation imaging telescope array, combined with the future Cherenkov telescope array, will provide important complementarity to other search techniques. Given the expected sensitivities of all search techniques, we are at a stage where the WIMP scenario is facing stringent tests, and it can be expected that WIMPs will be either be detected or the scenario will be so severely constrained that it will have to be rethought. In this sense, we are on the threshold of discovery. In this article, I will give a general overview of the current status and future expectations for indirect searches of dark matter (WIMP) particles.
Indirect detection of dark matter with γ rays
Funk, Stefan
2015-01-01
The details of what constitutes the majority of the mass that makes up dark matter in the Universe remains one of the prime puzzles of cosmology and particle physics today—80 y after the first observational indications. Today, it is widely accepted that dark matter exists and that it is very likely composed of elementary particles, which are weakly interacting and massive [weakly interacting massive particles (WIMPs)]. As important as dark matter is in our understanding of cosmology, the detection of these particles has thus far been elusive. Their primary properties such as mass and interaction cross sections are still unknown. Indirect detection searches for the products of WIMP annihilation or decay. This is generally done through observations of γ-ray photons or cosmic rays. Instruments such as the Fermi large-area telescope, high-energy stereoscopic system, major atmospheric gamma-ray imaging Cherenkov, and very energetic radiation imaging telescope array, combined with the future Cherenkov telescope array, will provide important complementarity to other search techniques. Given the expected sensitivities of all search techniques, we are at a stage where the WIMP scenario is facing stringent tests, and it can be expected that WIMPs will be either be detected or the scenario will be so severely constrained that it will have to be rethought. In this sense, we are on the threshold of discovery. In this article, I will give a general overview of the current status and future expectations for indirect searches of dark matter (WIMP) particles. PMID:24821791
Equivalence principle for quantum systems: dephasing and phase shift of free-falling particles
NASA Astrophysics Data System (ADS)
Anastopoulos, C.; Hu, B. L.
2018-02-01
We ask the question of how the (weak) equivalence principle established in classical gravitational physics should be reformulated and interpreted for massive quantum objects that may also have internal degrees of freedom (dof). This inquiry is necessary because even elementary concepts like a classical trajectory are not well defined in quantum physics—trajectories originating from quantum histories become viable entities only under stringent decoherence conditions. From this investigation we posit two logically and operationally distinct statements of the equivalence principle for quantum systems. Version A: the probability distribution of position for a free-falling particle is the same as the probability distribution of a free particle, modulo a mass-independent shift of its mean. Version B: any two particles with the same velocity wave-function behave identically in free fall, irrespective of their masses. Both statements apply to all quantum states, including those without a classical correspondence, and also for composite particles with quantum internal dof. We also investigate the consequences of the interaction between internal and external dof induced by free fall. For a class of initial states, we find dephasing occurs for the translational dof, namely, the suppression of the off-diagonal terms of the density matrix, in the position basis. We also find a gravitational phase shift in the reduced density matrix of the internal dof that does not depend on the particle’s mass. For classical states, the phase shift has a natural classical interpretation in terms of gravitational red-shift and special relativistic time-dilation.
Unitarity limits on the mass and radius of dark matter particles
NASA Technical Reports Server (NTRS)
Griest, Kim; Kamionkowski, Marc
1989-01-01
Using partial wave unitarity and the observed density of the Universe, it is show that a stable elementary particle which was once in thermal equilibrium cannot have a mass greater than 340 TeV. An extended object which was once in thermal equilibrium cannot have a radius less than 7.5 x 10(exp -7) fm. A lower limit to the relic abundance of such particles is also found.
Power Demand in Walking and Pace Optimization.
ERIC Educational Resources Information Center
Bellemans, A.
1981-01-01
Presents an elementary formulation of the work expenditure corresponding to walking, the most common physical exercise. The model described is included in a physics course for freshmen in physical education and physical therapy. (Author/JN)
NASA Astrophysics Data System (ADS)
Gholibeigian, Hassan
2015-03-01
Iranian Philosopher, Mulla Sadra (1571-1640) in his theory of ``Substantial motion'' emphasized that ``the universe moves in its entity'', and ``the time is the fourth dimension of the universe'' This definition of space-time is proposed by him at three hundred years before Einstein. He argued that the time is magnitude of the motion (momentum) of the matter in its entity. In the other words, the time for each atom (body) is sum of the momentums of its involved fundamental particles. The momentum for each atom is different from the other atoms. In this methodology, by proposing some formulas, we can calculate the time for involved particles' momentum (time) for each atom in a second of the Eastern Time Zone (ETZ). Due to differences between these momentums during a second in ETZ, the time for each atom, will be different from the other atoms. This is the relativity in quantum physics. On the other hand, the God communicates with elementary particles via sub-particles (see my next paper) and transfers the packages (bit) of information and laws to them for processing and selection of their next step. Differences between packages like complexity and velocity of processing during the time, is the second variable in relativity of time for each atom which may be effective on the factor.
