Large-N Seismic Deployment at the Source Physics Experiment (SPE) Site
NASA Astrophysics Data System (ADS)
Chen, T.; Snelson, C. M.; Mellors, R. J.; Pitarka, A.
2015-12-01
The Source Physics Experiment (SPE) is multi-institutional and multi-disciplinary project that consists of a series of chemical explosion experiments at the Nevada National Security Site. The goal of SPE is to understand the complicated effect of earth structures on source energy partitioning and seismic wave propagation, develop and validate physics-based monitoring, and ultimately better discriminate low-yield nuclear explosions from background seismicity. Deployment of a large number of seismic sensors is planned for SPE to image the full 3-D wavefield with about 500 three-component sensors and 500 vertical component sensors. This large-N seismic deployment will operate near the site of SPE-5 shot for about one month, recording the SPE-5 shot, ambient noise, and additional controlled-sources. This presentation focuses on the design of the large-N seismic deployment. We show how we optimized the sensor layout based on the geological structure and experiment goals with a limited number of sensors. In addition, we will also show some preliminary record sections from deployment. This work was conducted under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy.
Attenuation Model Using the Large-N Array from the Source Physics Experiment
NASA Astrophysics Data System (ADS)
Atterholt, J.; Chen, T.; Snelson, C. M.; Mellors, R. J.
2017-12-01
The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. SPE seeks to better characterize the influence of subsurface heterogeneities on seismic wave propagation and energy dissipation from explosions. As a part of this experiment, SPE-5, a 5000 kg TNT equivalent chemical explosion, was detonated in 2016. During the SPE-5 experiment, a Large-N array of 996 geophones (half 3-component and half z-component) was deployed. This array covered an area that includes loosely consolidated alluvium (weak rock) and weathered granite (hard rock), and recorded the SPE-5 explosion as well as 53 weight drops. We use these Large-N recordings to develop an attenuation model of the area to better characterize how geologic structures influence source energy partitioning. We found a clear variation in seismic attenuation for different rock types: high attenuation (low Q) for alluvium and low attenuation (high Q) for granite. The attenuation structure correlates well with local geology, and will be incorporated into the large simulation effort of the SPE program to validate predictive models. (LA-UR-17-26382)
Velocity Model Using the Large-N Seismic Array from the Source Physics Experiment (SPE)
NASA Astrophysics Data System (ADS)
Chen, T.; Snelson, C. M.
2016-12-01
The Source Physics Experiment (SPE) is a multi-institutional, multi-disciplinary project that consists of a series of chemical explosions conducted at the Nevada National Security Site (NNSS). The goal of SPE is to understand the complicated effect of geological structures on seismic wave propagation and source energy partitioning, develop and validate physics-based modeling, and ultimately better monitor low-yield nuclear explosions. A Large-N seismic array was deployed at the SPE site to image the full 3D wavefield from the most recent SPE-5 explosion on April 26, 2016. The Large-N seismic array consists of 996 geophones (half three-component and half vertical-component sensors), and operated for one month, recording the SPE-5 shot, ambient noise, and additional controlled-sources (a large hammer). This study uses Large-N array recordings of the SPE-5 chemical explosion to develop high resolution images of local geologic structures. We analyze different phases of recorded seismic data and construct a velocity model based on arrival times. The results of this study will be incorporated into the large modeling and simulation efforts as ground-truth further validating the models.
Reflection processing of the large-N seismic data from the Source Physics Experiment (SPE)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paschall, Olivia C.
2016-07-18
The purpose of the SPE is to develop a more physics-based model for nuclear explosion identification to understand the development of S-waves from explosion sources in order to enhance nuclear test ban treaty monitoring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Townsend, Margaret; Obi, Curtis
2015-04-30
The second Source Physics Experiment shot (SPE-2) was conducted in Nevada on October 25, 2011, at 1900:00.011623 Greenwich Mean Time (GMT). The explosive source was 997 kilograms (kg) trinitrotoluene (TNT) equivalent of sensitized heavy ammonium fuel oil (SHANFO) detonated at a depth of 45.7 meters (m). The third Source Physics Experiment shot (SPE-3) was conducted in Nevada on July 24, 2012, at 1800:00.44835 GMT. The explosive source was 905 kg TNT equivalent of SHANFO detonated at a depth of 45.8 m. Both shots were recorded by an extensive set of instrumentation that includes sensors both at near-field (less than 100more » m) and far-field (100 m or greater) distances. The near-field instruments consisted of three-component accelerometers deployed in boreholes at 15, 46, and 55 m depths around the shot and a set of single-component vertical accelerometers on the surface. The far-field network was composed of a variety of seismic and acoustic sensors, including short-period geophones, broadband seismometers, three-component accelerometers, and rotational seismometers at distances of 100 m to 25 kilometers. This report coincides with the release of these data for analysts and organizations that are not participants in this program. This report describes the second and third Source Physics Experiment shots and the various types of near-field and farfield data that are available.This revised document includes reports on baseline shift corrections for the SPE-2 and SPE-3 shots that were missing from the original January 2015 version.« less
Using Spectral Losses to Map a Damage Zone for the Source Physics Experiments (SPE)
NASA Astrophysics Data System (ADS)
Knox, H. A.; Abbott, R. E.; Bonal, N.; Preston, L. A.
2013-12-01
We performed a series of cross-borehole seismic experiments in support of the Source Physics Experiments (SPE). These surveys, which were conducted in a granitic body using a sparker source and hydrophone string, were designed to image the damage zone from two underground explosions (SPE2 and SPE3). We present results here from a total of six boreholes (the explosive shot emplacement hole and 5 satellite holes, 20-35 meters away) where we found a marked loss of high frequency energy in ray paths traversing the region near the SPE explosions. Specifically, the frequencies above ~400 Hz were lost in a region centered around 45 meters depth, coincident with SPE2 and SPE3 shots. We further quantified these spectral losses, developed a map of where they occur, and evaluated the attenuation effects of raypath length (i.e. source-receiver offset). We attribute this severe attenuation to the inelastic damage (i.e. cracking and pulverizing) caused by the large chemical explosions and propose that frequency attenuation of this magnitude provides yet another tool for detecting the damage due to large underground explosions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Analysis and Simulations of Near-Field Ground Motion from Source Physics Experiments (spe)
NASA Astrophysics Data System (ADS)
Vorobiev, O.; Xu, H.; Lomov, I.; Herbold, E. B.; Glenn, L. A.; Antoun, T.
2012-12-01
This work is focused on analysis of near-field measurements (up to 50-70 m from the source) recorded during Source Physics Experiments SPE1, SPE2 and SPE3 in a granitic formation (the Climax Stock) at the Nevada National Security Site (NNSS). The explosive source used in these experiments is a sensitized heavy ANFO (SHANFO) with a well characterized equation of state. The first event, SPE1, had a yield of 0.1 ton, and was detonated at a 55 m depth of burial in a spherical cavity of about 0.3 m radius. SPE2 and SPE3 had an explosive yield of 1 ton, and they were both detonated in the same cavity at a depth of burial of 45 meters. One of the main goals of these experiments was to investigate the possible mechanisms of shear wave generation in the nonlinear source region. Another objective, relating specifically to the SPE2-SPE3 sequence, was to investigate the effect of damage from one explosion on the response of the medium to a second explosion of the same yield and at the same location as the first explosion. Comparison of the results from SPE2 and SPE3 show some interesting trends. . At the shot level, and at deeper locations, the data from SPE3 seem to agree quite well with SPE2 data, indicating that damage from SPE2 had little to no effect on the response of the medium at these locations. On the other hand, SPE3 data consistently show delay in arrival times as well as reduced wave amplitudes both at 50 ft (16 m) depth and at the ground surface, indicating that above the shot horizon damage from SPE2 had a perceptible effect on the SPE3 near field motions. The quality of the near field data at some gages from the SPE1 and SPE2 events is somewhat questionable, with orientation uncertainties making it difficult to ascertain with confidence the extent to which shear wave generation in the source region affected near field motions. New gages were strategically added to the SPE3 test bed to provide the data needed to address this issue and verify previous measurements. The new measurements for SPE 3 show significant tangential motion (up to 30 % of the radial) at many locations as well as azimuthal variations in radial velocities which cannot be predicted by continuum simulations using isotropic plasticity models. Both continuum and discrete 2D/3D simulations are currently being performed to better understand the experimental results, correlate observed motions with heterogeneities in the rock, and aid in assessing the origin of shear waves observed in the seismic frequency band.
Seismic Imaging of the Source Physics Experiment Site with the Large-N Seismic Array
NASA Astrophysics Data System (ADS)
Chen, T.; Snelson, C. M.; Mellors, R. J.
2017-12-01
The Source Physics Experiment (SPE) consists of a series of chemical explosions at the Nevada National Security Site. The goal of SPE is to understand seismic wave generation and propagation from these explosions. To achieve this goal, we need an accurate geophysical model of the SPE site. A Large-N seismic array that was deployed at the SPE site during one of the chemical explosions (SPE-5) helps us construct high-resolution local geophysical model. The Large-N seismic array consists of 996 geophones, and covers an area of approximately 2 × 2.5 km. The array is located in the northern end of the Yucca Flat basin, at a transition from Climax Stock (granite) to Yucca Flat (alluvium). In addition to the SPE-5 explosion, the Large-N array also recorded 53 weight drops. Using the Large-N seismic array recordings, we perform body wave and surface wave velocity analysis, and obtain 3D seismic imaging of the SPE site for the top crust of approximately 1 km. The imaging results show clear variation of geophysical parameter with local geological structures, including heterogeneous weathering layer and various rock types. The results of this work are being incorporated in the larger 3D modeling effort of the SPE program to validate the predictive models developed for the site.
Snelson, Catherine M.; Abbott, Robert E.; Broome, Scott T.; ...
2013-07-02
A series of chemical explosions, called the Source Physics Experiments (SPE), is being conducted under the auspices of the U.S. Department of Energy’s National Nuclear Security Administration (NNSA) to develop a new more physics-based paradigm for nuclear test monitoring. Currently, monitoring relies on semi-empirical models to discriminate explosions from earthquakes and to estimate key parameters such as yield. While these models have been highly successful monitoring established test sites, there is concern that future tests could occur in media and at scale depths of burial outside of our empirical experience. This is highlighted by North Korean tests, which exhibit poormore » performance of a reliable discriminant, mb:Ms (Selby et al., 2012), possibly due to source emplacement and differences in seismic responses for nascent and established test sites. The goal of SPE is to replace these semi-empirical relationships with numerical techniques grounded in a physical basis and thus applicable to any geologic setting or depth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Townsend, Margaret; Obi, Curtis
2015-01-26
The second Source Physics Experiment shot (SPE-2) was conducted in Nevada on October 25, 2011, at 1900:00.011623 Greenwich Mean Time (GMT). The explosive source was 997 kilograms (kg) trinitrotoluene (TNT) equivalent of sensitized heavy ammonium fuel oil (SHANFO) detonated at a depth of 45.7 meters (m). The third Source Physics Experiment shot (SPE-3) was conducted in Nevada on July 24, 2012, at 1800:00.44835 GMT. The explosive source was 905 kg TNT equivalent of SHANFO detonated at a depth of 45.8 m. Both shots were recorded by an extensive set of instrumentation that includes sensors both at near-field (less than 100more » m) and far-field (100 m or greater) distances. The near-field instruments consisted of three-component accelerometers deployed in boreholes at 15, 46, and 55 m depths around the shot and a set of single-component vertical accelerometers on the surface. The far-field network was composed of a variety of seismic and acoustic sensors, including short-period geophones, broadband seismometers, three-component accelerometers, and rotational seismometers at distances of 100 m to 25 kilometers. This report coincides with the release of these data for analysts and organizations that are not participants in this program. This report describes the second and third Source Physics Experiment shots and the various types of near-field and far-field data that are available.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poppeliers, Christian; Aur, Katherine Anderson; Preston, Leiph
This report shows the results of constructing predictive atmospheric models for the Source Physics Experiments 1-6. Historic atmospheric data are combined with topography to construct an atmo- spheric model that corresponds to the predicted (or actual) time of a given SPE event. The models are ultimately used to construct atmospheric Green's functions to be used for subsequent analysis. We present three atmospheric models for each SPE event: an average model based on ten one- hour snap shots of the atmosphere and two extrema models corresponding to the warmest, coolest, windiest, etc. atmospheric snap shots. The atmospheric snap shots consist ofmore » wind, temperature, and pressure profiles of the atmosphere for a one-hour time window centered at the time of the predicted SPE event, as well as nine additional snap shots for each of the nine preceding years, centered at the time and day of the SPE event.« less
Moment-Tensor Spectra of Source Physics Experiments (SPE) Explosions in Granite
NASA Astrophysics Data System (ADS)
Yang, X.; Cleveland, M.
2016-12-01
We perform frequency-domain moment tensor inversions of Source Physics Experiments (SPE) explosions conducted in granite during Phase I of the experiment. We test the sensitivity of source moment-tensor spectra to factors such as the velocity model, selected dataset and smoothing and damping parameters used in the inversion to constrain the error bound of inverted source spectra. Using source moments and corner frequencies measured from inverted source spectra of these explosions, we develop a new explosion P-wave source model that better describes observed source spectra of these small and over-buried chemical explosions detonated in granite than classical explosion source models derived mainly from nuclear-explosion data. In addition to source moment and corner frequency, we analyze other features in the source spectra to investigate their physical causes.
NASA Astrophysics Data System (ADS)
Townsend, M.; Huckins-Gang, H.; Prothro, L.; Reed, D.
2012-12-01
The National Center for Nuclear Security, established by the U.S. Department of Energy, National Nuclear Security Administration, is conducting a series of explosive tests at the Nevada National Security Site that are designed to increase the understanding of certain basic physical phenomena associated with underground explosions. These tests will aid in developing technologies that might be used to detect underground nuclear explosions in support of verification activities for the Comprehensive Nuclear-Test-Ban Treaty. The initial project is a series of explosive tests, known collectively as the Source Physics Experiment-Nevada (SPE-N), being conducted in granitic rocks. The SPE N test series is designed to study the generation and propagation of seismic waves. The results will help advance the seismic monitoring capability of the United States by improving the predictive capability of physics-based modeling of explosive phenomena. The first SPE N (SPE N1) test was conducted in May 2011, using 0.1 ton of explosives at the depth of 54.9 m in the U 15n source hole. SPE N2 was conducted in October 2011, using 1.0 ton of explosives at the depth of 45.7 m in the same source hole. The SPE N3 test was conducted in the same source hole in July 2012, using the same amount and type of explosive as for SPE N2, and at the same depth as SPE N2, within the damage zone created by the SPE N2 explosion to investigate damage effects on seismic wave propagation. Following the SPE N2 shot and prior to the SPE N3 shot, the core hole U-15n#10 was drilled at an angle from the surface to intercept the SPE N2 shot point location to obtain information necessary to characterize the damage zone. The desire was to determine the position of the damage zone near the shot point, at least on the northeast, where the core hole penetrated it, and obtain information on the properties of the damaged medium. Geologic characterization of the post-SPE N2 core hole included geophysical logging, a directional survey, and geologic description of the core to document visual evidence of damage. Selected core samples were provided to Sandia National Laboratories for measurement of physical and mechanical properties. A video was also run in the source hole after it was cleaned out. A significant natural fault zone was encountered in the angle core hole between 5.7 and 7.5 m from the shot point. However, several of the fractures observed in the core hole are interpreted as having been caused by the explosion. The fractures are characterized by a "fresh," mechanically broken look, with uncoated and very irregular surfaces. They tend to terminate against natural fractures and have orientations that differ from the previously defined natural fracture sets; they are common starting at about 5.4 m from the shot point. Within about 3.3 m of the shot point to the end of the recovered core at 1.6 m from the shot point, some of the core samples are softer and lighter in color, but do not appear to be weathered. It is thought this could be indicative of the presence of distributed microfracturing. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandoval, Thomas D.; Schultz-Fellenz, Emily S.
2012-08-29
The Continuous Reflectometry for Radius vs Time Experiments (CORRTEX) diagnostic system was deployed for the third explosives test in the Source Physics Experiment (SPE) sequence to monitor and verify several conditions of the experiment including the detonation velocity of the explosive package and functioning of explosive initiators. Six distance-marked coaxial cables were installed on the SPE-III explosives canister, and key locations documented through along-cable length measurements and photography. CORRTEX uses electrical-pulse time-domain reflectometry to continuously record the two-way transit time (TWTT) of the cables. As the shock front of the detonation advances, the coaxial cable is shorted or destroyed, andmore » the resulting TWTT also decreases. Interpretation of these changes as a function of TWTT can be converted to positional measurements using known parameters of the cables.« less
An Overview of the Source Physics Experiments (SPE) at the Nevada National Security Site (NNSS)
NASA Astrophysics Data System (ADS)
Snelson, C. M.; Barker, D. L.; White, R. L.; Emmitt, R. F.; Townsend, M. J.; Graves, T. E.; Becker, S. A.; Teel, M. G.; Lee, P.; Antoun, T. H.; Rodgers, A.; Walter, W. R.; Mellors, R. J.; Brunish, W. M.; Bradley, C. R.; Patton, H. J.; Hawkins, W. L.; Corbell, B. H.; Abbott, R. E.; SPE Working Group
2011-12-01
Modeling of explosion phenomenology has been primarily empirically based when looking at the seismic, infrasound, and acoustic signals. In order to detect low-yield nuclear explosions under the Comprehensive Nuclear Test-Ban Treaty (CTBT), we must be able to understand and model the explosive source in settings beyond where we have empirical data. The Source Physics Experiments (SPE) at the Nevada National Security Site are the first step in this endeavor to link the empirically based with the physics-based modeling to develop this predictive capability. The current series of tests is being conducted in a granite body called the Climax Stock. This location was chosen for several reasons, including the site's expected "simple geology"-the granite is a fairly homogeneous body. In addition, data are available from underground nuclear tests that were conducted in the same rock body, and the nature of the geology has been well-documented. Among the project goals for the SPE is to provide fully coupled seismic energy to the seismic and acoustic seismic arrays so that the transition between the near and far-field data can be modeled and our scientists can begin to understand how non-linear effects and anisotropy control seismic energy transmission and partitioning. The first shot for the SPE was conducted in May 2011 as a calibration shot (SPE1) with 220 lb (100 kg) of chemical explosives set at a depth of 180 ft (55 m). An array of sensors and diagnostics recorded the shot data, including accelerometers, geophones, rotational sensors, short-period and broadband seismic sensors, Continuous Reflectometry for Radius vs. Time Experiment (CORRTEX), Time of Arrival (TOA), Velocity of Detonation (VOD) as well as infrasound sensors. The three-component accelerometer packages were set at depths of 180 ft (55 m), 150 ft (46 m), and 50 ft (15 m) in two rings around ground zero (GZ); the inner ring was at 10 m and the outer ring was 20 m from GZ. Six sets of surface accelerometers (100 and 500 g) were placed along in an azimuth of SW from GZ every 10 m. Seven infrasound sensors were placed in an array around the GZ, extending from tens of meters to kilometers. Over 100 seismic stations were positioned, most of which were in five radial lines from GZ out to 2 km. Over 400 data channels were recorded for SPE1, and data recovery was about 95% with high signal to noise ratio. Future tests will be conducted in the same shot hole as SPE1. The SPE2 experiment will consist of 2200 lb (1000 kg) of chemical explosives shot at 150 ft (46 m) depth utilizing the above-described instrumentation. Subsequent SPE shots will be the same size, within the same shot hole, and within the damage zone. The ultimate goal of the SPE Project is to develop predictive capability for using seismic energy as a tool for CTBT issues. This work was done by National Security Technologies, LLC, under Contract No. DE AC52 06NA25946 with the U.S. Department of Energy.
NASA Astrophysics Data System (ADS)
Antoun, T.; Ezzedine, S. M.; Vorobiev, O.; Pitarka, A.; Hurley, R.; Hirakawa, E. T.; Glenn, L.; Walter, W. R.
2016-12-01
LLNL has developed a framework for uncertainty propagation and quantification using HPC numerical codes to simulate end-to-end, from source to receivers, the ground motions observed during the Source Physics Experiments (SPE) conducted in fractured granitic rock at the Nevada National Security Site (NNSS). SPE includes six underground chemical explosions designed with different yields initiated at different depths. To date we have successfully applied this framework to explain the near-field shear motions observed in the vicinity of SPE3 thru SPE5. However, systematic uncertainty propagation to the far-field seismic receiver has not been addressed yet. In the current study, we used a coupling between the non-linear inelastic hydrodynamic regime in the near-field and the seismic elastic regime in the far-field to conduct the analysis. Several realizations of the stochastic discrete fracture network were generated conditional to the observed sparse data. These realizations were then used to calculate the ground motions generated from the SPE shots up to the elastic radius. The latter serves as the handshake interface for the far-field simulations. By creating several realizations of near-field responses one can embed those sources into the far-field elastic wave code and further the uncertainty propagation to the receivers. We will present a full assessment from end-to-end for the near- and far-field measurements. Separate analyses of the effect of the different conceptual geological models are also carried over using a nested Monte Carlo scheme. We compare the observed frequency content at several gages with the simulated ones. We conclude that both regions experience different sampling of frequencies: small features are relevant to near-field simulations while larger feature are more dominant at the far-field. We finally rank the primary sensitive parameters for both regions to drive and refine the field characterization data collection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mellors, R J; Rodgers, A; Walter, W
2011-10-18
The Source Physics Experiment (SPE) is planning a 1000 kg (TNT equivalent) shot (SPE2) at the Nevada National Security Site (NNSS) in a granite borehole at a depth (canister centroid) of 45 meters. This shot follows an earlier shot of 100 kg in the same borehole at a depth 60 m. Surrounding the shotpoint is an extensive array of seismic sensors arrayed in 5 radial lines extending out 2 km to the north and east and approximately 10-15 to the south and west. Prior to SPE1, simulations using a finite difference code and a 3D numerical model based on themore » geologic setting were conducted, which predicted higher amplitudes to the south and east in the alluvium of Yucca Flat along with significant energy on the transverse components caused by scattering within the 3D volume along with some contribution by topographic scattering. Observations from the SPE1 shot largely confirmed these predictions although the ratio of transverse energy relative to the vertical and radial components was in general larger than predicted. A new set of simulations has been conducted for the upcoming SPE2 shot. These include improvements to the velocity model based on SPE1 observations as well as new capabilities added to the simulation code. The most significant is the addition of a new source model within the finite difference code by using the predicted ground velocities from a hydrodynamic code (GEODYN) as driving condition on the boundaries of a cube embedded within WPP which provides a more sophisticated source modeling capability linked directly to source site materials (e.g. granite) and type and size of source. Two sets of SPE2 simulations are conducted, one with a GEODYN source and 3D complex media (no topography node spacing of 5 m) and one with a standard isotropic pre-defined time function (3D complex media with topography, node spacing of 5 m). Results were provided as time series at specific points corresponding to sensor locations for both translational (x,y,z) and rotational components. Estimates of spectral scaling for SPE2 are provided using a modified version of the Mueller-Murphy model. An estimate of expected aftershock probabilities were also provided, based on the methodology of Ford and Walter, [2010].« less
NASA Astrophysics Data System (ADS)
Walter, W. R.; Ford, S. R.; Xu, H.; Pasyanos, M. E.; Pyle, M. L.; Matzel, E.; Mellors, R. J.; Hauk, T. F.
2012-12-01
It is well established empirically that regional distance (200-1600 km) amplitude ratios of seismic P-to-S waves at sufficiently high frequencies (~>2 Hz) can identify explosions among a background of natural earthquakes. However the physical basis for the generation of explosion S-waves, and therefore the predictability of this P/S technique as a function of event properties such as size, depth, geology and path, remains incompletely understood. A goal of the Source Physics Experiments (SPE) at the Nevada National Security Site (NNSS, formerly the Nevada Test Site (NTS)) is to improve our physical understanding of the mechanisms of explosion S-wave generation and advance our ability to numerically model and predict them. Current models of explosion P/S values suggest they are frequency dependent with poor performance below the source corner frequencies and good performance above. This leads to expectations that small magnitude explosions might require much higher frequencies (>10 Hz) to identify them. Interestingly the 1-ton chemical source physics explosions SPE2 and SPE3 appear to discriminate well from background earthquakes in the frequency band 6-8 Hz, where P and S signals are visible at the NVAR array located near Mina, NV about 200 km away. NVAR is a primary seismic station in the International Monitoring System (IMS), part of the Comprehensive nuclear-Test-Ban Treaty (CTBT). The NVAR broadband element NV31 is co-located with the LLNL station MNV that recorded many NTS nuclear tests, allowing the comparison. We find the small SPE explosions in granite have similar Pn/Lg values at 6-8 Hz as the past nuclear tests mainly in softer rocks. We are currently examining a number of other stations in addition to NVAR, including the dedicated SPE stations that recorded the SPE explosions at much closer distances with very high sample rates, in order to better understand the observed frequency dependence as compared with the model predictions. We plan to use these observations to improve our explosion models and our ability to understand and predict where P/S methods of identifying explosions work and any circumstances where they may not. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Plank, G.; Slater, D.; Torrisi, J.; Presser, R.; Williams, M.; Smith, K. D.
2012-12-01
The Nevada Seismological Laboratory (NSL) manages time-series data and high-throughput IP telemetry for the National Center for Nuclear Security (NCNS) Source Physics Experiment (SPE), underway on the Nevada National Security Site (NNSS). During active-source experiments, SPE's heterogeneous systems record over 350 channels of a variety of data types including seismic, infrasound, acoustic, and electro-magnetic. During the interim periods, broadband and short period instruments record approximately 200 channels of continuous, high-sample-rate seismic data. Frequent changes in sensor and station configurations create a challenging meta-data environment. Meta-data account for complete operational histories, including sensor types, serial numbers, gains, sample rates, orientations, instrument responses, data-logger types etc. To date, these catalogue 217 stations, over 40 different sensor types, and over 1000 unique recording configurations (epochs). Facilities for processing, backup, and distribution of time-series data currently span four Linux servers, 60Tb of disk capacity, and two data centers. Bandwidth, physical security, and redundant power and cooling systems for acquisition, processing, and backup servers are provided by NSL's Reno data center. The Nevada System of Higher Education (NSHE) System Computer Services (SCS) in Las Vegas provides similar facilities for the distribution server. NSL staff handle setup, maintenance, and security of all data management systems. SPE PIs have remote access to meta-data, raw data, and CSS3.0 compilations, via SSL-based transfers such as rsync or secure-copy, as well as shell access for data browsing and limited processing. Meta-data are continuously updated and posted on the Las Vegas distribution server as station histories are better understood and errors are corrected. Raw time series and refined CSS3.0 data compilations with standardized formats are transferred to the Las Vegas data server as available. For better data availability and station monitoring, SPE is beginning to leverage NSL's wide-area digital IP network with nine SPE stations and six Rock Valley area stations that stream continuous recordings in real time to the NSL Reno data center. These stations, in addition to eight regional legacy stations supported by National Security Technologies (NSTec), are integrated with NSL's regional monitoring network and constrain a high-quality local earthquake catalog for NNSS. The telemetered stations provide critical capabilities for SPE, and infrastructure for earthquake response on NNSS as well as southern Nevada and the Las Vegas area.
Source characterization of underground explosions from hydrodynamic-to-elastic coupling simulations
NASA Astrophysics Data System (ADS)
Chiang, A.; Pitarka, A.; Ford, S. R.; Ezzedine, S. M.; Vorobiev, O.
2017-12-01
A major improvement in ground motion simulation capabilities for underground explosion monitoring during the first phase of the Source Physics Experiment (SPE) is the development of a wave propagation solver that can propagate explosion generated non-linear near field ground motions to the far-field. The calculation is done using a hybrid modeling approach with a one-way hydrodynamic-to-elastic coupling in three dimensions where near-field motions are computed using GEODYN-L, a Lagrangian hydrodynamics code, and then passed to WPP, an elastic finite-difference code for seismic waveform modeling. The advancement in ground motion simulation capabilities gives us the opportunity to assess moment tensor inversion of a realistic volumetric source with near-field effects in a controlled setting, where we can evaluate the recovered source properties as a function of modeling parameters (i.e. velocity model) and can provide insights into previous source studies on SPE Phase I chemical shots and other historical nuclear explosions. For example the moment tensor inversion of far-field SPE seismic data demonstrated while vertical motions are well-modeled using existing velocity models large misfits still persist in predicting tangential shear wave motions from explosions. One possible explanation we can explore is errors and uncertainties from the underlying Earth model. Here we investigate the recovered moment tensor solution, particularly on the non-volumetric component, by inverting far-field ground motions simulated from physics-based explosion source models in fractured material, where the physics-based source models are based on the modeling of SPE-4P, SPE-5 and SPE-6 near-field data. The hybrid modeling approach provides new prospects in modeling explosion source and understanding the uncertainties associated with it.
Yang, Xiaoning
2016-08-01
In this study, I used seismic waveforms recorded within 2 km from the epicenter of the first four Source Physics Experiments (SPE) explosions to invert for the moment-tensor spectra of these explosions. I employed a one-dimensional (1D) Earth model for Green's function calculations. The model was developed from P- and R g-wave travel times and amplitudes. I selected data for the inversion based on the criterion that they had consistent travel times and amplitude behavior as those predicted by the 1D model. Due to limited azimuthal coverage of the sources and the mostly vertical-component-only nature of the dataset, only long-period,more » volumetric components of the moment-tensor spectra were well constrained.« less
NASA Astrophysics Data System (ADS)
Walter, W. R.; Ford, S. R.; Pitarka, A.; Pyle, M. L.; Pasyanos, M.; Mellors, R. J.; Dodge, D. A.
2017-12-01
The relative amplitudes of seismic P-waves to S-waves are effective at identifying underground explosions among a background of natural earthquakes. These P/S methods appear to work best at frequencies above 2 Hz and at regional distances ( >200 km). We illustrate this with a variety of historic nuclear explosion data as well as with the recent DPRK nuclear tests. However, the physical basis for the generation of explosion S-waves, and therefore the predictability of this P/S technique as a function of path, frequency and event properties such as size, depth, and geology, remains incompletely understood. A goal of current research, such as the Source Physics Experiments (SPE), is to improve our physical understanding of the mechanisms of explosion S-wave generation and advance our ability to numerically model and predict them. The SPE conducted six chemical explosions between 2011 and 2016 in the same borehole in granite in southern Nevada. The explosions were at a variety of depths and sizes, ranging from 0.1 to 5 tons TNT equivalent yield. The largest were observed at near regional distances, with P/S ratios comparable to much larger historic nuclear tests. If we control for material property effects, the explosions have very similar P/S ratios independent of yield or magnitude. These results are consistent with explosion S-waves coming mainly from conversion of P- and surface waves, and are inconsistent with source-size based models. A dense sensor deployment for the largest SPE explosion allowed this conversion to be mapped in detail. This is good news for P/S explosion identification, which can work well for very small explosions and may be ultimately limited by S-wave detection thresholds. The SPE also showed explosion P-wave source models need to be updated for small and/or deeply buried cases. We are developing new P- and S-wave explosion models that better match all the empirical data. Historic nuclear explosion seismic data shows that the media in which the explosion takes place is quite important. These material property effects can surprisingly degrade the seismic waveform correlation of even closely spaced explosions in different media. The next phase of the SPE will contrast chemical explosions in dry alluvium with the prior SPE explosions in granite and historic nuclear tests in a variety of media.
Analysis and Simulation of Near-Field Wave Motion Data from the Source Physics Experiment Explosions
2011-09-01
understanding and ability to model explosively generated seismic waves, particularly S-waves. The first SPE explosion (SPE1) consisted of a 100 kg shot at a...depth of 60 meters in granite (Climax Stock). The shot was well- recorded by an array of over 150 instruments, including both near-field wave motion...measurements as well as far- field seismic measurements. This paper focuses on measurements and modeling of the near-field data. A complimentary
Analysis of the Source Physics Experiment SPE4 Prime Using State-Of Parallel Numerical Tools.
NASA Astrophysics Data System (ADS)
Vorobiev, O.; Ezzedine, S. M.; Antoun, T.; Glenn, L.
2015-12-01
This work describes a methodology used for large scale modeling of wave propagation from underground chemical explosions conducted at the Nevada National Security Site (NNSS) fractured granitic rock. We show that the discrete natures of rock masses as well as the spatial variability of the fabric of rock properties are very important to understand ground motions induced by underground explosions. In order to build a credible conceptual model of the subsurface we integrated the geological, geomechanical and geophysical characterizations conducted during recent test at the NNSS as well as historical data from the characterization during the underground nuclear test conducted at the NNSS. Because detailed site characterization is limited, expensive and, in some instances, impossible we have numerically investigated the effects of the characterization gaps on the overall response of the system. We performed several computational studies to identify the key important geologic features specific to fractured media mainly the joints characterized at the NNSS. We have also explored common key features to both geological environments such as saturation and topography and assess which characteristics affect the most the ground motion in the near-field and in the far-field. Stochastic representation of these features based on the field characterizations has been implemented into LLNL's Geodyn-L hydrocode. Simulations were used to guide site characterization efforts in order to provide the essential data to the modeling community. We validate our computational results by comparing the measured and computed ground motion at various ranges for the recently executed SPE4 prime experiment. We have also conducted a comparative study between SPE4 prime and previous experiments SPE1 and SPE3 to assess similarities and differences and draw conclusions on designing SPE5.
Large-N Over the Source Physics Experiment (SPE) Phase I and Phase II Test Beds
NASA Astrophysics Data System (ADS)
Snelson, C. M.; Carmichael, J. D.; Mellors, R. J.; Abbott, R. E.
2014-12-01
One of the current challenges in the field of monitoring and verification is source discrimination of low-yield nuclear explosions from background seismicity, both natural and anthropogenic. Work is underway at the Nevada National Security Site to conduct a series of chemical explosion experiments using a multi-institutional, multi-disciplinary approach. The goal of this series of experiments, called the Source Physics Experiments (SPE), is to refine the understanding of the effect of earth structures on source phenomenology and energy partitioning in the source region, the transition of seismic energy from the near field to the far field, and the development of S waves observed in the far field. To fully explore these problems, the SPE series includes tests in both hard and soft rock geologic environments. The project comprises a number of activities, which range from characterizing the shallow subsurface to acquiring new explosion data from both the near field (<100 m) and the far field (>100 m). SPE includes a series of planned explosions (with different yields and depths of burials), which are conducted in the same hole and monitored by a diverse set of sensors recording characteristics of the explosions, ground-shock, seismo-acoustic energy propagation. This presentation focuses on imaging the full 3D wavefield over hard rock and soft rock test beds using a large number of seismic sensors. This overview presents statistical analyses of optimal sensor layout required to estimate wavefield discriminants and the planned deployment for the upcoming experiments. This work was conducted under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Myers, S. C.; Pitarka, A.; Mellors, R. J.
2016-12-01
The Source Physics Experiment (SPE) is producing new data to study the generation of seismic waves from explosive sources. Preliminary results show that far-field S-waves are generated both within the non-elastic volume surrounding explosive sources and by P- to S-wave scattering. The relative contribution of non-elastic phenomenology and elastic-wave scattering to far-field S-waves has been debated for decades, and numerical simulations based on the SPE experiments are addressing this question. The match between observed and simulated data degrades with event-station distance and with increasing time in each seismogram. This suggests that a more accurate model of subsurface elastic properties could result in better agreement between observed and simulated seismograms. A detailed model of subsurface structure has been developed using geologic maps and the extensive database of borehole logs, but uncertainty in structural details remains high. The large N instrument deployment during the SPE-5 experiment offers an opportunity to use time-reversal techniques to back project the wave field into the subsurface to locate significant sources of scattered energy. The large N deployment was nominally 1000, 5 Hz sensors (500 Z and 500 3C geophones) deployed in a roughly rectangular array to the south and east of the SPE-5 shot. Sensor spacing was nominally 50 meters in the interior portion of the array and 100 meters in the outer region, with two dense lines at 25 m spacing. The array covers the major geologic boundary between the Yucca Flat basin and the granitic Climax Stock in which the SPE experiments have been conducted. Improved mapping of subsurface scatterers is expected to result in better agreement between simulated and observed seismograms and aid in our understanding of S-wave generation from explosions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
New Insights into the Explosion Source from SPE
NASA Astrophysics Data System (ADS)
Patton, H. J.
2015-12-01
Phase I of the Source Physics Experiments (SPE) is a series of chemical explosions at varying depths and yields detonated in the same emplacement hole on Climax stock, a granitic pluton located on the Nevada National Security Site. To date, four of the seven planned tests have been conducted, the last in May 2015, called SPE-4P, with a scaled depth of burial of 1549 m/kt1/3 in order to localize the source in time and space. Surface ground motions validated that the source medium did not undergo spallation, and a key experimental objective was achieved where SPE-4P is the closest of all tests in the series to a pure monopole source and will serve as an empirical Green's function for analysis against other SPE tests. A scientific objective of SPE is to understand mechanisms of rock damage for generating seismic waves, particularly surface and S waves, including prompt damage under compressive stresses and "late-time" damage under tensile stresses. Studies have shown that prompt damage can explain ~75% of the seismic moment for some SPE tests. Spallation is a form of late-time damage and a facilitator of damage mechanisms under tensile stresses including inelastic brittle deformation and shear dilatancy on pre-existing faults or joints. As an empirical Green's function, SPE-4P allows the study of late-time damage mechanisms on other SPE tests that induce spallation and late-time damage, and I'll discuss these studies. The importance for nuclear monitoring cannot be overstated because new research shows that damage mechanisms can affect surface wave magnitude Ms more than tectonic release, and are a likely factor related to anomalous mb-Ms behavior for North Korean tests.
Analysis and Simulation of Near-Field Ground Motions from the Source Physics Experiment
NASA Astrophysics Data System (ADS)
Antoun, T. H.; Vorobiev, O.; Xu, H.; Herbold, E. B.; Glenn, L.; Lomov, I.
2011-12-01
The Source Physics Experiment (SPE) at the Nevada National Security Site is planned as a series of chemical explosions under a variety of emplacement conditions. The goal of the SPE is to improve our physical understanding and ability to model explosively generated seismic waves, particularly S-waves. The first SPE explosion (SPE1) consisted of a 100 kg shot at a depth of 60 meters in granite (Climax Stock). The shot was well-recorded by an array of over 150 instruments, including both near-field wave motion measurements as well as far-field seismic measurements. This paper focuses on measurements and modeling of the near-field data, which included triaxial acceleration measurements at eighteen different locations azimuthally distributed around the explosive charge. Three triaxial accelerometers were embedded in each of six vertical boreholes, distributed in two concentric rings around the charge. The inner ring consisted of three equidistant boreholes at a radius of 10 m from the charge, and the outer ring consisted of another three equidistant boreholes at a radius of 20 m. In each borehole, the accelerometers were vertically distributed at depths of 60 m (shot horizon), 50 m and 15 m. Surface accelerations were also recorded along a radial line centered at surface ground zero. A review of the SPE1 data shows that the peak radial velocity as a function of scaled range is consistent with previous nuclear explosion data but exhibits greater variability. The scaled peak radial displacement also exhibits greater variability but the mean values are significantly higher than exhibited in previous nuclear explosion data. These higher displacements were also observed in calculations performed with a constitutive model based on nuclear explosion data in hard rock, but employed a JWL equation of state for the ANFO explosive used in SPE1. The reason for this behavior is believed to be the higher effective ratio of specific heats in the explosion products of the chemical explosive, leading to higher residual cavity pressure. Azimuthal scatter in the velocity data correspond to joint orientation, and as anticipated, the joints appear to be the principal source of observed shear wave generation in the near field. Preliminary modeling of the SPE1 data shows that continuum simulations that do not explicitly account for the effect of joints will not successfully reproduce the observed directional variations in the recorded data. However, 2D and 3D simulations that explicitly account for joints and pre-existing fractures show that a low friction angle, derived with water-filled joints, may account for the observed variation in peak velocity and displacement. Waves appear to propagate more readily in the direction of persistent joints, as opposed to staggered joints. Furthermore, the anisotropy associated with wave propagation seems to be more pronounced when the friction angle was lowered to account for the effect of saturation. Further modeling is being conducted with continued focus on the effect of the presence of joints and their properties on shear wave generation. Simulation results will be compared to experimental measurements of both radial and non-radial motions from the SPE1 event, as well as from planned future SPE explosions.
Preliminary SPE Phase II Far Field Ground Motion Estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steedman, David W.
2014-03-06
Phase II of the Source Physics Experiment (SPE) program will be conducted in alluvium. Several candidate sites were identified. These include existing large diameter borehole U1e. One criterion for acceptance is expected far field ground motion. In June 2013 we were requested to estimate peak response 2 km from the borehole due to the largest planned SPE Phase II experiment: a contained 50- Ton event. The cube-root scaled range for this event is 5423 m/KT 1/3. The generally accepted first order estimate of ground motions from an explosive event is to refer to the standard data base for explosive eventsmore » (Perrett and Bass, 1975). This reference is a compilation and analysis of ground motion data from numerous nuclear and chemical explosive events from Nevada National Security Site (formerly the Nevada Test Site, or NTS) and other locations. The data were compiled and analyzed for various geologic settings including dry alluvium, which we believe is an accurate descriptor for the SPE Phase II setting. The Perrett and Bass plots of peak velocity and peak yield-scaled displacement, both vs. yield-scaled range, are provided here. Their analysis of both variables resulted in bi-linear fits: a close-in non-linear regime and a more distant linear regime.« less
NASA Astrophysics Data System (ADS)
Rougier, E.; Knight, E. E.
2015-12-01
The Source Physics Experiments (SPE) is a project funded by the U.S. Department of Energy at the National Nuclear Security Site. The project consists of a series of underground explosive tests designed to gain more insight on the generation and propagation of seismic energy from underground explosions in hard rock media, granite. Until now, four tests (SPE-1, SPE-2, SPE-3 and SPE-4Prime) with yields ranging from 87 kg to 1000 kg have been conducted in the same borehole. The generation and propagation of seismic waves is heavily influenced by the different damage mechanisms occurring at different ranges from the explosive source. These damage mechanisms include pore crushing, compressive (shear) damage, joint damage, spallation and fracture and fragmentation, etc. Understanding these mechanisms and how they interact with each other is essential to the interpretation of the characteristics of close-in seismic observables. Recent observations demonstrate that, for relatively small and shallow chemical explosions in granite, such as SPE-1, -2 and -3, the formation of a cavity around the working point is not the main mechanism responsible for the release of seismic moment. Shear dilatancy (bulking occurring as a consequence of compressive damage) of the medium around the source has been proposed as an alternative damage mechanism that explains the seismic moment release observed in the experiments. In this work, the interaction between cavity formation and bulking is investigated via a series of computer simulations for the SPE-2 event. The simulations are conducted using a newly developed material model, called AZ_Frac. AZ_Frac is a continuum-based-visco-plastic strain-rate-dependent material model. One of its key features is its ability to describe continuum fracture processes, while properly handling anisotropic material characteristics. The implications of the near source numerical results on the close-in seismic quantities, such as reduced displacement potentials and source spectra are presented.
Imaging an Explosion with a 1000 Sensors: The SPE Large N Array
NASA Astrophysics Data System (ADS)
Mellors, R. J.; Snelson, C. M.; Pitarka, A.; Chen, T.; Matzel, E.; Walter, W. R.
2016-12-01
The Source Physics Experiment (SPE) is a series of heavily instrumented chemical explosions at the Nevada National Security Site (NNSS) designed to improve understanding of seismic wave generation and propagation from explosions. On April 26, 2016, a 5000 kg TNT equivalent chemical explosion (SPE5) was detonated at a depth of 76.5 meters (center) in a stemmed hole. The explosion was recorded by a temporary deployment of 1000 geophones with a variable spacing from 25 to 100 m and consisting of 500 vertical and 500 three-component 5 Hz geophones. Distance from ground zero to the geophones range from 400 to 3000 m. The shot is located in a weathered granite intrusive body surrounded by volcanic tuffs, Paleozoic carbonates, and alluvium. The purpose is to map the 3D waveform propagation with emphasis on the generation of S waves and to compare with synthetics. A focus is the transition from the granite to alluvium that occurs at a steeply dipping strike-slip fault. A secondary goal is to record ambient noise data for tomography. An active source experiment using a weight drop was also conducted. Data recovery was good, with approximately 95% of data recovered from the shot and up to 99% in the following weeks. In addition to the SPE5 shot, a variety of local earthquakes and teleseismic events were recorded. Prepared by LLNL under Contract DE-AC52-07NA27344.
Gobbi, Erica; Greguol, Márcia; Carraro, Attilio
2018-01-29
The purpose of this study was to explore possible benefits of a peer-tutored physical education programme (PTPE) in comparison with school physical education (SPE) in high school students with intellectual disability. Nineteen students with intellectual disabilities (15 boys, mean age 17.4 ± 1.7 years) were monitored during three PTPE and three SPE classes. A factorial RM-ANOVA was used to test differences on objective measured physical activity (PA), enjoyment and exertion during the two conditions, considering participants' weight condition as independent factor. During PTPE, participants reported higher light intensity PA, enjoyment and exertion than during SPE. Participants with overweight showed less inactive time and higher light intensity PA during PTPE than during SPE. The peer-tutored programme was beneficial for adolescents with intellectual disability, particularly for those in overweight condition. The higher enjoyment found during PTPE may encourage exercise participation of students with intellectual disability. © 2018 John Wiley & Sons Ltd.
Analysis of Ground Motion from An Underground Chemical Explosion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pitarka, Arben; Mellors, Robert J.; Walter, William R.
Here in this paper we investigate the excitation and propagation of far-field seismic waves from the 905 kg trinitrotoluene equivalent underground chemical explosion SPE-3 recorded during the Source Physics Experiment (SPE) at the Nevada National Security Site. The recorded far-field ground motion at short and long distances is characterized by substantial shear-wave energy, and large azimuthal variations in P-and S-wave amplitudes. The shear waves observed on the transverse component of sensors at epicentral distances <50 m suggests they were generated at or very near the source. The relative amplitude of the shear waves grows as the waves propagate away frommore » the source. We analyze and model the shear-wave excitation during the explosion in the 0.01–10 Hz frequency range, at epicentral distances of up to 1 km. We used two simulation techniques. One is based on the empirical isotropic Mueller–Murphy (MM) (Mueller and Murphy, 1971) nuclear explosion source model, and 3D anelastic wave propagation modeling. The second uses a physics-based approach that couples hydrodynamic modeling of the chemical explosion source with anelastic wave propagation modeling. Comparisons with recorded data show the MM source model overestimates the SPE-3 far-field ground motion by an average factor of 4. The observations show that shear waves with substantial high-frequency energy were generated at the source. However, to match the observations additional shear waves from scattering, including surface topography, and heterogeneous shallow structure contributed to the amplification of far-field shear motion. Comparisons between empirically based isotropic and physics-based anisotropic source models suggest that both wave-scattering effects and near-field nonlinear effects are needed to explain the amplitude and irregular radiation pattern of shear motion observed during the SPE-3 explosion.« less
Analysis of Ground Motion from An Underground Chemical Explosion
Pitarka, Arben; Mellors, Robert J.; Walter, William R.; ...
2015-09-08
Here in this paper we investigate the excitation and propagation of far-field seismic waves from the 905 kg trinitrotoluene equivalent underground chemical explosion SPE-3 recorded during the Source Physics Experiment (SPE) at the Nevada National Security Site. The recorded far-field ground motion at short and long distances is characterized by substantial shear-wave energy, and large azimuthal variations in P-and S-wave amplitudes. The shear waves observed on the transverse component of sensors at epicentral distances <50 m suggests they were generated at or very near the source. The relative amplitude of the shear waves grows as the waves propagate away frommore » the source. We analyze and model the shear-wave excitation during the explosion in the 0.01–10 Hz frequency range, at epicentral distances of up to 1 km. We used two simulation techniques. One is based on the empirical isotropic Mueller–Murphy (MM) (Mueller and Murphy, 1971) nuclear explosion source model, and 3D anelastic wave propagation modeling. The second uses a physics-based approach that couples hydrodynamic modeling of the chemical explosion source with anelastic wave propagation modeling. Comparisons with recorded data show the MM source model overestimates the SPE-3 far-field ground motion by an average factor of 4. The observations show that shear waves with substantial high-frequency energy were generated at the source. However, to match the observations additional shear waves from scattering, including surface topography, and heterogeneous shallow structure contributed to the amplification of far-field shear motion. Comparisons between empirically based isotropic and physics-based anisotropic source models suggest that both wave-scattering effects and near-field nonlinear effects are needed to explain the amplitude and irregular radiation pattern of shear motion observed during the SPE-3 explosion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larmat, Carene; Rougier, Esteban; Lei, Zhou
This project is in support of the Source Physics Experiment SPE (Snelson et al. 2013), which aims to develop new seismic source models of explosions. One priority of this program is first principle numerical modeling to validate and extend current empirical models.
NASA Astrophysics Data System (ADS)
Matzel, E.; Mellors, R. J.; Magana-Zook, S. A.
2016-12-01
Seismic interferometry is based on the observation that the Earth's background wavefield includes coherent energy, which can be recovered by observing over long time periods, allowing the incoherent energy to cancel out. The cross correlation of the energy recorded at a pair of stations results in an estimate of the Green's Function (GF) and is equivalent to the record of a simple source located at one of the stations as recorded by the other. This allows high resolution imagery beneath dense seismic networks even in areas of low seismicity. The power of these inter-station techniques increases rapidly as the number of seismometers in a network increases. For large networks the number of correlations computed can run into the millions and this becomes a "big-data" problem where data-management dominates the efficiency of the computations. In this study, we use several methods of seismic interferometry to obtain highly detailed images at the site of the Source Physics Experiment (SPE). The objective of SPE is to obtain a physics-based understanding of how seismic waves are created at and scattered near the source. In 2015, a temporary deployment of 1,000 closely spaced geophones was added to the main network of instruments at the site. We focus on three interferometric techniques: Shot interferometry (SI) uses the SPE shots as rich sources of high frequency, high signal energy. Coda interferometry (CI) isolates the energy from the scattered wavefield of distant earthquakes. Ambient noise correlation (ANC) uses the energy of the ambient background field. In each case, the data recorded at one seismometer are correlated with the data recorded at another to obtain an estimate of the GF between the two. The large network of mixed geophone and broadband instruments at the SPE allows us to calculate over 500,000 GFs, which we use to characterize the site and measure the localized wavefield. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
NASA Astrophysics Data System (ADS)
Patton, H. J.; Larmat, C. S.; Rougier, E.
2016-12-01
Seismic moments for chemical shots making up Phase I of the Source Physics Experiments (SPE) are estimated from 6 Hz Rg waves under the assumption that the shots are pure explosions. These apparent explosion moments are compared to moments determined using the Reduced Displacement Potential (RDP) method applied to free field data. LIDAR/photogrammetry observations, strong ground motions on the free surface near ground zero, and moment tensor inversion results are evidence in support of the fourth shot SPE-4P being essentially a pure explosion. The apparent moment for SPE-4P is 9 × 1010 Nm in good agreement with the RDP moment 8 × 1010 Nm. In stark contrast, apparent moments for the first three shots are three to four times smaller than RDP moments. Data show that spallation occurred on these shots, as well as permanent deformations detected with ground-based LIDAR. As such, the source medium suffered late-time damage. The late-time damage source model predicts destructive interference between Rg waves radiated by explosion and damage sources, which reduces amplitudes and explains why apparent moments are smaller than RDP moments based on compressional energy emitted directly from the source. SPE-5 was conducted at roughly the same yield-scaled burial depth as SPE-2 and -3, but with five times the yield. As such, the damage source model predicts less reduction of apparent moment. At this writing, preliminary results from Rg interferometry and RDP moments confirm this prediction. SPE-6 is scheduled for the fall of 2016, and it should have the strongest damage source of all SPE shots. The damage model predicts that the polarity of Rg waves could be reversed. Realization of this prediction will be strong confirmation of the late-time damage source model. This abstract has a Los Alamos National Laboratory Unlimited Release Number LA-UR-16-25709.
Time-Dependent Moment Tensors of the First Four Source Physics Experiments (SPE) Explosions
NASA Astrophysics Data System (ADS)
Yang, X.
2015-12-01
We use mainly vertical-component geophone data within 2 km from the epicenter to invert for time-dependent moment tensors of the first four SPE explosions: SPE-1, SPE-2, SPE-3 and SPE-4Prime. We employ a one-dimensional (1D) velocity model developed from P- and Rg-wave travel times for Green's function calculations. The attenuation structure of the model is developed from P- and Rg-wave amplitudes. We select data for the inversion based on the criterion that they show consistent travel times and amplitude behavior as those predicted by the 1D model. Due to limited azimuthal coverage of the sources and the mostly vertical-component-only nature of the dataset, only long-period, diagonal components of the moment tensors are well constrained. Nevertheless, the moment tensors, particularly their isotropic components, provide reasonable estimates of the long-period source amplitudes as well as estimates of corner frequencies, albeit with larger uncertainties. The estimated corner frequencies, however, are consistent with estimates from ratios of seismogram spectra from different explosions. These long-period source amplitudes and corner frequencies cannot be fit by classical P-wave explosion source models. The results motivate the development of new P-wave source models suitable for these chemical explosions. To that end, we fit inverted moment-tensor spectra by modifying the classical explosion model using regressions of estimated source parameters. Although the number of data points used in the regression is small, the approach suggests a way for the new-model development when more data are collected.
The Source Physics Experiments (SPE) at the Nevada National Security Site (NNSS): An Overview
NASA Astrophysics Data System (ADS)
Snelson, C. M.; Chipman, V.; White, R. L.; Emmitt, R.; Townsend, M.; Barker, D.; Lee, P.
2012-12-01
Understanding the changes in seismic energy as it travels from the near field to the far field is the ultimate goal in monitoring for explosive events of interest. This requires a clear understanding of explosion phenomenology as it relates to seismic, infrasound, and acoustic signals. Although there has been much progress in modeling these phenomena, this has been primarily based in the empirical realm. As a result, the logical next step in advancing the seismic monitoring capability of the United States is to conduct field tests that can expand the predictive capability of the physics-based modeling currently under development. The Source Physics Experiment at the Nevada National Security Site (SPE) is the first step in this endeavor to link the empirically based with the physics-based modeling. This is a collaborative project between National Security Technologies (NSTec), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), the Defense Threat Reduction Agency (DTRA), and the Air Force Technical Applications Center (AFTAC). The test series require both the simple and complex cases to fully characterize the problem, which is to understand the transition of seismic energy from the near field to the far field; to understand the development of S-waves in explosives sources; and how anisotropy controls seismic energy transmission and partitioning. The current series is being conducted in a granite body called the Climax Stock. This location was chosen for several reasons, including the fairly homogenous granite; the location of previous nuclear tests in the same rock body; and generally the geology has been well characterized. The simple geology series is planned for 7 shots using conventional explosives in the same shot hole surrounded by Continuous Reflectometry for Radius vs. Time Experiment (CORRTEX), Time of Arrival (TOA), Velocity of Detonation (VOD), down-hole accelerometers, surface accelerometers, infrasound, and a suite of seismic sensors of various frequency bands from the near field to the far field. This allows for the use of a single test bed in the simple geology case instead of multiple tests beds to obtain the same results. The shots are planned at various depths to obtain a Green's function, scaled-depth of burial data, nominal depth of burial data and damage zone data. SPE1 was conducted in May 2011 as a 220 lb (100 kg) TNT equivalent calibration shot at a depth of 180 ft (55 m). SPE2 was conducted in October 2011 as a 2200 lb (1000 kg) TNT equivalent calibration shot at a depth of 150 ft (46 m). SPE3 was conducted in July 2012 as a 2200 lb (1000 kg) TNT equivalent calibration shot at a depth of 150 ft (46 m) in the damaged zone. Over 400 data channels were recorded for each of these shots and data recovery was about 95% with high signal to noise ratio. Once the simple geology site data has been utilized, a new test bed will be developed in a complex geology site to test these physics based models. Ultimately, the results from this project will provide the next advances in the science of monitoring to enable a physics-based predicative capability. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. DOE/NV/25946--1584
The Effects of Heterogeneities on Seismic Wave Propagation in the Climax Stock
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagan Webb, C., Snelson, C. M., White, R., Emmitt, R., Barker, D., Abbott, R., Bonal, N.
2011-12-01
The Comprehensive Nuclear Test-Ban Treaty requires the ability to detect low-yield (less than 150kton) nuclear events. This kind of monitoring can only be done seismically on a regional scale (within 2000km). At this level, it is difficult to distinguish between low-yield nuclear events and non-nuclear events of similar magnitude. In order to confidently identify a nuclear event, a more detailed understanding of nuclear seismic sources is needed. In particular, it is important to know the effects of local geology on the seismic signal. This study focuses on P-wave velocity in heterogeneous granitoid. The Source Physics Experiment (SPE) is currently performingmore » low-yield tests with chemical explosives at the Nevada National Security Site (NNSS). The exact test site was chosen to be in the Climax Stock, a cretaceous granodiorite and quartz-monzonite pluton located in Area 15 of the NNSS. It has been used in the past for the Hard Hat and Pile Driver nuclear tests, which provided legacy data that can be used to simulate wave propagation. The Climax Stock was originally chosen as the site of the SPE partly because of its assumed homogeneity. It has since been discovered that the area of the stock where the SPE tests are being performed contains a perched water table. In addition, the stock is known to contain an extensive network of faults, joints, and fractures, but the exact effect of these structural features on seismic wave velocity is not fully understood. The SPE tests are designed to seismically capture the explosion phenomena from the near- to the far-field transition of the seismic waveform. In the first SPE experiment, 100kg of chemical explosives were set off at a depth of 55m. The blast was recorded with an array of sensors and diagnostics, including accelerometers, geophones, rotational sensors, short-period and broadband seismic sensors, Continuous Reflectometry for Radius vs. Time Experiment, Time of Arrival, Velocity of Detonation, and infrasound sensors. The focus of this study is two-fold: (1) the geophone array that was focused over the SPE shot and (2) a high-resolution seismic profile that was recently acquired at the field site. The geophone array was placed radially around the SPE shot in five directions with 100m spacing and out to a distance of 2 km. The high-resolution profile was about 475m in length with station and shot spacing of 5m using a 7000lb mini-vibe as a source. In both data sets, the first arrivals will be used to develop velocity models. For the geophone array, 1-D P-wave velocity models will be developed to determine an average apparent velocity of the Climax Stock. The high-resolution data will be used to develop a 2-D P-wave velocity model along the seismic profile. This is in an effort to elucidate the water table in more detail and provide additional information on the near-surface structure. These results will be used in the overall modeling effort to fully characterize the test bed and develop a physics-based model to simulate seismic energy from the SPE events.« less
NASA Astrophysics Data System (ADS)
Sexton, E. A.; Snelson, C. M.; Chipman, V.; Emer, D. F.; White, R. L.; Emmitt, R.; Wright, A. A.; Drellack, S.; Huckins-Gang, H.; Mercadante, J.; Floyd, M.; McGowin, C.; Cothrun, C.; Bonal, N.
2013-12-01
An objective of the Source Physics Experiment (SPE) is to identify low-yield nuclear explosions from a regional distance. Low-yield nuclear explosions can often be difficult to discriminate among the clutter of natural and man-made explosive events (e.g., earthquakes and mine blasts). The SPE is broken into three phases. Phase I has provided the first of the physics-based data to test the empirical models that have been used to discriminate nuclear events. The Phase I series of tests were placed within a highly fractured granite body. The evolution of the project has led to development of Phase II, to be placed within the opposite end member of geology, an alluvium environment, thereby increasing the database of waveforms to build upon in the discrimination models. Both the granite and alluvium sites have hosted nearby nuclear tests, which provide comparisons for the chemical test data. Phase III of the SPE is yet to be determined. For Phase II of the experiment, characterization of the location is required to develop the geologic/geophysical models for the execution of the experiment. Criteria for the location are alluvium thickness of approximately 170 m and a water table below 170 m; minimal fracturing would be ideal. A P-wave mini-vibroseis survey was conducted at a potential site in alluvium to map out the subsurface geology. The seismic reflection profile consisted of 168 geophone stations, spaced 5 m apart. The mini-vibe was a 7,000-lb peak-force source, starting 57.5 m off the north end of the profile and ending 57.5 m past the southern-most geophone. The length of the profile was 835 m. The source points were placed every 5 m, equally spaced between geophones to reduce clipping. The vibroseis sweep was from 20 Hz down to 180 Hz over 8 seconds, and four sweeps were stacked at each shot location. The shot gathers show high signal-to-noise ratios with clear first arrivals across the entire spread and the suggestion of some shallow reflectors. The data were processed using Seismic Processing Workshop in a standard reflection processing flow. The results from this vibroseis survey will contribute to the characterization of the location for Phase II of the SPE in order to appropriately execute the experiment. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. DOE/NV/25946--1836. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Snelson, C. M.; Chipman, V.; White, R. L.; Emmitt, R.; Townsend, M.
2013-12-01
Discriminating low-yield nuclear explosions is one of the current challenges in the field of monitoring and verification. Work is currently underway in Nevada to address this challenge by conducting a series of experiments using a physics-based approach. This has been accomplished by using a multifaceted, multi-disciplinary approach that includes a range of activities, from characterizing the shallow subsurface to acquiring new explosion data both in the near field (< 100 m from the source) to the far field (> 100 m to 10 s km from the source). The Source Physics Experiment (SPE) is a collaborative project between National Security Technologies, LLC, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Sandia National Laboratories, the Defense Threat Reduction Agency, and the Air Force Technical Applications Center. The goal of the SPE is to understand the transition of seismic energy from the near field to the far field; to understand the development of S-waves in explosives sources; and to understand how anisotropy controls seismic energy transmission and partitioning. To fully explore these problems, the SPE test series includes tests in both simple and complex geology cases. The current series is being conducted in a highly fractured granite body. This location was chosen, in part, because it was the location of previous nuclear tests in the same rock body and because generally the geology has been well characterized. In addition to historic data, high-resolution seismic reflection, cross-hole tomography, core samples, LIDAR, hyperspectral, and fracture mapping data have been acquired to further characterize and detect changes after each of the shot across the test bed. The complex geology series includes 7 planned shots using conventional explosives in the same shot hole surrounded by Continuous Reflectometry for Radius vs. Time Experiment (CORRTEX), Time of Arrival, Velocity of Detonation, down-hole accelerometers, surface accelerometers, infrasound, and a suite of seismic sensors of various frequency bands from the near field to the far field. This allows for the use of a single test bed in the granite instead of multiple test beds to obtain the same results. The shots are planned at various depths to obtain a Green's function, scaled depth-of-burial data, nominal depth-of-burial data and damage-zone data. Three shots have been executed to date and the fourth is planned for August 2013 as a 220 lb (100 kg) TNT equivalent shot at a depth of 315 ft (96 m). Over 400 data channels have been recorded on the first series of shots with high fidelity. Once the complex geology site data have been exploited, a new test bed will be developed in a simpler geology to test these physics-based models. Ultimately, the results from this project will provide the next advances in the science of monitoring to enable a physics-based predicative capability. This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. DOE/NV/25946--1835.
NASA Astrophysics Data System (ADS)
Patton, H. J.; Rougier, E.
2015-12-01
Since 2010, the U. S. Department of Energy has funded a series of chemical tests at the National Nuclear Security Site (NNSS) in Climax Stock granite as part of the Source Physics Experiment (SPE) with the aim of gaining a better understanding of the generation and propagation of seismic energy from underground explosions in hard rock media. To date, four tests have been conducted in the same borehole with yields of 100, 1000, 900 and 100 kg at different depths of burials. The nominal scaled depths of burial are 938, 363, 376 and 1556 m/kt1/3 compared to standard containment practices of ~120 m/kt1/3. A quite dense array of free field accelerometers were installed around the borehole, both on and off shot depth. Acceleration data were corrected for shock-generated baseline-shifts, and free field ground velocity waveforms were obtained. This work concentrates on the qualitative analysis of the reduced displacement potentials and the explosion source spectra for the last shot of the series (SPE-4Prime) and the comparison of the obtained results against the previous events. Finally, the results obtained from the experimental data are compared to the Mueller-Murphy empirical explosion model both using the Heard and Ackerman and Denny and Johnson cavity radius scaling laws.
NASA Astrophysics Data System (ADS)
Ezzedine, S. M.; Pitarka, A.; Vorobiev, O.; Glenn, L.; Antoun, T.
2017-12-01
We have performed three-dimensional high resolution simulations of underground chemical explosions conducted recently in jointed rock outcrop as part of the Source Physics Experiments (SPE) being conducted at the Nevada National Security Site (NNSS). The main goal of the current study is to investigate the effects of the structural and geomechanical properties on the spall phenomena due to underground chemical explosions and its subsequent effect on the seismo-acoustic signature at far distances. Two parametric studies have been undertaken to assess the impact of different 1) conceptual geological models including a single layer and two layers model, with and without joints and with and without varying geomechanical properties, and 2) depth of bursts of the chemical explosions and explosion yields. Through these investigations we have explored not only the near-field response of the chemical explosions but also the far-field responses of the seismic and the acoustic signatures. The near-field simulations were conducted using the Eulerian and Lagrangian codes, GEODYN and GEODYN -L, respectively, while the far-field seismic simulations were conducted using the elastic wave propagation code, WPP, and the acoustic response using the Kirchhoff-Helmholtz-Rayleigh time-dependent approximation code, KHR. Though a series of simulations we have recorded the velocity field histories a) at the ground surface on an acoustic-source-patch for the acoustic simulations, and 2) on a seismic-source-box for the seismic simulations. We first analyzed the SPE3 experimental data and simulated results, then simulated SPE4-prime, SPE5, and SPE6 to anticipate their seismo-acoustic responses given conditions of uncertainties. SPE experiments were conducted in a granitic formation; we have extended the parametric study to include other geological settings such dolomite and alluvial formations. These parametric studies enabled us 1) investigating the geotechnical and geophysical key parameters that impact the seismo-acoustic responses of underground chemical explosions and 2) deciphering and ranking through a global sensitivity analysis the most important key parameters to be characterized on site to minimize uncertainties in prediction and discrimination.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Kyle R.; Whitaker, Rodney W.; Arrowsmith, Stephen J.
2014-12-11
For this study, we use the Rayleigh integral (RI) as an approximation to the Helmholtz–Kirchoff integral to model infrasound generation and propagation from underground chemical explosions at distances of 250 m out to 5 km as part of the Source Physics Experiment (SPE). Using a sparse network of surface accelerometers installed above ground zero, we are able to accurately create synthetic acoustic waveforms and compare them to the observed data. Although the underground explosive sources were designed to be symmetric, the resulting seismic wave at the surface shows an asymmetric propagation pattern that is stronger to the northeast of themore » borehole. This asymmetric bias may be attributed to the subsurface geology and faulting of the area and is observed in the acoustic waveforms. We compare observed and modelled results from two of the underground SPE tests with a sensitivity study to evaluate the asymmetry observed in the data. This work shows that it is possible to model infrasound signals from underground explosive sources using the RI and that asymmetries observed in the data can be modelled with this technique.« less
2011-02-01
planned shock physics experiments (SPE) 4. Design/develop a very low frequency (VLF)/ELF pulsar to serve as an underground calibration source 5...Carry out underground (in tunnels, etc.) pulsar calibration experiments A-1 APPENDIX A. ABBREVIATIONS AND ACRONYMS CORRTEX Continuous Reflectometry...Site Office P.O. Box 98521 M/S NLV 101 Las Vegas, NV 89193-8521 ATTN: Ping Lee 1 Los Alamos National Laboratory PO Box 1663 Los Alamos, NM 87545
Resource Letter SPE-1: Single-Photon Experiments in the Undergraduate Laboratory
NASA Astrophysics Data System (ADS)
Galvez, Enrique J.
2014-11-01
This Resource Letter lists undergraduate-laboratory adaptations of landmark optical experiments on the fundamentals of quantum physics. Journal articles and websites give technical details of the adaptations, which offer students unique hands-on access to testing fundamental concepts and predictions of quantum mechanics. A selection of the original research articles that led to the implementations is included. These developments have motivated a rethinking of the way quantum mechanics is taught, so this Resource Letter also lists textbooks that provide these new approaches.
Imaging a Fault Boundary System Using Controlled-Source Data Recorded on a Large-N Seismic Array
NASA Astrophysics Data System (ADS)
Paschall, O. C.; Chen, T.; Snelson, C. M.; Ralston, M. D.; Rowe, C. A.
2016-12-01
The Source Physics Experiment (SPE) is a series of chemical explosions conducted in southern Nevada with an objective of improving nuclear explosion monitoring. Five chemical explosions have occurred thus far in granite, the most recent being SPE-5 on April 26, 2016. The SPE series will improve our understanding of seismic wave propagation (primarily S-waves) due to explosions, and allow better discrimination of background seismicity such as earthquakes and explosions. The Large-N portion of the project consists of 996 receiver stations. Half of the stations were vertical component and the other half were three-component geophones. All receivers were deployed for 30 days and recorded the SPE-5 shot, earthquakes, noise, and an additional controlled-source: a large weight-drop, which is a 13,000 kg modified industrial pile driver. In this study, we undertake reflection processing of waveforms from the weight-drop, as recorded by a line of sensors extracted from the Large-N array. The profile is 1.2 km in length with 25 m station spacing and 100 m shot point spacing. This profile crosses the Boundary Fault that separates granite body and an alluvium basin, a strong acoustic impedance boundary that scatters seismic energy into S-waves and coda. The data were processed with traditional seismic reflection processing methods that include filtering, deconvolution, and stacking. The stack will be used to extract the location of the splays of the Boundary Fault and provide geologic constraints to the modeling and simulation teams within the SPE project.
NASA Astrophysics Data System (ADS)
Knox, H. A.; Abbott, R. E.; Bonal, N. D.; Aldridge, D. F.; Preston, L. A.; Ober, C.
2012-12-01
In support of the Source Physics Experiment (SPE) at the Nevada National Security Site (NNSS), we have conducted two cross-borehole seismic experiments in the Climax Stock. The first experiment was conducted prior to the third shot in this multi-detonation program using two available boreholes and the shot hole, while the second experiment was conducted after the shot using four of the available boreholes. The first study focused on developing a well-characterized 2D pre-explosion Vp model including two VSPs and a seismic refraction survey, as well as quantifying baseline waveform similarity at reoccupied sites. This was accomplished by recording both "sparker" and accelerated weight drop sources on a hydrophone string and surface geophones. In total more than 18,500 unique source-receiver pairs were acquired during this testing. In the second experiment, we reacquired aproximately 8,800 source-receiver pairs and performed a cross-line survey allowing for a 3D post-explosion Vp model. The data acquired from the reoccupied sites was processed using cross-correlation methods and change detection methodologies, including comparison of the tomographic images. The survey design and subsequent processing provided an opportunity to investigate seismic wave propagation through damaged rock. We also performed full waveform forward modelling for a granitic body hosting a perched aquifer. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers
NASA Technical Reports Server (NTRS)
Baldwin, R.; Pham, M.; Leonida, A.; Mcelroy, J.; Nalette, T.
1990-01-01
A flight experiment is planned for the validation, in a microgravity environment, of several ground-proven simplification features relating to SPE fuel cells and SPE electrolyzers. With a successful experiment, these features can be incorporated into equipment designs for specific extraterrestrial energy storage applications.
NASA Astrophysics Data System (ADS)
Larmat, C. S.; Rougier, E.; Knight, E.; Yang, X.; Patton, H. J.
2013-12-01
A goal of the Source Physics Experiments (SPE) is to develop explosion source models expanding monitoring capabilities beyond empirical methods. The SPE project combines field experimentation with numerical modelling. The models take into account non-linear processes occurring from the first moment of the explosion as well as complex linear propagation effects of signals reaching far-field recording stations. The hydrodynamic code CASH is used for modelling high-strain rate, non-linear response occurring in the material near the source. Our development efforts focused on incorporating in-situ stress and fracture processes. CASH simulates the material response from the near-source, strong shock zone out to the small-strain and ultimately the elastic regime where a linear code can take over. We developed an interface with the Spectral Element Method code, SPECFEM3D, that is an efficient implementation on parallel computers of a high-order finite element method. SPECFEM3D allows accurate modelling of wave propagation to remote monitoring distance at low cost. We will present CASH-SPECFEM3D results for SPE1, which was a chemical detonation of about 85 kg of TNT at 55 m depth in a granitic geologic unit. Spallation was observed for SPE1. Keeping yield fixed we vary the depth of the source systematically and compute synthetic seismograms to distances where the P and Rg waves are separated, so that analysis can be performed without concern about interference effects due to overlapping energy. We study the time and frequency characteristics of P and Rg waves and analyse them in regard to the impact of free-surface interactions and rock damage resulting from those interactions. We also perform traditional CMT inversions as well as advanced CMT inversions, developed at LANL to take into account the damage. This will allow us to assess the effect of spallation on CMT solutions as well as to validate our inversion procedure. Further work will aim to validate the developed models with the data recorded on SPEs. This long-term goal requires taking into account the 3D structure and thus a comprehensive characterization of the site.
Solid-Phase Extraction (SPE): Principles and Applications in Food Samples.
Ötles, Semih; Kartal, Canan
2016-01-01
Solid-Phase Extraction (SPE) is a sample preparation method that is practised on numerous application fields due to its many advantages compared to other traditional methods. SPE was invented as an alternative to liquid/liquid extraction and eliminated multiple disadvantages, such as usage of large amount of solvent, extended operation time/procedure steps, potential sources of error, and high cost. Moreover, SPE can be plied to the samples combined with other analytical methods and sample preparation techniques optionally. SPE technique is a useful tool for many purposes through its versatility. Isolation, concentration, purification and clean-up are the main approaches in the practices of this method. Food structures represent a complicated matrix and can be formed into different physical stages, such as solid, viscous or liquid. Therefore, sample preparation step particularly has an important role for the determination of specific compounds in foods. SPE offers many opportunities not only for analysis of a large diversity of food samples but also for optimization and advances. This review aims to provide a comprehensive overview on basic principles of SPE and its applications for many analytes in food matrix.
Beginning Special Educators: Characteristics, Qualifications, and Experiences. SPeNSE Summary Sheet.
ERIC Educational Resources Information Center
Billingsley, Bonnie S.
This report from the Study of Personnel Needs in Special Education (SPeNSE) provides a profile of the characteristics, qualifications, work experiences, and career plans of teachers with fewer than 3 years of experience. Findings indicate: (1) beginning teachers were more likely to work in suburban systems (50 percent); (2) the majority do not…
NASA Astrophysics Data System (ADS)
Aur, K. A.; Poppeliers, C.; Preston, L. A.
2017-12-01
The Source Physics Experiment (SPE) consists of a series of underground chemical explosions at the Nevada National Security Site (NNSS) designed to gain an improved understanding of the generation and propagation of physical signals in the near and far field. Characterizing the acoustic and infrasound source mechanism from underground explosions is of great importance to underground explosion monitoring. To this end we perform full waveform source inversion of infrasound data collected from the SPE-6 experiment at distances from 300 m to 6 km and frequencies up to 20 Hz. Our method requires estimating the state of the atmosphere at the time of each experiment, computing Green's functions through these atmospheric models, and subsequently inverting the observed data in the frequency domain to obtain a source time function. To estimate the state of the atmosphere at the time of the experiment, we utilize the Weather Research and Forecasting - Data Assimilation (WRF-DA) modeling system to derive a unified atmospheric state model by combining Global Energy and Water Cycle Experiment (GEWEX) Continental-scale International Project (GCIP) data and locally obtained sonde and surface weather observations collected at the time of the experiment. We synthesize Green's functions through these atmospheric models using Sandia's moving media acoustic propagation simulation suite (TDAAPS). These models include 3-D variations in topography, temperature, pressure, and wind. We compare inversion results using the atmospheric models derived from the unified weather models versus previous modeling results and discuss how these differences affect computed source waveforms with respect to observed waveforms at various distances. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.
Coverage of the Stanford Prison Experiment in Introductory Social Psychology Textbooks
ERIC Educational Resources Information Center
Griggs, Richard A.; Whitehead, George I., III
2014-01-01
This study is concerned with the nature of the coverage in introductory social psychology textbooks of the Stanford prison experiment (SPE), given the many criticisms, especially recently, of the SPE. These criticisms concern both the study's methodology and the situationist explanation of the outcome. Ten textbooks were analyzed for coverage of…
Coverage of the Stanford Prison Experiment in Introductory Psychology Textbooks
ERIC Educational Resources Information Center
Griggs, Richard A.
2014-01-01
Zimbardo's 1971 Stanford Prison Experiment (SPE), one of the most famous studies in psychology, is discussed in most introductory textbooks. The present study is concerned with the nature of this coverage, given that there have been myriad criticisms, especially recently, of the SPE. These criticisms concern both Zimbardo's situationist…
NASA Astrophysics Data System (ADS)
Pitarka, Arben; Mellors, Robert; Rodgers, Arthur; Vorobiev, Oleg; Ezzedine, Souheil; Matzel, Eric; Ford, Sean; Walter, Bill; Antoun, Tarabay; Wagoner, Jeffery; Pasyanos, Mike; Petersson, Anders; Sjogreen, Bjorn
2014-05-01
We investigate the excitation and propagation of far-field (epicentral distance larger than 20 m) seismic waves by analyzing and modeling ground motion from an underground chemical explosion recorded during the Source Physics Experiment (SPE), Nevada. The far-field recorded ground motion is characterized by complex features, such as large azimuthal variations in P- and S-wave amplitudes, as well as substantial energy on the tangential component of motion. Shear wave energy is also observed on the tangential component of the near-field motion (epicentral distance smaller than 20 m) suggesting that shear waves were generated at or very near the source. These features become more pronounced as the waves propagate away from the source. We address the shear wave generation during the explosion by modeling ground motion waveforms recorded in the frequency range 0.01-20 Hz, at distances of up to 1 km. We used a physics based approach that combines hydrodynamic modeling of the source with anelastic modeling of wave propagation in order to separate the contributions from the source and near-source wave scattering on shear motion generation. We found that wave propagation scattering caused by the near-source geological environment, including surface topography, contributes to enhancement of shear waves generated from the explosion source. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-06NA25946/ NST11-NCNS-TM-EXP-PD15.
Myoelectrical Manifestation of Fatigue Less Prominent in Patients with Cancer Related Fatigue
Kisiel-Sajewicz, Katarzyna; Siemionow, Vlodek; Seyidova-Khoshknabi, Dilara; Davis, Mellar P.; Wyant, Alexandria; Ranganathan, Vinoth K.; Walsh, Declan; Yan, Jin H.; Hou, Juliet; Yue, Guang H.
2013-01-01
Purpose A lack of fatigue-related muscle contractile property changes at time of perceived physical exhaustion and greater central than peripheral fatigue detected by twitch interpolation technique have recently been reported in cancer survivors with fatigue symptoms. Based on these observations, it was hypothesized that compared to healthy people, myoelectrical manifestation of fatigue in the performing muscles would be less significant in these individuals while sustaining a prolonged motor task to self-perceived exhaustion (SPE) since their central fatigue was more prominent. The purpose of this study was to test this hypothesis by examining electromyographic (EMG) signal changes during fatiguing muscle performance. Methods Twelve individuals who had advanced solid cancer and cancer-related fatigue (CRF), and 12 age- and gender-matched healthy controls performed a sustained elbow flexion at 30% maximal voluntary contraction till SPE. Amplitude and mean power frequency (MPF) of EMG signals of the biceps brachii, brachioradialis, and triceps brachii muscles were evaluated when the individuals experienced minimal, moderate, and severe fatigue. Results CRF patients perceived physical “exhaustion” significantly sooner than the controls. The myoelectrical manifestation of muscular fatigue assessed by EMG amplitude and MPF was less significant in CRF than controls. The lower MPF even at minimal fatigue stage in CRF may indicate pathophysiologic condition of the muscle. Conclusions CRF patients experience less myoelectrical manifestation of muscle fatigue than healthy individuals near the time of SPE. The data suggest that central nervous system fatigue plays a more important role in limiting endurance-type of motor performance in patients with CRF. PMID:24391800
NASA Astrophysics Data System (ADS)
Larmat, C. S.; Delorey, A.; Rougier, E.; Knight, E. E.; Steedman, D. W.; Bradley, C. R.
2017-12-01
This presentation reports numerical modeling efforts to improve knowledge of the processes that affect seismic wave generation and propagation from underground explosions, with a focus on Rg waves. The numerical model is based on the coupling of hydrodynamic simulation codes (Abaqus, CASH and HOSS), with a 3D full waveform propagation code, SPECFEM3D. Validation datasets are provided by the Source Physics Experiment (SPE) which is a series of highly instrumented chemical explosions at the Nevada National Security Site with yields from 100kg to 5000kg. A first series of explosions in a granite emplacement has just been completed and a second series in alluvium emplacement is planned for 2018. The long-term goal of this research is to review and improve current existing seismic sources models (e.g. Mueller & Murphy, 1971; Denny & Johnson, 1991) by providing first principles calculations provided by the coupled codes capability. The hydrodynamic codes, Abaqus, CASH and HOSS, model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. A new material model for unconsolidated alluvium materials has been developed and validated with past nuclear explosions, including the 10 kT 1965 Merlin event (Perret, 1971) ; Perret and Bass, 1975). We use the efficient Spectral Element Method code, SPECFEM3D (e.g. Komatitsch, 1998; 2002), and Geologic Framework Models to model the evolution of wavefield as it propagates across 3D complex structures. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. We will present validation tests and waveforms modeled for several SPE tests which provide evidence that the damage processes happening in the vicinity of the explosions create secondary seismic sources. These sources interfere with the original explosion moment and reduces the apparent seismic moment at the origin of Rg waves up to 20%.
Apparent Explosion Moments from Rg Waves Recorded on SPE
Larmat, Carene; Rougier, Esteban; Patton, Howard John
2016-11-29
Seismic moments for the first four chemical tests making up phase I of the Source Physics Experiments (SPE) are estimated from 6-Hz Rg waves recorded along a single radial line of geophones under the assumption that the tests are pure explosions. These apparent explosion moments are compared with moments determined from the reduced displacement potential method applied to free-field data. Light detection and ranging (lidar) observations, strong ground motions on the free surface in the vicinity of ground zero, and moment tensor inversion results are evidence that the fourth test SPE-4P is a pure explosion, and the moments show goodmore » agreement, 8×10 10 N·m for free-field data versus 9×10 10 N·m for Rg waves. In stark contrast, apparent moments for the first three tests are smaller than near-field moments by factors of 3–4. Relative amplitudes for the three tests determined from Rg interferometry using SPE-4P as an empirical Green’s function indicate that radiation patterns are cylindrically symmetric within a factor of 1.25 (25%). This fact assures that the apparent moments are reliable even though they were measured on just one azimuth. Spallation occurred on the first three tests, and ground-based lidar detected permanent deformations. As such, the source medium suffered late-time damage. In conclusion, destructive interference between Rg waves radiated by explosion and damage sources will reduce amplitudes and explain why apparent moments are smaller than near-field moments based on compressional energy emitted directly from the source.« less
Moment Tensor Descriptions for Simulated Explosions of the Source Physics Experiment (SPE)
NASA Astrophysics Data System (ADS)
Yang, X.; Rougier, E.; Knight, E. E.; Patton, H. J.
