Sample records for physics research final

  1. DoE Early Career Research Program: Final Report: Model-Independent Dark-Matter Searches at the ATLAS Experiment and Applications of Many-core Computing to High Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farbin, Amir

    2015-07-15

    This is the final report of for DoE Early Career Research Program Grant Titled "Model-Independent Dark-Matter Searches at the ATLAS Experiment and Applications of Many-core Computing to High Energy Physics".

  2. Research in High Energy Physics. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, John S.

    2013-08-09

    This final report details the work done from January 2010 until April 2013 in the area of experimental and theoretical high energy particle physics and cosmology at the University of California, Davis.

  3. Final Report. Research in Theoretical High Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greensite, Jeffrey P.; Golterman, Maarten F.L.

    Grant-supported research in theoretical high-energy physics, conducted in the period 1992-2015 is briefly described, and a full listing of published articles result from those research activities is supplied.

  4. Development of a Secondary School Physics Program: Harvard Project Physics. Volume 2, More Appendices. Final Report.

    ERIC Educational Resources Information Center

    Holton, Gerald; And Others

    As appendices to the final report on Project Physics (SE 015 500), this volume includes parts of the original documents concerning the project development. Articles published in the "Physics Teacher" are included in reprint form. Evaluation and research papers along with related materials issued in other publications are grouped into…

  5. Elementary Particle Physics at Syracuse. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Catterall, Simon; Hubisz, Jay; Balachandran, Aiyalam

    2013-01-05

    This final report describes the activities of the high energy theory group at Syracuse University for the period 1 January 2010 through April 30 2013. The research conducted by the group includes lattice gauge theory, non-commutative geometry, phenomenology and mathematical physics.

  6. United States Air Force Summer Research Program - 1993 Summer Research Extension Program Final Reports, Volume 4A, Wright Laboratory

    DTIC Science & Technology

    1994-11-01

    Erdman Solar to Thermal Energy Physics and Astronomy University of Iowa, Iowa City, IA PL/RK 6 A Detailed Investigation of Low-and High-Power Arcjet...Properties of Dr. Mary Potasek Strained Layer Sem Applied Physics Columbia University, New York, NY WL/ML 27 Development of Control Design Methodologies...concrete is also presented. Finally, the model is extended to include penetration into multiple layers of different target materials. Comparisons are

  7. Physics-based Inverse Problem to Deduce Marine Atmospheric Boundary Layer Parameters

    DTIC Science & Technology

    2017-03-07

    please find the Final Technical Report with SF 298 for Dr. Erin E. Hackett’s ONR grant entitled Physics-based Inverse Problem to Deduce Marine...From- To) 07/03/2017 Final Technica l Dec 2012- Dec 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Physics-based Inverse Problem to Deduce Marine...SUPPLEMENTARY NOTES 14. ABSTRACT This report describes research results related to the development and implementation of an inverse problem approach for

  8. Aerobic Excercise and Research Opportunities to Benefit Impaired Children. (Project AEROBIC). Final Report.

    ERIC Educational Resources Information Center

    Idaho Univ., Moscow.

    The final report summarizes accomplishments of Project AEROBIC (Aerobic Exercise and Research Opportunities to Benefit Impaired Children), which provided a physical education exercise program for severely, profoundly, and multiply handicapped children aged 10-21. Activities are outlined for the 3 year period and include modification of exercise…

  9. Mentoring, Gender, and Publication among Social, Natural, and Physical Scientists. Final Report.

    ERIC Educational Resources Information Center

    Grant, Linda; Ward, Kathryn B.

    Research has identified mentoring as a critical factor in the entry and survival of women and minorities in the social, natural, and physical sciences where they are underrepresented. Much research and many change-oriented programs in higher education have assumed that the presence of mentors is sufficient to ensure equitable access to scientific…

  10. Optimizing Operational Physical Fitness (Optimisation de L’Aptitude Physique Operationnelle)

    DTIC Science & Technology

    2009-01-01

    NORTH ATLANTIC TREATY ORGANISATION RESEARCH AND TECHNOLOGY ORGANISATION AC/323(HFM-080)TP/200 www.rto.nato.int RTO TECHNICAL REPORT TR... RESEARCH AND TECHNOLOGY ORGANISATION AC/323(HFM-080)TP/200 www.rto.nato.int RTO TECHNICAL REPORT TR-HFM-080 Optimizing Operational Physical...Fitness (Optimisation de l’aptitude physique opérationnelle) Final Report of Task Group 019. ii RTO-TR-HFM-080 The Research and

  11. Spectrum of Physics Comprehension

    ERIC Educational Resources Information Center

    Blasiak, W.; Godlewska, M.; Rosiek, R.; Wcislo, D.

    2012-01-01

    The paper presents the results of research on the relationship between self-assessed comprehension of physics lectures and final grades of junior high school students (aged 13-15), high school students (aged 16-18) and physics students at the Pedagogical University of Cracow, Poland (aged 21). Students' declared level of comprehension was measured…

  12. Development of PCK for Novice and Experienced University Physics Instructors: A Case Study

    ERIC Educational Resources Information Center

    Jang, Syh-Jong; Tsai, Meng-Fang; Chen, Ho-Yuan

    2013-01-01

    The current study assessed and compared university students' perceptions' of a novice and an experienced physics instructor's Pedagogical Content Knowledge (PCK). Two college physics instructors and 116 students voluntarily participated in this study. The research model comprised three workshops, mid-term and final evaluations and instructor…

  13. Research Trend of Physical Skill Science --Towards Elucidation of Physical Skill--

    NASA Astrophysics Data System (ADS)

    Furukawa, Koichi; Ueno, Ken; Ozaki, Tomonobu; Kamisato, Shihoko; Kawamoto, Ryuji; Shibuya, Koji; Shiratori, Naruhiko; Suwa, Masaki; Soga, Masato; Taki, Hirokazu; Fujinami, Tsutomu; Hori, Satoshi; Motomura, Yoichi; Morita, Souhei

    Physical skills and language skills are both fundamental intelligent abilities of human being. In this paper, we focus our attention to such sophisticated physical skills as playing sports and playing instruments and introduce research activities aiming at elucidating and verbalizing them. This research area has been launched recently. We introduce approaches from physical modeling, measurements and data analysis, cognitive science and human interface. We also discuss such issues as skill acquisition and its support systems. Furthermore, we consider a fundamental issue of individual differences occurring in every application of skill elucidation. Finally we introduce several attempts of skill elucidation in the fields of dancing, manufacturing, playing string instruments, sports science and medical care.

  14. Physical Mechanisms Controlling Upper Tropospheric Water Vapor as Revealed by MLS Data from UARS

    NASA Technical Reports Server (NTRS)

    Newell, Reginald E.; Douglass, Anne (Technical Monitor)

    2002-01-01

    The third year and final report on the physical mechanisms controlling upper tropospheric water vapor revealed by the Microwave Limb Sounder (MLS) on the Upper Atmosphere Research Satellite (UARS) is presented.

  15. Studies In Theoretical High Energy Particle Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keung, Wai Yee

    2017-07-01

    This is a final technical report for grant no. DE-SC0007948 describing research activities in theoretical high energy physics at University of Illinois at Chicago for the whole grant period from July 1, 2012 to March 31, 2017.

  16. The performance assessment of undergraduate students in physics laboratory by using guided inquiry

    NASA Astrophysics Data System (ADS)

    Mubarok, H.; Lutfiyah, A.; Kholiq, A.; Suprapto, N.; Putri, N. P.