Spontaneous Symmetry Breaking as a Basis of Particle Mass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigg, Chris; /Fermilab /CERN
2007-04-01
Electroweak theory joins electromagnetism with the weak force in a single quantum field theory, ascribing the two fundamental interactions--so different in their manifestations--to a common symmetry principle. How the electroweak gauge symmetry is hidden is one of the most urgent and challenging questions facing particle physics. The provisional answer incorporated in the ''standard model'' of particle physics was formulated in the 1960s by Higgs, by Brout & Englert, and by Guralnik, Hagen, & Kibble: The agent of electroweak symmetry breaking is an elementary scalar field whose self-interactions select a vacuum state in which the full electroweak symmetry is hidden, leavingmore » a residual phase symmetry of electromagnetism. By analogy with the Meissner effect of the superconducting phase transition, the Higgs mechanism, as it is commonly known, confers masses on the weak force carriers W{sup {+-}} and Z. It also opens the door to masses for the quarks and leptons, and shapes the world around us. It is a good story--though an incomplete story--and we do not know how much of the story is true. Experiments that explore the Fermi scale (the energy regime around 1 TeV) during the next decade will put the electroweak theory to decisive test, and may uncover new elements needed to construct a more satisfying completion of the electroweak theory. The aim of this article is to set the stage by reporting what we know and what we need to know, and to set some ''Big Questions'' that will guide our explorations.« less
Exergaming impact on physical activity and interest in elementary school children.
Sun, Haichun
2012-06-01
In this study, I explored the impact of exergaming on in-class physical activity (PA) and motivation in physical education. Elementary children participated in a 4-week exergaming unit and a 4-week fitness unit. A t test showed the children's in-class PA in the exergaming unit was significantly lower than in the fitness unit. Results also indicated that students' situational interest in exergaming was significantly higher than in the fitness unit at the beginning and end of instruction. Children's interest declined significantly in both units and at the same rate. The evidence suggests that exergames may have strong motivational power but it is premature to claim they will increase physical activity enough for children to receive health benefits in physical education.
A grand unified model for liganded gold clusters
Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi
2016-01-01
A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three ‘flavours' (namely, bottom, middle and top) to represent three possible valence states. The ‘composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design. PMID:27910848
Understanding the masses of elementary particles: a step towards understanding the massless photon?
NASA Astrophysics Data System (ADS)
Greulich, K. O.
2011-09-01
A so far unnoticed simple explanation of elementary particle masses is given by m = N * melectron/α, where alpha (=1/137) is the fine structure constant. On the other hand photons can be described by two oppositely oscillating clouds of e / √α elementary charges. Such a model describes a number of features of the photon in a quantitatively correct manner. For example, the energy of the oscillating clouds is E = h ν, the spin is 1 and the spatial dimension is λ / 2 π. When the charge e / √α is assigned to the Planck mass mPl, the resulting charge density is e / (mPl√α) = 8,62 * 10-11 Cb / kg. This is identical to √ (G / ko) where G is the gravitational constant and ko the Coulomb constant. When one assigns this very small charge density to any matter, gravitation can be completely described as Coulomb interaction between such charges of the corresponding masses. Thus, there is a tight quantitative connection between the photon, nonzero rest masses and gravitation / Coulomb interaction.
Permeability model of sintered porous media: analysis and experiments
NASA Astrophysics Data System (ADS)
Flórez Mera, Juan Pablo; Chiamulera, Maria E.; Mantelli, Marcia B. H.
2017-11-01
In this paper, the permeability of porous media fabricated from copper powder sintering process was modeled and measured, aiming the use of the porosity as input parameter for the prediction of the permeability of sintering porous media. An expression relating the powder particle mean diameter with the permeability was obtained, based on an elementary porous media cell, which is physically represented by a duct formed by the arrangement of spherical particles forming a simple or orthorhombic packing. A circular duct with variable section was used to model the fluid flow within the porous media, where the concept of the hydraulic diameter was applied. Thus, the porous is modeled as a converging-diverging duct. The electrical circuit analogy was employed to determine two hydraulic resistances of the cell: based on the Navier-Stokes equation and on the Darcýs law. The hydraulic resistances are compared between themselves and an expression to determine the permeability as function of average particle diameter is obtained. The atomized copper powder was sifted to reduce the size dispersion of the particles. The porosities and permeabilities of sintered media fabricated from powders with particle mean diameters ranging from 20 to 200 microns were measured, by means of the image analysis method and using an experimental apparatus. The permeability data of a porous media, made of copper powder and saturated with distilled water, was used to compare with the permeability model. Permeability literature models, which considers that powder particles have the same diameter and include porosity data as input parameter, were compared with the present model and experimental data. This comparison showed to be quite good.
ERIC Educational Resources Information Center
Yayon, Malka; Scherz, Zahava
2008-01-01
"If protons, quarks, and other elementary particles are too small to be seen, how do scientists know they exist? And if these particles do exist, how can one estimate their size, structure, and or their arrangement in atoms?" These are some of the most frequently asked questions by students who study atomic theory. Atomic structure is an important…
Energy levels for Ac-212 (Actinium-212)
NASA Astrophysics Data System (ADS)
Sukhoruchkin, S. I.; Soroko, Z. N.
This document is part of Subvolume C `Tables of Excitations of Proton- and Neutron-rich Unstable Nuclei' of Volume 19 `Nuclear States from Charged Particle Reactions' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides energy levels for atomic nuclei of the isotope Ac-212 (actinium, atomic number Z = 89, mass number A = 212).
Unity of elementary particles and forces in higher dimensions.
Gogoladze, Ilia; Mimura, Yukihiro; Nandi, S
2003-10-03
The idea of unifying all the gauge and Yukawa forces as well as the gauge, Higgs, and fermionic matter particles naturally leads us to a simple gauge symmetry in higher dimensions with supersymmetry. We present a model in which, for the first time, such a unification is achieved in the framework of quantum field theory.