2014-12-01
In this research we seek to understand damage mechanisms governing the behavior of geo-materials in the explosion source region, and the role they play in seismic-wave generation. Numerical modeling tools can be used to describe these mechanisms through the development and implementation of appropriate material models. Researchers at Los Alamos National Laboratory (LANL) have been working on a novel continuum-based-viscoplastic strain-rate-dependent fracture material model, AZ_Frac, in an effort to improve the description of these damage sources. AZ_Frac has the ability to describe continuum fracture processes, and at the same time, to handle pre-existing anisotropic material characteristics. The introduction of fractures within the material generates further anisotropic behavior that is also accounted for within the model. The material model has been calibrated to a granitic medium and has been applied in a number of modeling efforts under the SPE project. In our modeling, we use a 2D, axisymmetric layered earth model of the SPE site consisting of a weathered layer on top of a half-space. We couple the hydrodynamic simulation code with a seismic simulation code and propagate the signals to distances of up to 2 km. The signals are inverted for time-dependent moment tensors using a modified inversion scheme that accounts for multiple sources at different depths. The inversion scheme is evaluated for its resolving power to determine a centroid depth and a moment tensor description of the damage source. The capabilities of the inversion method to retrieve such information from waveforms recorded on three SPE tests conducted to date are also being assessed.
Apparent Explosion Moments from Rg Waves Recorded on SPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larmat, Carene; Rougier, Esteban; Patton, Howard John
Seismic moments for the first four chemical tests making up phase I of the Source Physics Experiments (SPE) are estimated from 6-Hz Rg waves recorded along a single radial line of geophones under the assumption that the tests are pure explosions. These apparent explosion moments are compared with moments determined from the reduced displacement potential method applied to free-field data. Light detection and ranging (lidar) observations, strong ground motions on the free surface in the vicinity of ground zero, and moment tensor inversion results are evidence that the fourth test SPE-4P is a pure explosion, and the moments show goodmore » agreement, 8×10 10 N·m for free-field data versus 9×10 10 N·m for Rg waves. In stark contrast, apparent moments for the first three tests are smaller than near-field moments by factors of 3–4. Relative amplitudes for the three tests determined from Rg interferometry using SPE-4P as an empirical Green’s function indicate that radiation patterns are cylindrically symmetric within a factor of 1.25 (25%). This fact assures that the apparent moments are reliable even though they were measured on just one azimuth. Spallation occurred on the first three tests, and ground-based lidar detected permanent deformations. As such, the source medium suffered late-time damage. In conclusion, destructive interference between Rg waves radiated by explosion and damage sources will reduce amplitudes and explain why apparent moments are smaller than near-field moments based on compressional energy emitted directly from the source.« less
Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers
NASA Technical Reports Server (NTRS)
Baldwin, R.; Pham, M.; Leonida, A.; Mcelroy, J.; Nalette, T.
1989-01-01
Hydrogen-oxygen solid polymer electrolyte (SPE) fuel cells and SPE electrolyzers (products of Hamilton Standard) both use a Proton-Exchange Membrane (PEM) as the sole electrolyte. These solid electrolyte devices have been under continuous development for over 30 years. This experience has resulted in a demonstrated ten-year SPE cell life capability under load conditions. Ultimate life of PEM fuel cells and electrolyzers is primarily related to the chemical stability of the membrane. For perfluorocarbon proton exchange membranes an accurate measure of the membrane stability is the fluoride loss rate. Millions of cell hours have contributed to establishing a relationship between fluoride loss rates and average expected ultimate cell life. This relationship is shown. Several features have been introduced into SPE fuel cells and SPE electrolyzers such that applications requiring greater than or equal to 100,000 hours of life can be considered. Equally important as the ultimate life is the voltage stability of hydrogen-oxygen fuel cells and electrolyzers. Here again the features of SPE fuel cells and SPE electrolyzers have shown a cell voltage stability in the order of 1 microvolt per hour. That level of stability has been demonstrated for tens of thousands of hours in SPE fuel cells at up to 500 amps per square foot (ASF) current density.
Evidence for abiotic sulfurization of marine dissolved organic matter in sulfidic environments
NASA Astrophysics Data System (ADS)
Pohlabeln, A. M.; Niggemann, J.; Dittmar, T.
2016-02-01
Sedimentary organic matter abiotically sulfurizes in sulfidic marine environments. Here we hypothesize that sulfurization also affects dissolved organic matter (DOM), and that sulfidic marine environments are sources of dissolved organic sulfur (DOS) to the ocean. To test these hypotheses we studied solid-phase extractable (SPE) DOS in the Black Sea at various water column depths (oxic and anoxic) and in sediment porewaters from the German Wadden Sea. The concentration and molecular composition of SPE-DOS from these sites and from the oxic water columns of the North Sea (Germany) and of the North Pacific were compared. In support of our hypotheses, SPE-DOS concentrations were elevated in sulfidic waters compared to oxic waters. For a detailed molecular characterization of SPE-DOS, selective wet-chemical alteration experiments targeting different sulfur-containing functional groups were applied prior to Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). These experiments included harsh hydrolysis, selective derivatization of thiols, oxidation, and deoxygenation to test for thioesters, sulfonic acid esters, alkylsulfates, thiols, non-aromatic thioethers, and sulfoxides. Additionally, collision-induced fragmentation experiments were applied to test for sulfonic acids. The tests revealed that the sulfonic acid group was the main structural feature in SPE-DOS, independent of the environmental conditions of the sampling site. Only in Wadden Sea anoxic porewater also non-aromatic thioethers were found which are presumably not stable in oxic waters. The findings from our field studies were confirmed in laboratory experiments, where we abiotically sulfurized marine and algal-derived DOM under conditions similar to that in anoxic marine sediments.
NASA Astrophysics Data System (ADS)
Larmat, C. S.; Rougier, E.; Delorey, A.; Steedman, D. W.; Bradley, C. R.
2016-12-01
The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. For this, the SPE program includes a strong modeling effort based on first principles calculations with the challenge to capture both the source and near-source processes and those taking place later in time as seismic waves propagate within complex 3D geologic environments. In this paper, we report on results of modeling that uses hydrodynamic simulation codes (Abaqus and CASH) coupled with a 3D full waveform propagation code, SPECFEM3D. For modeling the near source region, we employ a fully-coupled Euler-Lagrange (CEL) modeling capability with a new continuum-based visco-plastic fracture model for simulation of damage processes, called AZ_Frac. These capabilities produce high-fidelity models of various factors believed to be key in the generation of seismic waves: the explosion dynamics, a weak grout-filled borehole, the surrounding jointed rock, and damage creation and deformations happening around the source and the free surface. SPECFEM3D, based on the Spectral Element Method (SEM) is a direct numerical method for full wave modeling with mathematical accuracy. The coupling interface consists of a series of grid points of the SEM mesh situated inside of the hydrodynamic code's domain. Displacement time series at these points are computed using output data from CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests with the Sharpe's model and comparisons of waveforms modeled with Rg waves (2-8Hz) that were recorded up to 2 km for SPE. We especially show effects of the local topography, velocity structure and spallation. Our models predict smaller amplitudes of Rg waves for the first five SPE shots compared to pure elastic models such as Denny &Johnson (1991).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snelson, C. M., Chipman, V. D., White, R. L., Emmitt, R. F., Townsend, M. J., Barker, D., Lee, P.
Understanding the changes in seismic energy as it travels from the near field to the far field is the ultimate goal in monitoring for explosive events of interest. This requires a clear understanding of explosion phenomenology as it relates to seismic, infrasound, and acoustic signals. Although there has been much progress in modeling these phenomena, this has been primarily based in the empirical realm. As a result, the logical next step in advancing the seismic monitoring capability of the United States is to conduct field tests that can expand the predictive capability of the physics-based modeling currently under development. Themore » Source Physics Experiment at the Nevada National Security Site (SPE-N) is the first step in this endeavor to link the empirically based with the physics-based modeling. This is a collaborative project between National Security Technologies (NSTec), Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), the Defense Threat Reduction Agency (DTRA), and the Air Force Technical Applications Center (AFTAC). The test series require both the simple and complex cases to fully characterize the problem, which is to understand the transition of seismic energy from the near field to the far field; to understand the development of S-waves in explosives sources; and how anisotropy controls seismic energy transmission and partitioning. The current series is being conducted in a granite body called the Climax Stock. This location was chosen for several reasons, including the fairly homogenous granite; the location of previous nuclear tests in the same rock body; and generally the geology has been well characterized. The simple geology series is planned for 7 shots using conventional explosives in the same shot hole surrounded by Continuous Reflectometry for Radius vs. Time Experiment (CORRTEX), Time of Arrival (TOA), Velocity of Detonation (VOD), down-hole accelerometers, surface accelerometers, infrasound, and a suite of seismic sensors of various frequency bands from the near field to the far field. This allows for the use of a single test bed in the simple geology case instead of multiple tests beds to obtain the same results. The shots are planned at various depths to obtain a Green’s function, scaled-depth of burial data, nominal depth of burial data and damage zone data. SPE1-N was conducted in May 2011 as a 220 lb (100 kg) TNT equivalent calibration shot at a depth of 180 ft (55 m). SPE2-N was conducted in October 2011 as a 2200 lb (1000 kg) TNT equivalent calibration shot at a depth of 150 ft (46 m). SPE3-N was conducted in July 2012 as a 2200 lb (1000 kg) TNT equivalent calibration shot at a depth of 150 ft (46 m) in the damaged zone. Over 400 data channels were recorded for each of these shots and data recovery was about 95% with high signal to noise ratio. Once the simple geology site data has been utilized, a new test bed will be developed in a complex geology site to test these physics based models. Ultimately, the results from this project will provide the next advances in the science of monitoring to enable a physics-based predicative capability.« less
SPE analysis of high efficiency PMTs for the DEAP-3600 dark matter detector
NASA Astrophysics Data System (ADS)
Olsen, Kevin; Hallin, Aksel; DEAP/CLEAN Collaboration
2011-09-01
The Dark matter Experiment using Argon Pulse-shape discrimination is a collaborative effort to develop a next-generation, tonne-scale dark matter detector at SNOLAB. The detector will feature a single-phase liquid argon (LAr) target surrounded by an array of 266 photomultiplier tubes (PMTs). A new high-efficiency Hamamatsu R877-100 PMT has been delivered to the University of Alberta for evaluation by the DEAP collaboration. The increase in efficiency could lead to a much greater light yield, but other experiments have reported a slower rise time [1],[2]. We have placed the PMT in a small dark box and had a base and preamplifier designed to be used with either an oscilloscope or a multi-channel analyzer. With this setup we have demonstrated the PMT's ability to distinguish single photo-electrons (SPE) and characterized the PMT by measuring the SPE pulse height spectrum, the peak-to-valley ratio, the dark pulse rate, the baseline, time resolution and SPE efficiency for varying the high voltage supplied to the PMT.
Near-Source Mechanism for Creating Shear Content from Buried Explosions
NASA Astrophysics Data System (ADS)
Steedman, D. W.; Bradley, C. R.
2017-12-01
The Source Physics Experiment (SPE) has the goal of developing a greater understanding of explosion phenomenology at various spatial scales, from near-source to the far-field. SPE Phase I accomplished a series of six chemical explosive tests of varying scaled depth of burial within a borehole in granite. The testbed included an extensive array of triaxial accelerometers. Velocity traces derived from these accelerometers allow for detailed study of the shock environment close in to the explosion. A specific goal of SPE is to identify various mechanisms for generating shear within the propagation environment and how this might be informative on the identification of explosive events that otherwise fail historic compression wave energy/shear wave energy (P/S) event discrimination. One of these sources was hypothesized to derive from slippage along joint sets near to the source. Velocity traces from SPE Phase I events indicate that motion tangential to a theoretically spherical shock wave are initially quiescent after shock arrival. But this period of quiescence is followed by a sudden increase in amplitude that consistently occurs just after the peak of the radial velocity (i.e., onset of shock unloading). The likelihood of occurrence of this response is related to yield-scaled depth-of-burial (SDOB). We describe a mechanism where unloading facilitates dilation of closed joints accompanied by a release of shear energy stored during compression. However, occurrence of this mechanism relies on relative amplitudes between the shock loading caused at a point and the in situ stress: at too large a SDOB the stored energy is insufficient to overcome the combination of the overburden stress and traction on the joint. On the other hand, too small of a SDOB provides that the in situ stress is insufficient to keep joints from storing stress, thus overriding the release mechanism and mitigating rupture-like slippage. We develop a notional relationship between SPE Phase I SDOB and the likelihood of shear release. We then compare this to the six recorded DPRK events in terms of where these events fall in relation to the accepted mb:MS discriminant using estimated SDOB values for those events. To first order SPE SDOBs resulting in shear release appear to map to estimated DPRK SDOBs which display excessive shear magnitude. LA-UR-17-29528.
Protein electrophoresis in cranes with presumed insect bite.
Hartup, Barry K; Schroeder, Carrie A
2006-06-01
Serum protein electrophoresis (SPE) has emerged as a potentially valuable diagnostic tool in avian medicine; yet, there is limited information regarding SPE in cranes. Since 2000, 20 cases of unilateral periocular or facial soft tissue swelling, blepharitis, feather loss, and ocular or nasal discharge attributed to insect bite hypersensitivity were observed in cranes from a captive breeding center. SPE may be useful for evaluating these lesions. The aim of this study was to characterize the inflammatory response in cranes with hypersensitivity reactions using SPE. Serum samples from 7 cranes diagnosed with hypersensitivity reactions were submitted to a diagnostic laboratory for agarose gel electrophoresis. Results were compared to those in control serum samples obtained from the same cranes during routine physical examination, when they were clinically healthy. Total protein and a- and g-globulin concentrations were significantly increased and albumin/globulin ratios were significantly decreased in serum samples from cranes with hypersensitivity lesions compared with control samples. Using SPE, we documented changes in protein fraction concentrations in cranes with clinical signs of hypersensitivity. The increase in alpha- and gamma-globulin concentrations suggested inflammation and antigenic stimulation, consistent with a Type I hypersensitivity reaction.
Multi-scale fracture damage associated with underground chemical explosions
NASA Astrophysics Data System (ADS)
Swanson, E. M.; Sussman, A. J.; Wilson, J. E.; Townsend, M. J.; Prothro, L. B.; Gang, H. E.
2018-05-01
Understanding rock damage induced by explosions is critical for a number of applications including the monitoring and verification of underground nuclear explosions, mine safety issues, and modeling fluid flow through fractured rock. We use core observations, televiewer logs, and thin section observations to investigate fracture damage associated with two successive underground chemical explosions (SPE2 and SPE3) in granitic rock at both the mesoscale and microscale. We compare the frequency and orientations of core-scale fractures, and the frequency of microfractures, between a pre-experiment core and three post-experiment cores. Natural fault zones and explosion-induced fractures in the vicinity of the explosive source are readily apparent in recovered core and in thin sections. Damage from faults and explosions is not always apparent in fracture frequency plots from televiewer logs, although orientation data from these logs suggests explosion-induced fracturing may not align with the pre-existing fracture sets. Core-scale observations indicate the extent of explosion-induced damage is 10.0 m after SPE2 and 6.8 m after SPE3, despite both a similar size and location for both explosions. At the microscale, damage is observed to a range distance of 10.2 ± 0.9 m after SPE2, and 16.6 ± 0.9 and 11.2 ± 0.6 in two different cores collected after SPE3. Additional explosion-induced damage, interpreted to be the result of spalling, is readily apparent near the surface, but only in the microfracture data. This depth extent and intensity of damage in the near-surface region also increased after an additional explosion. This study highlights the importance of evaluating structural damage at multiple scales for a more complete characterization of the damage, and particularly shows the importance of microscale observations for identifying spallation-induced damage.
Analysis of radiation risk from alpha particle component of solar particle events
NASA Technical Reports Server (NTRS)
Cucinotta, F. A.; Townsend, L. W.; Wilson, J. W.; Golightly, M. J.; Weyland, M.
1994-01-01
The solar particle events (SPE) will contain a primary alpha particle component, representing a possible increase in the potential risk to astronauts during an SPE over the often studied proton component. We discuss the physical interactions of alpha particles important in describing the transport of these particles through spacecraft and body shielding. Models of light ion reactions are presented and their effects on energy and linear energy transfer (LET) spectra in shielding discussed. We present predictions of particle spectra, dose, and dose equivalent in organs of interest for SPE spectra typical of those occurring in recent solar cycles. The large events of solar cycle 19 are found to have substantial increase in biological risk from alpha particles, including a large increase in secondary neutron production from alpha particle breakup.
SPE5 Sub-Scale Test Series Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandersall, Kevin S.; Reeves, Robert V.; DeHaven, Martin R.
2016-01-14
A series of 2 SPE5 sub-scale tests were performed to experimentally confirm that a booster system designed and evaluated in prior tests would properly initiate the PBXN-110 case charge fill. To conduct the experiments, a canister was designed to contain the nominally 50 mm diameter booster tube with an outer fill of approximately 150 mm diameter by 150 mm in length. The canisters were filled with PBXN-110 at NAWS-China Lake and shipped back to LLNL for testing in the High Explosives Applications Facility (HEAF). Piezoelectric crystal pins were placed on the outside of the booster tube before filling, and amore » series of piezoelectric crystal pins along with Photonic Doppler Velocimetry (PDV) probes were placed on the outer surface of the canister to measure the relative timing and magnitude of the detonation. The 2 piezoelectric crystal pins integral to the booster design were also utilized along with a series of either piezoelectric crystal pins or piezoelectric polymer pads on the top of the canister or outside case that utilized direct contact, gaps, or different thicknesses of RTV cushions to obtain time of arrival data to evaluate the response in preparation for the large-scale SPE5 test. To further quantify the margin of the booster operation, the 1st test (SPE5SS1) was functioned with both detonators and the 2nd test (SPE5SS2) was functioned with only 1 detonator. A full detonation of the material was observed in both experiments as observed by the pin timing and PDV signals. The piezoelectric pads were found to provide a greater measured signal magnitude during the testing with an RTV layer present, and the improved response is due to the larger measurement surface area of the pad. This report will detail the experiment design, canister assembly for filling, final assembly, experiment firing, presentation of the diagnostic results, and a discussion of the results.« less
Qiao, Jindong; Wang, Mingyu; Yan, Hongyuan; Yang, Gengliang
2014-04-02
A new magnetic dummy molecularly imprinted dispersive solid-phase extraction (MAG-MIM-dSPE) coupled with gas chromatography-FID was developed for selective determination of phthalates in plastic bottled beverages. The new magnetic dummy molecularly imprinted microspheres (MAG-MIM) using diisononyl phthalate as a template mimic were synthesized by coprecipitation coupled with aqueous suspension polymerization and were successfully applied as the adsorbents for MAG-MIM-dSPE to extract and isolate five phthalates from plastic bottled beverages. Validation experiments showed that the MAG-MIM-dSPE method had good linearity at 0.0040-0.40 μg/mL (0.9991-0.9998), good precision (3.1-6.9%), and high recovery (89.5-101.3%), and limits of detection were obtained in a range of 0.53-1.2 μg/L. The presented MAG-MIM-dSPE method combines the quick separation of magnetic particles, special selectivity of MIM, and high extraction efficiency of dSPE, which could potentially be applied to selective screening of phthalates in beverage products.
Sturm, Sonja; Seger, Christoph; Godejohann, Markus; Spraul, Manfred; Stuppner, Hermann
2007-09-07
Identification of putative biomarker molecules within the genus Corydalis (Papaveraceae) was pursued by combining conventional off-line sample enrichment with high-performance liquid chromatography-solid phase extraction-nuclear magnetic resonance (HPLC-SPE-NMR) based structure elucidation. Off-line reversed phase solid phase extraction (SPE) was used to enrich the desired analytes from a methanolic extract (93 mg dry weight) of a miniscule single tuber (233 mg dry weight) of C. solida. An aliquot of the SPE fraction (2.1 mg) was subjected to separation in the HPLC-SPE-NMR hyphenation. Chromatographic peaks bearing the metabolites under investigation were trapped in the SPE device in a single experiment and transferred to a 600 MHz NMR spectrometer equipped with a 30 microl cryofit insert fed into a 3 mm cryoprobe. Recorded homo- and heteronuclear 1D and 2D NMR data allowed the identification of the three analytes under investigation as protopine, allocryptopine, and N-methyl-laudanidinium acetate. The latter is a rare alkaloid, which has been isolated only once before.
Rowe, Charlotte A.; Patton, Howard J.
2015-10-01
Here, we present analyses of the 2D seismic structure beneath Source Physics Experiments (SPE) geophone lines that extended radially at 100 m spacing from 100 to 2000 m from the source borehole. With seismic sources at only one end of the geophone lines, standard refraction profiling methods cannot resolve seismic velocity structures unambiguously. In previous work, we demonstrated overall agreement between body-wave refraction modeling and Rg dispersion curves for the least complex of the five lines. A more detailed inspection supports a 2D reinterpretation of the structure. We obtained Rg phase velocity measurements in both the time and frequency domains,more » then used iterative adjustment of the initial 1D body-wave model to predict Rg dispersion curves to fit the observed values. Our method applied to the most topographically severe of the geophone lines is supplemented with a 2D ray-tracing approach, whose application to P-wave arrivals supports the Rg analysis. In addition, midline sources will allow us to refine our characterization in future work.« less
On the generation of tangential ground motion by underground explosions in jointed rocks
NASA Astrophysics Data System (ADS)
Vorobiev, Oleg; Ezzedine, Souheil; Antoun, Tarabay; Glenn, Lewis
2015-03-01
This paper describes computational studies of tangential ground motions generated by spherical explosions in a heavily jointed granite formation. Various factors affecting the shear wave generation are considered, including joint spacing, orientation and frictional properties. Simulations are performed both in 2-D for a single joint set to elucidate the basic response mechanisms, and in 3-D for multiple joint sets to realistically represent in situ conditions in a realistic geological setting. The joints are modelled explicitly using both contact elements and weakness planes in the material. Simulations are performed both deterministically and stochastically to quantify the effects of geological uncertainties on near field ground motions. The mechanical properties of the rock and the joints as well as the joint spacing and orientation are taken from experimental test data and geophysical logs corresponding to the Climax Stock granitic outcrop, which is the geological setting of the source physics experiment (SPE). Agreement between simulation results and near field wave motion data from SPE enables newfound understanding of the origin and extent of non-spherical motions associated with underground explosions in fractured geological media.
RELAP5 posttest calculation of IAEA-SPE-4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petelin, S.; Mavko, B.; Parzer, I.
The International Atomic Energy Agency`s Fourth Standard Problem Exercise (IAEA-SPE-4) was performed at the PMK-2 facility. The PMK-2 facility is designed to study processes following small- and medium-size breaks in the primary system and natural circulation in VVER-440 plants. The IAEA-SPE-4 experiment represents a cold-leg side small break, similar to the IAEA-SPE-2, with the exception of the high-pressure safety injection being unavailable, and the secondary side bleed and feed initiation. The break valve was located at the dead end of a vertical downcomer, which in fact simulates a break in the reactor vessel itself, and should be unlikely to happenmore » in a real nuclear power plant (NPP). Three different RELAP5 code versions were used for the transient simulation in order to assess the calculations with test results.« less
Duarte, Mariana; Jagadeesan, Kishore Kumar; Billing, Johan; Yilmaz, Ecevit; Laurell, Thomas; Ekström, Simon
2017-10-13
Phosphatidylethanol (PEth) is an interesting biomarker finding increased use for detecting long term alcohol abuse with high specificity and sensitivity. Prior to detection, sample preparation is an unavoidable step in the work-flow of PEth analysis and new protocols may facilitate it. Solid-phase extraction (SPE) is a versatile sample preparation method widely spread in biomedical laboratories due to its simplicity of use and the possibility of automation. In this work, SPE was used for the first time to directly extract PEth from spiked human plasma and spiked human blood. A library of polymeric SPE materials with different surface functionalities was screened for PEth extraction in order to identify the surface characteristics that control PEth retention and recovery. The plasma samples were diluted 1:10 (v/v) in water and spiked at different concentrations ranging from 0.3 to 5μM. The library of SPE materials was then evaluated using the proposed SPE method and detection was done by LC-MS/MS. One SPE material efficiently retained and recovered PEth from spiked human plasma. With this insight, four new SPE materials were formulated and synthesized based on the surface characteristics of the best SPE material found in the first screening. These new materials were tested with spiked human blood, to better mimic a real clinical sample. All the newly synthetized materials outperformed the pre-existing commercially available materials. Recovery values for the new SPE materials were found between 29.5% and 48.6% for the extraction of PEth in spiked blood. A material based on quaternized 1-vinylimidazole with a poly(trimethylolpropane trimethacrylate) backbone was found suitable for PEth extraction in spiked blood showing the highest analyte recovery in this experiment, 48.6%±6.4%. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hirakawa, E. T.; Pitarka, A.; Mellors, R. J.
2015-12-01
Evan Hirakawa, Arben Pitarka, and Robert Mellors One challenging task in explosion seismology is development of physical models for explaining the generation of S-waves during underground explosions. Pitarka et al. (2015) used finite difference simulations of SPE-3 (part of Source Physics Experiment, SPE, an ongoing series of underground chemical explosions at the Nevada National Security Site) and found that while a large component of shear motion was generated directly at the source, additional scattering from heterogeneous velocity structure and topography are necessary to better match the data. Large-scale features in the velocity model used in the SPE simulations are well constrained, however, small-scale heterogeneity is poorly constrained. In our study we used a stochastic representation of small-scale variability in order to produce additional high-frequency scattering. Two methods for generating the distributions of random scatterers are tested. The first is done in the spatial domain by essentially smoothing a set of random numbers over an ellipsoidal volume using a Gaussian weighting function. The second method consists of filtering a set of random numbers in the wavenumber domain to obtain a set of heterogeneities with a desired statistical distribution (Frankel and Clayton, 1986). This method is capable of generating distributions with either Gaussian or von Karman autocorrelation functions. The key parameters that affect scattering are the correlation length, the standard deviation of velocity for the heterogeneities, and the Hurst exponent, which is only present in the von Karman media. Overall, we find that shorter correlation lengths as well as higher standard deviations result in increased tangential motion in the frequency band of interest (0 - 10 Hz). This occurs partially through S-wave refraction, but mostly by P-S and Rg-S waves conversions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344
NASA Astrophysics Data System (ADS)
Hirakawa, E. T.; Ezzedine, S. M.; Petersson, A.; Sjogreen, B.; Vorobiev, O.; Pitarka, A.; Antoun, T.; Walter, W. R.
2016-12-01
Motions from underground explosions are governed by non-linear hydrodynamic response of material. However, the numerical calculation of this non-linear constitutive behavior is computationally intensive in contrast to the elastic and acoustic linear wave propagation solvers. Here, we develop a hybrid modeling approach with one-way hydrodynamic-to-elastic coupling in three dimensions in order to propagate explosion generated ground motions from the non-linear near-source region to the far-field. Near source motions are computed using GEODYN-L, a Lagrangian hydrodynamics code for high-energy loading of earth materials. Motions on a dense grid of points sampled on two nested shells located beyond the non-linear damaged zone are saved, and then passed to SW4, an anelastic anisotropic fourth order finite difference code for seismic wave modeling. Our coupling strategy is based on the decomposition and uniqueness theorems where motions are introduced into SW4 as a boundary source and continue to propagate as elastic waves at a much lower computational cost than by using GEODYN-L to cover the entire near- and the far-field domain. The accuracy of the numerical calculations and the coupling strategy is demonstrated in cases with a purely elastic medium as well as non-linear medium. Our hybrid modeling approach is applied to SPE-4' and SPE-5 which are the most recent underground chemical explosions conducted at the Nevada National Security Site (NNSS) where the Source Physics Experiments (SPE) are performed. Our strategy by design is capable of incorporating complex non-linear effects near the source as well as volumetric and topographic material heterogeneity along the propagation path to receiver, and provides new prospects for modeling and understanding explosion generated seismic waveforms. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-698608.
2004-01-01
in µg/L Tables 55Benfluralin 82673 D SPE/GCMSc 0.010 Butylate 04028 D SPE/GCMSc 0.002 Carbaryl 82680 D SPE/GCMSc 0.041 Carbofuran 82674 D SPE/GCMSc... Carbaryl 49310 A SPE-HPLCd — Carbofuran 49309 A SPE-HPLCd — Chloramben, methyl ester 49307 A SPE-HPLCd — Chlorothalonil 49306 A SPE-HPLCd — Clopyralid...SPE-HPLCd — Oryzalin 49292 A SPE-HPLCd — Oxamyl 38866 A SPE-HPLCd — Picloram 49291 A SPE-HPLCd — Propham 49236 A SPE-HPLCd — Propoxur 38538 A SPE-HPLCd
NASA Astrophysics Data System (ADS)
Pitarka, A.; Mellors, R. J.; Walter, W. R.
2016-12-01
Depending on emplacement conditions and underground structure, and contrary to what is theoretically predicted for isotropic sources, recorded local, regional, and teleseismic waveforms from chemical explosions often contain shear waves with substantial energy. Consequently, the transportability of empirical techniques for yield estimation and source discrimination to regions with complex underground structure becomes problematic. Understanding the mechanisms of generation and conversion of shear waves caused by wave path effects during explosions can help improve techniques used in nuclear explosion monitoring. We used seismic data from LargeN, a dense array of three and one component geophones, to analyze far-field waveforms from the underground chemical explosion recorded during shot 5 of the Source Physics Experiment (SPE-5) at the Nevada National Security Site. Combined 3D elastic wave propagation modeling and frequency-wavenumber beam-forming on small arrays containing selected stations were used to detect and identify several wave phases, including primary and secondary S waves, and Rgwaves, and determine their direction of propagation. We were able to attribute key features of the waveforms, and wave phases to either source processes or propagation path effects, such as focusing and wave conversions. We also found that coda waves were more likely generated by path effects outside the source region, rather than by interaction of source generated waves with the emplacement structure. Waveform correlation and statistical analysis were performed to estimate average correlation length of small-scale heterogeneity in the upper sedimentary layers of the Yucca Flat basin in the area covered by the array. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS- 699180
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Schultz, John R.; Clarke, Mark S.
2007-01-01
Phase separation is one of the most significant obstacles encountered during the development of analytical methods for water quality monitoring in spacecraft environments. Removing air bubbles from water samples prior to analysis is a routine task on earth; however, in the absence of gravity, this routine task becomes extremely difficult. This paper details the development and initial ground testing of liquid metering centrifuge sticks (LMCS), devices designed to collect and meter a known volume of bubble-free water in microgravity. The LMCS uses centrifugal force to eliminate entrapped air and reproducibly meter liquid sample volumes for analysis with Colorimetric Solid Phase Extraction (C-SPE). C-SPE is a sorption-spectrophotometric platform that is being developed as a potential spacecraft water quality monitoring system. C-SPE utilizes solid phase extraction membranes impregnated with analyte-specific colorimetric reagents to concentrate and complex target analytes in spacecraft water samples. The mass of analyte extracted from the water sample is determined using diffuse reflectance (DR) data collected from the membrane surface and an analyte-specific calibration curve. The analyte concentration can then be calculated from the mass of extracted analyte and the volume of the sample analyzed. Previous flight experiments conducted in microgravity conditions aboard the NASA KC-135 aircraft demonstrated that the inability to collect and meter a known volume of water using a syringe was a limiting factor in the accuracy of C-SPE measurements. Herein, results obtained from ground based C-SPE experiments using ionic silver as a test analyte and either the LMCS or syringes for sample metering are compared to evaluate the performance of the LMCS. These results indicate very good agreement between the two sample metering methods and clearly illustrate the potential of utilizing centrifugal forces to achieve phase separation and metering of water samples in microgravity.
Multi-scale fracture damage associated with underground chemical explosions
Swanson, Erika M.; Sussman, A. J.; Wilson, J. E.; ...
2018-02-22
Understanding rock damage induced by explosions is critical for a number of applications including the monitoring and verification of underground nuclear explosions, mine safety issues, and modeling fluid flow through fractured rock. We use core observations, televiewer logs, and thin section observations to investigate fracture damage associated with two successive underground chemical explosions (SPE2 and SPE3) in granitic rock at both the mesoscale and microscale. We compare the frequency and orientations of core-scale fractures, and the frequency of microfractures, between a pre-experiment core and three post-experiment cores. Natural fault zones and explosion-induced fractures in the vicinity of the explosive sourcemore » are readily apparent in recovered core and in thin sections. Damage from faults and explosions is not always apparent in fracture frequency plots from televiewer logs, although orientation data from these logs suggests explosion-induced fracturing may not align with the pre-existing fracture sets. Core-scale observations indicate the extent of explosion-induced damage is 10.0 m after SPE2 and 6.8 m after SPE3, despite both a similar size and location for both explosions. At the microscale, damage is observed to a range distance of 10.2 ± 0.9 m after SPE2, and 16.6 ± 0.9 and 11.2 ± 0.6 in two different cores collected after SPE3. Additional explosion-induced damage, interpreted to be the result of spalling, is readily apparent near the surface, but only in the microfracture data. This depth extent and intensity of damage in the near-surface region also increased after an additional explosion. This study highlights the importance of evaluating structural damage at multiple scales for a more complete characterization of the damage, and particularly shows the importance of microscale observations for identifying spallation-induced damage.« less
Multi-scale fracture damage associated with underground chemical explosions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swanson, Erika M.; Sussman, A. J.; Wilson, J. E.
Understanding rock damage induced by explosions is critical for a number of applications including the monitoring and verification of underground nuclear explosions, mine safety issues, and modeling fluid flow through fractured rock. We use core observations, televiewer logs, and thin section observations to investigate fracture damage associated with two successive underground chemical explosions (SPE2 and SPE3) in granitic rock at both the mesoscale and microscale. We compare the frequency and orientations of core-scale fractures, and the frequency of microfractures, between a pre-experiment core and three post-experiment cores. Natural fault zones and explosion-induced fractures in the vicinity of the explosive sourcemore » are readily apparent in recovered core and in thin sections. Damage from faults and explosions is not always apparent in fracture frequency plots from televiewer logs, although orientation data from these logs suggests explosion-induced fracturing may not align with the pre-existing fracture sets. Core-scale observations indicate the extent of explosion-induced damage is 10.0 m after SPE2 and 6.8 m after SPE3, despite both a similar size and location for both explosions. At the microscale, damage is observed to a range distance of 10.2 ± 0.9 m after SPE2, and 16.6 ± 0.9 and 11.2 ± 0.6 in two different cores collected after SPE3. Additional explosion-induced damage, interpreted to be the result of spalling, is readily apparent near the surface, but only in the microfracture data. This depth extent and intensity of damage in the near-surface region also increased after an additional explosion. This study highlights the importance of evaluating structural damage at multiple scales for a more complete characterization of the damage, and particularly shows the importance of microscale observations for identifying spallation-induced damage.« less
NASA Astrophysics Data System (ADS)
Jones, K. R.; Arrowsmith, S.; Whitaker, R. W.
2012-12-01
The overall mission of the National Center for Nuclear Security (NCNS) Source Physics Experiment at the National Nuclear Security Site (SPE-N) near Las Vegas, Nevada is to improve upon and develop new physics based models for underground nuclear explosions using scaled, underground chemical explosions as proxies. To this end, we use the Rayleigh integral as an approximation to the Helmholz-Kirchoff integral, [Whitaker, 2007 and Arrowsmith et al., 2011], to model infrasound generation in the far-field. Infrasound generated by single-point explosive sources above ground can typically be treated as monopole point-sources. While the source is relatively simple, the research needed to model above ground point-sources is complicated by path effects related to the propagation of the acoustic signal and out of the scope of this study. In contrast, for explosions that occur below ground, including the SPE explosions, the source region is more complicated but the observation distances are much closer (< 5 km), thus greatly reducing the complication of path effects. In this case, elastic energy from the explosions radiates upward and spreads out, depending on depth, to a more distributed region at the surface. Due to this broad surface perturbation of the atmosphere we cannot model the source as a simple monopole point-source. Instead, we use the analogy of a piston mounted in a rigid, infinite baffle, where the surface area that moves as a result of the explosion is the piston and the surrounding region is the baffle. The area of the "piston" is determined by the depth and explosive yield of the event. In this study we look at data from SPE-N-2 and SPE-N-3. Both shots had an explosive yield of 1 ton at a depth of 45 m. We collected infrasound data with up to eight stations and 32 sensors within a 5 km radius of ground zero. To determine the area of the surface acceleration, we used data from twelve surface accelerometers installed within 100 m radially about ground zero. With the accelerometer data defining the vertical motion of the surface, we use the Rayleigh Integral Method, [Whitaker, 2007 and Arrowsmith et al., 2011], to generate a synthetic infrasound pulse to compare to the observed data. Because the phase across the "piston" is not necessarily uniform, constructive and destructive interference will change the shape of the acoustic pulse if observed directly above the source (on-axis) or perpendicular to the source (off-axis). Comparing the observed data to the synthetic data we note that the overall structure of the pulse agrees well and that the differences can be attributed to a number of possibilities, including the sensors used, topography, meteorological conditions, etc. One other potential source of error between the observed and calculated data is that we use a flat, symmetric source region for the "piston" where in reality the source region is not flat and not perfectly symmetric. A primary goal of this work is to better understand and model the relationships between surface area, depth, and yield of underground explosions.
Middle Atmospheric Changes Caused by the January and March 2012 Solar Proton Events
NASA Technical Reports Server (NTRS)
Jackman, C. H.; Randall, C. E.; Harvey, V. L.; Wang, S.; Fleming, E. L.; Lopez-Puertas, M.; Funke, B.; Bernath, P. F.
2014-01-01
The recent 23-30 January and 7-11 March 2012 solar proton event (SPE) periods were substantial and caused significant impacts on the middle atmosphere. These were the two largest SPE periods of solar cycle 24 so far. The highly energetic solar protons produced considerable ionization of the neutral atmosphere as well as HOx (H, OH, HO2) and NOx (N, NO, NO2). We compute a NOx production of 1.9 and 2.1 Gigamoles due to these SPE periods in January and March 2012, respectively, which places these SPE periods among the 12 largest in the past 50 years. Aura Microwave Limb Sounder (MLS) observations of the peroxy radical, HO2, show significant enhancements of 0.9 ppbv in the northern polar mesosphere as a result of these SPE periods. Both MLS measurements and Goddard Space Flight Center (GSFC) two-dimensional (2D) model predictions indicated middle mesospheric ozone decreases of 20 percent for several days in the northern polar region with maximum depletions 60 percent as a result of the HOx produced in both the January and March 2012 SPE periods. The SCISAT-1 Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE) and the Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instruments measured NO and NO2 (NOx), which indicated enhancements of over 20 ppbv in most of the northern polar mesosphere for several days as a result of these SPE periods. The GSFC 2D model was used to predict the medium-term (months) influence and found that the polar Southern Hemisphere middle atmosphere ozone was most affected by these solar events due to the increased downward motion in the fall and early winter. The downward transport moved the SPE-produced NOy to lower altitudes and led to predicted modest destruction of ozone (5-9 percent) in the upper stratosphere days to weeks after the March 2012 event. Total ozone reductions were predicted to be a maximum of 1 percent in 2012 due to these SPEs.
NASA Astrophysics Data System (ADS)
Vorobiev, O.; Ezzedine, S. M.; Hurley, R.; Antoun, T.; Glenn, L.
2016-12-01
This work describes the near-field modeling of wave propagation from underground chemicalexplosions conducted at the Nevada National Security Site (NNSS) in fractured granitic rock. Lab testsperformed on granite samples excavated from various locations at the SPE site have shown littlevariability in mechanical properties. Granite at this scale can be considered as an isotropic medium. Wehave shown, however, that on the scale of the pressure waves generated during chemical explosions(tens of meters), the effective mechanical properties may vary significantly and exhibit both elastic andplastic anisotropies due to local variations in joint properties such as spacing orientation, joint aperture,cohesion and saturation. Since including every joint in a discrete fashion in computational model is notfeasible, especially for large-scale calculations ( 1.5 km domain), we have developed a computationaltechnique to upscale mechanical properties for various scales (frequencies) using geophysicalcharacterization conducted during recent SPE tests at the NNSS. Stochastic representation of thesefeatures based on the field characterizations has been implemented into LLNL's Geodyn-L hydrocode.Scale dependency in mechanical properties is important in order to understand how the ground motionscales with yield. We hope that such an approach will not only provide a better prediction of theground motion observed in the SPE (where the yield varies from 100 kg to few tons of TNT equivalent)but also will allow us to extrapolate results of the SPE to sources with bigger yields. We have validatedour computational results by comparing the measured and computed ground motion at various rangesfor experiments of various yields (SPE1-SPE5). Using the new model we performed severalcomputational studies to identify the most important mechanical properties of the rock mass specific tothe SPE site and to understand their roles in the observed ground motion in the near-field. We willpresent a series of lessons learned from the data gathered at the NNSS SPE site and the simulationsconducted using state-of-the-art HPC codes.This work performed under the auspices of the U.S. Department of Energy by Lawrence LivermoreNational Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-679820
On the generation of horizontal shear waves by underground explosions in jointed rocks
Vorobiev, Oleg; Ezzedine, Souheil; Antoun, Tarabay; ...
2015-02-04
This paper describes computational studies of non-spherical ground motions generated by spherical explosions in a heavily jointed granite formation. Various factors affecting the shear wave generation are considered, including joint spacing, orientation, persistence and properties. Simulations are performed both in 2D for a single joint set to elucidate the basic response mechanisms, and in 3D for multiple joint sets to realistically represent in situ conditions in a realistic geologic setting. The joints are modeled explicitly using both contact elements and weakness planes in the material. Simulations are performed both deterministically and stochastically to quantify the effects of geologic uncertainties onmore » near field ground motions. The mechanical properties of the rock and the joints as well as the joint spacing and orientation are taken from experimental test data and geophysical logs corresponding to the Climax Stock granitic outcrop, which is the geologic setting of the Source Physics Experiment (SPE). Agreement between simulation results and near field wave motion data from SPE enables newfound understanding of the origin and extent of non-spherical motions associated with underground explosions in fractured geologic media.« less
Behera, Bijayini; Mathur, Purva; Bhardwaj, Nidhi; Jain, Neetu; Misra, M C; Kapil, Arti; Singh, Sarman
2014-03-01
Group C and group G streptococci (together GCGS) are often regarded as commensal bacteria and their role in streptococcal disease burden is under-recognized. While reports of recovery of GCGS from normally sterile body sites are increasing, their resistance to macrolides, fluoroquinolone further warrants all invasive β haemolytic streptococci to be identified to the species level and accurately tested for antimicrobial susceptibility. This study was aimed to determine the prevalence, clinical profile, antimicrobial susceptibility and streptococcal pyrogenic exotoxin gene profile (speA, speB, speC, speF, smeZ, speI, speM, speG, speH and ssa) of GCGS obtained over a period of two years at a tertiary care centre from north India. The clinical samples were processed as per standard microbiological techniques. β-haemolytic streptococci (BHS) were characterized and grouped. Antimicrobial susceptibility of GCGS was performed using disk diffusion method. All GCGS were characterized for the presence of streptococcal pyrogenic exotoxins (spe) and spe genes were amplified by PCR method. GCGS (23 GGS, 2GCS) comprised 16 per cent of β haemolytic streptococci (25/142 βHS, 16%) isolated over the study period. Of the 25 GCGS, 22 (88%) were recovered from pus, two (8%) from respiratory tract, whereas one isolate was recovered from blood of a fatal case of septicaemia. Of the total 23 GGS isolates, 18 (78%) were identified as Streptococcus dysgalactiae subsp equisimilis (SDSE, large-colony phenotype), five (21%) were Streptococcus anginosus group (SAG, small-colony phenotype). The two GCS were identified as SDSE. All GCGS isolates were susceptible to penicillin, vancomycin, and linezolid. Tetracycline resistance was noted in 50 per cent of SDSE isolates. The rates of macrolide and fluoroquinolone resistance in SDSE were low. Twelve of the 20 SDSE isolates were positive for one or more spe genes, with five of the SDSE isolates simultaneously carrying speA+ speB+ smeZ+ speF or speB+ smeZ+speF, speI+speM+speG+speH or, speI+spe M+speH or speA+ speB+ speC+ smeZ+ speF. One notable finding was the presence of spe B in four of the five isolates of the Streptococcus anginosus group. No isolate was positive for ssa. Our study showed no association between GCGS isolates harbouring streptococcal pyrogenic exotoxins and disease severity. This might be attributed to the small sample size of spe-positive isolates.
Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan.
Shibata, Mitsuhiro; Enjoji, Motohiro; Sakazume, Katsumi; Ifuku, Shinsuke
2016-06-25
Sorbitol polyglycidyl ether (SPE) which is a bio-based water-soluble epoxy resin was cured with chitosan (CS) and/or a commercial water-soluble polyamidoamine- or polyetheramine-type epoxy hardener (PAA or PEA). Furthermore, biocomposites of the CS-cured SPE (CS-SPE) and CS/PAA- or CS/PEA-cured SPE (SPE-CA or SPE-CE) biocomposites with chitin nanofiber (CNF) were prepared by casting and compression molding methods, respectively. The curing reaction of epoxy and amino groups of the reactants was confirmed by the FT-IR spectral analysis. SPE-CS and SPE-CA were almost transparent films, while SPE-CE was opaque. Transparency of SPE-CS/CNF and SPE-CA/CNF became a little worse with increasing CNF content. The tanδ peak temperature of SPE-CS was higher than those of SPE-PAA and SPE-PEA. SPE-CA or SPE-CE exhibited two tanδ peak temperatures related to glass transitions of the CS-rich and PAA-rich or PEA-rich moieties. The tanδ peak temperatures related to the CS-rich and PAA-rich moieties increased with increasing CNF content. A higher order of tensile strengths and moduli of the cured resins was SPE-CS≫SPE-CA>SPE-CE. The tensile strength and modulus of each sample were much improved by the addition of 3wt% CNF, while further addition of CNF caused a lowering of the strength and modulus. Copyright © 2016 Elsevier Ltd. All rights reserved.
Traverso, F; Sparo, M; Rubio, V; Sáez Nieto, J A
2010-01-01
Streptococcus pyogenes causes a variety of common human diseases, including pharyngitis, scarlet fever and impetigo. Nevertheless, the past decades have witnessed a worldwide resurgence in invasive disease and streptococcal toxic shock syndrome (STSS). The objective of the present study is to evaluate the genetic diversity, virulence gene distribution (spe, sme and ssa genes) and susceptibility pattern of 10 S. pyogenes isolates causing invasive disease and STSS. The isolates were recovered from blood cultures of hospitalized patients at Hospital Santamarina and Nueva Clínica Chacabuco, Tandil, Buenos Aires, Argentina between 12/2000-04/2005. Two pulse field gel electrophoretic patterns predominated. The most frequent one included 5 characteristic isolates of emm1-T1 type, toxin gene profile speA, speB, speF, speG and smeZ. The second pattern included 2 characteristic isolates of emm3-TNT type (speB, speF, speG). The other 3 isolates corresponded to types emm49-TNT (speB, speC, speF, speG), emm75-T25 (speB, speF, speG) and emm83-TNT (speB, speF, speG, ssa, smeZ). All isolates were susceptible to penicillin, cefotaxime, erythromycin, clindamycin, chloramphenicol, tetracycline and rifampicin. The data from the present study demonstrated genetic diversity among the strains. Types emm1 and emm3 were prevalent in invasive disease. The empirical treatment with the combination of penicillin and clindamicin is still valid.
Lafrenière, Nelson M; Mudrik, Jared M; Ng, Alphonsus H C; Seale, Brendon; Spooner, Neil; Wheeler, Aaron R
2015-04-07
There is great interest in the development of integrated tools allowing for miniaturized sample processing, including solid phase extraction (SPE). We introduce a new format for microfluidic SPE relying on C18-functionalized magnetic beads that can be manipulated in droplets in a digital microfluidic platform. This format provides the opportunity to tune the amount (and potentially the type) of stationary phase on-the-fly, and allows the removal of beads after the extraction (to enable other operations in same device-space), maintaining device reconfigurability. Using the new method, we employed a design of experiments (DOE) operation to enable automated on-chip optimization of elution solvent composition for reversed phase SPE of a model system. Further, conditions were selected to enable on-chip fractionation of multiple analytes. Finally, the method was demonstrated to be useful for online cleanup of extracts from dried blood spot (DBS) samples. We anticipate this combination of features will prove useful for separating a wide range of analytes, from small molecules to peptides, from complex matrices.
NASA Technical Reports Server (NTRS)
Hazen-Bosveld, April; Lipert, Robert J.; Nordling, John; Shih, Chien-Ju; Siperko, Lorraine; Porter, Marc D.; Gazda, Daniel B.; Rutz, Jeff A.; Straub, John E.; Schultz, John R.;
2007-01-01
Colorimetric-solid phase extraction (C-SPE) is being developed as a method for in-flight monitoring of spacecraft water quality. C-SPE is based on measuring the change in the diffuse reflectance spectrum of indicator disks following exposure to a water sample. Previous microgravity testing has shown that air bubbles suspended in water samples can cause uncertainty in the volume of liquid passed through the disks, leading to errors in the determination of water quality parameter concentrations. We report here the results of a recent series of C-9 microgravity experiments designed to evaluate manual manipulation as a means to collect bubble-free water samples of specified volumes from water sample bags containing up to 47% air. The effectiveness of manual manipulation was verified by comparing the results from C-SPE analyses of silver(I) and iodine performed in-flight using samples collected and debubbled in microgravity to those performed on-ground using bubble-free samples. The ground and flight results showed excellent agreement, demonstrating that manual manipulation is an effective means for collecting bubble-free water samples in microgravity.
Tabor, C W; Tabor, H
1987-11-25
We have previously shown that the gene (speD) for S-adenosylmethionine decarboxylase is part of an operon that also contains the gene (speE) for spermidine synthase (Tabor, C. W., Tabor, H., and Xie, Q.-W. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 6040-6044). We have now determined the nucleotide sequence of this operon and have found that speD codes for a polypeptide of Mr = 30,400, which is considerably greater than the subunit size of the purified enzyme. Our studies show that S-adenosylmethionine decarboxylase is first formed as a Mr = 30,400 polypeptide and that this proenzyme is then cleaved at the Lys111-Ser112 peptide bond to form a Mr = 12,400 subunit and a Mr = 18,000 subunit. The latter subunit contains the pyruvoyl moiety that we previously showed is required for enzymatic activity. Both subunits are present in the purified enzyme. These conclusions are based on (i) pulse-chase experiments with a strain containing a speD+ plasmid which showed a precursor-product relationship between the proenzyme and the enzyme subunits, (ii) the amino acid sequence of the proenzyme form of S-adenosylmethionine decarboxylase (derived from the nucleotide sequence of the speD gene), and (iii) comparison of this sequence of the proenzyme with the N-terminal amino acid sequences of the two subunits of the purified enzyme reported by Anton and Kutny (Anton, D. L., and Kutny, R. (1987) J. Biol. Chem. 262, 2817-2822).
Near-field non-radial motion generation from underground chemical explosions in jointed granite
NASA Astrophysics Data System (ADS)
Vorobiev, Oleg; Ezzedine, Souheil; Hurley, Ryan
2018-01-01
This paper describes analysis of non-radial ground motion generated by chemical explosions in a jointed rock formation during the Source Physics Experiment (SPE). Such motion makes it difficult to discriminate between various subsurface events such as explosions, implosions (i.e. mine collapse) and earthquakes. We apply 3-D numerical simulations to understand experimental data collected during the SPEs. The joints are modelled explicitly as compliant thin inclusions embedded into the rock mass. Mechanical properties of the rock and the joints as well as the joint spacing and orientation are inferred from experimental test data, and geophysical and geological characterization of the SPE site which is dominantly Climax Stock granitic outcrop. The role of various factors characterizing the joints such as joint spacing, frictional properties, orientation and persistence in generation of non-radial motion is addressed. The joints in granite at the SPE site are oriented in nearly orthogonal directions with two vertical sets dipping at 70-80 degrees with the same strike angle, one vertical set almost orthogonal to the first two and one shallow angle joint set dipping 15 degrees. In this study we establish the relationship between the joint orientation and azimuthal variations in the polarity of the observed shear motion. The majority of the shear motion is generated due to the effects of non-elastic sliding on the joints near the source, where the wave can create significant shear stress to overcome the cohesive forces at the joints. Near the surface the joints are less confined and are subject to sliding when the pressure waves are reflected. In the far field, where the cohesive forces on the joints cannot be overcome, additional shear motion can be generated due to elastic anisotropy of the rock mass given by preferred spatial orientations of compliant joints.
NASA Astrophysics Data System (ADS)
Rougier, Esteban; Patton, Howard J.
2015-05-01
Reduced displacement potentials (RDPs) for chemical explosions of the Source Physics Experiments (SPE) in granite at the Nevada Nuclear Security Site are estimated from free-field ground motion recordings. Far-field P wave source functions are proportional to the time derivative of RDPs. Frequency domain comparisons between measured source functions and model predictions show that high-frequency amplitudes roll off as ω- 2, but models fail to predict the observed seismic moment, corner frequency, and spectral overshoot. All three features are fit satisfactorily for the SPE-2 test after cavity radius Rc is reduced by 12%, elastic radius is reduced by 58%, and peak-to-static pressure ratio on the elastic radius is increased by 100%, all with respect to the Mueller-Murphy model modified with the Denny-Johnson Rc scaling law. A large discrepancy is found between the cavity volume inferred from RDPs and the volume estimated from laser scans of the emplacement hole. The measurements imply a scaled Rc of ~5 m/kt1/3, more than a factor of 2 smaller than nuclear explosions. Less than 25% of the seismic moment can be attributed to cavity formation. A breakdown of the incompressibility assumption due to shear dilatancy of the source medium around the cavity is the likely explanation. New formulas are developed for volume changes due to medium bulking (or compaction). A 0.04% decrease of average density inside the elastic radius accounts for the missing volumetric moment. Assuming incompressibility, established Rc scaling laws predicted the moment reasonable well, but it was only fortuitous because dilation of the source medium compensated for the small cavity volume.
3D Orthorhombic Elastic Wave Propagation Pre-Test Simulation of SPE DAG-1 Test
NASA Astrophysics Data System (ADS)
Jensen, R. P.; Preston, L. A.
2017-12-01
A more realistic representation of many geologic media can be characterized as a dense system of vertically-aligned microfractures superimposed on a finely-layered horizontal geology found in shallow crustal rocks. This seismic anisotropy representation lends itself to being modeled as an orthorhombic elastic medium comprising three mutually orthogonal symmetry planes containing nine independent moduli. These moduli can be determined by observing (or prescribing) nine independent P-wave and S-wave phase speeds along different propagation directions. We have developed an explicit time-domain finite-difference (FD) algorithm for simulating 3D elastic wave propagation in a heterogeneous orthorhombic medium. The components of the particle velocity vector and the stress tensor are governed by a set of nine, coupled, first-order, linear, partial differential equations (PDEs) called the velocity-stress system. All time and space derivatives are discretized with centered and staggered FD operators possessing second- and fourth-order numerical accuracy, respectively. Additionally, we have implemented novel perfectly matched layer (PML) absorbing boundary conditions, specifically designed for orthorhombic media, to effectively suppress grid boundary reflections. In support of the Source Physics Experiment (SPE) Phase II, a series of underground chemical explosions at the Nevada National Security Site, the code has been used to perform pre-test estimates of the Dry Alluvium Geology - Experiment 1 (DAG-1). Based on literature searches, realistic geologic structure and values for orthorhombic P-wave and S-wave speeds have been estimated. Results and predictions from the simulations are presented.
Modeling Seismoacoustic Propagation from the Nonlinear to Linear Regimes
NASA Astrophysics Data System (ADS)
Chael, E. P.; Preston, L. A.
2015-12-01
Explosions at shallow depth-of-burial can cause nonlinear material response, such as fracturing and spalling, up to the ground surface above the shot point. These motions at the surface affect the generation of acoustic waves into the atmosphere, as well as the surface-reflected compressional and shear waves. Standard source scaling models for explosions do not account for such nonlinear interactions above the shot, while some recent studies introduce a non-isotropic addition to the moment tensor to represent them (e.g., Patton and Taylor, 2011). We are using Sandia's CTH shock physics code to model the material response in the vicinity of underground explosions, up to the overlying ground surface. Across a boundary where the motions have decayed to nearly linear behavior, we couple the signals from CTH into a linear finite-difference (FD) seismoacoustic code to efficiently propagate the wavefields to greater distances. If we assume only one-way transmission of energy through the boundary, then the particle velocities there suffice as inputs for the FD code, simplifying the specification of the boundary condition. The FD algorithm we use applies the wave equations for velocity in an elastic medium and pressure in an acoustic one, and matches the normal traction and displacement across the interface. Initially we are developing and testing a 2D, axisymmetric seismoacoustic routine; CTH can use this geometry in the source region as well. The Source Physics Experiment (SPE) in Nevada has collected seismic and acoustic data on numerous explosions at different scaled depths, providing an excellent testbed for investigating explosion phenomena (Snelson et al., 2013). We present simulations for shots SPE-4' and SPE-5, illustrating the importance of nonlinear behavior up to the ground surface. Our goal is to develop the capability for accurately predicting the relative signal strengths in the air and ground for a given combination of source yield and depth. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Yin, Yong-guang; Chen, Ming; Peng, Jin-feng; Liu, Jing-fu; Jiang, Gui-bin
2010-06-15
A novel and simple solid phase extraction (SPE)-high performance liquid chromatography (HPLC)-inductively coupled plasma mass spectrometry (ICP-MS) method was developed for determination of inorganic mercury (IHg), methylmercury MeHg and ethylmercury (EtHg) in water samples in the present work. The procedure involves pre-functionalization of the commercially available C18 SPE column with dithizone, loading water sample, displacement elution of mercury species by Na(2)S(2)O(3) solution, followed by HPLC-ICP-MS determination. Characterization and optimization of operation parameters of this new SPE procedure were discussed, including eluting reagent selection, concentration of eluting reagent, volume of eluting reagent, effect of NaCl and humic acid in sample matrix. At optimized conditions, the detection limits of mercury species for 100mL water sample were about 3ngL(-1) and the average recoveries were 93.7, 83.4, and 71.7% for MeHg, IHg and EtHg, respectively, by spiking 0.2microgL(-1) mercury species into de-ion water. Stability experiment reveals that both the dithizone-functionalized SPE cartridge and the mercury species incorporated were stable in the storage procedure. These results obtained demonstrate that SPE-HPLC-ICP-MS is a simple and sensitive technique for the determination of mercury species at trace level in water samples with high reproducibility and accuracy.
Liu, Zhenyan; Fang, Ming; Hu, Bin; Bi, Zhenwang; Kou, Zengqiang; Ren, Yanyan; Chen, Baoli; Bi, Zhenqiang
2014-12-01
To describe the molecular characteristics of group A Streptococcus (GAS) isolated from patients and asymptomatic carriers of scarlet fever in Shandong province, 2013, and to explore the relationships between emm types and other molecular types. 72 strains of GAS were isolated from throat swabs of children with scarlet fever or asymptomatic carriers of GAS. All the strains were typed by emm typing, multilocus sequence typing (MLST), super-antigen (SAg) genes detections and pulsed-field gel electrophoreses (PFGE). Among the 72 strains, emm1 (41.67%) and emm12 (56.94%) were the most common emm types. Two ST types were found, including ST28 (43.06%) and ST36 (56.94%). Additionally, emm1 was also found correlated to ST28, while emm12 was associated with ST36. Eight super-antigen genes were detected, including smeZ (100.00%), ssa (100.00%), speG (97.22%), speC (95.83%), speL (54.17%), speJ (41.67%), speA (38.89%) and speH (38.89%), while speK, speM, speL were not found (0%). Both speA and speJ genes were detected primarily in emm1 strains (all P < 0.05), while speH and speI genes were not detected in emm 1 strains (all P < 0.05). And emm12 strains were inclined to harbor speH and speL (all P < 0.05) but not speA or speJ (all P < 0.05). Twenty different genotypes were identified by PFGE. All the emm types of GAS isolated from scarlet fever patients and asymptomatic carriers in Shandong province 2013 were mainly emm1 and emm12 and carrying speC, speG and smeZ, ssa. ST types mainly exsited in ST28 and ST36. In addition, there were correlations between emm types and super-antigen genes, ST types, PFGE types.
Chen, Jun; Bai, Lian-Yang; Liu, Kun-Feng; Liu, Run-Qiang; Zhang, Yu-Ping
2014-01-01
Atrazine molecular imprinted polymers (MIPs) were comparatively synthesized using identical polymer formulation by far-infrared (FIR) radiation and ultraviolet (UV)-induced polymerization, respectively. Equilibrium binding experiments were carried out with the prepared MIPs; the results showed that MIPuv possessed specific binding to atrazine compared with their MIPFIR radiation counterparts. Scatchard plot’s of both MIPs indicated that the affinities of the binding sites in MIPs are heterogeneous and can be approximated by two dissociation-constants corresponding to the high-and low-affinity binding sites. Moreover, several common pesticides including atrazine, cyromazine, metamitron, simazine, ametryn, terbutryn were tested to determine their specificity, similar imprinting factor (IF) and different selectivity index (SI) for both MIPs. Physical characterization of the polymers revealed that the different polymerization methods led to slight differences in polymer structures and performance by scanning electron microscope (SEM), Fourier transform infrared absorption (FT-IR), and mercury analyzer (MA). Finally, both MIPs were used as selective sorbents for solid phase extraction (SPE) of atrazine from lake water, followed by high performance liquid chromatography (HPLC) analysis. Compared with commercial C18 SPE sorbent (86.4%–94.8%), higher recoveries of atrazine in spiked lake water were obtained in the range of 90.1%–97.1% and 94.4%–101.9%, for both MIPs, respectively. PMID:24398982
SPE (tm) water electrolyzers in support of mission from planet Earth
NASA Technical Reports Server (NTRS)
Mcelroy, J. F.
1991-01-01
During the 1970's, the Solid Polymer Electrolyte (SPE) water electrolyzer, which uses ion exchange membranes as its sole electrolyte, was developed for nuclear submarine metabolic oxygen production. SPE water electrolyzer developments included operation at up to 3,000 psia and at current densities in excess of 1,000 amps per square foot. The SPE water electrolyzer system has accumulated tens of thousands of system hours with the Navies of both the United States and the United Kingdom. During the 1980's, the basic SPE water electrolyzer cell structure developed for the Navies was incorporated into several demonstrators for NASA's Space Station Program. Among these were: (1) the SPE regenerative fuel cell for electrical energy storage; (2) the SPE water electrolyzer for metabolic oxygen production; and (3) the high pressure SPE water electrolyzer for reboost propellant production. In the 1990's, emphasis will be the development of SPE water electrolyzers for Mission from Planet Earth. Currently defined potential applications for the SPE water electrolyzer include: (1) SPE water electrolyzers operating at high pressure as part of a regenerative fuel cell extraterrestrial surface energy storage system; (2) SPE water electrolyzers for propellant production from extraterrestrial indigenous materials; and (3) SPE water electrolyzers for metabolic oxygen and potable water production from reclaimed water.
Tsao, Nina; Cheng, Miao-Hui; Yang, Hsiu-Chen; Wang, Yu-Chieh; Liu, Yi-Ling; Kuo, Chih-Feng
2013-01-01
Streptococcal pyrogenic exotoxin B (SPE B), a cysteine protease, is an important virulence factor in group A streptococcal (GAS) infection. SPE B binds and cleaves antibody isotypes and further impairs the immune system by inhibiting complement activation. In this study, we examined the antibody-binding site of SPE B and used it to block SPE B actions during GAS infection. We constructed different segments of the spe B gene and induced them to express different recombinant fragments of SPE B. Using an enzyme-linked immunosorbent assay (ELISA), we found that residues 345-398 of the C-terminal domain of SPE B (rSPE B(345-398)), but not the N-terminal domain, was the major binding site for antibody isotypes. Using a competitive ELISA, we also found that rSPE B(345-398) bound to the Fc portion of IgG. The in vitro functional assays indicate that rSPE B(345-398) not only interfered with cleavage of antibody isotypes but also interfered with SPE B-induced inhibition of complement activation. Immunization of BALB/c mice using rSPE B(345-398) was able to induce production of a high titer of anti-rSPE B(345-398) antibodies and efficiently protected mice from GAS-induced death. These findings suggest that SPE B uses its C-terminal domain to bind the Fc portion of IgG and that immunization of mice with this binding domain (rSPE B(345-398)) could protect mice from GAS infection.
He, Man; Huang, Lijin; Zhao, Bingshan; Chen, Beibei; Hu, Bin
2017-06-22
For the determination of trace elements and their species in various real samples by inductively coupled plasma mass spectrometry (ICP-MS), solid phase extraction (SPE) is a commonly used sample pretreatment technique to remove complex matrix, pre-concentrate target analytes and make the samples suitable for subsequent sample introduction and measurements. The sensitivity, selectivity/anti-interference ability, sample throughput and application potential of the methodology of SPE-ICP-MS are greatly dependent on SPE adsorbents. This article presents a general overview of the use of advanced functional materials (AFMs) in SPE for ICP-MS determination of trace elements and their species in the past decade. Herein the AFMs refer to the materials featuring with high adsorption capacity, good selectivity, fast adsorption/desorption dynamics and satisfying special requirements in real sample analysis, including nanometer-sized materials, porous materials, ion imprinting polymers, restricted access materials and magnetic materials. Carbon/silica/metal/metal oxide nanometer-sized adsorbents with high surface area and plenty of adsorption sites exhibit high adsorption capacity, and porous adsorbents would provide more adsorption sites and faster adsorption dynamics. The selectivity of the materials for target elements/species can be improved by using physical/chemical modification, ion imprinting and restricted accessed technique. Magnetic adsorbents in conventional batch operation offer unique magnetic response and high surface area-volume ratio which provide a very easy phase separation, greater extraction capacity and efficiency over conventional adsorbents, and chip-based magnetic SPE provides a versatile platform for special requirement (e.g. cell analysis). The performance of these adsorbents for the determination of trace elements and their species in different matrices by ICP-MS is discussed in detail, along with perspectives and possible challenges in the future development. Copyright © 2017 Elsevier B.V. All rights reserved.
Composition dependence of solid-phase epitaxy in silicon-germanium alloys: Experiment and theory
NASA Astrophysics Data System (ADS)
Haynes, T. E.; Antonell, M. J.; Lee, C. Archie; Jones, K. S.
1995-03-01
The rates of solid-phase epitaxy (SPE) in unstrained Si1-xGex alloys have been measured by time-resolved reflectivity for eight different alloy compositions, including both Si-rich and Ge-rich layers. Amorphous layers 300-400 nm thick were first formed in 8-μm-thick, relaxed, epitaxial Si1-xGex layers (0.02<=x<=0.87) by ion implantation of Si+. For each composition, the measured SPE rates spanned approximately two orders of magnitude. The alloy SPE rates are shown to be related to the regrowth rates of the two pure elements by a simple equation expressed in terms of the composition parameter x and having no adjustable parameters. The form of this equation implies that crystallization occurs by a serial attachment process at the amorphous-crystal interface and that the rate of attachment of each individual atom is determined by the identities of its four nearest neighbors. Such a process is consistent with the dangling-bond model proposed by Spaepen and Turnbull [in Laser-Solid Interactions and Laser Processing, edited by S. D. Ferris, H. J. Leamy, and J. M. Poate, AIP Conf. Proc. No. 50 (AIP, New York, 1979)] if the SPE rate is limited by the migration rate of dangling bonds rather than by their formation rate. Based on this analysis, an interpretation is proposed for the anomalously large activation energies that have been measured for SPE in some Si-rich compositions.
ERIC Educational Resources Information Center
Brannon, Diana; Fiene, Judy
2013-01-01
Many pre-service teachers express a lack of confidence and preparedness to face the challenges of teaching reading in today's classrooms. The current study looks at whether Structured Participation Experiences (SPE) in reading increase pre-service teachers' preparedness to teach reading compared to more traditional unstructured field experiences.…
Walwyn, Odaelys L.; Tanz, Robert R.; Shulman, Stanford T.; Kabat, William
2017-01-01
The secreted cysteine proteinase SpeB is an important virulence factor of group A streptococci (GAS), whereby SpeB activity varies widely among strains. To establish the degree to which SpeB activity correlates with disease, GAS organisms were recovered from patients with pharyngitis, impetigo, invasive disease or acute rheumatic fever (ARF), and selected for analysis using rigorous sampling criteria; >300 GAS isolates were tested for SpeB activity by casein digestion assays, and each GAS isolate was scored as a SpeB-producer or non-producer. Highly significant statistical differences (p < 0.01) in SpeB production are observed between GAS recovered from patients with ARF (41.5% SpeB-non-producers) compared to pharyngitis (20.5%), invasive disease (16.7%), and impetigo (5.5%). SpeB activity differences between pharyngitis and impetigo isolates are also significant, whereas pharyngitis versus invasive isolates show no significant difference. The disproportionately greater number of SpeB-non-producers among ARF-associated isolates may indicate an altered transcriptional program for many rheumatogenic strains and/or a protective role for SpeB in GAS-triggered autoimmunity. PMID:28545045
Comparison of Space Radiation Calculations from Deterministic and Monte Carlo Transport Codes
NASA Technical Reports Server (NTRS)
Adams, J. H.; Lin, Z. W.; Nasser, A. F.; Randeniya, S.; Tripathi, r. K.; Watts, J. W.; Yepes, P.
2010-01-01
The presentation outline includes motivation, radiation transport codes being considered, space radiation cases being considered, results for slab geometry, results from spherical geometry, and summary. ///////// main physics in radiation transport codes hzetrn uprop fluka geant4, slab geometry, spe, gcr,
Shin, Sang-Min; Song, Sung-Hyun; Lee, Jin-Woo; Kwak, Min-Kyu; Kang, Sa-Ouk
2017-10-01
Methylglyoxal regulates cell division and differentiation through its interaction with polyamines. Loss of their biosynthesizing enzyme causes physiological impairment and cell elongation in eukaryotes. However, the reciprocal effects of methylglyoxal and polyamine production and its regulatory metabolic switches on morphological changes in prokaryotes have not been addressed. Here, Bacillus subtilis methylglyoxal synthase (mgsA) and polyamine biosynthesizing genes encoding arginine decarboxylase (SpeA), agmatinase (SpeB), and spermidine synthase (SpeE), were disrupted or overexpressed. Treatment of 0.2mM methylglyoxal and 1mM spermidine led to the elongation and shortening of B. subtilis wild-type cells to 12.38±3.21μm (P<0.05) and 3.24±0.73μm (P<0.01), respectively, compared to untreated cells (5.72±0.68μm). mgsA-deficient (mgsA - ) and -overexpressing (mgsA OE ) mutants also demonstrated cell shortening and elongation, similar to speB- and speE-deficient (speB - and speE - ) and -overexpressing (speB OE and speE OE ) mutants. Importantly, both mgsA-depleted speB OE and speE OE mutants (speB OE /mgsA - and speE OE /mgsA - ) were drastically shortened to 24.5% and 23.8% of parental speB OE and speE OE mutants, respectively. These phenotypes were associated with reciprocal alterations of mgsA and polyamine transcripts governed by the contents of methylglyoxal and spermidine, which are involved in enzymatic or genetic metabolite-control mechanisms. Additionally, biophysically detected methylglyoxal-spermidine Schiff bases did not affect morphogenesis. Taken together, the findings indicate that methylglyoxal triggers cell elongation. Furthermore, cells with methylglyoxal accumulation commonly exhibit an elongated rod-shaped morphology through upregulation of mgsA, polyamine genes, and the global regulator spx, as well as repression of the cell division and shape regulator, FtsZ. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Xiaoning; Patton, Howard John; Chen, Ting
2016-03-25
This report offers predictions for the SPE-5 ground-motion and accelerometer array sites. These predictions pertain to the waveform and spectral amplitude at certain geophone sites using Denny&Johnson source model and a source model derived from SPE data; waveform, peak velocity and peak acceleration at accelerometer sites using the SPE source model and the finite-difference simulation with LLNL 3D velocity model; and the SPE-5 moment and corner frequency.
Pavlović, Dragana Mutavdžić; Ašperger, Danijela; Tolić, Dijana; Babić, Sandra
2013-09-01
This paper describes the development, optimization, and validation of a method for the determination of five pharmaceuticals from different therapeutic classes (antibiotics, anthelmintics, glucocorticoides) in water samples. Water samples were prepared using SPE and extracts were analyzed by HPLC with diode-array detection. The efficiency of 11 different SPE cartridges to extract the investigated compounds from water was tested in preliminary experiments. Then, the pH of the water sample, elution solvent, and sorbent mass were optimized. Except for optimization of the SPE procedure, selection of the optimal HPLC column with different stationary phases from different manufacturers has been performed. The developed method was validated using spring water samples spiked with appropriate concentrations of pharmaceuticals. Good linearity was obtained in the range of 2.4-200 μg/L, depending on the pharmaceutical with the correlation coefficients >0.9930 in all cases, except for ciprofloxacin (0.9866). Also, the method has revealed that low LODs (0.7-3.9 μg/L), good precision (intra- and interday) with RSD below 17% and recoveries above 98% for all pharmaceuticals. The method has been successfully applied to the analysis of production wastewater samples from the pharmaceutical industry. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Klockars, Jaakko G M; Hiller, Arja; Münte, Sinikka; van Gils, Mark J; Taivainen, Tomi
2012-02-01
We evaluated whether spectral entropy (SpE) can measure the depth of hypnosis and the hypnotic drug effect in children during total intravenous anesthesia. Sixty healthy children, aged 3-16 yr, were studied. Anesthesia was induced with an increasing target controlled infusion of propofol, and maintained by a stable remifentanil infusion and variable concentrations of target controlled infusion propofol. Depth of hypnosis was assessed according to the University of Michigan Sedation Scale (UMSS). Estimated plasma (C(p)) and pseudo effect site (C(eff)) propofol concentrations reflected the hypnotic drug effect. Patients were stratified to three age groups. The correlations between SpE versus UMSS, C(p), and C(eff) were analyzed by Prediction Probability (P(k)). The pharmacodynamic relationship between SpE and C(p), and the differences of SpE values between the age groups at the corresponding UMSS levels, were studied. Respective mean P(k) values for the youngest, middle, and oldest age groups were: 1) during induction: SpE versus UMSS 0.87, 0.87, and 0.93; SpE versus C(p) 0.92, 0.95, and 0.97; and SpE versus C(eff) 0.88, 0.94, and 0.95; 2) during maintenance: SpE versus C(eff) 0.86, 0.75, and 0.81. The pharmacodynamic analysis determined an association between SpE and C(p) that followed the E(max) model closely. There were significant differences in SpE values between age groups at corresponding UMSS sedation levels. SpE measures the level of hypnosis and hypnotic drug effect in children during total intravenous anesthesia. There is an age dependency associated with SpE. Anesthesia should not be steered solely on the basis of SpE.
The Stanford Prison Experiment in Introductory Psychology Textbooks: A Content Analysis
ERIC Educational Resources Information Center
Bartels, Jared M.
2015-01-01
The present content analysis examines the coverage of theoretical and methodological problems with the Stanford prison experiment (SPE) in a sample of introductory psychology textbooks. Categories included the interpretation and replication of the study, variance in guard behavior, participant selection bias, the presence of demand characteristics…
Coverage of the Stanford Prison Experiment in Introductory Psychology Courses
ERIC Educational Resources Information Center
Bartels, Jared M.; Milovich, Marilyn M.; Moussier, Sabrina
2016-01-01
The present study examined the coverage of Stanford prison experiment (SPE), including criticisms of the study, in introductory psychology courses through an online survey of introductory psychology instructors (N = 117). Results largely paralleled those of the recently published textbook analyses with ethical issues garnering the most coverage,…
Middle Atmospheric Changes Caused by the January and March 2012 Solar Proton Events
NASA Astrophysics Data System (ADS)
Jackman, Charles; Bernath, Peter; Fleming, Eric; Randall, Cora; Harvey, V. Lynn; Funke, Bernd; Lopez-Puertas, Manuel; Wang, Shuhui
Solar proton events (SPEs) can cause changes in constituents in the Earth’s polar middle atmosphere. The 23-30 January and 7-11 March 2012 solar proton event (SPE) periods were substantial and caused significant impacts on the middle atmosphere. These were the two largest SPE periods of solar cycle 24 so far. The highly energetic protons caused ionizations, excitations, dissociations, and dissociative ionizations of the background constituents. Complicated ion chemistry led to HOx (H, OH, HO2) production and dissociation of N2 leads to NOy (N, NO, NO2, NO3, N2O5, HNO2, HNO3, HO2NO2, ClONO2, BrONO2) production. Both the HOx and NOy increases resulted in changes to ozone in the stratosphere and mesosphere. The HOx increases led to short-lived (~days) ozone decreases in the mesosphere and upper stratosphere. These short-lived impacts on the atmosphere will be illustrated using Aura Microwave Limb Sounder (MLS) observations of the peroxy radical, HO2, and ozone. The longer-lived (~several months) atmospheric changes were coupled with the SPE-caused NOy increases. We computed a NOy production of 1.9 and 2.1 Gigamoles due to these SPE periods in January and March 2012, respectively, which placed these SPE periods among the 12 largest in the past 50 yrs. SCISAT-1 Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE) and the Envisat Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instruments observations of NO and NO2 will be used to illustrate these longer-lived SPE-caused changes. The satellite observations will be compared with Goddard Space Flight Center (GSFC) two-dimensional (2-D) model and Global Modeling Initiative three-dimensional chemistry and transport model predictions. Polar total ozone reductions were predicted to be a maximum of 1.5 percent in 2012 due to these SPEs.
NASA Technical Reports Server (NTRS)
Mcelroy, J. F.
1990-01-01
Viewgraphs on SPE regenerative hydrogen/oxygen fuel cells for extraterrestrial surface and microgravity applications are presented. Topics covered include: hydrogen-oxygen regenerative fuel cell energy storage system; electrochemical cell reactions; SPE cell voltage stability; passive water removal SPE fuel cell; fuel cell performance; SPE water electrolyzers; hydrophobic oxygen phase separator; hydrophilic/electrochemical hydrogen phase separator; and unitized regenerative fuel cell.
NASA Astrophysics Data System (ADS)
Shirochkov, A. V.; Sokolov, S. N.
In the field of solar - terrestrial physics during the last decade there has been renewed interest in the effects produced in the Earth atmosphere and ionosphere by fluxes of precipitated highly relativistic electrons. A series of investigation on the subject (preferably by means of satellite measurements) was performed recently, which discussed different aspects of these phenomena called HRE events. More careful study of the HRE events revealed previously unnoticed geophysical phenomenon: a great majority of the solar proton events (SPE) were accompanied by simultaneous precipitation of relativistic electron fluxes. The studies of previous SPE events attributed their atmospheric and ionospheric effects entirely to the solar proton fluxes. It turned out that such an assumption is wrong. Therefore we have actually a new class of geophysical phenomena when the Earth's atmosphere and ionosphere experience combined impact of simultaneously precipitating fluxes of solar protons and relativistic electrons. If one takes into accounts effect of enhanced density of the solar wind during the SPEs (i.e. its dynamic pressure) the real situation during these combined events became more complicated. In this paper the effects during the storm of May 1992 are analyzed as an example of such unusual combination. The methods of separation of the effects produced by different precipitation particles are presented. Other similar events are considered to demonstrate that such complex events are not unique geophysical phenomena.
Coupling hydrodynamic and wave propagation modeling for waveform modeling of SPE.
NASA Astrophysics Data System (ADS)
Larmat, C. S.; Steedman, D. W.; Rougier, E.; Delorey, A.; Bradley, C. R.
2015-12-01
The goal of the Source Physics Experiment (SPE) is to bring empirical and theoretical advances to the problem of detection and identification of underground nuclear explosions. This paper presents effort to improve knowledge of the processes that affect seismic wave propagation from the hydrodynamic/plastic source region to the elastic/anelastic far field thanks to numerical modeling. The challenge is to couple the prompt processes that take place in the near source region to the ones taking place later in time due to wave propagation in complex 3D geologic environments. In this paper, we report on results of first-principles simulations coupling hydrodynamic simulation codes (Abaqus and CASH), with a 3D full waveform propagation code, SPECFEM3D. Abaqus and CASH model the shocked, hydrodynamic region via equations of state for the explosive, borehole stemming and jointed/weathered granite. LANL has been recently employing a Coupled Euler-Lagrange (CEL) modeling capability. This has allowed the testing of a new phenomenological model for modeling stored shear energy in jointed material. This unique modeling capability has enabled highfidelity modeling of the explosive, the weak grout-filled borehole, as well as the surrounding jointed rock. SPECFEM3D is based on the Spectral Element Method, a direct numerical method for full waveform modeling with mathematical accuracy (e.g. Komatitsch, 1998, 2002) thanks to its use of the weak formulation of the wave equation and of high-order polynomial functions. The coupling interface is a series of grid points of the SEM mesh situated at the edge of the hydrodynamic code domain. Displacement time series at these points are computed from output of CASH or Abaqus (by interpolation if needed) and fed into the time marching scheme of SPECFEM3D. We will present validation tests and waveforms modeled for several SPE tests conducted so far, with a special focus on effect of the local topography.