    2018-03-01

    The performance assessment of basic physics experiment among undergraduate physics students which includes three stages: pre-laboratory, conducting experiment and final report was explored in this study. The research used a descriptive quantitative approach by utilizing guidebook of basic physics experiment. The findings showed that (1) the performance of pre-laboratory rate among undergraduate physics students in good category (average score = 77.55), which includes the ability of undergraduate physics students’ theory before they were doing the experiment. (2) The performance of conducting experiment was in good category (average score = 78.33). (3) While the performance of final report was in moderate category (average score = 73.73), with the biggest weakness at how to analyse and to discuss the data and writing the abstract.

  17. Modelling the effect of the physical and chemical characteristics of the materials used as casing layers on the production parameters of Agaricus bisporus.

    PubMed

    Pardo, Arturo; Emilio Pardo, J; de Juan, J Arturo; Zied, Diego Cunha

    2010-12-01

    The aim of this research was to show the mathematical data obtained through the correlations found between the physical and chemical characteristics of casing layers and the final mushrooms' properties. For this purpose, 8 casing layers were used: soil, soil + peat moss, soil + black peat, soil + composted pine bark, soil + coconut fibre pith, soil + wood fibre, soil + composted vine shoots and, finally, the casing of La Rioja subjected to the ruffling practice. The conclusion that interplays in the fructification process with only the physical and chemical characteristics of casing are complicated was drawn. The mathematical data obtained in earliness could be explained in non-ruffled cultivation. The variability observed for the mushroom weight and the mushroom diameter variables could be explained in both ruffled and non-ruffled cultivations. Finally, the properties of the final quality of mushrooms were established by regression analysis.

  18. RealTime Physics: Active learning laboratory

    NASA Astrophysics Data System (ADS)

    Thornton, Ronald K.; Sokoloff, David R.

    1997-03-01

    Our research shows that student learning of physics concepts in introductory physics courses is enhanced by the use of special guided discovery laboratory curricula which embody the results of educational research and which are supported by the use of the Tools for Scientific Thinking microcomputer-based laboratory (MBL) tools. In this paper we first describe the general characteristics of the research-based RealTime Physics laboratory curricula developed for use in introductory physics classes in colleges, universities and high schools. We then describe RealTime Physics Mechanics in detail. Finally we examine student learning of dynamics in traditional physics courses and in courses using RealTime Physics Mechanics, primarily by the use of correlated questions on the Force and Motion Conceptual Evaluation. We present considerable evidence that students who use the new laboratory curricula demonstrate significantly improved learning and retention of dynamics concepts compared to students taught by traditional methods.

  19. 2016.11.22 Updated Materials Physics and Applications Division Overview Presentation for TV monitor in 3-1415-Lobby

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duran, Susan M.

    These slides are the updated overview presentation for the TV monitor in 3-1415-Lobby at Los Alamos National Laboratory (LANL). It gives an overview of the Materials Physics and Applications Division, including descriptions of the leaders, where researchers are fellows (such as APS or OSA), the newest LANL fellows at MPA, and many other researchers who have won prizes. Finally, MPA's research accomplishments and focuses are detailed.

  20. Explaining the Impact of Disabled Children's Engagement with Physical Activity on Their Parents' Smartphone Addiction Levels: A Sequential Explanatory Mixed Methods Research

    ERIC Educational Resources Information Center

    Gündogdu, Cemal; Aygün, Yalin; Ilkim, Mehmet; Tüfekçi, Sakir

    2018-01-01

    In this research, quantitative findings and qualitative follow-up themes were used to quantify, conceptualize and finally try to explain the impact of disabled children's engagement with physical activity on their parents' smartphone addiction levels. An initial phase of quantitative investigation was conducted with 116 parents. Analyses of…

  1. Engineering physics and mathematics division

    NASA Astrophysics Data System (ADS)

    Sincovec, R. F.

    1995-07-01

    This report provides a record of the research activities of the Engineering Physics and Mathematics Division for the period 1 Jan. 1993 - 31 Dec. 1994. This report is the final archival record of the EPM Division. On 1 Oct. 1994, ORELA was transferred to Physics Division and on 1 Jan. 1995, the Engineering Physics and Mathematics Division and the Computer Applications Division reorganized to form the Computer Science and Mathematics Division and the Computational Physics and Engineering Division. Earlier reports in this series are identified on the previous pages, along with the progress reports describing ORNL's research in the mathematical sciences prior to 1984 when those activities moved into the Engineering Physics and Mathematics Division.

  2. USAF Summer Research Program - 1993 Summer Research Extension Program Final Reports, Volume 1B, Armstrong Laboratory

    DTIC Science & Technology

    1994-11-01

    For example, the Collimating scotopic components of the ERG flash response are significantly attenuated by retinitis pigmentosa [7]. It is possible... RETINAL DAMAGE Bernard S. Gerstman Associate Professor Department of Physics Florida International University University Park Miami, FL 33199 Final...and Florida International University April 1994 6-1 A COMPUTATIONAL THERMAL MODEL AND THEORETICAL THERMODYNAMIC MODEL OF LASER INDUCED RETINAL DAMAGE

  3. Mind matters: cognitive and physical effects of aging self-stereotypes.

    PubMed

    Levy, Becca R

    2003-07-01

    In the first part of this article, a wide range of research is drawn upon to describe the process by which aging stereotypes are internalized in younger individuals and then become self-stereotypes when individuals reach old age. The second part consists of a review of the author's cross-cultural, experimental, and longitudinal research that examines the cognitive and physical effects of aging self-stereotypes. The final section presents suggestions for future research relating to aging self-stereotypes.

  4. Particle and nuclear physics instrumentation and its broad connections

    DOE PAGES

    Demarteau, Marcel; Lipton, Ron; Nicholson, Howard; ...

    2016-12-20

    Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector researchmore » and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. Finally, this symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.« less

  5. Particle and nuclear physics instrumentation and its broad connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demarteau, Marcel; Lipton, Ron; Nicholson, Howard

    Subatomic physics shares with other basic sciences the need to innovate, invent, and develop tools, techniques, and technologies to carry out its mission to explore the nature of matter, energy, space, and time. In some cases, entire detectors or technologies developed specifically for particle physics research have been adopted by other fields of research or in commercial applications. In most cases, however, the development of new devices and technologies by particle physics for its own research has added value to other fields of research or to applications beneficial to society by integrating them in the existing technologies. Thus, detector researchmore » and development has not only advanced the current state of technology for particle physics, but has often advanced research in other fields of science and has underpinned progress in numerous applications in medicine and national security. At the same time particle physics has profited immensely from developments in industry and applied them to great benefit for the use of particle physics detectors. Finally, this symbiotic relationship has seen strong mutual benefits with sometimes unexpected far reach.« less

  6. Physics through the 1990s: Plasmas and fluids

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume contains recommendations for programs in, and government support of, plasma and fluid physics. Four broad areas are covered: the physics of fluids, general plasma physics, fusion, and space and astrophysical plasmas. In the first section, the accomplishments of fluid physics and a detailed review of its sub-fields, such as combustion, non-Newtonian fluids, turbulence, aerodynamics, and geophysical fluid dynamics, are described. The general plasma physics section deals with the wide scope of the theoretical concepts involved in plasma research, and with the machines; intense beam systems, collective and laser-driven accelerators, and the associated diagnostics. The section on the fusion plasma research program examines confinement and heating systems, such as Tokamaks, magnetic mirrors, and inertial-confinement systems, and several others. Finally, theory and experiment in space and astrophysical plasma research is detailed, ranging from the laboratory to the solar system and beyond. A glossary is included.