Exotic Lifshitz transitions in topological materials
NASA Astrophysics Data System (ADS)
Volovik, G. E.
2018-01-01
Topological Lifshitz transitions involve many types of topological structures in momentum and frequency-momentum spaces, such as Fermi surfaces, Dirac lines, Dirac and Weyl points, etc., each of which has its own stability-supporting topological invariant ( N_1, N_2, N_3, {\\tilde N}_3, etc.). The topology of the shape of Fermi surfaces and Dirac lines and the interconnection of objects of different dimensionalities produce a variety of Lifshitz transition classes. Lifshitz transitions have important implications for many areas of physics. To give examples, transition-related singularities can increase the superconducting transition temperature; Lifshitz transitions are the possible origin of the small masses of elementary particles in our Universe, and a black hole horizon serves as the surface of the Lifshitz transition between vacua with type-I and type-II Weyl points.
Dirac fermions in an antiferromagnetic semimetal
NASA Astrophysics Data System (ADS)
Tang, Peizhe; Zhou, Quan; Xu, Gang; Zhang, Shou-Cheng
2016-12-01
Analogues of the elementary particles have been extensively searched for in condensed-matter systems for both scientific interest and technological applications. Recently, massless Dirac fermions were found to emerge as low-energy excitations in materials now known as Dirac semimetals. All of the currently known Dirac semimetals are non-magnetic with both time-reversal symmetry and inversion symmetry . Here we show that Dirac fermions can exist in one type of antiferromagnetic system, where both and are broken but their combination is respected. We propose orthorhombic antiferromagnet CuMnAs as a candidate, analyse the robustness of the Dirac points under symmetry protections and demonstrate its distinctive bulk dispersions, as well as the corresponding surface states, by ab initio calculations. Our results provide a possible platform to study the interplay of Dirac fermion physics and magnetism.
The Million-Body Problem: Particle Simulations in Astrophysics
Rasio, Fred
2018-05-21
Computer simulations using particles play a key role in astrophysics. They are widely used to study problems across the entire range of astrophysical scales, from the dynamics of stars, gaseous nebulae, and galaxies, to the formation of the largest-scale structures in the universe. The 'particles' can be anything from elementary particles to macroscopic fluid elements, entire stars, or even entire galaxies. Using particle simulations as a common thread, this talk will present an overview of computational astrophysics research currently done in our theory group at Northwestern. Topics will include stellar collisions and the gravothermal catastrophe in dense star clusters.
Clustering of low-valence particles: structure and kinetics.
Markova, Olga; Alberts, Jonathan; Munro, Edwin; Lenne, Pierre-François
2014-08-01
We compute the structure and kinetics of two systems of low-valence particles with three or six freely oriented bonds in two dimensions. The structure of clusters formed by trivalent particles is complex with loops and holes, while hexavalent particles self-organize into regular and compact structures. We identify the elementary structures which compose the clusters of trivalent particles. At initial stages of clustering, the clusters of trivalent particles grow with a power-law time dependence. Yet at longer times fusion and fission of clusters equilibrates and clusters form a heterogeneous phase with polydispersed sizes. These results emphasize the role of valence in the kinetics and stability of finite-size clusters.
NASA Astrophysics Data System (ADS)
Harlow, Danielle B.
2014-02-01
This paper reports the results of an investigation of how a professional development content course based on the Physics and Everyday Thinking (PET) curriculum affected the teaching practices of five case study elementary school teachers. The findings of this study highlight different ways that teachers use what they learn in content courses to teach science to elementary children. While some teachers transferred pedagogical practices along with the content, others transformed the content to be useful in already existing pedagogical frameworks, and still others show little or no evidence of transfer. The range of transfer is explained by considering how each teacher interacted with the learning context (the PET curriculum) and their initial ideas about teaching science.
Illuminating the chirality of Weyl fermions
NASA Astrophysics Data System (ADS)
Ma, Qiong; Xu, Su-Yang; Chan, Ching-Kit; Zhang, Cheng-Long; Chang, Guoqing; Lin, Hsin; Jia, Shuang; Lee, Patrick; Gedik, Nuh; Jarillo-Herrero, Pablo
In particle physics, Weyl fermions (WF) are elementary particles that travel at the speed of light and have a definite chirality. In condensed matter, it has been recently realized that WFs can arise as magnetic monopoles in the momentum space of a novel topological metal, the Weyl semimetal (WSM). Their chirality, given by the sign of the monopole charge, is the defining property of a WSM, since it directly serves as the topological number and gives rise to exotic properties such as Fermi arcs and the chiral anomaly. Moreover, the two chiralities, analogous to the two valleys in 2D materials, lead to a new degree of freedom in a 3D crystal, suggesting novel pathways to store and carry information. By shining circularly polarized light on the WSM TaAs, we illuminate the chirality of the WFs and achieve an electrical current that is highly controllable based on the WFs' chirality. Our results open up a wide range of new possibilities for experimentally studying and controlling the WFs and their associated quantum anomalies by optical and electrical means, which suggest the exciting prospect of ``Weyltronics''.
NASA Astrophysics Data System (ADS)
Maytal, Ben-Zion; Vansciver, Steven W.