Near-field non-radial motion generation from underground chemical explosions in jointed granite
Vorobiev, Oleg; Ezzedine, Souheil; Hurley, Ryan
2017-09-22
Here, this paper describes analysis of non-radial ground motion generated by chemical explosions in a jointed rock formation during the Source Physics Experiment (SPE). Such motion makes it difficult to discriminate between various subsurface events such as explosions, implosions (i.e. mine collapse) and earthquakes. We apply 3-D numerical simulations to understand experimental data collected during the SPEs. The joints are modelled explicitly as compliant thin inclusions embedded into the rock mass. Mechanical properties of the rock and the joints as well as the joint spacing and orientation are inferred from experimental test data, and geophysical and geological characterization of themore » SPE site which is dominantly Climax Stock granitic outcrop. The role of various factors characterizing the joints such as joint spacing, frictional properties, orientation and persistence in generation of non-radial motion is addressed. The joints in granite at the SPE site are oriented in nearly orthogonal directions with two vertical sets dipping at 70–80 degrees with the same strike angle, one vertical set almost orthogonal to the first two and one shallow angle joint set dipping 15 degrees. In this study we establish the relationship between the joint orientation and azimuthal variations in the polarity of the observed shear motion. The majority of the shear motion is generated due to the effects of non-elastic sliding on the joints near the source, where the wave can create significant shear stress to overcome the cohesive forces at the joints. Near the surface the joints are less confined and are subject to sliding when the pressure waves are reflected. In the far field, where the cohesive forces on the joints cannot be overcome, additional shear motion can be generated due to elastic anisotropy of the rock mass given by preferred spatial orientations of compliant joints.« less
Near-field non-radial motion generation from underground chemical explosions in jointed granite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vorobiev, Oleg; Ezzedine, Souheil; Hurley, Ryan
Here, this paper describes analysis of non-radial ground motion generated by chemical explosions in a jointed rock formation during the Source Physics Experiment (SPE). Such motion makes it difficult to discriminate between various subsurface events such as explosions, implosions (i.e. mine collapse) and earthquakes. We apply 3-D numerical simulations to understand experimental data collected during the SPEs. The joints are modelled explicitly as compliant thin inclusions embedded into the rock mass. Mechanical properties of the rock and the joints as well as the joint spacing and orientation are inferred from experimental test data, and geophysical and geological characterization of themore » SPE site which is dominantly Climax Stock granitic outcrop. The role of various factors characterizing the joints such as joint spacing, frictional properties, orientation and persistence in generation of non-radial motion is addressed. The joints in granite at the SPE site are oriented in nearly orthogonal directions with two vertical sets dipping at 70–80 degrees with the same strike angle, one vertical set almost orthogonal to the first two and one shallow angle joint set dipping 15 degrees. In this study we establish the relationship between the joint orientation and azimuthal variations in the polarity of the observed shear motion. The majority of the shear motion is generated due to the effects of non-elastic sliding on the joints near the source, where the wave can create significant shear stress to overcome the cohesive forces at the joints. Near the surface the joints are less confined and are subject to sliding when the pressure waves are reflected. In the far field, where the cohesive forces on the joints cannot be overcome, additional shear motion can be generated due to elastic anisotropy of the rock mass given by preferred spatial orientations of compliant joints.« less
Meyer, M.T.; Mills, M.S.; Thurman, E.M.
1993-01-01
An automated solid-phase extraction (SPE) method was developed for the pre-concentration of chloroacetanilide and triazine herbicides, and two triazine metabolites from 100-ml water samples. Breakthrough experiments for the C18 SPE cartridge show that the two triazine metabolites are not fully retained and that increasing flow-rate decreases their retention. Standard curve r2 values of 0.998-1.000 for each compound were consistently obtained and a quantitation level of 0.05 ??g/l was achieved for each compound tested. More than 10,000 surface and ground water samples have been analyzed by this method.
NASA Technical Reports Server (NTRS)
Berger, Thomas; Matthiae, Daniel; Koerner, Christine; George, Kerry; Rhone, Jordan; Cucinotta, Francis; Reitz, Guenther
2010-01-01
The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are compounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrapolation of skin dose to organ dose, which can lead to over- or underestimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be predicted to within about a +10% accuracy using space radiation transport models for galactic cosmic rays (GCR) and trapped radiation behind shielding. However for solar particle event (SPE) with steep energy spectra and for extra-vehicular activities on the surface of the moon where only tissue shielding is present, transport models predict that there are large differences in model assumptions in projecting organ doses. Therefore experimental verification of SPE induced organ doses may be crucial for the design of lunar missions. In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field with the phantom torso. Lymphocyte cells are strategically embedded at selected locations at the skin and internal organs and are processed after irradiation to assess the effects of shielding on the yield of chromosome damage. The initial focus of the present experiment is to correlate biological results with physical dosimetry measurements in the phantom torso. Further on, the results of the passive dosimetry within the anthropomorphic phantoms represent the best tool to generate reliable data to benchmark computational radiation transport models in a radiation field of interest. The presentation will give first results of the physical dose distribution, the comparison with GEANT4 computer simulations based on a Voxel model of the phantom, and a comparison with the data from the chromosome aberration study.
Shallow Refraction and Rg Analysis at the Source Physics Experiment Site
NASA Astrophysics Data System (ADS)
Rowe, C. A.; Carmichael, J. D.; Patton, H. J.; Snelson, C. M.; Coblentz, D. D.; Larmat, C. S.; Yang, X.
2014-12-01
We present analyses of the two-dimensional (2D) seismic structure beneath Source Physics Experiments (SPE) geophone lines that extended 100 to 2000 m from the source borehole with 100 m spacing. With seismic sources provided only at one end of the geophone lines, standard refraction profiling methods are unable to resolve the seismic velocity structures unambiguously. In previous work we have shown overall agreement between body-wave refraction modeling and Rg dispersion curves for the least complex of the five lines, Line 2, leading us to offer a simplified1D model for this line. A more detailed inspection of Line 2 supports a 2D re-interpretation of the structure on this line. We observe variation along the length of the line, as evidenced by abrupt and consistent changes in the behavior of surface waves at higher frequencies. We interpret this as a manifestation of significant material or structural heterogeneity in the shallowest strata. This interpretation is consistent with P-wave and Rg attenuation observations. Planned additional sources, both at the distal ends of the profiles and intermittently within their lengths, will provide significant enhancement to our ability to resolve this complicated shallow structure.
Defenbaugh, Nicole; Chikotas, Noreen E
2016-01-01
The purpose of this qualitative study was to examine the impact of standardized patient experiences (SPE) in the education of the Advanced Practice Nurse (APN). The education of the APN requires educators to make every attempt to promote competency in the areas of communication and clinical-decision making. SPE programs have been found to improve the interpersonal, problem solving, and critical thinking skills of nursing students. For this research twenty-nine APN students participated in SPEs over the course of two semesters. Fifteen student volunteers of those 29 participants were then interviewed three months after the experience. Results revealed that having an expert in the field of communication studies increased awareness of communication skills and how to improve nurse-patient encounters in the clinical setting. The interprofessional collaboration during the SPEs assisted in facilitating the application of learned communication skills into patient-centered care of the APN student. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hydrogen-oxygen proton-exchange membrane fuel cells and electrolyzers
NASA Technical Reports Server (NTRS)
Baldwin, R.; Pham, M.; Leonida, A.; Mcelroy, J.; Nalette, T.
1989-01-01
Hydrogen-oxygen SPE fuel cells and SPE electrolyzers (products of Hamilton Standard) both use a Proton-Exchange Membrane (PEM) as the sole electrolyte. The SPE cells have demonstrated a ten year life capability under load conditions. Ultimate life of PEM fuel cells and electrolyzers is primarily related to the chemical stability of the membrane. For perfluorocarbon proton-exchange membranes an accurate measure of the membrane stability is the fluoride loss rate. Millions of cell hours have contributed to establishing a relationship between fluroride loss rates and average expected ultimate cell life. Several features were introduced into SPE fuel cells and SPE electrolyzers such that applications requiring greater than or equal to 100,000 hours of life can be considered. Equally important as the ultimate life is the voltage stability of hydrogen-oxygen fuel cells and electrolyzers. Here again the features of SPE fuel cells and SPE electrolyzers have shown a cell voltage stability in the order of 1 microvolt per hour. That level of stability were demonstrated for tens of thousands of hours in SPE fuel cells at up to 500 amps per square foot (ASF) current density. The SPE electrolyzers have demonstrated the same at 1000 ASF. Many future extraterrestrial applications for fuel cells require that they be self recharged. To translate the proven SPE cell life and stability into a highly reliable extraterrestrial electrical energy storage system, a simplification of supporting equipment is required. Static phase separation, static fluid transport and static thermal control will be most useful in producting required system reliability. Although some 200,000 SPE fuel cell hours were recorded in earth orbit with static fluid phase separation, no SPE electrolyzer has, as yet, operated in space.
Optimization for Peptide Sample Preparation for Urine Peptidomics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigdel, Tara K.; Nicora, Carrie D.; Hsieh, Szu-Chuan
2014-02-25
Analysis of native or endogenous peptides in biofluids can provide valuable insights into disease mechanisms. Furthermore, the detected peptides may also have utility as potential biomarkers for non-invasive monitoring of human diseases. The non-invasive nature of urine collection and the abundance of peptides in the urine makes analysis by high-throughput ‘peptidomics’ methods , an attractive approach for investigating the pathogenesis of renal disease. However, urine peptidomics methodologies can be problematic with regards to difficulties associated with sample preparation. The urine matrix can provide significant background interference in making the analytical measurements that it hampers both the identification of peptides andmore » the depth of the peptidomics read when utilizing LC-MS based peptidome analysis. We report on a novel adaptation of the standard solid phase extraction (SPE) method to a modified SPE (mSPE) approach for improved peptide yield and analysis sensitivity with LC-MS based peptidomics in terms of time, cost, clogging of the LC-MS column, peptide yield, peptide quality, and number of peptides identified by each method. Expense and time requirements were comparable for both SPE and mSPE, but more interfering contaminants from the urine matrix were evident in the SPE preparations (e.g., clogging of the LC-MS columns, yellowish background coloration of prepared samples due to retained urobilin, lower peptide yields) when compared to the mSPE method. When we compared data from technical replicates of 4 runs, the mSPE method provided significantly improved efficiencies for the preparation of samples from urine (e.g., mSPE peptide identification 82% versus 18% with SPE; p = 8.92E-05). Additionally, peptide identifications, when applying the mSPE method, highlighted the biology of differential activation of urine peptidases during acute renal transplant rejection with distinct laddering of specific peptides, which was obscured for most proteins when utilizing the conventional SPE method. In conclusion, the mSPE method was found to be superior to the conventional, standard SPE method for urine peptide sample preparation when applying LC-MS peptidomics analysis due to the optimized sample clean up that provided improved experimental inference from the confidently identified peptides.« less
Meyer, M.T.; Lee, E.A.; Ferrell, G.M.; Bumgarner, J.E.; Varns, Jerry
2007-01-01
This report describes the performance of an offline tandem solid-phase extraction (SPE) method and an online SPE method that use liquid chromatography/mass spectrometry for the analysis of 23 and 35 antibiotics, respectively, as used in several water-quality surveys conducted since 1999. In the offline tandem SPE method, normalized concentrations for the quinolone, macrolide, and sulfonamide antibiotics in spiked environmental samples averaged from 81 to 139 percent of the expected spiked concentrations. A modified standard-addition technique was developed to improve the quantitation of the tetracycline antibiotics, which had 'apparent' concentrations that ranged from 185 to 1,200 percent of their expected spiked concentrations in matrix-spiked samples. In the online SPE method, normalized concentrations for the quinolone, macrolide, sulfonamide, and tetracycline antibiotics in matrix-spiked samples averaged from 51 to 142 percent of their expected spiked concentrations, and the beta-lactam antibiotics in matrix-spiked samples averaged from 22 to 76 percent of their expected spiked concentration. Comparison of 44 samples analyzed by both the offline tandem SPE and online SPE methods showed 50 to 100 percent agreement in sample detection for overlapping analytes and 68 to 100 percent agreement in a presence-absence comparison for all analytes. The offline tandem and online SPE methods were compared to an independent method that contains two overlapping antibiotic compounds, sulfamethoxazole and trimethoprim, for 96 and 44 environmental samples, respectively. The offline tandem SPE showed 86 and 92 percent agreement in sample detection and 96 and 98 percent agreement in a presence-absence comparison for sulfamethoxazole and trimethoprim, respectively. The online SPE method showed 57 and 56 percent agreement in sample detection and 72 and 91 percent agreement in presence-absence comparison for sulfamethoxazole and trimethoprim, respectively. A linear regression with an R2 of 0.91 was obtained for trimethoprim concentrations, and an R2 of 0.35 was obtained for sulfamethoxazole concentrations determined from samples analyzed by the offline tandem SPE and online SPE methods. Linear regressions of trimethoprim and sulfamethoxazole concentrations determined from samples analyzed by the offline tandem SPE method and the independent M3 pharmaceutical method yielded R2 of 0.95 and 0.87, respectively. Regressed comparison of the offline tandem SPE method to the online SPE and M3 methods showed that the online SPE method gave higher concentrations for sulfamethoxazole and trimethoprim than were obtained from the offline tandem SPE or M3 methods.
Molecular alteration of marine dissolved organic matter under experimental hydrothermal conditions
NASA Astrophysics Data System (ADS)
Hawkes, Jeffrey A.; Hansen, Christian T.; Goldhammer, Tobias; Bach, Wolfgang; Dittmar, Thorsten
2016-02-01
Marine dissolved organic matter (DOM) is a large (660 Pg) pool of reduced carbon that is subject to thermal alteration in hydrothermal systems and sedimentary basins. In natural high-temperature hydrothermal systems, DOM is almost completely removed, but the mechanism and temperature dependence of this removal have not been studied to date. We investigated molecular-level changes to DOM that was solid-phase extracted (SPE-DOM) from the deep ocean of the North Pacific Ocean. This complex molecular mixture was experimentally exposed to temperatures between 100 and 380 °C over the course of two weeks in artificial seawater, and was then characterised on a molecular level via ultrahigh-resolution Fourier-transform ion cyclotron mass spectrometry (FT-ICR-MS). Almost 93% of SPE-DOM was removed by the treatment at 380 °C, and this removal was accompanied by a consistent pattern of SPE-DOM alteration across the temperatures studied. Higher molecular weight and more oxygen rich compounds were preferentially removed, suggesting that decarboxylation and dehydration of carboxylic acid and alcohol groups are the most rapid degradation mechanisms. Nitrogen containing compounds followed the same overall trends as those containing just C, H and O up to 300 °C. Above this temperature, the most highly altered samples contained very little of the original character of marine DOM, instead being mainly composed of very low intensity N- and S- containing molecules with a high H/C ratio (>1.5). Our results suggest that abiotic hydrothermal alteration of SPE-DOM may already occur at temperatures above 68 °C. Our experiments were conducted without a sedimentary or mineral phase, and demonstrate that profound molecular alteration and almost complete removal of marine SPE-DOM requires nothing more than heating in a seawater matrix.
Wilson, Jolaine M.; Sanzari, Jenine K.; Diffenderfer, Eric S.; Yee, Stephanie S.; Seykora, John T.; Maks, Casey; Ware, Jeffrey H.; Litt, Harold I.; Reetz, Jennifer A.; McDonough, James; Weissman, Drew; Kennedy, Ann R.; Cengel, Keith A.
2011-01-01
In a solar particle event (SPE), an unshielded astronaut would receive proton radiation with an energy profile that produces a highly inhomogeneous dose distribution (skin receiving a greater dose than internal organs). The novel concept of using megavoltage electron-beam radiation to more accurately reproduce both the total dose and the dose distribution of SPE protons and make meaningful RBE comparisons between protons and conventional radiation has been described previously. Here, Yucatan minipigs were used to determine the effects of a superficial, SPE-like proton dose distribution using megavoltage electrons. In these experiments, dose-dependent increases in skin pigmentation, ulceration, keratinocyte necrosis and pigment incontinence were observed. Five of 18 animals (one each exposed to 7.5 Gy and 12.5 Gy radiation and three exposed to 25 Gy radiation) developed symptomatic, radiation-associated pneumonopathy approximately 90 days postirradiation. The three animals from the highest dose group showed evidence of mycoplasmal pneumonia along with radiation pneumonitis. Moreover, delayed-type hypersensitivity was found to be altered, suggesting that superficial irradiation of the skin with ionizing radiation might cause immune dysfunction or dysregulation. In conclusion, using total doses, patterns of dose distribution, and dose rates that are compatible with potential astronaut exposure to SPE radiation, animals experienced significant toxicities that were qualitatively different from toxicities previously reported in pigs for homogeneously delivered radiation at similar doses. PMID:21859326
Revisiting the Stanford prison experiment: could participant self-selection have led to the cruelty?
Carnahan, Thomas; McFarland, Sam
2007-05-01
The authors investigated whether students who selectively volunteer for a study of prison life possess dispositions associated with behaving abusively. Students were recruited for a psychological study of prison life using a virtually identical newspaper ad as used in the Stanford Prison Experiment (SPE; Haney, Banks & Zimbardo, 1973) or for a psychological study, an identical ad minus the words of prison life. Volunteers for the prison study scored significantly higher on measures of the abuse-related dispositions of aggressiveness, authoritarianism, Machiavellianism, narcissism, and social dominance and lower on empathy and altruism, two qualities inversely related to aggressive abuse. Although implications for the SPE remain a matter of conjecture, an interpretation in terms of person-situation interactionism rather than a strict situationist account is indicated by these findings. Implications for interpreting the abusiveness of American military guards at Abu Ghraib Prison also are discussed.
Solar Energetic Particles Events and Human Exploration: Measurements in a Space Habitat
NASA Astrophysics Data System (ADS)
Narici, L.; Berrilli, F.; Casolino, M.; Del Moro, D.; Forte, R.; Giovannelli, L.; Martucci, M.; Mergè, M.; Picozza, P.; Rizzo, A.; Scardigli, S.; Sparvoli, R.; Zeitlin, C.
2016-12-01
Solar activity is the source of Space Weather disturbances. Flares, CME and coronal holes modulate physical conditions of circumterrestrial and interplanetary space and ultimately the fluxes of high-energy ionized particles, i.e., solar energetic particle (SEP) and galactic cosmic ray (GCR) background. This ionizing radiation affects spacecrafts and biological systems, therefore it is an important issue for human exploration of space. During a deep space travel (for example the trip to Mars) radiation risk thresholds may well be exceeded by the crew, so mitigation countermeasures must be employed. Solar particle events (SPE) constitute high risks due to their impulsive high rate dose. Forecasting SPE appears to be needed and also specifically tailored to the human exploration needs. Understanding the parameters of the SPE that produce events leading to higher health risks for the astronauts in deep space is therefore a first priority issue. Measurements of SPE effects with active devices in LEO inside the ISS can produce important information for the specific SEP measured, relative to the specific detector location in the ISS (in a human habitat with a shield typical of manned space-crafts). Active detectors can select data from specific geo-magnetic regions along the orbits, allowing geo-magnetic selections that best mimic deep space radiation. We present results from data acquired in 2010 - 2012 by the detector system ALTEA inside the ISS (18 SPEs detected). We compare this data with data from the detector Pamela on a LEO satellite, with the RAD data during the Curiosity Journey to Mars, with GOES data and with several Solar physical parameters. While several features of the radiation modulation are easily understood by the effect of the geomagnetic field, as an example we report a proportionality of the flux in the ISS with the energetic proton flux measured by GOES, some features appear more difficult to interpret. The final goal of this work is to find the characteristics of solar events leading to highest radiation risks in a human habitat during deep space exploration to best focus the needed forecasting.
NASA Astrophysics Data System (ADS)
Watanabe, Kentaro; Taniguchi, Tatsuhiko; Sakane, Shunya; Aoki, Shunsuke; Suzuki, Takeyuki; Fujita, Takeshi; Nakamura, Yoshiaki
2017-05-01
Si-based epitaxial β-FeSi2 thin films are attractive as materials for on-chip thermoelectric power generators. We investigated the structure, crystallinity, and thermoelectric properties of β-FeSi2 thin films epitaxially grown on Si(111) substrates by using three different techniques: conventional reactive deposition epitaxy followed by molecular beam epitaxy (RDE+MBE), solid phase epitaxy (SPE) based on codeposition of Fe and Si presented previously, and SPE followed by MBE (SPE+MBE) presented newly by this work. Their epitaxial growth temperatures were fixed at 530 °C for comparison. RDE+MBE thin films exhibited high crystalline quality, but rough surfaces and rugged β-FeSi2/Si(111) interfaces. On the other hand, SPE thin films showed flat surfaces and abrupt β-FeSi2/Si(111) interfaces but low crystallinity. We found that SPE+MBE thin films realized crystallinity higher than SPE thin films, and also had flatter surfaces and sharper interfaces than RDE+MBE thin films. In SPE+MBE thin film growth, due to the initial SPE process with low temperature codeposition, thermal interdiffusion of Fe and Si was suppressed, resulting in the surface flatness and abrupt interface. Second high temperature MBE process improved the crystallinity. We also investigated thermoelectric properties of these β-FeSi2 thin films. Structural factors affecting the thermoelectric properties of RDE+MBE, SPE, and SPE+MBE thin films were investigated.
Oki, Tomomi; Suzuki, Mayumi; Nishioka, Yasuhiko; Yasuda, Akio; Umegaki, Keizo; Yamada, Shizuo
2005-04-01
We examined the effects of saw palmetto extract (SPE) on the rat micturition reflex and on autonomic receptors in the lower urinary tract. The effect of SPE was examined on cystometrograms of anesthetized rats induced by intravesical infusion of saline or 0.1% acetic acid. SHR/NDmc-cp (cp/cp) rats received repeat oral administration of SPE and nighttime urodynamic function was determined. The autonomic receptor binding activity of SPE in the rat bladder and prostate was examined by radioligand binding assay. Intraduodenal administration of SPE (60 mg/kg) in anesthetized rat cystometry caused a significant increase in the micturition interval, micturition volume and bladder capacity during intravesical saline infusion. Also, similar administration of SPE at doses of 12 and 20 mg/kg significantly reversed the shortened micturition interval as well as the decreased micturition volume and bladder capacity due to 0.1% acetic acid infusion in a dose dependent manner. In conscious SHR/NDmc-cp (cp/cp) rats repeat oral administration of SPE (6 mg/kg daily) constantly increased the micturition interval and concomitantly decreased voiding frequency. SPE inhibited specific binding of [H]NMS ([N-methyl-H]scopolamine methyl chloride) (bladder) and [H]prazosin (prostate) with IC50 values of 46.1 and 183 microg/ml, respectively. SPE significantly alleviates urodynamic symptoms in hyperactive rat bladders by increasing bladder capacity and subsequently prolonging the micturition interval. Our data may support the clinical efficacy of SPE for the treatment of lower urinary tract symptoms.
Golińska, E; van der Linden, M; Więcek, G; Mikołajczyk, D; Machul, A; Samet, A; Piórkowska, A; Dorycka, M; Heczko, P B; Strus, M
2016-05-01
Invasive group A streptococcal (GAS) infections constitute an important epidemiological problem. Many cases occur in women during the postnatal period. The objective of this study was to evaluate the presence of the genes responsible for production of iron-chelating protein (perR) and superantigens (speA, speB, speC, speF, speG, speH, speI, speJ, speK, speL, speM, smeZ, and ssa) in S. pyogenes strains isolated from invasive infections in women after delivery. Furthermore, this study sought to verify whether S. pyogenes strains show special phenotypic and genotypic (sla, spy1325) characteristics that may play a decisive role in adherence to the genital tract epithelium. Moreover, the emm-types and antibiotic susceptibility were determined. We tested 30 invasive S. pyogenes strains isolated from postpartum invasive infection and 37 GAS control strains isolated from the genital tracts of asymptomatic multiparous women. The majority of the tested strains were shown to express two types of emm genes (1 and 28), though emm -12, -28, -75 and -89 were uniquely expressed in the group of strains isolated from invasive infections. A significantly higher prevalence of perR in the strains from puerperal fever was shown. Significant differences were also found between the two groups with respect to the incidence of the genes related to adherence; GAS strains originating from women with sepsis/puerperal fever showed presence of these genes less frequently than those of the control group. Although differences in frequencies of the gene coding for various superantigens were noted between the compared groups of GAS strains, they were not significant.
Stockbauer, K E; Magoun, L; Liu, M; Burns, E H; Gubba, S; Renish, S; Pan, X; Bodary, S C; Baker, E; Coburn, J; Leong, J M; Musser, J M
1999-01-05
The human pathogenic bacterium group A Streptococcus produces an extracellular cysteine protease [streptococcal pyrogenic exotoxin B (SpeB)] that is a critical virulence factor for invasive disease episodes. Sequence analysis of the speB gene from 200 group A Streptococcus isolates collected worldwide identified three main mature SpeB (mSpeB) variants. One of these variants (mSpeB2) contains an Arg-Gly-Asp (RGD) sequence, a tripeptide motif that is commonly recognized by integrin receptors. mSpeB2 is made by all isolates of the unusually virulent serotype M1 and several other geographically widespread clones that frequently cause invasive infections. Only the mSpeB2 variant bound to transfected cells expressing integrin alphavbeta3 (also known as the vitronectin receptor) or alphaIIbbeta3 (platelet glycoprotein IIb-IIIa), and binding was blocked by a mAb that recognizes the streptococcal protease RGD motif region. In addition, mSpeB2 bound purified platelet integrin alphaIIbbeta3. Defined beta3 mutants that are altered for fibrinogen binding were defective for SpeB binding. Synthetic peptides with the mSpeB2 RGD motif, but not the RSD sequence present in other mSpeB variants, blocked binding of mSpeB2 to transfected cells expressing alphavbeta3 and caused detachment of cultured human umbilical vein endothelial cells. The results (i) identify a Gram-positive virulence factor that directly binds integrins, (ii) identify naturally occurring variants of a documented Gram-positive virulence factor with biomedically relevant differences in their interactions with host cells, and (iii) add to the theme that subtle natural variation in microbial virulence factor structure alters the character of host-pathogen interactions.
NASA Astrophysics Data System (ADS)
Seki, T.; Iguchi, R.; Takanashi, K.; Uchida, K.
2018-04-01
Spatial distribution of temperature modulation due to the anomalous Ettingshausen effect (AEE) is visualized in a ferromagnetic FePt thin film with in-plane and out-of-plane magnetizations using the lock-in thermography technique. Comparing the AEE of FePt with the spin Peltier effect (SPE) of a Pt/yttrium iron garnet junction provides direct evidence of different symmetries of AEE and SPE. Our experiments and numerical calculations reveal that the distribution of heat sources induced by AEE strongly depends on the direction of magnetization, leading to the remarkable different temperature profiles in the FePt thin film between the in-plane and perpendicularly magnetized configurations.
2014-03-01
materials (2). .......................................................2 Figure 2. Theoretical SPE phase region in Temperature vs. Size for PbZr0.6Ti0.4O3...ferroelasticity, ferromagnetism , and ferrotoroidicity (whose existence has not yet been proven by physical observation). A multiferroic material exhibits more... materials all belong to the class of primary ferroics. As such, we can expect analogous behavior in certain physical properties across this class of
Wadsworth, Teri L; Worstell, Teresa R; Greenberg, Norman M; Roselli, Charles E
2007-05-01
Several of the proposed mechanisms for the actions of the liposterolic extract of saw palmetto (SPE) are exerted on known risk factors for prostate cancer (CaP). This study investigated whether SPE could prevent the progression of CaP in a transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Two different doses of SPE designed to deliver 50 mg/kg/day SPE and 300 mg/kg/day SPE were administered in a custom diet to TRAMP mice for 12 or 24 weeks. Body and organ weights were used to evaluate toxicity, and radioimmunoassay was used to measure plasma and tissue androgen levels to monitor effects of SPE on 5alpha reductase activity. Prostate tissues were evaluated histologically to determine the effect of treatment on tumor grade, cell proliferation, and apoptosis. Treatment with 300 mg/kg/day SPE from 4 to 24 weeks of age significantly reduced the concentration of 5alpha-dihydrotestosterone (DHT) in the prostate and resulted in a significant increase in apoptosis and significant decrease in pathological tumor grade and frank tumor incidence. Dietary supplementation with SPE may be effective in controlling CaP tumorigenesis. SPE suppression of prostatic DHT levels lends support to the hypothesis that inhibition of the enzyme 5alpha-reductase is a mechanism of action of this substance. (c) 2007 Wiley-Liss, Inc.
Exposure models for air pollutants often adjust for effects of the physical environment (e.g., season, urban vs. rural populations) in order to improve exposure and risk predictions. Yet attempts are seldom made to attribute variability in observed outdoor air measurements to spe...
NASA Astrophysics Data System (ADS)
Bera, Aindrila; Ghosh, Manas
2017-10-01
We explore the profiles of self-polarization effect (SPE) of doped GaAs QD under simultaneous presence of hydrostatic pressure (HP), temperature and in presence of noise. Noise term carries Gaussian white character and it has been administered to the system via two different pathways; additive and multiplicative. Profiles of SPE have been monitored as a function of HP, temperature and noise strength. Under a given condition of HP and temperature, noise marks its prominent signature on the SPE profile. However, the extent to which noise affects the SPE profile visibly depends on the noise strength and the pathway through which noise is introduced. As interesting observations we have found that SPE exhibits minimization at a pressure of ∼ 170 kbar in absence of noise and at ∼ 150 kbar when noise is present. Furthermore, in presence of multiplicative noise SPE exhibits a very faint decrease with increase in T up to T ∼ 420 K. However, beyond T ∼ 420 K, further increase in temperature causes abrupt fall of SPE in a highly sharp way. The findings highlight viable ways of tuning SPE of doped QD system through subtle interplay between HP, temperature and noise.
Developments in coupled solid-phase extraction-capillary electrophoresis 2013-2015.
Ramautar, Rawi; Somsen, Govert W; de Jong, Gerhardus J
2016-01-01
An overview of the design and application of coupled solid-phase extraction-capillary electrophoresis (SPE-CE) systems reported in the literature between July 2013 and June 2015 is provided in this paper. The present article is a continuation of our previous review papers on this topic which covered the time period 2000-2013 (Electrophoresis 2008, 29, 108-128; Electrophoresis 2010, 31, 44-54; Electrophoresis 2012, 33, 243-250; Electrophoresis 2014, 35, 128-137). The use of in-line and on-line SPE-CE approaches is treated and outlined in this review. Recent advancements, such as, for example, the use of aptamers as affinity material for in-line SPE-CE, the use of a bead string design for in-line fritless SPE-CE, and new interfacing techniques for the on-line coupling of SPE to CE, are outlined. Selected examples demonstrate the applicability of the coupled SPE-CE systems for biomedical, pharmaceutical, environmental, and food studies. A complete overview of the recent SPE-CE studies is given in table format, providing information on sample type, SPE sorbent, coupling mode, detection mode, and LOD. Finally, some general conclusions and perspectives are provided. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Engelen, Mariëlle P K J; Rutten, Erica P A; De Castro, Carmen L N; Wouters, Emiel F M; Schols, Annemie M W J; Deutz, Nicolaas E P
2012-09-01
Exercise is known to improve physical functioning and health status in Chronic Obstructive Pulmonary Disease (COPD). Recently, disturbances in protein turnover and amino acid kinetics have been observed after exercise in COPD. The objective was to investigate which dairy protein is able to positively influence the protein metabolic response to exercise in COPD. 8 COPD patients and 8 healthy subjects performed a cycle test on two days while ingesting casein or whey protein. Whole body protein breakdown (WbPB), synthesis (WbPS), splanchnic amino acid extraction (SPE), and NetWbPS (=WbPS-WbPB) were measured using stable isotope methodology during 20 min of exercise (at 50% peak work load of COPD group). The controls performed a second exercise test at the same relative workload. Exercise was followed by 1 h of recovery. In the healthy group, WbPS, SPE, and NetPS were higher during casein than during whey feeding (P<.01). WbPS and NetPS were higher during exercise, independent of exercise intensity (P<.01). NetPS was higher during casein feeding in COPD due to lower WbPB (P<.05). Higher SPE was found during exercise during casein and whey feeding in COPD (P<.05). Lactate levels during exercise were higher in COPD (P<.05) independent of the protein. Post-exercise, lower NetPS values were found independent of protein type in both groups. Casein resulted in more protein anabolism than whey protein which was maintained during and following exercise in COPD. Optimizing protein intake might be of importance for muscle maintenance during daily physical activities in COPD. Copyright © 2012 Elsevier Inc. All rights reserved.
Brouwer, Derk H; Aitken, Robert J; Oppl, Reinhard; Cherrie, John W
2005-09-01
This article proposes a common language for better understanding processes involved in dermal exposure and skin protection. A conceptual model has been developed that systematically describes the transport of agent mass from sources, eventually resulting in "loading" of the skin surface or the skin contaminant layer. In view of a harmonized glossary of exposure terminology this is considered the exposure surface. Loading is defined as agent mass present in this layer divided by the exposure surface area. Skin protective equipment (SPE) is meant to reduce uptake, that is, an agent crosses the absorption barrier of the skin, by intervening in the processes of loading the exposure surface; however, the design of the equipment may fail to cover skin surface entirely. In addition, part of the mass intercepted by the SPE may reach the skin surface either by permeation, penetration, or by transfer when touching the contaminated exterior of the SPE. Evaluation of SPE performance has earlier focused on chemical resistance performance testing for permeation, penetration, or degradation of SPE-materials. In use-scenario practice, however, all processes will occur concurrently. Thus, SPE field performance evaluation including user-SPE interaction complementary to material testing is warranted. Results of laboratory testing for SPE-materials are reported as substance-specific breakthrough times and permeation rates. SPE field performance should be evaluated for reduction of either uptake or parameters that reflect the outcome of dermal exposure. Ideally, this should be based on the results of intervention-type workplace studies, for (e.g., assessment of exposure loading). The level of reduction can be expressed as a protection factor (ratio without/with SPE) for different parameters of dermal exposure or uptake. It is concluded that for evaluation of SPE-type performance, generic protection factors can be derived for substance-independent processes (e.g., reduction of exposure loading) but not for substance-specific reduction of uptake.
Wiese, Stefanie; Wubshet, Sileshi G; Nielsen, John; Staerk, Dan
2013-12-15
This work describes the coupling of a microplate-based antioxidant assay with a hyphenated system consisting of high-performance liquid chromatography-solid-phase extraction-nuclear magnetic resonance spectroscopy, i.e., HPLC-SPE-NMR/high-resolution antioxidant assay, for the analysis of complex food extracts. The applicability of the microplate-based antioxidant assay for high-resolution screening of common food phenolics as well as parameters related to their trapping efficiency, elution behavior, and recovery on/from SPE cartridges are described. It was found that the microplate-based high-resolution antioxidant assay is an attractive and easy implementable alternative to direct on-line screening methods. Furthermore, it was shown that Resin SH and Resin GP SPE material are superior to RP C18HD for trapping of phenolic compounds. Proof-of-concept study was performed with caper bud extract, revealing the most important antioxidants to be quercetin, kaempferol, rutin, kaempferol-3-O-β-rutinoside and N(1),N(5),N(10)-triphenylpropenoyl spermidine amides. Targeted isolation of the latter, and comprehensive NMR experiments showed them to be N(1),N(10)-di-(E)-caffeoyl-N(5)-p-(E)-coumaroyl spermidine, N(1)-(E)-caffeoyl-N(5),N(10)-di-p-(E)-coumaroyl spermidine, N(10)-(E)-caffeoyl-N(1),N(5)-di-p-(E)-coumaroyl spermidine, and N(1),N(5),N(10)-tri-p-(E)-coumaroyl spermidine amides. Copyright © 2013 Elsevier Ltd. All rights reserved.
Endo, Shun; Mishima, Eikan; Takeuchi, Yoichi; Ohi, Takashi; Ishida, Masatsugu; Yanai, Masaru; Kiyomoto, Hideyasu; Nagasawa, Tasuku; Ito, Sadayoshi
2015-12-01
Periodontal disease is a less common but important cause of septic pulmonary embolism (SPE). However, the pathogens causing periodontal disease-associated SPE (PD-SPE) have been poorly understood. Actinomyces species are resident microbiota in the oral cavity. Here we report a case of PD-SPE caused by Actinomyces species, which was identified by anaerobic culture of bronchoalveolar lavage fluid (BAL). A 64-year-old Asian man, complicated with severe chronic periodontitis, was admitted with chest pain and fever. Chest CT revealed multiple bilateral pulmonary nodules located subpleurally. We diagnosed the case as SPE associated with periodontitis. Although blood cultures were negative for the usual 5-day incubation, anaerobic culture of the BAL fluid sample yielded Actinomyces species. Antibacterial therapy alone did not ameliorate the symptoms; however, additional dental treatment, including tooth extraction, promptly did. The patient was discharged 23 days after admission. The 3-month follow-up revealed no recurrence of the symptoms and complete resolution of the lung lesions. This case demonstrated that Actinomyces species can cause PD-SPE. Additionally, clinicians should consider performing appropriate anaerobic culture of BAL fluid to identify the pathogen of SPE, and to ordering dental treatment, if necessary, in addition to antibiotics for the initial management of PD-SPE.
von Guggenberg, Elisabeth; Penz, Barbara; Kemmler, Georg; Virgolini, Irene; Decristoforo, Clemens
2006-02-01
[99mTc-EDDA-HYNIC-D-Phe1,Tyr3]-octreotide (99mTc-EDDA-HYNIC-TOC) is an alternative radioligand for somatostatin receptor (SSTR) scintigraphy of neuroendocrine tumours. In order to allow a rapid and accurate determination of the quality in the clinical routine the aim of this study was to evaluate different methods of radiochemical purity (RCP) testing. Three different methods of RCP testing were compared: high-performance liquid chromatography (HPLC), thin layer chromatography (TLC) and minicolumn (Sep-Pak purification = SPE). HPLC was shown to be the most effective method for the quality control. The use of TLC and SPE is only recommended after sufficient practical labelling experience.
Seismic Methods of Identifying Explosions and Estimating Their Yield
NASA Astrophysics Data System (ADS)
Walter, W. R.; Ford, S. R.; Pasyanos, M.; Pyle, M. L.; Myers, S. C.; Mellors, R. J.; Pitarka, A.; Rodgers, A. J.; Hauk, T. F.
2014-12-01
Seismology plays a key national security role in detecting, locating, identifying and determining the yield of explosions from a variety of causes, including accidents, terrorist attacks and nuclear testing treaty violations (e.g. Koper et al., 2003, 1999; Walter et al. 1995). A collection of mainly empirical forensic techniques has been successfully developed over many years to obtain source information on explosions from their seismic signatures (e.g. Bowers and Selby, 2009). However a lesson from the three DPRK declared nuclear explosions since 2006, is that our historic collection of data may not be representative of future nuclear test signatures (e.g. Selby et al., 2012). To have confidence in identifying future explosions amongst the background of other seismic signals, and accurately estimate their yield, we need to put our empirical methods on a firmer physical footing. Goals of current research are to improve our physical understanding of the mechanisms of explosion generation of S- and surface-waves, and to advance our ability to numerically model and predict them. As part of that process we are re-examining regional seismic data from a variety of nuclear test sites including the DPRK and the former Nevada Test Site (now the Nevada National Security Site (NNSS)). Newer relative location and amplitude techniques can be employed to better quantify differences between explosions and used to understand those differences in term of depth, media and other properties. We are also making use of the Source Physics Experiments (SPE) at NNSS. The SPE chemical explosions are explicitly designed to improve our understanding of emplacement and source material effects on the generation of shear and surface waves (e.g. Snelson et al., 2013). Finally we are also exploring the value of combining seismic information with other technologies including acoustic and InSAR techniques to better understand the source characteristics. Our goal is to improve our explosion models and our ability to understand and predict where methods of identifying explosions and estimating their yield work well, and any circumstances where they may not.
Song, Xiaomin; Wang, Jing; Wu, Fang; Li, Xu; Teng, Maikun; Gong, Weimin
2005-01-01
SPE10 is an antifungal protein isolated from the seeds of Pachyrrhizus erosus. cDNA encoding a 47 amino acid peptide was cloned by RT-PCR and the gene sequence proved SPE10 to be a new member of plant defensin family. The synthetic cDNA with codons preferred in yeast was cloned into the pPIC9 plasmid directly in-frame with the secretion signal alpha-mating factor, and highly expressed in methylotrophic Pichia pastoris. Activity assays showed the recombinant SPE10 inhibited specifically the growth of several pathogenic fungi as native SPE10. Circular dichroism and fluorescence spectroscopy analysis indicated that the native and recombinant protein should have same folding, though there are eight cystein residues in the sequence. Several evidence suggested SPE10 should be the first dimeric plant defensin reported so far.
Romanoski, A J; Nestadt, G; Chahal, R; Merchant, A; Folstein, M F; Gruenberg, E M; McHugh, P R
1988-02-01
The authors describe the Standardized Psychiatric Examination (SPE), a new method for conducting psychiatric examinations in both clinical and research settings that preserves the clinical method. The SPE provides a consistent replicable format for eliciting and recording psychiatric history, signs, and symptoms without perturbing the patient-clinician interaction. By means of the SPE, the clinician can formulate diagnoses using DSM-III or ICD-9 criteria and yet generate CATEGO profiles derived from the Present State Examination, 9th edition. Psychiatrists using the SPE demonstrated high interrater reliability in ascertaining individual psychopathological symptoms (Kappa range, 0.55 to 1.0) and in making DSM-III diagnoses (Kappa range, 0.79 to 1.0) among a sample of study subjects (N = 43) drawn from both a psychiatric inpatient population and a large community sample of nonpatients from the Epidemiological Catchment Area (ECA) study. The implications of the SPE for clinical practice and for research are discussed.
Chattopadhyay, Manas K; Tabor, Celia White; Tabor, Herbert
2009-09-01
A strain of Escherichia coli was constructed in which all of the genes involved in polyamine biosynthesis--speA (arginine decarboxylase), speB (agmatine ureohydrolase), speC (ornithine decarboxylase), spe D (adenosylmethionine decarboxylase), speE (spermidine synthase), speF (inducible ornithine decarboxylase), cadA (lysine decarboxylase), and ldcC (lysine decarboxylase)--had been deleted. Despite the complete absence of all of the polyamines, the strain grew indefinitely in air in amine-free medium, albeit at a slightly (ca. 40 to 50%) reduced growth rate. Even though this strain grew well in the absence of the amines in air, it was still sensitive to oxygen stress in the absence of added spermidine. In contrast to the ability to grow in air in the absence of polyamines, this strain, surprisingly, showed a requirement for polyamines for growth under strictly anaerobic conditions.
Fifty years of solid-phase extraction in water analysis--historical development and overview.
Liska, I
2000-07-14
The use of an appropriate sample handling technique is a must in an analysis of organic micropollutants in water. The efforts to use a solid phase for the recovery of analytes from a water matrix prior to their detection have a long history. Since the first experimental trials using activated carbon filters that were performed 50 years ago, solid-phase extraction (SPE) has become an established sample preparation technique. The initial experimental applications of SPE resulted in widespread use of this technique in current water analysis and also to adoption of SPE into standardized analytical methods. During the decades of its evolution, chromatographers became aware of the advantages of SPE and, despite many innovations that appeared in the last decade, new SPE developments are still expected in the future. A brief overview of 50 years of the history of the use of SPE in organic trace analysis of water is given in presented paper.
Okabe, Masahiro; Kasai, Kenji; Yokoo, Takashi
2017-12-01
Pneumothorax secondary to septic pulmonary embolism (SPE) is rare but life-threatening. We herein report a long-term hemodialysis patient with psoas abscess caused by methicillin-resistant Staphylococcus aureus, associated with other muscle and splenic abscesses and SPE. Intravenous vancomycin treatment and percutaneous drainage of the psoas abscess rapidly improved her condition. However, the SPE lesions continued to increase, and right-sided pneumothorax occurred 10 days after treatment. The pneumothorax resolved after two months and SPE and all abscesses after four months of treatment. Since late-onset pneumothorax caused by SPE can occur despite successful treatment of the primary infection, care should be taken with such patients.
NASA Astrophysics Data System (ADS)
MacPhail, M. D.; Stump, B. W.; Zhou, R.
2017-12-01
The Source Phenomenology Experiment (SPE - Arizona) was a series of nine, contained and partially contained chemical explosions within the porphyry granite at the Morenci Copper mine in Arizona. Its purpose was to detonate, record and analyze seismic waveforms from these single-fired explosions. Ground motion data from the SPE is analyzed in this study to assess the uniqueness of the time domain moment tensor source representation and its ability to quantify containment and yield scaling. Green's functions were computed for each of the explosions based on a 1D velocity model developed for the SPE. The Green's functions for the sixteen, near-source stations focused on observations from 37 to 680 m. This study analyzes the three deepest, fully contained explosions with a depth of burial of 30 m and yields of 0.77e-3, 3.08e-3 and 6.17e-3 kt. Inversions are conducted within the frequency domain and moment tensors are decomposed into deviatoric and isotropic components to evaluate the effects of containment and yield on the resulting source representation. Isotropic moments are compared to those for other contained explosions as reported by Denny and Johnson, 1991, and are in good agreement with their scaling results. The explosions in this study have isotropic moments of 1.2e12, 3.1e12 and 6.1e13 n*m. Isotropic and Mzz moment tensor spectra are compared to Mueller-Murphy, Denny-Johnson and revised Heard-Ackerman (HA) models and suggest that the larger explosions fit the HA model better. Secondary source effects resulting from free surface interactions including the effects of spallation contribute to the resulting moment tensors which include a CLVD component. Hudson diagrams, using frequency domain moment tensor data, are computed as a tool to assess how these containment scenarios affect the source representation. Our analysis suggests that, within our band of interest (2-20 Hz), as the frequency increases, the source representation becomes more explosion like, peaking at around 20 Hz. These results guide additional analysis of the observational data and the practical resolution of physical phenomenology accompanying underground explosions.
Sun, Guangying; Liu, Yanfang; Ahat, Hasanjan; Shen, Aijin; Liang, Xinmiao; Xue, Xingya; Luo, Yuqin; Yang, Jian; Liu, Zhao-Sheng; Aisa, Haji Akber
2017-07-07
In this study, "two dimensional" molecularly imprinted solid-phase extraction (2D-MIP-SPE) of semi-preparative grade was constructed to fast purify ellagitannins in pomegranate husk extract with the help of crystallization and reverse-phase liquid chromatgoraphy (RPLC). Ellagic acid and punicalagin imprinted polymers were synthesized in batch mode and two semi-preparative MIP-SPE columns were individually packed. After investigaing "functional complementation", 2D-MIP-SPE was constructed using ellagic acid MIP and punicalagin MIP-SPE as the first and second dimension, respectively. Then, pomegranate husk extract was fast divided into four fractions individually enriching in ellagic acid, granatin A, punicalagin and ellagic acid glucoside by 2D-MIP-SPE. With the aid of crystallization and RPLC, ellagic acid (13.5mg) and punicalagin (53.4mg) were fast obtained in 30min. Ellagic acid glucoside was purified to the purity near 100% with a recovery of 86.1%. Granatin A (92%) was directly obtained by 2D-MIP-SPE with the recovery of 81.8%. All above indicated that 2D-MIP-SPE was highly efficient in natural product purification. The concept of "functional complementation" was expected to be a useful tool in the construction of 2D-MIP-SPE. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Z; Mashburn-Warren, L; Merritt, J; Federle, M J; Kreth, J
2017-10-01
The 5' untranslated region (5' UTR) of an mRNA molecule embeds important determinants that modify its stability and translation efficiency. In Streptococcus pyogenes, a strict human pathogen, a gene encoding a secreted protease (speB) has a large 5' UTR with unknown functions. Here we describe that a partial deletion of the speB 5' UTR caused a general accumulation of mRNA in the stationary phase, and that the mRNA accumulation was due to retarded mRNA degradation. The phenotype was observed in several M serotypes harboring the partial deletion of the speB 5' UTR. The phenotype was triggered by the production of the truncated speB 5' UTR, but not by the disruption of the intact speB 5' UTR. RNase Y, a major endoribonuclease, was previously shown to play a central role in bulk mRNA turnover in stationary phase. However, in contrast to our expectations, we observed a weaker interaction between the truncated speB 5' UTR and RNase Y compared with the wild-type, which suggests that other unidentified RNA degrading components are required for the pleiotropic effects observed from the speB UTR truncation. Our study demonstrates how S. pyogenes uses distinct mRNA degradation schemes in exponential and stationary growth phases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Narici, L.; Baiocco, G.; Berrilli, F.; Giraudo, M.; Ottolenghi, A.; Rizzo, A.; Salina, G.
2018-02-01
Understand the relationship between SPE precursors, the related SPE radiation inside the Deep Space Gateway, and the associated risk levels, validating existing models, proposing countermeasures actions via a real time, autonomous intelligent system.
Chauzeix, Jasmine; Laforêt, Marie-Pierre; Deveza, Mélanie; Crowther, Liam; Marcellaud, Elodie; Derouault, Paco; Lia, Anne-Sophie; Boyer, François; Bargues, Nicolas; Olombel, Guillaume; Jaccard, Arnaud; Feuillard, Jean; Gachard, Nathalie; Rizzo, David
2018-05-09
More than 35 years after the Binet classification, there is still a need for simple prognostic markers in chronic lymphocytic leukemia (CLL). Here, we studied the treatment-free survival (TFS) impact of normal serum protein electrophoresis (SPE) at diagnosis. One hundred twelve patients with CLL were analyzed. The main prognostic factors (Binet stage; lymphocytosis; IGHV mutation status; TP53, SF3B1, NOTCH1, and BIRC3 mutations; and cytogenetic abnormalities) were studied. The frequencies of IGHV mutation status, cytogenetic abnormalities, and TP53, SF3B1, NOTCH1, and BIRC3 mutations were not significantly different between normal and abnormal SPE. Normal SPE was associated with Binet stage A, nonprogressive disease for 6 months, lymphocytosis below 30 G/L, and the absence of the IGHV3-21 gene rearrangement which is associated with poor prognosis. The TFS of patients with normal SPE was significantly longer than that of patients with abnormal SPE (log-rank test: P = 0.0015, with 51% untreated patients at 5.6 years and a perfect plateau afterward vs. a median TFS at 2.64 years for abnormal SPE with no plateau). Multivariate analysis using two different Cox models and bootstrapping showed that normal SPE was an independent good prognostic marker for either Binet stage, lymphocytosis, or IGHV mutation status. TFS was further increased when both normal SPE and mutated IGHV were present (log-rank test: P = 0.008, median not reached, plateau at 5.6 years and 66% untreated patients). A comparison with other prognostic markers suggested that normal SPE could reflect slowly advancing CLL disease. Altogether, our results show that a combination of normal SPE and mutated IGHV genes defines a subgroup of patients with CLL who evolve very slowly and who might never need treatment. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Evolutionary paths of streptococcal and staphylococcal superantigens
2012-01-01
Background Streptococcus pyogenes (GAS) harbors several superantigens (SAgs) in the prophage region of its genome, although speG and smez are not located in this region. The diversity of SAgs is thought to arise during horizontal transfer, but their evolutionary pathways have not yet been determined. We recently completed sequencing the entire genome of S. dysgalactiae subsp. equisimilis (SDSE), the closest relative of GAS. Although speG is the only SAg gene of SDSE, speG was present in only 50% of clinical SDSE strains and smez in none. In this study, we analyzed the evolutionary paths of streptococcal and staphylococcal SAgs. Results We compared the sequences of the 12–60 kb speG regions of nine SDSE strains, five speG+ and four speG–. We found that the synteny of this region was highly conserved, whether or not the speG gene was present. Synteny analyses based on genome-wide comparisons of GAS and SDSE indicated that speG is the direct descendant of a common ancestor of streptococcal SAgs, whereas smez was deleted from SDSE after SDSE and GAS split from a common ancestor. Cumulative nucleotide skew analysis of SDSE genomes suggested that speG was located outside segments of steeper slopes than the stable region in the genome, whereas the region flanking smez was unstable, as expected from the results of GAS. We also detected a previously undescribed staphylococcal SAg gene, selW, and a staphylococcal SAg -like gene, ssl, in the core genomes of all Staphylococcus aureus strains sequenced. Amino acid substitution analyses, based on dN/dS window analysis of the products encoded by speG, selW and ssl suggested that all three genes have been subjected to strong positive selection. Evolutionary analysis based on the Bayesian Markov chain Monte Carlo method showed that each clade included at least one direct descendant. Conclusions Our findings reveal a plausible model for the comprehensive evolutionary pathway of streptococcal and staphylococcal SAgs. PMID:22900646
Vps33b pathogenic mutations preferentially affect VIPAS39/SPE-39-positive endosomes.
Tornieri, Karine; Zlatic, Stephanie A; Mullin, Ariana P; Werner, Erica; Harrison, Robert; L'hernault, Steven W; Faundez, Victor
2013-12-20
Mutations in Vps33 isoforms cause pigment dilution in mice (Vps33a, buff) and Drosophila (car) and the neurogenic arthrogryposis, renal dysfunction and cholestasis syndrome in humans (ARC1, VPS33B). The later disease is also caused by mutations in VIPAS39, (Vps33b interacting protein, apical-basolateral polarity regulator, SPE-39 homolog; ARC2), a protein that interacts with the HOmotypic fusion and Protein Sorting (HOPS) complex, a tether necessary for endosome-lysosome traffic. These syndromes offer insight into fundamental endosome traffic processes unique to metazoans. However, the molecular and cellular mechanisms underlying these mutant phenotypes remain poorly understood. Here we investigate interactions of wild-type and disease-causing mutations in VIPAS39/SPE-39 and Vps33b by yeast two hybrid, immunoprecipitation and quantitative fluorescent microscopy. We find that although few mutations prevent interaction between VIPAS39/SPE-39 and Vps33b, some mutants fragment VIPAS39/SPE-39-positive endosomes, but all mutants alter the subcellular localization of Vps33b to VIPAS39/SPE-39-positive endosomes. Our data suggest that the ARC syndrome may result through impaired VIPAS39/SPE-39 and Vps33b-dependent endosomal maturation or fusion.
Alasonati, Enrica; Fabbri, Barbara; Fettig, Ina; Yardin, Catherine; Del Castillo Busto, Maria Estela; Richter, Janine; Philipp, Rosemarie; Fisicaro, Paola
2015-03-01
In Europe the maximum allowable concentration for tributyltin (TBT) compounds in surface water has been regulated by the water framework directive (WFD) and daughter directive that impose a limit of 0.2 ng L(-1) in whole water (as tributyltin cation). Despite the large number of different methodologies for the quantification of organotin species developed in the last two decades, standardised analytical methods at required concentration level do not exist. TBT quantification at picogram level requires efficient and accurate sample preparation and preconcentration, and maximum care to avoid blank contamination. To meet the WFD requirement, a method for the quantification of TBT in mineral water at environmental quality standard (EQS) level, based on solid phase extraction (SPE), was developed and optimised. The quantification was done using species-specific isotope dilution (SSID) followed by gas chromatography (GC) coupled to inductively coupled plasma mass spectrometry (ICP-MS). The analytical process was optimised using a design of experiment (DOE) based on a factorial fractionary plan. The DOE allowed to evaluate 3 qualitative factors (type of stationary phase and eluent, phase mass and eluent volume, pH and analyte ethylation procedure) for a total of 13 levels studied, and a sample volume in the range of 250-1000 mL. Four different models fitting the results were defined and evaluated with statistic tools: one of them was selected and optimised to find the best procedural conditions. C18 phase was found to be the best stationary phase for SPE experiments. The 4 solvents tested with C18, the pH and ethylation conditions, the mass of the phases, the volume of the eluents and the sample volume can all be optimal, but depending on their respective combination. For that reason, the equation of the model conceived in this work is a useful decisional tool for the planning of experiments, because it can be applied to predict the TBT mass fraction recovery when the experimental conditions are drawn. This work shows that SPE is a convenient technique for TBT pre-concentration at pico-trace levels and a robust approach: in fact (i) number of different experimental conditions led to satisfactory results and (ii) the participation of two institutes to the experimental work did not impact the developed model. Copyright © 2014 Elsevier B.V. All rights reserved.
Dermatopathology effects of simulated solar particle event radiation exposure in the porcine model.
Sanzari, Jenine K; Diffenderfer, Eric S; Hagan, Sarah; Billings, Paul C; Gridley, Daila S; Seykora, John T; Kennedy, Ann R; Cengel, Keith A
2015-07-01
The space environment exposes astronauts to risks of acute and chronic exposure to ionizing radiation. Of particular concern is possible exposure to ionizing radiation from a solar particle event (SPE). During an SPE, magnetic disturbances in specific regions of the Sun result in the release of intense bursts of ionizing radiation, primarily consisting of protons that have a highly variable energy spectrum. Thus, SPE events can lead to significant total body radiation exposures to astronauts in space vehicles and especially while performing extravehicular activities. Simulated energy profiles suggest that SPE radiation exposures are likely to be highest in the skin. In the current report, we have used our established miniature pig model system to evaluate the skin toxicity of simulated SPE radiation exposures that closely resemble the energy and fluence profile of the September, 1989 SPE using either conventional radiation (electrons) or proton simulated SPE radiation. Exposure of animals to electron or proton radiation led to dose-dependent increases in epidermal pigmentation, the presence of necrotic keratinocytes at the dermal-epidermal boundary and pigment incontinence, manifested by the presence of melanophages in the derm is upon histological examination. We also observed epidermal hyperplasia and a reduction in vascular density at 30 days following exposure to electron or proton simulated SPE radiation. These results suggest that the doses of electron or proton simulated SPE radiation results in significant skin toxicity that is quantitatively and qualitatively similar. Radiation-induced skin damage is often one of the first clinical signs of both acute and non-acute radiation injury where infection may occur, if not treated. In this report, histopathology analyses of acute radiation-induced skin injury are discussed. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Chella Krishnan, Karthickeyan; Mukundan, Santhosh; Landero Figueroa, Julio A.; Caruso, Joseph A.
2014-01-01
Streptococcal cysteine protease (SpeB), the major secreted protease produced by group A streptococcus (GAS), cleaves both host and bacterial proteins and contributes importantly to the pathogenesis of invasive GAS infections. Modulation of SpeB expression and/or its activity during invasive GAS infections has been shown to affect bacterial virulence and infection severity. Expression of SpeB is regulated by the GAS CovR-CovS two-component regulatory system, and we demonstrated that bacteria with mutations in the CovR-CovS two-component regulatory system are selected for during localized GAS infections and that these bacteria lack SpeB expression and exhibit a hypervirulent phenotype. Additionally, in a separate study, we showed that expression of SpeB can also be modulated by human transferrin- and/or lactoferrin-mediated iron chelation. Accordingly, the goal of this study was to investigate the possible roles of iron and other metals in modulating SpeB expression and/or activity in a manner that would potentiate bacterial virulence. Here, we report that the divalent metals zinc and copper inhibit SpeB activity at the posttranslational level. Utilizing online metal-binding site prediction servers, we identified two putative metal-binding sites in SpeB, one of which involves the catalytic-dyad residues 47Cys and 195His. Based on our findings, we propose that zinc and/or copper availability in the bacterial microenvironment can modulate the proteolytic activity of SpeB in a manner that preserves the integrity of several other virulence factors essential for bacterial survival and dissemination within the host and thereby may exacerbate the severity of invasive GAS infections. PMID:24799625
Simplified method for detecting tritium contamination in plants and soil
Andraski, Brian J.; Sandstrom, M.W.; Michel, R.L.; Radyk, J.C.; Stonestrom, David A.; Johnson, M.J.; Mayers, C.J.
2003-01-01
Cost-effective methods are needed to identify the presence and distribution of tritium near radioactive waste disposal and other contaminated sites. The objectives of this study were to (i) develop a simplified sample preparation method for determining tritium contamination in plants and (ii) determine if plant data could be used as an indicator of soil contamination. The method entailed collection and solar distillation of plant water from foliage, followed by filtration and adsorption of scintillation-interfering constituents on a graphite-based solid phase extraction (SPE) column. The method was evaluated using samples of creosote bush [Larrea tridentata (Sessé & Moc. ex DC.) Coville], an evergreen shrub, near a radioactive disposal area in the Mojave Desert. Laboratory tests showed that a 2-g SPE column was necessary and sufficient for accurate determination of known tritium concentrations in plant water. Comparisons of tritium concentrations in plant water determined with the solar distillation–SPE method and the standard (and more laborious) toluene-extraction method showed no significant difference between methods. Tritium concentrations in plant water and in water vapor of root-zone soil also showed no significant difference between methods. Thus, the solar distillation–SPE method provides a simple and cost-effective way to identify plant and soil contamination. The method is of sufficient accuracy to facilitate collection of plume-scale data and optimize placement of more sophisticated (and costly) monitoring equipment at contaminated sites. Although work to date has focused on one desert plant, the approach may be transferable to other species and environments after site-specific experiments.
Mechanism of hypocoagulability in proton-irradiated ferrets
Krigsfeld, Gabriel S.; Savage, Alexandria R.; Sanzari, Jenine K.; Wroe, Andrew J.; Gridley, Daila S.; Kennedy, Ann R.
2014-01-01
Purpose To determine the mechanism of proton radiation-induced coagulopathy. Material and methods Ferrets were exposed to either solar particle event (SPE)-like proton radiation at a predetermined dose rate of 0.5 Gray (Gy) per hour (h) for a total dose of 0 or 1 Gy. Blood was collected pre- and post-irradiation for a complete blood cell count or a soluble fibrin concentration analysis, to determine whether coagulation activation had occurred. Tissue was stained with an anti-fibrinogen antibody to confirm the presence of fibrin in blood vessels. Results SPE-like proton radiation exposure resulted in coagulation cascade activation, as determined by increased soluble fibrin concentration in blood from 0.7 – 2.4 at 3 h, and 9.9 soluble fibrin units (p < 0.05) at 24 h post-irradiation and fibrin clots in blood vessels of livers, lungs and kidneys from irradiated ferrets. In combination with this increase in fibrin clots, ferrets had increased prothrombin time and partial thromboplastin time values post-irradiation, which are representative of the extrinsic/intrinsic coagulation pathways. Platelet counts remained at pre-irradiation values over the course of 7 days, indicating that the observed effects were not platelet-related, but instead likely to be due to radiation-induced effects on secondary hemostasis. White blood cell (WBC) counts were reduced in a statistically significant manner from 24 h through the course of the seven-day experiment. Conclusions SPE-like proton radiation results in significant decreases in all WBC counts as well as activates secondary hemostasis; together, these data suggest severe risks to astronaut health from exposure to SPE radiation. PMID:23651328
Wu, Fang; Yan, Ming; Li, Yikun; Chang, Shaojie; Song, Xiaomin; Zhou, Zhaocai; Gong, Weimin
2003-12-19
SPE-16 is a new 16kDa protein that has been purified from the seeds of Pachyrrhizus erosus. It's N-terminal amino acid sequence shows significant sequence homology to pathogenesis-related class 10 proteins. cDNA encoding 150 amino acids was cloned by RT-PCR and the gene sequence proved SPE-16 to be a new member of PR-10 family. The cDNA was cloned into pET15b plasmid and expressed in Escherichia coli. The bacterially expressed SPE-16 also demonstrated ribonuclease-like activity in vitro. Site-directed mutation of three conserved amino acids E95A, E147A, Y150A, and a P-loop truncated form were constructed and their different effects on ribonuclease activities were observed. SPE-16 is also able to bind the fluorescent probe 8-anilino-1-naphthalenesulfonate (ANS) in the native state. The ANS anion is a much-utilized "hydrophobic probe" for proteins. This binding activity indicated another biological function of SPE-16.
Electrochemical Quantification of the Antioxidant Capacity of Medicinal Plants Using Biosensors
Rodríguez-Sevilla, Erika; Ramírez-Silva, María-Teresa; Romero-Romo, Mario; Ibarra-Escutia, Pedro; Palomar-Pardavé, Manuel
2014-01-01
The working area of a screen-printed electrode, SPE, was modified with the enzyme tyrosinase (Tyr) using different immobilization methods, namely entrapment with water-soluble polyvinyl alcohol (PVA), cross-linking using glutaraldehyde (GA), and cross-linking using GA and human serum albumin (HSA); the resulting electrodes were termed SPE/Tyr/PVA, SPE/Tyr/GA and SPE/Tyr/HSA/GA, respectively. These biosensors were characterized by means of amperometry and EIS techniques. From amperometric evaluations, the apparent Michaelis-Menten constant, Km′, of each biosensor was evaluated while the respective charge transfer resistance, Rct, was assessed from impedance measurements. It was found that the SPE/Tyr/GA had the smallest Km′ (57 ± 7) μM and Rct values. This electrode also displayed both the lowest detection and quantification limits for catechol quantification. Using the SPE/Tyr/GA, the Trolox Equivalent Antioxidant Capacity (TEAC) was determined from infusions prepared with “mirto” (Salvia microphylla), “hHierba dulce” (Lippia dulcis) and “salve real” (Lippia alba), medicinal plants commonly used in Mexico. PMID:25111237
Electrochemical quantification of the antioxidant capacity of medicinal plants using biosensors.
Rodríguez-Sevilla, Erika; Ramírez-Silva, María-Teresa; Romero-Romo, Mario; Ibarra-Escutia, Pedro; Palomar-Pardavé, Manuel
2014-08-08
The working area of a screen-printed electrode, SPE, was modified with the enzyme tyrosinase (Tyr) using different immobilization methods, namely entrapment with water-soluble polyvinyl alcohol (PVA), cross-linking using glutaraldehyde (GA), and cross-linking using GA and human serum albumin (HSA); the resulting electrodes were termed SPE/Tyr/PVA, SPE/Tyr/GA and SPE/Tyr/HSA/GA, respectively. These biosensors were characterized by means of amperometry and EIS techniques. From amperometric evaluations, the apparent Michaelis-Menten constant, Km', of each biosensor was evaluated while the respective charge transfer resistance, Rct, was assessed from impedance measurements. It was found that the SPE/Tyr/GA had the smallest Km' (57 ± 7) µM and Rct values. This electrode also displayed both the lowest detection and quantification limits for catechol quantification. Using the SPE/Tyr/GA, the Trolox Equivalent Antioxidant Capacity (TEAC) was determined from infusions prepared with "mirto" (Salvia microphylla), "hHierba dulce" (Lippia dulcis) and "salve real" (Lippia alba), medicinal plants commonly used in Mexico.
Membrane water-flow rate in electrolyzer cells with a solid polymer electrolyte (SPE)
NASA Astrophysics Data System (ADS)
Li, Xiaojin; Qu, Shuguo; Yu, Hongmei; Hou, Ming; Shao, Zhigang; Yi, Baolian
Water-flow rate across Nafion membrane in SPE electrolyzer cells was measured and modelled. From the analysis of water transport mechanisms in SPE water electrolysis, the water-flow rate through membrane can be described by the electro-osmotic drag. The calculated electro-osmotic drag coefficients, n d, for the membrane in SPE electrolysis cells at different temperatures were compared with literature and in good agreement with those of Ge et al. and Ise et al. To describe the water-flow rate through membrane more accurately, a linear fit of n d as a function of temperature for the membrane in SPE water electrolysis was proposed in this paper. This paper studied the membrane water-flow rate experimentally and mathematically, which is of importance in the designing and optimization of the process of SPE water electrolysis. This paper also provided a novel method for measuring the electro-osmotic drag coefficient of Nafion membrane in contact with liquid water, acid and methanol solutions, etc.
Pharmacological effects of saw palmetto extract in the lower urinary tract
Suzuki, Mayumi; Ito, Yoshihiko; Fujino, Tomomi; Abe, Masayuki; Umegaki, Keizo; Onoue, Satomi; Noguchi, Hiroshi; Yamada, Shizuo
2009-01-01
Saw palmetto extract (SPE), an extract from the ripe berries of the American dwarf palm, has been widely used as a therapeutic remedy for urinary dysfunction due to benign prostatic hyperplasia (BPH) in Europe. Numerous mechanisms of action have been proposed for SPE, including the inhibition of 5α-reductase. Today, α1-adrenoceptor antagonists and muscarinic cholinoceptor antagonists are commonly used in the treatment of men with voiding symptoms secondary to BPH. The improvement of voiding symptoms in patients taking SPE may arise from its binding to pharmacologically relevant receptors in the lower urinary tract, such as α1-adrenoceptors, muscarinic cholinoceptors, 1,4-dihyropyridine receptors and vanilloid receptors. Furthermore, oral administration of SPE has been shown to attenuate the up-regulation of α1-adrenoceptors in the rat prostate induced by testosterone. Thus, SPE at clinically relevant doses may exert a direct effect on the pharmacological receptors in the lower urinary tract, thereby improving urinary dysfunction in patients with BPH and an overactive bladder. SPE does not have interactions with co-administered drugs or serious adverse events in blood biochemical parameters, suggestive of its relative safety, even with long-term intake. Clinical trials (placebo-controlled and active-controlled trials) of SPE conducted in men with BPH were also reviewed. This review should contribute to the understanding of the pharmacological effects of SPE in the treatment of patients with BPH and associated lower urinary tract symptoms (LUTS). PMID:19262550
Pharmacological effects of saw palmetto extract in the lower urinary tract.
Suzuki, Mayumi; Ito, Yoshihiko; Fujino, Tomomi; Abe, Masayuki; Umegaki, Keizo; Onoue, Satomi; Noguchi, Hiroshi; Yamada, Shizuo
2009-03-01
Saw palmetto extract (SPE), an extract from the ripe berries of the American dwarf palm, has been widely used as a therapeutic remedy for urinary dysfunction due to benign prostatic hyperplasia (BPH) in Europe. Numerous mechanisms of action have been proposed for SPE, including the inhibition of 5alpha-reductase. Today, alpha(1)-adrenoceptor antagonists and muscarinic cholinoceptor antagonists are commonly used in the treatment of men with voiding symptoms secondary to BPH. The improvement of voiding symptoms in patients taking SPE may arise from its binding to pharmacologically relevant receptors in the lower urinary tract, such as alpha(1)-adrenoceptors, muscarinic cholinoceptors, 1,4-dihyropyridine receptors and vanilloid receptors. Furthermore, oral administration of SPE has been shown to attenuate the up-regulation of alpha(1)-adrenoceptors in the rat prostate induced by testosterone. Thus, SPE at clinically relevant doses may exert a direct effect on the pharmacological receptors in the lower urinary tract, thereby improving urinary dysfunction in patients with BPH and an overactive bladder. SPE does not have interactions with co-administered drugs or serious adverse events in blood biochemical parameters, suggestive of its relative safety, even with long-term intake. Clinical trials (placebo-controlled and active-controlled trials) of SPE conducted in men with BPH were also reviewed. This review should contribute to the understanding of the pharmacological effects of SPE in the treatment of patients with BPH and associated lower urinary tract symptoms (LUTS).
Self-Perceived Employability in Spain
ERIC Educational Resources Information Center
Vargas, Reyes; Sánchez-Queija, María Inmaculada; Rothwell, Andrew; Parra, Águeda
2018-01-01
Purpose: The purpose of this paper is to validate the self-perceived employability (SPE) scale (Rothwell et al., 2008) and explore its relationship with sociodemographic variables in Spain. The SPE is an employability scale designed to examine undergraduates' expectations and self-perceptions of employability. The SPE includes internal and…
Survey on workforce retention and attrition
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-03-01
The Society of Petroleum Engineers (SPE) is conducting a survey to gather information on why technical professionals change jobs or quit working. The survey, prompted by concern about the retention of skilled workers, aims to provide information to employers that can assist them in addressing practices that can lead to significant workforce attrition. To participate in the survey, which is open to everyone (including those who are not SPE members), go to http://research.spe.org/se.ashx?s=705E3F1335720258 through 15 May 2013. For more information, contact speresearch@spe.org.
Structures of Bacterial Biosynthetic Arginine Decarboxylases
DOE Office of Scientific and Technical Information (OSTI.GOV)
F Forouhar; S Lew; J Seetharaman
2011-12-31
Biosynthetic arginine decarboxylase (ADC; also known as SpeA) plays an important role in the biosynthesis of polyamines from arginine in bacteria and plants. SpeA is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and shares weak sequence homology with several other PLP-dependent decarboxylases. Here, the crystal structure of PLP-bound SpeA from Campylobacter jejuni is reported at 3.0 {angstrom} resolution and that of Escherichia coli SpeA in complex with a sulfate ion is reported at 3.1 {angstrom} resolution. The structure of the SpeA monomer contains two large domains, an N-terminal TIM-barrel domain followed by a {beta}-sandwich domain, as well as two smaller helical domains. Themore » TIM-barrel and {beta}-sandwich domains share structural homology with several other PLP-dependent decarboxylases, even though the sequence conservation among these enzymes is less than 25%. A similar tetramer is observed for both C. jejuni and E. coli SpeA, composed of two dimers of tightly associated monomers. The active site of SpeA is located at the interface of this dimer and is formed by residues from the TIM-barrel domain of one monomer and a highly conserved loop in the {beta}-sandwich domain of the other monomer. The PLP cofactor is recognized by hydrogen-bonding, {pi}-stacking and van der Waals interactions.« less
Prevalent emm types and superantigen gene patterns of group A Streptococcus in Thailand.
Paveenkittiporn, W; Nozawa, T; Dejsirilert, S; Nakagawa, I; Hamada, S
2016-03-01
Group A Streptococcus (GAS) are globally distributed bacterial pathogens. We examined the emm genotypes, which are important indicators of virulence, of 349 clinical GAS isolates collected using two surveillance systems, i.e. Invasive Bacterial Infection Surveillance (IBIS) from 2010 to 2011 (234 isolates) and routine surveillance of clinically isolated bacteria from various hospitals during 1996-2011 (115 isolates) in Thailand. The major emm genotypes in IBIS samples were emm44 (12·0%), emm104 (6·8%), emm22 (5·6%), and emm81 (5·6%), whereas only one isolate (0·4%) had the emm1 genotype, which is significantly more common in invasive cases in the Western world. In samples collected during routine surveillance, emm238 (10·4%), emm44 (8·7%), and emm165 (7·0%) were dominant. The major superantigen gene profiles were similar between the groups, and 30·1% of isolates did not possess the phage-encoded superantigens (speA, speC, speH, speI, speK, speL, speM, ssa). Although most isolates exhibited limited gene profiles, emm44 isolates had highly variable gene profiles (15 patterns). We conclude that emm44 is the predominant GAS genotype in Thailand, and isolates varied in superantigen gene profiles.
Cost analysis of life sciences experiments and subsystems. [to be carried in the Spacelab
NASA Technical Reports Server (NTRS)
Yakut, M. M.
1975-01-01
Cost estimates for experiments and subsystems flown in the Spacelab were established. Ten experiments were cost analyzed. Estimated cost varied from $650,000 for the hardware development of the SPE water electrolysis experiment to $78,500,000 for the development and operation of a representative life sciences laboratory program. The cost of subsystems for thermal, atmospheric and trace contaminants control of the Spacelab internal atmosphere was also estimated. Subsystem cost estimates were based on the utilization of existing components developed in previous space programs whenever necessary.
Wu, Po-Chuang; Lo, Wen-Tsung; Chen, Shyi-Jou; Wang, Chih-Chien
2014-08-01
Little information is available on the differences in frequency of pyrogenic exotoxin genes between strains of group A streptococci that cause scarlet fever and those that cause pharyngotonsillitis in children in Taiwan. This study retrospectively monitored the presence of pyrogenic exotoxin genes, the emm typing, and the susceptibility of macrolide drugs in Streptococcus pyogenes isolated from children diagnosed with scarlet fever and pharyngotonsillitis in northern Taiwan. Isolates of S. pyogenes were recovered from children with scarlet fever (n = 21) and acute pharyngotonsillitis (n = 29) during 2000-2011. The isolates were characterized according to the presence of spe genes and emm typing. Antibiograms were determined by the disk diffusion method and agar dilution test. Polymerase chain reaction was used to detect the presence of erm genes in isolates that showed nonsusceptibility to erythromycin. All isolates underwent additional genotyping by pulsed-field gel electrophoresis. In isolates from patients with scarlet fever, the frequencies of pyrogenic exotoxin genes were 9.5% for speA, 81.0% for speB, 4.8% for speC, and 71.4% for speF. In isolates from patients with pharyngotonsillitis, the frequencies were 17.2% for speA, 72.4% for speB, 13.8% for speC, and 69.0% for speF. There were no significant differences in frequencies of the exotoxin genes between the two groups of isolates. Eight emm sequence types were identified from all group A streptococci isolates. The most common types were emm12 followed by emm1 and emm4. The erythromycin resistant rate was 4/50 (8%). The ermB gene was detected in only one isolate from a patient with pharyngotonsillitis. Pulsed-field gel electrophoresis had a total of three sets of clustered strains, which showed >80% homology and belonged to the same emm type. There were no significant differences in frequencies of the spe genes between S. pyogenes isolates from patients with scarlet fever and patients with pharyngotonsillitis. The most common emm type was emm12. Low erythromycin resistance in S. pyogenes was observed. Copyright © 2013. Published by Elsevier B.V.
Filippova, Ekaterina V.; Kuhn, Misty L.; Osipiuk, Jerzy; Kiryukhina, Olga; Joachimiak, Andrzej; Ballicora, Miguel A.
2015-01-01
Spermidine N-acetyltransferase, encoded by the gene speG, catalyzes the initial step in the degradation of polyamines and is a critical enzyme for determining the polyamine concentrations in bacteria. In Escherichia coli, studies have shown that SpeG is the enzyme responsible for acetylating spermidine under stress conditions and for preventing spermidine toxicity. Not all bacteria contain speG, and many bacterial pathogens have developed strategies to either acquire or silence it for pathogenesis. Here, we present thorough kinetic analyses combined with structural characterization of the VCA0947 SpeG enzyme from the important human pathogen Vibrio cholerae. Our studies revealed the unexpected presence of a previously unknown allosteric site and an unusual dodecameric structure for a member of the Gcn5-related N-acetyltransferase (GNAT) superfamily. We show that SpeG forms dodecamers in solution and in crystals and describe its three-dimensional structure in several ligand-free and liganded structures. Importantly, these structural data define the first view of a polyamine bound in an allosteric site of an N-acetyltransferase. Kinetic characterization of SpeG from V. cholerae showed that it acetylates spermidine and spermine. The behavior of this enzyme is complex and exhibits sigmoidal curves and substrate inhibition. We performed a detailed non-linear regression kinetic analysis to simultaneously fit families of substrate saturation curves to uncover a simple kinetic mechanism that explains the apparent complexity of this enzyme. Our results provide a fundamental understanding of the bacterial SpeG enzyme, which will be key towards understanding the regulation of polyamine levels in bacteria during pathogenesis. PMID:25623305
Pham, Tho X; Park, Young-Ki; Bae, Minkyung; Lee, Ji-Young
2017-03-01
Endotoxin tolerance is a phenomenon where exposure of innate immune cells to lipopolysaccharide (LPS) induces a refractory state to subsequent endotoxin exposures. The goal of this study was to investigate if Spirulina platensis organic extract (SPE) induces an endotoxin tolerance-like state. We used splenocytes and peritoneal macrophages from C57BL/6J mice fed a high-fat/high-sucrose (HF/HS) control or a HF/HS diet containing 0.25% (w/w) SPE for 16 weeks for ex vivo LPS stimulation and endotoxin-tolerant (ET) macrophages to evaluate the effects of SPE on endotoxin tolerance. Cells from SPE-fed mice displayed significantly less expression of proinflammatory genes than those from control mice. ET macrophages were produced in vitro by incubating RAW 264.7 macrophages with low-dose LPS to determine the energy phenotype of naive, SPE-treated, and ET macrophages. Compared to naive macrophages exposed to a high-dose LPS (100 ng/mL) for the first time, ET macrophages showed significantly less proinflammatory gene expression after LPS stimulation, which was also observed with SPE treatment. Consistently, nuclear translocation of p65 was markedly reduced in both ET- and SPE-treated macrophages on LPS stimulation with increase in nuclear protein levels of p50 and B cell lymphoma 3-encoded protein. In conclusion, the anti-inflammatory effect of SPE is at least partly attributable to the induction of an endotoxin tolerance-like state in macrophages, which shares common characteristics of macrophage endotoxin tolerance.
Burlet, E; HogenEsch, H; Dunham, A; Morefield, G
2017-05-01
Streptococcus pyogenes or group A streptococcus (GAS) is a Gram-positive bacterium that can cause a wide range of diseases, including pharyngitis, impetigo, scarlet fever, necrotizing fasciitis, rheumatic fever, and streptococcal toxic shock syndrome. Despite the increasing burden on global health caused by GAS, there is currently no licensed vaccine available. In this study, we evaluated immunogenicity, induction of neutralizing antibodies, and stability of a new recombinant fusion protein vaccine that targets infections from GAS. The recombinant fusion protein (SpeAB) combines inactive mutant forms of streptococcal pyrogenic exotoxin A (SpeA) and streptococcal pyrogenic exotoxin B (SpeB). The SpeAB vaccine evaluated in this study was adsorbed to an aluminum adjuvant and demonstrated robust immunogenicity, eliciting production of specific neutralizing antibodies against SpeA and SpeB, two major virulence factors of S. pyogenes. Stability studies suggest that the vaccine will retain immunogenicity for at least 2 years when stored at refrigerated temperatures. This novel vaccine shows great potential to provide protection against GAS infections and to reduce the burden of GAS disease globally.
Holderbaum, Candice Steffen; Mansur, Letícia Lessa; de Salles, Jerusa Fumagalli
2016-01-01
ABSTRACT Investigations on the semantic priming effect (SPE) in patients after left hemisphere (LH) lesions have shown disparities that may be explained by the variability in performance found among patients. The aim of the present study was to verify the existence of subgroups of patients after LH stroke by searching for dissociations between performance on the lexical decision task based on the semantic priming paradigm and performance on direct memory, semantic association and language tasks. All 17 patients with LH lesions after stroke (ten non-fluent aphasics and seven non aphasics) were analyzed individually. Results indicated the presence of three groups of patients according to SPE: one exhibiting SPE at both stimulus onset asynchronies (SOAs), one with SPE only at long SOA, and another, larger group with no SPE. PMID:29213439
Atomic transport during solid-phase epitaxial recrystallization of amorphous germanium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radek, M.; Bracht, H., E-mail: bracht@uni-muenster.de; Johnson, B. C.
2015-08-24
The atomic mixing of matrix atoms during solid-phase epitaxy (SPE) is studied by means of isotopically enriched germanium (Ge) multilayer structures that were amorphized by Ge ion implantation up to a depth of 1.5 μm. Recrystallization of the amorphous structure is performed at temperatures between 350 °C and 450 °C. Secondary-ion-mass-spectrometry is used to determine the concentration-depth profiles of the Ge isotope before and after SPE. An upper limit of 0.5 nm is deduced for the displacement length of the Ge matrix atoms by the SPE process. This small displacement length is consistent with theoretical models and atomistic simulations of SPE, indicating that themore » SPE mechanism consists of bond-switching with nearest-neighbours across the amorphous-crystalline (a/c) interface.« less
NASA Astrophysics Data System (ADS)
Ezzedine, S. M.; Vorobiev, O.; Herbold, E. B.; Glenn, L. A.; Antoun, T.