  7. Role Delineation Refinement and Verification. The Comprehensive Report. Final Report, October 1, 1978-July 31, 1980.

    ERIC Educational Resources Information Center

    Garrett, Gary L.; Zinsmeister, Joanne T.

    This document reports research focusing on physical therapists and physical therapist assistant role delineation refinement and verification; entry-level role determinations; and translation of these roles into an examination development protocol and examination blueprint specifications. Following an introduction, section 2 describes the survey…

  8. Changes in attitudes and perceptions about research in physical therapy among professional physical therapist students and new graduates.

    PubMed

    Connolly, B H; Lupinnaci, N S; Bush, A J

    2001-05-01

    The physical therapy profession, through its published educational accreditation standards and its normative model of professional education, has addressed the importance of educating physical therapist students in the basic principles and application of research. The purpose of this study was to conduct a longitudinal study of students relative to (1) their perception of knowledge with respect to research, (2) their perception of what source should be used (evidence-based practice or traditional protocols) for clinical decision making, and (3) their perception of what should be used in a clinical setting for patient management. Thirty-six students during the final year of their professional program from a sample of 115 physical therapist students who requested 2 consecutive physical therapist classes completed the entire sequence of pretest and posttest survey administrations. Seventy-nine students did not complete the entire sequence. A 10-item 5-point Likert-type questionnaire was designed by the authors to probe the students' attitudes and perceptions about research, their level of comfort and confidence in reading and applying research findings published in the literature, and their personal habits regarding reading the professional literature. An expert panel consisting of internal and external reviewers was used for construction of the questionnaire. The questionnaire was completed by the students immediately preceding their research methods course, immediately after the completion of that course, and following the second research course, which included statistics and development of a research proposal. The subjects also completed the questionnaire after 1 year of physical therapy practice. Friedman's analysis of variance was used as an omnibus test to detect differences across time. In addition, a follow-up analysis using the Wilcoxon signed-rank procedure to examine differences between baseline data and data obtained during each follow-up was done for all items to determine whether a difference occurred at a time other than at the final posttest survey administration. The students showed differences on 5 of the 10 items on the questionnaire during the study. These items related to reading peer-reviewed professional journals, critically reading professional literature, relevance and importance of evidence-based clinical practice, and level of comfort with knowledge in research.

  9. How can we improve problem solving in undergraduate biology? Applying lessons from 30 years of physics education research.

    PubMed

    Hoskinson, A-M; Caballero, M D; Knight, J K

    2013-06-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research.

  10. Embedding Research in a Field-Based Module through Peer Review and Assessment for Learning

    ERIC Educational Resources Information Center

    Nicholson, Dawn T.

    2011-01-01

    A case study is presented of embedding research in a final year undergraduate, field-based, physical geography module. The approach is holistic, whereby research-based learning activities simulate the full life cycle of research from inception through to peer review and publication. The learning, teaching and assessment strategy emphasizes the…

  11. Coastal Environment, Bathymetry and Physical Oceanography along the Beaufort, Chukchi and Bering Seas.

    DTIC Science & Technology

    1980-01-01

    Unit No. 347 , Vol. III, Chukchi-Beaufort Sea, 409 pp. 3. Hopkins, D.M. and R.W. Hartz, 1978, Coastal morphology, coastal erosion, and barrier islands of...U.S. Department of Commerce, Alaska Outer Continental Shelf Environmental Assessment Program Final Report, Research Unit No. 347 , vol. III, Chukchi...Assessment Program Final Report, Research Univ No. 347 , vol. II, Bering Sea, 443 pp. 3. U.S. Department of Commerce, 1964, Pacific and Arctic Coasts

  12. Experimental Research at the Intensity Frontier in High Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshak, Marvin L.

    2014-06-30

    This Final Report describes DOE-supported Intensity Frontier research by the University of Minnesota during the interval April 1, 2011 to March 31, 2014. Primary activities included the MINOS, NOvA and LBNE Experiments and Heavy Quark studies at BES III.

  13. Programmatic Research Project in Physical Education for the Mentally Retarded Child in the Elementary School. Final Report.

    ERIC Educational Resources Information Center

    Wessel, Janet A.

    The project developed and evaluated an individualized physical education curriculum (called I CAN) for trainable mentally retarded children, ages 5-14 years. The instructional system consists of a set of primary psychomotor skills curriculum resource materials for individualizing instruction and a competency-based teaching guide for…

  14. Needs of people with advanced dementia in their final phase of life: A multi-perspective qualitative study in nursing homes.

    PubMed

    Schmidt, Holger; Eisenmann, Yvonne; Golla, Heidrun; Voltz, Raymond; Perrar, Klaus Maria

    2018-03-01

    People with advanced dementia present an important target group for palliative care. They suffer a range of symptoms, and their verbal communication abilities are highly restricted. At present, little is known about their needs in the final phase of life. To identify the needs of people with advanced dementia in their final phase of life and to explore the aspects relevant to first recognize and then meet these needs. Multi-perspective qualitative study using grounded theory methodology conducting group discussions, individual interviews, and participant observation. The study encompassed nursing homes and involved health professionals, relatives, and residents with advanced dementia. Data were collected in six nursing homes. Nine group discussions and three individual interviews were conducted comprising 42 health professionals and 14 relatives. Participant observations aided in giving the perspective of 30 residents with advanced dementia. Data analysis generated a total of 25 physical, psychosocial, and spiritual needs divided into 10 categories. Physical needs were classified as follows: "food intake," "physical well-being," and "physical activity and recovery." Categories of psychosocial needs were classified as follows: "adaptation of stimuli," "communication," "personal attention," "participation," "familiarity and safety," as well as "self-determination." Spiritual needs addressed "religion." The results revealed a multitude of key aspects for recognizing and meeting these needs, stressing the importance of personhood. People with advanced dementia in their final phase of life have a multitude of individual and complex needs. This evidence contributes to narrowing the current research gap, offering an orientation framework for research and practice.

  15. Evidence-based practice in physical therapy in Austria: current state and factors associated with EBP engagement.

    PubMed

    Diermayr, Gudrun; Schachner, Herbert; Eidenberger, Margit; Lohkamp, Monika; Salbach, Nancy M

    2015-12-01

    Research examining the use of evidence-based practice (EBP) in physical therapy in many countries has revealed positive attitudes, varying degrees of EBP use and barriers at practitioner, patient and organizational levels. In contrast to these countries, Austria does not have an academic or research tradition in physical therapy. Engagement in EBP in countries such as Austria is unknown. The objectives of the study were to describe the current state of EBP engagement and identify factors associated with EBP engagement among Austrian physical therapists (PTs). A cross-sectional online survey was conducted. Existing questionnaires and the theory of planned behaviour guided questionnaire development. Face and content validity and ease of use of the questionnaire were evaluated in pilot tests. Item-level response frequencies and percentages were determined. Simple and multiple regressions were used to identify factors associated with EBP engagement. The final sample size was 588 (response rate: 17.5%). Ten percent of participants fully agreed that they regularly use guidelines and standardized assessment tools in clinical practice. While 49.9% reported not using electronic databases for literature searching, 41.9% reported reading research articles 2-5 times per month. Most frequently cited barriers to EBP engagement were lack of scientific skills, lack of time and insufficient organizational support. Research awareness, attitude, behavioural control, involvement in research and degree level were final correlates of EBP engagement. Austrian PTs show a low level of engagement in EBP. Initiatives to advance EBP in Austria and other countries with no academic or research tradition should primarily target practitioner-level factors. © 2015 John Wiley & Sons, Ltd.