1990-12-01
ASTROMAG is a planned particle astrophysics magnetic facility. Basically it is a large magnetic spectrometer outside the Earth's atmosphere for an extended period of time in orbit on a space station. A definition team summarized its scientific objectives assumably related to fundamental questions of astrophysics, cosmology, and elementary particle physics. Since magnetic induction of about 7 Tesla is desired, it is planned to be a superconducting magnet cooled to liquid helium 2 temperatures. The general structure of ASTROMAG is based on: (1) two superconducting magnetic coils, (2) dewar of liquid helium 2 to provide cooling capability for the magnets; (3) instrumentation, matter-anti matter spectrometer (MAS) and cosmic ray isotope spectrometer (CRIS); and (4) interfaces to the shuttle and space station. Many configurations of the superconducting magnets and the dewar were proposed and evaluated, since those are the heart of the ASTROMAG. Baseline of the magnet configuration and cryostat as presented in the phase A study and the one kept in mind while doing the present study are presented. ASTROMAG's development schedule reflects the plan of launching to the space station in 1995.
Electron Microscopic Observations of Rabbit Antibodies.
Hall, C E; Nisonoff, A; Slayter, H S
1959-12-01
Electron micrographs were obtained showing the individual, shadow-cast macromolecules from solutions of purified anti-p-azobenzoate rabbit antibody and of normal gamma-globulin. The two materials look alike and consist mainly of asymmetrical rod-like particles about 30 to 40 A in diameter. Lengths are not constant but the weight average is about 250 A for the antibodies and about 200 A for the gamma-globulin. The average observed dimensions are reasonably consistent with values deduced from physical-chemical methods, although the shape is more nearly that of a cylindrical rod rather than the ellipsoid employed in hydrodynamical theory. Mixtures of antibody and specific dihaptenic dye were examined in attempts to establish the mode of the specific aggregation. At the high dilutions necessary for electron microscopy (0.1 mg./ml.), the effect of the dye was small and tended to be masked by non-specific aggregation on drying. The evidence suggests that under these conditions the specific reaction involves an end-to-end aggregation of the elementary particles to produce a weight average length about twice that of the pure antibody.
NASA Technical Reports Server (NTRS)
Maytal, Ben-Zion; Vansciver, Steven W.
1990-01-01
ASTROMAG is a planned particle astrophysics magnetic facility. Basically it is a large magnetic spectrometer outside the Earth's atmosphere for an extended period of time in orbit on a space station. A definition team summarized its scientific objectives assumably related to fundamental questions of astrophysics, cosmology, and elementary particle physics. Since magnetic induction of about 7 Tesla is desired, it is planned to be a superconducting magnet cooled to liquid helium 2 temperatures. The general structure of ASTROMAG is based on: (1) two superconducting magnetic coils, (2) dewar of liquid helium 2 to provide cooling capability for the magnets; (3) instrumentation, matter-anti matter spectrometer (MAS) and cosmic ray isotope spectrometer (CRIS); and (4) interfaces to the shuttle and space station. Many configurations of the superconducting magnets and the dewar were proposed and evaluated, since those are the heart of the ASTROMAG. Baseline of the magnet configuration and cryostat as presented in the phase A study and the one kept in mind while doing the present study are presented. ASTROMAG's development schedule reflects the plan of launching to the space station in 1995.
Rees-Punia, Erika; Holloway, Alicia; Knauft, David; Schmidt, Michael D
2017-12-01
Recess and physical education time continue to diminish, creating a need for additional physical activity opportunities within the school environment. The use of school gardens as a teaching tool in elementary science and math classes has the potential to increase the proportion of time spent active throughout the school day. Teachers from 4 elementary schools agreed to teach 1 math or science lesson per week in the school garden. Student physical activity time was measured with ActiGraph GT3X accelerometers on 3 garden days and 3 no-garden days at each school. Direct observation was used to quantify the specific garden-related tasks during class. The proportion of time spent active and sedentary was compared on garden and no-garden days. Seventy-four children wore accelerometers, and 75 were observed (86% participation). Children spent a significantly larger proportion of time active on garden days than no-garden days at 3 of the 4 schools. The proportion of time spent sedentary and active differed significantly across the 4 schools. Teaching lessons in the school garden may increase children's physical activity and decrease sedentary time throughout the school day and may be a strategy to promote both health and learning.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trell, Erik, E-mail: erik.trell@gmail.com
2014-12-10
Santilli’s revolutionary iso-, geno- and hypermathematics have provided the original straight line Lie groups and algebras with a span and coherence in all dimensions, and thus already at the infinitesimal level an extension in the Cartesian sense, allowing a continuous self-similar cyclical realization of matter from the elementary particle threshold level via the atomic to molecular and visible scale where it meets and marries with modern nanotechnology in the form of an isotropic vector matrix of space-filling octahedron-tetrahedron composition. This is distributed as an electron transition matrix with Bohr shell model stratified signature and is here directly outlining a new,more » centrally coordinated organic composition and chart of the periodic system as specifically exemplified by the noble gases.« less
ERIC Educational Resources Information Center
Lott, Kimberly; Jensen, Anitra
2012-01-01
Being able to distinguish between physical and chemical changes of matter is a foundational chemistry concept that at first seems like a simple elementary concept to teach, but students often have misconceptions that hinder their understanding. These misconceptions are seen among elementary students, but these ideas are perpetuated throughout…
Electroscavenging and Inferred Effects on Precipitation Efficiency
NASA Astrophysics Data System (ADS)
Tinsley, B. A.