2013-12-01
This work is focused on analysis of near-field measurements (up to 100 m from the source) recorded during Source Physics Experiments in a granitic formation. One of the main goals of these experiments is to investigate the possible mechanisms of shear wave generation in the nonlinear source region. SPE experiments revealed significant tangential motion (up to 30 % of the magnitude in the radial direction) at many locations. Furthermore, azimuthal variations in radial velocities were also observed which cannot be generated by a spherical source in isotropic materials. Understanding the nature of this non-radial motion is important for discriminating between the natural seismicity and underground explosions signatures. Possible mechanisms leading to such motion include, but not limited to, heterogeneities in the rock such as joints, faults and geologic layers as well as surface topography and vertical motion at the surface caused by material spall and gravity. We have performed a three dimensional computational studies considering all these effects. Both discrete and continuum methods have been employed to model heterogeneities. In the discrete method, the joints and faults were represented by cohesive contact elements. This enables us to examine various friction laws at the joints which include softening, dilatancy, water saturation and rate-dependent friction. Yet this approach requires the mesh to be aligned with joints, which may present technical difficulties in three dimensions when multiple non-persistent joints are present. In addition, the discrete method is more computationally expensive. The continuum approach assumes that the joints are stiff and the dilatancy and shear softening can be neglected. In this approach, the joints are modeled as weakness planes within the material, which are imbedded into and pass through many finite elements. The advantage of this approach is that it requires neither sophisticated meshing algorithms nor contact detection algorithm. It is also suitable for evaluating the bounds of possible shear motion due to uncertainties in the joints distribution. Details of this uncertainty quantification study are presented in a separate abstract (Vorobiev, et.al). In the present work using both the continuum and the discrete approaches we study the effects of the surface spall, in-situ stress and joint orientation on the observed near-field motion. Three dimensional numerical simulations are performed for different burial depths and yields to investigate scalability of both radial and shear motions. The motion calculated in the near-field is then propagated into a far field. Results of the far field study are presented in an accompanied work (Pitarka, et al). This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
SpeCond: a method to detect condition-specific gene expression
2011-01-01
Transcriptomic studies routinely measure expression levels across numerous conditions. These datasets allow identification of genes that are specifically expressed in a small number of conditions. However, there are currently no statistically robust methods for identifying such genes. Here we present SpeCond, a method to detect condition-specific genes that outperforms alternative approaches. We apply the method to a dataset of 32 human tissues to determine 2,673 specifically expressed genes. An implementation of SpeCond is freely available as a Bioconductor package at http://www.bioconductor.org/packages/release/bioc/html/SpeCond.html. PMID:22008066
Filippova, Ekaterina V; Weigand, Steven; Osipiuk, Jerzy; Kiryukhina, Olga; Joachimiak, Andrzej; Anderson, Wayne F
2015-11-06
The spermidine N-acetyltransferase SpeG is a dodecameric enzyme that catalyzes the transfer of an acetyl group from acetyl coenzyme A to polyamines such as spermidine and spermine. SpeG has an allosteric polyamine-binding site and acetylating polyamines regulate their intracellular concentrations. The structures of SpeG from Vibrio cholerae in complexes with polyamines and cofactor have been characterized earlier. Here, we present the dodecameric structure of SpeG from V. cholerae in a ligand-free form in three different conformational states: open, intermediate and closed. All structures were crystallized in C2 space group symmetry and contain six monomers in the asymmetric unit cell. Two hexamers related by crystallographic 2-fold symmetry form the SpeG dodecamer. The open and intermediate states have a unique open dodecameric ring. This SpeG dodecamer is asymmetric except for the one 2-fold axis and is unlike any known dodecameric structure. Using a fluorescence thermal shift assay, size-exclusion chromatography with multi-angle light scattering, small-angle X-ray scattering analysis, negative-stain electron microscopy and structural analysis, we demonstrate that this unique open dodecameric state exists in solution. Our combined results indicate that polyamines trigger conformational changes and induce the symmetric closed dodecameric state of the protein when they bind to their allosteric sites. Copyright © 2015. Published by Elsevier Ltd.
Fattah, N. F. A.; Ng, H. M.; Mahipal, Y. K.; Numan, Arshid; Ramesh, S.; Ramesh, K.
2016-01-01
Solid polymer electrolyte (SPE) composed of semi-crystalline poly (vinylidene fluoride-hexafluoropropylene) [P(VdF-HFP)] copolymer, 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulphonyl) imide [EMI-BTI] and graphene oxide (GO) was prepared and its performance evaluated. The effects of GO nano-filler were investigated in terms of enhancement in ionic conductivity along with the electrochemical properties of its electrical double layer capacitors (EDLC). The GO-doped SPE shows improvement in ionic conductivity compared to the P(VdF-HFP)-[EMI-BTI] SPE system due to the existence of the abundant oxygen-containing functional group in GO that assists in the improvement of the ion mobility in the polymer matrix. The complexation of the materials in the SPE is confirmed in X-ray diffraction (XRD) and thermogravimetric analysis (TGA) studies. The electrochemical performance of EDLC fabricated with GO-doped SPE is examined using cyclic voltammetry and charge–discharge techniques. The maximum specific capacitance obtained is 29.6 F∙g−1, which is observed at a scan rate of 3 mV/s in 6 wt % GO-doped, SPE-based EDLC. It also has excellent cyclic retention as it is able keep the performance of the EDLC at 94% even after 3000 cycles. These results suggest GO doped SPE plays a significant role in energy storage application. PMID:28773573
Fattah, N F A; Ng, H M; Mahipal, Y K; Numan, Arshid; Ramesh, S; Ramesh, K
2016-06-06
Solid polymer electrolyte (SPE) composed of semi-crystalline poly (vinylidene fluoride-hexafluoropropylene) [P(VdF-HFP)] copolymer, 1-ethyl-3-methylimidazolium bis (trifluoromethyl sulphonyl) imide [EMI-BTI] and graphene oxide (GO) was prepared and its performance evaluated. The effects of GO nano-filler were investigated in terms of enhancement in ionic conductivity along with the electrochemical properties of its electrical double layer capacitors (EDLC). The GO-doped SPE shows improvement in ionic conductivity compared to the P(VdF-HFP)-[EMI-BTI] SPE system due to the existence of the abundant oxygen-containing functional group in GO that assists in the improvement of the ion mobility in the polymer matrix. The complexation of the materials in the SPE is confirmed in X-ray diffraction (XRD) and thermogravimetric analysis (TGA) studies. The electrochemical performance of EDLC fabricated with GO-doped SPE is examined using cyclic voltammetry and charge-discharge techniques. The maximum specific capacitance obtained is 29.6 F∙g -1 , which is observed at a scan rate of 3 mV/s in 6 wt % GO-doped, SPE-based EDLC. It also has excellent cyclic retention as it is able keep the performance of the EDLC at 94% even after 3000 cycles. These results suggest GO doped SPE plays a significant role in energy storage application.
NASA Astrophysics Data System (ADS)
Hao, Qun; Li, Tengfei; Hu, Yao
2018-01-01
Surface parameters are the properties to describe the shape characters of aspheric surface, which mainly include vertex radius of curvature (VROC) and conic constant (CC). The VROC affects the basic properties, such as focal length of an aspheric surface, while the CC is the basis of classification for aspheric surface. The deviations of the two parameters are defined as surface parameter error (SPE). Precisely measuring SPE is critical for manufacturing and aligning aspheric surface. Generally, SPE of aspheric surface is measured directly by curvature fitting on the absolute profile measurement data from contact or non-contact testing. And most interferometry-based methods adopt null compensators or null computer-generated holograms to measure SPE. To our knowledge, there is no effective way to measure SPE of highorder aspheric surface with non-null interferometry. In this paper, based on the theory of slope asphericity and the best compensation distance (BCD) established in our previous work, we propose a SPE measurement method for high-order aspheric surface in partial compensation interferometry (PCI) system. In the procedure, firstly, we establish the system of two element equations by utilizing the SPE-caused BCD change and surface shape change. Then, we can simultaneously obtain the VROC error and CC error in PCI system by solving the equations. Simulations are made to verify the method, and the results show a high relative accuracy.
Tabor, H; Hafner, E W; Tabor, C W
1980-12-01
We have previously described a polyamine-deficient strain of Escherichia coli that contained deletions in speA (arginine decarboxylase), speB (agmatine ureohydrolase), speC (ornithine decarboxylase), and speD (adenosylmethionine decarboxylase). Although this strain completely lacked putrescine and spermidine, it was still able to grow at a slow rate indefinitely on amine-deficient media. However, these cells contained some cadaverine (1,5-diaminopentane). To rule out the possibility that the presence of cadaverine permitted the growth of this strain, we isolated a mutant (cadA) that is deficient in cadaverine biosynthesis, namely, a mutant lacking lysine decarboxylase, and transduced this cadA gene into the delta (speA-speB) delta speC delta D strain. The resultant strain had essentially no cadaverine but showed the same phenotypic characteristics as the parent. Thus, these results confirm our previous findings that the polyamines are not essential for the growth of E. coli or for the replication of bacteriophages T4 and T7. We have mapped the cadA gene at 92 min; the gene order is mel cadA groE ampA purA. A regulatory gene for lysine decarboxylase (cadR) was also obtained and mapped at 46 min; the gene order is his cdd cadR fpk gyrA.
Filippova, Ekaterina V.; Weigand, Steven J.; Osipiuk, Jerzy; ...
2015-09-26
The spermidine N-acetyltransferase SpeG is a dodecameric enzyme that catalyzes the transfer of an acetyl group from acetyl coenzyme A to polyamines such as spermidine and spermine. SpeG has an allosteric polyamine-binding site and acetylating polyamines regulate their intracellular concentrations. The structures of SpeG from Vibrio cholerae in complexes with polyamines and cofactor have been characterized earlier. Here, we present the dodecameric structure of SpeG from V. cholerae in a ligand-free form in three different conformational states: open, intermediate and closed. All structures were crystallized in C2 space group symmetry and contain six monomers in the asymmetric unit cell. Twomore » hexamers related by crystallographic 2-fold symmetry form the SpeG dodecamer. The open and intermediate states have a unique open dodecameric ring. This SpeG dodecamer is asymmetric except for the one 2-fold axis and is unlike any known dodecameric structure. Using a fluorescence thermal shift assay, size-exclusion chromatography with multi-angle light scattering, small-angle X-ray scattering analysis, negative-stain electron microscopy and structural analysis, we demonstrate that this unique open dodecameric state exists in solution. As a result, our combined results indicate that polyamines trigger conformational changes and induce the symmetric closed dodecameric state of the protein when they bind to their allosteric sites.« less
The Influence of Large Solar Proton Events on the Atmosphere
NASA Technical Reports Server (NTRS)
Jackman, Charles H.
2012-01-01
Solar proton events (SPEs) can cause changes in constituents in the Earth s polar middle atmosphere. A number of large SPEs have occurred over the past 50 years and tend to happen most frequently near solar maximum. The highly energetic protons cause ionizations, excitations, dissociations, and dissociative ionizations of the background constituents. Complicated ion chemistry leads to HOx (H, OH, HO2) production and dissociation of N2 leads to NOy (N, NO, NO2, NO3, N2O5, HNO3, HO2NO2, ClONO2, BrONO2) production. Both the HOx and NOy increases can result in changes to ozone in the stratosphere and mesosphere. The HOx increases lead to short-lived (days) ozone decreases in the mesosphere and upper stratosphere. The NOy increases lead to long-lived (several months) stratospheric ozone changes because of the long lifetime of NOy constituents in this region. UARS HALogen Occultation Experiment (HALOE) instrument observations showed SPE-caused polar stratospheric NOx (NO+NO2) increases over 10 ppbv in September 2000 due to the very large SPE of July 2000, which are reasonably well simulated with the Whole Atmosphere Community Climate Model (WACCM). WACCM-computed SPE-caused polar stratospheric ozone decreases >10% continued for up to 5 months past the largest events in the past 50 years, however, SPE-caused total ozone changes were not found to be statistically significant. Small polar middle atmospheric temperature changes of <4 K have also been predicted to occur as a result of the larger SPEs. The polar atmospheric effects of large SPEs during solar cycle 23 and 24 will be emphasized in this presentation.
Molecular Alteration of Marine Dissolved Organic Matter under Experimental Hydrothermal Conditions
NASA Astrophysics Data System (ADS)
Hawkes, J. A.; Hansen, C. T.; Goldhammer, T.; Bach, W.; Dittmar, T.
2016-02-01
Marine dissolved organic matter (DOM) is a large (660 Pg) pool of reduced carbon that is subject to thermal alteration in hydrothermal systems and sedimentary basins. In natural hydrothermal systems, DOM is almost completely removed, but the mechanism, kinetics and temperature dependence of this removal have not been studied to date. We investigated molecular-level changes to DOM that was solid-phase extracted (SPE-DOM) from the deep ocean of the North Pacific Ocean. This complex molecular mixture was experimentally exposed to temperatures between 100-380 °C over the course of two weeks in artificial seawater, and was then characterized on a molecular level via ultrahigh-resolution mass spectrometry (FTICRMS & Orbitrap). Almost 93% of SPE-DOM was removed by the treatment at 380 °C, and this removal was accompanied by a consistent pattern of SPE-DOM alteration across the temperatures studied, which can likely be extrapolated down to temperatures around 68 °C. Higher molecular weight and more oxygen rich compounds were preferentially degraded, suggesting that decarboxylation and dehydration of carboxylic acid and alcohol groups are the most rapid degradation mechanisms. Nitrogen containing compounds followed the same overall trends as those containing just C, H and O up to 300 °C. Above this temperature, the most highly degraded samples contained very little of the original character of marine DOM, instead being mainly composed of very low intensity N- and S- containing molecules with a high H:C ratio (>1.5). Our experiments were conducted without a sedimentary or mineral phase, and demonstrate that profound molecular alteration and almost complete removal of marine SPE-DOM requires nothing more than heating in a seawater matrix.
NASA Astrophysics Data System (ADS)
Ji, Jianying
Solid polymer electrolytes (SPEs) provide advantages over liquid electrolytes in terms of safety, reliability, less temperature sensitive, and simplicity of design. With the use of a SPE in lithium batteries, high specific energy and specific power, safe operation, flexibility in packaging, and low cost of fabrication can be expected. However, after 30 years, SPEs have rarely found commercial success due to the low ionic conductivity and/or insufficient mechanical properties, both of which are related to the movement of the polymer chains. Many physical/chemical methods have been exploited to simultaneously create enhancement in ionic conductivity and mechanical properties, and some suggested ways have shown promise. However, the complex strategies have always introduced other challenge issues and incurred extra costs for manufacturing. In such a context, the development of dry solid state electrolytes is the central challenge to be faced worldwide. This thesis deals with the approaches to improving ionic conductivity and mechanical properties simultaneously. The method is to apply two kinds of controllable organic fillers: copolymer and protein. Our work revealed that the commercial available copolymer, poly (ethylene oxide)- block-polyethylene (PEO-b-PE), possesses a capability for enhancing the multiple performances of poly(ethylene oxide)(PEO)-based polymer electrolyte. And the effects of composition and molecular weight of the copolymers on performance of the resulting SPEs were examined. It was found that increasing the PE block percentage in the copolymer resulted in a significant increase in both ionic conductivity and mechanical properties, while increasing the molecular weight of the copolymer resulted in better mechanical properties, and an identical ionic conductivity. A rubber-like, soy protein-based SPE (s-SPE)was obtained by employing soy protein isolate (SPI), a soy product usually used as rigid fillers for enhancing mechanical properties of polymers, blended with poly(ethylene oxide)(PEO). The results indicated that the s-SPE with 55 wt% of SPI possesses a fully amorphous uniform structure having low Tg, in contrast with crystalline PEO-based SPE having discernable Tg and Tm. The conductivity and elasticity are both significantly improved with SPI involvement. Remarkably, this film has been elongated up to 100% without loss of ionic conductivity and 700% without mechanical damage.
Templer, Pamela H.; Lambert, Kathleen Fallon; Weiss, Marissa; Baron, Jill S.; Driscoll, Charles T.; Foster, David R.
2016-01-01
This Special Session took place on 12 August 2015 at the 100th Meeting of the Ecological Society of America in Baltimore, Maryland, and was conceived of and coordinated by the Science Policy Exchange. The Science Policy Exchange (SPE) is a boundary- spanning organization established to work at the interface of science and policy to confront pressing environmental challenges . SPE was created as a collaborative of six research institutions to increase the impact of science on environmental decisions. This session was organized by Marissa Weiss and co- organized by Pamela Templer, Kathleen Fallon Lambert, Jill Baron, Charles Driscoll, and David Foster. Along the theme of ESA ’ s Centennial meeting, the group of presenters represented collectively more than 100 years of experience in integration of science, policy, and outreach.
Lin, Jiun-Nong; Chang, Lin-Li; Lai, Chung-Hsu; Lin, Hsi-Hsun; Chen, Yen-Hsu
2013-01-01
Streptococcal toxic shock syndrome (STSS) is an uncommon but life-threatening disease caused by Streptococcus pyogenes. To understand the clinical and molecular characteristics of STSS, we analyzed clinical data and explored the emm types, superantigen genes, and pulsed-field gel electrophoresis of causative S. pyogenes isolates obtained between 2005 and 2012. In total, 53 patients with STSS were included in this study. The median age of the patients was 57 years (range: 9-83 years), and 81.1% were male. The most prevalent underlying disease was diabetes mellitus (45.3%). Skin and soft-tissue infection accounted for 86.8% of STSS. The overall mortality rate was 32.1%. Underlying diseases had no statistical impact on mortality. A total of 19 different emm types were identified. The most prevalent emm type was emm102 (18.9%), followed by emm11 (17%), emm1 (11.3%), emm87 (9.4%), and emm89 (7.5%). There was no statistically significant association between emm type and a fatal outcome. Among the superantigen genes, speB was the most frequently detected one (92.5%), followed by smeZ (90.6%), speG (81.1%), speC (39.6%), and speF (39.6%). The majority of emm102 strains were found to have speB, speC, speG, and smeZ. The presence of speG was negatively associated with a fatal outcome (P = 0.045). Our surveillance revealed the emergence of uncommon emm types, particularly emm102, causing STSS in southern Taiwan. Characterization of clinical, epidemiological, and molecular characteristics of STSS will improve our understanding of this life-threatening disease.
Filippova, Ekaterina V.; Kuhn, Misty L.; Osipiuk, Jerzy; ...
2015-01-23
Spermidine N-acetyltransferase, encoded by the gene speG, catalyzes the initial step in the degradation of polyamines and is a critical enzyme for determining the polyamine concentrations in bacteria. In Escherichia coli, studies have shown that SpeG is the enzyme responsible for acetylating spermidine under stress conditions and for preventing spermidine toxicity. Not all bacteria contain speG, and many bacterial pathogens have developed strategies to either acquire or silence it for pathogenesis. Here, we present thorough kinetic analyses combined with structural characterization of the VCA0947 SpeG enzyme from the important human pathogen Vibrio cholerae. Our studies revealed the unexpected presence ofmore » a previously unknown allosteric site and an unusual dodecameric structure for a member of the Gcn5-related N-acetyltransferase superfamily. We show that SpeG forms dodecamers in solution and in crystals and describe its three-dimensional structure in several ligand-free and liganded structures. Importantly, these structural data define the first view of a polyamine bound in an allosteric site of an N-acetyltransferase. Kinetic characterization of SpeG from V. cholerae showed that it acetylates spermidine and spermine. The behavior of this enzyme is complex and exhibits sigmoidal curves and substrate inhibition. We performed a detailed non-linear regression kinetic analysis to simultaneously fit families of substrate saturation curves to uncover a simple kinetic mechanism that explains the apparent complexity of this enzyme. Our results provide a fundamental understanding of the bacterial SpeG enzyme, which will be key toward understanding the regulation of polyamine levels in bacteria during pathogenesis.« less
Lin, Jiun-Nong; Chang, Lin-Li; Lai, Chung-Hsu; Lin, Hsi-Hsun; Chen, Yen-Hsu
2013-01-01
Background Streptococcal toxic shock syndrome (STSS) is an uncommon but life-threatening disease caused by Streptococcus pyogenes. Methods To understand the clinical and molecular characteristics of STSS, we analyzed clinical data and explored the emm types, superantigen genes, and pulsed-field gel electrophoresis of causative S. pyogenes isolates obtained between 2005 and 2012. Results In total, 53 patients with STSS were included in this study. The median age of the patients was 57 years (range: 9–83 years), and 81.1% were male. The most prevalent underlying disease was diabetes mellitus (45.3%). Skin and soft-tissue infection accounted for 86.8% of STSS. The overall mortality rate was 32.1%. Underlying diseases had no statistical impact on mortality. A total of 19 different emm types were identified. The most prevalent emm type was emm102 (18.9%), followed by emm11 (17%), emm1 (11.3%), emm87 (9.4%), and emm89 (7.5%). There was no statistically significant association between emm type and a fatal outcome. Among the superantigen genes, speB was the most frequently detected one (92.5%), followed by smeZ (90.6%), speG (81.1%), speC (39.6%), and speF (39.6%). The majority of emm102 strains were found to have speB, speC, speG, and smeZ. The presence of speG was negatively associated with a fatal outcome (P = 0.045). Conclusions Our surveillance revealed the emergence of uncommon emm types, particularly emm102, causing STSS in southern Taiwan. Characterization of clinical, epidemiological, and molecular characteristics of STSS will improve our understanding of this life-threatening disease. PMID:24349115
Filippova, Ekaterina V; Kuhn, Misty L; Osipiuk, Jerzy; Kiryukhina, Olga; Joachimiak, Andrzej; Ballicora, Miguel A; Anderson, Wayne F
2015-03-27
Spermidine N-acetyltransferase, encoded by the gene speG, catalyzes the initial step in the degradation of polyamines and is a critical enzyme for determining the polyamine concentrations in bacteria. In Escherichia coli, studies have shown that SpeG is the enzyme responsible for acetylating spermidine under stress conditions and for preventing spermidine toxicity. Not all bacteria contain speG, and many bacterial pathogens have developed strategies to either acquire or silence it for pathogenesis. Here, we present thorough kinetic analyses combined with structural characterization of the VCA0947 SpeG enzyme from the important human pathogen Vibrio cholerae. Our studies revealed the unexpected presence of a previously unknown allosteric site and an unusual dodecameric structure for a member of the Gcn5-related N-acetyltransferase superfamily. We show that SpeG forms dodecamers in solution and in crystals and describe its three-dimensional structure in several ligand-free and liganded structures. Importantly, these structural data define the first view of a polyamine bound in an allosteric site of an N-acetyltransferase. Kinetic characterization of SpeG from V. cholerae showed that it acetylates spermidine and spermine. The behavior of this enzyme is complex and exhibits sigmoidal curves and substrate inhibition. We performed a detailed non-linear regression kinetic analysis to simultaneously fit families of substrate saturation curves to uncover a simple kinetic mechanism that explains the apparent complexity of this enzyme. Our results provide a fundamental understanding of the bacterial SpeG enzyme, which will be key toward understanding the regulation of polyamine levels in bacteria during pathogenesis. Copyright © 2015. Published by Elsevier Ltd.
Yang, Surong; Chen, Changrui; Li, Yiying; Ren, Zhenghua; Zhang, Yungang; Wu, Gantong; Wang, Hao; Hu, Zhenzhen; Yao, Minghui
2013-06-01
To evaluate whether saw palmetto extract (SPE) relaxes corpus cavernosum and explore the underlying mechanisms. Forty Sprague-Dawley rats and 30 New Zealand rabbits were randomly allocated into 3 SPE-treated groups (low-, middle-, and high-dose) and 1 saline-treated control group. SPE was administered intragastrically for 7 consecutive days. Another 23 rats treated with sildenafil were used to appraise the erectile response to electrical stimulation of nerves in the corpus cavernosum. The erectile functions of rats and rabbits were evaluated 24 hours after the last SPE administration or 15 minutes after intragastric sildenafil. Outcome measures included corpus cavernosum electrical activity recording, phosphodiesterase 5 (PDE5) activity detected by the colorimetric quantitative method, and messenger ribonucleic acid (mRNA) expression level for PDE5 and inducible nitric oxide synthase (iNOS) determined using real-time polymerase chain reaction. In the SPE-treated animals, the relaxant response to electrical stimulation of nerves in the corpus cavernosum, reflected by the amplitude of the electrical activity within the cavernosum, was significantly and dose-dependently augmented. Similar effects were observed in the sildenafil-treated rats. PDE5 activity in rat and rabbit corpus cavernosum tissues was significantly and dose-dependently inhibited in SPE-treated animals, whereas the iNOS mRNA level increased compared with the saline group. PDE5 mRNA, however, was only significantly enhanced in the rats treated with the middle dose of SPE. The results suggest that SPE may have potential application value for the prevention or treatment of erectile dysfunction through an increase in iNOS mRNA expression and inhibition of PDE5 activity in corpus cavernosum smooth muscles. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Filippova, Ekaterina V.; Kuhn, Misty L.; Osipiuk, Jerzy
Spermidine N-acetyltransferase, encoded by the gene speG, catalyzes the initial step in the degradation of polyamines and is a critical enzyme for determining the polyamine concentrations in bacteria. In Escherichia coli, studies have shown that SpeG is the enzyme responsible for acetylating spermidine under stress conditions and for preventing spermidine toxicity. Not all bacteria contain speG, and many bacterial pathogens have developed strategies to either acquire or silence it for pathogenesis. Here, we present thorough kinetic analyses combined with structural characterization of the VCA0947 SpeG enzyme from the important human pathogen Vibrio cholerae. Our studies revealed the unexpected presence ofmore » a previously unknown allosteric site and an unusual dodecameric structure for a member of the Gcn5-related N-acetyltransferase superfamily. We show that SpeG forms dodecamers in solution and in crystals and describe its three-dimensional structure in several ligand-free and liganded structures. Importantly, these structural data define the first view of a polyamine bound in an allosteric site of an N-acetyltransferase. Kinetic characterization of SpeG from V. cholerae showed that it acetylates spermidine and spermine. The behavior of this enzyme is complex and exhibits sigmoidal curves and substrate inhibition. We performed a detailed non-linear regression kinetic analysis to simultaneously fit families of substrate saturation curves to uncover a simple kinetic mechanism that explains the apparent complexity of this enzyme. Our results provide a fundamental understanding of the bacterial SpeG enzyme, which will be key toward understanding the regulation of polyamine levels in bacteria during pathogenesis.« less
ASPECTS: an automation-assisted SPE method development system.
Li, Ming; Chou, Judy; King, Kristopher W; Yang, Liyu
2013-07-01
A typical conventional SPE method development (MD) process usually involves deciding the chemistry of the sorbent and eluent based on information about the analyte; experimentally preparing and trying out various combinations of adsorption chemistry and elution conditions; quantitatively evaluating the various conditions; and comparing quantitative results from all combination of conditions to select the best condition for method qualification. The second and fourth steps have mostly been performed manually until now. We developed an automation-assisted system that expedites the conventional SPE MD process by automating 99% of the second step, and expedites the fourth step by automatically processing the results data and presenting it to the analyst in a user-friendly format. The automation-assisted SPE MD system greatly saves the manual labor in SPE MD work, prevents analyst errors from causing misinterpretation of quantitative results, and shortens data analysis and interpretation time.
Chen, Y C; Sun, M C
2001-01-01
This study demonstrates the feasibility of combining solid-phase extraction (SPE) with surface-assisted laser desorption/ionization (SALDI) mass spectrometry to determine trace quaternary ammonium surfactants in water. The trace surfactants in water were directly concentrated on the surface of activated carbon sorbent in SPE. The activated carbon sorbent was then mixed with the SALDI liquid for SALDI analysis. No SPE elution procedure was necessary. Experimental results indicate that the surfactants with longer chain alkyl groups exhibit higher sensitivities than those with shorter chain alkyl groups in SPE-SALDI analysis. The detection limit for hexadecyltrimethylammonium bromide is around 10 ppt in SPE-SALDI analysis by sampling 100 mL of aqueous solution, while that of tetradecyltrimethylammonium bromide is about 100 ppt. The detection limit for decyltrimethylammonium bromide and dodecyltrimethylammonium bromide is in the low-ppb range. Copyright 2001 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Martono, Y.; Rohman, A.; Riyanto, S.; Martono, S.
2018-04-01
Solid Phase Extraction (SPE) method using silica as sorbent for stevioside and rebaudiosida A analysis in Stevia rebaudiana Bertoni leaf have not been performed. The aim of this study is to develop SPE method using silica as sorbent for Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) analysis of stevioside and rebaudiosida A in S. rebaudiana leaf. The results of this study indicate that the optimal conditions for normal phase SPE (silica) are conditioned with 3.0 mL of hexane. The sample loading volume is 0.1 mL. Cartridge is eluted with 1.0 mL acetonitrile: water (80: 20, v/v) to separate both analytes. The cartridge is washed with chloroform and water of 0.3 mL respectively. The developed SPE sample preparation method meets the accuracy and precision test and can be used for the analysis of stevioside and rebaudioside A by RP-HPLC.
SPE propulsion electrolyzer for NASA's integrated propulsion test article
NASA Technical Reports Server (NTRS)
1991-01-01
Hamilton Standard has delivered a 3000 PSI SPE Propulsion Electrolyzer Stack and Special Test Fixture to the NASA Lyndon B. Johnson Space Center (JSC) Integrated Propulsion Test Article (IPTA) program in June 1990, per contract NAS9-18030. This prototype unit demonstrates the feasibility of SPE-high pressure water electrolysis for future space applications such as Space Station propulsion and Lunar/Mars energy storage. The SPE-Propulsion Electrolyzer has met or exceeded all IPTA program goals. It continues to function as the primary hydrogen and oxygen source for the IPTA test bed at the NASA/JSC Propulsion and Power Division Thermochemical Test Branch.
[Optimization of solid-phase extraction for enrichment of toxic organic compounds in water samples].
Zhang, Ming-quan; Li, Feng-min; Wu, Qian-yuan; Hu, Hong-ying
2013-05-01
A concentration method for enrichment of toxic organic compounds in water samples has been developed based on combined solid-phase extraction (SPE) to reduce impurities and improve recoveries of target compounds. This SPE method was evaluated in every stage to identify the source of impurities. Based on the analysis of Waters Oasis HLB without water samples, the eluent of SPE sorbent after dichloromethane and acetone contributed 85% of impurities during SPE process. In order to reduce the impurities from SPE sorbent, soxhlet extraction of dichloromethane followed by acetone and lastly methanol was applied to the sorbents for 24 hours and the results had proven that impurities were reduced significantly. In addition to soxhlet extraction, six types of prevalent SPE sorbents were used to absorb 40 target compounds, the lgK(ow) values of which were within the range of 1.46 and 8.1, and recovery rates were compared. It was noticed and confirmed that Waters Oasis HLB had shown the best recovery results for most of the common testing samples among all three styrenedivinylbenzene (SDB) polymer sorbents, which were 77% on average. Furthermore, Waters SepPak AC-2 provided good recovery results for pesticides among three types of activated carbon sorbents and the average recovery rates reached 74%. Therefore, Waters Oasis HLB and Waters SepPak AC-2 were combined to obtain a better recovery and the average recovery rate for the tested 40 compounds of this new SPE method was 87%.
Solar Radio Bursts, Proton Events and Geomagnetic Activity
1984-08-01
high speed type II, the second maximum is broad and peaks on the seventh day, and the Ap value remains high even on the tenth day. VI . Type II Burst...PROTON EVENTS w 20 (SPE) 0 SPE WITH TYPE Il a20- 20 z10- 0 15SPE WITH MICROWAVE BURST 10- 00 197071 72 7374 7576 77 7879 0Fig. 14 YEAR 30 1 1 SOLAR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyle, Moira L.; Walter, William R.; Pasyanos, Michael E.
Here, we develop high–resolution, laterally varying attenuation models for the regional crustal phases of Pg and Lg in the area surrounding the Basin and Range Province in the western United States. The models are part of the characterization effort for the Source Physics Experiment (SPE), a series of chemical explosions at the Nevada National Security Site designed to improve our understanding of explosion source phenomenology. To aid in SPE modeling efforts, we focus on improving our ability to accurately predict amplitudes in a set of narrow frequency bands ranging from 0.5 to 16.0 Hz. To explore constraints at higher frequenciesmore » where data become more sparse, we test the robustness of the empirically observed power–law relationship between quality factor Q and frequency (Q=Q 0f γ). Our methodology uses a staged approach to consider attenuation, physics–based source terms, site terms, and geometrical spreading contributions to amplitude measurements. Tomographic inversion results indicate that the frequency dependence is a reasonable assumption as attenuation varies laterally for this region through all frequency bands considered. Our 2D Pg and Lg attenuation models correlate with underlying physiographic provinces, with the highest Q located in the Sierra Nevada Mountains and the Colorado plateau. Compared to a best–fitting 1D model for the region, the 2D model provides an 81% variance reduction overall for Lg residuals and a 75% reduction for Pg. These detailed attenuation maps at high frequencies will facilitate further study of local and regional distance P/S amplitude discriminants that are typically used to distinguish between earthquakes and underground explosions.« less
Pyle, Moira L.; Walter, William R.; Pasyanos, Michael E.
2017-10-24
Here, we develop high–resolution, laterally varying attenuation models for the regional crustal phases of Pg and Lg in the area surrounding the Basin and Range Province in the western United States. The models are part of the characterization effort for the Source Physics Experiment (SPE), a series of chemical explosions at the Nevada National Security Site designed to improve our understanding of explosion source phenomenology. To aid in SPE modeling efforts, we focus on improving our ability to accurately predict amplitudes in a set of narrow frequency bands ranging from 0.5 to 16.0 Hz. To explore constraints at higher frequenciesmore » where data become more sparse, we test the robustness of the empirically observed power–law relationship between quality factor Q and frequency (Q=Q 0f γ). Our methodology uses a staged approach to consider attenuation, physics–based source terms, site terms, and geometrical spreading contributions to amplitude measurements. Tomographic inversion results indicate that the frequency dependence is a reasonable assumption as attenuation varies laterally for this region through all frequency bands considered. Our 2D Pg and Lg attenuation models correlate with underlying physiographic provinces, with the highest Q located in the Sierra Nevada Mountains and the Colorado plateau. Compared to a best–fitting 1D model for the region, the 2D model provides an 81% variance reduction overall for Lg residuals and a 75% reduction for Pg. These detailed attenuation maps at high frequencies will facilitate further study of local and regional distance P/S amplitude discriminants that are typically used to distinguish between earthquakes and underground explosions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pyle, Moira L.; Walter, William R.; Pasyanos, Michael E.
2017-10-24
Here, we develop high–resolution, laterally varying attenuation models for the regional crustal phases of Pg and Lg in the area surrounding the Basin and Range Province in the western United States. The models are part of the characterization effort for the Source Physics Experiment (SPE), a series of chemical explosions at the Nevada National Security Site designed to improve our understanding of explosion source phenomenology. To aid in SPE modeling efforts, we focus on improving our ability to accurately predict amplitudes in a set of narrow frequency bands ranging from 0.5 to 16.0 Hz. To explore constraints at higher frequenciesmore » where data become more sparse, we test the robustness of the empirically observed power–law relationship between quality factor Q and frequency (Q=Q 0f γ). Our methodology uses a staged approach to consider attenuation, physics–based source terms, site terms, and geometrical spreading contributions to amplitude measurements. Tomographic inversion results indicate that the frequency dependence is a reasonable assumption as attenuation varies laterally for this region through all frequency bands considered. Our 2D Pg and Lg attenuation models correlate with underlying physiographic provinces, with the highest Q located in the Sierra Nevada Mountains and the Colorado plateau. Compared to a best–fitting 1D model for the region, the 2D model provides an 81% variance reduction overall for Lg residuals and a 75% reduction for Pg. These detailed attenuation maps at high frequencies will facilitate further study of local and regional distance P/S amplitude discriminants that are typically used to distinguish between earthquakes and underground explosions.« less
Explosive Yield Estimation using Fourier Amplitude Spectra of Velocity Histories
NASA Astrophysics Data System (ADS)
Steedman, D. W.; Bradley, C. R.
2016-12-01
The Source Physics Experiment (SPE) is a series of explosive shots of various size detonated at varying depths in a borehole in jointed granite. The testbed includes an extensive array of accelerometers for measuring the shock environment close-in to the explosive source. One goal of SPE is to develop greater understanding of the explosion phenomenology in all regimes: from near-source, non-linear response to the far-field linear elastic region, and connecting the analyses from the respective regimes. For example, near-field analysis typically involves review of kinematic response (i.e., acceleration, velocity and displacement) in the time domain and looks at various indicators (e.g., peaks, pulse duration) to facilitate comparison among events. Review of far-field data more often is based on study of response in the frequency domain to facilitate comparison of event magnitudes. To try to "bridge the gap" between approaches, we have developed a scaling law for Fourier amplitude spectra of near-field velocity histories that successfully collapses data from a wide range of yields (100 kg to 5000 kg) and range to sensors in jointed granite. Moreover, we show that we can apply this scaling law to data from a new event to accurately estimate the explosive yield of that event. This approach presents a new way of working with near-field data that will be more compatible with traditional methods of analysis of seismic data and should serve to facilitate end-to-end event analysis. The goal is that this new approach to data analysis will eventually result in improved methods for discrimination of event type (i.e., nuclear or chemical explosion, or earthquake) and magnitude.
Mahindrakar, A N; Chandra, S; Shinde, L P
2014-01-01
Solid-phase extraction (SPE) of nine polychlorinated biphenyls (PCBs) from transformer oil samples was evaluated using octadecyl (CI8)-bonded porous silica. The efficiency of SPE of these PCBs was compared with those obtained by solvent extraction with DMSO and hexane. Average recoveries exceeding 95% for these PCBs were obtained via the SPE method using small cartridges containing 100mg of 40 pm CI8-bonded porous silica. The average recovery by solvent extraction with DMSO and hexane exceeded 83%. It was concluded that the recoveries and precision for the solvent extraction of PCBs were poorer than those for the SPE. Copyright © 2013 Elsevier Ltd. All rights reserved.
Regional Seismic Methods of Identifying Explosions
NASA Astrophysics Data System (ADS)
Walter, W. R.; Ford, S. R.; Pasyanos, M.; Pyle, M. L.; Hauk, T. F.
2013-12-01
A lesson from the 2006, 2009 and 2013 DPRK declared nuclear explosion Ms:mb observations is that our historic collection of data may not be representative of future nuclear test signatures (e.g. Selby et al., 2012). To have confidence in identifying future explosions amongst the background of other seismic signals, we need to put our empirical methods on a firmer physical footing. Here we review the two of the main identification methods: 1) P/S ratios and 2) Moment Tensor techniques, which can be applied at the regional distance (200-1600 km) to very small events, improving nuclear explosion monitoring and confidence in verifying compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Amplitude ratios of seismic P-to-S waves at sufficiently high frequencies (~>2 Hz) can identify explosions among a background of natural earthquakes (e.g. Walter et al., 1995). However the physical basis for the generation of explosion S-waves, and therefore the predictability of this P/S technique as a function of event properties such as size, depth, geology and path, remains incompletely understood. Calculated intermediate period (10-100s) waveforms from regional 1-D models can match data and provide moment tensor results that separate explosions from earthquakes and cavity collapses (e.g. Ford et al. 2009). However it has long been observed that some nuclear tests produce large Love waves and reversed Rayleigh waves that complicate moment tensor modeling. Again the physical basis for the generation of these effects from explosions remains incompletely understood. We are re-examining regional seismic data from a variety of nuclear test sites including the DPRK and the former Nevada Test Site (now the Nevada National Security Site (NNSS)). Newer relative amplitude techniques can be employed to better quantify differences between explosions and used to understand those differences in term of depth, media and other properties. We are also making use of the Source Physics Experiments (SPE) at NNSS. The SPE chemical explosions are explicitly designed to improve our understanding of emplacement and source material effects on the generation of shear and surface waves (e.g. Snelson et al., 2013). Our goal is to improve our explosion models and our ability to understand and predict where P/S and moment tensor methods of identifying explosions work, and any circumstances where they may not. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Pérez-Trujillo, Míriam; Gómez-Caravaca, Ana María; Segura-Carretero, Antonio; Fernández-Gutiérrez, Alberto; Parella, Teodor
2010-08-25
The phenolic fraction of a monovarietal extra virgin olive oil (EVOO) from Olea europaea L. var. Cornezuelo was studied by the hyphenated HPLC-DAD-SPE-NMR/MS techniques. This survey led to the identification of 25 main compounds. One was identified as a new diastereoisomer of the aldehydic form of oleuropein aglycone (AOA) and characterized by 1D and 2D NMR techniques. The relative configuration of this new AOA was determined as 5R*,8S*,9S* on the basis of the results obtained from the combination of NOE experiments and Monte Carlo conformational search calculations. Assuming, as for the described diastereoisomers, that the new AOA comes from the natural oleuropein aglycone (OA), the absolute configuration was proposed as 5S,8R,9R.
Chang, Shaojie; Song, Xiaomin; Yan, Ming; Zhou, Zhaocai; Wu, Fang; Gong, Weimin
2004-01-01
The proteins Spe31 and Spe32, named after their respective molecular weights of about 31 and 32 kDa, were purified simultaneously from the seeds of Pachyrrhizus erosus. They cannot be separated from each other by column chromatography. N-terminal sequence analysis indicated that they belonged to the papain family of cysteine proteases. An in-gel activity assay revealed that Spe31 possesses proteolytic activity while Spe32 only displays very weak activity for protein degradation. Both of them are glycoproteins as detected by the periodic acid and Schiff's reagent method. Crystals were obtained from the protein mixture by the hanging-drop vapour-diffusion method; they diffracted to a resolution of 2.61 A on an in-house X-ray source. The crystals belong to space group P4(1(3))2(1)2, with unit-cell parameters a = b = 61.96, c = 145.61 A. Gel electrophoresis under non-denaturing conditions showed that the protein crystallized was Spe31.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, T.F.; Thorne, P.G.; Myers, K.F.
Salting-out solvent extraction (SOE) was compared with cartridge and membrane solid-phase extraction (SPE) for preconcentration of nitroaromatics, nitramines, and aminonitroaromatics prior to determination by reversed-phase high-performance liquid chromatography. The solid phases used were manufacturer-cleaned materials, Porapak RDX for the cartridge method and Empore SDB-RPS for the membrane method. Thirty-three groundwater samples from the Naval Surface Warfare Center, Crane, Indiana, were analyzed using the direct analysis protocol specified in SW846 Method 8330, and the results were compared with analyses conducted after preconcentration using SOE with acetonitrile, cartridge-based SPE, and membrane-based SPE. For high-concentration samples, analytical results from the three preconcentration techniquesmore » were compared with results from the direct analysis protocol; good recovery of all target analytes was achieved by all three pre-concentration methods. For low-concentration samples, results from the two SPE methods were correlated with results from the SOE method; very similar data was obtained by the SOE and SPE methods, even at concentrations well below 1 microgram/L.« less
NASA Technical Reports Server (NTRS)
Roy, Robert J.
1995-01-01
The SPE Oxygen Generator Assembly (OGA) has been modified to correct operational deficiencies present in the original system, and to effect changes to the system hardware and software such that its operating conditions are consistent with the latest configuration requirements for the International Space Station Alpha (ISSA). The effectiveness of these changes has recently been verified through a comprehensive test program which saw the SPE OGA operate for over 740 hours at various test conditions, including over 690 hours, or approximately 460 cycles, simulating the orbit of the space station. This report documents the changes made to the SPE OGA, presents and discusses the test results from the acceptance test program, and provides recommendations for additional development activities pertinent to evolution of the SPE OGA to a flight configuration. Copies of the test data from the acceptance test program are provided with this report on 3.5 inch diskettes in self-extracting archive files.
Chen, Y C; Tsai, M F
2000-01-01
Previous work has demonstrated that a combination of solid-phase extraction with surface-assisted laser desorption/ionization (SPE-SALDI) mass spectrometry can be applied to the determination of trace nitrophenols in water. An improved method to lower the detection limit of this hyphenated technique is described in this present study. Activated carbon powder is used as both the SPE adsorbent and the SALDI solid in the analysis by SPE-SALDI. The surface of the activated carbon is modified by passing an aqueous solution of a cationic surfactant through the SPE cartridge. The results demonstrate that the sensitivity for nitrophenols in the analysis by SPE-SALDI can be improved by using cationic surfactants to modify the surface of the activated carbon. The detection limit for nitrophenols is about 25 ppt based on a signal-to-noise ratio of 3 by sampling from 100 mL of solution. Copyright 2000 John Wiley & Sons, Ltd.
Chen, Ping-Hung; Chen, Shun-Niang; Tseng, Sheng-Hao; Deng, Ming-Jay; Lin, Yang-Wei; Sun, Yuh-Chang
2016-01-01
This paper describes a fabrication protocol for a dipole-assisted solid phase extraction (SPE) microchip available for trace metal analysis in water samples. A brief overview of the evolution of chip-based SPE techniques is provided. This is followed by an introduction to specific polymeric materials and their role in SPE. To develop an innovative dipole-assisted SPE technique, a chlorine (Cl)-containing SPE functionality was implanted into a poly(methyl methacrylate) (PMMA) microchip. Herein, diverse analytical techniques including contact angle analysis, Raman spectroscopic analysis, and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis were employed to validate the utility of the implantation protocol of the C-Cl moieties on the PMMA. The analytical results of the X-ray absorption near-edge structure (XANES) analysis also demonstrated the feasibility of the Cl-containing PMMA used as an extraction medium by virtue of the dipole-ion interactions between the highly electronegative C-Cl moieties and the positively charged metal ions. PMID:27584954
Molecular Characterization of Group A Streptococcus Strains Isolated during a Scarlet Fever Outbreak
Perea-Mejía, Luis M.; Inzunza-Montiel, Alma E.; Cravioto, Alejandro
2002-01-01
Forty group A streptococcus (GAS) isolates, recovered during a scarlet fever outbreak, were grouped based on their DdeI restriction profiles from emm amplicons. Twenty-seven isolates were identified by sequencing as emm2. The emm2 isolates showed the speA1, speB1, and speC1 alleles. Isolation of this GAS type from scarlet fever outbreaks is uncommon. PMID:11773132
Wang, Jixia; Kong, Song; Yan, Jingyu; Jin, Gaowa; Guo, Zhimou; Shen, Aijin; Xu, Junyan; Zhang, Xiuli; Zou, Lijuan; Liang, Xinmiao
2014-06-01
Peptide drugs play a critical role in therapeutic treatment. However, as the complexity of plasma, determination of peptide drugs using liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a daunting task. To solve this problem, hydrophilic interaction liquid chromatography-solid phase extraction (HILIC-SPE) directly combined with protein precipitation (PPT) was developed for the selective extraction of triptorelin from plasma. The extracts were analyzed by reversed-phase liquid chromatography (RPLC). Proteins, phospholipids and highly polar interferences could be removed from plasma by the efficient combination of PPT, HILIC-SPE and RPLC-MS/MS. This method was evaluated by matrix effect, recovery and process efficiency at different concentration levels (50, 500 and 5,000 ng/mL) of triptorelin. Furthermore, the performance of HILIC-SPE was compared with that of reversed-phase C18 SPE and hydrophilic lipophilic balance (Oasis HLB) SPE. Among them, HILIC-SPE provided the minimum matrix effect (ranging from 96.02% to 103.41%), the maximum recovery (ranging from 80.68% to 90.54%) and the satisfactory process efficiency (ranging from 82.83% to 92.95%). The validated method was successfully applied to determine triptorelin in rat plasma. Copyright © 2014 Elsevier B.V. All rights reserved.
Solar particle event storm shelter requirements for missions beyond low Earth orbit.
Townsend, L W; Adams, J H; Blattnig, S R; Clowdsley, M S; Fry, D J; Jun, I; McLeod, C D; Minow, J I; Moore, D F; Norbury, J W; Norman, R B; Reames, D V; Schwadron, N A; Semones, E J; Singleterry, R C; Slaba, T C; Werneth, C M; Xapsos, M A
2018-05-01
Protecting spacecraft crews from energetic space radiations that pose both chronic and acute health risks is a critical issue for future missions beyond low Earth orbit (LEO). Chronic health risks are possible from both galactic cosmic ray and solar energetic particle event (SPE) exposures. However, SPE exposures also can pose significant short term risks including, if dose levels are high enough, acute radiation syndrome effects that can be mission- or life-threatening. In order to address the reduction of short term risks to spaceflight crews from SPEs, we have developed recommendations to NASA for a design-standard SPE to be used as the basis for evaluating the adequacy of proposed radiation shelters for cislunar missions beyond LEO. Four SPE protection requirements for habitats are proposed: (1) a blood-forming-organ limit of 250 mGy-equivalent for the design SPE; (2) a design reference SPE environment equivalent to the sum of the proton spectra during the October 1989 event series; (3) any necessary assembly of the protection system must be completed within 30 min of event onset; and (4) space protection systems must be designed to ensure that astronaut radiation exposures follow the ALARA (As Low As Reasonably Achievable) principle. Copyright © 2018. Published by Elsevier Ltd.
Katsifis, Andrew; Loc'h, Christian; Henderson, David; Bourdier, Thomas; Pham, Tien; Greguric, Ivan; Lam, Peter; Callaghan, Paul; Mattner, Filomena; Eberl, Stefan; Fulham, Michael
2011-01-01
To develop a rapid and reliable method for estimating non-metabolised PBR ligands fluoroethoxy ([(18)F]PBR102)- and fluoropropoxy ([(18)F]PBR111)-substituted 2-(6-chloro-2-phenyl)imidazo[1,2-a]pyridine-3-yl)-N,N-diethylacetamides in plasma. Rats and baboons were imaged with PET up to 2 h postinjection of [(18)F]PBR102 and [(18)F]PBR111 under baseline conditions, after pre-blocking or displacement with PK11195. Arterial plasma samples were directly analysed by reverse-phase solid-phase extraction (RP-SPE) and RP-HPLC and by normal-phase TLC. SPE cartridges were successively washed with acetonitrile/water mixtures. SPE eluant radioactivity was measured in a γ-counter to determine the parent compound fraction and then analysed by HPLC and TLC for validation. In SPE, hydrophilic and lipophilic radiolabelled metabolites were eluted in water and 20% acetonitrile/water. All non-metabolised [(18)F]PBR102 and [(18)F]PBR111 were in SPE acetonitrile fraction as confirmed by HPLC and TLC analysis. Unchanged (%) [(18)F]PBR102 and [(18)F]PBR111 from SPE analysis in rat and baboon plasma agreed with those from HPLC and TLC analysis. In rats and baboons, the fraction of unchanged tracer followed a bi-exponential decrease, with half-lives of 7 to 10 min for the fast component and >80 min for the slow component for both tracers. Direct plasma SPE analysis of [(18)F]PBR102 and [(18)F]PBR111 can reliably estimate parent compound fraction. SPE was superior to HPLC for samples with low activity; it allows rapid and accurate metabolite analysis of a large number of plasma samples for improved estimation of metabolite-corrected input function during quantitative PET imaging studies. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.
Háková, Martina; Raabová, Hedvika; Havlíková, Lucie Chocholoušová; Chocholouš, Petr; Chvojka, Jiří; Šatínský, Dalibor
2018-05-01
Nylon 6 nanofibers were tested for their ability to serve as a sorbent for solid phase extraction (SPE). The regular nanostructure providing a great sorption area and amidic functionality should lead to the assumption that nylon 6 nanofibers could be used as a novel sorbent with great potential for sample pre-treatment. However, due to the substantial differences between classical particle sorbents used for solid phase extraction and nanofibers, it is necessary to evaluate this novel approach. This article describes three types of laboratory fabricated nylon 6 nanofibers with different surface density (5.04gm -2 , 3.90gm -2 and 0.75gm -2 ) and corresponding surface areas for solid phase extraction of several groups of compounds with different structural and physicochemical properties (parabens, steroids, flavonoids and pesticides). The nanofibers were created by needleless electrospinning. Extraction columns were manually packed in classic 1- or 3-mL plastic syringe cartridges with 26-30mg of nanofibers and the column bed was sealed with polypropylene frits. The SPE procedure followed a typical five-step protocol and the collected eluates were analyzed by HPLC with UV detection. Extraction recovery was used as a parameter to evaluate the behavior of the analytes within the SPE process. Under this set condition, the recovery of the SPE process ranged from 23.1% to 125.8%. SPE showed good repeatability (0.58-11.87% RSD) and inter-day reproducibility (3.86-9.79% RSD). The achieved results were compared with SPE using a classic particle sorbent column. Good mechanical and chemical stability of nanofibers was proved. Scanning electron microscope was used for the evaluation of morphological changes in nanostructure. Nylon 6 nanofibers proved being a cost-effective sorbent for repeated use in SPE. Nylon 6 nanofibers have great potential in miniaturized SPE enabling users to overcome troubles with high back-pressure. Copyright © 2018 Elsevier B.V. All rights reserved.
Discussion of case study of a stimulation experiment in a fluvial, tight-sandstone gas reservoir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azari, M.; Wooden, W.
The authors found Warpinski et al.'s paper (Case Study of a Stimulation Experiment in Fluvial, Tight-Sandstone Gas Reservoir. Nov. 1990 SPE Production Engineering, Pages 403-10) to be very thorough and informative. That paper considered geological, logging, completion, and pressure-transient data to produce a comprehensive formation evaluation of a fluvial, tight-sandstone gas reservoir. The purpose of this paper is to present the author's view on the peculiar pressure-transient responses shown.
Li, Guizhen; Wang, Wei; Wang, Qian; Zhu, Tao
2016-02-01
Deep eutectic solvents (DES) were synthesized with choline chloride (ChCl), and DES modified molecular imprinted polymers (DES-MIPs), DES modified non-imprinted polymers (DES-NIPs, without template), MIPs and NIPs were prepared in an identical procedure. Fourier transform infrared spectrometer (FT-IR) and field emission scanning electron microscopy (FE-SEM) were used to characterize the obtained polymers. Rebinding experiment and solid-phase extraction (SPE) were used to prove the high selectivity adsorption properties of the polymers. Box-Behnken design (BBD) with three factors was used to optimize the extraction condition of chlorogenic acid (CA) from honeysuckles. The optimum extraction conditions were found to be ultrasonic time optimized (20 min), the volume fraction of ethanol (60%) and ratio of liquid to material (15 mL g(-1)). Under these conditions, the mean extraction yield of CA was 12.57 mg g(-1), which was in good agreement with the predicted BBD model value. Purification of hawthorn extract was achieved by SPE process, and SPE recoveries of CA were 72.56, 64.79, 69.34 and 60.08% by DES-MIPs, DES-NIPs, MIPs and NIPs, respectively. The results showed DES-MIPs had potential for promising functional adsorption material for the purification of bioactive compounds. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurley, R. C.; Vorobiev, O. Y.; Ezzedine, S. M.
Here, we present a numerical method for modeling the mechanical effects of nonlinearly-compliant joints in elasto-plastic media. The method uses a series of strain-rate and stress update algorithms to determine joint closure, slip, and solid stress within computational cells containing multiple “embedded” joints. This work facilitates efficient modeling of nonlinear wave propagation in large spatial domains containing a large number of joints that affect bulk mechanical properties. We implement the method within the massively parallel Lagrangian code GEODYN-L and provide verification and examples. We highlight the ability of our algorithms to capture joint interactions and multiple weakness planes within individualmore » computational cells, as well as its computational efficiency. We also discuss the motivation for developing the proposed technique: to simulate large-scale wave propagation during the Source Physics Experiments (SPE), a series of underground explosions conducted at the Nevada National Security Site (NNSS).« less
Hurley, R. C.; Vorobiev, O. Y.; Ezzedine, S. M.
2017-04-06
Here, we present a numerical method for modeling the mechanical effects of nonlinearly-compliant joints in elasto-plastic media. The method uses a series of strain-rate and stress update algorithms to determine joint closure, slip, and solid stress within computational cells containing multiple “embedded” joints. This work facilitates efficient modeling of nonlinear wave propagation in large spatial domains containing a large number of joints that affect bulk mechanical properties. We implement the method within the massively parallel Lagrangian code GEODYN-L and provide verification and examples. We highlight the ability of our algorithms to capture joint interactions and multiple weakness planes within individualmore » computational cells, as well as its computational efficiency. We also discuss the motivation for developing the proposed technique: to simulate large-scale wave propagation during the Source Physics Experiments (SPE), a series of underground explosions conducted at the Nevada National Security Site (NNSS).« less
Khan, Kashif Maqbool; Nahar, Lutfun; Mannan, Abdul; Arfan, Muhammad; Khan, Ghazanfar Ali; Al-Groshi, Afaf; Evans, Andrew; Dempster, Nicola M; Ismail, Fyaz M D; Sarker, Satyajit D
2018-01-01
Asparagus adscendens Roxb. (Asparagaceae), is native to the Himalayas. This plant has been used in the prevention and effective treatment of various forms of cancers. This paper reports, for the first time, on the cytotoxicity of the methanol (MeOH) extract of the roots of A. adscendens and its solid-phase extraction (SPE) fractions against four human carcinoma cell lines and LC-ESI-QTOF-MS analysis of the SPE fractions. Finely powdered roots of A. adscendens were macerated in methanol and extracted through SPE using gradient solvent system (water: methanol) proceeded for analysis on LC-ESI-QTOF-MS and cytotoxicity against four human carcinoma cell lines: breast (MCF7), liver (HEPG2), lung (A549), and urinary bladder (EJ138), using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay. The MeOH extract and four SPE fractions exhibited cytotoxicity against all cell lines with the IC 50 values ranging from 6 to 79 μg/mL. As observed in other Asparagus species, the presence of saponins and sapogenins in the SPE fractions was evident in the liquid chromatography-mass spectrometry data. It is reasonable to assume that the cytotoxicity of the MeOH extract of the roots of A. adscendens and its SPE fractions, at least partly, due to the presence of saponins and their aglycones. This suggests that A. adscendens could be exploited as a potential source of cytotoxic compounds with putative anticancer potential. The MeOH extract and all solid-phase extraction (SPE) fractions exhibited various levels of cytotoxicity against all cell lines with the IC 50 values ranging from 6 to 79 μg/mLThe presence of saponins and sapogenins in the SPE fractions was evident in the Liquid chromatography-mass spectrometry dataDue to the presence of saponins and their aglycones, suggest that A. adscendens could be exploited as a potential source of cytotoxic compounds with putative anticancer potential. Abbreviation used: SPE: Solid-phase extraction, MCF7: Breast cancer cell line, HEPG2: Liver cancer cell line, A549: Lung liver cancer cell line, EJ138: Urinary bladder cancer cell line, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide, LC-MS: Liquid chromatography-mass spectrometry.
Rios, Raimon; Silva, Hugo Bernardino Ferreira da; Carneiro, Norma Vilany Queiroz; Pires, Anaque de Oliveira; Carneiro, Tamires Cana Brasil; Costa, Ryan Dos Santos; Marques, Cintia Rodrigues; Machado, Marta Santos Serafim; Velozo, Eudes da Silva; Silva, Telma M G da; Silva, Tania M S da; Conceição, Adilva de Souza; Alcântara-Neves, Neuza Maria; Figueiredo, Camila Alexandrina
2017-09-14
Solanum paniculatum L., popularly known as jurubeba, is a common subtropical plant from Brazil, Paraguay, Bolivia and Argentina, that is used in folk medicine for the treatment of anemia, gastrointestinal disorders and inflammatory conditions in general. In addition to that, an ethnobotanical survey in "Todos os Santos" Bay have pointed out S. paniculatum as an herb to treat asthma. Previous publications have shown that S. paniculatum possesses antibiotic, antioxidant and modulatory effects on gastric acid secretion; however, its anti-inflammatory potential remains unexplored. Herein, we analyzed the S. paniculatum fruits hexane extract (SpE) for the presence of stigmasterol and β-sitosterol and investigated the anti-inflammatory effect of SpE in vitro. SpE was subjected to high-performance liquid chromatography (HPLC) for standardization and quantification of stigmasterol and β-sitosterol. Spleen cells from BALB/c mice were cultivated and stimulated with pokeweed mitogen and also exposed to 15, 30 and 60µg/mL of SpE. Following treatment, levels of IFN-γ, IL-4 and IL-10 in the culture supernatants were assessed by ELISA. We also evaluated nitric oxide (NO) production by murine LPS-stimulated peritoneal macrophages using the Griess technique. In addition, the ability of SpE to stabilize membranes was assessed using a model of hemolysis induced by heat on murine erythrocytes. Gene expression of Th1-cell-specific Tbx21 transcription factor (TBET), zinc-finger transcription factor-3 (GATA3), and nuclear factor-κB (NFKB) in murine spleen cells were assessed by quantitative Polymerase Chain Reaction (qRT-PCR). SpE at 15, 30 and 60µg/mL significantly attenuated cell proliferation, decreased IL-4 release, reduced NO production and improved erythrocyte membrane stabilization in a concentration-dependent manner. SpE was also able to decrease the release of IFN-γ without altering IL-10 levels. The mechanism whereby SpE decreased inflammatory markers may be related to the reduction of NFKB, TBET and GATA3 gene expression. This study is the first to test the anti-inflammatory action of S. paniculatum. Herein, we provided evidence for the popular use of S. paniculatum in inflammatory conditions. Additional studies must be conducted to further explore the anti-inflammatory potential of SpE and to elucidate possible clinical applications. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Liao, Wenta; Ghabour, Miriam; Draper, William M; Chandrasena, Esala
2016-09-01
Purge and trap sample introduction (PTI) has been the premier sampling and preconcentration technique for gas chromatographic determination of volatile organic compounds (VOCs) in drinking water for almost 50 years. PTI affords sub parts-per-billion (ppb) detection limits for purgeable VOCs including fixed gases and higher boiling hydrocarbons and halocarbons. In this study the coupling of solid phase extraction (SPE) to PTI was investigated as a means to substantially increase enrichment and lower detection limits for the emerging contaminant, 1,2,3-trichloropropane (TCP). Water samples (500 mL) were dechlorinated, preserved with a biocide, and spiked with the isotope labeled internal standard, d5-TCP. The entire 500 mL sample was extracted with activated carbon or carbon molecular sieve SPE cartridges, and then eluted with dichloromethane -- excess solvent was removed in a nitrogen evaporator and diethylene glycol "keeper" remaining was dispersed in 5 mL of water for PTI GC-MS analysis. The experimental Method Detection Limit (MDL) for TCP was 0.11 ng/L (ppt) and accuracy was 95-103% in sub-ppt determinations. Groundwater samples including impaired California sources and treated water (n = 21) were analyzed with results ranging from below the method reporting limit (0.30 ng/L) to > 250 ng/L. Coupling of SPE with PTI may provide similar reductions in detection limits for other VOCs with appropriate physical-chemical properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mittag, O; Meyer, T; Glaser-Möller, N; Matthis, C; Raspe, H
2006-05-01
Vocational (dis-)ability is a key concept in social medicine. It plays a major role in the realm of statutory pension funds (e. g. appraisal of applications for early retirement) as well as in epidemiologic or rehabilitation research. In a former population-based survey reliability of a short scale assessing the subjective prognosis of gainful employment (SPE-Scale, range = 0 - 3) had been tested. We now wanted to explore whether the SPE-Scale allows a prediction of vocational outcomes (early retirement) in the population sample over longer periods of time. Statutory pension insurees from Luebeck and surroundings aged between 40 and 55 were surveyed by questionnaire in 1999/2000. For 4225 subjects (= 95% of the original cohort) we obtained the following outcome data from pension fund records: dates of any applications for early retirement and beginning of retirement, date of death. The follow-up period covers 4.75 years on average. During this period 323 applications for early retirement (= 7.6%) were filed, and 200 subjects (= 4.7%) actually retired. First analysis including age and sex as covariates showed a threefold (SPE = 2) and eightfold (SPE = 3) risk of early retirement. Multivariate analysis (covariates: overall health status, number of chronic conditions, approved disability, subjective vocational ability, and length of sick leave measured at study onset) yielded a twofold risk of filing an application for early retirement (SPE = 3). The SPE-Scale is an appropriate screening instrument for hazards regarding gainful employment. It also can be recommended for use in epidemiologic or rehabilitation surveys.
SPE in Solar Cycle 24 : Flare and CME characteristic
NASA Astrophysics Data System (ADS)
Neflia, Neflia
SPE is one of the most severe hazards in the space environment. Such events, tend to occur during periods of intense solar activity, and can lead to high radiation doses in short time intervals. The proton enhancements produced by these solar events may last several days and are very hard to predict in advance and they also can cause harm to both satellite and human in space. The most significant sources of proton in the interplanetary medium are both solar flares and interplanetary shocks driven by coronal mass ejections (CMEs). In this study, I try to find the characteristic of Flare and CME that can cause the proton events in interplanetary medium. For my preliminary study, I will search flare characteristic such as class and position as an SPE causes. I also did the research with CME characteristic such as Angular Width (AW) and linier velocity. During solar cycle 24, the solar activity remain very low with several large flare and Halo CME. This low activity also occur on solar proton events in interplanetary medium. From January 2009 to May 2013, there are 25 SPEs with flux range from 12 - 6530 sfu (10 MeV). The solar flare during these events varies from C to X- class flare. From 27 X-class flare that occur during 2009 - May 2013, only 7 flares cause the SPE. Most of active region location are at solar Western Hemisphere (16/25). only 24 from 139 halo CME (AW=360) cause SPE. Although the probability of SPE from all flare and CME during this range of time is small but they have 3 common characteristics, ie, most of the SPE have active region position at Solar Western Hemisphere, the CME have AW=360 and they have a high linier velocity.
Nakada, Yuji; Itoh, Yoshifumi
2003-03-01
Putrescine can be synthesized either directly from ornithine by ornithine decarboxylase (ODC; the speC product) or indirectly from arginine via arginine decarboxylase (ADC; the speA product). The authors identified the speA and speC genes in Pseudomonas aeruginosa PAO1. The activities of the two decarboxylases were similar and each enzyme alone appeared to direct sufficient formation of the polyamine for normal growth. A mutant defective in both speA and speC was a putrescine auxotroph. In this strain, agmatine deiminase (the aguA product) and N-carbamoylputrescine amidohydrolase (the aguB product), which were initially identified as the catabolic enzymes of agmatine, biosynthetically convert agmatine to putrescine in the ADC pathway: a double mutant of aguAB and speC was a putrescine auxotroph. AguA was purified as a homodimer of 43 kDa subunits and AguB as a homohexamer of 33 kDa subunits. AguA specifically deiminated agmatine with K(m) and K(cat) values of 0.6 mM and 4.2 s(-1), respectively. AguB was specific to N-carbamoylputrescine and the K(m) and K(cat) values of the enzyme for the substrate were 0.5 mM and 3.3 s(-1), respectively. Whereas AguA has no structural relationship to any known C-N hydrolases, AguB is a protein of the nitrilase family that performs thiol-assisted catalysis. Inhibition by SH reagents and the conserved cysteine residue in AguA and its homologues suggested that this enzyme is also involved in thiol-mediated catalysis.
Magnetic solid-phase extraction using carbon nanotubes as sorbents: a review.
Herrero-Latorre, C; Barciela-García, J; García-Martín, S; Peña-Crecente, R M; Otárola-Jiménez, J
2015-09-10
Magnetic solid-phase extraction (M-SPE) is a procedure based on the use of magnetic sorbents for the separation and preconcentration of different organic and inorganic analytes from large sample volumes. The magnetic sorbent is added to the sample solution and the target analyte is adsorbed onto the surface of the magnetic sorbent particles (M-SPs). Analyte-M-SPs are separated from the sample solution by applying an external magnetic field and, after elution with the appropriate solvent, the recovered analyte is analyzed. This approach has several advantages over traditional solid phase extraction as it avoids time-consuming and tedious on-column SPE procedures and it provides a rapid and simple analyte separation that avoids the need for centrifugation or filtration steps. As a consequence, in the past few years a great deal of research has been focused on M-SPE, including the development of new sorbents and novel automation strategies. In recent years, the use of magnetic carbon nanotubes (M-CNTs) as a sorption substrate in M-SPE has become an active area of research. These materials have exceptional mechanical, electrical, optical and magnetic properties and they also have an extremely large surface area and varied possibilities for functionalization. This review covers the synthesis of M-CNTs and the different approaches for the use of these compounds in M-SPE. The performance, general characteristics and applications of M-SPE based on magnetic carbon nanotubes for organic and inorganic analysis have been evaluated on the basis of more than 110 references. Finally, some important challenges with respect the use of magnetic carbon nanotubes in M-SPE are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.
Vázquez, P Parrilla; Lozano, A; Uclés, S; Ramos, M M Gómez; Fernández-Alba, A R
2015-12-24
Several clean-up methods were evaluated for 253 pesticides in pollen samples concentrating on efficient clean-up and the highest number of pesticides satisfying the recovery and precision criteria. These were: (a) modified QuEChERS using dSPE with PSA+C18; (b) freeze-out prior to QuEChERS using dSPE with PSA+C18; (c) freeze-out prior to QuEChERS using dSPE with PSA+C18+Z-Sep; and (d) freeze-out followed by QuEChERS using dSPE with PSA+C18 and SPE with Z-Sep. Determinations were made using LC-MS/MS and GC-MS/MS. The modified QuEChERS protocol applying a freeze-out followed by dSPE with PSA+C18 and SPE clean-up with Z-Sep was selected because it provided the highest number of pesticides with mean recoveries in the 70-120% range, as well as relative standard deviations (RSDs) typically below 20% (12.2% on average) and ensured much better removal of co-extracted matrix compounds of paramount importance in routine analysis. Limits of quantification at levels as low as 5μgkg(-1) were obtained for the majority of the pesticides. The proposed methodology was applied to the analysis of 41 pollen bee samples from different areas in Spain. Pesticides considered potentially toxic to bees (DL50<2μg/bee) were detected in some samples with concentrations up to 72.7μgkg(-1), which could negatively affect honeybee health. Copyright © 2015 Elsevier B.V. All rights reserved.
Semenistaya, Ekaterina; Zvereva, Irina; Krotov, Grigory; Rodchenkov, Grigory
2016-09-01
Currently liquid chromatography - mass spectrometry (LC-MS) analysis after solid-phase extraction (SPE) on weak cation-exchange cartridges is a method of choice for anti-doping analysis of small bioactive peptides such as growth hormone releasing peptides (GHRPs), desmoporessin, LHRH, and TB-500 short fragment. Dilution of urine samples with phosphate buffer for pH adjustment and SPE on weak cation exchange microelution plates was tested as a means to increase throughput of this analysis. Dilution using 200 mM phosphate buffer provides good buffering capacity without affecting the peptides recoveries. SPE on microelution plates was performed on Waters Positive Pressure-96 Processor with subsequent evaporation of eluates in nitrogen flow. Though the use of smaller sample volume decreases the pre-concentration factor and increases the limits of detection of 5 out of 17 detected peptides, the recovery, linearity, and reproducibility of the microelution extraction were comparable with cartridge SPE. The effectiveness of protocols was confirmed by analysis of urine samples containing ipamorelin, and GHRP-6 and its metabolites. SPE after urine sample dilution with buffer can be used for faster sample preparation. The use of microelution plates decreases consumption of solvents and allows processing of up to 96 samples simultaneously. Cartridge SPE with manual рН adjustment remains the best option for confirmation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Kurihara, Shin; Sakai, Yumi; Suzuki, Hideyuki; Muth, Aaron; Phanstiel, Otto; Rather, Philip N
2013-05-31
Previously, we reported that the speA gene, encoding arginine decarboxylase, is required for swarming in the urinary tract pathogen Proteus mirabilis. In addition, this previous study suggested that putrescine may act as a cell-to-cell signaling molecule (Sturgill, G., and Rather, P. N. (2004) Mol. Microbiol. 51, 437-446). In this new study, PlaP, a putative putrescine importer, was characterized in P. mirabilis. In a wild-type background, a plaP null mutation resulted in a modest swarming defect and slightly decreased levels of intracellular putrescine. In a P. mirabilis speA mutant with greatly reduced levels of intracellular putrescine, plaP was required for the putrescine-dependent rescue of swarming motility. When a speA/plaP double mutant was grown in the presence of extracellular putrescine, the intracellular levels of putrescine were greatly reduced compared with the speA mutant alone, indicating that PlaP functioned as the primary putrescine importer. In urothelial cell invasion assays, a speA mutant exhibited a 50% reduction in invasion when compared with wild type, and this defect could be restored by putrescine in a PlaP-dependent manner. The putrescine analog Triamide-44 partially inhibited the uptake of putrescine by PlaP and decreased both putrescine stimulated swarming and urothelial cell invasion in a speA mutant.
Dong, Hongjun; Xu, Guozhang; Li, Shuhua; Song, Qifa; Liu, Shijian; Lin, Hui; Chai, Yibiao; Zhou, Aimin; Fang, Ting; Zhang, Hongwei; Jin, Chunguang; Lu, Wei; Cao, Guangwen
2008-04-01
To determine the etiological cause of a food-borne outbreak of scarlet fever in adults. Swabs from the throats of the patients and asymptomatic control were cultured on blood agar plates individually. Biochemical identification of all isolates was performed with a VITEX automated system. Antibiotic susceptibility was examined by using the Kirby-Bauer disc diffusion method. emm gene and extracellular pyrogenic exotoxins of each isolate were amplified by using polymerase chain reaction and subjected to DNA sequencing. Sequence differences between the isolated and the highly similar reference sequences were compared on BLAST. Bioinformatics was used to predict protein structures. Beta-haemolytic group A streptococci (GAS) emm75 were identified from 10 of 13 available patients. The isolates were susceptible to penicillin, ampicillin, vancomycin, cefatriaxone, ofloxacin, linezolid and quinupristin. All of the isolates carried pyrogenic exotoxin A (speA) and cysteine protease (speB). Isolated speA was phylogenetically different from 30 highly similar references on BLAST. Differences in the primary sequence of the deduced protein were 14.37-20.12% between the speA and each of 11 references. Secondary protein structure of the speA was different from the references at the N-terminal. GAS emm75 encoding altered speA was responsible for the food-borne outbreak of scarlet fever in adults.
Suzuki, Mayumi; Oki, Tomomi; Sugiyama, Tomomi; Umegaki, Keizo; Uchida, Shinya; Yamada, Shizuo
2007-06-01
To elucidate the in vitro and ex vivo effects of saw palmetto extract (SPE) on autonomic receptors in the rat lower urinary tract. The in vitro binding affinities for alpha 1-adrenergic, muscarinic, and purinergic receptors in the rat prostate and bladder were measured by radioligand binding assays. Rats received vehicle or SPE (0.6 to 60 mg/kg/day) orally for 4 weeks, and alpha 1-adrenergic and muscarinic receptor binding in tissues of these rats were measured. Saw palmetto extract inhibited specific binding of [3H]prazosin and [N-methyl-3H]scopolamine methyl chloride (NMS) but not alpha, beta-methylene adenosine triphosphate [2,8-(3)H]tetrasodium salt in the rat prostate and bladder. The binding activity of SPE for muscarinic receptors was four times greater than that for alpha 1-adrenergic receptors. Scatchard analysis revealed that SPE significantly reduced the maximal number of binding sites (Bmax) for each radioligand in the prostate and bladder under in vitro condition. Repeated oral administration of SPE to rats brought about significant alteration in Bmax for prostatic [3H]prazosin binding and for bladder [3H]NMS binding. Such alteration by SPE was selective to the receptors in the lower urinary tract. Saw palmetto extract exerts significant binding activity on autonomic receptors in the lower urinary tract under in vitro and in vivo conditions.
The sensibility of SPE induced atmospheric photochemical response to the ionization rate variations.
NASA Astrophysics Data System (ADS)
Krivolutsky, Alexei A.; Kukoleva, Anna; Kuminov, Alexander; Maygkova, Irina
During Solar proton event (SPE) energetic particles affect neutral atmospheric chemistry (Jackman et al. 1990, Krivolutsky A.A. et al. 2001 ets. ). The calculations results for [NO] and [O3] changes have qualitative suitability with observations data from satellites (UARS, HALOE for N.P.), although the simulated result differs in value from observed ones for nitrogen compounds. It seems potential probable reasons for this diversity exist. The sensibility of SPE induced atmospheric response to the ionization rates was investigated. The solar proton fluxes data from two satellites were used for ionization rate calculations by the method Vitt and Jackman (1996): geo-stationary GOES-10 (orbit height ≈ 40000 km) and CORONAS (orbit height is ≈ 400 km) for period of SPE 28.10. 2003. Calculated time integral ion creation during SPE using low and high orbit data differs for 1.5. Differences in ionization rate vertical distribution from GOES and CORONAS were found. Using this different ionization data the atmospherical composition response has been simulated with 1D photochemical model. The corresponding differences are discussed.
A long life 4 V class lithium-ion polymer battery with liquid-free polymer electrolyte
NASA Astrophysics Data System (ADS)
Kobayashi, Yo; Shono, Kumi; Kobayashi, Takeshi; Ohno, Yasutaka; Tabuchi, Masato; Oka, Yoshihiro; Nakamura, Tatsuya; Miyashiro, Hajime
2017-02-01
Ether-based solid polymer electrolyte (SPE) is one of the most well-known lithium ion conductors. Unlike the other inorganic electrolytes, SPE exhibits advantages of flexibility and large-area production, enabling low cost production of large size batteries. However, because the ether group is oxidized at 4 V versus Li/Li+ cathode, and due to its high irreversibility with the carbon anode, ether-based SPE was believed to be inapplicable to 4 V class lithium-ion batteries with carbon anode. Here we report a remarkably stable SPE in combination with a 4 V class cathode and carbon anode achieved by the proper design at the interface. The introduced boron-based lithium salt prohibits further oxidation of SPE at the cathode interface. The surface modification of graphite by the annealing of polyvinyl chloride mostly prohibits the continuous consumption of lithium at the graphite anode. Using above interface design, we achieved 60% capacity retention after 5400 cycles. The proposed battery provides a possible approach for realizing flammable electrolyte-free lithium-ion batteries, which achieve innovative safety improvements of large format battery systems for stationary use.
In Situ Miniaturised Solid Phase Extraction (m-SPE) for Organic Pollutants in Seawater Samples
Abaroa-Pérez, B.; Sánchez-Almeida, G.; Hernández-Brito, J. J.
2018-01-01
Solid phase extraction (SPE) is a consolidated technique for determining pollutants in seawater samples. The current tendency is to miniaturise systems that extract and determine pollutants in the environment, reducing the use of organic solvents, while maintaining the quality in the extraction and preconcentration. On the other hand, there is a need to develop new extraction systems that can be fitted to in situ continual monitoring buoys, especially for the marine environment. This work has developed a first model of a low-pressure micro-SPE (m-SPE) for persistent organic pollutants (POPs) that can be simply applied to in situ monitoring in the marine environment. This system reduces the volumes of sample and solvents required in the laboratory in comparison with conventional SPE. In the future, it could be used in automated or robotic systems in marine technologies such as marine gliders and oceanographic buoys. This system has been optimised and validated to determine polycyclic aromatic hydrocarbons (PAH) in seawater samples, but it could also be applied to other kinds of persistent organic pollutants (POPs) and emerging pollutants. PMID:29805837
1975-01-01
Environmental Effects Laboratory in July 1971 *. the floodplain. This report was written by Mr. Stoll and CPT R. D. Brown, formerly of ESB. Directors of...Middle Mississippi River for 1971 « ’ It should be noted that these tables exclude Government em- ployees, railroad employees, and self-employed...pipeline. 180. A breakdown of 1971 cargo tonnage for commodity groups car- 1+1 ried on the Middle Mississippi River is presented in Table 19. Spe
Grot, Stephen Andreas
1998-01-01
A PEM/SPE fuel cell including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates.
Orrego, Rodrigo; Guchardi, John; Hernandez, Victor; Krause, Rachelle; Roti, Lucia; Armour, Jeffrey; Ganeshakumar, Mathumai; Holdway, Douglas
2009-01-01
Endocrine disruption (ED) effects due to pulp and paper mill effluents extracts involving different industrial procedures and effluent treatments (nontreated, primary, and secondary treated) were evaluated using immature triploid rainbow trout in a pulse-exposure toxicity experiment. The protocol involved the use of intraperitoneal injection of mill extracts (solid-phase extraction [SPE]) corrected for individual fish weight and included several laboratory standards (steroidal hormones and phytosterols). Biological endpoints at two different levels of biological organization were analyzed (molecular and individual organism). Results indicated that nonsignificant changes were observed in the individual physiological indices represented by condition factor, liver somatic index, and gonad somatic index during the experiment. Significant induction of liver ethoxyresorufin-O-deethylase activity was observed between different effluent treatments and experimental controls. Significant endocrine-disrupting effects at the reproductive level were observed in all effluent treatments involving significant increments in plasma vitellogenin (VTG) levels. Fish exposed to untreated effluent extracts had significantly higher VTG levels compared to fish exposed to primary and secondary treatment effluent extracts, indicating a decrease of the estrogenic effect due to the effluent treatment. The present study has shown that for the Chilean pulp and paper mill SPE extracts evaluated, an endocrine disruption effect was induced in immature triploid rainbow, reaffirming the significant estrogenic effects demonstrated previously in laboratory and field experiments.
[Application of saw palmetto fruit extract in the treatment of prostate diseases].
Zhan, Xu-xin; Shang, Xue-jun; Huang, Yu-feng
2015-09-01
Saw palmetto fruit extract (SPE), as a herbal product, is widely used for the treatment of benign prostatic hyperplasia (BPH) and lower urinary tract symptoms (LUTS). Recent studies show that SPE also has some therapeutic effects on chronic prostatitis, prostate cancer, sexual dysfunction, and so on. This article presents an overview on the application of SPE in the treatment of BPH, prostate cancer, and chronic prostatitis/chronic pelvic pain syndrome, with a discussion on its action mechanisms.
Grot, S.A.
1998-01-13
A PEM/SPE fuel cell is described including a membrane-electrode assembly (MEA) having a plurality of oriented filament embedded the face thereof for supporting the MEA and conducting current therefrom to contiguous electrode plates. 4 figs.
Chen, Y C; Shiea, J; Sunner, J
2000-01-01
A rapid technique for the screening of trace compounds in water by combining solid-phase extraction (SPE) with activated carbon surface-assisted laser desorption/ionization (SALDI) time-of-flight mass spectrometry is demonstrated. Activated carbon is used both as the sorbent in SPE and as the solid in the SALDI matrix system. This eliminates the need for an SPE elution process. After the analytes have been adsorbed on the surfaces of the activated carbon during SPE extraction, the activated carbon is directly mixed with the SALDI liquid and mass spectrometric analysis is performed. Trace phenolic compounds in water were used to demonstrate the effectiveness of the method. The detection limit for these compounds is in the ppb to ppt range. Copyright 2000 John Wiley & Sons, Ltd.
Dachev TsP; Semkova, J V; Matviichuk YuN; Tomov, B T; Koleva, R T; Baynov, P T; Petrov, V M; Shurshakov, V V; Ivanov, Y u
1998-01-01
Measurements on board the Mir space station have been used to study the dose rate and the particle flux distribution in the inner magnetosphere. The measurements have been performed with the Bulgarian-Russian dosimeter-radiometer Liulin. The paper concentrates on the dynamics of the observed "new" and "second" maxima which were created after Solar Proton Events (SPE) in the 1989-1994 time. The "second" belt was first observed after the SPE on October 20, 1989, and the last observation was after the SPE on February 20, 1994. The creation of the "new" belt is a unique phenomena seen in the Liulin data set after the SPE on March 23, 1991 and relates to the magnetic storm on March 24. The new belt fully disappears in the middle of 1993.