  16. How Can We Improve Problem Solving in Undergraduate Biology? Applying Lessons from 30 Years of Physics Education Research

    PubMed Central

    Hoskinson, A.-M.; Caballero, M. D.; Knight, J. K.

    2013-01-01

    If students are to successfully grapple with authentic, complex biological problems as scientists and citizens, they need practice solving such problems during their undergraduate years. Physics education researchers have investigated student problem solving for the past three decades. Although physics and biology problems differ in structure and content, the instructional purposes align closely: explaining patterns and processes in the natural world and making predictions about physical and biological systems. In this paper, we discuss how research-supported approaches developed by physics education researchers can be adopted by biologists to enhance student problem-solving skills. First, we compare the problems that biology students are typically asked to solve with authentic, complex problems. We then describe the development of research-validated physics curricula emphasizing process skills in problem solving. We show that solving authentic, complex biology problems requires many of the same skills that practicing physicists and biologists use in representing problems, seeking relationships, making predictions, and verifying or checking solutions. We assert that acquiring these skills can help biology students become competent problem solvers. Finally, we propose how biology scholars can apply lessons from physics education in their classrooms and inspire new studies in biology education research. PMID:23737623

  17. Precision Physics and Searches with Top and Bottom Quarks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Bellido, Aran

    This report goes into detail about all of the topics that were worked on by the research group from July 2015 to July 2016. The topics are: Search for supersymmetry in the all-jets final state using α T, measurement of themore » $$t\\bar{t}$$ differential cross section in CMS Run 2, B-physics leadership, CMS HCAL operations, CMS HCAL detector upgrade. In addition to detailing these topics, publications are listed which came from this research group.« less

  18. Focus on Statistical Physics Modeling in Economics and Finance

    NASA Astrophysics Data System (ADS)

    Mantegna, Rosario N.; Kertész, János

    2011-02-01

    This focus issue presents a collection of papers on recent results in statistical physics modeling in economics and finance, commonly known as econophysics. We touch briefly on the history of this relatively new multi-disciplinary field, summarize the motivations behind its emergence and try to characterize its specific features. We point out some research aspects that must be improved and briefly discuss the topics the research field is moving toward. Finally, we give a short account of the papers collected in this issue.

  19. Lattice QCD Calculations in Nuclear Physics towards the Exascale

    NASA Astrophysics Data System (ADS)

    Joo, Balint

    2017-01-01

    The combination of algorithmic advances and new highly parallel computing architectures are enabling lattice QCD calculations to tackle ever more complex problems in nuclear physics. In this talk I will review some computational challenges that are encountered in large scale cold nuclear physics campaigns such as those in hadron spectroscopy calculations. I will discuss progress in addressing these with algorithmic improvements such as multi-grid solvers and software for recent hardware architectures such as GPUs and Intel Xeon Phi, Knights Landing. Finally, I will highlight some current topics for research and development as we head towards the Exascale era This material is funded by the U.S. Department of Energy, Office Of Science, Offices of Nuclear Physics, High Energy Physics and Advanced Scientific Computing Research, as well as the Office of Nuclear Physics under contract DE-AC05-06OR23177.

  20. Micro Autonomous Systems Research: Systems Engineering Processes for Micro Autonomous Systems

    DTIC Science & Technology

    2016-11-01

    product family design and reconfigurable system design with recent developments in the fields of automated manufacturing and micro-autonomous...mapped to design parameters. These mappings are the mechanism by which physical product designs are formulated. Finally, manufacture of the product ... design tools and manufacturing and testing the resulting design . The final products were inspected and flight tested so that their

  1. Research Activity in Computational Physics utilizing High Performance Computing: Co-authorship Network Analysis

    NASA Astrophysics Data System (ADS)

    Ahn, Sul-Ah; Jung, Youngim

    2016-10-01

    The research activities of the computational physicists utilizing high performance computing are analyzed by bibliometirc approaches. This study aims at providing the computational physicists utilizing high-performance computing and policy planners with useful bibliometric results for an assessment of research activities. In order to achieve this purpose, we carried out a co-authorship network analysis of journal articles to assess the research activities of researchers for high-performance computational physics as a case study. For this study, we used journal articles of the Scopus database from Elsevier covering the time period of 2004-2013. We extracted the author rank in the physics field utilizing high-performance computing by the number of papers published during ten years from 2004. Finally, we drew the co-authorship network for 45 top-authors and their coauthors, and described some features of the co-authorship network in relation to the author rank. Suggestions for further studies are discussed.

  2. Final Report: High Energy Physics at the Energy Frontier at Louisiana Tech

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawyer, Lee; Wobisch, Markus; Greenwood, Zeno D.

    The Louisiana Tech University High Energy Physics group has developed a research program aimed at experimentally testing the Standard Model of particle physics and searching for new phenomena through a focused set of analyses in collaboration with the ATLAS experiment at the Large Hadron Collider (LHC) at the CERN laboratory in Geneva. This research program includes involvement in the current operation and maintenance of the ATLAS experiment and full involvement in Phase 1 and Phase 2 upgrades in preparation for future high luminosity (HL-LHC) operation of the LHC. Our focus is solely on the ATLAS experiment at the LHC, withmore » some related detector development and software efforts. We have established important service roles on ATLAS in five major areas: Triggers, especially jet triggers; Data Quality monitoring; grid computing; GPU applications for upgrades; and radiation testing for upgrades. Our physics research is focused on multijet measurements and top quark physics in final states containing tau leptons, which we propose to extend into related searches for new phenomena. Focusing on closely related topics in the jet and top analyses and coordinating these analyses in our group has led to high efficiency and increased visibility inside the ATLAS collaboration and beyond. Based on our work in the DØ experiment in Run II of the Fermilab Tevatron Collider, Louisiana Tech has developed a reputation as one of the leading institutions pursuing jet physics studies. Currently we are applying this expertise to the ATLAS experiment, with several multijet analyses in progress.« less

  3. Development of Thermodynamic Conceptual Evaluation

    NASA Astrophysics Data System (ADS)

    Talaeb, P.; Wattanakasiwich, P.

    2010-07-01

    This research aims to develop a test for assessing student understanding of fundamental principles in thermodynamics. Misconceptions found from previous physics education research were used to develop the test. Its topics include heat and temperature, the zeroth and the first law of thermodynamics, and the thermodynamics processes. The content validity was analyzed by three physics experts. Then the test was administered to freshmen, sophomores and juniors majored in physics in order to determine item difficulties and item discrimination of the test. A few items were eliminated from the test. Finally, the test will be administered to students taking Physics I course in order to evaluate the effectiveness of Interactive Lecture Demonstrations that will be used for the first time at Chiang Mai University.