2002-12-01
The evaporation of charged droplets leaves charged aerosol particles that can act as cloud condensation nuclei and ice forming nuclei. New calculations of scavenging of such charged particles by droplets have been made, that now include the effects of inertia and variable particle density, and variable cloud altitudes ranging into the stratosphere. They show that the Greenfield Gap closes for particles of low density, or for high altitude clouds, or for a few hundred elementary charges on the particles. A few tens of elementary charges on the particles gives collision efficiencies typically an order of magnitude greater than that due to phoretic forces alone. The numerical integrations show that electroscavenging of ice forming nuclei leading to contact ice nucleation is competitive with deposition ice nucleation, for cloud top temperatures in the range 0§C to -15§C and droplet size distributions extending past 10-15 mm radius. This implies that for marine stratocumulus or nimbostratus clouds with tops just below freezing temperature, where precipitation is initiated by the Wegener-Bergeron-Findeisen process, the precipitation efficiency can be affected by the amount of charge on the ice-forming nuclei. This in turn depends on the extent of the (weak) electrification of the cloud. Similarly, electroscavenging of condensation nuclei can increase the average droplet size in successive cycles of cloud evaporation and formation, and can also affect precipitation efficiency.
Relative Age Effect in Physical Fitness Among Elementary and Junior High School Students.
Nakata, Hiroki; Akido, Miki; Naruse, Kumi; Fujiwara, Motoko
2017-10-01
The present study investigated characteristics of the relative age effect (RAE) among a general sample of Japanese elementary and junior high school students. Japan applies a unique annual age-grouping by birthdates between April 1 and March 31 of the following year for sport and education. Anthropometric and physical fitness data were obtained from 3,610 Japanese students, including height, weight, the 50-m sprint, standing long jump, grip strength, bent-leg sit-ups, sit and reach, side steps, 20-m shuttle run, and ball throw. We examined RAE-related differences in these data using a one-way analysis of variance by comparing students with birthdates in the first (April-September) versus second (October-March of the following year) semesters. We observed a significant RAE for boys aged 7 to 15 years on both anthropometric and fitness data, but a significant RAE for girls was only evident for physical fitness tests among elementary school and not junior high school students. Thus, a significant RAE in anthropometry and physical fitness was evident in a general sample of school children, and there were RAE gender differences among adolescents.
Physical Self-Concept and Physical Activity Enjoyment in Elementary School Children
ERIC Educational Resources Information Center
Lohbeck, Annette; Tietjens, Maike; Bund, Andreas
2016-01-01
The present study examined gender differences and relationships of seven specific domains of physical self-concept (PSC) ("Strength," "Endurance," "Speed," "Flexibility," "Coordination," "Global Sport Competence," and "Appearance") and physical activity enjoyment (PAE) in 447…
The discovery of the neutron and its consequences (1930-1940)
NASA Astrophysics Data System (ADS)
Nesvizhevsky, Valery; Villain, Jacques
2017-11-01
In 1930, Walther Bothe and Herbert Becker performed an experiment, which was further improved by Irène and Frédéric Joliot-Curie. These authors, however, misinterpreted their results and believed to have observed γ-rays while they had seen neutrons. After additional experimental verifications, James Chadwick gave the correct interpretation of these experiments in 1932. Immediately, the new particle, the neutron, became an essential actor of nuclear and elementary particle physics, and completely changed the whole research landscape. Enrico Fermi and his group applied it to artificial radioactivity, substituting neutrons to α-rays initially used by Joliot-Curies. They also discovered that slow neutrons were more efficient than fast ones in certain nuclear reactions. A crucial discovery of Otto Hahn, Fritz Straßmann, Lise Meitner, and Otto Frisch, after several misinterpretations of complicated experimental results, was nuclear fission. When Joliot, Halban, and Kowarski demonstrated the possibility of a chain reaction by neutron multiplication due to fission, nuclear physics became a military science, at the very moment when the Second World War was beginning. Later it led to nuclear power applications and use of neutrons as an important tool and object of scientific research at large-scale neutron facilities. The Comptes rendus de l'Académie des sciences were partner of a vivid international debate involving several other journals.
Position-sensitive ``movie'' in situ neutron detector for the UCN τ experiment
NASA Astrophysics Data System (ADS)
Weaver, Hannah; UCNTau Collaboration
2016-09-01
Precision measurements of neutron β-decay parameters provide tests of fundamental theories in elementary particle physics and cosmology such as the Standard Model and Big Bang nucleosynthesis. In particular, the UCN τ experiment aims to measure the mean lifetime of ultracold neutrons confined in an asymmetric magneto-gravitational trap using an in situ neutron detector. This detector consists of a 20 nm film of 10B on top of a ZnS:Ag scintillating screen. The screen is readout using two photomultipliers which view an array of wavelength shifting fibers optically coupled to the scintillator. When the detector is lowered into the loaded trap, light is emitted due to the charged particles recoiling into the ZnS:Ag when neutrons absorb on the 10B. Phase space evolution in the stored neutron population can lead to apparent shifts in the measured neutron lifetime with the detector height. In order to quantify this systematic uncertainty, we are implementing a supplemental 64-channel position-sensitive PMT module with high quantum efficiency and fast time response to image the entire detector in situ during measurements. We have characterized a prototype using a ZnS screen and an α-particle source along with a prototype lens system and will report the results and future plans.