Drzymala, Sarah S; Weiz, Stefan; Heinze, Julia; Marten, Silvia; Prinz, Carsten; Zimathies, Annett; Garbe, Leif-Alexander; Koch, Matthias
2015-05-01
Established maximum levels for the mycotoxin zearalenone (ZEN) in edible oil require monitoring by reliable analytical methods. Therefore, an automated SPE-HPLC online system based on dynamic covalent hydrazine chemistry has been developed. The SPE step comprises a reversible hydrazone formation by ZEN and a hydrazine moiety covalently attached to a solid phase. Seven hydrazine materials with different properties regarding the resin backbone, pore size, particle size, specific surface area, and loading have been evaluated. As a result, a hydrazine-functionalized silica gel was chosen. The final automated online method was validated and applied to the analysis of three maize germ oil samples including a provisionally certified reference material. Important performance criteria for the recovery (70-120 %) and precision (RSDr <25 %) as set by the Commission Regulation EC 401/2006 were fulfilled: The mean recovery was 78 % and RSDr did not exceed 8 %. The results of the SPE-HPLC online method were further compared to results obtained by liquid-liquid extraction with stable isotope dilution analysis LC-MS/MS and found to be in good agreement. The developed SPE-HPLC online system with fluorescence detection allows a reliable, accurate, and sensitive quantification (limit of quantification, 30 μg/kg) of ZEN in edible oils while significantly reducing the workload. To our knowledge, this is the first report on an automated SPE-HPLC method based on a covalent SPE approach.
Silva-Costa, Catarina; Carriço, Joao A; Ramirez, Mario; Melo-Cristino, Jose
2014-03-01
Several outbreaks of scarlet fever caused by Streptococcus pyogenes were recently reported. Scarlet fever is historically considered a toxin-mediated disease, dependent on the production of the exotoxins SpeA and SpeC, but a strict association between scarlet fever and these exotoxins is not always detected. The aims of this study were to characterize the scarlet fever bacterial isolates recovered from patients in a Lisbon hospital and to identify any distinctive characteristics of such isolates. We characterized a collection of 303 pharyngeal S. pyogenes collected between 2002 and 2008. One-hundred and one were isolated from scarlet fever patients and 202 were associated to a diagnosis of tonsillo-pharyngitis. Isolates were characterized by T and emm typing, pulsed field gel electrophoresis profiling and superantigen gene profiling. The diversity of the scarlet fever isolates was lower than that of the pharyngitis isolates. Specific lineages of emm87, emm4 and emm3 were overrepresented in scarlet fever isolates but only 1 pulsed field gel electrophoresis major lineage was significantly associated with scarlet fever. Multivariate analysis indicated associations of ssa, speA and speC with scarlet fever. In nonoutbreak conditions, scarlet fever is caused by a number of distinct genetic lineages. The lower diversity of these isolates and the association with specific exotoxin genes indicates that some lineages are more prone to cause this presentation than others even in nonoutbreak conditions.
Li, Minghong; Holmes, Veronica; Ni, Houping; Sanzari, Jenine K; Romero-Weaver, Ana L; Lin, Liyong; Carabe-Fernandez, Alejandro; Diffenderfer, Eric S; Kennedy, Ann R; Weissman, Drew
2015-01-01
A major risk for astronauts during prolonged space flight is infection as a result of the combined effects of microgravity, situational and confinement stress, alterations in food intake, altered circadian rhythm, and radiation that can significantly impair the immune system and the body's defense systems. We previously reported a massive increase in morbidity with a decrease in the ability to control a bacterial challenge when mice were maintained under hindlimb suspension (HS) conditions and exposed to solar particle event (SPE)-like radiation. HS and SPE-like radiation treatment alone resulted in a borderline significant increase in morbidity. Therefore, development and testing of countermeasures that can be used during extended space missions in the setting of exposure to SPE radiation becomes a serious need. In the present study, we investigated the efficacy of enrofloxacin (an orally bioavailable antibiotic) and Granulocyte colony stimulating factor (G-CSF) (Neulasta) on enhancing resistance to Pseudomonas aeruginosa infection in mice subjected to HS and SPE-like radiation. The results revealed that treatment with enrofloxacin or G-CSF enhanced bacterial clearance and significantly decreased morbidity and mortality in challenged mice exposed to suspension and radiation. These results establish that antibiotics, such as enrofloxacin, and G-CSF could be effective countermeasures to decrease the risk of bacterial infections after exposure to SPE radiation during extended space flight, thereby reducing both the risk to the crew and the danger of mission failure.
Anti-Inflammatory Effects of Spirulina platensis Extract via the Modulation of Histone Deacetylases.
Pham, Tho X; Park, Young-Ki; Lee, Ji-Young
2016-06-21
We previously demonstrated that the organic extract of Spirulina platensis (SPE), an edible blue-green alga, possesses potent anti-inflammatory effects. In this study, we investigated if the regulation of histone deacetylases (HDACs) play a role in the anti-inflammatory effect of SPE in macrophages. Treatment of macrophages with SPE rapidly and dose-dependently reduced HDAC2, 3, and 4 proteins which preceded decreases in their mRNA levels. Degradation of HDAC4 protein was attenuated in the presence of inhibitors of calpain proteases, lysosomal acidification, and Ca(2+)/calmodulin-dependent protein kinase II, respectively, but not a proteasome inhibitor. Acetylated histone H3 was increased in SPE-treated macrophages to a similar level as macrophages treated with a pan-HDAC inhibitor, with concomitant inhibition of inflammatory gene expression upon LPS stimulation. Knockdown of HDAC3 increased basal and LPS-induced pro-inflammatory gene expression, while HDAC4 knockdown increased basal expression of interleukin-1β (IL-1β), but attenuated LPS-induced inflammatory gene expression. Chromatin immunoprecipitation showed that SPE decreased p65 binding and H3K9/K14 acetylation at the Il-1β and tumor necrosis factor α (Tnfα) promoters. Our results suggest that SPE increased global histone H3 acetylation by facilitating HDAC protein degradation, but decreases histone H3K9/K14 acetylation and p65 binding at the promoters of Il-1β and Tnfα to exert its anti-inflammatory effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudaryanto,, E-mail: dryanto@batan.go.id; Yulianti, Evi, E-mail: yulianti@batan.go.id; Patimatuzzohrah, E-mail: pzohrah@yahoo.com
In order to develop all solid lithium ion battery, study on the structure and properties of solid polymer electrolytes (SPE) based on chitosan has been done. The SPE were prepared by adding Zirconia (ZrO{sub 2}) nanoparticle and LiClO{sub 4} as lithium salt into the chitosan solution followed by casting method. Effect of the ZrO{sub 2} and salt concentration to the structure and properties of SPE were elaborated using several methods. The structure of the SPE cast film, were characterized mainly by using X-ray diffractometer (XRD). While the electrical properties of SPE were studied by electrochemical impedance spectrometer (EIS) and ionmore » transference number measurement. XRD profiles show that the addition of ZrO{sub 2} and LiClO{sub 4} disrupts the crystality of chitosan. The decrease in sample crytalinity with the nanoparticle and salt addition may increase the molecular mobility result in the increasing sample conductivity and cathionic transference number as determined by EIS and ion transference number measurement, respectively. The highest ionic conductivity (3.58×10{sup −4} S cm{sup −1}) was obtained when 4 wt% of ZrO{sub 2} nanoparticle and 40 wt% of LiClO{sub 4} salt were added to the chitosan. The ion transference number with that composition was 0.55. It is high enough to be used as SPE for lithium ion battery.« less
Development of andrographolide molecularly imprinted polymer for solid-phase extraction
NASA Astrophysics Data System (ADS)
Yin, Xiaoying; Liu, Qingshan; Jiang, Yifan; Luo, Yongming
2011-06-01
A method employing molecularly imprinted polymer (MIP) as selective sorbent for solid-phase extraction (SPE) to pretreat samples was developed. The polymers were prepared by precipitation polymerization with andrographolide as template molecule. The structure of MIP was characterized and its static adsorption capacity was measured by the Scatchard equation. In comparison with C 18-SPE and non-imprinted polymer (NIP) SPE column, MIP-SPE column displays high selectivity and good affinity for andrographolide and dehydroandrographolide for extract of herb Andrographis paniculata ( Burm.f.) Nees (APN). MIP-SPE column capacity was 11.9 ± 0.6 μmol/g and 12.1 ± 0.5 μmol/g for andrographolide and dehydroandrographolide, respectively and was 2-3 times higher than that of other two columns. The precision and accuracy of the method developed were satisfactory with recoveries between 96.4% and 103.8% (RSD 3.1-4.3%, n = 5) and 96.0% and 104.2% (RSD 2.9-3.7%, n = 5) for andrographolide and dehydroandrographolide, respectively. Various real samples were employed to confirm the feasibility of method. This developed method demonstrates the potential of molecularly imprinted solid phase extraction for rapid, selective, and effective sample pretreatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González-Páez, Gonzalo E.; Wolan, Dennis W.
2012-09-05
Cysteine protease SpeB is secreted from Streptococcus pyogenes and has been studied as a potential virulence factor since its identification almost 70 years ago. Here, we report the crystal structures of apo mature SpeB to 1.06 {angstrom} resolution as well as complexes with the general cysteine protease inhibitor trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and a novel substrate mimetic peptide inhibitor. These structures uncover conformational changes associated with maturation of SpeB from the inactive zymogen to its active form and identify the residues required for substrate binding. With the use of a newly developed fluorogenic tripeptide substrate to measure SpeB activity, we determined IC{sub 50}more » values for trans-epoxysuccinyl-L-leucylamido(4-guanidino)butane and our new peptide inhibitor and the effects of mutations within the C-terminal active site loop. The structures and mutational analysis suggest that the conformational movements of the glycine-rich C-terminal loop are important for the recognition and recruitment of biological substrates and release of hydrolyzed products.« less
Kim, Da-Hye; Oh, Jeong-Eun
2017-05-01
Human hair has many advantages as a non-invasive sample; however, analytical methods for detecting perfluoroalkyl substances (PFASs) in human hair are still in the development stage. Therefore, the aim of this study was to develop and validate a method for monitoring 11 PFASs in human hair. Solid-phase extraction (SPE), ion-pairing extraction (IPE), a combined method (SPE+IPE) and solvent extraction with ENVI-carb clean-up were compared to develop an optimal extraction method using two types of hair sample (powder and piece forms). Analysis of PFASs was performed using liquid chromatography and tandem mass spectrometry. Among the four different extraction procedures, the SPE method using powdered hair showed the best extraction efficiency and recoveries ranged from 85.8 to 102%. The method detection limits for the SPE method were 0.114-0.796 ng/g and good precision (below 10%) and accuracy (66.4-110%) were obtained. In light of these results, SPE is considered the optimal method for PFAS extraction from hair. It was also successfully used to detect PFASs in human hair samples. Copyright © 2017 Elsevier Ltd. All rights reserved.
Forecasting solar proton event with artificial neural network
NASA Astrophysics Data System (ADS)
Gong, J.; Wang, J.; Xue, B.; Liu, S.; Zou, Z.
Solar proton event (SPE), relatively rare but popular in solar maximum, can bring hazard situation to spacecraft. As a special event, SPE always accompanies flare, which is also called proton flare. To produce such an eruptive event, large amount energy must be accumulated within the active region. So we can investigate the character of the active region and its evolving trend, together with other such as cm radio emission and soft X-ray background to evaluate the potential of SEP in chosen area. In order to summarize the omen of SPEs in the active regions behind the observed parameters, we employed AI technology. Full connecting neural network was chosen to fulfil this job. After constructing the network, we train it with 13 parameters that was able to exhibit the character of active regions and their evolution trend. More than 80 sets of event parameter were defined to teach the neural network to identify whether an active region was potential of SPE. Then we test this model with a data base consisting SPE and non-SPE cases that was not used to train the neural network. The result showed that 75% of the choice by the model was right.
Wang, Ziming; Zhao, Xin; Xu, Xu; Wu, Lijie; Su, Rui; Zhao, Yajing; Jiang, Chengfei; Zhang, Hanqi; Ma, Qiang; Lu, Chunmei; Dong, Deming
2013-01-14
A single-step extraction-cleanup method, including microwave-assisted extraction (MAE) and micro-solid-phase extraction (μ-SPE), was developed for the extraction of ten organophosphorus pesticides in vegetable and fruit samples. Without adding any polar solvent, only one kind of non-polar solvent (hexane) was used as extraction solvent in the whole extraction step. Absorbing microwave μ-SPE device, was prepared by packing activated carbon with microporous polypropylene membrane envelope, and used as not only the sorbent in μ-SPE, but also the microwave absorption medium. Some experimental parameters effecting on extraction efficiency was investigated and optimized. 1.0 g of sample, 8 mL of hexane and three absorbing microwave μ-SPE devices were added in the microwave extraction vessel, the extraction was carried out under 400 W irradiation power at 60°C for 10 min. The extracts obtained by MAE-μ-SPE were directly analyzed by GC-MS without any clean-up process. The recoveries were in the range of 93.5-104.6%, and the relative standard deviations were lower than 8.7%. Copyright © 2012 Elsevier B.V. All rights reserved.
On-line MSPD-SPE-HPLC/FLD analysis of polycyclic aromatic hydrocarbons in bovine tissues.
Gutiérrez-Valencia, Tania M; García de Llasera, Martha P
2017-05-15
A fast method was optimized and validated for simultaneous trace determination of four polycyclic aromatic hydrocarbons: benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene and benzo[a]pyrene in bovine tissues. The determination was performed by matrix solid-phase dispersion (MSPD) coupled on-line to solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with fluorescence detection (FLD). The sample was dispersed on C 18 silica sorbent and then the on-line MSPD-SPE-HPLC/FLD method was applied. Several parameters were optimized: cleaning and elution sequences applied to the MSPD cartridge, the flow rate and dilution of extract used for SPE loading. The on-line method was validated over a concentration range of 0.1-0.6ngg -1 obtaining good linearity (r⩾0.998) and precision (RSD)⩽10%. Recovery ranged from 96 to 99% and the limits of detection were 0.012ngg -1 . This methodology was applied to liver samples from unhealthy animals. The results demonstrate that MSDP-SPE-HPLC/FLD method provides reliable, sensitive, accurate and fast data to the food control. Copyright © 2016 Elsevier Ltd. All rights reserved.
Isolation and pharmacological characterization of fatty acids from saw palmetto extract.
Abe, Masayuki; Ito, Yoshihiko; Suzuki, Asahi; Onoue, Satomi; Noguchi, Hiroshi; Yamada, Shizuo
2009-04-01
Saw palmetto extract (SPE) has been widely used for the treatment of lower urinary-tract symptoms secondary to benign prostatic hyperplasia. The mechanisms of pharmacological effects of SPE include the inhibition of 5alpha-reductase, anti-androgenic effects, anti-proliferative effects, and anti-inflammatory effects. Previously, we showed that SPE bound actively to alpha(1)-adrenergic, muscarinic and 1,4-dihydropyridine calcium channel (1,4-DHP) receptors in the prostate and bladder of rats, whereas its active constituents have not been fully clarified. The present investigation is aimed to identify the main active components contained in hexane and diethyl ether extracts of SPE with the use of column chromatography and preparative HPLC. Based on the binding activity with alpha(1)-adrenergic, muscarinic, and 1,4-DHP receptors, both isolated oleic and lauric acids were deduced to be active components. Authentic samples of oleic and lauric acids also exhibited similar binding activities to these receptors as the fatty acids isolated from SPE, consistent with our findings. In addition, oleic and lauric acids inhibited 5alpha-reductase, possibly leading to therapeutic effects against benign prostatic hyperplasia and related lower urinary-tract symptoms.
Antioxidative properties of defatted dabai pulp and peel prepared by solid phase extraction.
Khoo, Hock Eng; Azlan, Azrina; Ismail, Amin; Abas, Faridah
2012-08-14
Solid phase extraction (SPE) using Sep-Pak® cartridges is one of the techniques used for fractionation of antioxidant compounds in waste of dabai oil extraction (defatted dabai parts). The aim of this study was to determine the phenolic compounds and antioxidant capacity in crude extracts and several SPE fractions from methanolic extract of defatted dabai pulp and peel. Based on SPE, Sep-Pak® cyanopropyl and C₁₈ cartridges were used to fractionate the antioxidant-rich crude extracts into water and methanolic fractions. Analyzed using LC-MS, flavonoids, anthocyanins, saponin derivatives and other unknown antioxidative compounds were detected in the defatted dabai crude extracts and their SPE fractions. Anthocyanins were the major phenolic compounds identified in the defatted dabai peel and detected in most of the SPE fractions. Methanolic fractions of defatted dabai parts embraced higher total phenolics and antioxidant capacity than water fractions. This finding also revealed the crude extracts of defatted dabai peel have the most significant antioxidant properties compared to the methanolic and water fractions studied. The crude extract of defatted dabai parts remain as the most potent antioxidant as it contains mixture of flavonoids, anthocyanins and other potential antioxidants.
NASA Technical Reports Server (NTRS)
Sauer, Richard; Rutz, Jeffrey; Schultz, John
2005-01-01
A solid-phase extraction (SPE) process has been developed for removing alcohols, carboxylic acids, aldehydes, ketones, amines, and other polar organic compounds from water. This process can be either a subprocess of a water-reclamation process or a means of extracting organic compounds from water samples for gas-chromatographic analysis. This SPE process is an attractive alternative to an Environmental Protection Administration liquid-liquid extraction process that generates some pollution and does not work in a microgravitational environment. In this SPE process, one forces a water sample through a resin bed by use of positive pressure on the upstream side and/or suction on the downstream side, thereby causing organic compounds from the water to be adsorbed onto the resin. If gas-chromatographic analysis is to be done, the resin is dried by use of a suitable gas, then the adsorbed compounds are extracted from the resin by use of a solvent. Unlike the liquid-liquid process, the SPE process works in both microgravity and Earth gravity. In comparison with the liquid-liquid process, the SPE process is more efficient, extracts a wider range of organic compounds, generates less pollution, and costs less.
Lee, Byeong Ill; Park, Min-Ho; Heo, Soon Chul; Park, Yuri; Shin, Seok-Ho; Byeon, Jin-Ju; Kim, Jae Ho; Shin, Young G
2018-03-01
A liquid chromatographic-electrospray ionization-time-of-flight/mass spectrometric (LC-ESI-TOF/MS) method was developed and applied for the determination of WKYMVm peptide in rat plasma to support preclinical pharmacokinetics studies. The method consisted of micro-elution solid-phase extraction (SPE) for sample preparation and LC-ESI-TOF/MS in the positive ion mode for analysis. Phenanthroline (10 mg/mL) was added to rat blood immediately for plasma preparation followed by addition of trace amount of 2 m hydrogen chloride to plasma before SPE for stability of WKYMVm peptide. Then sample preparation using micro-elution SPE was performed with verapamil as an internal standard. A quadratic regression (weighted 1/concentration 2 ), with the equation y = ax 2 + bx + c was used to fit calibration curves over the concentration range of 3.02-2200 ng/mL for WKYMVm peptide. The quantification run met the acceptance criteria of ±25% accuracy and precision values. For quality control samples at 15, 165 and 1820 ng/mL from the quantification experiment, the within-run and the between-run accuracy ranged from 92.5 to 123.4% with precision values ≤15.1% for WKYMVm peptide from the nominal values. This novel LC-ESI-TOF/MS method was successfully applied to evaluate the pharmacokinetics of WKYMVm peptide in rat plasma. Copyright © 2017 John Wiley & Sons, Ltd.
McCudden, Christopher; Axel, Amy E; Slaets, Dominique; Dejoie, Thomas; Clemens, Pamela L; Frans, Sandy; Bald, Jaime; Plesner, Torben; Jacobs, Joannes F M; van de Donk, Niels W C J; Moreau, Philippe; Schecter, Jordan M; Ahmadi, Tahamtan; Sasser, A Kate
2016-06-01
Monoclonal antibodies are promising anti-myeloma treatments. As immunoglobulins, monoclonal antibodies have the potential to be identified by serum protein electrophoresis (SPE) and immunofixation electrophoresis (IFE). Therapeutic antibody interference with standard clinical SPE and IFE can confound the use of these tests for response assessment in clinical trials and disease monitoring. To discriminate between endogenous myeloma protein and daratumumab, a daratumumab-specific immunofixation electrophoresis reflex assay (DIRA) was developed using a mouse anti-daratumumab antibody. To evaluate whether anti-daratumumab bound to and shifted the migration pattern of daratumumab, it was spiked into daratumumab-containing serum and resolved by IFE/SPE. The presence (DIRA positive) or absence (DIRA negative) of residual M-protein in daratumumab-treated patient samples was evaluated using predetermined assessment criteria. DIRA was evaluated for specificity, limit of sensitivity, and reproducibility. In all of the tested samples, DIRA distinguished between daratumumab and residual M-protein in commercial serum samples spiked with daratumumab and in daratumumab-treated patient samples. The DIRA limit of sensitivity was 0.2 g/L daratumumab, using spiking experiments. Results from DIRA were reproducible over multiple days, operators, and assays. The anti-daratumumab antibody was highly specific for daratumumab and did not shift endogenous M-protein. As the treatment of myeloma evolves to incorporate novel monoclonal antibodies, additional solutions will be needed for clinical monitoring of patient responses to therapeutic regimens. In the interim, assays such as DIRA can inform clinical outcomes by distinguishing daratumumab from endogenous M-protein by IFE.
Özer, Elif Tümay; Osman, Bilgen; Yazıcı, Tuğçe
2017-06-02
The aim of this study was to investigate the usability of newly synthesized dummy molecularly imprinted microbeads (DMIMs) as a solid phase extraction (SPE) material to determine six phthalate esters (PEs) in water by GC-MS analysis. Diethyl phthalate (DEP) was used as a dummy template to prepare poly(ethylene glycol dimethacrylate N-methacryloyl-l-tryptophan methyl ester) [PEMATrp)] DMIMs by using suspension polymerization. The PEMATrp DMIMs were characterized by using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Firstly, the adsorption capacities of the DMIMs prepared in different template molecule (DEP) to functional monomer (MATrp) ratios were investigated by using DEP solutions in the concentration range of 1-500mg/L at pH 3.0. Styrene and vanillic acid were used to evaluate the selectivity of the prepared DMIMs towards the template molecule (DEP). Then, the best analytical conditions were investigated for the simultaneous determination of dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), benzylbutyl phthalate (BBP), di-(2-ethylhexyl) phthalate (DEHP) and di-n-octyl phthalate (DnOP) in aqueous media by using the PEMATrp DMIMs as SPE material. Validation experiments showed that the PEMATrp DMIMs-SPE method had good linearity at 12.5-250.0μg/L (0.988-0.999), good precision (1.2-5.9%), and limits of detection in a range of 0.31-0.41μg/L. Copyright © 2017 Elsevier B.V. All rights reserved.
Wu, Fang; Li, Yikun; Chang, Shaojie; Zhou, Zhaocai; Wang, Fang; Song, Xiaomin; Lin, Yujuan; Gong, Weimin
2002-12-01
A 16 kDa protein SPE16 was purified from the seeds of Pachyrrhizus erosus. Its N-terminal amino-acid sequence showed significant sequence homology to pathogenesis-related proteins from the PR-10 family. An activity assay indicated that SPE16 possesses ribonuclease activity as do some other PR-10 proteins. SPE16 crystals were obtained by the hanging-drop vapour-diffusion method. The space group is P2(1)2(1)2(1), with unit-cell parameters a = 53.36, b = 63.70, c = 72.96 A.
Utility of the M.I.T. (Massachusetts Institute of Technology) Underwater Stud Welding Gun.
1984-06-01
studs not preferred. 5.2.1 Padeyes Conditions for welding the single stud padeye ( SSPE ), three stud padeye (3SPE), and multiple stud lifting strap (MSLS...are as follows: 105 -! SSPE 3SPE t.SLS Depth 100’ 100’ 50’ Visibility Ambient Total Clear Darkness If the performance (P) is greater than one, stud...the tasks are to be performed will now be discussed. 5.2.2 Padeye Evaluation The single stud padeye ( SSPE ), the three stud padeye (3SPE) and the
Köke, Niklas; Zahn, Daniel; Knepper, Thomas P; Frömel, Tobias
2018-03-01
Analysis of polar organic chemicals in the aquatic environment is exacerbated by the lack of suitable and widely applicable enrichment methods. In this work, we assessed the suitability of a novel combination of well-known solid-phase extraction (SPE) materials in one cartridge as well as an evaporation method and for the enrichment of 26 polar model substances (predominantly log D < 0) covering a broad range of physico-chemical properties in three different aqueous matrices. The multi-layer solid-phase extraction (mlSPE) and evaporation method were investigated for the recovery and matrix effects of the model substances and analyzed with hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS). In total, 65% of the model substances were amenable (> 10% recovery) to the mlSPE method with a mean recovery of 76% while 73% of the model substances were enriched with the evaporation method achieving a mean recovery of 78%. Target and non-target screening comparison of both methods with a frequently used reversed-phase SPE method utilizing "hydrophilic and lipophilic balanced" (HLB) material was performed. Target analysis showed that the mlSPE and evaporation method have pronounced advantages over the HLB method since the HLB material retained only 30% of the model substances. Non-target screening of a ground water sample with the investigated enrichment methods showed that the median retention time of all detected features on a HILIC system decreased in the order mlSPE (3641 features, median t R 9.7 min), evaporation (1391, 9.3 min), HLB (4414, 7.2 min), indicating a higher potential of the described methods to enrich polar analytes from water compared with HLB-SPE. Graphical abstract Schematic of the method evaluation (recovery and matrix effects) and method comparison (target and non-target analysis) of the two investigated enrichment methods for very polar chemicals in aqueousmatrices.
Wadsworth, Teri L; Carroll, Julie M; Mallinson, Rebecca A; Roberts, Charles T; Roselli, Charles E
2004-07-01
A common alternative therapy for benign prostatic hyperplasia (BPH) is the extract from the fruit of saw palmetto (SPE). BPH is caused by nonmalignant growth of epithelial and stromal elements of the prostate. IGF action is important for prostate growth and development, and changes in the IGF system have been documented in BPH tissues. The main signaling pathways activated by the binding of IGF-I to the IGF-I receptor (IGF-IR) are the ERK arm of the MAPK cascade and the phosphoinositol-3-kinase (PI3K)/protein kinase B (PKB/Akt) cascade. We tested the hypothesis that SPE suppresses growth and induces apoptosis in the P69 prostate epithelial cell line by inhibiting IGF-I signaling. Treatment with 150 microg/ml SPE for 24 h decreased IGF-I-induced proliferation of P69 cells and induced cleavage of the enzyme poly(ADP-ribose)polymerase (PARP), an index of apoptosis. Treatment of serum-starved P69 cells with 150 microg/ml SPE for 6 h reduced IGF-I-induced phosphorylation of Akt (assessed by Western blot) and Akt activity (assessed by an Akt kinase assay). Western blot analysis showed that SPE reduced IGF-I-induced phosphorylation of the adapter protein insulin receptor substrate-1 and decreased downstream effects of Akt activation, including increased cyclin D1 levels and phosphorylation of glycogen synthase kinase-3 and p70(s6k). There was no effect on IGF-I-induced phosphorylation of MAPK, IGF-IR, or Shc. Treatment of starved cells with SPE alone induced phosphorylation the proapoptotic protein JNK. SPE treatment may relieve symptoms of BPH, in part, by inhibiting specific components of the IGF-I signaling pathway and inducing JNK activation, thus mediating antiproliferative and proapoptotic effects on prostate epithelia.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schultz-Fellenz, Emily S.
A portion of LANL’s FY15 SPE objectives includes initial ground-based or ground-proximal investigations at the SPE Phase 2 site. The area of interest is the U2ez location in Yucca Flat. This collection serves as a baseline for discrimination of surface features and acquisition of topographic signatures prior to any development or pre-shot activities associated with SPE Phase 2. Our team originally intended to perform our field investigations using previously vetted ground-based (GB) LIDAR methodologies. However, the extended proposed time frame of the GB LIDAR data collection, and associated data processing time and delivery date, were unacceptable. After technical consultation andmore » careful literature research, LANL identified an alternative methodology to achieve our technical objectives and fully support critical model parameterization. Very-low-altitude unmanned aerial systems (UAS) photogrammetry appeared to satisfy our objectives in lieu of GB LIDAR. The SPE Phase 2 baseline collection was used as a test of this UAS photogrammetric methodology.« less
Recyclable amplification for single-photon entanglement from photon loss and decoherence
NASA Astrophysics Data System (ADS)
Zhou, Lan; Chen, Ling-Quan; Zhong, Wei; Sheng, Yu-Bo
2018-01-01
We put forward a highly efficient recyclable single-photon assisted amplification protocol, which can protect single-photon entanglement (SPE) from photon loss and decoherence. Making use of quantum nondemolition detection gates constructed with the help of cross-Kerr nonlinearity, our protocol has some attractive advantages. First, the parties can recover less-entangled SPE to be maximally entangled SPE, and reduce photon loss simultaneously. Second, if the protocol fails, the parties can repeat the protocol to reuse some discarded items, which can increase the success probability. Third, when the protocol is successful, they can similarly repeat the protocol to further increase the fidelity of the SPE. Thereby, our protocol provides a possible way to obtain high entanglement, high fidelity and high success probability simultaneously. In particular, our protocol shows higher success probability in the practical high photon loss channel. Based on the above features, our amplification protocol has potential for future application in long-distance quantum communication.
NASA Astrophysics Data System (ADS)
Li, N.; Li, W. Y.; Yang, X. W.; Feng, Y.; Vairis, A.
2018-05-01
Using cold spraying (CS), a surface layer with a modified microstructure and enhanced mechanical properties was formed on a 3.2 mm thick friction stir welded (FSWed) AA2024-T3 joint. The combined effect of "shot peening effect (SPE)" and "heat flow effect (HFE)" during CS were used to enhance joint mechanical properties. The microstructure evolution of the FSWed AA2024-T3 joints in the surface layer following CS coatings and their effect on mechanical properties were systematically characterized with electron back-scattered diffraction, transmission electron microscopy, differential scanning calorimetry and mechanical tests. Based on these experiments, a grain refinement, finer and more S phases, and improved amount of Guinier-Preston-Bagaryatsky (GPB) zones produced by CS treatments are proposed. The deposition of aluminum coating on the joint, lead to hardness recovery in the stir zone and the development of two low hardness zones as the density of GPB increased. The tensile properties of FSWed AA2024-T3 joints improved with the application of the aluminum coatings. Experiments and analysis of the enhanced mechanical properties mechanism indicate that SPE with a high plastic deformation and HFE with an intensive heat flow are necessary for the production of refined grains and increased numbers of GPB zones.
Dosimetric predictors of radiation-induced pericardial effusion in esophageal cancer.
Ogino, Ichiro; Watanabe, Shigenobu; Sakamaki, Kentaro; Ogino, Yuka; Kunisaki, Chikara; Kimura, Kazuo
2017-07-01
To evaluate the dose-volume parameters of the pericardium and heart in order to reduce the risk of radiation-induced pericardial effusion (PE) and symptomatic PE (SPE) in esophageal cancer patients treated with concurrent chemoradiotherapy. In 86 of 303 esophageal cancer patients, follow-up CT was obtained at least 24 months after concurrent chemoradiotherapy. Correlations between clinical factors, including risk factors for cardiac disease, dosimetric factors, and the incidence of PE and SPE after radiotherapy were analyzed using Cox proportional hazard regression analysis. Significant dosimetric factors with the highest hazard ratios were investigated using zones separated according to their distance from esophagus. PE developed in 49 patients. Univariate analysis showed the mean heart dose, heart V 5 -V 55 , mean pericardium dose, and pericardium V 5 -V 50 to all significantly affect the incidence of PE. Additionally, body surface area was correlated with the incidence of PE in multivariate analysis. Grade 3 and 4 SPE developed in 5 patients. The pericardium V 50 and pericardium D 10 significantly affected the incidence of SPE. The pericardium V 50 in patients with SPE ranged from 17.1 to 21.7%. Factors affecting the incidence of SPE were the V 50 of the pericardium zones within 3 cm and 4 cm of the esophagus. A wide range of radiation doses to the heart and pericardium were related to the incidence of PE. A pericardium V 50 ≤ 17% is important to avoid symptomatic PE in esophageal cancer patients treated with concurrent chemoradiotherapy.
Evaluation of two methods to determine glyphosate and AMPA in soils of Argentina
NASA Astrophysics Data System (ADS)
De Geronimo, Eduardo; Lorenzon, Claudio; Iwasita, Barbara; Faggioli, Valeria; Aparicio, Virginia; Costa, Jose Luis
2017-04-01
Argentine agricultural production is fundamentally based on a technological package combining no-tillage and the dependence of glyphosate applications to control weeds in transgenic crops (soybean, maize and cotton). Therefore, glyphosate is the most employed herbicide in the country, where 180 to 200 million liters are applied every year. Due to its widespread use, it is important to assess its impact on the environment and, therefore, reliable analytical methods are mandatory. Glyphosate molecule exhibits unique physical and chemical characteristics which difficult its quantification, especially in soils with high organic matter content, such as the central eastern Argentine soils, where strong interferences are normally observed. The objective of this work was to compare two methods for extraction and quantification of glyphosate and AMPA in samples of 8 representative soils of Argentina. The first analytical method (method 1) was based on the use of phosphate buffer as extracting solution and dichloromethane to minimize matrix organic content. In the second method (method 2), potassium hydroxide was used to extract the analytes followed by a clean-up step using solid phase extraction (SPE) to minimize strong interferences. Sensitivity, recoveries, matrix effects and robustness were evaluated. Both methodologies involved a derivatization with 9-fluorenyl-methyl-chloroformate (FMOC) in borate buffer and detection based on ultra-high-pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). Recoveries obtained from soil samples spiked at 0.1 and 1 mg kg-1 and were satisfactory in both methods (70% - 120%). However, there was a remarkable difference regarding the matrix effect, being the SPE clean-up step (method 2) insufficient to remove the interferences. Whereas the dilution and the clean-up with dichloromethane (method 1) were more effective minimizing the ionic suppression. Moreover, method 1 had fewer steps in the protocol of sample processing than method 2. This can be highly valuable in the routine lab work due to the reduction of potential undesired errors such as the loss of analyte or sample contamination. In addition, the substitution of SPE by another alternative involved a considerable reduction of analytical costs in method 1. We conclude that method 1 seemed to be simpler and cheaper than method 2, as well as reliable to quantify glyphosate in Argentinean soils. We hope that this experience can be useful to simplify the protocols of glyphosate quantification and contribute to the understanding of the fate of this herbicide in the environment.
Theoretical performance of hydrogen-bromine rechargeable SPE fuel cell
NASA Technical Reports Server (NTRS)
Savinell, Robert F.; Fritts, S. D.
1987-01-01
A mathematical model was formulated to describe the performance of a hydrogen-bromine fuel cell. Porous electrode theory was applied to the carbon felt flow-by electrode and was coupled to theory describing the solid polymer electrolyte (SPE) system. Parametric studies using the numerical solution to this model were performed to determine the effect of kinetic, mass transfer, and design parameters on the performance of the fuel cell. The results indicate that the cell performance is most sensitive to the transport properties of the SPE membrane. The model was also shown to be a useful tool for scale-up studies.
Fuel cell power plants for automotive applications
NASA Astrophysics Data System (ADS)
McElroy, J. F.
1983-02-01
While the Solid Polymer Electrolyte (SPE) fuel cell has until recently not been considered competitive with such commercial and industrial energy systems as gas turbine generators and internal combustion engines, electrical current density improvements have markedly improved the capital cost/kW output rating performance of SPE systems. Recent studies of SPE fuel cell applicability to vehicular propulsion have indicated that with adequate development, a powerplant may be produced which will satisfy the performance, size and weight objectives required for viable electric vehicles, and that the cost for such a system would be competitive with alternative advanced power systems.
Glufosinate ammonium clean-up procedure from water samples using SPE
NASA Astrophysics Data System (ADS)
Tayeb M., A.; Ismail B., S.; Mardiana-Jansar, K.; Ta, Goh Choo; Agustar, Hani Kartini
2015-09-01
For the determination of glufosinate ammonium residue in soil and water samples, different solid phase extraction (SPE) sorbent efficiency was studied. Four different SPE sorbents i.e.: CROMABOND PS-H+, CROMABOND PS-OH-, ISOLUTE ENV+, Water Sep-Pak and OASIS HLB were used. Sample clean-up performance was evaluated using high performance liquid chromatography (Agilent 1220 infinity LC) with fluorescence detector. Detection of FMO-derivatives was done at λ ex = 260 nm and λ em= 310 nm. OASIS HLB column was the most suitable for the clean-up in view of the overall feasibility of the analysis.
NASA Technical Reports Server (NTRS)
Koontz, Steve; Atwell, William; Reddell, Brandon; Rojdev, Kristina
2010-01-01
Analysis of both satellite and surface neutron monitor data demonstrate that the widely utilized Exponential model of solar particle event (SPE) proton kinetic energy spectra can seriously underestimate SPE proton flux, especially at the highest kinetic energies. The more recently developed Band model produces better agreement with neutron monitor data ground level events (GLEs) and is believed to be considerably more accurate at high kinetic energies. Here, we report the results of modeling and simulation studies in which the radiation transport code FLUKA (FLUktuierende KAskade) is used to determine the changes in total ionizing dose (TID) and single-event environments (SEE) behind aluminum, polyethylene, carbon, and titanium shielding masses when the assumed form (i. e., Band or Exponential) of the solar particle event (SPE) kinetic energy spectra is changed. FLUKA simulations have fully three dimensions with an isotropic particle flux incident on a concentric spherical shell shielding mass and detector structure. The effects are reported for both energetic primary protons penetrating the shield mass and secondary particle showers caused by energetic primary protons colliding with shielding mass nuclei. Our results, in agreement with previous studies, show that use of the Exponential form of the event
Aga, D.S.; Thurman, E.M.
1993-01-01
Solid-phase extraction (SPE) and enzyme-linked immunosorbent assay (ELISA) were coupled for automated trace analysis of pristine water samples containing 2-chloro-4-ethylamino-6-isopropylamine-s-triazine (atrazine) and 2-chloro-2???,6???-diethyl-N-(methoxymethyl)acetanilide (alachlor). The isolation of the two herbicides on a C18-resin involved the selection of an elution solvent that both removes interfering substances and is compatible with ELISA. Ethyl acetate was selected as the elution solvent followed by a solvent exchange with methanol/water (20/80, % v/v). The SPE-ELISA method has a detection limit of 5.0 ng/L (5 ppt), >90% recovery, and a relative standard deviation of ??10%. The performance of a microtiter plate-based ELISA and a magnetic particle-based ELISA coupled to SPE was also evaluated. Although the sensitivity of the two ELISA methods was comparable, the precision using magnetic particles was improved considerably (??10% versus ??20%) because of the faster reaction kinetics provided by the magnetic particles. Finally, SPE-ELISA and isotope dilution gas chromatography/ mass spectrometry correlated well (correlation coefficient of 0.96) for lake-water samples. The SPE-ELISA method is simple and may have broader applications for the inexpensive automated analysis of other contaminants in water at trace levels.
Janiszewski, J; Schneider, P; Hoffmaster, K; Swyden, M; Wells, D; Fouda, H
1997-01-01
The development and application of membrane solid phase extraction (SPE) in 96-well microtiter plate format is described for the automated analysis of drugs in biological fluids. The small bed volume of the membrane allows elution of the analyte in a very small solvent volume, permitting direct HPLC injection and negating the need for the time consuming solvent evaporation step. A programmable liquid handling station (Quadra 96) was modified to automate all SPE steps. To avoid drying of the SPE bed and to enhance the analytical precision a novel protocol for performing the condition, load and wash steps in rapid succession was utilized. A block of 96 samples can now be extracted in 10 min., about 30 times faster than manual solvent extraction or single cartridge SPE methods. This processing speed complements the high-throughput speed of contemporary high performance liquid chromatography mass spectrometry (HPLC/MS) analysis. The quantitative analysis of a test analyte (Ziprasidone) in plasma demonstrates the utility and throughput of membrane SPE in combination with HPLC/MS. The results obtained with the current automated procedure compare favorably with those obtained using solvent and traditional solid phase extraction methods. The method has been used for the analysis of numerous drug prototypes in biological fluids to support drug discovery efforts.
Shim, Jimin; Lee, Jae Won; Bae, Ki Yoon; Kim, Hee Joong; Yoon, Woo Young; Lee, Jong-Chan
2017-05-22
Lithium-metal anode has fundamental problems concerning formation and growth of lithium dendrites, which prevents practical applications of next generation of high-capacity lithium-metal batteries. The synergistic combination of solid polymer electrolyte (SPE) crosslinked with naturally occurring terpenes and lithium-powder anode is promising solution to resolve the dendrite issues by substituting conventional liquid electrolyte/separator and lithium-foil anode system. A series of SPEs based on polysiloxane crosslinked with natural terpenes are prepared by facile thiol-ene click reaction under mild condition and the structural effect of terpene crosslinkers on electrochemical properties is studied. Lithium powder with large surface area is prepared by droplet emulsion technique (DET) and used as anode material. The effect of the physical state of electrolyte (solid/liquid) and morphology of lithium-metal anode (powder/foil) on dendrite growth behavior is systematically studied. The synergistic combination of SPE and lithium-powder anode suggests an effective solution to suppress the dendrite growth owing to the formation of a stable solid-electrolyte interface (SEI) layer and delocalized current density. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonlinear 3D MHD verification study: SpeCyl and PIXIE3D codes for RFP and Tokamak plasmas
NASA Astrophysics Data System (ADS)
Bonfiglio, D.; Cappello, S.; Chacon, L.
2010-11-01
A strong emphasis is presently placed in the fusion community on reaching predictive capability of computational models. An essential requirement of such endeavor is the process of assessing the mathematical correctness of computational tools, termed verification [1]. We present here a successful nonlinear cross-benchmark verification study between the 3D nonlinear MHD codes SpeCyl [2] and PIXIE3D [3]. Excellent quantitative agreement is obtained in both 2D and 3D nonlinear visco-resistive dynamics for reversed-field pinch (RFP) and tokamak configurations [4]. RFP dynamics, in particular, lends itself as an ideal non trivial test-bed for 3D nonlinear verification. Perspectives for future application of the fully-implicit parallel code PIXIE3D to RFP physics, in particular to address open issues on RFP helical self-organization, will be provided. [4pt] [1] M. Greenwald, Phys. Plasmas 17, 058101 (2010) [0pt] [2] S. Cappello and D. Biskamp, Nucl. Fusion 36, 571 (1996) [0pt] [3] L. Chac'on, Phys. Plasmas 15, 056103 (2008) [0pt] [4] D. Bonfiglio, L. Chac'on and S. Cappello, Phys. Plasmas 17 (2010)
Yield Determination of Underground and Near Surface Explosions
NASA Astrophysics Data System (ADS)
Pasyanos, M.
2015-12-01
As seismic coverage of the earth's surface continues to improve, we are faced with signals from a wide variety of explosions from various sources ranging from oil train and ordnance explosions to military and terrorist attacks, as well as underground nuclear tests. We present on a method for determining the yield of underground and near surface explosions, which should be applicable for many of these. We first review the regional envelope method that was developed for underground explosions (Pasyanos et al., 2012) and more recently modified for near surface explosions (Pasyanos and Ford, 2015). The technique models the waveform envelope templates as a product of source, propagation (geometrical spreading and attenuation), and site terms, while near surface explosions include an additional surface effect. Yields and depths are determined by comparing the observed envelopes to the templates and minimizing the misfit. We then apply the method to nuclear and chemical explosions for a range of yields, depths, and distances. We will review some results from previous work, and show new examples from ordnance explosions in Scandinavia, nuclear explosions in Eurasia, and chemical explosions in Nevada associated with the Source Physics Experiments (SPE).
Hammering Yucca Flat, Part One: P-Wave Velocity
NASA Astrophysics Data System (ADS)
Tang, D. G.; Abbott, R. E.; Preston, L. A.; Hampshire, J. B., II
2015-12-01
Explosion-source phenomenology is best studied when competing signals (such as instrument, site, and propagation effects), are well understood. The second phase of the Source Physics Experiments (SPE), is moving from granite geology to alluvium geology at Yucca Flat, Nevada National Security Site. To improve subsurface characterization of Yucca Flat (and therefore better understand propagation and site effects), an active-source seismic survey was conducted using a novel 13,000-kg impulsive hammer source. The source points, spaced 200 m apart, covered a N-S transect spanning 18 km. Three component, 2-Hz geophones were used to record useable signals out to 10 km. We inverted for P-wave velocity by computing travel times using a finite-difference 3D eikonal solver, and then compared that to the picked travel times using a linearized iterative inversion scheme. Preliminary results from traditional reflection processing methods are also presented. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Zigah, Prosper K.; Minor, Elizabeth C.; McNichol, Ann P.; Xu, Li; Werne, Josef P.
2017-07-01
We measured the concentrations and isotopic compositions of solid phase extracted (SPE) dissolved organic carbon (DOC) and high molecular weight (HMW) DOC and their constituent organic components in order to better constrain the sources and cycling of DOC in a large oligotrophic lacustrine system (Lake Superior, North America). SPE DOC constituted a significant proportion (41-71%) of the lake DOC relative to HMW DOC (10-13%). Substantial contribution of 14C-depleted components to both SPE DOC (Δ14C = 25-43‰) and HMW DOC (Δ14C = 22-32‰) was evident during spring mixing, and depressed their radiocarbon values relative to the lake dissolved inorganic carbon (DIC; Δ14C ∼ 59‰). There was preferential removal of 14C-depleted (older) and thermally recalcitrant components from HMW DOC and SPE DOC in the summer. Contemporary photoautotrophic addition to HMW DOC was observed during summer stratification in contrast to SPE DOC, which decreased in concentration during stratification. Serial thermal oxidation radiocarbon analysis revealed a diversity of sources (both contemporary and older) within the SPE DOC, and also showed distinct components within the HMW DOC. The thermally labile components of HMW DOC were 14C-enriched and are attributed to heteropolysaccharides (HPS), peptides/amide and amino sugars (AMS) relative to the thermally recalcitrant components reflecting the presence of older material, perhaps carboxylic-rich alicyclic molecules (CRAM). The solvent extractable lipid-like fraction of HMW DOC was very 14C-depleted (as old as 1270-2320 14C years) relative to the carbohydrate-like and protein-like substances isolated by acid hydrolysis of HMW DOC. Our data constrain relative influences of contemporary DOC and old DOC, and DOC cycling in a modern freshwater ecosystem.
Okuno, Rumi; Endoh, Miyoko; Shimojima, Yukako; Yanagawa, Yoshitoki; Morozumi, Satoshi; Igarashi, Hideo; Ooe, Kenji
2004-01-01
To investigate clinical and microbiological features of streptococcal toxic shock syndrome (STSS), clinical, epidemiological, and bacteriological data obtained from 250 patients between 1992 and 2001 were analyzed. Among these 250 cases, 16 cases were excluded from the study because the causative microorganism were not Streptococcus pyogenes. 234 strains of S. pyogenes obtained from the aforementioned 234 cases were tested for T-type by a serological method, and for streptococcal pyrogenic exotoxin (SPE) by in vitro productivity of the toxin as well as molecular genetic methods. The number of patients was 141 (56.4%) for males, and 107 (42.8%) for females. The highest frequency of STSS was observed in those patients in their sixties in both sexes. The overall mortality rate was 43.2%. The mortality rate for male was 36.9%, and 52.3% for female. Bacteriological studies revealed that most common T types were T1 and T3. These strains consisted 54.3% of the strains collected. Among strains of T1 type, 98.8% possessed genes of spe A, and 46.1% were shown to produce SPE A in vitro. Among strains of T3 type, 82.9% possessed spe A gene, and all of these strains were shown to produce the toxin in vitro. It is concluded that certain strains of S. pyogenes, such as those with T1, or T3 type, and those with spe A gene or in vitro production of SPE A, are the most frequent cause of STSS. Although infections caused by such bacteria are quite common, STSS rarely occurs in most such patients. Additional factors, such as host factors, may play a crucial role in the pathogenesis of STSS.
Shih, Tsung-Ting; Hsu, I-Hsiang; Chen, Shun-Niang; Chen, Ping-Hung; Deng, Ming-Jay; Chen, Yu; Lin, Yang-Wei; Sun, Yuh-Chang
2015-01-21
We employed a polymeric material, poly(methyl methacrylate) (PMMA), for fabricating a microdevice and then implanted the chlorine (Cl)-containing solid-phase extraction (SPE) functionality into the PMMA chip to develop an innovative on-chip dipole-assisted SPE technique. Instead of the ion-ion interactions utilized in on-chip SPE techniques, the dipole-ion interactions between the highly electronegative C-Cl moieties in the channel interior and the positively charged metal ions were employed to facilitate the on-chip SPE procedures. Furthermore, to avoid labor-intensive manual manipulation, a programmable valve manifold was designed as an interface combining the dipole-assisted SPE microchip and inductively coupled plasma-mass spectrometry (ICP-MS) to achieve the fully automated operation. Under the optimized operation conditions for the established system, the detection limits for each analyte ion were obtained based on three times the standard deviation of seven measurements of the blank eluent solution. The limits ranged from 3.48 to 20.68 ng L(-1), suggesting that this technique appears uniquely suited for determining the levels of heavy metal ions in natural water. Indeed, a series of validation procedures demonstrated that the developed method could be satisfactorily applied to the determination of trace heavy metals in natural water. Remarkably, the developed device was durable enough to be reused more than 160 times without any loss in its analytical performance. To the best of our knowledge, this is the first study reporting on the combination of a dipole-assisted SPE microchip and elemental analysis instrument for the online determination of trace heavy metal ions.
WINGS-SPE Spectroscopy in the WIde-field Nearby Galaxy-cluster Survey
NASA Astrophysics Data System (ADS)
Cava, A.; Bettoni, D.; Poggianti, B. M.; Couch, W. J.; Moles, M.; Varela, J.; Biviano, A.; D'Onofrio, M.; Dressler, A.; Fasano, G.; Fritz, J.; Kjærgaard, P.; Ramella, M.; Valentinuzzi, T.
2009-03-01
Aims: We present the results from a comprehensive spectroscopic survey of the WINGS (WIde-field Nearby Galaxy-cluster Survey) clusters, a program called WINGS-SPE. The WINGS-SPE sample consists of 48 clusters, 22 of which are in the southern sky and 26 in the north. The main goals of this spectroscopic survey are: (1) to study the dynamics and kinematics of the WINGS clusters and their constituent galaxies, (2) to explore the link between the spectral properties and the morphological evolution in different density environments and across a wide range of cluster X-ray luminosities and optical properties. Methods: Using multi-object fiber-fed spectrographs, we observed our sample of WINGS cluster galaxies at an intermediate resolution of 6-9 Å and, using a cross-correlation technique, we measured redshifts with a mean accuracy of ~45 km s-1. Results: We present redshift measurements for 6137 galaxies and their first analyses. Details of the spectroscopic observations are reported. The WINGS-SPE has ~30% overlap with previously published data sets, allowing us both to perform a complete comparison with the literature and to extend the catalogs. Conclusions: Using our redshifts, we calculate the velocity dispersion for all the clusters in the WINGS-SPE sample. We almost triple the number of member galaxies known in each cluster with respect to previous works. We also investigate the X-ray luminosity vs. velocity dispersion relation for our WINGS-SPE clusters, and find it to be consistent with the form Lx ∝ σ_v^4. Table 4, containing the complete redshift catalog, is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/495/707
Steinheimer, T.R.; Brooks, M.G.
1984-01-01
A multi-residue method is described for the determination of triazine herbicides in natural water samples. The technique uses solvent extraction followed by gas chromatographic separation and detection employing nitrogen-selective devices. Seven compounds can be determined simultaneously at a nominal detection limit of 0.1 ??g/L in a 1-litre sample. Three different natural water samples were used for error analysis via evaluation of recovery efficiencies and estimation of overall method precision. As an alternative to liquid-liquid partition (solvent extraction) for removal of compounds of interest from water, solid-phase extraction (SPE) techniques employing chromatographic grade silicas with chemically modified surfaces have been examined. SPE is found to provide rapid and efficient concentration with quantitative recovery of some triazine herbicides from natural water samples. Concentration factors of 500 to 1000 times are obtained readily by the SPE technique.A multi-residue method is described for the determination of triazine herbicides in natural water samples. The technique uses solvent extraction followed by gas chromatographic separation and detection employing nitrogen-selective devices. Seven compounds can be determined simultaneously at a nominal detection limit of 0. 1 mu g/L in a 1-litre sample. As an alternative to liquid-liquid partition (solvent extraction) for removal of compounds of interest from water, solid-phase extraction (SPE) techniques employing chromatographic grade silicas with chemically modified surfaces have been examined. SPE is found to provide rapid and efficient concentration with quantitative recovery of some triazine herbicides from natural water samples. Concentration factors of 500 to 1000 times are obtained readily by the SPE technique.
Honda-Ogawa, Mariko; Ogawa, Taiji; Terao, Yutaka; Sumitomo, Tomoko; Nakata, Masanobu; Ikebe, Kazunori; Maeda, Yoshinobu; Kawabata, Shigetada
2013-05-31
Streptococcus pyogenes is an important human pathogen that causes invasive diseases such as necrotizing fasciitis, sepsis, and streptococcal toxic shock syndrome. We investigated the function of a major cysteine protease from S. pyogenes that affects the amount of C1-esterase inhibitor (C1-INH) and other complement factors and aimed to elucidate the mechanism involved in occurrence of streptococcal toxic shock syndrome from the aspect of the complement system. First, we revealed that culture supernatant of a given S. pyogenes strain and recombinant SpeB degraded the C1-INH. Then, we determined the N-terminal sequence of the C1-INH fragment degraded by recombinant SpeB. Interestingly, the region containing one of the identified cleavage sites is not present in patients with C1-INH deficiency. Scanning electron microscopy of the speB mutant incubated in human serum showed the abnormal superficial architecture and irregular oval structure. Furthermore, unlike the wild-type strain, that mutant strain showed lower survival capacity than normal as compared with heat-inactivated serum, whereas it had a significantly higher survival rate in serum without the C1-INH than in normal serum. Also, SpeB degraded multiple complement factors and the membrane attack complex. Flow cytometric analyses revealed deposition of C9, one of the components of membrane the attack complex, in greater amounts on the surface of the speB mutant, whereas lower amounts of C9 were bound to the wild-type strain surface. These results suggest that SpeB can interrupt the human complement system via degrading the C1-INH, thus enabling S. pyogenes to evade eradication in a hostile environment.
Kobayashi, Takeshi; Kobayashi, Yo; Tabuchi, Masato; Shono, Kumi; Ohno, Yasutaka; Mita, Yuichi; Miyashiro, Hajime
2013-12-11
The all solid-state lithium battery with polyether-based solid polymer electrolyte (SPE) is regarded as one of next-generation lithium batteries, and has potential for sufficient safety because of the flammable-electrolyte-free system. It has been believed that polyether-based SPE is oxidized at the polymer/electrode interface with 4 V class cathodes. Therefore, it has been used for electric devices such as organic transistor, and lithium battery under 3 V. We estimated decomposition reaction of polyether used as SPE of all solid-state lithium battery. We first identified the decomposed parts of polyether-based SPE and the conservation of most main chain framework, considering the results of SPE analysis after long cycle operations. The oxidation reaction was found to occur slightly at the ether bond in the main chain with the branched side chain. Moreover, we resolved the issue by introducing a self-sacrificing buffer layer at the interface. The introduction of sodium carboxymethyl cellulose (CMC) to the 4 V class cathode surface led to the suppression of SPE decomposition at the interface as a result of the preformation of a buffer layer from CMC, which was confirmed by the irreversible exothermic reaction during the first charge, using electrochemical calorimetry. The attained 1500 cycle operation is 1 order of magnitude longer than those of previously reported polymer systems, and compatible with those of reported commercial liquid systems. The above results indicate to proceed to an intensive research toward the realization of 4 V class "safe" lithium polymer batteries without flammable liquid electrolyte.
Booij, Petra; Sjollema, Sascha B; Leonards, Pim E G; de Voogt, Pim; Stroomberg, Gerard J; Vethaak, A Dick; Lamoree, Marja H
2013-09-01
The extent to which chemical stressors affect primary producers in estuarine and coastal waters is largely unknown. However, given the large number of legacy pollutants and chemicals of emerging concern present in the environment, this is an important and relevant issue that requires further study. The purpose of our study was to extract and identify compounds which are inhibitors of photosystem II activity in microalgae from estuarine and coastal waters. Field sampling was conducted in the Western Scheldt estuary (Hansweert, The Netherlands). We compared four different commonly used extraction methods: passive sampling with silicone rubber sheets, polar organic integrative samplers (POCIS) and spot water sampling using two different solid phase extraction (SPE) cartridges. Toxic effects of extracts prepared from spot water samples and passive samplers were determined in the Pulse Amplitude Modulation (PAM) fluorometry bioassay. With target chemical analysis using LC-MS and GC-MS, a set of PAHs, PCBs and pesticides was determined in field samples. These compound classes are listed as priority substances for the marine environment by the OSPAR convention. In addition, recovery experiments with both SPE cartridges were performed to evaluate the extraction suitability of these methods. Passive sampling using silicone rubber sheets and POCIS can be applied to determine compounds with different structures and polarities for further identification and determination of toxic pressure on primary producers. The added value of SPE lies in its suitability for quantitative analysis; calibration of passive samplers still needs further investigation for quantification of field concentrations of contaminants. Copyright © 2013 Elsevier Ltd. All rights reserved.
Graphene oxide for solid-phase extraction of bioactive phenolic acids.
Hou, Xiudan; Wang, Xusheng; Sun, Yingxin; Wang, Licheng; Guo, Yong
2017-05-01
A solid-phase extraction (SPE) method for the efficient analysis of trace phenolic acids (PAs, caffeic acid, ferulic acid, protocatechuic acid, cinnamic acid) in urine was established. In this work, a graphene oxide (GO) coating was grafted onto pure silica to be investigated as SPE material. The prepared GO surface had a layered and wrinkled structure that was rough and well organized, which could provide more open adsorption sites. Owing to its hydrophilicity and polarity, GO showed higher extraction efficiency toward PAs than reduced GO did, in agreement with the theoretical calculation results performed by Gaussian 09 software. The adsorption mechanism of PAs on GO@Sil was also investigated through static state and kinetic state adsorption experiments, which showed a monolayer surface adsorption. Extraction capacity of the as-prepared material was optimized using the response surface methodology. Under the optimized conditions, the as-established method provided wide linearity range (2-50 μg L -1 for protocatechuic acid and 1-50 μg L -1 for caffeic acid, ferulic acid, and cinnamic acid) and low limits of detection (0.25-1 μg L -1 ). Finally, the established method was applied for the analysis of urine from two healthy volunteers. The results indicate that the prepared material is a practical, cost-effective medium for the extraction and determination of phenolic acids in complex matrices. Graphical Abstract A graphene oxide coating was grafted onto pure silica as the SPE material for the extraction of phenolic acids in urines and the extraction mechanism was also mainly investigated.
NASA Astrophysics Data System (ADS)
Sengwa, R. J.; Dhatarwal, Priyanka; Choudhary, Shobhna
2016-05-01
Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF4) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governed by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10-6 S cm-1 which suggests the suitability of the SPE film for rechargeable lithium batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengwa, R. J., E-mail: rjsengwa@rediffmail.com; Dhatarwal, Priyanka, E-mail: dhatarwalpriyanka@gmail.com; Choudhary, Shobhna, E-mail: shobhnachoudhary@rediffmail.com
2016-05-06
Solid polymer electrolyte (SPE) film consisted of poly(ethylene oxide) (PEO) and poly(methyl methacrylate) (PMMA) blend matrix with lithium tetrafluroborate (LiBF{sub 4}) as dopant ionic salt and poly(ethylene glycol) (PEG) as plasticizer has been prepared by solution casting method followed by melt pressing. Dielectric properties and ionic conductivity of the SPE film at different temperatures have been determined by dielectric relaxation spectroscopy. It has been observed that the dc ionic conductivity of the SPE film increases with increase of temperature and also the decrease of relaxation time. The temperature dependent relaxation time and ionic conductivity values of the electrolyte are governedmore » by the Arrhenius relation. Correlation observed between dc conductivity and relaxation time confirms that ion transportation occurs with polymer chain segmental dynamics through hopping mechanism. The room temperature ionic conductivity is found to be 4 × 10{sup −6} S cm{sup −1} which suggests the suitability of the SPE film for rechargeable lithium batteries.« less
SPE-GC/FTD determination of N-methyl-2-pyrrolidone and its metabolites in urine.
Kubota, Ryuichi; Endo, Yoko; Takeuchi, Akito; Inoue, Yoshinori; Ogata, Hiroko; Ogawa, Masanori; Nakagawa, Tomoo; Onda, Nobuhiko; Endo, Ginji
2007-07-01
An analytical method using a combination of solid-phase extraction (SPE) and gas chromatography with a flame thermionic detector (GC/FTD) was developed for determination of N-methyl-2-pyrrolidone (NMP), N-methylsuccinimide (MSI), and 2-hydroxy-N-methylsuccinimide (2-HMSI) in human urine. The SPE cartridge of poly(divinylbenzene/hydroxymethacrylate) used was directly loaded with urine sample, followed by elution with methyl isobutyl ketone (MIBK) and subsequent centrifugation, and the supernatant was injected into the capillary GC using a DB1701. This method allowed efficient separation of NMP, MSI, and 2-HMSI, which were nearly free of interference by other GC peaks arising from urine. Recoveries of NMP, MSI, and 2-HMSI from the SPE cartridge were about 98, 101, and 67%, respectively, with limits of detection of 0.04, 0.02, and 0.06 mg/L, respectively, which met the regulatory requirements. The present method was used for assay in biological monitoring of workers exposed to NMP in their occupational environment.
Dinh, Quoc Tuc; Alliot, Fabrice; Moreau-Guigon, Elodie; Eurin, Joëlle; Chevreuil, Marc; Labadie, Pierre
2011-09-15
This study presents the development of an automated on-line solid phase extraction (SPE)-liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of 23 antibiotics in environmental water samples. After optimisation of LC-MS/MS conditions, SPE parameters such as sorbent type, sample pH or sample volume were optimised. Antibiotic recoveries ranged from 64% to 98% and compared favourably with those achieved using off-line SPE. Limits of detection were in the range 0.5-13.7 ng L(-1). This on-line SPE-LC-MS/MS procedure was applied to the analysis of water samples taken in three rivers within the Seine River basin, near Paris (France). The obtained results revealed the occurrence of 12 antibiotics, including tylosin, erythromycin, tetracycline, amoxicillin, trimethoprim, sulfamethoxazole, oxolinic acid, flumequine, norfloxacin, ciprofloxacin, ofloxacin, and vancomycin (2-1435 ng L(-1)). Copyright © 2011 Elsevier B.V. All rights reserved.
Theoretical performance of hydrogen-bromine rechargeable SPE fuel cell. [Solid Polymer Electrolyte
NASA Technical Reports Server (NTRS)
Savinell, R. F.; Fritts, S. D.
1988-01-01
A mathematical model was formulated to describe the performance of a hydrogen-bromine fuel cell. Porous electrode theory was applied to the carbon felt flow-by electrode and was coupled to theory describing the solid polymer electrolyte (SPE) system. Parametric studies using the numerical solution to this model were performed to determine the effect of kinetic, mass transfer, and design parameters on the performance of the fuel cell. The results indicate that the cell performance is most sensitive to the transport properties of the SPE membrane. The model was also shown to be a useful tool for scale-up studies.
Solid Polymer Electrolyte Fuel Cell Technology Program
NASA Technical Reports Server (NTRS)
1980-01-01
Work is reported on phase 5 of the Solid Polymer Electrolyte (SPE) Fuel Cell Technology Development program. The SPE fuel cell life and performance was established at temperatures, pressures, and current densities significantly higher than those previously demonstrated in sub-scale hardware. Operation of single-cell Buildup No. 1 to establish life capabilities of the full-scale hardware was continued. A multi-cell full-scale unit (Buildup No. 2) was designed, fabricated, and test evaluated laying the groundwork for the construction of a reactor stack. A reactor stack was then designed, fabricated, and successfully test-evaluated to demonstrate the readiness of SPE fuel cell technology for future space applications.
Nanometer-sized materials for solid-phase extraction of trace elements.
Hu, Bin; He, Man; Chen, Beibei
2015-04-01
This review presents a comprehensive update on the state-of-the-art of nanometer-sized materials in solid-phase extraction (SPE) of trace elements followed by atomic-spectrometry detection. Zero-dimensional nanomaterials (fullerene), one-dimensional nanomaterials (carbon nanotubes, inorganic nanotubes, and nanowires), two-dimensional nanomaterials (nanofibers), and three-dimensional nanomaterials (nanoparticles, mesoporous nanoparticles, magnetic nanoparticles, and dendrimers) for SPE are discussed, with their application for trace-element analysis and their speciation in different matrices. A variety of other novel SPE sorbents, including restricted-access sorbents, ion-imprinted polymers, and metal-organic frameworks, are also discussed, although their applications in trace-element analysis are relatively scarce so far.
Romero-Weaver, Ana L; Lin, Liyong; Carabe-Fernandez, Alejandro; Kennedy, Ann R
2014-08-01
Astronauts traveling in space missions outside of low Earth orbit will be exposed for longer times to a microgravity environment. In addition, the increased travel time involved in exploration class missions will result in an increased risk of exposure to significant doses of solar particle event (SPE) radiation. Both conditions could significantly affect the number of circulating blood cells. Therefore, it is critical to determine the combined effects of exposure to both microgravity and SPE radiation. The purpose of the present study was to assess these risks by evaluating the effects of SPE-like proton radiation and/or microgravity, as simulated with the hindlimb unloading (HU) system, on circulating blood cells using mouse as a model system. The results indicate that exposure to HU alone caused minimal or no significant changes in mouse circulating blood cell numbers. The exposure of mice to SPE-like proton radiation with or without HU treatment caused a significant decrease in the number of circulating lymphocytes, granulocytes and platelets. The reduced numbers of circulating lymphocytes, granulocytes, and platelets, resulting from the SPE-like proton radiation exposure, with or without HU treatment, in mice suggest that astronauts participating in exploration class missions may be at greater risk of developing infections and thrombotic diseases; thus, countermeasures may be necessary for these biological endpoints.
Frag, Eman Y Z; Mohamed, Gehad G; El-Sayed, Wael G
2011-10-01
The performance characteristic of sensitive screen-printed (SPE) and carbon paste (CPE) electrodes was investigated for the determination of diphenhydramine hydrochloride (DPH) drug in pure, pharmaceutical preparations and biological fluids. Different experimental conditions namely types of materials used to prepare the working electrode (plasticizer), titrant, pH, temperature and life time were studied. Under these conditions, the SPE shows the best performance than CPE with respect to total potential change and potential break at the end point. The SPE and CPE exhibit suitable response to DPH in a concentration range of 1.0.10(-2) to 1.0.10(-6) mol/L with a limit of detection 9.70.10(-7) and 9.80.10(-7) mol/L, respectively. The slope of the system was 55.2±1.0 and 54.7±1.0 mV/decade over pH range 3.0-8.0 and 3-7 for SPE and CPE, respectively. Selectivity coefficients for DPH relative to a numbers of potential interfering substances were investigated. The SPE and CPE show a fast response time of 10 and 16s and were used over a period of 2 months with a good reproducibility. The sensors were applied successfully to determine DPH in pharmaceutical preparations and biological fluids. The results are compared with the official method. Copyright © 2011 Elsevier B.V. All rights reserved.
Oshima, Harumi; Ueno, Eiji; Saito, Isao; Matsumoto, Hiroshi
2004-01-01
A simple solid-phase extraction (SPE) method was developed for the liquid chromatography (LC) determination of pheophorbide (Phor) a and pyropheophorbide (Pyro) a in health foods such as chlorella, spirulina, etc. The food sample was extracted with 85% (v/v) acetone. The extract was acidified with hydrochloric acid and loaded on a C18 cartridge. After washing with water, Phor a and Pyro a were eluted with the LC mobile phase. Phor a and Pyro a were separated by isocratic reversed-phase LC and quantitated by fluorescence detection. The recoveries for spiked samples of chlorella and the extract were 87.1-102.0%. Commercial health foods (chlorella, spirulina, aloe, kale, Jews mallow, and green tea leaves) were analyzed using the SPE method. The values found for Phor a and Pyro a ranged from 2 to 788 microg/g and from <1 to 24 microg/g, respectively. There was no significant difference between the SPE method and the official method in Japan (spectrophotometry after liquid-liquid extraction). The advantages of the SPE method are the short extraction times, lack of emulsions, and reduced consumption of organic solvents compared with the official method in Japan. The SPE method is considered to be useful for the screening of Phor a and Pyro a in health foods.
Tran, Ngoc Han; Chen, Hongjie; Do, Thanh Van; Reinhard, Martin; Ngo, Huu Hao; He, Yiliang; Gin, Karina Yew-Hoong
2016-10-01
A robust and sensitive analytical method was developed for the simultaneous analysis of 21 target antimicrobials in different environmental water samples. Both single SPE and tandem SPE cartridge systems were investigated to simultaneously extract multiple classes of antimicrobials. Experimental results showed that good extraction efficiencies (84.5-105.6%) were observed for the vast majority of the target analytes when extraction was performed using the tandem SPE cartridge (SB+HR-X) system under an extraction pH of 3.0. HPLC-MS/MS parameters were optimized for simultaneous analysis of all the target analytes in a single injection. Quantification of target antimicrobials in water samples was accomplished using 15 isotopically labeled internal standards (ILISs), which allowed the efficient compensation of the losses of target analytes during sample preparation and correction of matrix effects during UHPLC-MS/MS as well as instrument fluctuations in MS/MS signal intensity. Method quantification limit (MQL) for most target analytes based on SPE was below 5ng/L for surface waters, 10ng/L for treated wastewater effluents, and 15ng/L for raw wastewater. The method was successfully applied to detect and quantify the occurrence of the target analytes in raw influent, treated effluent and surface water samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Solar Particle Event Exposures and Local Tissue Environments in Free Space and on Martian Surface
NASA Technical Reports Server (NTRS)
Kim, M. Y.; Shinn, J. L.; Singleterry, R. C.; Atwell, W.; Wilson, J. W.
1999-01-01
Solar particle events (SPEs) are a concern to space missions outside Earth s geomagnetic field. The September 29, 1989 SPE is the largest ground-level event since February 23, 1956. It is an iron-rich event for which the spectra are well measured. Because ten times this event matches the ground level data of the February 1956 SPE, it is suggested that an event with ten-times the scaled spectra of the September 29, 1989 SPE be used as a worst case SPE for spacecraft design. For the worst case SPE, the input spectra were reconstructed using Nymmik's (1995) model for protons, the O and Fe ion spectra of Tylka et al. (1997) to evaluate the iron enhancement ratio, and the Solar Energetic Particle Baseline (SEPB) composition of McGuire et al. (1986) for the heavy ions. The necessary transport properties of the shielding materials and the astronaut s body tissues are evaluated using the HZETRN code. Three shield configurations (assumed to be aluminum) are considered: space suit taken as 0.3 g/sq cm, helmet/pressure vessel as 1 g/sq cm, and equipment room of 5 g/sq cm. A shelter is taken as 10 g/sq cm on the Martian surface. The effect of shielding due to the Martian atmosphere is included. The astronaut geometry is taken from the computerized anatomical man (CAM) model.
Zeppa, Joseph J.; Kasper, Katherine J.; Mohorovic, Ivor; Mazzuca, Delfina M.
2017-01-01
The globally prominent pathogen Streptococcus pyogenes secretes potent immunomodulatory proteins known as superantigens (SAgs), which engage lateral surfaces of major histocompatibility class II molecules and T-cell receptor (TCR) β-chain variable domains (Vβs). These interactions result in the activation of numerous Vβ-specific T cells, which is the defining activity of a SAg. Although streptococcal SAgs are known virulence factors in scarlet fever and toxic shock syndrome, mechanisms by how SAgs contribute to the life cycle of S. pyogenes remain poorly understood. Herein, we demonstrate that passive immunization against the Vβ8-targeting SAg streptococcal pyrogenic exotoxin A (SpeA), or active immunization with either wild-type or a nonfunctional SpeA mutant, protects mice from nasopharyngeal infection; however, only passive immunization, or vaccination with inactive SpeA, resulted in high-titer SpeA-specific antibodies in vivo. Mice vaccinated with wild-type SpeA rendered Vβ8+ T cells poorly responsive, which prevented infection. This phenotype was reproduced with staphylococcal enterotoxin B, a heterologous SAg that also targets Vβ8+ T cells, and rendered mice resistant to infection. Furthermore, antibody-mediated depletion of T cells prevented nasopharyngeal infection by S. pyogenes, but not by Streptococcus pneumoniae, a bacterium that does not produce SAgs. Remarkably, these observations suggest that S. pyogenes uses SAgs to manipulate Vβ-specific T cells to establish nasopharyngeal infection. PMID:28794279
Huang, Rongfu; Chen, Yuan; Gamal El-Din, Mohamed
2016-06-21
The separation of classical, aromatic, oxidized, and heteroatomic (sulfur-containing) naphthenic acid (NA) species from unprocessed and ozone-treated oil sands process-affected water (OSPW) was performed using silver-ion (Ag-ion) solid phase extraction (SPE) without the requirement of pre-methylation for NAs. OSPW samples before SPE and SPE fractions were characterized using ultra performance liquid chromatography ion mobility time-of-flight mass spectrometry (UPLC-IM-TOFMS) to corroborate the separation of distinct NA species. The mass spectrum identification applied a mass tolerance of ±1.5 mDa due to the mass errors of NAs were measured within this range, allowing the identification of O2S-NAs from O2-NAs. Moreover, separated NA species facilitated the tandem mass spectrometry (MS/MS) characterization of NA compounds due to the removal of matrix and a simplified composition. MS/MS results showed that classical, aromatic, oxidized, and sulfur-containing NA compounds were eluted into individual SPE fractions. Overall results indicated that the separation of NA species using Ag-ion SPE is a valuable method for extracting individual NA species that are of great interest for environmental toxicology and wastewater treatment research, to conduct species-specific studies. Furthermore, the separated NA species on the milligram level could be widely used as the standard materials for environmental monitoring of NAs from various contamination sites.
Bosire, G. O.; Ngila, J. C.; Parshotam, H.
2016-01-01
The extraction and determination of aliphatic and aromatic carboxylic acids as well as their influence on the aromaticity and molecularity relationship of natural organic matter (NOM) in water are reported in this study. Three solid phase extraction (SPE) sorbents were used and their extraction efficiencies evaluated after chromatographic determinations (using gas chromatography with a time of flight mass spectrometer (GC × GC-TOFMS) and liquid chromatography with organic carbon detector (LC-OCD)). More than 42 carboxylic acids were identified in raw water from the Vaal River, which feeds the Lethabo Power Generation Station, South Africa, with cooling water. The aromatic carboxylic acid efficiency (28%) was achieved by using Strata™ X SPE while the highest aliphatic carboxylic acid efficiency (92.08%) was achieved by silica SPE. The hydrophobic nature of NOM in water depends on the nature of organic compounds in water, whether aromatic or aliphatic. The LC-OCD was used to assess the hydrophobicity levels of NOM as a function of these carboxylic acids in cooling water. The LC-OCD results showed that the aromatic nature of NOM in SPE filtered water followed the order Silica>Strata X>C-18. From the results, the hydrophobicity degree of the samples depended on the type and number of carboxylic acids that were removed by the SPE cartridges. PMID:27274730
The Projection of Space Radiation Environments with a Solar Cycle Statistical Model
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee; Cucinotta, Francis A.; Wilson, John W.
2006-01-01
A solar cycle statistical model has been developed to project sunspot numbers which represent the variations in the space radiation environment. The resultant projection of sunspot numbers in near future were coupled to space-related quantities of interest in radiation protection, such as the galactic cosmic radiation (GCR) deceleration potential (f) and the mean occurrence frequency of solar particle event (SPE). Future GCR fluxes have been derived from a predictive model, in which GCR temporal dependence represented by f was derived from GCR flux and ground-based Climax neutron monitor rate measurements over the last four decades. Results showed that the point dose equivalent inside a typical spacecraft in interplanetary radiation fields was influenced by solar modulation up to a factor of three. One important characteristic of sporadic SPEs is their mean frequency of occurrence, which is dependent on solar activity. Projections of future mean frequency of SPE occurrence were estimated from a power law function of sunspot number. Furthermore, the cumulative probabilities of SPE during short-period missions were defined with the continuous database of proton fluences of SPE. The analytic representation of energy spectra of SPE was constructed by the Weibull distribution for different event sizes. The representative exposure level at each event size was estimated for the guideline of protection systems for astronauts during future space exploration missions.
Optimization of the Determination Method for Dissolved Cyanobacterial Toxin BMAA in Natural Water.
Yan, Boyin; Liu, Zhiquan; Huang, Rui; Xu, Yongpeng; Liu, Dongmei; Lin, Tsair-Fuh; Cui, Fuyi
2017-10-17
There is a serious dispute on the existence of β-N-methylamino-l-alanine (BMAA) in water, which is a neurotoxin that may cause amyotrophic lateral sclerosis/Parkinson's disease (ALS/PDC) and Alzheimer' disease. It is believed that a reliable and sensitive analytical method for the determination of BMAA is urgently required to resolve this dispute. In the present study, the solid phase extraction (SPE) procedure and the analytical method for dissolved BMAA in water were investigated and optimized. The results showed both derivatized and underivatized methods were qualified for the measurement of BMAA and its isomer in natural water, and the limit of detection and the precision of the two methods were comparable. Cartridge characteristics and SPE conditions could greatly affect the SPE performance, and the competition of natural organic matter is the primary factor causing the low recovery of BMAA, which was reduced from approximately 90% in pure water to 38.11% in natural water. The optimized SPE method for BMAA was a combination of rinsed SPE cartridges, controlled loading/elution rates and elution solution, evaporation at 55 °C, reconstitution of a solution mixture, and filtration by polyvinylidene fluoride membrane. This optimized method achieved > 88% recovery of BMAA in both algal solution and river water. The developed method can provide an efficient way to evaluate the actual concentration levels of BMAA in actual water environments and drinking water systems.
Musile, Giacomo; Cenci, Lucia; Piletska, Elena; Gottardo, Rossella; Bossi, Alessandra M; Bortolotti, Federica
2018-07-27
The aim of the present work was to develop a novel in-house mixed-mode SPE sorbent to be used for the HPLC-Ion TrapMS determination of 16 basic drugs in urine. By using a computational modelling, a virtual monomer library was screened identifying three suitable functional monomers, methacrylic acid (MAA), itaconic acid (IA) and 2-acrylamide-2-methylpropane sulfonic acid (AMPSA), respectively. Three different sorbents were then synthetized based on these monomers, and using as cross-linker trimethylolpropane trimethacrylate (TMPTMA). The sorbent characterization analyses brought to the selection of the AMPSA based phase. Using this novel in-house sorbent, a SPE-HPLC-Ion TrapMS method for drug analysis in urine was validated proving to be selective and accurate and showing a sensitivity adequate for toxicological urine analysis. The comparison of the in-house mixed-mode SPE sorbent with two analogous commercial mixed-mode SPE phases showed that the first one was better not only in terms of process efficiency, but also in terms of quality-price rate. To the best of our knowledge, this is the first time in which an in-house SPE procedure has been applied to the toxicological analysis of a complex matrix, such as urine. Copyright © 2018 Elsevier B.V. All rights reserved.
Park, Ju Yeon; Kang, Beom Ryong; Ryu, Choong-Min; Anderson, Anne J; Kim, Young Cheol
2018-05-01
The Gac/Rsm network regulates, at the transcriptional level, many beneficial traits in biocontrol-active pseudomonads. In this study, we used Phenotype MicroArrays, followed by specific growth studies and mutational analysis, to understand how catabolism is regulated by this sensor kinase system in the biocontrol isolate Pseudomonas chlororaphis O6. The growth of a gacS mutant was decreased significantly relative to that of the wild-type on ornithine and arginine, and on the precursor of these amino acids, N-acetyl-l-glutamic acid. The gacS mutant also showed reduced production of polyamines. Expression of the genes encoding arginine decarboxylase (speA) and ornithine decarboxylases (speC) was controlled at the transcriptional level by the GacS sensor of P. chlororaphis O6. Polyamine production was reduced in the speC mutant, and was eliminated in the speAspeC mutant. The addition of exogenous polyamines to the speAspeC mutant restored the in vitro growth inhibition of two fungal pathogens, as well as the secretion of three biological control-related factors: pyrrolnitrin, protease and siderophore. These results extend our knowledge of the regulation by the Gac/Rsm network in a biocontrol pseudomonad to include polyamine synthesis. Collectively, our studies demonstrate that bacterial polyamines act as important regulators of bacterial cell growth and biocontrol potential. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Solar particle event predictions for manned Mars missions
NASA Technical Reports Server (NTRS)
Heckman, Gary
1986-01-01
Manned space missions to Mars require consideration of the effects of high radiation doses produced by solar particle events (SPE). Without some provision for protection, the radiation doses from such events can exceed standards for maximum exposure and may be life threatening. Several alternative ways of providing protection require a capability for predicting SPE in time to take some protective actions. The SPE may occur at any time during the eleven year solar cycle so that two year missions cannot be scheduled to insure avoiding them although they are less likely to occur at solar minimum. The present forecasts are sufficiently accurate to use for setting alert modes but are not accurate enough to make yes/no decisions that have major mission operational impacts. Forecasts made for one to two year periods can only be done as probabilistic forecasts where there is a chance of SPE occurring. These are current capabilities but are not likely to change significantly by the year 2000 with the exception of some improvement in the one to ten day forecasts. The effects of SPE are concentrated in solar longitudes near where their parent solar flares occur, which will require a manned Mars mission to carry its own small solar telescope to monitor the development of potentially dangerous solar activity. The preferred telescope complement includes a solar X-ray imager, a hydrogen-alpha scanner, and a solar magnetograph.
Gray, Rachael; Canfield, Paul; Rogers, Tracey
2005-09-01
Blood protein analysis including total serum protein and albumin by chemical methods, fibrinogen estimation and serum protein electrophoresis (SPE) was performed on the leopard seal, Hydrurga leptonyx. The most commonly observed SPE pattern was eight fractions designated albumin, alpha(1a), alpha(1b), alpha(2a), alpha(2b), beta(1), beta(2) and gamma-globulin. Significantly higher total serum protein and albumin concentrations, as determined by chemical methods, and significantly higher alpha(2)-globulin concentrations, determined by SPE, were seen in free-ranging male seals compared to females, whilst significantly higher beta-globulin concentrations were seen in female seals. Season of sampling influenced fibrinogen and beta(2)-globulin concentrations, whereas there were no significant differences in any protein concentrations with moult status. Qualitative comparison of SPE traces of leopard seals in Antarctica with "sick" individuals in NSW, Australia revealed obvious differences, as did quantitative comparison of protein concentrations where differences in alpha(1), alpha(2), beta(1), beta(2), and gamma-globulin concentrations were seen. These findings suggest that SPE is a useful tool for investigating serum proteins in the leopard seal, with applications for the investigation of "sick" individuals and the assessment of variation in homeostasis. This technique could also be used to identify the presence of environmental stressors, subclinical disease and physiological variation within specific seal populations.