  4. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobecky, Patricia A; Taillefert, Martial

    This final technical report describes results and findings from a research project to examine the role of microbial phosphohydrolase enzymes in naturally occurring subsurface microorganisms for the purpose of promoting the immobilization of the radionuclide uranium through the production of insoluble uranium phosphate minerals. The research project investigated the microbial mechanisms and the physical and chemical processes promoting uranium biomineralization and sequestration in oxygenated subsurface soils. Uranium biomineralization under aerobic conditions can provide a secondary biobarrier strategy to immobilize radionuclides should the metal precipitates formed by microbial dissimilatory mechanisms remobilize due to a change in redox state.

  5. Unified Technical Concepts - Phase I. (Modularizing Instructional Materials Using Applications of Technical Concepts). Final Report.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    To evolve a new methodology and system for teaching physics to students aspiring to become (or to become more competent as) technicians in a variety of technologies, this research and development effort was initiated. The project's thesis stemmed from a notion that the study of physics would be more accepted and assimilated by students if concepts…

  6. Research in the Theory of Condensed Matter and Elementary Particles: Final Report, September 1, 1984 - November 30, 1987

    DOE R&D Accomplishments Database

    Friedan, D.; Kadanoff, L.; Nambu, Y.; Shenker, S.

    1988-04-01

    Progress is reported in the field of condensed matter physics in the area of two-dimensional critical phenomena, specifically results allowing complete classification of all possible two-dimensional critical phenomena in a certain domain. In the field of high energy physics, progress is reported in string and conformal field theory, and supersymmetry.

  7. THE DEVELOPMENT AND EVALUATION OF THREE TYPES OF PHYSICAL EDUCATION PROGRAMS FOR EDUCABLE MENTALLY RETARDED BOYS. FINAL REPORT.

    ERIC Educational Resources Information Center

    GOHEEN, ROYAL L.

    THREE PHYSICAL EDUCATION PROGRAMS, SKILL-ORIENTED, PLAY- ORIENTED, AND FREE-PLAY ORIENTED WERE DEVELOPED. THESE PROGRAMS WERE EXAMINED, INITIALLY, BY SEVEN EXPERTS AND THEN SUBJECTED TO A PILOT STUDY. THE REVISED PROGRAMS WERE TAUGHT BY RESEARCH ASSISTANTS TO SIX EXPERIMENTAL GROUPS WHICH INCLUDED 82 BOYS AT TWO STATE SCHOOLS FOR THE MENTALLY…

  8. Research in Theoretical High Energy Physics- Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okada, Nobuchika

    PI Dr. Okada’s research interests are centered on phenomenological aspects of particle physics. It has been abundantly clear in recent years that an extension of the Standard Model (SM), i.e. new physics beyond the SM, is needed to explain a number of experimental observations such as the neutrino oscillation data, the existence of non-baryonic dark matter, and the observed baryon asymmetry of the Universe. In addition, the SM suffers from several theoretical/conceptual problems, such as the gauge hierarchy problem, the fermion mass hierarchy problem, and the origin of the electroweak symmetry breaking. It is believed that these problems can alsomore » be solved by new physics beyond the SM. The main purpose of the Dr. Okada’s research is a theoretical investigation of new physics opportunities from various phenomenological points of view, based on the recent progress of experiments/observations in particle physics and cosmology. There are many possibilities to go beyond the SM and many new physics models have been proposed. The major goal of the project is to understand the current status of possible new physics models and obtain the future prospects of new physics phenomena toward their discoveries.« less

  9. An ion accelerator for undergraduate research and teaching

    NASA Astrophysics Data System (ADS)

    Monce, Michael

    1997-04-01

    We have recently upgraded our 400kV, single beam line ion accelerator to a 1MV, multiple beam line machine. This upgrade has greatly expanded the opportunities for student involvement in the laboratory. We will describe four areas of work in which students now participate. The first is the continuing research being conducted in excitations produced in ion-molecule collisions, which recently involved the use of digital imaging. The second area of research now opened up by the new accelerator involves PIXE. We are currently beginning a cross disciplinary study of archaeological specimens using PIXE and involving students from both anthropology and physics. Finally, two beam lines from the accelerator will be used for basic work in nuclear physics: Rutherford scattering and nuclear resonances. These two nuclear physics experiments will be integrated into our sophomore-junior level, year-long course in experimental physics.

  10. Analysis of white box test of cyber-physical system

    NASA Astrophysics Data System (ADS)

    Li, Bo; Zhang, Lichen

    2017-05-01

    The Cyber-Physical System is a complex system in which the information system is closely integrated with the physical system. Through the environment detection and the combination of computing, communication and control process, the physical real-time perception and dynamic control function are realized. CPS is another information revolution after the Internet, and his presence will change the way people interact with the physical world. In this paper, the concept of CPS and white box testing is introduced, and then the white box test for CPS hardware, software, network and system is discussed in detail. Finally, the research on CPS is prospected.

  11. Interpreting New Data from the High Energy Frontier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thaler, Jesse

    2016-09-26

    This is the final technical report for DOE grant DE-SC0006389, "Interpreting New Data from the High Energy Frontier", describing research accomplishments by the PI in the field of theoretical high energy physics.

  12. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less

  13. IOTA (Integrable Optics Test Accelerator): Facility and experimental beam physics program

    DOE PAGES

    Antipov, Sergei; Broemmelsiek, Daniel; Bruhwiler, David; ...

    2017-03-06

    The Integrable Optics Test Accelerator (IOTA) is a storage ring for advanced beam physics research currently being built and commissioned at Fermilab. It will operate with protons and electrons using injectors with momenta of 70 and 150 MeV/c, respectively. The research program includes the study of nonlinear focusing integrable optical beam lattices based on special magnets and electron lenses, beam dynamics of space-charge effects and their compensation, optical stochastic cooling, and several other experiments. In this article, we present the design and main parameters of the facility, outline progress to date and provide the timeline of the construction, commissioning andmore » research. Finally, the physical principles, design, and hardware implementation plans for the major IOTA experiments are also discussed.« less

  14. Research in Theoretical Particle Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ralston, John P.

    This document is the final report on activity of the University of Kansas theory group supported under DOE Grant Number DE-FG02-04ER14308, ending April 30, 3013. The report covers the most recent three year period period May 1, 2010-April 30, 2013. Faculty supported by the grant during the period were Danny Marfatia (co-I), Douglas McKay (emeritus) and John Ralston (PI). The group's research topics and accomplishments covered numerous different topics subsumed under the {\\it the Energy Frontier, the Intensity Frontier}, and {\\it the Cosmic Frontier}. Many theoretical and experimental results related to the Standard Model and models of new physics weremore » published during the reporting period. The group's research emphasis has been on challenging and confronting {\\it Anything that is Observable} about the physical Universe.« less

  15. Innovative Training of In-service Teachers for Active Learning: A Short Teacher Development Course Based on Physics Education Research

    NASA Astrophysics Data System (ADS)

    Zavala, Genaro; Alarcón, Hugo; Benegas, Julio

    2007-08-01

    In this contribution we describe a short development course for in-service physics teachers. The course structure and materials are based on the results of educational research, and its main objective is to provide in-service teachers with a first contact with the active learning strategy “Tutorials in Introductory Physics,” developed by the Physics Education Research Group at the University of Washington. The course was organized in a constructivist, active learning environment, so that teachers have first to experience, as regular students, the whole Tutorial sequence of activities: Tutorial pre-test, Tutorial, and Tutorial Homework. After each Tutorial, teachers reflect on, and recognize their own students’ learning difficulties, discussing their teaching experiences with their colleagues in small collaborative groups first and the whole class later. Finally they read and discuss specific Physics Education Research literature, where these learning difficulties have been extensively studied by researchers. At the beginning and at the end of the course the participants were given the conceptual multiple-choice test Force Concept Inventory (FCI). The pre-/post-instruction FCI data were presented as a practical example of the use of a research-based test widely used in educational research and in formative assessment processes designed to improve instruction.