Exact solution for the quench dynamics of a nested integrable system
NASA Astrophysics Data System (ADS)
Mestyán, Márton; Bertini, Bruno; Piroli, Lorenzo; Calabrese, Pasquale
2017-08-01
Integrable models provide an exact description for a wide variety of physical phenomena. For example nested integrable systems contain different species of interacting particles with a rich phenomenology in their collective behavior, which is the origin of the unconventional phenomenon of spin-charge separation. So far, however, most of the theoretical work in the study of non-equilibrium dynamics of integrable systems has focussed on models with an elementary (i.e. not nested) Bethe ansatz. In this work we explicitly investigate quantum quenches in nested integrable systems, by generalizing the application of the quench action approach. Specifically, we consider the spin-1 Lai-Sutherland model, described, in the thermodynamic limit, by the theory of two different species of Bethe-ansatz particles, each one forming an infinite number of bound states. We focus on the situation where the quench dynamics starts from a simple matrix product state for which the overlaps with the eigenstates of the Hamiltonian are known. We fully characterize the post-quench steady state and perform several consistency checks for the validity of our results. Finally, we provide predictions for the propagation of entanglement and mutual information after the quench, which can be used as signature of the quasi-particle content of the model.
An improved limit on the charge of antihydrogen from stochastic acceleration.
Ahmadi, M; Baquero-Ruiz, M; Bertsche, W; Butler, E; Capra, A; Carruth, C; Cesar, C L; Charlton, M; Charman, A E; Eriksson, S; Evans, L T; Evetts, N; Fajans, J; Friesen, T; Fujiwara, M C; Gill, D R; Gutierrez, A; Hangst, J S; Hardy, W N; Hayden, M E; Isaac, C A; Ishida, A; Jones, S A; Jonsell, S; Kurchaninov, L; Madsen, N; Maxwell, D; McKenna, J T K; Menary, S; Michan, J M; Momose, T; Munich, J J; Nolan, P; Olchanski, K; Olin, A; Povilus, A; Pusa, P; Rasmussen, C Ø; Robicheaux, F; Sacramento, R L; Sameed, M; Sarid, E; Silveira, D M; So, C; Tharp, T D; Thompson, R I; van der Werf, D P; Wurtele, J S; Zhmoginov, A I
2016-01-21
Antimatter continues to intrigue physicists because of its apparent absence in the observable Universe. Current theory requires that matter and antimatter appeared in equal quantities after the Big Bang, but the Standard Model of particle physics offers no quantitative explanation for the apparent disappearance of half the Universe. It has recently become possible to study trapped atoms of antihydrogen to search for possible, as yet unobserved, differences in the physical behaviour of matter and antimatter. Here we consider the charge neutrality of the antihydrogen atom. By applying stochastic acceleration to trapped antihydrogen atoms, we determine an experimental bound on the antihydrogen charge, Qe, of |Q| < 0.71 parts per billion (one standard deviation), in which e is the elementary charge. This bound is a factor of 20 less than that determined from the best previous measurement of the antihydrogen charge. The electrical charge of atoms and molecules of normal matter is known to be no greater than about 10(-21)e for a diverse range of species including H2, He and SF6. Charge-parity-time symmetry and quantum anomaly cancellation demand that the charge of antihydrogen be similarly small. Thus, our measurement constitutes an improved limit and a test of fundamental aspects of the Standard Model. If we assume charge superposition and use the best measured value of the antiproton charge, then we can place a new limit on the positron charge anomaly (the relative difference between the positron and elementary charge) of about one part per billion (one standard deviation), a 25-fold reduction compared to the current best measurement.
Hurwitz Algebras and the Octonion Algebra
NASA Astrophysics Data System (ADS)
Burdik, Čestmir; Catto, Sultan
2018-02-01
We explore some consequences of a theory of internal symmetries for elementary particles constructed on exceptional quantum mechanical spaces based on Jordan algebra formulation that admit exceptional groups as gauge groups.
The role of multivalency in the association kinetics of patchy particle complexes.
Newton, Arthur C; Groenewold, Jan; Kegel, Willem K; Bolhuis, Peter G
2017-06-21
Association and dissociation of particles are elementary steps in many natural and technological relevant processes. For many such processes, the presence of multiple binding sites is essential. For instance, protein complexes and regular structures such as virus shells are formed from elementary building blocks with multiple binding sites. Here we address a fundamental question concerning the role of multivalency of binding sites in the association kinetics of such complexes. Using single replica transition interface sampling simulations, we investigate the influence of the multivalency on the binding kinetics and the association mechanism of patchy particles that form polyhedral clusters. When the individual bond strength is fixed, the kinetics naturally is very dependent on the multivalency, with dissociation rate constants exponentially decreasing with the number of bonds. In contrast, we find that when the total bond energy per particle is kept constant, association and dissociation rate constants turn out rather independent of multivalency, although of course still very dependent on the total energy. The association and dissociation mechanisms, however, depend on the presence and nature of the intermediate states. For instance, pathways that visit intermediate states are less prevalent for particles with five binding sites compared to the case of particles with only three bonds. The presence of intermediate states can lead to kinetic trapping and malformed aggregates. We discuss implications for natural forming complexes such as virus shells and for the design of artificial colloidal patchy particles.
The role of multivalency in the association kinetics of patchy particle complexes
NASA Astrophysics Data System (ADS)
Newton, Arthur C.; Groenewold, Jan; Kegel, Willem K.; Bolhuis, Peter G.