Sonker, Mukul; Knob, Radim; Sahore, Vishal; Woolley, Adam T
2017-07-01
Integration in microfluidics is important for achieving automation. Sample preconcentration integrated with separation in a microfluidic setup can have a substantial impact on rapid analysis of low-abundance disease biomarkers. Here, we have developed a microfluidic device that uses pH-mediated solid-phase extraction (SPE) for the enrichment and elution of preterm birth (PTB) biomarkers. Furthermore, this SPE module was integrated with microchip electrophoresis for combined enrichment and separation of multiple analytes, including a PTB peptide biomarker (P1). A reversed-phase octyl methacrylate monolith was polymerized as the SPE medium in polyethylene glycol diacrylate modified cyclic olefin copolymer microfluidic channels. Eluent for pH-mediated SPE of PTB biomarkers on the monolith was optimized using different pH values and ionic concentrations. Nearly 50-fold enrichment was observed in single channel SPE devices for a low nanomolar solution of P1, with great elution time reproducibility (<7% RSD). The monolith binding capacity was determined to be 400 pg (0.2 pmol). A mixture of a model peptide (FA) and a PTB biomarker (P1) was extracted, eluted, injected, and then separated by microchip electrophoresis in our integrated device with ∼15-fold enrichment. This device shows important progress towards an integrated electrokinetically operated platform for preconcentration and separation of biomarkers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Stalter, Daniel; Peters, Leon I; O'Malley, Elissa; Tang, Janet Yat-Man; Revalor, Marion; Farré, Maria José; Watson, Kalinda; von Gunten, Urs; Escher, Beate I
2016-06-21
Enrichment methods used in sample preparation for the bioanalytical assessment of disinfected drinking water result in the loss of volatile and hydrophilic disinfection byproducts (DBPs) and hence likely tend to underestimate biological effects. We developed and evaluated methods that are compatible with bioassays, for extracting nonvolatile and volatile DBPs from chlorinated and chloraminated drinking water to minimize the loss of analytes. For nonvolatile DBPs, solid-phase extraction (SPE) with TELOS ENV as solid phase performed superior compared to ten other sorbents. SPE yielded >70% recovery of nonpurgeable adsorbable organic halogens (AOX). For volatile DBPs, cryogenic vacuum distillation performed unsatisfactorily. Purge and cold-trap with crushed ice serving as condensation nuclei achieved recoveries of 50-100% for trihalomethanes and haloacetonitriles and approximately 60-90% for purged AOX from tap water. We compared the purgeable versus the nonpurgeable fraction by combining purge-and-trap extraction with SPE. The purgeable DBP fraction enriched with the purge-and-trap method exerted a lower oxidative stress response in mammalian cells than the nonpurgeable DBPs enriched with SPE after purging, while contributions of both fractions to bacterial cytotoxicity was more variable. 37 quantified DBPs explained almost the entire AOX in the purge-and-trap extracts, but <16% in the SPE extracts demonstrating that the nonpurgeable fraction is dominated by unknown DBPs.
NASA Astrophysics Data System (ADS)
Vuolo, M.; Baiocco, G.; Barbieri, S.; Bocchini, L.; Giraudo, M.; Gheysens, T.; Lobascio, C.; Ottolenghi, A.
2017-11-01
We present a design study for a wearable radiation-shielding spacesuit, designed to protect astronauts' most radiosensitive organs. The suit could be used in an emergency, to perform necessary interventions outside a radiation shelter in the space habitat in case of a Solar Proton Event (SPE). A wearable shielding system of the kind we propose has the potential to prevent the onset of acute radiation effects in this scenario. In this work, selection of materials for the spacesuit elements is performed based on the results of dedicated GRAS/Geant4 1-dimensional Monte Carlo simulations, and after a trade-off analysis between shielding performance and availability of resources in the space habitat. Water is the first choice material, but also organic compounds compatible with a human space habitat are considered (such as fatty acids, gels and liquid organic wastes). Different designs and material combinations are proposed for the spacesuits. To quantify shielding performance we use GRAS/Geant4 simulations of an anthropomorphic phantom in an average SPE environment, with and without the spacesuit, and we compare results for the dose to Blood Forming Organs (BFO) in Gy-Eq, i.e. physical absorbed dose multiplied by the proton Relative Biological Effectiveness (RBE) for non-cancer effects. In case of SPE occurrence for Intra-Vehicular Activities (IVA) outside a radiation shelter, dose reductions to BFO in the range of 44-57% are demonstrated to be achievable with the spacesuit designs made only of water elements, or of multi-layer protection elements (with a thin layer of a high density material covering the water filled volume). Suit elements have a thickness in the range 2-6 cm and the total mass for the garment sums up to 35-43 kg depending on model and material combination. Dose reduction is converted into time gain, i.e. the increase of time interval between the occurrence of a SPE and the moment the dose limit to the BFO for acute effects is reached. Wearing a radiation shielding spacesuit of the kind we propose, the astronaut could have up to more than the double the time (e.g. almost 6 instead of 2.5 h) to perform necessary interventions outside a radiation shelter during a SPE, his/her exposure remaining within dose limits. An indicative mass saving thanks to the shielding provided by the suits is also derived, calculating the amount of mass needed in addition to the 1.5 cm thick Al module considered for the IVA scenario to provide the same additional shielding given by the spacesuit. For an average 50% dose reduction to BFO this is equal to about 2.5 tons of Al. Overall, our results offer a proof-of-principle validation of a complementary personal shielding strategy in emergency situations in case of a SPE event. Such results pave the way for the design and realization of a prototype of a water-filled garment to be tested on board the International Space Station for wearability. A successful outcome will possibly lead to the further refining of the design of radiation protection spacesuits and their possible adoption in future long-duration manned missions in deep space.
Vuolo, M; Baiocco, G; Barbieri, S; Bocchini, L; Giraudo, M; Gheysens, T; Lobascio, C; Ottolenghi, A
2017-11-01
We present a design study for a wearable radiation-shielding spacesuit, designed to protect astronauts' most radiosensitive organs. The suit could be used in an emergency, to perform necessary interventions outside a radiation shelter in the space habitat in case of a Solar Proton Event (SPE). A wearable shielding system of the kind we propose has the potential to prevent the onset of acute radiation effects in this scenario. In this work, selection of materials for the spacesuit elements is performed based on the results of dedicated GRAS/Geant4 1-dimensional Monte Carlo simulations, and after a trade-off analysis between shielding performance and availability of resources in the space habitat. Water is the first choice material, but also organic compounds compatible with a human space habitat are considered (such as fatty acids, gels and liquid organic wastes). Different designs and material combinations are proposed for the spacesuits. To quantify shielding performance we use GRAS/Geant4 simulations of an anthropomorphic phantom in an average SPE environment, with and without the spacesuit, and we compare results for the dose to Blood Forming Organs (BFO) in Gy-Eq, i.e. physical absorbed dose multiplied by the proton Relative Biological Effectiveness (RBE) for non-cancer effects. In case of SPE occurrence for Intra-Vehicular Activities (IVA) outside a radiation shelter, dose reductions to BFO in the range of 44-57% are demonstrated to be achievable with the spacesuit designs made only of water elements, or of multi-layer protection elements (with a thin layer of a high density material covering the water filled volume). Suit elements have a thickness in the range 2-6 cm and the total mass for the garment sums up to 35-43 kg depending on model and material combination. Dose reduction is converted into time gain, i.e. the increase of time interval between the occurrence of a SPE and the moment the dose limit to the BFO for acute effects is reached. Wearing a radiation shielding spacesuit of the kind we propose, the astronaut could have up to more than the double the time (e.g. almost 6 instead of 2.5 h) to perform necessary interventions outside a radiation shelter during a SPE, his/her exposure remaining within dose limits. An indicative mass saving thanks to the shielding provided by the suits is also derived, calculating the amount of mass needed in addition to the 1.5 cm thick Al module considered for the IVA scenario to provide the same additional shielding given by the spacesuit. For an average 50% dose reduction to BFO this is equal to about 2.5 tons of Al. Overall, our results offer a proof-of-principle validation of a complementary personal shielding strategy in emergency situations in case of a SPE event. Such results pave the way for the design and realization of a prototype of a water-filled garment to be tested on board the International Space Station for wearability. A successful outcome will possibly lead to the further refining of the design of radiation protection spacesuits and their possible adoption in future long-duration manned missions in deep space. Copyright © 2017 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
COMPARISON OF TWO DIFFERENT SOLID PHASE EXTRACTION/LARGE VOLUME INJECTION PROCEDURES FOR METHOD 8270
Two solid phase (SPE) and one traditional continuous liquid-liquid extraction method are compared for analysis of Method 8270 SVOCs. Productivity parameters include data quality, sample volume, analysis time and solvent waste.
One SPE system, unique in the U.S., uses aut...
The United Nations Framework Classification for World Petroleum Resources
Ahlbrandt, T.S.; Blystad, P.; Young, E.D.; Slavov, S.; Heiberg, S.
2003-01-01
The United Nations has developed an international framework classification for solid fuels and minerals (UNFC). This is now being extended to petroleum by building on the joint classification of the Society of Petroleum Engineers (SPE), the World Petroleum Congresses (WPC) and the American Association of Petroleum Geologists (AAPG). The UNFC is a 3-dimansional classification. This: Is necessary in order to migrate accounts of resource quantities that are developed on one or two of the axes to the common basis; Provides for more precise reporting and analysis. This is particularly useful in analyses of contingent resources. The characteristics of the SPE/WPC/AAPG classification has been preserved and enhanced to facilitate improved international and national petroleum resource management, corporate business process management and financial reporting. A UN intergovernmental committee responsible for extending the UNFC to extractive energy resources (coal, petroleum and uranium) will meet in Geneva on October 30th and 31st to review experiences gained and comments received during 2003. A recommended classification will then be delivered for consideration to the United Nations through the Committee on Sustainable Energy of the Economic Commission for Europe (UN ECE).
Wang, Xiaoqin; Li, Guizhen; Ho Row, Kyung
2017-09-01
Deep eutectic solvents (DES) were formed from choline chloride (ChCl). DES-modified polymer monolithic (DES-M), template molecular polymer monolithic and non-DES-M without a molecular template were synthesized in identical process. These polymer materials were characterized by field emission scanning electron microscopy and Fourier transform infrared spectroscopy. The significant selective adsorption properties of the polymers were assessed by an absorption capacity experiment and solid-phase extraction (SPE). The optimized extraction procedure was as follows: ultrasonic time (30 min), optimal solvent (ethanol) and liquid to material ratio (20 mL g-1). Under this condition, the amount of quercetin extracted from Ginkgo biloba was 290.8 mg g-1. The purification of G. biloba was achieved by the SPE process. Based on the results, DESs-based monolithic cartridges can be used for simple and efficient extraction and as a pre-concentration technique for the purification of bioactive compounds or drugs in aqueous environments with high affinity and selectivity. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lian, Ziru; Wang, Jiangtao
2012-12-01
In this paper, a highly selective sample cleanup procedure combining molecular imprinting technique (MIT) and solid-phase extraction (SPE) was developed for the isolation of malachite green in seawater and seafood samples. The molecularly imprinted polymer (MIP) was prepared using malachite green as the template molecule, methacrylic acid as the functional monomer and ethylene glycol dimethacrylate as the cross-linking monomer. The imprinted polymer and non-imprinted polymer were characterized by scanning electron microscope and static adsorption experiments. The MIP showed a high adsorption capacity and was used as selective sorbent for the SPE of malachite green. An off-line molecularly imprinted solid-phase extraction (MISPE) method followed by high-performance liquid chromatography with diodearray detection for the analysis of malachite green in seawater and seafood samples was also established. Finally, five samples were determined. The results showed that malachite green concentration in one seawater sample was at 1.30 μg L⁻¹ and the RSD (n=3) was 4.15%. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Sowa, Ireneusz; Wójciak-Kosior, Magdalena; Strzemski, Maciej; Sawicki, Jan; Staniak, Michał; Dresler, Sławomir; Szwerc, Wojciech; Mołdoch, Jarosław; Latalski, Michał
2018-01-01
Polyaniline (PANI) is one of the best known conductive polymers with multiple applications. Recently, it was also used in separation techniques, mostly as a component of composites for solid-phase microextraction (SPME). In the present paper, sorbent obtained by in situ polymerization of aniline directly on silica gel particles (Si-PANI) was used for dispersive solid phase extraction (d-SPE) and matrix solid–phase extraction (MSPD). The efficiency of both techniques was evaluated with the use of high performance liquid chromatography with diode array detection (HPLC-DAD) quantitative analysis. The quality of the sorbent was verified by Raman spectroscopy and microscopy combined with automated procedure using computer image analysis. For extraction experiments, triterpenes were chosen as model compounds. The optimal conditions were as follows: protonated Si-PANI impregnated with water, 160/1 sorbent/analyte ratio, 3 min of extraction time, 4 min of desorption time and methanolic solution of ammonia for elution of analytes. The proposed procedure was successfully used for pretreatment of plant samples. PMID:29565297
Study on the molecularly imprinted polymers with methyl-testosterone as the template.
Yang, Minli; Gu, Wancheng; Sun, Li; Zhang, Feng; Ling, Yun; Chu, Xiaogang; Wang, Daning
2010-04-15
Molecularly imprinted polymers (MIPs) using methyl-testosterone as the template, methacrylic acid (MAA) as the monomer and ethylene glycol dimethacrylate (EDMA) as the crosslinker were prepared by precipitation polymerization. The morphology of the obtained particles was characterized by scanning electron microscopy (SEM) and the pore size was measured by BET. Then, the specificity and selectivity of the MIPs were evaluated using the equilibrium rebinding experiments. Besides, the MIPs were also used as the stationary phase of HPLC column and the retention behaviour to the template and analogues was confirmed using HPLC-MS-MS. Finally, the real application of the methyl-testosterone imprinted polymers was evaluated using SPE procedure with the spiked tap water and lake water. The results indicated that the prepared methyl-testosterone imprinted polymer showed specific rebinding ability to its template and could retain the template strongly compared with other structural analogues. At the same time, the MIPs could be used as SPE column to enrich methyl-testosterone in the lake water and show broad prospects in real samples. (c) 2009 Elsevier B.V. All rights reserved.
Solid particle erosion mechanisms of protective coatings for aerospace applications
NASA Astrophysics Data System (ADS)
Bousser, Etienne
The main objective of this PhD project is to investigate the material loss mechanisms during Solid Particle Erosion (SPE) of hard protective coatings, including nanocomposite and nanostructured systems. In addition, because of the complex nature of SPE mechanisms, rigorous testing methodologies need to be employed and the effects of all testing parameters need to be fully understood. In this PhD project, the importance of testing methodology is addressed throughout in order to effectively study the SPE mechanisms of brittle materials and coatings. In the initial stage of this thesis, we studied the effect of the addition of silicon (Si) on the microstructure, mechanical properties and, more specifically, on the SPE resistance of thick CrN-based coatings. It was found that the addition of Si significantly improved the erosion resistance and that SPE correlated with the microhardness values, i.e. the coating with the highest microhardness also had the lowest erosion rate (ER). In fact, the ERs showed a much higher dependence on the surface hardness than what has been proposed for brittle erosion mechanisms. In the first article, we study the effects of the particle properties on the SPE behavior of six brittle bulk materials using glass and alumina powders. First, we apply a robust methodology to accurately characterize the elasto-plastic and fracture properties of the studied materials. We then correlate the measured ER to materials' parameters with the help of a morphological study and an analysis of the quasi-static elasto-plastic erosion models. Finally, in order to understand the effects of impact on the particles themselves and to support the energy dissipation-based model proposed here, we study the particle size distributions of the powders before and after erosion testing. It is shown that tests using both powders lead to a material loss mechanism related to lateral fracture, that the higher than predicted velocity exponents point towards a velocity-dependent damage accumulation mechanism correlated to target yield pressure, and that damage accumulation effects are more pronounced for the softer glass powder because of kinetic energy dissipation through different means. In the second article, we study the erosion mechanisms for several hard coatings deposited by pulsed DC magnetron sputtering. We first validate a new methodology for the accurate measurement of volume loss, and we show the importance of optimizing the testing parameters in order to obtain results free from experimental artefacts. We then correlate the measured ERs to the material parameters measured by depth-sensing indentation. In order to understand the material loss mechanisms, we study three of the coating systems in greater detail with the help of fracture characterization and a morphological study of the eroded surfaces. Finally, we study the particle size distributions of the powders before and after erosion testing in an effort to understand the role of particle fracture. We demonstrate that the measured ERs of the coatings are strongly dependent on the target hardness and do not correlate with coating toughness. In fact, the material removal mechanism is found to occur through repeated ductile indentation and cutting of the surface by the impacting particles and that particle breakup is not sufficiently large to influence the results significantly. Studying SPE mechanisms of hard protective coating systems in detail has proven to be quite challenging in the past, given that conventional SPE testing is notoriously inaccurate due to its aggressive nature and its many methodological uncertainties. In the third article, we present a novel in situ real-time erosion testing methodology using a quartz crystal microbalance, developed in order to study the SPE process of hard protective coating systems. Using conventional mass loss SPE testing, we validate and discuss the advantages and challenges related to such a method. In addition, this time-resolved technique enables us to discuss some transient events present during SPE testing of hard coating systems leading to new insights into the erosion process. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Hertkorn, N.; Harir, M.; Koch, B. P.; Michalke, B.; Schmitt-Kopplin, P.
2013-03-01
High-performance, non-target, high-resolution organic structural spectroscopy was applied to solid phase extracted marine dissolved organic matter (SPE-DOM) isolated from four different depths in the open South Atlantic Ocean off the Angola coast (3° E, 18° S; Angola Basin) and provided molecular level information with extraordinary coverage and resolution. Sampling was performed at depths of 5 m (Angola Current; near-surface photic zone), 48 m (Angola Current; fluorescence maximum), 200 m (still above Antarctic Intermediate Water, AAIW; upper mesopelagic zone) and 5446 m (North Atlantic Deep Water, NADW; abyssopelagic, ~30 m above seafloor) and produced SPE-DOM with near 40% carbon yield and beneficial nuclear magnetic resonance (NMR) relaxation properties, a crucial prerequisite for the acquisition of NMR spectra with excellent resolution. 1H and 13C NMR spectra of all four marine SPE-DOM showed smooth bulk envelopes, reflecting intrinsic averaging from massive signal overlap, with a few percent of visibly resolved signatures and variable abundances for all major chemical environments. The abundance of singly oxygenated aliphatics and acetate derivatives in 1H NMR spectra declined from surface to deep marine SPE-DOM, whereas C-based aliphatics and carboxyl-rich alicyclic molecules (CRAM) increased in abundance. Surface SPE-DOM contained fewer methyl esters than all other samples, likely a consequence of direct exposure to sunlight. Integration of 13C NMR spectra revealed continual increase of carboxylic acids and ketones from surface to depth, reflecting a progressive oxygenation, with concomitant decline of carbohydrate-related substructures. Aliphatic branching increased with depth, whereas the fraction of oxygenated aliphatics declined for methine, methylene and methyl carbon. Lipids in the oldest SPE-DOM at 5446 m showed a larger share of ethyl groups and methylene carbon than observed in the other samples. Two-dimensional NMR spectra showed exceptional resolution and depicted resolved molecular signatures in excess of a certain minimum abundance. Classical methyl groups terminating aliphatic chains represented ~15% of total methyl in all samples investigated. A noticeable fraction of methyl (~2%) was bound to olefinic carbon. Methyl ethers were abundant in surface marine SPE-DOM, and the chemical diversity of carbohydrates was larger than that of freshwater and soil DOM. In all samples, we identified sp2-hybridized carbon chemical environments with discrimination of isolated and conjugated olefins and α,β-unsaturated double bonds. Olefinic proton and carbon atoms were more abundant than aromatic ones; olefinic unsaturation in marine SPE-DOM will be more directly traceable to ultimate biogenic precursors than aromatic unsaturation. The abundance of furan, pyrrol and thiophene derivatives was marginal, whereas benzene derivatives, phenols and six-membered nitrogen heterocycles were prominent; a yet unassigned set of six-membered N-heterocycles with likely more than one single nitrogen occurred in all samples. Various key polycyclic aromatic hydrocarbon substructures suggested the presence of thermogenic organic matter at all water depths. Progressive NMR cross-peak attenuation from surface to deep marine SPE-DOM was particularly strong in COSY NMR spectra and indicated a continual disappearance of biosignatures as well as entropy gain from an ever increased molecular diversity. Nevertheless, a specific near-seafloor SPE-DOM signature of unsaturated molecules recognized in both NMR and Fourier transform ion cyclotron mass spectrometry (FTICR/MS) possibly originated from sediment leaching. The conformity of key NMR and FTICR/MS signatures suggested the presence of a large set of identical molecules throughout the entire ocean column even though the investigated water masses belonged to different oceanic regimes and currents. FTICR/MS showed abundant CHO, CHNO, CHOS and CHNOS molecular series with slightly increasing numbers of mass peaks and average mass from surface to bottom SPE-DOM. The proportion of CHO and CHNO negative ions increased from surface to depth, whereas CHOS and especially CHNOS molecular series markedly declined. While certain rather aliphatic CHOS and CHNOS ions were observed solely in the surface, deep marine SPE-DOM was enriched in unique unsaturated and rather oxygenated CHO and CHNO molecular series. With the exception of abyssopelagic SPE-DOM at 5446 m, which showed a peculiar CHOS chemistry of unsaturated carbon and reduced sulphur (black sulphur), CHO and CHNO molecular series contributed ~87% to total positive electrospray ionization FTICR mass peak integral, with a near constant ratio of CHNO / CHO molecular compositions near 1.13 ± 0.05. In case of all four marine SPE-DOM, remarkably disparate average elemental compositions as determined from either MS and NMR spectra were observed, caused by a pronounced ionization selectivity in electrospray ionization FTICR/MS. The study demonstrates that the exhaustive characterization of complex unknowns in marine DOM will enable a meaningful classification of individual marine biogeosignatures. Future in-depth functional biodiversity studies with a clear understanding of DOM structure and function might eventually lead to a novel, unified perception of biodiversity and biogeochemistry.
NASA Astrophysics Data System (ADS)
Cheng, Hua; Scott, Keith
The ability to re-cycle halogenated liquid wastes, based on electrochemical hydrodehalogenation (EHDH), will provide a significant economic advantage and will reduce the environmental burden in a number of processes. The use of a solid polymer electrolyte (SPE) reactor is very attractive for this purpose. Principles and features of electrochemical HDH technology and SPE EHDH reactors are described. The SPE reactor enables selective dehalogenation of halogenated organic compounds in both aqueous and non-aqueous media with high current efficiency and low energy consumption. The influence of operating conditions, including cathode material, current density, reactant concentration and temperature on the HDH process and its stability are examined.
Spätzle-Processing Enzyme-independent Activation of the Toll Pathway in Drosophila Innate Immunity.
Yamamoto-Hino, Miki; Goto, Satoshi
2016-05-07
The Toll pathway regulates innate immunity in insects and vertebrates. The Drosophila Toll receptor is activated by a processed form of a ligand, Spätzle. Spätzle-processing enzyme (SPE) is the only enzyme identified to date that functions in converting Spätzle to an active form during the immune response. In the present study, Toll activation induced by immune challenge was almost suppressed in spätzle mutant larvae and adults, whereas it was present in SPE mutant larvae challenged with Micrococcus luteus and adults challenged with Bacillus subtilis. Our data suggest that an unidentified protease besides SPE processes Spätzle under conditions of microbial challenge.
48 CFR 819.705 - Appeal of Contracting Officer decisions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the Senior Procurement Executive (SPE) within 5 working days. The SPE shall have 15 working days to... decision. The contracting officer has 5 working days to reply to the challenge by either revising the... filed within 5 working days of receipt of the contracting officer's decision. The HCA has 5 working days...
Space Environment (Natural and Induced)
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; George, Kerry A.; Cucinotta, Francis A.
2007-01-01
Considerable effort and improvement have been made in the study of ionizing radiation exposure occurring in various regions of space. Satellites and spacecrafts equipped with innovative instruments are continually refining particle data and providing more accurate information on the ionizing radiation environment. The major problem in accurate spectral definition of ionizing radiation appears to be the detailed energy spectra, especially at high energies, which is important parameter for accurate radiation risk assessment. Magnitude of risks posed by exposure to radiation in future space missions is subject to the accuracies of predictive forecast of event size of SPE, GCR environment, geomagnetic fields, and atmospheric radiation environment. Although heavy ion fragmentations and interactions are adequately resolved through laboratory study and model development, improvements in fragmentation cross sections for the light nuclei produced from HZE nuclei and their laboratory validation are still required to achieve the principal goal of planetary GCR simulation at a critical exposure site. More accurate prediction procedure for ionizing radiation environment can be made with a better understanding of the solar and space physics, fulfillment of required measurements for nuclear/atomic processes, and their validation and verification with spaceflights and heavy ion accelerators experiments. It is certainly true that the continued advancements in solar and space physics combining with physical measurements will strengthen the confidence of future manned exploration of solar system. Advancements in radiobiology will surely give the meaningful radiation hazard assessments for short and long term effects, by which appropriate and effective mitigation measures can be placed to ensure that humans safely live and work in the space, anywhere, anytime.
Ma, Xiaoyan; Yang, Hongqiao; Xiong, Huabin; Li, Xiaofen; Gao, Jinting; Gao, Yuntao
2016-01-01
In this paper, the multi-walled carbon nanotubes modified screen-printed electrode (MWCNTs/SPE) was prepared and the MWCNTs/SPE was employed for the electrochemical determination of the antioxidant substance chlorogenic acids (CGAs). A pair of well-defined redox peaks of CGA was observed at the MWCNTs/SPE in 0.10 mol/L acetic acid-sodium acetate buffer (pH 6.2) and the electrode process was adsorption-controlled. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods for the determination of CGA were proposed based on the MWCNTs/SPE. Under the optimal conditions, the proposed method exhibited linear ranges from 0.17 to 15.8 µg/mL, and the linear regression equation was Ipa (µA) = 4.1993 C (×10−5 mol/L) + 1.1039 (r = 0.9976) and the detection limit for CGA could reach 0.12 µg/mL. The recovery of matrine was 94.74%–106.65% (RSD = 2.92%) in coffee beans. The proposed method is quick, sensitive, reliable, and can be used for the determination of CGA. PMID:27801797
Du, Li-Jing; Yi, Ling; Ye, Li-Hong; Chen, Yu-Bo; Cao, Jun; Peng, Li-Qing; Shi, Yu-Ting; Wang, Qiu-Yan; Hu, Yu-Han
2018-02-16
A simple and effective method of miniaturized solid-phase extraction (mini-SPE) was developed for the simultaneous purification and enrichment of macrolide antibiotics (MACs) (i.e. azithromycin, clarithromycin, erythromycin, lincomycin and roxithromycin) from honey and skim milk. Mesoporous MCM-41 silica was synthesized and used as sorbent in mini-SPE. Several key parameters affecting the performance of mini-SPE procedure were thoroughly investigated, including sorbent materials, amount of sorbent and elution solvents. Under the optimized condition, satisfactory linearity (r 2 > 0.99), acceptable precision (RSDs, 0.3-7.1%), high sensitivity (limit of detection in the range of 0.01-0.76 μg/kg), and good recoveries (83.21-105.34%) were obtained. With distinct advantages of simplicity, reliability and minimal sample requirement, the proposed mini-SPE procedure coupled with ultrahigh performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry could become an alternative tool to analyze the residues of MACs in complex food matrixes. Copyright © 2018 Elsevier B.V. All rights reserved.
El-Sheikh, Amjad H; Sweileh, Jamal A; Al-Degs, Yahya S; Insisi, Ahmad A; Al-Rabady, Nancy
2008-02-15
In this work, optimization of multi-residue solid phase extraction (SPE) procedures coupled with high-performance liquid chromatography for the determination of Propoxur, Atrazine and Methidathion from environmental waters is reported. Three different sorbents were used in this work: multi-walled carbon nanotubes (MWCNTs), C18 silica and activated carbon (AC). The three optimized SPE procedures were compared in terms of analytical performance, application to environmental waters, cartridge re-use, adsorption capacity and cost of adsorbent. Although the adsorption capacity of MWCNT was larger than AC and C18, however, the analytical performance of AC could be made close to the other sorbents by appropriate optimization of the SPE procedures. A sample of AC was then oxidized with various oxidizing agents to show that ACs of various surface properties has different enrichment efficiencies. Thus researchers are advised to try AC of various surface properties in SPE of pollutants prior to using expensive sorbents (such as MWCNT and C18 silica).
Baik, Yoon Suk; Cheong, Won Jo
2007-07-01
A new SPE cartridge has been prepared in this study to purify polysaccharides of high molecular weights. A porous nonpolar styrene-divinylbenzene copolymer phase (Hamilton PRP-1) was used to make the new cartridge. The cartridge was conditioned with methanol, water, and ACN in sequence, and the sample dissolved in a small amount of water was loaded. Impurities of low molecular weights were removed first by elution of 80:20 or 90:10 v/v% ACN/water, and polysaccharides were quantitatively recovered by elution of 50:50 v/v% ACN/water or pure water. The recovery of pure dextran 10000 was 90-95%. The SPE method was applied to purification of the polysaccharide sample of KLB58, a new lactobacillus discovered in Korea. The purified KLB 58 sample (weight recovery after SPE purification; 60%) was hydrolyzed for analysis of composition of monosaccharides. The hydrolysate was found to be composed primarily of fructose, glucose, galactose, rhamnose, mannose with small amounts of fucose and ribose.
Furukawa, Makoto; Takagai, Yoshitaka
2016-10-04
Online solid-phase extraction (SPE) coupled with inductively coupled plasma mass spectrometry (ICPMS) is a useful tool in automatic sequential analysis. However, it cannot simultaneously quantify the analytical targets and their recovery percentages (R%) in one-shot samples. We propose a system that simultaneously acquires both data in a single sample injection. The main flowline of the online solid-phase extraction is divided into main and split flows. The split flow line (i.e., bypass line), which circumvents the SPE column, was placed on the main flow line. Under program-controlled switching of the automatic valve, the ICPMS sequentially measures the targets in a sample before and after column preconcentration and determines the target concentrations and the R% on the SPE column. This paper describes the system development and two demonstrations to exhibit the analytical significance, i.e., the ultratrace amounts of radioactive strontium ( 90 Sr) using commercial Sr-trap resin and multielement adsorbability on the SPE column. This system is applicable to other flow analyses and detectors in online solid phase extraction.
Lai, Edward P C; Feng, Sherry Y
2006-10-20
Solid phase extraction (SPE) was coupled at line to capillary electrophoresis (CE) for the determination of three basic and neutral diabetic drugs (metformin, phenformin and glyburide) in human plasma. The SPE procedure employed a C(18) cartridge to remove most of the water and proteins from the plasma sample. Analyte detectability was increased due to trace enrichment during the SPE process. Elution of metformin, phenformin and glyburide was achieved with methanol+3% acetic acid. CE analysis was performed using a non-aqueous buffer, acetonitrile+5mM ammonium acetate+5% acetic acid, which afforded rapid separation of metformin from phenformin within 3 min. Glyburide, with a migration time longer than 6 min, did not cause any interference. The present SPE-CE method, with an electrokinetic injection time of 6s and UV detection at 240 nm, was useful for monitoring down to 1 microg/mL of metformin and phenformin in human plasma. When the electrokinetic injection time was increased to 36s, the detection limits were improved to 12 ng/mL for metformin and 6 ng/mL for phenformin.
Purification of Derivatized Oligosaccharides by Solid Phase Extraction for Glycomic Analysis
Zhang, Qiwei; Li, Henghui; Feng, Xiaojun; Liu, Bi-Feng; Liu, Xin
2014-01-01
Profiling of glycans released from proteins is very complex and important. To enhance the detection sensitivity, chemical derivatization is required for the analysis of carbohydrates. Due to the interference of excess reagents, a simple and reliable purification method is usually necessary for the derivatized oligosaccharides. Various SPE based methods have been applied for the clean-up process. To demonstrate the differences among these methods, seven types of self-packed SPE cartridges were systematically compared in this study. The optimized conditions were determined for each type of cartridge and it was found that microcrystalline cellulose was the most appropriate SPE material for the purification of derivatized oligosaccharide. Normal phase HPLC analysis of the derivatized maltoheptaose was realized with a detection limit of 0.12 pmol (S N−1 = 3) and a recovery over 70%. With the optimized SPE method, relative quantification analysis of N-glycans from model glycoproteins were carried out accurately and over 40 N-glycans from human serum samples were determined regardless of the isomers. Due to the high stability and sensitivity, microcrystalline cellulose cartridge showed potential applications in glycomics analysis. PMID:24705408
Zhang, Min; Wei, Zhiyi; Chang, Shaojie; Teng, Maikun; Gong, Weimin
2006-04-21
A 31kDa cysteine protease, SPE31, was isolated from the seeds of a legume plant, Pachyrizhus erosus. The protein was purified, crystallized and the 3D structure solved using molecular replacement. The cDNA was obtained by RT PCR followed by amplification using mRNA isolated from the seeds of the legume plant as a template. Analysis of the cDNA sequence and the 3D structure indicated the protein to belong to the papain family. Detailed analysis of the structure revealed an unusual replacement of the conserved catalytic Cys with Gly. Replacement of another conserved residue Ala/Gly by a Phe sterically blocks the access of the substrate to the active site. A polyethyleneglycol molecule and a natural peptide fragment were bound to the surface of the active site. Asn159 was found to be glycosylated. The SPE31 cDNA sequence shares several features with P34, a protein found in soybeans, that is implicated in plant defense mechanisms as an elicitor receptor binding to syringolide. P34 has also been shown to interact with vegetative storage proteins and NADH-dependent hydroxypyruvate reductase. These roles suggest that SPE31 and P34 form a unique subfamily within the papain family. The crystal structure of SPE31 complexed with a natural peptide ligand reveals a unique active site architecture. In addition, the clear evidence of glycosylated Asn159 provides useful information towards understanding the functional mechanism of SPE31/P34.
Jezová, Vera; Skládal, Jan; Eisner, Ales; Bajerová, Petra; Ventura, Karel
2007-12-07
This paper deals with comparison of efficiency of extraction techniques (solid-phase extraction, SPE and solid-phase microextraction, SPME) used for extraction of nitrate esters (ethyleneglycoldinitrate, EGDN and nitroglycerin, NG), representing the first step of the method of quantitative determination of trace concentrations of nitrate esters in water samples. EGDN and NG are subsequently determined by means of high-performance liquid chromatography with ultraviolet detection (HPLC-UV). Optimization of SPE and SPME conditions was carried out using model water samples. Seven SPE cartridges were tested and the conditions were optimized (type of sorbent, type and volume of solvent to be used as eluent). For both nitrate esters the limit of detection (LOD) and the limit of quantification (LOQ) obtained using SPE/HPLC-UV were 0.23 microg mL(-1) and 0.70 microg mL(-1), respectively. Optimization of SPME conditions: type of SPME fibre (four fibres were tested), type and time of sorption/desorption, temperature of sorption. PDMS/DVB (polydimethylsiloxane/divinylbenzene) fibre coating proved to be suitable for extraction of EGDN and NG. For this fibre the LOD and the LOQ for both nitrate esters were 0.16 microg mL(-1) and 0.50 microg mL(-1), respectively. Optimized methods SPE/HPLC-UV and SPME/HPLC-UV were then used for quantitative determination of nitrate esters content in real water samples from the production of EGDN and NG.
Xu, Li; Lee, Hian Kee
2008-05-30
A single-step extraction-cleanup procedure involving microwave-assisted extraction (MAE) and micro-solid-phase extraction (micro-SPE) has been developed for the analysis of polycyclic aromatic hydrocarbons (PAHs) from soil samples. Micro-SPE is a relatively new extraction procedure that makes use of a sorbent enclosed within a sealed polypropylene membrane envelope. In the present work, for the first time, graphite fiber was used as a sorbent material for extraction. MAE-micro-SPE was used to cleanup sediment samples and to extract and preconcentrate five PAHs in sediment samples prepared as slurries with addition of water. The best extraction conditions comprised of microwave heating at 50 degrees C for a duration of 20 min, and an elution (desorption) time of 5 min using acetonitrile with sonication. Using gas chromatography (GC)-flame ionization detection (FID), the limits of detection (LODs) of the PAHs ranged between 2.2 and 3.6 ng/g. With GC-mass spectrometry (MS), LODs were between 0.0017 and 0.0057 ng/g. The linear ranges were between 0.1 and 50 or 100 microg/g for GC-FID analysis, and 1 and 500 or 1000 ng/g for GC-MS analysis. Granular activated carbon was also used for the micro-SPE device but was found to be not as efficient in the PAH extraction. The MAE-micro-SPE method was successfully used for the extraction of PAHs in river and marine sediments, demonstrating its applicability to real environmental solid matrixes.
Babbar, Anshu; Itzek, Andreas; Pieper, Dietmar H; Nitsche-Schmitz, D Patric
2018-03-12
Streptococcus dysgalactiae subsp. equisimilis (SDSE), belonging to the group C and G streptococci, are human pathogens reported to cause clinical manifestations similar to infections caused by Streptococcus pyogenes. To scrutinize the distribution of gene coding for S. pyogenes virulence factors in SDSE, 255 isolates were collected from humans infected with SDSE in Vellore, a region in southern India, with high incidence of SDSE infections. Initial evaluation indicated SDSE isolates comprising of 82.35% group G and 17.64% group C. A multiplex PCR system was used to detect 21 gene encoding virulence-associated factors of S. pyogenes, like superantigens, DNases, proteinases, and other immune modulatory toxins. As validated by DNA sequencing of the PCR products, sequences homologous to speC, speG, speH, speI, speL, ssa and smeZ of the family of superantigen coding genes and for DNases like sdaD and sdc were detected in the SDSE collection. Furthermore, there was high abundance (48.12% in group G and 86.6% in group C SDSE) of scpA, the gene coding for C5a peptidase in these isolates. Higher abundance of S. pyogenes virulence factor genes was observed in SDSE of Lancefield group C as compared to group G, even though the incidence rates in former were lower. This study not only substantiates detection of S. pyogenes virulence factor genes in whole genome sequenced SDSE but also makes significant contribution towards the understanding of SDSE and its increasing virulence potential.
The improvement of removal effects on organic pollutants in Wastewater Treatment Plants (WWTP)
NASA Astrophysics Data System (ADS)
Marincas, O.; Petrov, P.; Ternes, T.; Avram, V.; Moldovan, Z.
2009-08-01
Purpose of this study is to improve the efficiency of removal in wastewater treatment plants of some organic pollutants like pharmaceuticals, antioxidants, pesticides (triazines, phenylurea herbicides), personal care products (PCPs) musk fragrances (galaxolide and tonalide) and estrogens using zeolites with excellent absorption capacity. The zeolite selected for all experiments was Szedimentin-MW. The experiment took place in three stages: no zeolite addition, zeolite added at the end of the bioreactor and zeolite added at the start of the bioreactor. The water samples were pre-concentrated with solid phase extraction (SPE) procedure and analyzed with analytical system Gas Chromatography/Mass Spectrometry (GC/MS).
Ku, Chai Siah; Pham, Tho X.; Park, Youngki; Kim, Bohkyung; Shin, Min; Kang, Insoo; Lee, Jiyoung
2013-01-01
Background Chronic inflammation contributes to the development of pathological disorders including insulin resistance and atherosclerosis. Identification of anti-inflammatory natural products can prevent the inflammatory diseases. Methods Anti-inflammatory effects of blue-green algae (BGA), i.e., Nostoc commune var. Sphaeroides Kützing (NO) and Spirulina Platensis (SP), were compared in RAW 264.7 and mouse bone marrow-derived macrophages (BMM) as well as splenocytes from apolipoprotein E knockout (apoE−/−) mice fed BGA. Results When macrophages pretreated with 100 μg/ml NO lipid extract (NOE) or SP lipid extract (SPE) were activated by lipopolysaccharide (LPS), expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), interleukin 1β (IL-1β), and IL-6, were significantly repressed. NOE and SPE also significantly repressed the expression of TNFα and IL-1β in BMM. LPS-induced secretion of IL-6 was lower in splenocytes from apoE−/− fed an atherogenic diet containing 5% NO or SP for 12 weeks. In RAW 264.7 macrophages, NOE and SPE markedly decreased nuclear translocation of NF-κB. The degree of repression of pro-inflammatory gene expression by algal extracts was much stronger than that of SN50, an inhibitor of NF-κB nuclear translocation. Trichostatin A, a pan histone deacetylase inhibitor, increased basal expression of IL-1β and attenuated the repression of the gene expression by SPE. SPE significantly down-regulated mRNA abundance of 11 HDAC isoforms, consequently increasing acetylated histone 3 levels. Conclusion NOE and SPE repress pro-inflammatory cytokine expression and secretion in macrophages and splenocytes via inhibition of NF-κB pathway. Histone acetylation state is likely involved in the inhibition. General significance This study underscores natural products can exert anti-inflammatory effects by epigenetic modifications such as histone acetylation. PMID:23357040
Liu, Jie; Tong, Ling; Li, Dongxiang; Meng, Wenting; Sun, Wanyang; Zhao, Yunli; Yu, Zhiguo
2016-04-01
In this study, two simple pretreatment methods were comprehensively evaluated for the determination of 135 pesticide residues in roots and rhizomes of Chinese herbal medicines (CHMs). The studied methodologies are (a) solid-phase extraction (SPE) and (b) Quick, Easy, Cheap, Effective, Rugged and Safe (QuEChERS). For SPE, extraction solvents, SPE cartridges and types and volume of eluent were accessed and optimized. For QuEChERS, different versions, acetic acid concentration and dispersive solid-phase extraction (dSPE) sorbent materials were tested. SPE and QuEChERS were estimated in recovery range, the number of pesticides that were recovered ranging from 90% to 110% and expenses in Corydalis Rhizoma, Chuanxiong Rhizoma and Angelicae Sinensis Radix. QuEChERS method showed better performance than SPE. The method showed good linearity over the range assayed 0.9986-0.9999 (1-80ng/mL for 124 pesticides, 1-50ng/mL for 10 pesticides, 1-20ng/mL for satisfar). The matrix effect was compensated by matrix-based calibration curves with internal standard. The average recoveries of all pesticides were ranging from 70% to 120% at three levels of 10, 50 and 100ng/g with relative standard deviations less than 20%. The limits of quantification of the 135 pesticides in three matrices were 1-5ng/g, which were below the maximum residue levels (MRLs) established by the European Union. The verified QuEChERS method was successfully applied to the analysis of 65 actual samples from eight different types of roots and rhizomes of CHMs. Angelicae Sinensis Radix was the most susceptible to pesticides among these samples, and the most frequently detected pesticide was carbendazim with levels below MRLs. Metalaxyl, phorate, atrazine, diniconazole, coumaphos and paclobutrazol were also detected in some samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Tsai, Chia-Ta; Chi, Chih-Yu; Ho, Cheng-Mao; Lin, Po-Chang; Chou, Chia-Hui; Wang, Jen-Hsien; Wang, Jui-Hsing; Lin, Hsiao-Chuan; Tien, Ni; Lin, Kuo-Hsi; Ho, Mao-Wang; Lu, Jang-Jih
2014-12-01
Streptococcus dysgalactiae subsp. equisimilis (SDSE) is increasingly recognized as a human pathogen responsible for invasive infection and streptococcal toxic shock syndrome (STSS). The pathogen possesses virulence genes that resemble those found in Streptococcus pyogenes (GAS). We analyzed the association between these specific toxic genes, clinical presentations, and outcome in patients with SDSE infections. Patients (older than 18 years) with community-acquired invasive bacteremia caused by SDSE bacteremia who were undergoing treatment at China Medical University Hospital from June 2007 to December 2010 were included in this study. Multiplex polymerase chain reaction was performed to identify virulence genes of the SDSE isolates. Demographic data, clinical presentations, and outcome in patients with SDSE infections were reviewed and analyzed. Forty patients with 41 episodes of SDSE bacteremia were reviewed. The median age of the patients with SDSE infection was 69.7 years; 55% were female and 78% had underlying diseases. Malignancy (13, 33%) and diabetes mellitus (13, 33%) were the most common comorbidities. The 30-day mortality rate was 12%. Compared with the survivors, the non-survivors had a higher rate of diabetes mellitus (80% vs. 26%), liver cirrhosis (60% vs.11%), shock (60% vs.17%), STSS (60% vs. 8%), and a high Pittsburgh bacteremia score >4 (40% vs. 6%). Most isolates had scpA, ska, saga, and slo genes, whereas speC, speG, speH, speI, speK, smez, and ssa genes were not detected. speA gene was identified only in one patient with STSS (1/6, 17%). All isolates were susceptible to penicillin, cefotaxime, levofloxacin, moxifloxacin, vancomycin, and linezolid. In invasive SDSE infections, most isolates carry putative virulence genes, such as scpA, ska, saga, and slo. Clinical SDSE isolates in Taiwan remain susceptible to penicillin cefotaxime, and levofloxacin. Copyright © 2013. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Krishnan, Karthik; Aono, Masakazu; Tsuruoka, Tohru
2016-07-01
Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength, and the reduction sites for precipitation. Different filament formations, resulting from unidirectional and dendritic growth behaviours, can be controlled by tuning specified parameters, which in turn improves the stability and performance of SPE-based devices.Resistive switching characteristics and conducting filament formation dynamics in solid polymer electrolyte (SPE) based planar-type atomic switches, with opposing active Ag and inert Pt electrodes, have been investigated by optimizing the device configuration and experimental parameters such as the gap distance between the electrodes, the salt inclusion in the polymer matrix, and the compliance current applied in current-voltage measurements. The high ionic conductivities of SPE enabled us to make scanning electron microscopy observations of the filament formation processes in the sub-micrometer to micrometer ranges. It was found that switching behaviour and filament growth morphology depend strongly on several kinetic factors, such as the redox reaction rate at the electrode-polymer interfaces, ion mobility in the polymer matrix, electric field strength, and the reduction sites for precipitation. Different filament formations, resulting from unidirectional and dendritic growth behaviours, can be controlled by tuning specified parameters, which in turn improves the stability and performance of SPE-based devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00569a
NASA Astrophysics Data System (ADS)
Burgasser, Adam
The NASA Infrared Telescope Facility's (IRTF) SpeX spectrograph has been an essential tool in the discovery and characterization of ultracool dwarf (UCD) stars, brown dwarfs and exoplanets. Over ten years of SpeX data have been collected on these sources, and a repository of low-resolution (R 100) SpeX prism spectra has been maintained by the PI at the SpeX Prism Spectral Libraries website since 2008. As the largest existing collection of NIR UCD spectra, this repository has facilitated a broad range of investigations in UCD, exoplanet, Galactic and extragalactic science, contributing to over 100 publications in the past 6 years. However, this repository remains highly incomplete, has not been uniformly calibrated, lacks sufficient contextual data for observations and sources, and most importantly provides no data visualization or analysis tools for the user. To fully realize the scientific potential of these data for community research, we propose a two-year program to (1) calibrate and expand existing repository and archival data, and make it virtual-observatory compliant; (2) serve the data through a searchable web archive with basic visualization tools; and (3) develop and distribute an open-source, Python-based analysis toolkit for users to analyze the data. These resources will be generated through an innovative, student-centered research model, with undergraduate and graduate students building and validating the analysis tools through carefully designed coding challenges and research validation activities. The resulting data archive, the SpeX Prism Library, will be a legacy resource for IRTF and SpeX, and will facilitate numerous investigations using current and future NASA capabilities. These include deep/wide surveys of UCDs to measure Galactic structure and chemical evolution, and probe UCD populations in satellite galaxies (e.g., JWST, WFIRST); characterization of directly imaged exoplanet spectra (e.g., FINESSE), and development of low-temperature theoretical models of UCD and exoplanet atmospheres. Our program will also serve to validate the IRTF data archive during its development, by reducing and disseminating non-proprietary archival observations of UCDs to the community. The proposed program directly addresses NASA's strategic goals of exploring the origin and evolution of stars and planets that make up our universe, and discovering and studying planets around other stars.
Lashgari, Maryam; Lee, Hian Kee
2014-11-21
In the current study, a simple, fast and efficient combination of protein precipitation and micro-solid phase extraction (μ-SPE) followed by liquid chromatography-triple quadrupole tandem mass spectrometry (LC-MS/MS) was developed for the determination of perfluorinated carboxylic acids (PFCAs) in fish fillet. Ten PFCAs with different hydrocarbon chain lengths (C5-C14) were analysed simultaneously using this method. Protein precipitation by acetonitrile and μ-SPE by surfactant-incorporated ordered mesoporous silica were applied to the extraction and concentration of the PFCAs as well as for removal of interferences. Determination of the PFCAs was carried out by LC-MS/MS in negative electrospray ionization mode. MS/MS parameters were optimized for multiple reaction monitoring of the analytes. (13)C mass labelled PFOA as a stable-isotopic internal standard, was used for calibration. The detection limits of the method ranged from 0.97 ng/g to 2.7 ng/g, with a relative standard deviation of between 5.4 and 13.5. The recoveries were evaluated for each analyte and were ranged from 77% to 120%. The t-test at 95% confidence level showed that for all the analytes, the relative recoveries did not depend on their concentrations in the explored concentration range. The effect of the matrix on MS signals (suppression or enhancement) was also evaluated. Contamination at low levels was detected for some analytes in the fish samples. The protective role of the polypropylene membrane used in μ-SPE in the elimination of matrix effects was evaluated by parallel experiments in classical dispersive solid phase extraction. The results evidently showed that the polypropylene membrane was significantly effective in reducing matrix effects. Copyright © 2014 Elsevier B.V. All rights reserved.
Murakami, Tomonori; Kawasaki, Takao; Takemura, Akira; Fukutsu, Naoto; Kishi, Naoyuki; Kusu, Fumiyo
2008-10-24
Rapid and unambiguous identification of three degradation products (DP-1, DP-2 and DP-3) found in heat-stressed loxoprofen sodium adhesive tapes (Loxonin tapes) was achieved by LC-MS and dynamic pressurized liquid extraction (PLE)-solid-phase extraction (SPE) coupled to LC-NMR without complicated isolation or purification processes. The molecular formulae of the degradation products were determined by accurate mass measurements and product ion analyses and on-line hydrogen/deuterium (H/D) exchange experiments provided information about changes in the degradation of loxoprofen. To compensate for the low sensitivity of NMR, on-line dynamic PLE-SPE was employed and higher concentrations of degradation products trapped on the SPE column were afforded in a shorter time than they would be in such time-consuming sample preparations as pre-concentration after extraction. The loop-storage procedure was used in the LC-NMR analysis to allow the acquisition of the (1)H spectra of the three degradation products in one chromatographic run without affecting the peak separation and to avoid the carry-over of previously eluted DP-1 of high concentration by washing the NMR detection cell prior to the measurement of the DP-2 spectrum. Based on the resulting (1)H NMR spectra in combination with the MS results, DP-1 was successfully identified as an oxidation product having an oxodicarboxylic acid structure formed by the cleavage of the cyclopentanone ring of loxoprofen, DP-2 as a cyclopentanone ring-hydroxylated loxoprofen and DP-3 as a loxoprofen l-menthol ester.
Oellig, Claudia
2016-05-06
Propolis is a very complex mixture of substances that is produced by honey bees and is known to be a rather challenging matrix for residue analysis. Besides resins, flavonoids and phenols, high amount of wax is co-extracted resulting in immense matrix effects. Therefore a suitable clean-up is crucial and indispensable. In this study, a reliable solid phase extraction (SPE) clean-up was developed for pesticide residue analysis in propolis. The clean-up success was quickly and easily monitored by high-performance thin-layer chromatography with different detection possibilities. The final method consists of the extraction of propolis with acetonitrile according to the QuEChERS method followed by an effective extract purification on dual-layer SPE cartridges with spherical hydrophobic polystyrene-divinylbenzene resin/primary secondary amine as sorbent and a mixture of toluene/acetone (95:5, v/v) for elution. Besides fat-soluble components like waxes, flavonoids, and terpenoids, more polar compounds like organic acids, fatty acids, sugars and anthocyanins were also removed to large extent. Method performance was assessed by recovery experiments at spiking levels of 0.5 and 1mg/kg (n=5) for fourteen pesticides that are relevant for propolis. Mean recoveries determined by HPLC-MS against solvent standards were between 40 and 101%, while calculation against matrix-matched standards provided recoveries of 79-104%. Precision of recovery, assessed by relative standard deviations, were below 9%. Thus, the developed dual-layer SPE clean-up enables the reliable pesticide residue analysis in propolis and provides a suitable alternative to time-consuming clean-up procedures proposed in literature. Copyright © 2016 Elsevier B.V. All rights reserved.
Pang, Guo-Fang; Fan, Chun-Lin; Chang, Qiao-Ying; Li, Yan; Kang, Jian; Wang, Wen-Wen; Cao, Jing; Zhao, Yan-Bing; Li, Nan; Li, Zeng-Yin; Chen, Zong-Mao; Luo, Feng-Jian; Lou, Zheng-Yun
2013-01-01
A comparative study was conducted over three stages on the cleanup efficiency of SPE cartridge Cleanert TPT, newly developed for multigroups of pesticide residues in tea. In Stage I, different SPE cartridges C18, graphite carbon black (GCB), primary secondary amine (PSA), and amino (NH2) were purchased and combined into 12 different sequences. Through the comparative test on cleanup efficiency of 84 representative pesticides in tea, Envi-Carb GCB + PSA with a good cleanup effect was selected. In Stage II, GC/MS test results from the comparative study of the extraction efficiency of 201 pesticides spiked into green tea and Woolong tea with Cleanert TPT and Envi-Carb + PSA SPE showed that average recoveries fell within 70-110% and RSD <20% for 193 and 184 pesticides, respectively, for green tea, accounting for 96.0 and 91.0% of the total number, respectively. GC/MS/MS test results also found 193 and 184 pesticides, respectively, meeting the recovery and RSD conditions, accounting for 96.0 and 91.5%, respectively, of the total number. For Woolong tea samples, GC/MS results showed that with Cleanert TPT and Envi-Carb + PSA SPE for cleanup, there were 192 and 177 pesticides, respectively, meeting the conditions, accounting for 95.5 and 88.1% of the total number, respectively. GC/MS/MS results demonstrated that there were 195 and 184 pesticides, respectively, meeting the conditions, accounting for 97.0 and 91.5% of the total number, respectively. It was seen that Cleanert TPT was superior to Envi-Carb + PSA in cleanup efficiency, whether for green or Woolong tea samples, or GC/MS or GC/MS/MS determination. In Stage III, 61104 results of the average content value of pesticides and RSD (two teas xtwo Youden pair concentrations x two kinds of SPE cartridges x two instruments x 19 tests x 201 pesticides) were derived from the 19 times stability tests over 3 months by paralleling three samples every 5 days via two instruments with two kinds of SPE cartridges for cleanup, respectively, against Youden Pair samples of the 201 incurred pesticides from green and Woolong teas. The statistical analysis found that detected values from the target pesticides of the incurred Youden pair samples showed no marked differences with cleanup by either Cleanert TPT or Envi-Carb + PSA, whether for green or Woolong tea, or G/IMS or G/IM/IMS. The test results using the two aforementioned kinds of SPE cleanup for above 93% pesticides had a tolerance less than 15%, which testifies that both cartridge cleanups met the requirement for pesticide residue analysis.
[Early warning signs of severe preeclampsia].
Shi, Jun-mei; Yang, Zi; Chen, Lei; Wang, Jia-lüe
2009-05-01
To identify the early warning signs of severe preeclampsia (SPE). A case-control (1:2) observational study was conducted. Forty-seven pregnant women with SPE, who attended the prenatal clinics of Peking University Third Hospital regularly from Jan. 2002 to Dec. 2007, were selected as the study group, including 12 early onset and 35 late onset ones. The control group consisted of 94 healthy singleton pregnant women at the same period. Clinical data were collected and analyzed. (1) The basal body mass index (BMI) showed no difference between the study and control group [(23.27 +/- 4.31) kg/m(2) vs (21.52 +/- 3.09) kg/m(2), P > 0.05]. (2) The net increase of BMI in the study group before the onset of SPE was higher than that in the control [(5.60 +/- 2.17) kg/m(2) vs (4.85 +/- 1.52) kg/m(2), P < 0.05] and the increase of BMI per week was also higher [(0.74 +/- 0.41) kg/(m(2).w)(-1) vs (0.23 +/- 0.18) kg/(m(2).w)(-1), P < 0.01]. The sensitivity and specificity of BMI increase per week in predicting SPE was 84% and 81% at a cut-off value of 0.39 kg/(m(2).w)(-1), respectively, and 79% and 91% at 0.41 kg/(m(2).w)(-1) correspondingly. (3) During the third trimester and before the onset of SPE, the weight gain per week in the study group was higher than that of the control [(0.93 +/- 0.70) kg vs (0.63 +/- 0.20) kg, P < 0.01]. Significant difference was also found in the net weight gain between the two groups (P < 0.01), but not in the percentage of women with excessive weight gain (> 0.50 kg/w) [60% (25/42) in the study group vs 63% (53/84) in the control group, P > 0.05]. (4) Higher percentage of women experienced pre-hypertension in the study group than in the controls [17% (8/47) vs 5% (5/94), P < 0.01]. (5) In the study group, 53% (25/47) of the women had edema before SPE onset, but the figure dropped to 18% (17/94) in the controls (P < 0.01). (6) Eight women in the study group and one in the control group suffered from hypoproteinemia before SPE onset with the average level of plasma albumin of (32.6 +/- 1.6) g/L and (38.4 +/- 2.1) g/L (P < 0.01), respectively. (7) Proteinuria was reported in 10 cases (21%) in the study group and 4 (4%) in the controls (P < 0.01). (8) Logistic regression analysis showed that the risk factors for SPE included edema (OR = 6.16, 95%CI: 2.29 - 16.57), pre-hypertension (OR = 6.21, 95%CI: 1.56 - 24.77), proteinuria (OR = 9.68, 95%CI: 1.86 - 50.30), and weight gain > 0.85 kg/w during the third trimester (OR = 11.60, 95%CI: 3.54 - 37.97). Edema, excessive weight gain, pre-hypertension and hypoproteinemia are early warning signs of SPE. Pregnant women with the above signs required close monitoring during prenatal care.
Evaluation of Spacecraft Shielding Effectiveness for Radiation Protection
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Wilson, John W.
1999-01-01
The potential for serious health risks from solar particle events (SPE) and galactic cosmic rays (GCR) is a critical issue in the NASA strategic plan for the Human Exploration and Development of Space (HEDS). The excess cost to protect against the GCR and SPE due to current uncertainties in radiation transmission properties and cancer biology could be exceedingly large based on the excess launch costs to shield against uncertainties. The development of advanced shielding concepts is an important risk mitigation area with the potential to significantly reduce risk below conventional mission designs. A key issue in spacecraft material selection is the understanding of nuclear reactions on the transmission properties of materials. High-energy nuclear particles undergo nuclear reactions in passing through materials and tissue altering their composition and producing new radiation types. Spacecraft and planetary habitat designers can utilize radiation transport codes to identify optimal materials for lowering exposures and to optimize spacecraft design to reduce astronaut exposures. To reach these objectives will require providing design engineers with accurate data bases and computationally efficient software for describing the transmission properties of space radiation in materials. Our program will reduce the uncertainty in the transmission properties of space radiation by improving the theoretical description of nuclear reactions and radiation transport, and provide accurate physical descriptions of the track structure of microscopic energy deposition.
1989-09-16
SWOTHR was conceived to be an organic asset capable of providing early detection and tracking of fast , surface-skimming threats, such as cruise missiles...distributed real-time processing and threat tracking system. Spe- cific project goals were to verify detection performance pree ctions for small, fast targets...means that enlarging the ground plane would have been a fruitless excercise in any event. B-6 5 i I U Table B-1 summarizes the calculated parameters of
A High-Quality Teacher for Every Classroom. SPeNSE Summary Sheet.
ERIC Educational Resources Information Center
Westat, Inc., Rockville, MD.
This report from the Study of Personnel Needs in Special Education (SPeNSE) focuses on working conditions that affect special education teachers and how teachers acquire needed professional skills. The report found: (1) 80% of special education teachers serve students with two or more primary disabilities; (2) almost one-fourth of students served…
Use of Solid Phase Extraction in the Biochemistry Laboratory to Separate Different Lipids
ERIC Educational Resources Information Center
Flurkey, William H.
2005-01-01
Solid-phase extraction (SPE) was used to demonstrate how various lipids and lipid classes could be separated in a biochemistry laboratory setting. Three different SPE methods were chosen on their ability to separate a lipid mixture, consisting of a combination of a either a fatty acid, a triacylglycerol, a mono- or diacylglycerol, phospholipid,…
Recent advances in SPE (tm) water electrolyzer
NASA Technical Reports Server (NTRS)
Mcelroy, James F.
1993-01-01
A new cell structure has been introduced into the SPE Water Electrolyzer which has improved overall characteristics significantly. Weight, reliability, and efficiency are the characteristics that are improved the most, with volume having a second order improvement. This paper discusses the capabilities of the new cell structure and the impact it would have in various space applications.
Recruiting and Retaining High-Quality Teachers. SPeNSE Summary Sheet.
ERIC Educational Resources Information Center
Westat, Inc., Rockville, MD.
This report summarizes the data from the Study of Special Needs in Special Education (SPeNSE), a national study of personnel in special education. It focuses on data related to recruiting and retaining high-quality special education teachers. Findings indicate: (1) in 1999-2000, more than 12,000 openings for special education teachers were left…
Protecting single-photon entanglement with practical entanglement source
NASA Astrophysics Data System (ADS)
Zhou, Lan; Ou-Yang, Yang; Wang, Lei; Sheng, Yu-Bo
2017-06-01
Single-photon entanglement (SPE) is important for quantum communication and quantum information processing. However, SPE is sensitive to photon loss. In this paper, we discuss a linear optical amplification protocol for protecting SPE. Different from the previous protocols, we exploit the practical spontaneous parametric down-conversion (SPDC) source to realize the amplification, for the ideal entanglement source is unavailable in current quantum technology. Moreover, we prove that the amplification using the entanglement generated from SPDC source as auxiliary is better than the amplification assisted with single photons. The reason is that the vacuum state from SPDC source will not affect the amplification, so that it can be eliminated automatically. This protocol may be useful in future long-distance quantum communications.
Sanzari, Jenine K; Cengel, Keith A; Wan, X Steven; Rusek, Adam; Kennedy, Ann R
2014-07-01
NASA has funded several projects that have provided evidence for the radiation risk in space. One radiation concern arises from solar particle event (SPE) radiation, which is composed of energetic electrons, protons, alpha particles and heavier particles. SPEs are unpredictable and the accompanying SPE radiation can place astronauts at risk of blood cell death, contributing to a weakened immune system and increased susceptibility to infection. The doses, dose rates, and energies of the proton radiation expected to occur during a SPE have been simulated at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, delivering total body doses to mice. Hematological values were evaluated at acute time points, up to 24 hrs. post-radiation exposure.
NASA Astrophysics Data System (ADS)
Sanzari, Jenine K.; Cengel, Keith A.; Steven Wan, X.; Rusek, Adam; Kennedy, Ann R.
2014-07-01
NASA has funded several projects that have provided evidence for the radiation risk in space. One radiation concern arises from solar particle event (SPE) radiation, which is composed of energetic electrons, protons, alpha particles and heavier particles. SPEs are unpredictable and the accompanying SPE radiation can place astronauts at risk of blood cell death, contributing to a weakened immune system and increased susceptibility to infection. The doses, dose rates, and energies of the proton radiation expected to occur during an SPE have been simulated at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, delivering total body doses to mice. Hematological values were evaluated at acute time points, up to 24 hours post-radiation exposure.
Patterson, Kelcey G.; Dixon Pittaro, Jennifer L.; Bastedo, Peter S.; Hess, David A.; Haeryfar, S. M. Mansour; McCormick, John K.
2014-01-01
Superantigens (SAgs) are microbial toxins that cross-link T cell receptors with major histocompatibility class II (MHC-II) molecules leading to the activation of large numbers of T cells. Herein, we describe the development and preclinical testing of a novel tumor-targeted SAg (TTS) therapeutic built using the streptococcal pyrogenic exotoxin C (SpeC) SAg and targeting cancer cells expressing the 5T4 tumor-associated antigen (TAA). To inhibit potentially harmful widespread immune cell activation, a SpeC mutation within the high-affinity MHC-II binding interface was generated (SpeCD203A) that demonstrated a pronounced reduction in mitogenic activity, yet this mutant could still induce immune cell-mediated cancer cell death in vitro. To target 5T4+ cancer cells, we engineered a humanized single chain variable fragment (scFv) antibody to recognize 5T4 (scFv5T4). Specific targeting of scFv5T4 was verified. SpeCD203A fused to scFv5T4 maintained the ability to activate and induce immune cell-mediated cytotoxicity of colorectal cancer cells. Using a xenograft model of established human colon cancer, we demonstrated that the SpeC-based TTS was able to control the growth and spread of large tumors in vivo. This required both TAA targeting by scFv5T4 and functional SAg activity. These studies lay the foundation for the development of streptococcal SAgs as ‘next-generation’ TTSs for cancer immunotherapy. PMID:24736661
Liang, Shiru; Yan, Hongyuan; Cao, Jiankun; Han, Yehong; Shen, Shigang; Bai, Ligai
2017-01-25
A new molecularly imprinted phloroglucinol-formaldehyde-melamine resin (MIPFMR) was synthesized in a deep eutectic solvent (DES) using phenylephrine as a dummy template. The MIPFMR was used as a solid phase extraction (SPE) sorbent for the selective isolation and recognition of clorprenaline (CLP) and bambuterol (BAM) in urine. Phloroglucinol and melamine were used as double functional monomers that introduced abundant hydrophilic groups (such as hydroxyl groups, imino groups, and ether linkages) into the MIPFMR, making it compatible with aqueous solvents. In addition, the formation of DES by combining the quaternary ammonium salt of choline chloride with ethylene glycol as a hydrogen bond donor was an environmentally safe alternative to toxic organic solvents such as chloroform and dimethylsulfoxide that are typically used in the preparation of most molecularly imprinted polymers (MIPs). Moreover, MIPFMR-based SPE of CLP and BAM in urine resulted in higher recoveries and purer extracts than those obtained by using other SPE materials (e.g., SCX, C 18 , HLB, and non-imprinted phloroglucinol-formaldehyde-melamine resin (NIPFMR)). The optimized MIPFMR-SPE-HPLC-UV method had good linearity (r 2 ≥ 0.9996) ranging from 15.0 to 3000.0 ng mL -1 for CLP and BAM, and the recoveries at three spiked levels ranged from 91.7% to 100.1% with RSDs ≤7.6%. The novel MIPFMR-SPE-HPLC-UV method is simple, selective, and accurate, and can be used for the determination of CLP and BAM in urine samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Robandt, P V; Bui, H M; Scancella, J M; Klette, K L
2010-10-01
An automated solid-phase extraction-liquid chromatography- tandem mass spectrometry (SPE-LC-MS-MS) method using the Spark Holland Symbiosis Pharma SPE-LC coupled to a Waters Quattro Micro MS-MS was developed for the analysis of 6-acetylmorphine (6-AM) in human urine specimens. The method was linear (R² = 0.9983) to 100 ng/mL, with no carryover at 200 ng/mL. Limits of quantification and detection were found to be 2 ng/mL. Interrun precision calculated as percent coefficient of variation (%CV) and evaluated by analyzing five specimens at 10 ng/mL over nine batches (n = 45) was 3.6%. Intrarun precision evaluated from 0 to 100 ng/mL ranged from 1.0 to 4.4%CV. Other opioids (codeine, morphine, oxycodone, oxymorphone, hydromorphone, hydrocodone, and norcodeine) did not interfere in the detection, quantification, or chromatography of 6-AM or the deuterated internal standard. The quantified values for 41 authentic human urine specimens previously found to contain 6-AM by a validated gas chromatography (GC)-MS method were compared to those obtained by the SPE-LC-MS-MS method. The SPE-LC-MS-MS procedure eliminates the human factors of specimen handling, extraction, and derivatization, thereby reducing labor costs and rework resulting from human error or technique issues. The time required for extraction and analysis was reduced by approximately 50% when compared to a validated 6-AM procedure using manual SPE and GC-MS analysis.
Ge, Liya; Yong, Jean Wan Hong; Tan, Swee Ngin; Yang, Xin Hao; Ong, Eng Shi
2006-11-10
A method based on solid-phase extraction (SPE) and capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) is described for the separation and determination of six cytokinin nucleotides in coconut water. The best CZE separation for the six cytokinin nucleotide standards was achieved using a 25 mM ammonium formate/formic acid buffer (pH 3.8) and 2% (v/v) methanol with an applied gradient separation voltage (25 kV for 32 min, and then a linear gradient to 30 kV in 5 min, finally 30 kV to the end of separation) in less than 60 min. MS/MS with multiple reaction monitoring (MRM) detection was carried out to obtain sufficient selectivity and sensitivity for the cytokinin nucleotides. The combined use of on-line sample stacking and CZE-MS/MS achieved limits of detection (LODs) in the range of 0.06-0.19 microM for the six cytokinin nucleotides at a signal-to-noise ratio of 3. Furthermore, a novel dual-step SPE procedure was developed for the pre-concentration and purification of cytokinin nucleotides using Oasis HLB and Oasis MAX cartridges. The recoveries of the cytokinin nucleotides after the dual-step SPE were in the range of 44-71%. The combination of off-line SPE, on-line sample stacking and CZE-MS/MS approach was successfully applied to screen for endogenous cytokinin nucleotides present in coconut water sample. trans-Zeatin riboside-5'-monophosphate (ZMP) was detected and quantified in coconut water by CZE-MS/MS after SPE and on-line sample stacking.
Sajid, Muhammad; Basheer, Chanbasha
2016-07-15
In present work, a new configuration of micro-solid phase extraction was introduced and termed as stir-bar supported micro-solid-phase extraction (SB-μ-SPE). A tiny stir-bar was packed inside the porous polypropylene membrane along with sorbent material and the edges of membrane sheet were heat sealed to secure the contents. The packing of stir-bar inside the μ-SPE device does not allow the device to stick with the wall or any corner of the sample vial during extraction, which is, however, a frequent observation in routine μ-SPE. Moreover, it enhances effective surface area of the sorbent exposed to sample solution through continuous agitation (motion and rotation). It also completely immerses the SB-μ-SPE device in the sample solution even for non-polar sorbents. Polychlorinated biphenyls (PCBs) were selected as model compounds and the method performance was evaluated in human serum samples. After extraction, samples were analyzed by gas chromatography mass spectrometry (GC-MS). The factors that affect extraction efficiency of SB-μ-SPE were optimized. Under optimum conditions, a good linearity (0.1-100ngmL(-1)) with coefficients of determinations ranging from 0.9868 to 0.9992 was obtained. Limits of detections were ranged between 0.003 and 0.047ngmL(-1). Acceptable values for inter-day (3.2-9.1%) and intra-day (3.1-7.2%) relative standard deviations were obtained. The optimized method was successfully applied to determine the concentration of PCB congeners in human serum samples. Copyright © 2016 Elsevier B.V. All rights reserved.
Krupadam, Reddithota J; Bhagat, Bhagyashree; Khan, Muntazir S
2010-08-01
A method based on solid--phase extraction with a molecularly imprinted polymer (MIP) has been developed to determine five probable human carcinogenic polycyclic aromatic hydrocarbons (PAHs) in ambient air dust by gas chromatography-mass spectrometry (GC-MS). Molecularly imprinted poly(vinylpyridine-co-ethylene glycol dimethacrylate) was chosen as solid-phase extraction (SPE) material for PAHs. The conditions affecting extraction efficiency, for example surface properties, concentration of PAHs, and equilibration times were evaluated and optimized. Under optimum conditions, pre-concentration factors for MIP-SPE ranged between 80 and 93 for 10 mL ambient air dust leachate. PAHs recoveries from MIP-SPE after extraction from air dust were between 85% and 97% and calibration graphs of the PAHs showed a good linearity between 10 and 1000 ng L(-1) (r = 0.99). The extraction efficiency of MIP for PAHs was compared with that of commercially available SPE materials--powdered activated carbon (PAC) and polystyrene-divinylbenzene resin (XAD)--and it was shown that the extraction capacity of the MIP was better than that of the other two SPE materials. Organic matter in air dust had no effect on MIP extraction, which produced a clean extract for GC-MS analysis. The detection limit of the method proposed in this article is 0.15 ng L(-1) for benzo[a]pyrene, which is a marker molecule of air pollution. The method has been applied to the determination of probable carcinogenic PAHs in air dust of industrial zones and satisfactory results were obtained.
Determination of DDT and metabolites in surface water and sediment using LLE, SPE, ACE and SE.
Sibali, Linda L; Okonkwo, Jonathan O; Zvinowanda, Caliphs
2009-12-01
Surface water and sediment samples collected from Jukskei River in South Africa, were subjected to different extraction techniques, liquid-liquid (LLE), solid-phase extraction (SPE), activated carbon extraction (ACE) and soxhlet extraction (SE) for sediment. The samples were extracted with dichloromethane, cleaned in a silica gel column and the extracts quantified using a Varian 3800 GC-ECD. The percentage recovery test for 2,4'DDT, DDE and DDD and 4,4'DDT, DDE and DDD in water ranged from 80%-96% and 76%-95% (LLE); 56%-76% and 56%-70% (SPE) and 75%-84% (ACE), respectively; while that recoveries for sediment samples varied from 65%-95% for 2,4'DDT, DDE and DDD and 80%-91% for 4,4'DDT, DDE and DDD. The high recoveries exhibited by ACE compared very well with LLE and SE. This was not the case with SPE which exhibited the lowest value of recoveries for both 2,4 and 4,4'DDD, DDE and DDT standard samples. The mean concentrations of DDT and metabolites ranged from nd-1.10 μg/L, nd-0.80 μg/L, nd-1.21 μg/L and 1.92 μg/L for LLE, SPE, ACE and SE, respectively. The total DDT (2,4' and 4,4'-DDT) in water and sediment samples ranged from 1.20-3.25 μg/L and 1.82-5.24 μg/L, respectively. The low concentrations of the DDT metabolites obtained in the present study may suggest a recent contamination of the river by DDT.
Cuervo, Darío; Loli, Cynthia; Fernández-Álvarez, María; Muñoz, Gloria; Carreras, Daniel
2017-10-15
A complete analytical protocol for the determination of 25 doping-related peptidic drugs and 3 metabolites in urine was developed by means of accurate-mass quadrupole time-of-flight (Q-TOF) LC-MS analysis following solid-phase extraction (SPE) on microplates and conventional SPE pre-treatment for initial testing and confirmation, respectively. These substances included growth hormone releasing factors, gonadotropin releasing factors and anti-diuretic hormones, with molecular weights ranging from 540 to 1320Da. Optimal experimental conditions were stablished after investigation of different parameters concerning sample preparation and instrumental analysis. Weak cation exchange SPE followed by C18 HPLC chromatography and accurate mass detection provided the required sensitivity and selectivity for all the target peptides under study. 2mg SPE on 96-well microplates can be used in combination with full scan MS detection for the initial testing, thus providing a fast, cost-effective and high-throughput protocol for the processing of a large batch of samples simultaneously. On the other hand, extraction on 30mg SPE cartridges and subsequent target MS/MS determination was the protocol of choice for confirmatory purposes. The methodology was validated in terms of selectivity, recovery, matrix effect, precision, sensitivity (limit of detection, LOD), cross contamination, carryover, robustness and stability. Recoveries ranged from 6 to 70% (microplates) and 17-95% (cartridges), with LODs from 0.1 to 1ng/mL. The suitability of the method was assessed by analyzing different spiked or excreted urines containing some of the target substances. Copyright © 2017 Elsevier B.V. All rights reserved.
Ray, Sarah; Valdovinos, Katie
Pharmacy students should be exposed to and offered opportunities to practice the skill of incorporating a computer into a patient interview in the didactic setting. Faculty sought to improve retention of student ability to incorporate computers into their patient-pharmacist communication. Students were required to utilize a computer to document clinical information gathered during a simulated patient encounter (SPE). Students utilized electronic worksheets and were evaluated by instructors on their ability to effectively incorporate a computer into a SPE using a rubric. Students received specific instruction on effective computer use during patient encounters. Students were then re-evaluated by an instructor during subsequent SPEs of increasing complexity using standardized rubrics blinded from the students. Pre-instruction, 45% of students effectively incorporated a computer into a SPE. After receiving instruction, 67% of students were effective in their use of a computer during a SPE of performing a pharmaceutical care assessment for a patient with chronic obstructive pulmonary disease (COPD) (p < 0.05 compared to pre-instruction), and 58% of students were effective in their use of a computer during a SPE of retrieving a medication list and social history from a simulated alcohol-impaired patient (p = 0.087 compared to pre-instruction). Instruction can improve pharmacy students' ability to incorporate a computer into SPEs, a critical skill in building and maintaining rapport with patients and improving efficiency of patient visits. Complex encounters may affect students' ability to utilize a computer appropriately. Students may benefit from repeated practice with this skill, especially with SPEs of increasing complexity. Copyright © 2016 Elsevier Inc. All rights reserved.
Iriarte, Andrés; Giner-Lamia, Joaquín; Betancor, Laura; Astocondor, Lizeth; Cestero, Juan J.; Ochoa, Theresa; García, Coralith; Puente, José L.; Chabalgoity, José A.
2017-01-01
ABSTRACT We report a 4.99-Mb draft genome sequence of Salmonella enterica subsp. enterica serovar Infantis strain SPE101, isolated from feces of a 5-month-old breast-fed female showing diarrhea associated with severe dehydration and malnutrition. The infection prolonged for 6 months despite antibiotic treatment. PMID:28729277
ERIC Educational Resources Information Center
Brodsky, Martin B.; McNeil, Malcolm R.; Doyle, Patrick J.; Fossett, Tepanata R. D.; Timm, Neil H.
2003-01-01
Using story retelling as an index of language ability, it is difficult to disambiguate comprehension and memory deficits. Collecting data on the serial position effect (SPE), however, illuminates the memory component. This study examined the SPE of the percentage of information units (%IU) produced in the connected speech samples of adults with…
Method 544 is an accurate and precise analytical method to determine six microcystins (including MC-LR) and nodularin in drinking water using solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC/MS/MS). The advantage of this SPE-LC/MS/MS is its sensi...
Zhu, Lin; Liu, Yajing; Plössl, Karl; Lieberman, Brian; Liu, Jingying; Kung, Hank F
2010-02-01
Recently, a PET tracer, 9-[(18)F]fluoropropyl-(+)-dihydrotetrabenazine ([(18)F]AV-133), targeting vesicular monoamine transporter 2 (VMAT2) in the central nervous system has been reported. It is currently under Phase II clinical trials to establish its usefulness in the diagnosis of neurodegenerative diseases including dementia with Lewy bodies and Parkinson's disease. The radiolabeling of [(18)F]AV-133, nucleophilic fluorination reaction and potential effects of pseudo-carrier were evaluated by in vivo biodistribution. The preparation of [(18)F]AV-133 was evaluated under different conditions, specifically by employing different precursors (-OTs or -Br as the leaving group at the 9-propoxy position), reagents (K222/K(2)CO(3) vs. tributylammonium bicarbonate) and solvents (acetonitrile vs. DMSO), reaction temperature and reaction time. With optimized conditions from these experiments, radiosynthesis and purification with solid-phase extraction (SPE) of [(18)F]AV-133 were performed by an automated nucleophilic [(18)F]fluorination module. In vivo biodistribution in mice on [(18)F]AV-133 purified by either HPLC (no-carrier-added) or the SPE method (containing a pseudo-carrier) was performed and the results compared. Under a mild fluorination condition (heating at 115 degrees C for 5 min in dimethyl sulfoxide), [(18)F]AV-133 was obtained in a high yield using either -OTs or -Br as the leaving group. However, the -OTs precursor gave better radiochemical yields (>70%, thin layer chromatography analysis) compared to those of the -Br precursor. The optimized reaction conditions were successfully implemented to an automated nucleophilic fluorination module. Labeling and purification of [(18)F]AV133 were readily achieved via this automatic module in good radiochemical yield of 21-41% (n=10) in 40 min. The radiochemical purity was larger than 95%. Biodistribution of SPE-purified product (containing a pseudo-carrier) in mice showed a high striatum/cerebellum ratio (4.18+/-0.51), which was comparable to that of HPLC-purified [(18)F]AV-133 (4.51+/-0.10). The formation of [(18)F]AV-133 was evaluated under different labeling conditions. These improved labeling conditions and SPE purification were successfully implemented into an automated synthesis module. This offers a short preparation time (about 40 min), simplicity in operation and ready applicability for routine clinical operation. (c) 2010 Elsevier Inc. All rights reserved.
Bohrer, Denise; Do Nascimento, Paulo Cícero; Ramirez, Adrian G; Mendonça, Jean Karlo A; De Carvalho, Leandro M; Pomblum, Solange Cristina G
2004-07-01
The determination of the ratio free/protein-bound serum copper along with urinary copper can be used as a preliminary test for the Wilson's Disease diagnosis. In this work, the determination of these copper fractions in serum samples was carried out in two different ways; after separation of the copper bound to proteins from the free fraction by a column for protein adsorption and by ultrafiltration. As proteins can be adsorbed onto plastic polymeric surfaces, polyethylene (PE) with different molecular weights in powder form was investigated for protein adsorption. A small column was adapted in a flow system to carry out a solid-phase extraction (SPE) on-line. Preliminary experiments defined conditions for protein retention and elution and column saturation. Good performance was achieved using Mg(NO3)2 solution as carrier and methanol as eluent. The presence of proteins in both fraction (column effluent and eluate) was checked by the Coomassie Brilliant Blue test. Copper was measured by graphite furnace atomic absorption spectrometry. The measurement in the column effluent furnished the free-fraction of copper while the copper measured in the eluate the bound-fraction. The method was compared with ultrafiltration (20 kDa), measuring the free-copper in the ultrafiltrate. For the determination of protein-bound copper, the copper found in the ultrafitrate was discounted from the total copper measured in the sample. Serum samples of 10 individuals were analyzed by both methods with good agreement of the results. The regression plots, obtained by analysing the samples by both methods, presented r2 and slope of 0.97 and 0.96 for free copper and 1.00 and 1.00 for bound copper, respectively. Protein-bound copper (PB) concentrations ranged from 74 to 2074 microg/l and free-copper (F) from 22 to 54 microg/l. The ratio F/PB, calculated from SPE data, was 29.7% for one individual, with Wilson Disease well-characterized, and ranged from 1.2% to 5.2% for the others. The SPE method performed well in terms of accuracy and precision, and showed good agreement with the UF. Advantages of SPE are small sample volume (50 microl), separation carried out in 10 min, and the use of the same column for several analyses. Copyright 2004 Elsevier B.V.