  16. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarillo-Herrero, Pablo

    This is the final report of our research program on electronic transport experiments on Topological Insulator (TI) devices, funded by the DOE Office of Basic Energy Sciences. TI-based electronic devices are attractive as platforms for spintronic applications, and for detection of emergent properties such as Majorana excitations , electron-hole condensates , and the topological magneto-electric effect . Most theoretical proposals envision geometries consisting of a planar TI device integrated with materials of distinctly different physical phases (such as ferromagnets and superconductors). Experimental realization of physics tied to the surface states is a challenge due to the ubiquitous presence of bulkmore » carriers in most TI compounds as well as degradation during device fabrication.« less

  17. Conceptual design for the Space Station Freedom fluid physics/dynamics facility

    NASA Technical Reports Server (NTRS)

    Thompson, Robert L.; Chucksa, Ronald J.; Omalley, Terence F.; Oeftering, Richard C.

    1993-01-01

    A study team at NASA's Lewis Research Center has been working on a definition study and conceptual design for a fluid physics and dynamics science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module. This modular, user-friendly facility, called the Fluid Physics/Dynamics Facility, will be available for use by industry, academic, and government research communities in the late 1990's. The Facility will support research experiments dealing with the study of fluid physics and dynamics phenomena. Because of the lack of gravity-induced convection, research into the mechanisms of fluids in the absence of gravity will help to provide a better understanding of the fundamentals of fluid processes. This document has been prepared as a final version of the handout for reviewers at the Fluid Physics/Dynamics Facility Assessment Workshop held at Lewis on January 24 and 25, 1990. It covers the background, current status, and future activities of the Lewis Project Study Team effort. It is a revised and updated version of a document entitled 'Status Report on the Conceptual Design for the Space Station Fluid Physics/Dynamics Facility', dated January 1990.

  18. A grounded-theory investigation of patient education in physical therapy practice.

    PubMed

    Rindflesch, Aaron B

    2009-04-01

    Patient education is a critical component of physical therapy and is used frequently in practice. Research describing the practice of patient education in physical therapy is scarce, however. Qualitative research methods can be used to describe the practice of patient education in physical therapy and to identify supportive theory. This study describes the practice of patient education grounded in data obtained from nine physical therapists in three settings: outpatient, acute care, and inpatient rehabilitation. From the data common themes are reported. From the themes, supportive theory can be identified. Results show four primary themes regarding patient education in physical therapy. First, the physical therapists in this study were not able to easily differentiate patient education from primary interventions. Second, the purpose of patient education was to empower patients toward self-management and prevention. Third, therapists used a patient-centered approach to decide upon content. Finally, each therapist used function or demonstration to assess the outcome of patient education interventions. The results of this study can be used to inform current practitioners, for future research and to identify theoretical underpinnings to support the practice of patient education in physical therapy.

  19. Condensed Matter Physics in Colombia is in its forties

    NASA Astrophysics Data System (ADS)

    Camacho, Angela

    2015-03-01

    Physics in Colombia started to develop in the 70's as a research part of basic sciences with the acquisition, at that time, of large research equipments such as x-rays and EPR. Experimental work was soon supplemented by theoretical investigations, which led to the formation of research groups in condensed matter. In the early 80's existed such groups in five universities. In this report we present, after a short history of the main steps that guided the initial research subjects, the major areas already developed and the minor research groups that are in the stage of consolidation. Currently this type of work is done at least in 20 universities. We also show the actual numbers of researchers, publications, PhD students and laboratories discriminated in gender to complete an overview of Condensed Matter Physics in Colombia. Finally, we present a short review of the main theoretical issues that have been worked in the last decade focusing on low dimensional systems, their structural and optical properties

  20. A review of the physics and response models for burnout of semiconductor devices

    NASA Astrophysics Data System (ADS)

    Orvis, W. J.; Khanaka, G. H.; Yee, J. H.

    1984-12-01

    Physical mechanisms that cause semiconductor devices to fail from electrical overstress--particularly, EMP-induced electrical stress--are described in light of the current literature and the authors' own research. A major concern is the cause and effects of second breakdown phenomena in p-n junction devices. Models of failure thresholds are evaluated for their inherent errors and for their ability to represent the relevant physics. Finally, the response models that relate electromagnetic stress parameters to appropriate failure-threshold parameters are discussed.

  1. The physical environment and child development: An international review

    PubMed Central

    Ferguson, Kim T.; Cassells, Rochelle C.; MacAllister, Jack W.; Evans, Gary W.

    2014-01-01

    A growing body of research in the United States and Western Europe documents significant effects of the physical environment (toxins, pollutants, noise, crowding, chaos, housing, school and neighborhood quality) on children and adolescents’ cognitive and socioemotional development. Much less is known about these relations in other contexts, particularly the global South. We thus briefly review the evidence for relations between child development and the physical environment in Western contexts, and discuss some of the known mechanisms behind these relations. We then provide a more extensive review of the research to date outside of Western contexts, with a specific emphasis on research in the global South. Where the research is limited, we highlight relevant data documenting the physical environment conditions experienced by children, and make recommendations for future work. In these recommendations, we highlight the limitations of employing research methodologies developed in Western contexts (Ferguson & Lee, 2013). Finally, we propose a holistic, multidisciplinary and multilevel approach based on Bronfenbrenner’s (1979) bioecological model to better understand and reduce the aversive effects of multiple environmental risk factors on the cognitive and socioemotional development of children across the globe. PMID:23808797

  2. Final priorities; National Institute on Disability and Rehabilitation Research--Disability and Rehabilitation Research Projects and Centers Program--Rehabilitation Engineering Research Centers. Final priorities.

    PubMed

    2013-06-11

    The Assistant Secretary for Special Education and Rehabilitative Services announces priorities under the Disability and Rehabilitation Research Projects and Centers Program administered by the National Institute on Disability and Rehabilitation Research (NIDRR). Specifically, we announce priorities for a Rehabilitation Engineering Research Center (RERC) on Rehabilitation Strategies, Techniques, and Interventions (Priority 1), Information and Communication Technologies Access (Priority 2), Individual Mobility and Manipulation (Priority 3), and Physical Access and Transportation (Priority 4). The Assistant Secretary may use one or more of these priorities for competitions in fiscal year (FY) 2013 and later years. We take this action to focus research attention on areas of national need. We intend these priorities to improve community living and participation, health and function, and employment outcomes of individuals with disabilities.