2017-06-01
Association and dissociation of particles are elementary steps in many natural and technological relevant processes. For many such processes, the presence of multiple binding sites is essential. For instance, protein complexes and regular structures such as virus shells are formed from elementary building blocks with multiple binding sites. Here we address a fundamental question concerning the role of multivalency of binding sites in the association kinetics of such complexes. Using single replica transition interface sampling simulations, we investigate the influence of the multivalency on the binding kinetics and the association mechanism of patchy particles that form polyhedral clusters. When the individual bond strength is fixed, the kinetics naturally is very dependent on the multivalency, with dissociation rate constants exponentially decreasing with the number of bonds. In contrast, we find that when the total bond energy per particle is kept constant, association and dissociation rate constants turn out rather independent of multivalency, although of course still very dependent on the total energy. The association and dissociation mechanisms, however, depend on the presence and nature of the intermediate states. For instance, pathways that visit intermediate states are less prevalent for particles with five binding sites compared to the case of particles with only three bonds. The presence of intermediate states can lead to kinetic trapping and malformed aggregates. We discuss implications for natural forming complexes such as virus shells and for the design of artificial colloidal patchy particles.
NASA Astrophysics Data System (ADS)
van Zee, Emily H.; Jansen, Henri; Winograd, Kenneth; Crowl, Michele; Devitt, Adam
2013-06-01
The ability to listen closely, speak clearly, write coherently, read with comprehension, and to create and critique media offerings in science contexts is essential for effective science teaching. How might instructors develop such abilities in a physics course for prospective elementary and middle school teachers? We describe here such a course, involving collaboration among physics, science education, and literacy faculty members and two graduate assistants. Meeting twice a week for 10 weeks, the course emphasized questioning, predicting, exploring, observing, discussing, writing, and reading in physical science contexts. We report common themes about aspects that fostered or hindered science and literacy learning, changes in views about science teaching and learning, and positive shifts in interest in science and intended teaching practices.
Examining Curricular Coherence in an Exemplary Elementary School Program
ERIC Educational Resources Information Center
Ennis, Catherine D.
2008-01-01
A coherent curriculum is characterized by visible connections between purposes and experiences so that students acknowledge the content's immediate value. This study examined an exemplary elementary physical education curriculum for coherence components. Research questions examined the role of coherence in connecting and engaging students…
Jäger, Katja; Schmidt, Mirko; Conzelmann, Achim; Roebers, Claudia M.
2014-01-01
The aim of the present study was to investigate the effects of an acute physical activity intervention that included cognitive engagement on executive functions and on cortisol level in young elementary school children. Half of the 104 participating children (6–8 years old) attended a 20-min sport sequence, which included cognitively engaging and playful forms of physical activity. The other half was assigned to a resting control condition. Individual differences in children's updating, inhibition, and shifting performance as well as salivary cortisol were assessed before (pre-test), immediately after (post-test), and 40 min after (follow-up) the intervention or control condition, respectively. Results revealed a significantly stronger improvement in inhibition in the experimental group compared to the control group, while it appeared that acute physical activity had no specific effect on updating and shifting. The intervention effect on inhibition leveled out 40 min after physical activity. Salivary cortisol increased significantly more in the experimental compared to the control group between post-test and follow-up and results support partly the assumed inverted U-shaped relationship between cortisol level and cognitive performance. In conclusion, results indicate that acute physical activity that includes cognitive engagement may have immediate positive effects on inhibition, but not necessarily on updating and shifting in elementary school children. This positive effect may partly be explained through cortisol elevation after acute physical activity. PMID:25566148
Physical Education, Kindergarten Through Grade Seven.
ERIC Educational Resources Information Center
Virginia State Dept. of Education, Richmond.
GRADE OR AGES: K-7. SUBJECT MATTER: Physical education. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is in five parts: 1) "The Place of Physical Education in the Elementary School"; 2) "Developing the Physical Education Offering"; 3) "Analysis of Skills"; 4) "Physical Education Activities"; and 5) "Related and Supplementary Materials." The…
High Energy Physics Research with the CMS Experiment at CERN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Gail G.
2013-05-31
The highlight of our last budget period, June 1, 2010, to May 31, 2013, was the discovery of the Higgs boson by the ATLAS and CMS experiments at the CERN Large Hadron Collider (LHC), announced on July 4, 2012, and for which François Englert and Peter Higgs were awarded the 2013 Nobel Prize in Physics on October 8, 2013. The Higgs boson was postulated in 1964 to explain how elementary particles obtain mass and was the missing piece of the Standard Model. However, the Standard Model does not describe everything that we know. There are many unanswered questions, such asmore » how can the Higgs boson have the mass that we have observed, are there more Higgs bosons, why is there more matter than antimatter, and what is the invisible dark matter, which constitutes about 85% of the matter in the universe. Our group played a significant role in the discovery of the Higgs boson and in subsequent analyses. We also carried out searches for new physics, in ways that could help elucidate some of the remaining questions. Our role in the CMS detector focused on the Tracker, a silicon strip outer tracker and pixel inner tracker.« less
NASA Astrophysics Data System (ADS)
Ackerman, Paul J.; Smalyukh, Ivan I.
2017-01-01
Topological solitons are knots in continuous physical fields classified by nonzero Hopf index values. Despite arising in theories that span many branches of physics, from elementary particles to condensed matter and cosmology, they remain experimentally elusive and poorly understood. We introduce a method of experimental and numerical analysis of such localized structures in liquid crystals that, similar to the mathematical Hopf maps, relates all points of the medium's order parameter space to their closed-loop preimages within the three-dimensional solitons. We uncover a surprisingly large diversity of naturally occurring and laser-generated topologically nontrivial solitons with differently knotted nematic fields, which previously have not been realized in theories and experiments alike. We discuss the implications of the liquid crystal's nonpolar nature on the knot soliton topology and how the medium's chirality, confinement, and elastic anisotropy help to overcome the constraints of the Hobart-Derrick theorem, yielding static three-dimensional solitons without or with additional defects. Our findings will establish chiral nematics as a model system for experimental exploration of topological solitons and may impinge on understanding of such nonsingular field configurations in other branches of physics, as well as may lead to technological applications.