Chen, Jing; Liu, Zhaojin; An, Baochao; Lu, Yan; Xu, Qun
2012-10-01
An on-line solid phase extraction (SPE) system was used to eliminate the interferences sufficiently and fulfill the simple and sensitive determination of diquat and paraquat in tap and pond water. This on-line SPE system used two SPE cartridges. One was an Acclaim Mixed-Mode WAX-1 cartridge for the elimination of anionic interferences; the other one was an Acclaim Mixed-Mode WCX-1 cartridge for the enrichment of diquat and paraquat and the elimination of co-enriched cationic interferences. The baseline separation of diquat and paraquat was achieved on an Acclaim Trinity P1 column. A dual-gradient high performance liquid chromatographic (HPLC) system provided an efficient platform to fulfill the on-line SPE and separation, and the system operated under automatic control of chromatography data system software. The complete analysis only required 16 min, and the detection limits of the method were 0.12 microg/L for diquat and 0.10 microg/L for paraquat. The method is simple, rapid and sensitive, and can be applied to the determination of diquat and paraquat in drinking water and environmental water.
Gauw, R D; Stoffolano, P J; Kuhlenbeck, D L; Patel, V S; Garver, S M; Baker, T R; Wehmeyer, K R
2000-07-21
Semi-automated 96-well plate solid-phase extraction (SPE) was used for sample preparation of fluprostenol, a prostaglandin analog, in rat plasma prior to detection by gas chromatography-negative chemical ionization tandem mass spectrometry (GC-NCI-MS-MS). A liquid handling system was utilized for all aspects of sample handling prior to SPE including transferring of samples into a 96-well format, preparation of standards as well as addition of internal standard to standards, quality control samples and study samples. SPE was performed in a 96-well plate format using octadecylsilane packing and the effluent from the SPE was dried in a custom-made 96-well apparatus. The sample residue was derivatized sequentially with pentafluorobenzylbromide followed by N-methyl-N-trimethylsilyltrifluoroacetamide. The derivatized sample was then analyzed using GC-NCI-MS-MS. The dynamic range for the method was from 7 to 5800 pg/ml with a 0.1-ml plasma sample. The methodology was evaluated over a 4-day period and demonstrated an accuracy of 90-106% with a precision of 2.4-12.9%.
Hercegová, Andrea; Dömötörová, Milena; Kruzlicová, Dása; Matisová, Eva
2006-05-01
Four sample preparation techniques were compared for the ultratrace analysis of pesticide residues in baby food: (a) modified Schenck's method based on ACN extraction with SPE cleaning; (b) quick, easy, cheap, effective, rugged, and safe (QuEChERS) method based on ACN extraction and dispersive SPE; (c) modified QuEChERS method which utilizes column-based SPE instead of dispersive SPE; and (d) matrix solid phase dispersion (MSPD). The methods were combined with fast gas chromatographic-mass spectrometric analysis. The effectiveness of clean-up of the final extract was determined by comparison of the chromatograms obtained. Time consumption, laboriousness, demands on glassware and working place, and consumption of chemicals, especially solvents, increase in the following order QuEChERS < modified QuEChERS < MSPD < modified Schenck's method. All methods offer satisfactory analytical characteristics at the concentration levels of 5, 10, and 100 microg/kg in terms of recoveries and repeatability. Recoveries obtained for the modified QuEChERS method were lower than for the original QuEChERS. In general the best LOQs were obtained for the modified Schenck's method. Modified QuEChERS method provides 21-72% better LOQs than the original method.
Chen, Pei-Yen; Luo, Chin-Hsiang; Chen, Mei-Chin; Tsai, Feng-Jie; Chang, Nai-Fang; Shih, Ying
2011-01-01
Cobalt phthalocyanine (CoPc) films were deposited on the surface of a screen-printed carbon electrode using a simple drop coating method. The cyclic voltammogram of the resulting CoPc modified screen-printed electrode (CoPc/SPE) prepared under optimum conditions shows a well-behaved redox couple due to the (CoI/CoII) system. The CoPc/SPE surface demonstrates excellent electrochemical activity towards the oxidation of sulfur in a 0.01 mol·L−1 NaOH. A linear calibration curve with the detection limit (DL, S/N = 3) of 0.325 mg·L−1 was achieved by CoPc/SPE coupled with flow injection analysis of the sulfur concentration ranging from 4 to 1120 mg·L−1. The precision of the system response was evaluated (3.60% and 3.52% RSD for 12 repeated injections), in the range of 64 and 480 mg·L−1 sulfur. The applicability of the method was successfully demonstrated in a real sample analysis of sulfur in anti-acne creams, and good recovery was obtained. The CoPc/SPE displayed several advantages in sulfur determination including easy fabrication, high stability, and low cost. PMID:21747708
NASA Technical Reports Server (NTRS)
Diaz, Neil C.; Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.; Rutz, Jeff; Mudgett, Paul; Schultz, John
2004-01-01
Archived water samples collected on the International Space Station (ISS) and returned to Earth for analysis have, in a few instances, contained trace levels of heavy metals. Building on our previous advances using Colorimetric Solid Phase Extraction (C-SPE) as a biocide monitoring technique, we are devising methods for the low level monitoring of nickel(II), lead(II) and other heavy metals. C-SPE is a sorption-spectrophotometric platform based on the extraction of analytes onto a membrane impregnated with a colorimetric reagent that are then quantified on the surface of the membrane using a diffuse reflectance spectrophotometer. Along these lines, we have determined nickel(II) via complexation with dimethylglyoxime (DMG) and begun to examine the analysis of lead(II) by its reaction with 2,5- dimercapto-1,3,4-thiadiazole (DMTD) and 4-(2- pyridylazo)-resorcinol (PAR). These developments are also extending a new variant of C-SPE in which immobilized reagents are being incorporated into this methodology in order to optimize sample reaction conditions and to introduce the colorimetric reagent. This paper describes the status of our development of these two new methods.
Schenck, F J; Calderon, L; Podhorniak, L V
1996-01-01
A rapid, multiresidue solid-phase extraction (SPE) technique for determination of organochlorine pesticide and polychlorinated biphenyl (PCB) residues in nonfatty fish was modified for use with fatty fish. In the modified procedures, samples are extracted with acetonitrile, and the extract is cleaned up with both C18 and Florisil SPE columns. Residues are determined by gas chromatography with electron capture detection. The original method was modified for use with fatty fish by reducing the amount of tissue extracted and by using an improved Florisil SPE cleanup. Recovery data are presented for 24 fortified organochlorine pesticide residues (0.12 ppm) and 3 fortified PCB residues (0.80 ppm) from flounder, bluefish, and shad samples, which contained 0.8, 5.4, and 22.6% fat, respectively. For the 3 types of fish, recoveries of 23 of 24 fortified organochlorine pesticide residues ranged from 55 to 129%, and recoveries of 3 fortified PCB residues ranged from 55 to 104%. There were no significant differences in recovery based on fish species and/or fat content for the majority of residues studied. This SPE method and the official AOAC method yielded comparable results for fish containing incurred organochlorine residues.
Kubo, Takuya; Kuroda, Kenta; Tominaga, Yuichi; Naito, Toyohiro; Sueyoshi, Kenji; Hosoya, Ken; Otsuka, Koji
2014-02-01
We report an effective and a quantitative analysis method for one of pharmaceuticals, sulpiride, in river water by online solid phase extraction (SPE) connected with liquid chromatography-mass spectrometry (LC-MS) using a molecularly imprinted polymer as a preconcentration medium. The polymer prepared with a pseudo template molecule showed the selective retention ability based on the interval recognition of functional groups in sulpiride. Also, the imprinted polymer provided an effective concentration of a trace level of sulpiride in offline SPE with dual washing processes using water and acetonitrile, although another imprinted polymer prepared by an authentic method using sulpiride and methacrylic acid as a template and a functional monomer, respectively, showed the selective adsorption only in organic solvents. Furthermore, we employed the imprinted polymer as the preconcentration column of online SPE-LC-MS and the results supposed that the proposed system allowed the quantitative analysis of sulpiride with high sensitivity and recovery (10ng/L at 96%). Additionally, the determination of sulpiride in real river water without an additional spiking was effectively achieved by the system. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Walker, Steven A.; Clowdsley, Martha S.; Abston, H. Lee; Simon, Hatthew A.; Gallegos, Adam M.
2013-01-01
NASA has plans for long duration missions beyond low Earth orbit (LEO). Outside of LEO, large solar particle events (SPEs), which occur sporadically, can deliver a very large dose in a short amount of time. The relatively low proton energies make SPE shielding practical, and the possibility of the occurrence of a large event drives the need for SPE shielding for all deep space missions. The Advanced Exploration Systems (AES) RadWorks Storm Shelter Team was charged with developing minimal mass SPE storm shelter concepts for missions beyond LEO. The concepts developed included "wearable" shields, shelters that could be deployed at the onset of an event, and augmentations to the crew quarters. The radiation transport codes, human body models, and vehicle geometry tools contained in the On-Line Tool for the Assessment of Radiation In Space (OLTARIS) were used to evaluate the protection provided by each concept within a realistic space habitat and provide the concept designers with shield thickness requirements. Several different SPE models were utilized to examine the dependence of the shield requirements on the event spectrum. This paper describes the radiation analysis methods and the results of these analyses for several of the shielding concepts.
Parallel hyperspectral image reconstruction using random projections
NASA Astrophysics Data System (ADS)
Sevilla, Jorge; Martín, Gabriel; Nascimento, José M. P.
2016-10-01
Spaceborne sensors systems are characterized by scarce onboard computing and storage resources and by communication links with reduced bandwidth. Random projections techniques have been demonstrated as an effective and very light way to reduce the number of measurements in hyperspectral data, thus, the data to be transmitted to the Earth station is reduced. However, the reconstruction of the original data from the random projections may be computationally expensive. SpeCA is a blind hyperspectral reconstruction technique that exploits the fact that hyperspectral vectors often belong to a low dimensional subspace. SpeCA has shown promising results in the task of recovering hyperspectral data from a reduced number of random measurements. In this manuscript we focus on the implementation of the SpeCA algorithm for graphics processing units (GPU) using the compute unified device architecture (CUDA). Experimental results conducted using synthetic and real hyperspectral datasets on the GPU architecture by NVIDIA: GeForce GTX 980, reveal that the use of GPUs can provide real-time reconstruction. The achieved speedup is up to 22 times when compared with the processing time of SpeCA running on one core of the Intel i7-4790K CPU (3.4GHz), with 32 Gbyte memory.
Solar particle events observed at Mars: dosimetry measurements and model calculations.
Cleghorn, Timothy F; Saganti, Premkumar B; Zeitlin, Cary J; Cucinotta, Francis A
2004-01-01
During the period from March 13, 2002 to mid-September, 2002, six solar particle events (SPE) were observed by the MARIE instrument onboard the Odyssey Spacecraft in Martian Orbit. These events were observed also by the GOES 8 satellite in Earth orbit, and thus represent the first time that the same SPE have been observed at these separate locations. The characteristics of these SPE are examined, given that the active regions of the solar disc from which the event originated can usually be identified. The dose rates at Martian orbit are calculated, both for the galactic and solar components of the ionizing particle radiation environment. The dose rates due to galactic cosmic rays (GCR) agree well with the HZETRN model calculations. Published by Elsevier Ltd on behalf of COSPAR.
Solar particle events observed at Mars: dosimetry measurements and model calculations
NASA Technical Reports Server (NTRS)
Cleghorn, Timothy F.; Saganti, Premkumar B.; Zeitlin, Cary J.; Cucinotta, Francis A.
2004-01-01
During the period from March 13, 2002 to mid-September, 2002, six solar particle events (SPE) were observed by the MARIE instrument onboard the Odyssey Spacecraft in Martian Orbit. These events were observed also by the GOES 8 satellite in Earth orbit, and thus represent the first time that the same SPE have been observed at these separate locations. The characteristics of these SPE are examined, given that the active regions of the solar disc from which the event originated can usually be identified. The dose rates at Martian orbit are calculated, both for the galactic and solar components of the ionizing particle radiation environment. The dose rates due to galactic cosmic rays (GCR) agree well with the HZETRN model calculations. Published by Elsevier Ltd on behalf of COSPAR.
Sanzari, Jenine K.; Cengel, Keith A.; Wan, X. Steven; Rusek, Adam; Kennedy, Ann R.
2014-01-01
NASA has funded several projects that have provided evidence for the radiation risk in space. One radiation concern arises from solar particle event (SPE) radiation, which is composed of energetic electrons, protons, alpha particles and heavier particles. SPEs are unpredictable and the accompanying SPE radiation can place astronauts at risk of blood cell death, contributing to a weakened immune system and increased susceptibility to infection. The doses, dose rates, and energies of the proton radiation expected to occur during a SPE have been simulated at the NASA Space Radiation Laboratory, Brookhaven National Laboratory, delivering total body doses to mice. Hematological values were evaluated at acute time points, up to 24 hrs. post-radiation exposure. PMID:25202654
Modeling Anisotropic Elastic Wave Propagation in Jointed Rock Masses
NASA Astrophysics Data System (ADS)
Hurley, R.; Vorobiev, O.; Ezzedine, S. M.; Antoun, T.
2016-12-01
We present a numerical approach for determining the anisotropic stiffness of materials with nonlinearly-compliant joints capable of sliding. The proposed method extends existing ones for upscaling the behavior of a medium with open cracks and inclusions to cases relevant to natural fractured and jointed rocks, where nonlinearly-compliant joints can undergo plastic slip. The method deviates from existing techniques by incorporating the friction and closure states of the joints, and recovers an anisotropic elastic form in the small-strain limit when joints are not sliding. We present the mathematical formulation of our method and use Representative Volume Element (RVE) simulations to evaluate its accuracy for joint sets with varying complexity. We then apply the formulation to determine anisotropic elastic constants of jointed granite found at the Nevada Nuclear Security Site (NNSS) where the Source Physics Experiments (SPE), a campaign of underground chemical explosions, are performed. Finally, we discuss the implementation of our numerical approach in a massively parallel Lagrangian code Geodyn-L and its use for studying wave propagation from underground explosions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Ge, Liya; Yong, Jean Wan Hong; Tan, Swee Ngin; Yang, Xin Hao; Ong, Eng Shi
2004-09-03
Micellar electrokinetic capillary chromatography (MECC) was developed for the separation of cytokinins including trans-zeatin, trans-zeatin-O-glucoside, dihydrozeatin, dihydrozeatin-O-glucoside, meta-topolin riboside, N6-isopentenyladenine and N6-benzylaminopurine. Under the optimum conditions, i.e. a combination of 10 mM phosphate and 10 mM borate as the running buffer containing 50 mM sodium dodecyl sulphate at pH 10.4, the separation of seven cytokinin standards was accomplished within 11 min. The C18 solid-phase extraction (SPE) method was used to pre-concentrate the putative cytokinins present in the coconut water. Following which, the eluate was further purified using mixed mode Oasis MCX SPE columns and this additional step helps to reduce matrix interference during MECC. After the two solid-phase extraction steps, the optimized MECC method was able to screen for certain cytokinins (zeatin-O-glucoside and dihydrozeatin-O-glucoside) present in coconut water. After this screening, the presence of zeatin-O-glucoside and dihydrozeatin-O-glucoside in coconut water was further confirmed by independent high-performance liquid chromatography and liquid chromatography-mass spectrometry experiments.
Zhou, Neng-Zhi; Liu, Ping; Su, Xiao-Chuan; Liao, Yan-Hua; Lei, Ning-Sheng; Liang, Yong-Hong; Zhou, Shao-Huan; Lin, Wen-Si; Chen, Jie; Feng, Yu-Qi; Tang, Yang
2017-06-01
Aflatoxins (AFs) are highly toxic, mutagenic, carcinogenic, and teratogenic secondary metabolites produced by the toxigenic fungi Aspergillus flavus and Aspergillus parasiticus. AFs tend to contaminate a wide range of foods which is a serious and recurring food safety problem worldwide. Currently, immunoaffinity chromatography (IAC) has become the most conventional sample clean-up method for determining AFs in foodstuffs. However, IAC method is limited in the large-scale food analysis because it requires the use of expensive disposable cartridges and the IA procedure is time-consuming. Herein, to achieve the cost-effective determination of AFs in edible oils, we developed a promising solid-phase extraction (SPE) method based on commercially available humic acid-bonded silica (HAS) sorbent, followed by high performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) analysis. In HAS-SPE, AFs can be captured by the HAS sorbent with both hydrophobic and hydrophilic interactions, whereas the oil matrix was captured only with the hydrophobic interactions. The oil matrix can be sufficiently washed off with isopropanol, while the AFs were still retained on the SPE packing, thus achieving selective extraction of AFs and clean-up of oil matrices. Under the optimal conditions of HAS-SPE, satisfactory recoveries ranging from 82% to 106% for four AFs (B 1 , B 2 , G 1 , and G 2 ) were achieved in various oil matrices, containing blended oil, tea oil, rapeseed oil, peanut oil, sunflower seed oil, corn oil, blended olive oil, rice oil, soybean oil, and sesame oil. Only minor matrix effects ranging from 99% to 105% for four AFs were observed. Moreover, the LODs of AFs between 0.012 and 0.035 μg/kg completely meet the regulatory levels fixed by the EU, China or other countries. The methodology was further validated for assaying the naturally contaminated peanut oils, and consistent results between the HAS-SPE and the referenced IAC were obtained. In addition, HAS-SPE can directly treat diluted oil sample without liquid-liquid extraction and is automatable, thus making it simple and convenient for the large-scale determination of AFs in edible oils. Using this method, we successfully detected four AFs in the naturally contaminated peanut oils, which is, to the best of our knowledge, the first report about the determination of AFs in edible oils using HA-based SPE. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Koontz, S. L.; Atwell, W. A.; Reddell, B.; Rojdev, K.
2010-12-01
In the this paper, we report the results of modeling and simulation studies in which the radiation transport code FLUKA (FLUktuierende KAskade) is used to determine the changes in total ionizing dose (TID) and single-event effect (SEE) environments behind aluminum, polyethylene, carbon, and titanium shielding masses when the assumed form (i.e., Band or Exponential) of the solar particle event (SPE) kinetic energy spectra is changed. FLUKA simulations are fully three dimensional with an isotropic particle flux incident on a concentric spherical shell shielding mass and detector structure. FLUKA is a fully integrated and extensively verified Monte Carlo simulation package for the interaction and transport of high-energy particles and nuclei in matter. The effects are reported of both energetic primary protons penetrating the shield mass and secondary particle showers caused by energetic primary protons colliding with shielding mass nuclei. SPE heavy ion spectra are not addressed. Our results, in agreement with previous studies, show that use of the Exponential form of the event spectra can seriously underestimate spacecraft SPE TID and SEE environments in some, but not all, shielding mass cases. The SPE spectra investigated are taken from four specific SPEs that produced ground-level events (GLEs) during solar cycle 23 (1997-2008). GLEs are produced by highly energetic solar particle events (ESP), i.e., those that contain significant fluences of 700 MeV to 10 GeV protons. Highly energetic SPEs are implicated in increased rates of spacecraft anomalies and spacecraft failures. High-energy protons interact with Earth’s atmosphere via nuclear reaction to produce secondary particles, some of which are neutrons that can be detected at the Earth’s surface by the global neutron monitor network. GLEs are one part of the overall SPE resulting from a particular solar flare or coronal mass ejection event on the sun. The ESP part of the particle event, detected by spacecraft, is often associated with the arrival of a “shock front” at Earth some hours after the arrival of the GLE. The specific SPEs used in this analysis are those of: 1) November 6, 1997 - GLE only; 2) July 14-15, 2000 - GLE from the 14th plus ESP from the 15th; 3) November 4-6, 2001 - GLE and ESP from the 4th; and 4) October 28-29, 2003 - GLE and ESP from the 28th plus GLE from the 29th. The corresponding Band and Exponential spectra used in this paper are like those previously reported.
Iriarte, Andrés; Giner-Lamia, Joaquín; Silva, Claudia; Betancor, Laura; Astocondor, Lizeth; Cestero, Juan J; Ochoa, Theresa; García, Coralith; Puente, José L; Chabalgoity, José A; García-Del Portillo, Francisco
2017-07-20
We report a 4.99-Mb draft genome sequence of Salmonella enterica subsp. enterica serovar Infantis strain SPE101, isolated from feces of a 5-month-old breast-fed female showing diarrhea associated with severe dehydration and malnutrition. The infection prolonged for 6 months despite antibiotic treatment. Copyright © 2017 Iriarte et al.
Using typical endoscopic features to diagnose esophageal squamous papilloma.
Wong, Ming-Wun; Bair, Ming-Joug; Shih, Shou-Chuan; Chu, Cheng-Hsin; Wang, Horng-Yuan; Wang, Tsang-En; Chang, Chen-Wang; Chen, Ming-Jen
2016-02-21
To better understand some of the superficial tiny lesions that are recognized as squamous papilloma of the esophagus (SPE) and receive a different pathological diagnosis. All consecutive patients with esophageal polypoid lesions detected by routine endoscopy at our Endoscopy Centre between October 2009 and June 2014 were retrospectively analysed. We enrolled patients with SPE or other superficial lesions to investigate four key endoscopic appearances (whitish color, exophytic growth, wart-like shape, and surface vessels) and used narrow band imaging (NBI) to distinguish their differences. These series endoscopic images of each patient were retrospectively reviewed by three experienced endoscopists with no prior access to the images. All lesion specimens obtained by forceps biopsy were fixed in formalin and processed for pathological examination. The following data were collected from patient medical records: gender, age, indications for esophagogastroduodenoscopy, and endoscopic characteristics including lesion location, number, color, size, surface morphology, surrounding mucosa, and surface vessels under NBI. Clinicopathological features were also compared. During the study period, 41 esophageal polypoid lesions from 5698 endoscopic examinations were identified retrospectively. These included 24 patients with pathologically confirmed SPE, 11 patients with squamous hyperplasia, three patients with glycogenic acanthosis, two patients with ectopic sebaceous glands, and one patient with a xanthoma. In the χ (2) test, exophytic growth (P = 0.003), a wart-like shape (P < 0.001), and crossing surface vessels under NBI (P = 0.001) were more frequently observed in SPE than in other lesion types. By contrast, there was no significant difference regarding the appearance of a whitish color between SPE and other lesion types (P = 0.872). The most sensitive characteristic was wart-like projections (81.3%) and the most specific was exophytic growth (87.5%). Promising positive predictive values of 84.2%, 80.8%, and 82.6% were noted for exophytic growth, wart-like projections, and surface vessel crossing on NBI, respectively. The use of three key typical endoscopic appearances--exophytic growth, a wart-like shape, and vessel crossing on the lesion surface under NBI--has a promising positive predictive value of 88.2%. This diagnostic triad is useful for the endoscopic diagnosis of SPE.
Using typical endoscopic features to diagnose esophageal squamous papilloma
Wong, Ming-Wun; Bair, Ming-Joug; Shih, Shou-Chuan; Chu, Cheng-Hsin; Wang, Horng-Yuan; Wang, Tsang-En; Chang, Chen-Wang; Chen, Ming-Jen
2016-01-01
AIM: To better understand some of the superficial tiny lesions that are recognized as squamous papilloma of the esophagus (SPE) and receive a different pathological diagnosis. METHODS: All consecutive patients with esophageal polypoid lesions detected by routine endoscopy at our Endoscopy Centre between October 2009 and June 2014 were retrospectively analysed. We enrolled patients with SPE or other superficial lesions to investigate four key endoscopic appearances (whitish color, exophytic growth, wart-like shape, and surface vessels) and used narrow band imaging (NBI) to distinguish their differences. These series endoscopic images of each patient were retrospectively reviewed by three experienced endoscopists with no prior access to the images. All lesion specimens obtained by forceps biopsy were fixed in formalin and processed for pathological examination. The following data were collected from patient medical records: gender, age, indications for esophagogastroduodenoscopy, and endoscopic characteristics including lesion location, number, color, size, surface morphology, surrounding mucosa, and surface vessels under NBI. Clinicopathological features were also compared. RESULTS: During the study period, 41 esophageal polypoid lesions from 5698 endoscopic examinations were identified retrospectively. These included 24 patients with pathologically confirmed SPE, 11 patients with squamous hyperplasia, three patients with glycogenic acanthosis, two patients with ectopic sebaceous glands, and one patient with a xanthoma. In the χ2 test, exophytic growth (P = 0.003), a wart-like shape (P < 0.001), and crossing surface vessels under NBI (P = 0.001) were more frequently observed in SPE than in other lesion types. By contrast, there was no significant difference regarding the appearance of a whitish color between SPE and other lesion types (P = 0.872). The most sensitive characteristic was wart-like projections (81.3%) and the most specific was exophytic growth (87.5%). Promising positive predictive values of 84.2%, 80.8%, and 82.6% were noted for exophytic growth, wart-like projections, and surface vessel crossing on NBI, respectively. CONCLUSION: The use of three key typical endoscopic appearances - exophytic growth, a wart-like shape, and vessel crossing on the lesion surface under NBI - has a promising positive predictive value of 88.2%. This diagnostic triad is useful for the endoscopic diagnosis of SPE. PMID:26900297
Schroll, Casper; Christensen, Jens P; Christensen, Henrik; Pors, Susanne E; Thorndahl, Lotte; Jensen, Peter R; Olsen, John E; Jelsbak, Lotte
2014-05-14
Serovars of Salmonella enterica exhibit different host-specificities where some have broad host-ranges and others, like S. Gallinarum and S. Typhi, are host-specific for poultry and humans, respectively. With the recent availability of whole genome sequences it has been reported that host-specificity coincides with accumulation of pseudogenes, indicating adaptation of host-restricted serovars to their narrow niches. Polyamines are small cationic amines and in Salmonella they can be synthesized through two alternative pathways directly from l-ornithine to putrescine and from l-arginine via agmatine to putrescine. The first pathway is not active in S. Gallinarum and S. Typhi, and this prompted us to investigate the importance of polyamines for virulence in S. Gallinarum. Bioinformatic analysis of all sequenced genomes of Salmonella revealed that pseudogene formation of the speC gene was exclusive for S. Typhi and S. Gallinarum and happened through independent events. The remaining polyamine biosynthesis pathway was found to be essential for oral infection with S. Gallinarum since single and double mutants in speB and speE, encoding the pathways from agmatine to putrescine and from putrescine to spermidine, were attenuated. In contrast, speB was dispensable after intraperitoneal challenge, suggesting that putrescine was less important for the systemic phase of the disease. In support of this hypothesis, a ΔspeE;ΔpotCD mutant, unable to synthesize and import spermidine, but with retained ability to import and synthesize putrescine, was attenuated after intraperitoneal infection. We therefore conclude that polyamines are essential for virulence of S. Gallinarum. Furthermore, our results point to distinct roles for putrescine and spermidine during systemic infection. Copyright © 2014 Elsevier B.V. All rights reserved.
Křesinová, Zdena; Linhartová, Lucie; Petrů, Klára; Krejčová, Lucie; Šrédlová, Kamila; Lhotský, Ondřej; Kameník, Zdeněk; Cajthaml, Tomáš
2016-04-01
A rapid and reliable analytical method was developed for the quantitative determination of psychopharmaceuticals, their precursors and by-products in real contaminated samples from a pharmaceutical company in Olomouc (Czech Republic), based on SPE disk extraction and detection by ultra performance liquid chromatography, combined with time-of-flight mass spectrometry. The target compounds were quantified in the real whole-water samples (water including suspended particles), both in the presence of suspended particulate matter (SPM) and high concentrations of other organic pollutants. A total of nine compounds were analyzed which consisted of three commonly used antidepressants (tricyclic antidepressants and antipsychotics), one antitussive agent and five by-products or precursors. At first, the SPE disk method was developed for the extraction of water samples (dissolved analytes, recovery 84-104%) and pressurised liquid extraction technique was verified for solid matrices (sludge samples, recovery 81-95%). In order to evaluate the SPE disk technique for whole water samples containing SPM, non contaminated groundwater samples were also loaded with different amounts (100 and 300mgL(-1)) of real contaminated sludge originating from the same locality. The recoveries from the whole-water samples obtained by SPE disk method ranged between 67 and 119% after the addition of the most contaminated sludge. The final method was applied to several real groundwater (whole-water) samples from the industrial area and high concentrations (up to 10(3)μgL(-1)) of the target compounds were detected. The results of this study document and indicate the feasibility of the SPE disk method for analysis of groundwater. Copyright © 2016 Elsevier B.V. All rights reserved.
Amoli-Diva, Mitra; Taherimaslak, Zohreh; Allahyari, Mehdi; Pourghazi, Kamyar; Manafi, Mohammad Hanif
2015-03-01
An efficient, simple and fast low-density solvent based dispersive liquid-liquid microextraction (LDS-DLLME) followed by vortex-assisted dispersive solid phase extraction (VA-D-SPE) has been developed as a new approach for extraction and preconcentration of aflatoxin M1 in milk samples prior to its micelle enhanced spectrofluorimetic determination. In this LDS-DLLME coupled VA-D-SPE method, milk samples were first treated with methanol/water (80:20, v/v) after removing the fat layer. This solvent was directly used as the dispersing solvent in DLLME along with using 1-heptanol (as a low-density solvent with respect to water) as the extracting solvent. In VA-D-SPE approach, hydrophobic oleic acid modified Fe3O4 nanoparticles were used to retrieve the analyte from the DLLME step. It is considerably that the target of VA-D-SPE was 1-heptanol rather than the aflatoxin M1 directly. The main parameters affecting the efficiency of LDS-DLLME and VA-D-SPE procedures and signal enhancement of aflatoxin M1 were investigated and optimized. Under the optimum conditions, the method was linear in the range from 0.02 to 200 µg L(-1) with the correlation coefficient (R(2)) of 0.9989 and detection limit of 13 ng L(-1). The intra-day precision was 2.9 and 4.3% and the inter-day precision was 2.1 and 3.3% for concentration of 2 and 50 µg L(-1) respectively. The developed method was applied for extraction and preconcentration of AFM1 in three commercially available milk samples and the results were compared with the official AOAC method. Copyright © 2014 Elsevier B.V. All rights reserved.
Frag, Eman Y Z; Mohamed, Gehad G; El-Dien, F A Nour; Mohamed, Marwa E
2011-01-21
This paper describes the development of screen-printed (SPE) and carbon paste (CPE) sensors for the rapid and sensitive quantification of naphazoline hydrochloride (NPZ) in pharmaceutical formulations. This work compares the electroactivity of conventional carbon paste and screen-printed carbon paste electrodes towards potentiometric titration of NPZ. The repeatability and accuracy of measurements performed in the analysis of these pharmaceutical matrices using new screen printed sensors were evaluated. The influence of the electrode composition, conditioning time of the electrode and pH of the test solution, on the electrode performance were investigated. The drug electrode showed Nernstain responses in the concentration range from 1 × 10(-6) to 1 × 10(-2) mol L(-1) with slopes of 57.5 ± 1.3 and 55.9 ± 1.6 mV per decade for SPE and CPE, respectively, and was found to be very precise and usable within the pH range 3-8. These sensors exhibited a fast response time (about 3 s for both SPE and CPE, respectively), a low detection limit (3.5 × 10(-6) and 1.5 × 10(-6) M for SPE and CPE, respectively), a long lifetime (3 and 2 months for SPE and CPE, respectively) and good stability. The selectivity of the electrode toward a large number of inorganic cations, sugars and amino acids was tested. It was applied to potentiometric determination of NPZ in pure state and pharmaceutical preparation under batch conditions. The percentage recovery values for the assay of NPZ in tablets (relative standard deviations ≤0.3% for n = 4) were compared well with those obtained by the official method.
Devatkal, Suresh K; Kumboj, Ritu; Paul, Devosmita
2014-02-01
Antioxidant properties of banana (Musa paradisiaca) and Sapodilla/Chikoo (Manilkara zapota) peel extracts in chicken patties were evaluated. Four treatments viz., I. Control (meat + 2% salt), II.BHT (meat + 2% salt + 0.1% BHT), III. BPE (meat + 2% salt + 2% banana peel extract) and IV. SPE (meat + 2% salt + 2% sapodilla/chikoo peel extract) were compared for changes in colour and lipid oxidation during 8 days refrigerated storage (4 ± °C). The average phenolic content was 550.2 and 550.8 mg gallic acid equivalent per 10 g peel in BPE and SPE respectively. Free radical scavenging activity was 66.9 and 67.8% in BPE and SPE respectively. Banana peel extract had significantly (P < 0.05) higher reducing activity (1.6) as compared to sapodilla peel extract (0.91). During refrigerated storage period, all color parameters decreased significantly in all treatments. Observation on lipid oxidation showed a significantly (P < 0.05) higher TBARS values in control than other three treatments. The increase in TBARS from initial day of storage to last day of storage was highest in control (514.3%) as compared to BHT (387.7%), BPE (370.6%) and SPE (383.7%). Both synthetic antioxidants and natural extracts significantly decreased the TBARS. The average decrease in TBARS values during 8 days of storage was 56.8%, 38.3% and 37.2% values in BHT, BPE and SPE treatments respectively. Therefore, it was concluded that water extracts obtained from banana and sapodilla peels could be explored as natural antioxidants in poultry meat and meat products.
Robandt, P V; Klette, K L; Sibum, M
2009-10-01
An automated solid-phase extraction coupled with liquid chromatography and tandem mass spectrometry (SPE-LC-MS-MS) method for the analysis of 11-nor-Delta(9)-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) in human urine specimens was developed. The method was linear (R(2) = 0.9986) to 1000 ng/mL with no carryover evidenced at 2000 ng/mL. Limits of quantification and detection were found to be 2 ng/mL. Interrun precision was evaluated at the 15 ng/mL level over nine batches spanning 15 days (n = 45). The coefficient of variation (%CV) was found to be 5.5% over the course of the validation. Intrarun precision of a 15 ng/mL control (n = 5) ranged from 0.58% CV to 7.4% CV for the same set of analytical batches. Interference was tested using (+/-)-11-hydroxy-Delta(9)-tetrahydrocannabinol, cannabidiol, (-)-Delta(8)-tetrahydrocannabinol, and cannabinol. One hundred and nineteen specimens previously found to contain THC-COOH by a previously validated gas chromatographic mass spectrometry (GC-MS) procedure were compared to the SPE-LC-MS-MS method. Excellent agreement was found (R(2) = 0.9925) for the parallel comparison study. The automated SPE procedure eliminates the human factors of specimen handling, extraction, and derivatization, thereby reducing labor costs and rework resulting from human error or technique issues. Additionally, method runtime is greatly reduced (e.g., during parallel studies the SPE-LC-MS-MS instrument was often finished with analysis by the time the technician finished the offline SPE and derivatization procedure prior to the GC-MS analysis).
Mitigation Strategies for Acute Radiation Exposure during Space Flight
NASA Technical Reports Server (NTRS)
Hamilton, Douglas R.; Epelman, Slava
2006-01-01
While there are many potential risks in a Moon or Mars mission, one of the most important and unpredictable is that of crew radiation exposure. The two forms of radiation that impact a mission far from the protective environment of low-earth orbit, are solar particle events (SPE) and galactic cosmic radiation (GCR). The effects of GCR occur as a long-term cumulative dose that results increased longer-term medical risks such as malignancy and neurological degeneration. Unfortunately, relatively little has been published on the medical management of an acute SPE that could potentially endanger the mission and harm the crew. Reanalysis of the largest SPE in August 1972 revealed that the dose rate was significantly higher than previously stated in the literature. The peak dose rate was 9 cGy h(sup -1) which exceeds the low dose-rate criteria for 25 hrs (National Council on Radiation Protection) and 16 hrs (United Nations Scientific Committee on the Effects of Atomic Radiation). The bone marrow dose accumulated was 0.8 Gy, which exceeded the 25 and 16 hour criteria and would pose a serious medical risk. Current spacesuits would not provide shielding from the damaging effects for an SPE as large as the 1972 event, as increased shielding from 1-5 grams per square centimeters would do little to shield the bone marrow from exposure. Medical management options for an acute radiation event are discussed based on recommendations from the Department of Homeland Security, Centers for Disease Control and evidence-based scientific literature. The discussion will also consider how to define acute exposure radiation safety limits with respect to exploration-class missions, and to determine the level of care necessary for a crew that may be exposed to an SPE similar to August 1972.
Probalistic Assessment of Radiation Risk for Solar Particle Events
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Cucinotta, Francis A.
2008-01-01
For long duration missions outside of the protection of the Earth's magnetic field, exposure to solar particle events (SPEs) is a major safety concern for crew members during extra-vehicular activities (EVAs) on the lunar surface or Earth-to-moon or Earth-to-Mars transit. The large majority (90%) of SPEs have small or no health consequences because the doses are low and the particles do not penetrate to organ depths. However, there is an operational challenge to respond to events of unknown size and duration. We have developed a probabilistic approach to SPE risk assessment in support of mission design and operational planning. Using the historical database of proton measurements during the past 5 solar cycles, the functional form of hazard function of SPE occurrence per cycle was found for nonhomogeneous Poisson model. A typical hazard function was defined as a function of time within a non-specific future solar cycle of 4000 days duration. Distributions of particle fluences for a specified mission period were simulated ranging from its 5th to 95th percentile. Organ doses from large SPEs were assessed using NASA's Baryon transport model, BRYNTRN. The SPE risk was analyzed with the organ dose distribution for the given particle fluences during a mission period. In addition to the total particle fluences of SPEs, the detailed energy spectra of protons, especially at high energy levels, were recognized as extremely important for assessing the cancer risk associated with energetic particles for large events. The probability of exceeding the NASA 30-day limit of blood forming organ (BFO) dose inside a typical spacecraft was calculated for various SPE sizes. This probabilistic approach to SPE protection will be combined with a probabilistic approach to the radiobiological factors that contribute to the uncertainties in projecting cancer risks in future work.
On a Solar Origin for the Cosmogenic Nuclide Event of 775 A.D.
NASA Technical Reports Server (NTRS)
Cliver, E. W.; Tylka, A. J.; Dietrich, W. F.; Ling, A. G.
2014-01-01
We explore requirements for a solar particle event (SPE) and flare capable of producing the cosmogenic nuclide event of 775 A.D., and review solar circumstances at that time. A solar source for 775 would require a greater than 1 GV spectrum approximately 45 times stronger than that of the intense high-energy SPE of 1956 February 23. This implies a greater than 30 MeV proton fluence (F(sub 30)) of approximately 8 × 10(exp 10) proton cm(exp -2), approximately 10 times larger than that of the strongest 3 month interval of SPE activity in the modern era. This inferred F(sub 30) value for the 775 SPE is inconsistent with the occurrence probability distribution for greater than 30 MeV solar proton events. The best guess value for the soft X-ray classification (total energy) of an associated flare is approximately X230 (approximately 9 × 10(exp 33) erg). For comparison, the flares on 2003 November 4 and 1859 September 1 had observed/inferred values of approximately X35 (approximately 10(exp 33) erg) and approximately X45 (approximately 2 × 10(exp 33) erg), respectively. The estimated size of the source active region for a approximately 10(exp 34) erg flare is approximately 2.5 times that of the largest region yet recorded. The 775 event occurred during a period of relatively low solar activity, with a peak smoothed amplitude about half that of the second half of the 20th century. The approximately 1945-1995 interval, the most active of the last approximately 2000 yr, failed to witness a SPE comparable to that required for the proposed solar event in 775. These considerations challenge a recent suggestion that the 775 event is likely of solar origin.
Zarejousheghani, Mashaalah; Schrader, Steffi; Möder, Monika; Schmidt, Matthias; Borsdorf, Helko
2018-03-01
In this study, a general simple and inexpensive method is introduced for the preparation of a paper-based selective disk-type solid phase extraction (SPE) technique, appropriate for fast and high throughput monitoring of target compounds. An ion exchange molecularly imprinted polymer (MIP) was synthesized for the extraction and analysis of acesulfame, an anthropogenic water quality marker. Acesulfame imprinting was used as an example for demonstrating the benefits of a nanosized, swellable MIP extraction sorbents integrated in an on-site compatible concept for water quality monitoring. Compared with an 8 mL standard SPE cartridge, the paper-based MIP disk (47 mm ø) format allowed (1) high sample flow rates up to 30 mL•min -1 without losing extraction efficiency (2) extracting sample volumes up to 500 mL in much shorter times than with standard SPE, (3) the reuse of the disks (up to 3 times more than SPE cartridge) due to high robustness and an efficient post-cleaning, and (4) reducing the sampling time from 100 minutes (using the standard SPE format) to about 2 minutes with the MIP paper disk for 50 mL water sample. Different parameters like cellulose fiber/polymer ratios, sample volume, sample flow-rate, washing, and elution conditions were evaluated and optimized. Using developed extraction technique with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS-MS) analysis, a new protocol was established that provides detection and quantification limits of 0.015 μg•L -1 and 0.05 μg•L -1 , respectively. The developed paper disks were used in-field for the selective extraction of target compounds and transferred to the laboratory for further analysis. Copyright © 2017 John Wiley & Sons, Ltd.
Beres, Stephen B; Sylva, Gail L; Barbian, Kent D; Lei, Benfang; Hoff, Jessica S; Mammarella, Nicole D; Liu, Meng-Yao; Smoot, James C; Porcella, Stephen F; Parkins, Larye D; Campbell, David S; Smith, Todd M; McCormick, John K; Leung, Donald Y M; Schlievert, Patrick M; Musser, James M
2002-07-23
Genome sequences are available for many bacterial strains, but there has been little progress in using these data to understand the molecular basis of pathogen emergence and differences in strain virulence. Serotype M3 strains of group A Streptococcus (GAS) are a common cause of severe invasive infections with unusually high rates of morbidity and mortality. To gain insight into the molecular basis of this high-virulence phenotype, we sequenced the genome of strain MGAS315, an organism isolated from a patient with streptococcal toxic shock syndrome. The genome is composed of 1,900,521 bp, and it shares approximately 1.7 Mb of related genetic material with genomes of serotype M1 and M18 strains. Phage-like elements account for the great majority of variation in gene content relative to the sequenced M1 and M18 strains. Recombination produces chimeric phages and strains with previously uncharacterized arrays of virulence factor genes. Strain MGAS315 has phage genes that encode proteins likely to contribute to pathogenesis, such as streptococcal pyrogenic exotoxin A (SpeA) and SpeK, streptococcal superantigen (SSA), and a previously uncharacterized phospholipase A(2) (designated Sla). Infected humans had anti-SpeK, -SSA, and -Sla antibodies, indicating that these GAS proteins are made in vivo. SpeK and SSA were pyrogenic and toxic for rabbits. Serotype M3 strains with the phage-encoded speK and sla genes increased dramatically in frequency late in the 20th century, commensurate with the rise in invasive disease caused by M3 organisms. Taken together, the results show that phage-mediated recombination has played a critical role in the emergence of a new, unusually virulent clone of serotype M3 GAS.
L'Hernault, S. W.; Benian, G. M.; Emmons, R. B.
1993-01-01
Two self-sterile mutations that define the spermatogenesis-defective gene spe-17 have been analyzed. These mutations affect unc-22 and fail to complement each other for both Unc-22 and spermatogenesis defects. Both of these mutations are deficiencies (hcDf1 and hDf13) that affect more than one transcription unit. Genomic DNA adjacent to and including the region deleted by the smaller deficiency (hcDf1) has been sequenced and four mRNAs (including unc-22) have been localized to this sequenced region. The three non unc-22 mRNAs are shown to be sex-specific: a 1.2-kb mRNA that can be detected in sperm-free hermaphrodites and 1.2- and 0.56-kb mRNAs found in males. hDf13 deletes at least 55 kb of chromosome IV, including all of unc-22, both male-specific mRNAs and at least part of the female-specific mRNA. hcDf1, which is approximately 15.6 kb, deletes only the 5' end of unc-22 and the gene that encodes the 0.56-kb male-specific mRNA. The common defect that apparently accounts for the defective sperm in hcDf1 and hDf13 homozygotes is deletion of the spe-17 gene, which encodes the 0.56-kb mRNA. Strains carrying two copies of either deletion are self-fertile when they are transgenic for any of four extrachromosomal array that include spe-17. We have sequenced two spe-17 cDNAs, and the deduced 142 amino acid protein sequence is highly charged and rich in serine and threonine, but shows no significant homology to any previously determined protein sequence. PMID:8349108
Oliver, Emily A; Buhimschi, Catalin S; Dulay, Antonette T; Baumbusch, Margaret A; Abdel-Razeq, Sonya S; Lee, Sarah Y; Zhao, Guomao; Jing, Shichu; Pettker, Christian M; Buhimschi, Irina A
2011-03-01
Activation of the receptor for advanced glycation end products (RAGE) mediates cellular injury. Soluble forms of RAGE [soluble RAGE (sRAGE), endogenous secretory (esRAGE)] bind RAGE ligands, thereby preventing downstream signaling and damage. The objective of the study was to characterize the changes in maternal serum, amniotic fluid, and cord blood soluble receptor for advanced glycation end products (sRAGE) during physiological gestation and to provide insight into mechanisms responsible for RAGE activation in preeclampsia. This was a cross-sectional study at a tertiary university hospital. We studied 135 women in the following groups: nonpregnant controls (n = 16), healthy pregnant controls (n = 68), pregnant women with chronic hypertension (n = 13), or pregnant women with severe preeclampsia (sPE; n = 38). sRAGE and esRAGE levels were evaluated in vivo by ELISA in maternal serum, amniotic fluid, and cord blood and in vitro after stimulation of the amniochorion and placental explants with lipopolysaccharide or xanthine/xanthine oxidase. Placenta and amniochorion were immunostained for RAGE. Real-time quantitative PCR measured RAGE mRNA. Pregnant women had significantly decreased serum sRAGE compared with nonpregnant subjects (P < 0.001). sPE women had higher serum and amniotic fluid sRAGE and esRAGE relative to those expected for gestational age (P < 0.001). Cord blood sRAGE remained unaffected by sPE. RAGE immunoreactivity and mRNA expression appeared elevated in the amniochorion of sPE women. Xanthine/xanthine oxidase (but not lipopolysaccharide) significantly up-regulated the release of sRAGE (P < 0.001) in the amniochorion explant system. Fetal membranes are a rich source of sRAGE. Elevated maternal serum and amniotic fluid sRAGE and esRAGE, paralleled by increased RAGE expression in the amniochorion, suggest activation of this system in sPE.
Chang, Ying-Chia; Chen, Wen-Ling; Bai, Fang-Yu; Chen, Pau-Chung; Wang, Gen-Shuh; Chen, Chia-Yang
2012-01-01
For this study, we developed methods of determining ten perfluorinated chemicals in drinking water, milk, fish, beef, and pig liver using high-flow automated solid-phase extraction (SPE) and ultra-high performance liquid chromatography/tandem mass spectrometry. The analytes were separated on a core-shell Kinetex C18 column. The mobile phase was composed of methanol and 10-mM N-methylmorpholine. Milk was digested with 0.5 N potassium hydroxide in Milli-Q water, and was extracted with an Atlantic HLB disk to perform automated SPE at a flow rate ranged from 70 to 86 mL/min. Drinking water was directly extracted by the SPE. Solid food samples were digested in alkaline methanol and their supernatants were diluted and also processed by SPE. The disks were washed with 40% methanol/60% water and then eluted with 0.1% ammonium hydroxide in methanol. Suppression of signal intensity of most analytes by matrixes was lower than 50%; it was generally lower in fish and drinking water but higher in liver. Most quantitative biases and relative standard deviations were lower than 15%. The limits of detection for most analytes were sub-nanograms per liter for drinking water and sub-nanograms per gram for solid food samples. This method greatly shortened the time and labor needed for digestion, SPE, and liquid chromatography. This method has been applied to analyze 14 types of food samples. Perfluorooctanoic acid was found to be the highest among the analytes (median at 3.2-64 ng/g wet weight), followed by perfluorodecanoic acid (0.7-25 ng/g) and perfluorododecanoic acid (0.6-15 ng/g).
Nasrin, Sweety; Masuda, Eiji; Kugaya, Haruna; Osano, Ayaka; Ito, Yoshihiko; Yamada, Shizuo
2014-01-01
To clarify the effect of saw palmetto extract (SPE), a phytotherapeutic agent, on urodynamic parameters, bladder muscarinic and purinergic receptors, and urinary cytokines in rats with cystitis induced by cyclophosphamide (CYP). Saw palmetto extract (60 mg/kg per day) was administered orally twice a day for 7 days to rats. The urodynamic parameters in CYP (150 mg/kg i.p.)-treated rats were monitored by a cystometric method under anesthesia. The muscarinic and purinergic receptors in the bladder and submaxillary gland were measured by radioreceptor assays using [N-methyl-(3) H] scopolamine chloride([(3) H]NMS) and αβ-methylene-ATP [2,8-(3) H] tetrasodium salt ([(3) H]αβ-MeATP), respectively. Urinary cytokines (interleukin-1β [IL-1β], IL-6 and L-17) were measured with enzyme linked immunosorbent assay kits. Micturition interval and micturition volume were significantly decreased and the frequency of micturition and basal pressure were significantly increased in the CYP-treated rats compared with sham-operated rats. Orally administered SPE significantly increased the micturition interval and micturition volume and decreased the frequency of micturition and basal pressure. The maximal number of sites (Bmax ) for the specific binding of [(3) H]NMS and [(3) H]αβ-MeATP was significantly decreased in the bladder. The decrease in receptors was attenuated by repeated treatment with SPE. An elevation in urinary cytokine (IL-1β and IL-17) levels were seen, and this increase was effectively suppressed by SPE treatment. Saw palmetto extract attenuates the alteration of urodynamic parameters, pharmacologically relevant receptors, and urinary cytokines in CYP-treated rats. Therefore, SPE may be a potential therapeutic agent for improving the clinical symptoms of cystitis. © 2013 Wiley Publishing Asia Pty Ltd.
Silva, Mariana; Morante-Zarcero, Sonia; Pérez-Quintanilla, Damián; Marina, María Luisa; Sierra, Isabel
2017-08-01
A method for simultaneous separation and determination of four enantiomeric pairs of β-blockers in waters by chiral CE has been developed. Off-line SPE was employed using functionalized ordered mesoporous silica as sorbent. Separation by CE was achieved using a BGE composed by methylated-β-CD (1.25% w/v) dissolved in a 50 mM phosphate buffer (pH 2.5) and 30°C, with good chiral resolution for all enantiomers. Mesoporous silica functionalized with octadecyl groups (denoted SBA15-C18) was prepared by a postsynthesis method and applied for the preconcentration of atenolol, propranolol, metoprolol, and pindolol enantiomers in waters by off-line SPE. Under optimized conditions, a preconcentration factor of 300 was achieved, employing 100 mg of SBA15-C18 as sorbent, with recoveries between 96 and 105% in tap water and good repeatability (% RSD = 7-11%, n = 6). Commercial C18 amorphous silica (ExtraBond R C 18 ) was also tested as sorbent for SPE, but results revealed better extraction capacity with higher recoveries for the SBA15-C18 material. The analytical characteristics of the off-line SPE-chiral CE method were evaluated, showing good precision, linearity, and accuracy with method quantification limits between 5.3 and 13.7 μg/L for all enantiomers. The SBA15-C18 material allowed the extraction of four enantiomeric pairs of β-blockers spiked in tap water, river water, and ground water with recoveries between 58 and 105%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Berthod, Laurence; Roberts, Gary; Whitley, David C; Sharpe, Alan; Mills, Graham A
2014-12-15
The partitioning of pharmaceuticals in the environment can be assessed by measuring their adsorption coefficients (Kd) between aqueous and solid phases. Measuring this coefficient in sewage sludge gives an indication of their partitioning behaviour in a wastewater treatment plant and hence contributes to an understanding of their subsequent fate. The regulatory approved method for measuring Kd in sewage sludge is the US Environmental Protection Agency's Office of Prevention, Pesticides and Toxic Substances (OPPTS) guideline 835.1110, which is labour intensive and time consuming. We describe an alternative method for measuring the Kd of pharmaceuticals in sewage sludge using a modified solid-phase extraction (SPE) technique. SPE cartridges were packed at different sludge/PTFE ratios (0.4, 6.0, 24.0 and 40.0% w/w sludge) and eluted with phosphate buffer at pH 7.4. The approach was tested initially using three pharmaceuticals (clofibric acid, diclofenac and oxytetracycline) that covered a range of Kd values. Subsequently, the sorption behaviour of ten further pharmaceuticals with varying physico-chemical properties was evaluated. Results from the SPE method were comparable to those of the OPPTS test, with a correlation coefficient of 0.93 between the two approaches. SPE cartridges packed with sludge and PTFE were stable for up to one year; use within one month reduced variability in measurements (to a maximum of 0.6 log units). The SPE method is low-cost, easy to use and enables the rapid measurement of Kd values for a large number of chemicals. It can be used as an alternative to the more laborious full OPPTS test in environmental fate studies and risk assessments. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Berthod, Laurence; Roberts, Gary; Whitley, David C.; Sharpe, Alan; Mills, Graham A.
2014-01-01
The partitioning of pharmaceuticals in the environment can be assessed by measuring their adsorption coefficients (Kd) between aqueous and solid phases. Measuring this coefficient in sewage sludge gives an indication of their partitioning behaviour in a wastewater treatment plant and hence contributes to an understanding of their subsequent fate. The regulatory approved method for measuring Kd in sewage sludge is the US Environmental Protection Agency's Office of Prevention, Pesticides and Toxic Substances (OPPTS) guideline 835.1110, which is labour intensive and time consuming. We describe an alternative method for measuring the Kd of pharmaceuticals in sewage sludge using a modified solid-phase extraction (SPE) technique. SPE cartridges were packed at different sludge/PTFE ratios (0.4, 6.0, 24.0 and 40.0% w/w sludge) and eluted with phosphate buffer at pH 7.4. The approach was tested initially using three pharmaceuticals (clofibric acid, diclofenac and oxytetracycline) that covered a range of Kd values. Subsequently, the sorption behaviour of ten further pharmaceuticals with varying physico-chemical properties was evaluated. Results from the SPE method were comparable to those of the OPPTS test, with a correlation coefficient of 0.93 between the two approaches. SPE cartridges packed with sludge and PTFE were stable for up to one year; use within one month reduced variability in measurements (to a maximum of 0.6 log units). The SPE method is low-cost, easy to use and enables the rapid measurement of Kd values for a large number of chemicals. It can be used as an alternative to the more laborious full OPPTS test in environmental fate studies and risk assessments. PMID:25299795
NASA Astrophysics Data System (ADS)
Tateishi, Go
When a thin superconducting film (S film) is condensed onto a thin normal conducting film (N film), the first layers of the S film loose their superconductivity. This phenomenon is generally called the "superconducting proximity effect (SPE)". As an investigation of SPE we focus on the transition temperature of extremely thin NS double layers in the thin regime. Normal metal is condensed on top of insulating Sb, then Pb is deposited on it in small steps. The transition temperature is plotted in an inverse Tc-reduction 1/Delta T c =1/(Ts - Tc) versus Pb thickness graph. To compare our experimental results with the theoretical prediction, a numerical calculation of the SN double layer is performed by our group using the linear gap equation. As a result, there are large discrepancies between the experimental and theoretical results generally. The results of the NS double layers can be divided into three groups in terms of their discrepancies between experiment and theory.(1) Non-coupling (Tc = 0 K): N= Mg, Ag, Cu, Au. There are large deviations between experiment and theory by a factor to the order of 2.5. (2) Weak coupling (Tc is low (< 2.5 K)) : N=Cd, Zn, Al. Deviation is present, but only by a factor of 1.5. (3) Intermediate coupling (T c is around half of Pb's (≈ 4.5 K)) : N=In, Sn. The experimental results agree with the theory. Next, we examine the detection of the magnetic dead layer (MDL) of Ni thin films in terms of the anomalous Hall effect (AHE) with several non-magnetic metal substrates. In our results, when Ni film is contact with a polyvalent metal substrate film, the sandwich film has around 2 to 3.5 at.lay. of magnetic dead layers. However we have not observed the magnetic dead Ni layers with the alkali and noble metal substrate film. Finally, we revisit the Pb/Ni system to measure the magnetic scattering of Ni with the method of Weak Localization (WL) to compare with the dephasing rate due to the Tc-reduction. In this series, we use only very thin Pb films between 1.3 and 5 at.lay. deposited on top of the Ag substrate with about 37 at.lay. thickness, because we make the Ag substrate suppress the superconductivity of the extremely thin Pb film with the SPE and avoid the Azlamazov-Larkin fluctuations. After comparison, it becomes clear that the dephasing rate from the Tc-reduction method is much larger than that measured by the weak localization (the factor is around 120). We consider not only "pair breaking" but also "pair weakening", and conclude that the reduction of the superconducting transition temperature is not due to dephasing by magnetic scattering but due to the resonance scattering of Cooper pairs by non-magnetic d-states.
Partial compensation interferometry measurement system for parameter errors of conicoid surface
NASA Astrophysics Data System (ADS)
Hao, Qun; Li, Tengfei; Hu, Yao; Wang, Shaopu; Ning, Yan; Chen, Zhuo
2018-06-01
Surface parameters, such as vertex radius of curvature and conic constant, are used to describe the shape of an aspheric surface. Surface parameter errors (SPEs) are deviations affecting the optical characteristics of an aspheric surface. Precise measurement of SPEs is critical in the evaluation of optical surfaces. In this paper, a partial compensation interferometry measurement system for SPE of a conicoid surface is proposed based on the theory of slope asphericity and the best compensation distance. The system is developed to measure the SPE-caused best compensation distance change and SPE-caused surface shape change and then calculate the SPEs with the iteration algorithm for accuracy improvement. Experimental results indicate that the average relative measurement accuracy of the proposed system could be better than 0.02% for the vertex radius of curvature error and 2% for the conic constant error.
Hindlimb suspension and SPE-like radiation impairs clearance of bacterial infections.
Li, Minghong; Holmes, Veronica; Zhou, Yu; Ni, Houping; Sanzari, Jenine K; Kennedy, Ann R; Weissman, Drew
2014-01-01
A major risk of extended space travel is the combined effects of weightlessness and radiation exposure on the immune system. In this study, we used the hindlimb suspension model of microgravity that includes the other space stressors, situational and confinement stress and alterations in food intake, and solar particle event (SPE)-like radiation to measure the combined effects on the ability to control bacterial infections. A massive increase in morbidity and decrease in the ability to control bacterial growth was observed using 2 different types of bacteria delivered by systemic and pulmonary routes in 3 different strains of mice. These data suggest that an astronaut exposed to a strong SPE during extended space travel is at increased risk for the development of infections that could potentially be severe and interfere with mission success and astronaut health.
SPE-HPTLC of procyanidins from the barks of different species and clones of Salix.
Pobłocka-Olech, Loretta; Krauze-Baranowska, Mirosława
2008-11-04
A SPE-HPTLC method was developed for the qualitative and quantitative analysis of procyanidin B(1) in willow barks. The chromatography was performed on HPTLC silica gel layer with the mobile phase chloroform-ethanol-formic acid (50:40:6 v/v/v), in the Automatic Developing Chamber-ADC 2. The methanol extracts from willow barks were purified by SPE method on RP-18 silica gel columns with methanol-water (7:93 v/v) as the eluent. The presence of procyanidin B(1) was revealed in the majority of investigated willow barks. The content of procyanidin B(1) varied from 0.26 mg/g in the extract of Salix purpurea clone 1067-2.24 mg/g in the extract of Salix alba clone 1100. The method was validated for linearity, precision, LOD, LOQ and repeatability.
Streptococcus pyogenes meningitis: report of a case and review of the literature.
Berner, R; Herdeg, S; Gordjani, N; Brandis, M
2000-07-01
Streptococcus pyogenes is a very uncommon cause of bacterial meningitis beyond the neonatal period. A case report and a review of the recent literature is presented. We report on a previously healthy 7-year-old boy who developed S. pyogenes meningitis following a 2-day history of otitis media. A CT scan revealed right-sided mastoiditis as a possible focus of infection. The patient was treated with penicillin G for 14 days. The clinical course was uneventful, and the recovered without sequelae. By means of the polymerase chain reaction, the presence of streptococcal pyrogenic exotoxin (SPE) B and SPE C, but not SPE A genes was discovered from the bacterial DNA. Streptococcus pyogenes is a rare cause of bacterial meningitis but has to be considered as the causative pathogen beyond the neonatal period.
Molecularly imprinted solid-phase extraction in the analysis of agrochemicals.
Yi, Ling-Xiao; Fang, Rou; Chen, Guan-Hua
2013-08-01
The molecular imprinting technique is a highly predeterminative recognition technology. Molecularly imprinted polymers (MIPs) can be applied to the cleanup and preconcentration of analytes as the selective adsorbent of solid-phase extraction (SPE). In recent years, a new type of SPE has formed, molecularly imprinted polymer solid-phase extraction (MISPE), and has been widely applied to the extraction of agrochemicals. In this review, the mechanism of the molecular imprinting technique and the methodology of MIP preparations are explained. The extraction modes of MISPE, including offline and online, are discussed, and the applications of MISPE in the analysis of agrochemicals such as herbicides, fungicides and insecticides are summarized. It is concluded that MISPE is a powerful tool to selectively isolate agrochemicals from real samples with higher extraction and cleanup efficiency than commercial SPE and that it has great potential for broad applications.
Hindlimb Suspension and SPE-Like Radiation Impairs Clearance of Bacterial Infections
Li, Minghong; Holmes, Veronica; Zhou, Yu; Ni, Houping; Sanzari, Jenine K.; Kennedy, Ann R.; Weissman, Drew
2014-01-01
A major risk of extended space travel is the combined effects of weightlessness and radiation exposure on the immune system. In this study, we used the hindlimb suspension model of microgravity that includes the other space stressors, situational and confinement stress and alterations in food intake, and solar particle event (SPE)-like radiation to measure the combined effects on the ability to control bacterial infections. A massive increase in morbidity and decrease in the ability to control bacterial growth was observed using 2 different types of bacteria delivered by systemic and pulmonary routes in 3 different strains of mice. These data suggest that an astronaut exposed to a strong SPE during extended space travel is at increased risk for the development of infections that could potentially be severe and interfere with mission success and astronaut health. PMID:24454913
Kesting, Julie R; Staerk, Dan; Tejesvi, Mysore V; Kini, Kukkundoor R; Prakash, Harishchandra S; Jaroszewski, Jerzy W
2009-08-01
HPLC-SPE-NMR analysis of a crude extract of fermentation broth of cultured PESTALOTIOPSIS VIRGATULA isolate TC-320 from TERMINALIA CHEBULA Retz. (Combretaceae) disclosed the presence of a simple but unprecedented low-molecular-weight metabolite, 9-hydroxybenzo[ C]oxepin-3[1 H]-one, subsequently isolated by a targeted purification procedure. Georg Thieme Verlag KG Stuttgart.New York.
Tabor, Herbert; Tabor, Celia White; Cohn, Murray S.; Hafner, Edmund W.
1981-01-01
The presence of certain rpsL (strA) mutations in a strain of Escherichia coli that cannot synthesize putrescine or spermidine because of deletions in ornithine decarboxylase, arginine decarboxylase, and agmatine ureohydrolase, converts a partial requirement for polyamines for growth into an absolute requirement. PMID:7021537
Li, Yuan-Ting; Li, Da-Wei; Song, Wei; Long, Yi-Tao
2011-02-01
A disposable electrode, multi-walled carbon nanotube modified screen printed electrode (MWCNT/SPE), had been fabricated using screen printing technology and drop-coating method to determine dihydroxybenzene isomers (hydroquinone, catechol and resorcinol). The cyclic voltammetry behavior of dihydroxybenzene isomers had been investigated with the MWCNT/SPE. The results reveal that MWCNT/SPE, which shows a strong electrocatalytic activity for the oxidation of dihydroxybenzenes, can entirely separate the oxidation peaks of them. According to differential pulse voltammetry tests, the peak currents of dihydroxybenzene isomers are linear to their concentrations at the range of 8.20 x 10(-6) -1.00 x 10(-3), 8.20 x 10(-6) -1.00 x 10(-3) and 1.64 x 10(-5) -1.16 x 10(-3) mol x L(-1), with the detection limits of 4.34 x 10(-6), 3.42 x 10(-6) and 6.70 x 10(-6) mol x L(-1) for hydroquinone, catechol and resorcinol, respectively. For the determination of dihydroxybenzene isomers in water samples, the value of recovery found by standard addition method was in the range of 96.2%-104.9%. These results indicate MWCNT/SPE can be applied to rapid in-situ determination of dihydroxybenzenes-polluted water samples.
Comparison of Radiation Transport Codes, HZETRN, HETC and FLUKA, Using the 1956 Webber SPE Spectrum
NASA Technical Reports Server (NTRS)
Heinbockel, John H.; Slaba, Tony C.; Blattnig, Steve R.; Tripathi, Ram K.; Townsend, Lawrence W.; Handler, Thomas; Gabriel, Tony A.; Pinsky, Lawrence S.; Reddell, Brandon; Clowdsley, Martha S.;
2009-01-01
Protection of astronauts and instrumentation from galactic cosmic rays (GCR) and solar particle events (SPE) in the harsh environment of space is of prime importance in the design of personal shielding, spacec raft, and mission planning. Early entry of radiation constraints into the design process enables optimal shielding strategies, but demands efficient and accurate tools that can be used by design engineers in every phase of an evolving space project. The radiation transport code , HZETRN, is an efficient tool for analyzing the shielding effectiveness of materials exposed to space radiation. In this paper, HZETRN is compared to the Monte Carlo codes HETC-HEDS and FLUKA, for a shield/target configuration comprised of a 20 g/sq cm Aluminum slab in front of a 30 g/cm^2 slab of water exposed to the February 1956 SPE, as mode led by the Webber spectrum. Neutron and proton fluence spectra, as well as dose and dose equivalent values, are compared at various depths in the water target. This study shows that there are many regions where HZETRN agrees with both HETC-HEDS and FLUKA for this shield/target configuration and the SPE environment. However, there are also regions where there are appreciable differences between the three computer c odes.
Chan, Sue Hay; Lee, Warren; Asmawi, Mohd Zaini; Tan, Soo Choon
2016-07-01
A sequential solid-phase extraction (SPE) method was developed and validated using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) for the detection and quantification of salbutamol enantiomers in porcine urine. Porcine urine samples were hydrolysed with β-glucuronidase/arylsulfatase from Helix pomatia and then subjected to a double solid-phase extraction (SPE) first using the Abs-Elut Nexus SPE and then followed by the Bond Elut Phenylboronic Acid (PBA) SPE. The salbutamol enantiomers were separated using the Astec CHIROBIOTIC™ T HPLC column (3.0mm×100mm; 5μm) maintained at 15°C with a 15min isocratic run at a flow rate of 0.4mL/min. The mobile phase constituted of 5mM ammonium formate in methanol. Salbutamol and salbutamol-tert-butyl-d9 (internal standard, IS) was monitored and quantified with the multiple reaction monitoring (MRM) mode. The method showed good linearity for the range of 0.1-10ng/mL with limit of quantification at 0.3ng/mL. Analysis of the QC samples showed intra- and inter-assay precisions to be less than 5.04%, and recovery ranging from 83.82 to 102.33%. Copyright © 2016 Elsevier B.V. All rights reserved.
Aga, D.S.; Thurman, E.M.; Pomes, M.L.
1994-01-01
Solid-phase extraction (SPE) and enzyme-linked immunosorbent assay (ELISA) were combined for the trace analysis of the herbicide alachlor and its major soil metabolite, ethanesulfonic acid (ESA). The anti-alachlor antibody cross-reacted with ESA, which produced false-positive detections of alachlor in water samples by immunoassay screens. Alachlor and ESA were isolated from water by SPE on a C18 resin and eluted sequentially with ethyl acetate and methanol. Alachlor is soluble in ethyl acetate while the anionic ESA is not. Thus ESA remained adsorbed on the C18 resin and was eluted later with methanol. The combination of SPE with ELISA effectivety separated and quantified both alachlor and ESA using the same antibody for two ELISA methods. The general method may have applicability for the separation of other herbicides and their ionic metabolites. The SPE-ELISA method has a, detection limit of 0.01 ??g/L for alachlor and 0.05 ??g/L for ESA, with a precision of ?? 10%. Analyses of surface and ground water samples were confirmed by gas chromatography/mass spectrometry and high-performance liquid chromatography with photodiode-array detection. Results showed widespread occurrence of ESA in surface and ground water of the midwestern United States, with concentrations ranging from 10 ??g/L.
Multiplexed Colorimetric Solid-Phase Extraction
NASA Technical Reports Server (NTRS)
Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.
2009-01-01
Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).
Kagawa, T F; Cooney, J C; Baker, H M; McSweeney, S; Liu, M; Gubba, S; Musser, J M; Baker, E N
2000-02-29
Pathogenic bacteria secrete protein toxins that weaken or disable their host, and thereby act as virulence factors. We have determined the crystal structure of streptococcal pyrogenic exotoxin B (SpeB), a cysteine protease that is a major virulence factor of the human pathogen Streptococcus pyogenes and participates in invasive disease episodes, including necrotizing fasciitis. The structure, determined for the 40-kDa precursor form of SpeB at 1.6-A resolution, reveals that the protein is a distant homologue of the papain superfamily that includes the mammalian cathepsins B, K, L, and S. Despite negligible sequence identity, the protease portion has the canonical papain fold, albeit with major loop insertions and deletions. The catalytic site differs from most other cysteine proteases in that it lacks the Asn residue of the Cys-His-Asn triad. The prosegment has a unique fold and inactivation mechanism that involves displacement of the catalytically essential His residue by a loop inserted into the active site. The structure also reveals the surface location of an integrin-binding Arg-Gly-Asp (RGD) motif that is a feature unique to SpeB among cysteine proteases and is linked to the pathogenesis of the most invasive strains of S. pyogenes.
NASA Astrophysics Data System (ADS)
Chong, Mee Yoke; Numan, Arshid; Liew, Chiam-Wen; Ng, H. M.; Ramesh, K.; Ramesh, S.
2018-06-01
Solid polymer electrolyte (SPE) based on fumed silica nanoparticles as nanofillers, hydroxylethyl cellulose (HEC) as host polymer, magnesium trifluoromethanesulfonate salt and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid is prepared by solution casting technique. The ionic conductivity, interactions of adsorbed ions on the host polymer, structural crystallinity and thermal stability are evaluated by electrochemical impedance spectroscopy (EIS), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA), respectively. Ionic conductivity studies at room temperature reveals that the SPE with 2 wt. % of fumed silica nanoparticles gives the highest conductivity compared to its counterpart. The XRD and FTIR studies confirm the dissolution of salt, ionic liquid and successful incorporation of fumed silica nanoparticles with host polymer. In order to examine the performance of SPEs, electric double-layer capacitor (EDLC) are fabricated by using activated carbon electrodes. EDLC studies demonstrate that SPE incorporated with 2 wt. % fumed silica nanoparticles gives high specific capacitance (25.0 F/g) at a scan rate of 5 mV/s compared to SPE without fumed silica. Additionally, it is able to withstand 71.3% of capacitance from its initial capacitance value over 1600 cycles at a current density of 0.4 A/g.
Selective determination of heavy metals (Cd, Pb, Cr) speciation forms from hortic anthrosols
NASA Astrophysics Data System (ADS)
Bulgariu, Dumitru; Bulgariu, Laura; Filipov, Feodor; Astefanei, Dan; Stoleru, Vasile
2010-05-01
In soils from glass houses, the speciation and inter-phases distribution processes of heavy metals have a particular dynamic, different in comparison with those from non-protected soils. The predominant distribution forms of heavy metals in such soils types are: complexes with low mass organic molecules, organic-mineral complexes, complexes with inorganic ligands (hydroxide-complexes, carbonate-complexes, sulphate-complexes, etc.) and basic salts. All of these have high stabilities in conditions of soils from glass houses, and in consequence, the separation and determination of speciation forms (which is directly connected with biodisponibility of heavy metals) by usual methods id very difficult and has a high uncertain degree. In this study is presented an original method for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils, which is based by the combination of solid-liquid sequential extraction (SPE) with the extraction in aqueous polymer-inorganic salt two-phase systems (ABS). The soil samples used for this study have been sampled from three different locations (glass houses from Iasi, Barlad and Bacau - Romania) where the vegetables cultivation have been performed by three different technologies. In this way was estimated the applicability and the analytical limits of method proposed by as, in function of the chemical-mineralogical and physical-chemical characteristics of soils. As heavy metals have been studied cadmium, lead and chromium, all being known for their high toxicity. The procedure used for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils has two main steps: (i) non-destructive separation of chemical-mineralogical associations and aggregates from soils samples - for this the separation method with heavy liquids (bromophorme) and isodynamic magnetic method have been used; (ii) sequential extraction of heavy metals from soil fractions separated in the first step, by using combined SPE-ABS procedure. For the preparation of combined extraction systems was used polyethylene glycol (with different molecular mass: 2000, 4000 and 8000). As phase-forming inorganic salts and as selective extracting agents we have used different usual inorganic reagents. The type and concentration of phase-forming salts have been selected in function of, both nature of extracted heavy metals and chemical-mineralogical characteristics of soil samples. The experimental parameters investigated in this study are: molecular mass of polyethylene glycol and the concentration of polymeric solutions, nature and concentration of phase-forming salts, nature and concentration of extracting agents, pH in extraction system phase, type of extracted heavy metals, type of speciation forms of heavy metals and their concentrations. All these factors can influence significantly the efficiency and the selectivity of separation process. The experimental results have indicate that the combined SPE-ABS extraction systems have better separation efficiency, in comparison with traditional SPE systems and ca realized a accurate discrimination between speciation forms of heavy metals from soils. Under these conditions, the estimation of inter-phases distribution and biodisponibility of heavy metals has a high precision. On the other hand, when the combined SPE-ABS systems are used, the concomitant extraction of the elements from the same geochemical association with studied heavy metals (inevitable phenomena in case of separation by SPE procedures) is significant diminished. This increases the separation selectivity and facilitated the more accurate determination of speciation forms concentration. By adequate selection of extraction conditions can be realized the selective separation of organic-mineral complexes, which will permit to perform detailed studies about the structure and chemical composition of these. Acknowledgments The authors would like to acknowledge the financial support from Romanian Ministry of Education and Research (Project PNCDI 2-D5 no. 51045/07 and project PNCDI 2 - D5 no. 52-141 / 2008).
NASA Astrophysics Data System (ADS)
Bulgariu, D.; Bulgariu, L.
2009-04-01
The speciation, inter-phases distribution and biodisponibility of heavy metals in soils represent one of main problem of environmental geochemistry and agro-chemistry. This problem is very important in case of hortic antrosols (soils from glasshouses) for the elimination of agricultural products (fruits, vegetables) contamination with heavy metals. In soils from glass houses, the speciation and inter-phases distribution processes of heavy metals have a particular dynamic, different in comparison with those from non-protected soils. The predominant distribution forms of heavy metals in such soils types are: complexes with low mass organic molecules, organic-mineral complexes, complexes with inorganic ligands (hydroxide-complexes, carbonate-complexes, sulphate-complexes, etc.) and basic salts. All of these have high stabilities in conditions of soils from glass houses, and in consequence, the separation and determination of speciation forms (which is directly connected with biodisponibility of heavy metals) by usual methods id very difficult and has a high uncertain degree. In this study is presented an original method for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils, which is based by the combination of solid-liquid sequential extraction (SPE) with the extraction in aqueous polymer-inorganic salt two-phase systems (ABS). The soil samples used for this study have been sampled from three different locations (glass houses from Iasi, Barlad and Bacau - Romania) where the vegetables cultivation have bee performed by three different technologies. In this way was estimated the applicability and the analytical limits of method proposed by as, in function of the chemical-mineralogical and physical-chemical characteristics of soils. As heavy metals have been studied cadmium, lead and chromium, all being known for their high toxicity. The procedure used for the selective separation and differentiation of speciation forms of heavy metals from glass houses soils has two main steps: (i) non-destructive separation of chemical-mineralogical associations and aggregates from soils samples - for this the separation method with heavy liquids (bromophorme) and isodynamic magnetic method have been used; (ii) sequential extraction of heavy metals from soil fractions separated in the first step, by using combined SPE-ABS procedure. For the preparation of combined extraction systems was used polyethylene glycol (with different molecular mass: 2000, 4000 and 8000). As phase-forming inorganic salts and as selective extracting agents we have used different usual inorganic reagents. The type and concentration of phase-forming salts have been selected in function of, both nature of extracted heavy metals and chemical-mineralogical characteristics of soil samples. The experimental parameters investigated in this study are: molecular mass of polyethylene glycol and the concentration of polymeric solutions, nature and concentration of phase-forming salts, nature and concentration of extracting agents, pH in extraction system phase, type of extracted heavy metals, type of speciation forms of heavy metals and their concentrations. All these factors can influence significantly the efficiency and the selectivity of separation process. The experimental results have indicate that the combined SPE-ABS extraction systems have better separation efficiency, in comparison with traditional SPE systems and ca realized a accurate discrimination between speciation forms of heavy metals from soils. Under these conditions, the estimation of inter-phases distribution and biodisponibility of heavy metals has a high precision. On the other hand, when the combined SPE-ABS systems are used, the concomitant extraction of the elements from the same geochemical association with studied heavy metals (inevitable phenomena in case of separation by SPE procedures) is significant diminished. This increases the separation selectivity and facilitated the more accurate determination of speciation forms concentration. By adequate selection of extraction conditions can be realized the selective separation of organic-mineral complexes, which will permit to perform detailed studies about the structure and chemical composition of these. Acknowledgments The authors would like to acknowledge the financial support from Romanian Ministry of Education and Research (Project PNCDI 2-D5 no. 51045/07).
Shen, Qing; Yang, Qi; Cheung, Hon-Yeung
2015-02-01
Salmon is a popular food but it is easily susceptible to spoilage by contamination with microorganisms. In this study, a method using hydrophilic interaction chromatography (HILIC)-based solid-phase extraction (SPE) and matrix-assisted laser desorption and ionization time-of-flight/time-of-flight mass spectrometry was developed and applied to reveal the effect of Pseudomonas fluorescens on salmon fillet during the shelf-life period by measuring the changes in the levels of phosphatidylcholine and phosphatidylethanolamine. Fresh samples were inoculated with P. fluorescens (10(6) cfu g(-1)) for 30 s, and lipids were extracted at 0, 24, 48, and 72 h. A homemade SPE cartridge packed with HILIC sorbent (silica derivatized with 1,2-dihydroxypropane) was used for matrix cleanup prior to analysis by mass spectrometry. In total, 30 phospholipids and 16 lysophospholipids were detected and elucidated. The results revealed that the content of phospholipids decreased significantly, whereas that of lysophospholipids increased initially, followed by a gradual reduction as the cold storage time increased. The contamination by P. fluorescens negatively affected the quality of fresh salmon without obvious physical changes, but it posed a potential threat to human health. This study suggests that the well-established method could be used for detecting phospholipids in salmon fillet and perhaps other foods as well.
A New Method of Facial Expression Recognition Based on SPE Plus SVM
NASA Astrophysics Data System (ADS)
Ying, Zilu; Huang, Mingwei; Wang, Zhen; Wang, Zhewei
A novel method of facial expression recognition (FER) is presented, which uses stochastic proximity embedding (SPE) for data dimension reduction, and support vector machine (SVM) for expression classification. The proposed algorithm is applied to Japanese Female Facial Expression (JAFFE) database for FER, better performance is obtained compared with some traditional algorithms, such as PCA and LDA etc.. The result have further proved the effectiveness of the proposed algorithm.
Electrochemical oxygen concentrator as an oxygen compressor
NASA Technical Reports Server (NTRS)
1975-01-01
A solid polymer electrolyte (SPE) oxygen compressor is described which generates pressures of 3000 psi. The SPE is a cation exchange membrane with chemical compatibility, and has the capability of withstanding 5000 psi. Other features of the compressor described include: gasketless sealing, porus plate cell supports, and conductive cooling. Results are presented of a computer program which defines the power of the system as a function of density, temperature, pressure, membrane thickness, and water content.
Lax representations for matrix short pulse equations
NASA Astrophysics Data System (ADS)
Popowicz, Z.
2017-10-01
The Lax representation for different matrix generalizations of Short Pulse Equations (SPEs) is considered. The four-dimensional Lax representations of four-component Matsuno, Feng, and Dimakis-Müller-Hoissen-Matsuno equations are obtained. The four-component Feng system is defined by generalization of the two-dimensional Lax representation to the four-component case. This system reduces to the original Feng equation, to the two-component Matsuno equation, or to the Yao-Zang equation. The three-component version of the Feng equation is presented. The four-component version of the Matsuno equation with its Lax representation is given. This equation reduces the new two-component Feng system. The two-component Dimakis-Müller-Hoissen-Matsuno equations are generalized to the four-parameter family of the four-component SPE. The bi-Hamiltonian structure of this generalization, for special values of parameters, is defined. This four-component SPE in special cases reduces to the new two-component SPE.
NASA Technical Reports Server (NTRS)
Waller, Jess M.; Nichols, Charles
2016-01-01
The radiation resistance of polymeric and composite materials to space radiation is currently based on irradiating materials with Co-60 gamma-radiation to the equivalent total ionizing dose (TID) expected during mission. This is an approximation since gamma-radiation is not truly representative of the particle species; namely, Solar Particle Event (SPE) protons and Galactic Cosmic Ray (GCR) nucleons, encountered in space. In general, the SPE and GCR particle energies are much higher than Co-60 gamma-ray photons, and since the particles have mass, there is a displacement effect due to nuclear collisions between the particle species and the target material. This effort specifically bridges the gap between estimated service lifetimes based on decades old Co-60 gamma-radiation data, and newer assessments of what the service lifetimes actually are based on irradiation with particle species that are more representative of the space radiation environment.
NASA Technical Reports Server (NTRS)
Singleterry, Robert C., Jr.; Walker, Steven A.; Clowdsley, Martha S.
2016-01-01
The mathematical models for Solar Particle Event (SPE) high energy tails are constructed with several di erent algorithms. Since limited measured data exist above energies around 400 MeV, this paper arbitrarily de nes the high energy tail as any proton with an energy above 400 MeV. In order to better understand the importance of accurately modeling the high energy tail for SPE spectra, the contribution to astronaut whole body e ective dose equivalent of the high energy portions of three di erent SPE models has been evaluated. To ensure completeness of this analysis, simple and complex geometries were used. This analysis showed that the high energy tail of certain SPEs can be relevant to astronaut exposure and hence safety. Therefore, models of high energy tails for SPEs should be well analyzed and based on data if possible.
Starvin, A M; Rao, T Prasada
2004-09-10
As a part of removal of toxic heavy metals from hazardous wastes, solid phase extraction (SPE) of mercury(II) at trace and ultra trace levels was studied using 1-(2-thiazolylazo)-2-naphthol (TAN) functionalized activated carbon (AC). The SPE material removes traces of mercury(II) quantitatively in the pH range 6.0 +/- 0.2. Other parameters that influence quantitative recovery of mercury(II), viz. percent concentration of TAN in AC, amount of TAN-AC, preconcentration time and volume of aqueous phase were varied and optimized. The possible means of removal of Hg(II) from other metal ions that are likely to be present in the wastes of the chloroalkali industry is discussed. The potential of TAN-functionalized AC SPE material for decontaminating mercury from the brine sludge and cell house effluent of a chloralkali plant has been evaluated.