  3. Research and Teaching: Does the Classroom Matter? How the Physical Space Affects Learning in Introductory Undergraduate Science Courses

    ERIC Educational Resources Information Center

    Young, Kaisa E.; Young, Chadwick H.; Beyer, Adam

    2017-01-01

    We compare student learning and perception data from astronomy, physics, and geology courses taught in a traditional classroom with individual desks to the same classes taught in a large auditorium. In a large student sample (1,593 students), there is no clear difference between rooms in measures of failure rates or average final grades. However,…

  4. Fieberling Guyot Studies.

    DTIC Science & Technology

    1991-07-01

    volcanoes in the chain which have already been completely surveyed by Seabeam (e.g. Jasper Seamount ). During the bathymetric survey amplitude data from...geometry and mobility is retuired for interpretation of the boundary layer physics and ecology and distribution of tie benthic infauna. 2 ...Marine Physical Laboratory J,;AD-NA3 19 Fieberling Guyot Studies Final Report Prepared for the Office of Naval Research Department of the Navy for

  5. Asphalt concrete properties and performance in Alaska : final report

    DOT National Transportation Integrated Search

    1981-07-01

    This report examines asphalt pavement properties of 117 older highway sections within the State of Alaska. Principal research objectives included: 1) documentation of commonly measured physical properties of the asphalt concrete cores and extracted a...

  6. Studies in Adolescent Health: Research to Improve Health Services for Mothers and Children.

    ERIC Educational Resources Information Center

    California Univ., Los Angeles. School of Public Health.

    This publication is one in a series summarizing final reports of research projects concerned with improving health services for mothers, children and physically handicapped youth. Topics of the 10 reports include: (1) ambulatory care patterns of urban adolescents in New York City, (2) selected parameters of school achievement among New York City…

  7. Experimental And Theoretical High Energy Physics Research At UCLA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cousins, Robert D.

    2013-07-22

    This is the final report of the UCLA High Energy Physics DOE Grant No. DE-FG02- 91ER40662. This report covers the last grant project period, namely the three years beginning January 15, 2010, plus extensions through April 30, 2013. The report describes the broad range of our experimental research spanning direct dark matter detection searches using both liquid xenon (XENON) and liquid argon (DARKSIDE); present (ICARUS) and R&D for future (LBNE) neutrino physics; ultra-high-energy neutrino and cosmic ray detection (ANITA); and the highest-energy accelerator-based physics with the CMS experiment and CERN’s Large Hadron Collider. For our theory group, the report describesmore » frontier activities including particle astrophysics and cosmology; neutrino physics; LHC interaction cross section calculations now feasible due to breakthroughs in theoretical techniques; and advances in the formal theory of supergravity.« less

  8. Patient-reported outcomes of pain and physical functioning in neurofibromatosis clinical trials.

    PubMed

    Wolters, Pamela L; Martin, Staci; Merker, Vanessa L; Tonsgard, James H; Solomon, Sondra E; Baldwin, Andrea; Bergner, Amanda L; Walsh, Karin; Thompson, Heather L; Gardner, Kathy L; Hingtgen, Cynthia M; Schorry, Elizabeth; Dudley, William N; Franklin, Barbara

    2016-08-16

    Tumors and other disease complications of neurofibromatosis (NF) can cause pain and negatively affect physical functioning. To document the clinical benefit of treatment in NF trials targeting these manifestations, patient-reported outcomes (PROs) assessing pain and physical functioning should be included as study endpoints. Currently, there is no consensus on the selection and use of such measures in the NF population. This article presents the recommendations of the PRO group of the Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) International Collaboration for assessing the domains of pain and physical functioning for NF clinical trials. The REiNS PRO group reviewed and rated existing PRO measures assessing pain intensity, pain interference, and physical functioning using their systematic method. Final recommendations are based primarily on 4 main criteria: patient characteristics, item content, psychometric properties, and feasibility for clinical trials. The REiNS PRO group chose the Numeric Rating Scale-11 (≥8 years) to assess pain intensity, the Pain Interference Index (6-24 years) and the Patient-Reported Outcome Measurement Information System (PROMIS) Pain Interference Scale (≥18 years) to evaluate pain interference, and the PROMIS Physical Functioning Scale to measure upper extremity function and mobility (≥5 years) for NF clinical trials. The REiNS Collaboration currently recommends these PRO measures to assess the domains of pain and physical functioning for NF clinical trials; however, further research is needed to evaluate their use in individuals with NF. A final consensus recommendation for the pain interference measure will be disseminated in a future publication based on findings from additional published research. © 2016 American Academy of Neurology.

  9. Supporting Solar Physics Research via Data Mining

    NASA Astrophysics Data System (ADS)

    Angryk, Rafal; Banda, J.; Schuh, M.; Ganesan Pillai, K.; Tosun, H.; Martens, P.

    2012-05-01

    In this talk we will briefly introduce three pillars of data mining (i.e. frequent patterns discovery, classification, and clustering), and discuss some possible applications of known data mining techniques which can directly benefit solar physics research. In particular, we plan to demonstrate applicability of frequent patterns discovery methods for the verification of hypotheses about co-occurrence (in space and time) of filaments and sigmoids. We will also show how classification/machine learning algorithms can be utilized to verify human-created software modules to discover individual types of solar phenomena. Finally, we will discuss applicability of clustering techniques to image data processing.

  10. Improving mature driver safety : task 6, final report with recommendations.

    DOT National Transportation Integrated Search

    2010-08-02

    There are a number of important issues when examining the issue of mature drivers and mobility particularly age-related physical and behavioral changes that affect ones ability to drive. Recent research from a variety of sources (e.g., Nationa...

  11. Anthropometric Training Project. Final Report.

    ERIC Educational Resources Information Center

    San Diego State Coll., CA.

    The Anthropometric Training Project was aimed at providing a training program for select students to develop research competency in an area relating body type, composition, anthropometric assessment, and physical performance measures. The program involves interdisciplinary cooperation in training through seminars, laboratory practice, and…

  12. The Influence of Cognitive Learning Style and Learning Independence on the Students' Learning Outcomes

    ERIC Educational Resources Information Center

    Prayekti

    2018-01-01

    Students of Open University are strongly required to be able to study independently. They rely heavily on the cognitive learning styles that they have in attempt to get maximum scores in every final exam. The participants of this research were students in the Physics Education program taking Thermodynamic subject course. The research analysis…

  13. Virtual reality and physical rehabilitation: a new toy or a new research and rehabilitation tool?

    PubMed Central

    Keshner, Emily A

    2004-01-01

    Virtual reality (VR) technology is rapidly becoming a popular application for physical rehabilitation and motor control research. But questions remain about whether this technology really extends our ability to influence the nervous system or whether moving within a virtual environment just motivates the individual to perform. I served as guest editor of this month's issue of the Journal of NeuroEngineering and Rehabilitation (JNER) for a group of papers on augmented and virtual reality in rehabilitation. These papers demonstrate a variety of approaches taken for applying VR technology to physical rehabilitation. The papers by Kenyon et al. and Sparto et al. address critical questions about how this technology can be applied to physical rehabilitation and research. The papers by Sveistrup and Viau et al. explore whether action within a virtual environment is equivalent to motor performance within the physical environment. Finally, papers by Riva et al. and Weiss et al. discuss the important characteristics of a virtual environment that will be most effective for obtaining changes in the motor system. PMID:15679943

  14. Psychological abuse: a variable deserving critical attention in domestic violence.

    PubMed

    O'Leary, K D

    1999-01-01

    Policy makers and researchers give psychological abuse considerably less attention than physical abuse in the partner abuse area. One reason for the relative neglect of psychological abuse is that there are difficulties in arriving at a common definition of psychological abuse that might be useful to both the mental health and legal professions. Another reason for the relative neglect of psychological abuse has been an implicit assumption that physical abuse exacts a greater psychological toll on victims than does psychological abuse. At the extreme level of physical abuse, this assumption seems defensible, but at levels of physical aggression that are most common in marriage and long-term relationships, psychological abuse appears to have as great an impact as physical abuse. Even direct ratings of psychological and physical abuse by women in physically abusive relationships indicate that psychological abuse has a greater adverse effect on them than physical abuse. Retrospective reports, longitudinal research, and treatment dropout research all provide evidence that psychological abuse can exact a negative effect on relationships that is as great as that of physical abuse. Finally, psychological abuse almost always precedes physical abuse, so that prevention and treatment efforts clearly need to address psychological abuse. Eight measures of various forms of psychological abuse that have reasonable psychometric properties and considerable construct validity are reviewed and a definition of psychological abuse in intimate relations is provided.