Committor of elementary reactions on multistate systems
NASA Astrophysics Data System (ADS)
Király, Péter; Kiss, Dóra Judit; Tóth, Gergely
2018-04-01
In our study, we extend the committor concept on multi-minima systems, where more than one reaction may proceed, but the feasible data evaluation needs the projection onto partial reactions. The elementary reaction committor and the corresponding probability density of the reactive trajectories are defined and calculated on a three-hole two-dimensional model system explored by single-particle Langevin dynamics. We propose a method to visualize more elementary reaction committor functions or probability densities of reactive trajectories on a single plot that helps to identify the most important reaction channels and the nonreactive domains simultaneously. We suggest a weighting for the energy-committor plots that correctly shows the limits of both the minimal energy path and the average energy concepts. The methods also performed well on the analysis of molecular dynamics trajectories of 2-chlorobutane, where an elementary reaction committor, the probability densities, the potential energy/committor, and the free-energy/committor curves are presented.
Promoting Elementary Physical Education: Results of a School-Based Evaluation Study
ERIC Educational Resources Information Center
Boyle-Holmes, Trina; Grost, Lisa; Russell, Lisa; Laris, B. A.; Robin, Leah; Haller, Elizabeth; Potter, Susan; Lee, Sarah
2010-01-01
Using a quasiexperimental design, the authors examine whether fourth- and fifth-grade students exposed to a developmental physical education (PE) curriculum, Michigan's Exemplary Physical Education Curriculum (EPEC), demonstrated stronger motor skill--specific self-efficacy and perceptions of physical activity competence, physical activity levels,…
Physical Education in the Rural Elementary School.
ERIC Educational Resources Information Center
DeWall, Barbara; Degler, Judith
1985-01-01
By using special teachable moments, small segments of lessons, or short periods of time during the school day, classroom teachers can integrate cooperative games, rhythmical activities, fundamentals of movement, outdoor recreation, and leisure concepts into the rural elementary school curriculum. Prime considerations should include fun, action,…
Urban Elementary STEM Initiative
ERIC Educational Resources Information Center
Parker, Carolyn; Abel, Yolanda; Denisova, Ekaterina
2015-01-01
The new standards for K-12 science education suggest that student learning should be more integrated and should focus on crosscutting concepts and core ideas from the areas of physical science, life science, Earth/space science, and engineering/technology. This paper describes large-scale, urban elementary-focused science, technology, engineering,…
Methods in Elementary School Foreign Language Teaching.
ERIC Educational Resources Information Center
Curtain, Helena
1991-01-01
A brief overview of the importance of the use of appropriate methodologies for elementary school foreign language instruction precedes a description of several strategies involving total physical response, story telling, games and songs, props, small-group work, role-play, content-based instruction, cultural and global awareness, language…
Movement and Learning in Elementary School
ERIC Educational Resources Information Center
Lindt, Suzanne F.; Miller, Stacia C.
2017-01-01
Incorporating movement into elementary school lessons in reading, math, and other subjects can boost students' interest and academic learning while also helping them meet recommendations for daily involvement in physical activity. In a recent study, researchers found that students in classrooms where movement was integrated into regular lessons,…
NASA Astrophysics Data System (ADS)
Sarafopoulos, D. V.
2008-06-01
We suggest a candidate physical mechanism, combining there dimensional structure and temporal development, which is potentially able to produce suprathermal populations and cross-tail current disruptions in the Earth's plasma sheet. At the core of the proposed process is the "akis" structure; in a thin current sheet (TCS) the stretched (tail-like) magnetic field lines locally terminate into a sharp tip around the tail midplane. At this sharp tip of the TCS, ions become non-adiabatic, while a percentage of electrons are accumulated and trapped: The strong and transient electrostatic electric fields established along the magnetic field lines produce suprathermal populations. In parallel, the tip structure is associated with field aligned and mutually attracted parallel filamentary currents which progressively become more intense and inevitably the structure collapses, and so does the local TCS. The mechanism is observationally based on elementary, almost autonomous and spatiotemporal entities that correspond each to a local thinning/dipolarization pair having duration of ~1 min. Energetic proton and electron populations do not occur simultaneously, and we infer that they are separately accelerated at local thinnings and dipolarizations, respectively. In one example energetic particles are accelerated without any dB/dt variation and before the substorm expansion phase onset. A particular effort is undertaken demonstrating that the proposed acceleration mechanism may explain the plasma sheet ratio Ti/Te≍7. All our inferences are checked by the highest resolution datasets obtained by the Geotail Energetic Particles and Ion Composition (EPIC) instrument. The energetic particles are used as the best diagnostics for the accelerating source. Near Earth (X≍10 RE) selected events support our basic concept. The proposed mechanism seems to reveal a fundamental building block of the substorm phenomenon and may be the basic process/structure, which is now missing, that might help explain the persistent, outstanding deficiencies in our physical description of magnetospheric substorms. The mechanism is tested, checked, and found consistent with substorm associated observations performed ~30 and 60 RE away from Earth.