NASA Astrophysics Data System (ADS)
Hertkorn, N.; Harir, M.; Koch, B. P.; Michalke, B.; Grill, P.; Schmitt-Kopplin, P.
2012-04-01
High-field NMR and FTMS of SPE-derived marine dissolved organic matter (SPE-DOM) from the South Atlantic Ocean provided molecular level information of complex unknowns with unprecedented coverage of carbon and resolution. SPE-DOM represented major oceanic regimes of general significance: 5 m (near surface photic zone), 48 m (fluorescence maximum), 200 m (upper mesopelagic zone) and 5446 m (30 m above ground). 1H NMR spectra showed rather smooth bulk NMR envelopes with a few percent of visibly resolved signatures. 1H NMR spectra of SPE-DOM indicated considerable variance in abundance for all major chemical environments. Two-dimensional NMR spectra of SPE-DOM displayed exceptional resolution. JRES (sensitive but limited resolution), COSY (highly resolved) and HMBC NMR (informative but limited S/N ratio) spectra depicted resolved molecular signatures in excess of a certain minimum abundance. COSY cross peaks were most diverse for sample FMAX and conformed to >1,500 molecules present. Classical methyl groups terminating aliphatic chains represented only ~ 15 % of total methyl in all marine DOM investigated; 2 % of methyl was bound to olefinic carbon. Methyl ethers were abundant in surface marine DOM, and the chemical diversity of carbohydrates was larger than that of freshwater and soil DOM. TOCSY and HSQC cross peaks enabled unprecedented depiction of sp2-hybridized carbon chemical environments in marine SPE-DOM with discrimination of isolated and conjugated olefins as well as ?,?-unsaturated double bonds. Olefinic protons were more abundant than aromatic protons; relative HSQC cross peak integrals indicated more abundant olefinic carbon than aromatic carbon in all marine DOM as well. Furan, pyrrol and thiophene derivatives were marginal. Benzene derivatives and phenols as well as six-membered nitrogen heterocycles were prominent. Various key polycyclic aromatic hydrocarbon substructures suggested the presence of thermogenic organic matter (TMOC) in marine DOM at all water depths. Eventually, olefinic unsaturation in marine DOM will be more directly traceable to ultimate biogenic precursors than aromatic unsaturation. The conformity of key NMR signatures suggests the presence of a numerous set of identical molecules throughout the entire ocean column even if the investigated water masses belonged to different oceanic regimes and currents. High field (12 T) negative electrospray ionization FTICR mass spectra showed abundant CHO, CHNO, CHOS and CHNOS molecular series with slightly increasing numbers of mass peaks and average mass from surface to bottom SPE-DOM. The proportion of CHO and CHNO molecular series increased from surface to depth whereas CHOS and especially CHNOS molecular series markedly declined. The exhaustive characterization of complex unknowns in marine DOM will enable a meaningful assessment of individual marine biogeosignatures which carry the holistic memory of the oceanic water masses.
Yang, Jiajia; Li, Yun; Wang, Jincheng; Sun, Xiaoli; Cao, Rong; Sun, Hao; Huang, Chaonan; Chen, Jiping
2015-05-04
The bisphenol A (BPA) imprinted polymer microspheres were prepared by simple Pickering emulsion polymerization. Compared to traditional bulk polymerization, both high yields of polymer and good control of particle sizes were achieved. The characterization results of scanning electron microscopy and nitrogen adsorption-desorption measurements showed that the obtained molecularly imprinted polymer microsphere (MIPMS) particles possessed regular spherical shape, narrow diameter distribution (30-60 μm), a specific surface area (S(BET)) of 281.26 m(2) g(-1) and a total pore volume (V(t)) of 0.459 cm(3) g(-1). Good specific adsorption capacity for BPA was obtained in the sorption experiment and good class selectivity for BPA and its seven structural analogs (bisphenol F, bisphenol B, bisphenol E, bisphenol AF, bisphenol S, bisphenol AP and bisphenol Z) was demonstrated by the chromatographic evaluation experiment. The MIPMS as solid-phase extraction (SPE) packing material was then evaluated for extraction and clean-up of these bisphenols (BPs) from human urine samples. An accurate and sensitive analytical method based on the MIPMS-SPE coupled with HPLC-DAD has been successfully established for simultaneous determination of eight BPs from human urine samples with detection limits of 1.2-2.2 ng mL(-1). The recoveries of BPs for urine samples at two spiking levels (100 and 500 ng mL(-1) for each BP) were in the range of 81.3-106.7% with RSD values below 8.3%. Copyright © 2015 Elsevier B.V. All rights reserved.
Gao, Le; Li, Jian; Wu, Yandan; Yu, Miaohao; Chen, Tian; Shi, Zhixiong; Zhou, Xianqing; Sun, Zhiwei
2016-11-01
Two simple and efficient pretreatment procedures have been developed for the simultaneous extraction and cleanup of six novel brominated flame retardants (NBFRs) and eight common polybrominated diphenyl ethers (PBDEs) in human serum. The first sample pretreatment procedure was a quick, easy, cheap, effective, rugged, and safe (QuEChERS)-based approach. An acetone/hexane mixture was employed to isolate the lipid and analytes from the serum with a combination of MgSO 4 and NaCl, followed by a dispersive solid-phase extraction (d-SPE) step using C18 particles as a sorbent. The second sample pretreatment procedure was based on solid-phase extraction. The sample extraction and cleanup were conducted directly on an Oasis HLB SPE column using 5 % aqueous isopropanol, concentrated sulfuric acid, and 10 % aqueous methanol, followed by elution with dichloromethane. The NBFRs and PBDEs were then detected using gas chromatography-negative chemical ionization mass spectrometry (GC-NCI MS). The methods were assessed for repeatability, accuracy, selectivity, limits of detection (LODs), and linearity. The results of spike recovery experiments in fetal bovine serum showed that average recoveries ranged from 77.9 % to 128.8 % with relative standard deviations (RSDs) from 0.73 % to 12.37 % for most of the analytes. The LODs for the analytes in fetal bovine serum ranged from 0.3 to 50.8 pg/mL except for decabromodiphenyl ethane. The proposed method was successfully applied to the determination of the 14 brominated flame retardants in human serum. The two pretreatment procedures described here are simple, accurate, and precise, and are suitable for the routine analysis of human serum. Graphical Abstract Workflow of a QuEChERS-based approach (top) and an SPE-based approach (bottom) for the detection of PBDEs and NBFRs in serum.
Liu, Lei; Liu, Kang-Ning; Wen, Ya-Bin; Zhang, Han-Wen; Lu, Ya-Xin; Yin, Zheng
2012-04-15
A fully automated on-line solid-phase extraction (SPE) and high-performance liquid chromatography (HPLC) with diode array detection (DAD) method was developed for determination of bavachinin in mouse plasma. Analytical process was performed on two reversed-phase columns (SPE cartridge and analytical column) connected via a Valco 6-port switching valve. Plasma samples (10 μL) were injected directly onto a C18 SPE cartridge (MF Ph-1 C18, 10 mm × 4 mm, 5 μm) and the biological matrix was washed out for 2 min with the loading solvent (5 mM NaH(2)PO(4) buffer, pH 3.5) at a flow rate of 1 mL/min. By rotation of the switching valve, bavachinin was eluted from the SPE cartridge in the back-flush mode and transferred to the analytical column (Venusil MP C18, 4.6 mm × 150 mm, 5 μm) by the chromatographic mobile phase consisted of acetonitrile-5mM NaH(2)PO(4) buffer 65/35 (v/v, pH 3.5) at a flow rate of 1 mL/min. The complete cycle of the on-line SPE purification and chromatographic separation of the analyte was 13 min with UV detection performed at 236 nm. Calibration curve with good linearity (r=0.9997) was obtained in the range of 20-4000 ng/mL in mouse plasma. The intra-day and inter-day precisions (RSD) of bavachinin were in the range of 0.20-2.32% and the accuracies were between 98.47% and 102.95%. The lower limit of quantification (LLOQ) of the assay was 20 ng/mL. In conclusion, the established automated on-line SPE-HPLC-DAD method demonstrated good performance in terms of linearity, specificity, detection and quantification limits, precision and accuracy, and was successfully utilized to quantify bavachinin in mouse plasma to support the pharmacokinetic (PK) studies. The PK properties of bavachinin were characterized as rapid oral absorption, high clearance, and poor absolute bioavailability. Copyright © 2012. Published by Elsevier B.V.
Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Rashidi, Ali Morad; Shirkhanloo, Hamid; Rahighi, Reza
2016-01-01
A uniquely novel, fast, and facile technique is introduced for the first time in which a scant amount of graphene oxide (GO), without modification, has been utilized in dispersive mode of solid phase extraction (SPE) for an efficient yet simple separation. The proposed method of coagulating homogenous dispersive micro solid phase extraction (CHD-µSPE) is based on coagulation of homogeneous GO solution with the aid of polyetheneimine (PEI). CHD-µSPE use full adsorption capacity of GO because in this method was used GO solution obtained from synthesis process without drying step and stacking nanosheets. In optimized condition, 30 µL GO solution (7 mg mL(-1)), obtained in synthesis process, was injected into 1.5 mL the sample solution followed by immediate injection of 53 µL PEI solution (1 mg mL(-1)). After inserting PEI, GO sheets aggregate and can be readily separated by centrifugation. PEI not only cause aggregation of GO, but also form three-dimensional network of GO with easy handling in following separation steps. Lead, cadmium, and chromium were selected as model analytes and the effecting parameters including the amount of GO, concentration of PEI, sample pH, extraction time, and type of desorption solvent were investigated and optimized. The results indicate that the proposed CHD-µSPE method can be successfully applied GO in dispersive mode of SPE without effecting on good capability adsorption of GO. The novel method was applied in determination of lead, cadmium, and chromium in water, human saliva, and urine samples by electrothermal atomic absorption spectrometry. The detection limits are as low as 0.035, 0.005, and 0.012 µg L(-1) for Pb, Cd, and Cr respectively. The intra-day precisions (RSDs) were lower than 3.8%. CHD-µSPE method showed a good linear ranges of 0.24-15.6, 0.015-0.95 and 0.039-2.33 µg L(-1) for Pb, Cd and Cr respectively. Method performance was investigated by determination of mentioned metal ions in river water, human urine and saliva sample with good recoveries in range of 94.2-103.0%. The accuracy of the method was underpinned by correct analysis of a standard reference material (SRM: 2668 level I, Urine). Copyright © 2015 Elsevier B.V. All rights reserved.
Hoshino, Tatsuhiko; Inagaki, Fumio
2017-01-01
Next-generation sequencing (NGS) is a powerful tool for analyzing environmental DNA and provides the comprehensive molecular view of microbial communities. For obtaining the copy number of particular sequences in the NGS library, however, additional quantitative analysis as quantitative PCR (qPCR) or digital PCR (dPCR) is required. Furthermore, number of sequences in a sequence library does not always reflect the original copy number of a target gene because of biases caused by PCR amplification, making it difficult to convert the proportion of particular sequences in the NGS library to the copy number using the mass of input DNA. To address this issue, we applied stochastic labeling approach with random-tag sequences and developed a NGS-based quantification protocol, which enables simultaneous sequencing and quantification of the targeted DNA. This quantitative sequencing (qSeq) is initiated from single-primer extension (SPE) using a primer with random tag adjacent to the 5' end of target-specific sequence. During SPE, each DNA molecule is stochastically labeled with the random tag. Subsequently, first-round PCR is conducted, specifically targeting the SPE product, followed by second-round PCR to index for NGS. The number of random tags is only determined during the SPE step and is therefore not affected by the two rounds of PCR that may introduce amplification biases. In the case of 16S rRNA genes, after NGS sequencing and taxonomic classification, the absolute number of target phylotypes 16S rRNA gene can be estimated by Poisson statistics by counting random tags incorporated at the end of sequence. To test the feasibility of this approach, the 16S rRNA gene of Sulfolobus tokodaii was subjected to qSeq, which resulted in accurate quantification of 5.0 × 103 to 5.0 × 104 copies of the 16S rRNA gene. Furthermore, qSeq was applied to mock microbial communities and environmental samples, and the results were comparable to those obtained using digital PCR and relative abundance based on a standard sequence library. We demonstrated that the qSeq protocol proposed here is advantageous for providing less-biased absolute copy numbers of each target DNA with NGS sequencing at one time. By this new experiment scheme in microbial ecology, microbial community compositions can be explored in more quantitative manner, thus expanding our knowledge of microbial ecosystems in natural environments.
2016-04-29
Force senior procurement executive (SPE), did not approve four D&Fs for three contracts because SAF/AQ officials incorrectly concluded that senior ...by the senior procurement executive (SPE) when awarding single-award IDIQ contracts estimated to exceed the dollar threshold then at $103 million...Procurement and Acquisition Policy (DPAP), as required. We will provide a copy of the report to the senior official responsible for internal
Minimizing Astronauts' Risk from Space Radiation during Future Lunar Missions
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Hayat, Mathew; Nounu, Hatem N.; Feiveson, Alan H.; Cucinotta, Francis A.
2007-01-01
This viewgraph presentation reviews the risk factors from space radiation for astronauts on future lunar missions. Two types of radiation are discussed, Galactic Cosmic Radiation (GCR) and Solar Particle events (SPE). Distributions of Dose from 1972 SPE at 4 DLOCs inside Spacecraft are shown. A chart with the organ dose quantities is also given. Designs of the exploration class spacecraft and the planned lunar rover are shown to exhibit radiation protections features of those vehicles.
Structural and functional analysis of RopB: A major virulence regulator in Streptococcus pyogenes
Makthal, Nishanth; Gavagan, Maire; Do, Hackwon; ...
2016-02-19
Group A Streptococcus (GAS) is an exclusive human pathogen that causes significant disease burden. Global regulator RopB of GAS controls the expression of several major virulence factors including secreted protease SpeB during high cell density. However, the molecular mechanism for RopB-dependent speB expression remains unclear. To understand the mechanism of transcription activation by RopB, we determined the crystal structure of the C-terminal domain of RopB. RopB-CTD has the TPR motif, a signature motif involved in protein-peptide interactions and shares significant structural homology with the quorum sensing RRNPP family regulators. Characterization of the high cell density-specific cell-free growth medium demonstrated themore » presence of a low molecular weight proteinaceous secreted factor that upregulates RopB-dependent speB expression. Together, these results suggest that RopB and its cognate peptide signals constitute an intercellular signalling machinery that controls the virulence gene expression in concert with population density. Structure-guided mutational analyses of RopB dimer interface demonstrated that single alanine substitutions at this critical interface significantly altered RopB-dependent speB expression and attenuated GAS virulence. Finally, results presented here suggested that a properly aligned RopB dimer interface is important for GAS pathogenesis and highlighted the dimerization interactions as a plausible therapeutic target for the development of novel antimicrobials.« less
Structural and functional analysis of RopB: A major virulence regulator in Streptococcus pyogenes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makthal, Nishanth; Gavagan, Maire; Do, Hackwon
Group A Streptococcus (GAS) is an exclusive human pathogen that causes significant disease burden. Global regulator RopB of GAS controls the expression of several major virulence factors including secreted protease SpeB during high cell density. However, the molecular mechanism for RopB-dependent speB expression remains unclear. To understand the mechanism of transcription activation by RopB, we determined the crystal structure of the C-terminal domain of RopB. RopB-CTD has the TPR motif, a signature motif involved in protein-peptide interactions and shares significant structural homology with the quorum sensing RRNPP family regulators. Characterization of the high cell density-specific cell-free growth medium demonstrated themore » presence of a low molecular weight proteinaceous secreted factor that upregulates RopB-dependent speB expression. Together, these results suggest that RopB and its cognate peptide signals constitute an intercellular signalling machinery that controls the virulence gene expression in concert with population density. Structure-guided mutational analyses of RopB dimer interface demonstrated that single alanine substitutions at this critical interface significantly altered RopB-dependent speB expression and attenuated GAS virulence. Finally, results presented here suggested that a properly aligned RopB dimer interface is important for GAS pathogenesis and highlighted the dimerization interactions as a plausible therapeutic target for the development of novel antimicrobials.« less
Rafiee, Banafsheh; Fakhari, Ali Reza
2013-08-15
Nickel oxide nanoparticles modified nafion-multiwalled carbon nanotubes screen printed electrode (NiONPs/Nafion-MWCNTs/SPE) were prepared using pulsed electrodeposition of NiONPs on the MWCNTs/SPE surface. The size, distribution and structure of the NiONPs/Nafion-MWCNTs were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD) and also the results show that NiO nanoparticles were homogeneously electrodeposited on the surfaces of MWCNTs. Also, the electrochemical behavior of NiONPs/Nafion-MWCNTs composites in aqueous alkaline solutions of insulin was studied by cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy (EIS). It was found that the prepared nanoparticles have excellent electrocatalytic activity towards insulin oxidation due to special properties of NiO nanoparticles. Cyclic voltammetric studies showed that the NiONPs/Nafion-MWCNTs film modified SPE, lowers the overpotentials and improves electrochemical behavior of insulin oxidation, as compared to the bare SPE. Amperometry was also used to evaluate the analytical performance of modified electrode in the quantitation of insulin. Excellent analytical features, including high sensitivity (1.83 μA/μM), low detection limit (6.1 nM) and satisfactory dynamic range (20.0-260.0 nM), were achieved under optimized conditions. Moreover, these sensors show good repeatability and a high stability after a while or successive potential cycling. Copyright © 2013 Elsevier B.V. All rights reserved.
Development and Multi-laboratory Verification of US EPA ...
A drinking water method for seven pesticides and pesticide degradates is presented that addresses the occurrence monitoring needs of the US Environmental Protection Agency (EPA) for a future Unregulated Contaminant Monitoring Regulation (UCMR). The method employs online solid phase extraction-liquid chromatography–tandem mass spectrometry (SPE-LC–MS-MS). Online SPE-LC–MS-MS has the potential to offer cost-effective, faster, more sensitive and more rugged methods than the traditional offline SPE approach due to complete automation of the SPE process, as well as seamless integration with the LC–MS-MS system. The method uses 2-chloroacetamide, ascorbic acid and Trizma to preserve the drinking water samples for up to 28 days. The mean recoveries in drinking water (from a surface water source) fortified with method analytes are 87.1–112% with relative standard deviations of <14%. Single laboratory lowest concentration minimum reporting levels of 0.27–1.7 ng/L are demonstrated with this methodology. Multi-laboratory data are presented that demonstrate method ruggedness and transferability. The final method meets all of the EPA's UCMR survey requirements for sample collection and storage, precision, accuracy, and sensitivity. The journal article describes the development of drinking water Method 543 for analysis of selected CCL 3 chemicals. It is anticipated this method may be used in a future Unregulated Contaminant Monitoring Regulation to gather nationw
Exarchou, Vassiliki; Godejohann, Markus; van Beek, Teris A; Gerothanassis, Ioannis P; Vervoort, Jacques
2003-11-15
Structure elucidation of natural products usually relies on a combination of NMR spectroscopy with mass spectrometry whereby NMR trails MS in terms of the minimum sample amount required. In the present study, the usefulness of on-line solid-phase extraction (SPE) in LC-NMR for peak storage after the LC separation prior to NMR analysis is demonstrated. The SPE unit allows the use of normal protonated solvents for the LC separation and fully deuterated solvents for flushing the trapped compounds to the NMR probe. Thus, solvent suppression is no longer necessary. Multiple trapping of the same analyte from repeated LC injections was utilized to solve the problem of low concentration and to obtain 2D heteronuclear NMR spectra. In addition, a combination of the SPE unit with a recently developed cryoflow NMR probe and an MS was evaluated. This on-line LC-UV-SPE-NMR-MS system was used for the automated analysis of a Greek oregano extract. Combining the data provided by the UV, MS, and NMR spectra, the flavonoids taxifolin, aromadendrin, eriodictyol, naringenin, and apigenin, the phenolic acid rosmarinic acid, and the monoterpene carvacrol were identified. This automated technique is very useful for natural product analysis, and the large sensitivity improvement leads to significantly reduced NMR acquisition times.
Giori, L; Giordano, A; Giudice, C; Grieco, V; Paltrinieri, S
2011-03-01
Feline infectious peritonitis (FIP) can be difficult to diagnose. Histopathology is considered the gold standard test but immunohistochemistry (IHC) is mandatory to confirm/exclude the disease. This study aimed to assess the performances of tests carried out in vivo or at postmortem examination in challenging cases in which FIP was confirmed or excluded based on IHC or on adequate follow-up. Twelve cases (four without FIP, eight with FIP) were retrospectively studied. Clinical findings, serum protein electrophoresis (SPE), analysis of the effusions (AE), antifeline coronavirus serology, serum concentration of α1-acid glycoprotein (AGP) and histopathology were classified as consistent, doubtful or non-consistent with FIP. Sensitivity, specificity and concordance (κ) with the final diagnosis were calculated. Concordance was absent for serology (κ=-0·08) and AE (κ=-0·52), poor for histopathology (κ=0·09), fair for SPE (κ=0·25) and perfect for AGP (κ=1·00). Sensitivity was high for AGP (100%) and low for AE (50%), SPE (37·5%) and histopathology (37·5%). Specificity was high for AGP or histopathology (100%) and low for SPE (50%) and AE (0%). IHC must always be performed to confirm FIP. If this is not possible, when histopathology is controversial, elevated AGP concentrations may support the diagnosis of FIP. © 2011 British Small Animal Veterinary Association.
Ma, Jian; Yang, Bo; Byrne, Robert H
2012-06-15
Determination of chromate at low concentration levels in drinking water is an important analytical objective for both human health and environmental science. Here we report the use of solid phase extraction (SPE) in combination with a custom-made portable light-emitting diode (LED) spectrophotometer to achieve detection of chromate in the field at nanomolar levels. The measurement chemistry is based on a highly selective reaction between 1,5-diphenylcarbazide (DPC) and chromate under acidic conditions. The Cr-DPC complex formed in the reaction can be extracted on a commercial C18 SPE cartridge. Concentrated Cr-DPC is subsequently eluted with methanol and detected by spectrophotometry. Optimization of analytical conditions involved investigation of reagent compositions and concentrations, eluent type, flow rate (sample loading), sample volume, and stability of the SPE cartridge. Under optimized conditions, detection limits are on the order of 3 nM. Only 50 mL of sample is required for an analysis, and total analysis time is around 10 min. The targeted analytical range of 0-500 nM can be easily extended by changing the sample volume. Compared to previous SPE-based spectrophotometric methods, this analytical procedure offers the benefits of improved sensitivity, reduced sample consumption, shorter analysis time, greater operational convenience, and lower cost. Copyright © 2012 Elsevier B.V. All rights reserved.
Clinical and molecular epidemiology of beta-hemolytic streptococcal infections in India.
Mathur, Purva; Bhardwaj, Nidhi; Mathur, Kushal; Behera, Bijayini; Gupta, Gunjan; Kapil, Arti; Singh, Sarman; Misra, Mahesh Chandra
2014-03-13
Beta-hemolytic streptococci (βHS) cause a diverse array of human infections. Despite the high number of cases of streptococcal carriers and diseases, studies discerning the molecular epidemiology of βHS in India are limited. This study reports the molecular and clinical epidemiology of beta-hemolytic streptococcal infections from two geographically distinct regions of India. A total of 186 isolates of βHS from north and south India were included. The isolates were identified to species level and subjected to antimicrobial susceptibility testing. Polymerase chain reaction (PCR) was done to detect exotoxin genes, and emm types of group A streptococci (GAS) strains were ascertained by sequencing. GAS was the most common isolate (71.5%), followed by group G streptococci (GGS) (21%). A large proportion of GAS produced speB (97%), smeZ (89%), speF (91%), and speG (84%). SmeZ was produced by 21% and 50% of GGS and GGS, respectively. A total of 45 different emm types/subtypes were seen in GAS, with emm 11 being the most common. Resistance to tetracycline (73%) and erythromycin (34.5%) was commonly seen in GAS. A high diversity of emm types was seen in Indian GAS isolates with high macrolide and tetracycline resistance. SpeA was less commonly seen in Indian GAS isolates. There was no association between disease severity and exotoxin gene production.
Carlson, Jules C; Challis, Jonathan K; Hanson, Mark L; Wong, Charles S
2013-02-01
The stability of 24 chemicals, including pharmaceuticals and personal care products, and some agrochemicals on extraction media was evaluated by preloading them onto Oasis hydrophilic lipophilic balanced solid-phase extraction (SPE) cartridges and polar organic chemical integrative samplers (POCIS) followed by storage at -20°C over time. After 20 months, the average loss was 11% on POCIS, with only 2,4-dichlorophenoxyacetic acid, atrazine, chlorpyrifos, and gemfibrozil showing a statistically significant decline compared with initial concentrations. Losses on SPE cartridges were below 19%, with an average loss of 9%. In addition to laboratory spiked samples, multiple POCIS deployed in wastewater-impacted surface waters and SPE extracts of these waters were stored in their original coextracted matrix for nearly two years with minimal observed losses. Errors from typical sampling, handling, and concentration estimates from POCIS sampling rates were typically ± 15 to 30% relative standard deviation, so observed storage losses are minimal for most POCIS applications. While losses during storage on SPE cartridges for 20 months were small but statistically significant for many compounds, addition of labeled internal standards prior to freezing should correct for such losses. Thus, storage of processed water samples for analysis of polar organic pollutants is viable for archival purposes or studies for which samples cannot be analyzed in the short term. Copyright © 2012 SETAC.
NASA Astrophysics Data System (ADS)
Shono, Kumi; Kobayashi, Takeshi; Tabuchi, Masato; Ohno, Yasutaka; Miyashiro, Hajime; Kobayashi, Yo
2014-02-01
We propose a simple procedure for introducing a pseudo-reference electrode (PRE) to lithium ion batteries using isometric lithium metal placed between the cathode and anode, and we successfully obtained the cathode and anode voltage profiles, individual interfacial impedances, and the misalignment of the operation range between the cathode and anode after cycle operation. The proposed procedure is applicable to lithium ion battery systems using a solid electrolyte to prepare two cells with a lithium counter electrode. We determined the capacity decrease of a solvent-free lithium ion polymer battery consisting of a LiNi1/3Mn1/3Co1/3O2 (NMC), a polyether-based solid polymer electrolyte (SPE), and a graphite (Gr) with the proposed PRE over 1000 cycles. The capacity retention of the [Gr|SPE|NMC] cell reached 50% at the 1000th cycle upon the optimization of cell preparation, and we found that the main factor of the capacity decrease was the continuous irreversible loss of active lithium at the graphite anode, not the oxidation of the SPE. Our findings suggest that we should reconsider combining a polyether-based SPE with a conventionally used 4 V class cathode and a graphite anode to develop an innovative, safe, and low-cost battery for the expected large lithium ion battery systems for stationary use.
Zhu, Gang-Tian; Hu, Xiao-Li; He, Sheng; He, Xiao-Mei; Zhu, Shu-Kui; Feng, Yu-Qi
2018-06-05
Tailor-made chitosan fiber was prepared via hydrothermal treatment to serve as a micro-solid phase extraction (micro-SPE) sorbent for the analysis of petroleum acids (PAs) in crude oils. Chitosan fiber, which is commercial and cheap, has a diameter of about 10 μm and a length of a few centimeters. The fibrous property of the sorbent enables the micro-SPE to deal with viscous crude oil samples because of the low back-pressure during extraction, while the abundant hydroxyl groups and amino groups on the surface of chitosan fiber can provide high density of specific sites for adsorption of PAs. Moreover, it was found that hydrothermal treatment at certain conditions could tune the surface properties of chitosan fiber, leading to significant improvement of the capacity of the fiber in adsorption of PAs. Using hydrothermally treated chitosan fiber as sorbent, the micro-SPE was applied to the determination of PAs in crude oils, with the advantages of easy-operation, rapidness and high sensitivity (the limits of detection range from 0.7 ng/g to 5.4 ng/g). Furthermore, coupled with comprehensive two dimensional gas chromatography-mass spectrometry (GC × GCMS), the treated chitosan fiber packed micro-SPE method showed a great potential for comprehensive profiling of PAs in crude oils. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Markina, Natalia E.; Markin, Alexey V.; Zakharevich, Andrey M.; Gorin, Dmitry A.; Rusanova, Tatiana Yu.; Goryacheva, Irina Yu.
2016-12-01
Multifunctional silica gel with embedded silver nanoparticles (SiO2-AgNP) is proposed for application as sorbent for solid-phase extraction (SPE) and simultaneously as substrate for surface-enhanced Raman spectroscopy (SERS) due to their high sorption properties and ability to enhance Raman signal (SERS-active sorbents). SiO2-AgNP was synthesized via alkaline hydrolysis of tetraethyl orthosilicate with simultaneous reduction of silver ions to silver nanoparticles (AgNP) within the SiO2 bulk. Synthesis of AgNP directly to the SiO2 matrix enables to exclude any additional stabilizers for the nanoparticles that educes signal-to-noise ratio during SERS measurement. Apart from Raman spectroscopy, obtained sorbents were also characterized by scanning electron microscopy and UV-visible diffuse reflectance spectroscopy. The influence of AgNO3 concentration used during the SiO2-AgNP synthesis on its gelling time, color, diffuse reflectance spectra, and enhancement of Raman signal was investigated. A Raman enhancement factor of SiO2-AgNP with optimal composition was around 105. Finally, the sorbents were applied for SPE and subsequent SERS detection of model compounds (rhodamine 6G and folic acid). It was found that SPE enables to decrease detectable concentrations by two orders. Therefore, SPE combined with SERS has high potential for further analytical investigations.
Yang, Yunjia; Yu, Jianlong; Yin, Jie; Shao, Bing; Zhang, Jing
2014-11-19
This study aimed to develop a selective analytical method for the simultaneous determination of seven bisphenol analogues in beverage and canned food samples by using a new molecularly imprinted polymer (MIP) as a sorbent for solid-phase extraction (SPE). Liquid chromatography coupled to triple-quadruple tandem mass spectrometry (LC-MS/MS) was used to identify and quantify the target analytes. The MIP-SPE method exhibited a higher level of selectivity and purification than the traditional SPE method. The developed procedures were further validated in terms of accuracy, precision, and sensitivity. The obtained recoveries varied from 50% to 103% at three fortification levels and yielded a relative standard deviation (RSD, %) of less than 15% for all of the analytes. The limits of quantification (LOQ) for the seven analytes varied from 0.002 to 0.15 ng/mL for beverage samples and from 0.03 to 1.5 ng/g for canned food samples. This method was used to analyze real samples that were collected from a supermarket in Beijing. Overall, the results revealed that bisphenol A and bisphenol F were the most frequently detected bisphenols in the beverage and canned food samples and that their concentrations were closely associated with the type of packaging material. This study provides an alternative method of traditional SPE extraction for screening bisphenol analogues in food matrices.
Donadon, Irving; Pinotti, Mirko; Rajkowska, Katarzyna; Pianigiani, Giulia; Barbon, Elena; Morini, Elisabetta; Motaln, Helena; Rogelj, Boris; Mingozzi, Federico; Slaugenhaupt, Susan A; Pagani, Franco
2018-04-25
Familial dysautonomia (FD) is a rare genetic disease with no treatment, caused by an intronic point mutation (c.2204 + 6T>C) that negatively affects the definition of exon 20 in the Elongator complex protein 1 gene (ELP1 also known as IKBKAP). This substitution modifies the 5' splice site and, in combination with regulatory splicing factors, induces different levels of exon 20 skipping, in various tissues. Here, we evaluated the therapeutic potential of a novel class of U1 snRNA molecules, Exon-Specific U1s (ExSpeU1s), in correcting ELP1 exon 20 recognition. Lentivirus-mediated expression of ELP1-ExSpeU1 in FD fibroblasts improved ELP1 splicing and protein levels. We next focused on a transgenic mouse model that recapitulates the same tissue-specific mis-splicing seen in FD patients. Intraperitoneal delivery of ELP1-ExSpeU1s-adeno-associated virus particles successfully increased the production of full-length human ELP1 transcript and protein. This splice-switching class of molecules is the first to specifically correct the ELP1 exon 20 splicing defect. Our data provide proof of principle of ExSpeU1s-adeno-associated virus particles as a novel therapeutic strategy for FD.
Abdelsalam, Mohamed; Chen, Shih-Chu; Yoshida, Terutoyo
2010-08-01
The Lancefield group C alpha-hemolytic Streptococcus dysgalactiae ssp. dysgalactiae (GCSD) causes systemic granulomatous inflammatory disease and high mortality rates in infected fish. Superantigen and streptolysin S genes are the most important virulence factors contributing to an invasive streptococcal infection. PCR amplification revealed that all strains isolated from moribund fish harbored the streptolysin S structural gene (sagA). GCSD fish isolates were PCR negative for emm, speA, speB, speC, speM, smeZ, and ssa. However, the size of the streptococcal pyrogenic exotoxin G (spegg) locus, a superantigen, in positive S. dysgalactiae fish and pig strains was variable. The ORF of the spegg locus of 26 GCSD fish strains and one GCSD pig strain was inserted with IS981SC. Interestingly, the ORF of the spegg locus of two fish strains of GCSD collected in Malaysia was inserted with an IS981SC-IS1161 hybrid IS element. The hybrid IS element was found in all of the GCSD fish isolates and one GCSD pig through PCR screening. Although no insertion sequence (IS) was detected in the spegg locus of S. dysgalactiae ssp. equisimilis (GCSE) strains, a five-nucleotide deletion mutation was detected in the ORF of the spegg locus of one GCSE strain at the supposed site of IS981SC insertion, resulting in a frameshift mutation.
Battle, Katrina N; Jackson, Joshua M; Witek, Małgorzata A; Hupert, Mateusz L; Hunsucker, Sally A; Armistead, Paul M; Soper, Steven A
2014-03-21
We present a novel microfluidic solid-phase extraction (μSPE) device for the affinity enrichment of biotinylated membrane proteins from whole cell lysates. The device offers features that address challenges currently associated with the extraction and purification of membrane proteins from whole cell lysates, including the ability to release the enriched membrane protein fraction from the extraction surface so that they are available for downstream processing. The extraction bed was fabricated in PMMA using hot embossing and was comprised of 3600 micropillars. Activation of the PMMA micropillars by UV/O3 treatment permitted generation of surface-confined carboxylic acid groups and the covalent attachment of NeutrAvidin onto the μSPE device surfaces, which was used to affinity select biotinylated MCF-7 membrane proteins directly from whole cell lysates. The inclusion of a disulfide linker within the biotin moiety permitted release of the isolated membrane proteins via DTT incubation. Very low levels (∼20 fmol) of membrane proteins could be isolated and recovered with ∼89% efficiency with a bed capacity of 1.7 pmol. Western blotting indicated no traces of cytosolic proteins in the membrane protein fraction as compared to significant contamination using a commercial detergent-based method. We highlight future avenues for enhanced extraction efficiency and increased dynamic range of the μSPE device using computational simulations of different micropillar geometries to guide future device designs.
Erdem, Arzum; Congur, Gulsah
2014-01-01
The multi-channel screen-printed array of electrodes (MUX-SPE16) was used in our study for the first time for electrochemical monitoring of nucleic acid hybridization related to different miRNA sequences (miRNA-16, miRNA-15a and miRNA-660, i.e, the biomarkers for Alzheimer disease). The MUX-SPE16 was also used for the first time herein for the label-free electrochemical detection of nucleic acid hybridization combined magnetic beads (MB) assay in comparison to the disposable pencil graphite electrode (PGE). Under the principle of the magnetic beads assay, the biotinylated inosine substituted DNA probe was firstly immobilized onto streptavidin coated MB, and then, the hybridization process between probe and its complementary miRNA sequence was performed at MB surface. The voltammetric transduction was performed using differential pulse voltammetry (DPV) technique in combination with the single-use graphite sensor technologies; PGE and MUX-SPE16 for miRNA detection by measuring the guanine oxidation signal without using any external indicator. The features of single-use sensor technologies, PGE and MUX-SPE16, were discussed concerning to their reproducibility, detection limit, and selectivity compared to the results in the earlier studies presenting the electrochemical miRNA detection related to different miRNA sequences. © 2013 Elsevier B.V. All rights reserved.
Liu, Xiaofang; Zhou, Shu; Zhu, Quanfei; Ye, Yong; Chen, Huaixia
2014-09-01
A sample pretreatment method, solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME), was established for the sensitive determination of polycyclic aromatic hydrocarbons (PAHs) in smoked bacon samples. In the SPE-DLLME process, three PAHs including naphthalene (Naph), phenanthrene (Phen) and pyrene (Pyr) were extracted from samples and transferred into C18 SPE cartridge. The target analytes were subsequently eluted with 1.2 ml of acetonitrile-dichloromethane (5:1, v/v) mixture solution. The eluent was injected directly into the 5.0 ml ultrapure water in the subsequent DLLME procedure. The sedimented phase was concentrated under a gentle nitrogen flow to 120.0 µl. Finally, the analytes in the extraction solvent were determined by high-performance liquid chromatography with a ultra-violet detector. Some important extraction parameters affecting the performance, such as the sample solution flow rate, breakthrough volume, salt addition as well as the type and volume of the elution solvent were optimized. The developed method provided an ultra enrichment factors for PAHs ranged from 3478 to 3824. The method was applied for the selective extraction and sensitive determination of PAHs in smoked bacon samples. The limits of detection (S/N = 3) were 0.05, 0.01, 0.02 μg kg(-1) for Naph, Phen, Pyr, respectively. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zhang, Ying; Li, Yan; Zhu, Xiao-Juan; Li, Min; Chen, Hao-Yu; Lv, Xiao-Ling; Zhang, Jian
2017-07-01
A reliable and accurate method for the determination of seven biogenic amines (BAs) was developed and validated with Chinese rice wine samples. The BAs were derivatised with dansyl chloride, cleaned up using solid-phase extraction (SPE) and separated by high-performance liquid chromatography (HPLC) coupled with ultraviolet (UV) detection. The optimised derivatisation reaction, conducted at pH 9.6 and 60°C for 30 min, ensured baseline separation and peak symmetry for each BA. SPE clean-up using Oasis MCX cartridges yielded good recovery rates for all BAs and effectively reduced matrix effects. The developed method shows good linearity with determination coefficients of more than 0.9989 over a concentration range of 0.1-100 mg l -1 . The limits of detection (LODs) for the investigated BAs ranged from 2.07 to 5.56 µg l -1 . The intra- and inter-day relative standard deviations (RSDs) ranged from 0.86% to 3.81% and from 2.13% to 3.82%, respectively. Spiking experiments showed that the overall recovery rates ranged from 85% to 113%. Thus, the proposed method was demonstrated as being suitable for simultaneous detection, with accurate and precise quantification, of BAs in Chinese rice wine.
Jeong, Yoonah; Schäffer, Andreas; Smith, Kilian
2017-05-01
Oasis hydrophilic lipophilic balance ® (Oasis HLB) is commonly employed in solid phase extraction (SPE) of environmental contaminants and within polar organic chemical integrative passive samplers (POCIS). In this study batch experiments were carried out to evaluate the relative affinity of a range of relevant organic pollutants to Oasis HLB in aqueous systems. The influence of sorbate concentration, temperature, pH, and salinity on the equilibrium sorption was investigated. Equilibrium partition ratios (K D ) of 28 compounds were determined, ranging over three orders of magnitude from 1.16 × 10 3 L/kg (atenolol) to 1.07 × 10 6 L/kg (isoproturon). The Freundlich model was able to describe the equilibrium partitioning to Oasis HLB, and an analysis of the thermodynamic parameters revealed the spontaneous and exothermic nature of the partitioning process. Ionic strength had only a minor effect on the partitioning, whereas pH had a considerable effect but only for ionizable compounds. The results show that apolar interactions between the Oasis HLB and analyte mainly determine the equilibrium partitioning. These research findings can be used to optimize the application of SPE and POCIS for analyses of environmental contaminants even in complex mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.
Radiation equivalent dose simulations for long-term interplanetary flights
NASA Astrophysics Data System (ADS)
Dobynde, M. I.; Drozdov, A.; Shprits, Y. Y.
2016-12-01
Cosmic particle radiation is a limiting factor for the human interplanetary flights. The unmanned flights inside heliosphere and human flights inside of magnetosphere tend to become a routine procedure, whereas there have been only few shot term human flights out of it (Apollo missions 1969-1972) with maximum duration less than a month. Long-term human flights set much higher requirements to the radiation shielding, primarily because of long exposition to cosmic radiation. Inside the helosphere there are two main sources of cosmic radiation: galactic cosmic rays (GCR) and soalr particle events (SPE). GCR come from the outside of heliosphere forming a background of overall radiation that affects the spacecraft. The intensity of GCR is varied according to solar activity, increasing with solar activity decrease and backward, with the modulation time (time between nearest maxima) of 11 yeas. SPE are shot term events, comparing to GCR modulation time, but particle fluxes are much more higher. The probability of SPE increases with the increase of solar activity. Time dependences of the intensity of these two components encourage looking for a time window of flight, when intensity and effect of GCR and SPE would be minimized. Combining GEANT4 Monte Carlo simulations with time dependent model of GCR spectra and data on SPE spectra we show the time dependence of the radiation dose in an anthropomorphic human phantom inside the shielding capsule. Different types of particles affect differently on the human providing more or less harm to the tissues. We use quality factors to recalculate absorbed dose into biological equivalent dose, which give more information about risks for astronaut's health. Incident particles provide a large amount of secondary particles while propagating through the shielding capsule. We try to find an optimal combination of shielding material and thickness, that will effectively decrease the incident particle energy, at the same time minimizing flow of secondary induced particles and minimizing most harmful particle types flows.
Jõul, Piia; Vaher, Merike; Kuhtinskaja, Maria
2018-05-01
In this study, SPE method using a carbon aerogel(CA)-based sorbent was developed and evaluated for the simultaneous extraction of sulfur mustard (HD) degradation products from environmental water samples. Applied CAs proved to be very promising materials for use as SPE sorbents, due to their high porosity, very low density and a large specific surface area. 10 degradation products of HD, both aliphatic and cyclic (thiodiglycol (TDG), TDG sulfoxide, TDG sulfone, 3,5-dithia-1,7-heptanediol, 3,6-dithia-1,8-octanediol, 1,4-thioxane, 1,3-dithiolane, 1,4-dithiane, 1,2,5-trithiepane, and 1,4,5-oxadithiepane) were extracted on a CA-based SPE cartridge. The concentrations of target analytes in the eluate were determined by HPLC-DAD and CE-DAD. Several parameters affecting the extraction efficiency, including the kind and volume of the eluting solvent, sample loading flow rate, volume and ionic strength as well as the reusability of the cartridge, were investigated and optimized to achieve the best performance for the analytes. A series of quantitative parameters such as linear range, coefficient of determination, LOD, LOQ and precision were examined under the optimized conditions. High sensitivity (LODs 0.17-0.50 μM) and high precision (intraday RSD = 2.0-7.7% and interday RSD = 2.7-9.9%) for all the analytes were achieved. The performance of the CA-based sorbent was compared with that of commonly used SPE sorbents. Applied for the analysis of spiked pore water samples collected from the Bornholm Basin, one of the largest chemical warfare dumping sites in the Baltic Sea, the proposed method allowed high SPE recoveries of all the analytes ranging from 83.5 to 99.7% to be obtained. Copyright © 2018 Elsevier Ltd. All rights reserved.
Chen, Wenzhang; Shen, Jing; Yin, Xuefeng; Yu, Yingnian
2007-01-01
A nano-scale solid-phase extraction (SPE) device was developed for the detection of gel-separated proteins in low abundance by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) with a simplified microfabrication technology. By using SU-8 photoresist instead of epoxy glue to connect the microchannel and transfer capillary, polymeric contaminant signals in MS analysis were significantly reduced. Micro SPE columns with different capacities and geometric characteristics were investigated in order to increase the detection sensitivity and decrease spot size for MALDI-TOF-MS analysis. It is shown that enhancements in sensitivities for the detection of proteins in low abundance were correlated with the reduction in column capacity and increase in column aspect ratio. Fifty nanoliters of matrix solution were sufficient to elute the sample completely from the optimized micro SPE column with 3.5 nL capacity. The mass spectrum of a 5 fmol in-gel tryptic digest of bovine serum albumin (BSA), processed by the micro SPE column, demonstrated that 29 peptides matched the protein giving a sequence coverage of 51%, which was better than that obtained from analysis of 25 fmol of the same sample prepared by the dried-droplet method. With the micro SPE column treatment of 2 microL of digestion supernatant of a gel spot of the IQGAP1 protein, 15 peptides were detected from the mass spectrum with the highest individual score of 111, while, with a ZipTip procedure, only nine peaks were detected with the highest individual score of 71. Analytical results demonstrated that this approach greatly improved the sequence coverage and identification specificity for the tested protein. It can serve as a very useful tool in proteomics studies, especially for low abundance proteins. Copyright (c) 2006 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Afanasyev, Andrey
2017-04-01
Numerical modelling of multiphase flows in porous medium is necessary in many applications concerning subsurface utilization. An incomplete list of those applications includes oil and gas fields exploration, underground carbon dioxide storage and geothermal energy production. The numerical simulations are conducted using complicated computer programs called reservoir simulators. A robust simulator should include a wide range of modelling options covering various exploration techniques, rock and fluid properties, and geological settings. In this work we present a recent development of new options in MUFITS code [1]. The first option concerns modelling of multiphase flows in double-porosity double-permeability reservoirs. We describe internal representation of reservoir models in MUFITS, which are constructed as a 3D graph of grid blocks, pipe segments, interfaces, etc. In case of double porosity reservoir, two linked nodes of the graph correspond to a grid cell. We simulate the 6th SPE comparative problem [2] and a five-spot geothermal production problem to validate the option. The second option concerns modelling of flows in porous medium coupled with flows in horizontal wells that are represented in the 3D graph as a sequence of pipe segments linked with pipe junctions. The well completions link the pipe segments with reservoir. The hydraulics in the wellbore, i.e. the frictional pressure drop, is calculated in accordance with Haaland's formula. We validate the option against the 7th SPE comparative problem [3]. We acknowledge financial support by the Russian Foundation for Basic Research (project No RFBR-15-31-20585). References [1] Afanasyev, A. MUFITS Reservoir Simulation Software (www.mufits.imec.msu.ru). [2] Firoozabadi A. et al. Sixth SPE Comparative Solution Project: Dual-Porosity Simulators // J. Petrol. Tech. 1990. V.42. N.6. P.710-715. [3] Nghiem L., et al. Seventh SPE Comparative Solution Project: Modelling of Horizontal Wells in Reservoir Simulation // SPE Symp. Res. Sim., 1991. DOI: 10.2118/21221-MS.
Planas, Carles; Palacios, Oscar; Ventura, Francesc; Rivera, Josep; Caixach, Josep
2008-08-15
A method based on automated solid-phase extraction (SPE) and isotope dilution gas chromatography/high resolution mass spectrometry (GC/HRMS) has been developed for the analysis of nine nitrosamines in water samples. The combination of automated SPE and GC/HRMS for the analysis of nitrosamines has not been reported previously. The method shows as advantages the selectivity and sensitivity of GC/HRMS analysis and the high efficiency of automated SPE with coconut charcoal EPA 521 cartridges. Low method detection limits (MDLs) were achieved, along with a greater facility of the procedure and less dependence on the operator with regard to the methods based on manual SPE. Quality requirements for isotope dilution-based methods were accomplished for most analysed nitrosamines, regarding to trueness (80-120%), method precision (<15%) and MDLs (0.08-1.7 ng/L). Nineteen water samples (16 samples from a drinking water treatment plant {DWTP}, 2 chlorinated samples from a sewage treatment plant {STP} effluent, and 1 chlorinated sample from a reservoir) were analysed. Concentrations of nitrosamines in the STP effluent were 309.4 and 730.2 ng/L, being higher when higher doses of chlorine were applied. N-Nitrosodimethylamine (NDMA) and N-nitrosodiethylamine (NDEA) were the main compounds identified in the STP effluent, and NDEA was detected above 200 ng/L, regulatory level for NDMA in effluents stated in Ontario (Canada). Lower concentrations of nitrosamines were found in the reservoir (20.3 ng/L) and in the DWTP samples (n.d. -28.6 ng/L). NDMA and NDEA were respectively found in the reservoir and in treated and highly chlorinated DWTP samples at concentrations above 10 ng/L (guide value established in different countries). The highest concentrations of nitrosamines were found after chlorination and ozonation processes (ozonated, treated and highly chlorinated water) in DWTP samples.
Modeling study of radiation effects on thrombocytopoietic and granulocytopoietic systems in humans
NASA Astrophysics Data System (ADS)
Smirnova, O. A.
2011-07-01
Biologically motivated mathematical models, which describe the dynamics of thrombocytopoiesis and granulocytopoiesis in nonirradiated and irradiated humans, are developed. These models, being based on conventional biological theories, are implemented as the systems of nonlinear differential equations whose variables and constant parameters have clear biological meaning. Thorough analytical and numerical analysis of the proposed models is performed. It is found that the models on hand are capable of reproducing the dynamical regimes which are typical for the thrombocytopoiesis and granulocytopoiesis in the norm and in the case of hematological disorders, such as cyclic thrombocytopenia and cyclic neutropenia. The elaborated models are applied to investigate the dynamics of thrombocytopoiesis and granulocytopoiesis in astronauts exposed to space radiation during long-term missions such as voyages to Mars. The dose rate equivalent for space radiation (galactic cosmic rays (GCR) and solar particles event (SPE)) is taken as a variable parameter of the models. It is revealed that the thrombocytopoietic and granulocytopoietic systems can adapt themselves to GCR exposure. It is also shown that an SPE causes damped oscillations of the "effective" radiosensitivity of these cell systems that, in turn, determines the strength of their responses to the subsequent SPE. Specifically, depending on the time interval between SPEs, the preceding SPE can induce either radiosensitization or radioprotection effects on the thrombocytopoietic and granulocytopoietic systems. In the last case, adaptive responses to the subsequent SPE in these systems occur. All this testifies to the efficiency of employment of the developed models in investigation and prediction of effects of space radiation on the thrombocytopoietic and granulocytopoietic systems. The developed models of these vital body systems provide a better understanding of the risks to health from the solar particles events and enable one to evaluate the need of operational applications of countermeasures for astronauts in the long-term space missions.
Innovative Approach to Senior Practicum Students.
Golightly, Melissa; Kennett, Natalie; Stout, Jacqueline A
2017-12-01
Traditional senior practicum experiences (SPEs) are microsystem based-they allow senior nursing students the opportunity to build professional nursing competencies as they transition into practice. As health care transformation continues unabated, there is a need to work toward closing the gap between nursing academia and nursing practice. A cardiovascular service line created an innovative SPE to better prepare senior nursing students for working as professional nurses in a service line model. The Senior Practicum Immersion Experience (SPIE) proved to be beneficial to senior practicum students and offered firsthand experience of the role professional nurses play in a service line model. This model increased the number of senior practicum students accepted into the cardiac service line by 50%. The SPIE creates an innovative solution to increasing the number of senior practicum students while allowing students the ability to learn and practice in a service line model. [J Nurs Educ. 2017;56(12):745-747.]. Copyright 2017, SLACK Incorporated.
Evaluating Shielding Effectiveness for Reducing Space Radiation Cancer Risks
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Kim, Myung-Hee Y.; Ren, Lei
2007-01-01
We discuss calculations of probability distribution functions (PDF) representing uncertainties in projecting fatal cancer risk from galactic cosmic rays (GCR) and solar particle events (SPE). The PDF s are used in significance tests of the effectiveness of potential radiation shielding approaches. Uncertainties in risk coefficients determined from epidemiology data, dose and dose-rate reduction factors, quality factors, and physics models of radiation environments are considered in models of cancer risk PDF s. Competing mortality risks and functional correlations in radiation quality factor uncertainties are treated in the calculations. We show that the cancer risk uncertainty, defined as the ratio of the 95% confidence level (CL) to the point estimate is about 4-fold for lunar and Mars mission risk projections. For short-stay lunar missions (<180 d), SPE s present the most significant risk, however one that is mitigated effectively by shielding, especially for carbon composites structures with high hydrogen content. In contrast, for long duration lunar (>180 d) or Mars missions, GCR risks may exceed radiation risk limits, with 95% CL s exceeding 10% fatal risk for males and females on a Mars mission. For reducing GCR cancer risks, shielding materials are marginally effective because of the penetrating nature of GCR and secondary radiation produced in tissue by relativistic particles. At the present time, polyethylene or carbon composite shielding can not be shown to significantly reduce risk compared to aluminum shielding based on a significance test that accounts for radiobiology uncertainties in GCR risk projection.
NASA Astrophysics Data System (ADS)
Qiu, J. L.; Kang, X. J.; Ma, L.; Huang, W. Y.; Ge, Q. Y.
2015-07-01
Solid phase extraction (SPE) has been used widely for sample preparation in the analytical process. Many efforts have focused on developing novel adsorbents to enrich and purify the analytes effectively. In this study, poly-3, 4-ethylenedioxythiophene (PEDOT) nanofiber was prepared and used as the SPE adsorbent. The fiber performed good in extraction of metal ions, Cd, Sn, Hg, Pb, Al, and As, with the extraction recoveries ranged from 53.9% to 99.6% in the wet digested samples of fingernails. A PEDOT namofibers SPE column coupled with ICP-MS was established for assay of elements in fingernails. The levels of elements (Cd, Sn, Hg, Pb, Al, and As) in the fingernails of 77 healthy Chinese children (6-7 and 10-11 years) were determined. Independent t test shows that no significance has been found between boys and girls. On the contrary, there was obvious difference on the levels of most elements between the two grade groups.
Lin, Zhenkun; Cheng, Wenjing; Li, Yanyan; Liu, Zhiren; Chen, Xiangping; Huang, Changjiang
2012-03-30
Leakage of the residual template molecules is one of the biggest challenges for application of molecularly imprinted polymer (MIP) in solid-phase extraction (SPE). In this study, bisphenol F (BPF) was adopted as a dummy template to prepare MIP of bisphenol A (BPA) with a superparamagnetic core-shell nanoparticle as the supporter, aiming to avoid residual template leakage and to increase the efficiency of SPE. Characterization and test of the obtained products (called mag-DMIP beads) revealed that these novel nanoparticles not only had excellent magnetic property but also displayed high selectivity to the target molecule BPA. As mag-DMIP beads were adopted as the adsorbents of solid-phase extraction for detecting BPA in real water samples, the recoveries of spiked samples ranged from 84.7% to 93.8% with the limit of detection of 2.50 pg mL(-1), revealing that mag-DMIP beads were efficient SPE adsorbents. Copyright © 2012 Elsevier B.V. All rights reserved.
Togola, Anne; Coureau, Charlotte; Guezennec, Anne-Gwenaëlle; Touzé, Solène
2015-05-01
The presence of acrylamide in natural systems is of concern from both environmental and health points of view. We developed an accurate and robust analytical procedure (offline solid phase extraction combined with UPLC/MS/MS) with a limit of quantification (20 ng L(-1)) compatible with toxicity threshold values. The optimized (considering the nature of extraction phases, sampling volumes, and solvent of elution) solid phase extraction (SPE) was validated according to ISO Standard ISO/IEC 17025 on groundwater, surface water, and industrial process water samples. Acrylamide is highly polar, which induces a high variability during the SPE step, therefore requiring the use of C(13)-labeled acrylamide as an internal standard to guarantee the accuracy and robustness of the method (uncertainty about 25 % (k = 2) at limit of quantification level). The specificity of the method and the stability of acrylamide were studied for these environmental media, and it was shown that the method is suitable for measuring acrylamide in environmental studies.
Månsson, Maria; Phipps, Richard K; Gram, Lone; Munro, Murray H G; Larsen, Thomas O; Nielsen, Kristian F
2010-06-25
Microbial natural products (NP) cover a high chemical diversity, and in consequence extracts from microorganisms are often complex to analyze and purify. A distribution analysis of calculated pK(a) values from the 34390 records in Antibase2008 revealed that within pH 2-11, 44% of all included compounds had an acidic functionality, 17% a basic functionality, and 9% both. This showed a great potential for using ion-exchange chromatography as an integral part of the separation procedure, orthogonal to the classic reversed-phase strategy. Thus, we investigated the use of an "explorative solid-phase extraction" (E-SPE) protocol using SAX, Oasis MAX, SCX, and LH-20 columns for targeted exploitation of chemical functionalities. E-SPE provides a minimum of fractions (15) for chemical and biological analyses and implicates development into a preparative scale methodology. Overall, this allows fast extract prioritization, easier dereplication, mapping of biological activities, and formulation of a purification strategy.
Della Pelle, Flavio; Di Crescenzo, Maria Chiara; Sergi, Manuel; Montesano, Camilla; Di Ottavio, Francesca; Scarpone, Rossana; Scortichini, Giampiero; Compagnone, Dario
2016-01-01
A rapid, selective and effective method of extraction, clean-up and concentration of organophosphorous pesticides from wheat followed by electrospray (ESI) LC-MS/MS analysis was developed. The μ-SPE (micro-solid-phase extraction) procedure resulted in good analytical performance and reduced at the same time matrix effects, analysis time and solvent consumption. Limits of detection (LODs) and quantification (LOQs) were in the range of 0.3-10 and 1-30 μg kg(-1), respectively, with good reproducibility (RSD ≤ 13.8) and recoveries between 75% and 109%. Coefficients of determination (r(2)) were greater than 0.996 for the studied pesticides. Despite the reduced sorbent bed mass of μ-SPE tips (4.2 mg), the analytical data showed that no saturation phenomena occurs in the tested range of concentration both for single compounds and mixtures. Several real samples were analysed and the concentrations of the selected pesticides were found to be below the respective maximum residue limit (MRLs).
Luo, Xiao-Fei; Yang, Yuan; Sun, Cheng-Jun
2012-01-01
To develop a method for the simultaneous determination of 44 organophosphorus pesticides in food by SPE disk extraction-capillary gas chromatography with pulsed flame photometric detection. Organophosphorus pesticides in food were extracted ultrasonically with water. Then the extract was cleaned-up with SPE disk and eluted with ethyl acetate. Finally the eluent was condensed to 1mL under N2 at 55 degrees C. Gas chromatography was applied for quantitative detection of the organophosphorus pesticides in the sample. The linear range of the method for all the pesticides were in the range of 0.01-0.5 mg/kg with correlation coefficients of 0.992-1.000. The detection limits of the method were in the range of 0.0005-0.01 mg/kg. The recoveries for most pesticides were 60%-120% with relative standard deviations of less than 15%. The method is simple, sensitive, environmentally friendly and suitable for the determination of organophosphorous pesticides in food.
Silva, Lorena M A; Filho, Elenilson G A; Thomasi, Sérgio S; Silva, Bianca F; Ferreira, Antonio G; Venâncio, Tiago
2013-09-01
The informal (and/or illegal) e-commerce of pharmaceutical formulations causes problems that governmental health agencies find hard to control, one of which concerns formulas sold as natural products. The purpose of this work was to explore the advantages and limitations of DOSY and HPLC-UV-SPE-NMR. These techniques were used to identify the components of a formula illegally marketed in Brazil as an herbal medicine possessing anti-inflammatory and analgesic properties. DOSY was able to detect the major components present at higher concentrations. Complete characterization was achieved using HPLC-UV-SPE-NMR, and 1D and 2D NMR analyses enabled the identification of known synthetic drugs. These were ranitidine and a mixture of orphenadrine citrate, piroxicam, and dexamethasone, which are co-formulated in a remedy called Rheumazim that is used to relieve severe pain, but it is prohibited in Brazil because of a lack of sufficient pharmacokinetic and pharmacodynamic information. Copyright © 2013 John Wiley & Sons, Ltd.
Chen, Yonggang; Meng, Junhua; Zou, Jili; An, Jing
2015-06-01
Hordenine is an active compound found in several foods, herbs and beer. In this work, a novel sorbent was fabricated for selective solid-phase extraction (SPE) of hordenine in biological samples. The organic polymer sorbent was synthesized in one step in the plastic barrel of a syringe by a pre-polymerization solution consisting of methacrylic acid (MAA), 4-vinylphenylboronic acid (VB) and ethylene glycol dimethacrylate (EGDMA). The conditions for preparation were optimized to generate a poly(MAA-VB-EGMDA) monolith with good permeability. The monolith exhibited good enrichment efficiency towards hordenine. By using tyramine as the internal standard, a poly(MAA-VB-EGMDA)-based SPE-HPLC method was established for analysis of hordenine. Conditions for SPE, including volume of eluting solvent, pH of sample solution, sampling rate and sample volume, were optimized. The proposed SPE-HPLC method presented good linearity (R(2) = 0.9992) within 10-2000 ng/mL and the detection limits was 3 ng/mL, which is significantly more sensitive than reported methods. The method was also applied in plasma and urine samples; good capability of removing matrices was observed, while hordenine in low content was well extracted and enriched. The recoveries were from 90.6 to 94.7% and from 89.3 to 91.5% for the spiked plasma and urine samples, respectively, with the relative standard deviations <4.7%. Copyright © 2014 John Wiley & Sons, Ltd.
Use of solid phase extraction (SPE) to evaluate in vitro skin permeation of aescin.
Montenegro, L; Carbone, C; Giannone, I; Puglisi, G
2007-05-01
The aim of this work was to evaluate the feasibility of assessing aescin in vitro permeation through human skin by determining the amount of aescin permeated using conventional HPLC procedures after extraction of skin permeation samples by means of solid phase extraction (SPE). Aescin in vitro skin permeation was assessed from aqueous solutions and gels using both Franz-type diffusion cells and flow-through diffusion cells. The SPE method used was highly accurate (mean accuracy 99.66%), highly reproducible (intra-day and inter-day variations lower than 2.3% and 2.2%, respectively) and aescin recovery from normal saline was greater than 99%. The use of Franz-type diffusion cells did not allow us to determine aescin flux values through excised human skin, therefore aescin skin permeation parameters could be calculated only using flow-through diffusion cells. Plotting the cumulative amount of aescin permeated as a function of time, linear relationships were obtained from both aqueous solution and gel using flow-through diffusion cells. Aescin flux values through excised human skin from aqueous gel were significantly lower than those observed from aqueous solution (p < 0.05). Calculating aescin percutaneous absorption parameters we evidenced that aescin partition coefficient was lower from the aqueous gel with respect to the aqueous solution. Therefore, the SPE method used in this study was suitable to determine aescin in vitro skin permeation parameters from aqueous solutions and gels using a conventional HPLC method for the analysis of the skin permeation samples.
Bortolomeazzi, Renzo; Munari, Marina; Anese, Monica; Verardo, Giancarlo
2012-12-15
In this work, a rapid and reliable purification method based on a single mixed solid phase extraction (SPE) column, for the determination of acrylamide in roasted coffee by liquid chromatography-tandem mass spectrometry, was developed. Deuterium labelled d(3)-acrylamide was used as internal standard. Acrylamide was extracted by 10 mL of water and the extract purified by a single SPE column consisting of 0.5 g of an in-house prepared mixture of C18, strong cation (SCX) and anion exchange (SAX) sorbents in the ratio 2/1.5/1.5 (w/w/w). The amount of the three sorbents was optimised in order to eliminate the main interfering compounds present in coffee extracts, such as melanoidins, trigonelline, chlorogenic acids and caffeine. The SPE procedure was very simple and consisted of pushing 1 mL of an aqueous coffee extract through the SPE column followed by 1 mL of water which was collected for the analysis. The method was tested on six samples of roasted coffee of different composition and roasting level. The repeatability of the method, expressed as relative standard deviation (n=6), was lower than 5%. The recovery of acrylamide at three spiked levels ranged from 92% to 95%. The limits of detection (LOD) and quantitation (LOQ) were 5 and 16 μg kg(-1), respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Gielecińska, Iwona; Mojska, Hanna
2013-01-01
Numerous studies have demonstrated acrylamide to be both neurotoxic and carcinogenic. At present it is widely recognised that acrylamide is mainly formed through the Maillard reaction from free asparagine and reducing sugars. The major sources of dietary acrylamide are potato products, processed cereals and coffee. To optimise and validate an analytical method for determining acrylamide in coffee by liquid chromatography and tandem mass spectrometry analysis (LC/MS/MS) using SPE clean-up. Analytical separation of acrylamide from roasted coffee was performed by liquid chromatography using a Hypercarb column followed by LC/MS/MS analysis, with 2,3,3-d3 acrylamide as an internal standard. The method was based on two purification steps: the first with hexane and Carrez solutions in order to remove of fat and to precipitate proteins, respectively; and the second with a solid-phase extraction (SPE) column which proved to be efficient in the elimination of the main chromatographic interferences. Limit of quantification (LOQ) for measuring acrylamide in coffee was 50 microg/kg. The described method demonstrates satisfactory precision (RSD = 2.5%), repeatability (RSD = 9.2%) and accuracy (mean recovery - 97.4%). Our results confirm that LC-MS/MS with SPE clean-up is selective and suitable for determination of acrylamide in coffee. Indeed, this method meets the criteria of EU Commission Recommendations (No. 2007/331/EC and No. 2010/307/EU), on the monitoring of acrylamide levels in food.
Mazzoni, Michela; Rusconi, Marianna; Valsecchi, Sara; Martins, Claudia P. B.; Polesello, Stefano
2015-01-01
An UHPLC-MS/MS multiresidue method based on an on-line solid phase extraction (SPE) procedure was developed for the simultaneous determination of 9 perfluorinated carboxylates (from 4 to 12 carbon atoms) and 3 perfluorinated sulphonates (from 4 to 8 carbon atoms). This work proposes using an on-line solid phase extraction before chromatographic separation and analysis to replace traditional methods of off-line SPE before direct injection to LC-MS/MS. Manual sample preparation was reduced to sample centrifugation and acidification, thus eliminating several procedural errors and significantly reducing time-consuming and costs. Ionization suppression between target perfluorinated analytes and their coeluting SIL-IS were detected for homologues with a number of carbon atoms less than 9, but the quantitation was not affected. Total matrix effect corrected by SIL-IS, inclusive of extraction efficacy, and of ionization efficiency, ranged between −34 and +39%. The percentage of recoveries, between 76 and 134%, calculated in different matrices (tap water and rivers impacted by different pollutions) was generally satisfactory. LODs and LOQs of this on-line SPE method, which also incorporate recovery losses, ranged from 0.2 to 5.0 ng/L and from 1 to 20 ng/L, respectively. Validated on-line SPE-LC/MS/MS method has been applied in a wide survey for the determination of perfluoroalkyl acids in Italian surface and ground waters. PMID:25834752
Lawal, Abubakar; Wong, Richard Chee Seng; Tan, Guan Huat; Abdulra'uf, Lukman Bola; Alsharif, Ali Mohamed Ali
2018-04-21
Fruits and vegetables constitute a major type of food consumed daily apart from whole grains. Unfortunately, the residual deposits of pesticides in these products are becoming a major health concern for human consumption. Consequently, the outcome of the long-term accumulation of pesticide residues has posed many health issues to both humans and animals in the environment. However, the residues have previously been determined using conventionally known techniques, which include liquid-liquid extraction, solid-phase extraction (SPE) and the recently used liquid-phase microextraction techniques. Despite the positive technological effects of these methods, their limitations include; time-consuming, operational difficulty, use of toxic organic solvents, low selective property and expensive extraction setups, with shorter lifespan of instrumental performances. Thus, the potential and maximum use of these methods for pesticides residue determination has resulted in the urgent need for better techniques that will overcome the highlighted drawbacks. Alternatively, attention has been drawn recently towards the use of quick, easy, cheap, effective, rugged and safe technique (QuEChERS) coupled with dispersive solid-phase extraction (dSPE) to overcome the setback challenges experienced by the previous technologies. Conclusively, the reviewed QuEChERS-dSPE techniques and the recent cleanup modifications justifiably prove to be reliable for routine determination and monitoring the concentration levels of pesticide residues using advanced instruments such as high-performance liquid chromatography, liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry.
Jia, Yuqian; Zhao, Yanfang; Zhao, Mei; Wang, Zhenhua; Chen, Xiangfeng; Wang, Minglin
2018-05-25
A core-shell discoid shaped indium (III) sulfide@metal-organic framework (MIL-125(Ti)) nanocomposite was synthesized by a solvothermal method and explored as an adsorbent material for dispersive solid-phase extraction (d-SPE). The as-synthesized sorbent was characterized by scanning electron microscopy, energy-dispersive spectroscopy, transmission electron microscopy, powder X-ray diffraction, N 2 adsorption-desorption analysis, and Fourier transform infrared spectroscopy. The extraction performance was evaluated by the d-SPE of 16 nitro-polycyclic aromatic hydrocarbons (NPAHs) from water samples. The analysis was carried out by gas chromatography (GC) coupled with triple quadruple mass spectrometer in negative chemical ionization (NCI) mode. The selected ion monitoring (SIM) was used in the quantification of the target NPAHs. Extraction factors affecting the d-SPE, including the ionic strength, extraction temperature, and extraction time were optimized by the response surface methodology. The developed d-SPE method showed good linear correlations from 10 to 1000 ng L -1 (r > 0.99), low detection limits (2.9-83.0 ng L -1 ), satisfactory repeatability (relative standard deviation of <10%, n = 6), and acceptable recoveries (71.3%-112.2%) for water samples. The developed method was used for the food and environmental sample analysis. The results demonstrated that the method could be used for sample preparation of trace NPAHs in real samples. Copyright © 2018. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baun, A.; Jensen, S.D.; Bjerg, P.L.
2000-05-01
The aim of the present study was to describe the occurrence and distribution of toxicity related to organic chemical contaminants in the leachate plume downgradient of the Grindsted Landfill (Denmark). A total of 27 groundwater samples were preconcentrated by solid-phase extraction (SPE) using XAD-2 as the resin material. This treatment effectively eliminated sample matrix toxicity caused by inorganic salts and natural organic compounds and produced an aqueous concentrate of the nonvolatile chemical contaminants. The SPE extracts were tested in a battery of standardized short-term aquatic toxicity tests with luminescent bacteria (Vibrio fischeri), algae (Selenastrum capricornutum), and crustaceans (Daphnia magna). Additionalmore » genotoxicity tests were made using the umuC test (Salmonella typhimurium). Biotests with algae and luminescent bacteria were the most sensitive tests. On the basis of results with these two bioassays, it was concluded that SPE extracts of groundwater collected close to the landfill were toxic. The toxicity decreased with the distance from the landfill. At distances greater than 80 m from the border of the landfill, the groundwater toxicity was not significantly different from the background toxicity. SPE extracts were not toxic to Daphnia, and no genotoxicity was observed in the umuC test. The overall findings indicate that a battery of biotests applied on preconcentrated groundwater samples can be a useful tool for toxicity characterization and hazard ranking of groundwater polluted with complex chemical mixtures, such as landfill leachates.« less
[Ulcerative colitis in remission with cerebral abscess and septic pulmonary emboli: a case report].
Yamauchi, Takahiro; Katsumura, Hirotoshi; Noguchi, Yoshiyuki; Kikuta, Ken-ichiro
2013-12-01
A 69-year-old man with a 4-year history of ulcerative colitis (UC) presented at our hospital with high fever, dysarthria, and right hemiparesis. Computed tomography (CT) of the head revealed a low-density area in the left temporal lobe. Chest CT exposed multiple pulmonary nodules in his right lung. Gadolinium-enhanced magnetic resonance imaging (MRI) indicated a 3-cm tumor with ring enhancement located in the left temporal lobe. The patient was diagnosed with a brain abscess and septic pulmonary emboli (SPE); antibiotic therapy was initiated. Shrinkage of the brain abscess was not observed in a follow-up MRI;thus, he underwent aspiration and drainage of the abscess 11 days after his hospitalization. Intravenous antibiotic therapy was continued for 6 weeks after the operation. Follow-up chest CT performed 48 days after his hospitalization revealed disappearance of the SPE. Follow-up head MRI conducted 63 days after his hospitalization indicated that the cyst had almost disappeared. Occurrence of a brain abscess in patients with UC has been very rarely reported in Japan. To the best of our knowledge, this is the first report of a case of a brain abscess in conjunction with UC and SPE. It is believed that patients with UC have compromised immunity and exhibit activation of the blood coagulation system. Our report suggests that medical practitioners should consider the possibility of a brain abscess and SPE for patients with UC.
Juan-García, Ana; Picó, Yolanda; Font, Guillermina
2005-05-06
Two procedures based on solid-phase extraction (SPE) and stir-bar sorptive extraction (SBSE) in combination with micellar electrokinetic chromatography (MEKC)--diode array detection (DAD) were compared for the simultaneous extraction of acrinathrin, bitertanol, cyproconazole, fludioxonil, flutriafol, myclobutanil, pyriproxyfen, and tebuconazole in lettuce, tomato, grape, and strawberry. Selectivity and resolution of the MEKC procedure were studied changing the pH and the molarity of the buffer, the type and the concentration of surfactant, and the methanol content in the mobile phase. A buffer consisting of 6 mM sodium tetraborate decahydrate with 75 mM of cholic acid sodium solution (pH 9.2) gave the best results. Linearity, extraction efficiencies and limits of quantitation (LOQs) of both extraction methods were compared. The recoveries obtained by SPE ranged from 40 to 106% with relative standard deviations (R.S.D.s) from 10 to 19% whereas by the SBSE method, the recoveries were 12-47% and the R.S.D.s 3-17%. The LOQs were much better by SPE (0.2-0.5 mg kg(-1) depending on the processed sample amount) than those obtained by SBSE (1 mg kg(-1) for each compound). Advantages and disadvantages of both procedures are also discussed. As SPE is more robust, rapid, and sensitive than SBSE, its application in combination with MEKC is recommended because provided LOQs below the MRLs established, which is not always attained by SBSE.
Wang, Qiang; Zhu, Lingyan; Chen, Meng; Ma, Xinxin; Wang, Xiaolei; Xia, Junchao
2017-02-01
Bisphenol analogues are a group of chemicals which are being widely applied in industrial and household products owing to regulations on bisphenol A (BPA) in many countries. In this study, an analytical method, including extraction from complex environmental matrices, clean-up using solid phase extraction (SPE) and following-up derivatization prior to gas chromatography coupled with mass spectrometry (GC-MS), was developed to analyze seven commonly used bisphenols in sediment. Five kinds of extraction solvents, four kinds of SPE cartridges, and four kinds of SPE eluting solvents were individually tested for their performances; and the conditions for derivatizing were also optimized. Finally, C 18 cartridge was determined as the SPE cartridge and methanol was selected as extracting and eluting solvent. Acetic anhydride (AA) was used as derivatizing agent and reaction took 20 min at room temperature. The method was used successfully to measure the seven bisphenol compounds in sediment samples from Taihu Lake, China. BPA, bisphenol F and bisphenol S were detected in all sediment samples, with concentrations in the range of 3.94-33.2; 0.503-3.28 and 0.323-27.3 ng g -1 dw. Other compounds were detected at low frequencies or not detected. We provided a convenient, reliable, and sensitive method to analyze bisphenol compounds in complex environmental samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rakhmenkulova, I. F.
2016-12-01
How to nourish young brilliant geophysicists? Here are the tips: We teach them as physicists (at the Department of Physics, together with students majoring in physics). Students have special facilities in field work, using most modern geophysical equipment. They can participate in real projects on applied geophysics during their studies. They attend special seminars and conferences for both young professionals and full-fledged scientists. Their English Language Program is focused on geophysical terminology. There are four specialties at Geology and Geophysics Department of Novosibirsk State University: Geophysics, Geochemistry, Geology, and Geochemistry of Oil and Gas. However, the curriculum for geophysicists is absolutely different from other specialties. Mathematics, physics and laboratory work are given at the Department of Physics (together with students majoring in physics). All the necessary geological subjects are also studied (including field work). During all period of their study the students work part time at many geophysical institutions. The equipment is both traditional and most modern, created at the Institute of Oil and Gas Geophysics. The students present the result of their field work and laboratory experiments in many seminars and conferences. For example, there is a traditional annual conference in Shira, Khakassia, for young professionals. Every year the Seminar in Geodynamics, Geophysics and Geomechanics is held in the Altay Mountains (Denisova Cave Camp). This Seminar was organized by the late Sergey Goldin, the Director of the Institute of Geophysics, the Head of the Chair of Geophysics, a Member of the Russian Academy of Sciences. In July 2016 this Seminar was devoted to 80's birth anniversary of Sergey Goldin. Several students of geophysics presented the results of their work there. Next year the seminar is supposed to be international. A special attention is given to the English course lasting for 5 years. The students learn general English at first, but then their study is focused on English for geophysicists, including special terminology. This is done for successful integration of young geophysicists into international professional community. Many GGD students are members of international professional organizations, such as SEG, SPE, AGU and others.
Huo, Tianlong; Du, Xiangke; Zhang, Sen; Liu, Xia; Li, Xubing
2010-02-01
The aim of this study is to develop a novel MR probe containing arginine-glycine-aspartic acid (RGD) motif for imaging integrin alphanubeta3 receptor-expressed tumor. Commercially available HYNIC-RGD conjugated with co-ligand EDDA was labeled with Gd(3+), and the mixture was isolated and purified by solid phase extract (SPE) to get the entire probe Gd-EDDA/HYNIC-RGD. Human hepatocellular carcinoma (HHCC) cell line BEL-7402 was cultured and the cells harvested and suspended in serum-free Dulbecco's modified Eagle medium (DMEM) were subcutaneously inoculated into athymic nude mice for tumor growth. In vitro cell binding assay to integrin alphanubeta3 receptor and cell viability experiments were conducted. The in vivo imaging of the three arms of xenografts were performed by MR scan with a dedicated animal coil at time points of 0, 30, 60, 90min and 24-h post-intravenous injection (p.i.). Three arms of nude mice then were sacrificed for histological examination to confirm the imaging results. Gd-EDDA/HYNIC-RGD was successfully isolated by SPE and validity was verified on signal enhancement through in vitro and in vivo experiments. The nude mice model bearing HHCC was well established. There was approx. 30% signal enhancement on T1WI FSE images at 90min post-intravenous injection of the Gd-EDDA/HYNIC-RGD compared with baseline, and the signal to time curve is straightforward over time in the span of 0-90min p.i., while the control arms do not show this tendency. Gd-EDDA/HYNIC-RGD has the potential to serve as an MR probe detecting integrin alphanubeta3 receptor-expressed tumor. Copyright (c) 2008 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bering, E. A., III; Dusenbery, P.; Gross, N. A.; Johnson, R.; Lopez, R. E.; Lysak, R. L.; Moldwin, M.; Morrow, C. A.; Nichols-Yehling, M.; Peticolas, L. M.; Reiff, P. H.; Scherrer, D. K.; Thieman, J.; Wawro, M.; Wood, E. L.
2017-12-01
The American Geophysical Union Space Physics and Aeronomy Section Education and Public Outreach Committee (AGU SPA-EPO Committee) was established in 1990 to foster the growth of a culture of outreach and community engagement within the SPA Section of the AGU. The SPA was the first AGU Section to establish an EPO Committee. The Committee has initiated several key Section EPO programs that have grown to become Union programs. NASA sponsored research is central to the mission of the SPE-EPO. Programs highlighting NASA research include the Student Paper Competition, Exploration Station, a precursor to the GIFT workshops, the Student mixer, and more. The Committee played a key role in coordinating the AGU's outreach activities relating to the International Heliophysical Year in 2007-2008. This paper will review the triumphs, the failures, and the lessons learned about recruiting colleagues to join with us from the last quarter century of effort.
Three-Dimensional Unstained Live-Cell Imaging Using Stimulated Parametric Emission Microscopy
NASA Astrophysics Data System (ADS)
Dang, Hieu M.; Kawasumi, Takehito; Omura, Gen; Umano, Toshiyuki; Kajiyama, Shin'ichiro; Ozeki, Yasuyuki; Itoh, Kazuyoshi; Fukui, Kiichi
2009-09-01
The ability to perform high-resolution unstained live imaging is very important to in vivo study of cell structures and functions. Stimulated parametric emission (SPE) microscopy is a nonlinear-optical microscopy based on ultra-fast electronic nonlinear-optical responses. For the first time, we have successfully applied this technique to archive three-dimensional (3D) images of unstained sub-cellular structures, such as, microtubules, nuclei, nucleoli, etc. in live cells. Observation of a complete cell division confirms the ability of SPE microscopy for long time-scale imaging.
Proved reserves definitions proposed for adoption by SPE, AAPG, and API
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1980-09-01
A joint-association committee was organized to write a unified set of definitions for proved reserves that SPE, AAPG, API, other interested organizations, industry and units of government can adopt and use. The proposed definitions appear for the purpose of soliciting member comments before their anticipated adoption by the 3 sponsoring organizations. The committee directed its carefully written proposed definitions toward all present and future applications in industry and government circles. These definitions include the terms proved reserves, crude oil, natural gas, natural gas liquids, reservoir, and enhanced recovery.
Surprise beyond prediction error
Chumbley, Justin R; Burke, Christopher J; Stephan, Klaas E; Friston, Karl J; Tobler, Philippe N; Fehr, Ernst
2014-01-01
Surprise drives learning. Various neural “prediction error” signals are believed to underpin surprise-based reinforcement learning. Here, we report a surprise signal that reflects reinforcement learning but is neither un/signed reward prediction error (RPE) nor un/signed state prediction error (SPE). To exclude these alternatives, we measured surprise responses in the absence of RPE and accounted for a host of potential SPE confounds. This new surprise signal was evident in ventral striatum, primary sensory cortex, frontal poles, and amygdala. We interpret these findings via a normative model of surprise. PMID:24700400
GCR and SPE Radiation Effects in Materials
NASA Technical Reports Server (NTRS)
Waller, Jess; Rojdev, Kristina; Nichols, Charles
2016-01-01
This Year 3 project provides risk reduction data to assess galactic cosmic ray (GCR) and solar particle event (SPE) space radiation damage in materials used in manned low-earth orbit, lunar, interplanetary, and Martian surface missions. Long duration (up to 50 years) space radiation damage is being quantified for materials used in inflatable structures (1st priority), and space suit and habitable composite materials (2nd priority). The data collected has relevance for nonmetallic materials (polymers and composites) used in NASA missions where long duration reliability is needed in continuous or intermittent space radiation fluxes.
Novel nanoporous sorbent for solid-phase extraction in petroleum fingerprinting
NASA Astrophysics Data System (ADS)
Alayande, S. Oluwagbemiga; Hlengilizwe, Nyoni; Dare, E. Olugbenga; Msagati, Titus A. M.; Akinlabi, A. Kehinde; Aiyedun, P. O.
2016-04-01
Sample preparation is crucial in the analysis of petroleum and its derivatives. In this study, developing affordable sorbent for petroleum fingerprinting analysis using polymer waste such expanded polystyrene was explored. The potential of electrospun expanded polystyrene (EPS) as a sorbent for the solid-phase extraction (SPE) technique was investigated, and its efficiency was compared with commercial cartridges such as alumina, silica and alumina/silica hybrid commercial for petroleum fingerprinting analysis. The chromatograms showed that the packed electrospun EPS fibre demonstrated excellent properties for SPE applications relative to the hybrid cartridges.