  15. Metadata, Identifiers, and Physical Samples

    NASA Astrophysics Data System (ADS)

    Arctur, D. K.; Lenhardt, W. C.; Hills, D. J.; Jenkyns, R.; Stroker, K. J.; Todd, N. S.; Dassie, E. P.; Bowring, J. F.

    2016-12-01

    Physical samples are integral to much of the research conducted by geoscientists. The samples used in this research are often obtained at significant cost and represent an important investment for future research. However, making information about samples - whether considered data or metadata - available for researchers to enable discovery is difficult: a number of key elements related to samples are difficult to characterize in common ways, such as classification, location, sample type, sampling method, repository information, subsample distribution, and instrumentation, because these differ from one domain to the next. Unifying these elements or developing metadata crosswalks is needed. The iSamples (Internet of Samples) NSF-funded Research Coordination Network (RCN) is investigating ways to develop these types of interoperability and crosswalks. Within the iSamples RCN, one of its working groups, WG1, has focused on the metadata related to physical samples. This includes identifying existing metadata standards and systems, and how they might interoperate with the International Geo Sample Number (IGSN) schema (schema.igsn.org) in order to help inform leading practices for metadata. For example, we are examining lifecycle metadata beyond the IGSN `birth certificate.' As a first step, this working group is developing a list of relevant standards and comparing their various attributes. In addition, the working group is looking toward technical solutions to facilitate developing a linked set of registries to build the web of samples. Finally, the group is also developing a comparison of sample identifiers and locators. This paper will provide an overview and comparison of the standards identified thus far, as well as an update on the technical solutions examined for integration. We will discuss how various sample identifiers might work in complementary fashion with the IGSN to more completely describe samples, facilitate retrieval of contextual information, and access research work on related samples. Finally, we welcome suggestions and community input to move physical sample unique identifiers forward.

  16. Role of theory in space science

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The goal of theory is to understand how the fundamental laws of physics laws of physics and chemistry give rise to the features of the universe. It is recommended that NASA establish independent theoretical research programs in planetary sciences and in astrophysics similar to the solar-system plasma-physics theory program, which is characterized by stable, long-term support for theorists in university departments, NASA centers, and other organizations engaged in research in topics relevant to present and future space-derived data. It is recommended that NASA keep these programs under review to full benefit from the resulting research and to assure opportunities for inflow of new ideas and investigators. Also, provisions should be made by NASA for the computing needs of the theorists in the programs. Finally, it is recommended that NASA involve knowledgeable theorists in mission planning activities at all levels, from the formulation of long-term scientific strategies through the planning and operation of specific missions.

  17. Appreciation of the 2015 JGR Space Physics Peer Reviewers

    NASA Technical Reports Server (NTRS)

    Liemohn, Michael W.; Balikhin, Michael; Kepko, Larry; Rodger, Alan; Wang, Yuming

    2016-01-01

    The Editors of the Journal of Geophysical Research Space Physics are deeply indebted to the many people among the research community that serve this journal through peer review. The journal could not exist without the time and effort invested by the community through this voluntary activity, providing expert evaluations and thoughtful assessments of the work of others. In 2015, the journal had 1506 scientists contribute to the process with at least one peer review, for a total of 3575 reviews completed, including additional reviews of resubmitted manuscripts. There were 277 reviewers that contributed four or more reports in 2015. The average number of reviews per referee in 2015 was, therefore, 2.4. Note that the total number of manuscript final decisions (i.e., accept or reject) for Journal of Geophysical Research (JGR) Space Physics was 1147 in 2015. Of this, 774 were accepted and 373 were declined, for an acceptance rate of 67% last year. If the 1334 "revision" decisions are included in the tally, then the total number of decisions made in 2015 was 2481. Working out the arithmetic, it means that on average, a manuscript gets about 1.2 revision decisions before a final accept-or-reject decision. This explains the 3.1 average number of reviews per manuscript throughout each paper's lifetime in the submission-revision editorial process. We are pleased and happy that the research community is willing and able to devote their resources toward this service endeavor. We appreciate each and every one of you that helped maintain the high quality of papers in JGR Space Physics last year. We look forward to another excellent year working with all of you through the year ahead.

  18. SEXUAL AND PHYSICAL MATURATION OF MALE ADOLESCENTS IN CHAPAEVSK, RUSSIA. (R829437)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. CHEMICAL AND PHYSICAL CHARACTERISTICS OF THE SALTON SEA, CALIFORNIA. (R826552)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  20. Final Report on DTRA Basic Research Project #BRCALL08-Per3-C-2-0006 "High-Z Non-Equilibrium Physics and Bright X-ray Sources with New Laser Targets"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colvin, Jeffrey D.

    This project had two major goals. Final Goal: obtain spectrally resolved, absolutely calibrated x-ray emission data from uniquely uniform mm-scale near-critical-density high-Z plasmas not in local thermodynamic equilibrium (LTE) to benchmark modern detailed atomic physics models. Scientific significance: advance understanding of non-LTE atomic physics. Intermediate Goal: develop new nano-fabrication techniques to make suitable laser targets that form the required highly uniform non-LTE plasmas when illuminated by high-intensity laser light. Scientific significance: advance understanding of nano-science. The new knowledge will allow us to make x-ray sources that are bright at the photon energies of most interest for testing radiation hardening technologies,more » the spectral energy range where current x-ray sources are weak. All project goals were met.« less

  1. Strange Particles and Heavy Ion Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bassalleck, Bernd; Fields, Douglas

    This very long-running grant has supported many experiments in nuclear and particle physics by a group from the University of New Mexico. The gamut of these experiments runs from many aspects of Strangeness Nuclear Physics, to rare Kaon decays, to searches for exotic Hadrons such as Pentaquark or H-Dibaryon, and finally to Spin Physics within the PHENIX collaboration at RHIC. These experiments were performed at a number of laboratories worldwide: first and foremost at Brookhaven National Lab (BNL), but also at CERN, KEK, and most recently at J-PARC. In this Final Technical Report we summarize progress and achievements for thismore » award since our last Progress Report, i.e. for the period of fall 2013 until the award’s termination on November 30, 2015. The report consists of two parts, representing our two most recent experimental efforts, participation in the Nucleon Spin Physics program of the PHENIX experiment at RHIC, the Relativistic Heavy Ion Collider at BNL – Task 1, led by Douglas Fields; and participation in several Strangeness Nuclear Physics experiments at J-PARC, the Japan Proton Accelerator Research Center in Tokai-mura, Japan – Task 2, led by Bernd Bassalleck.« less

  2. Research priorities and plans for the International Space Station-results of the 'REMAP' Task Force

    NASA Technical Reports Server (NTRS)

    Kicza, M.; Erickson, K.; Trinh, E.

    2003-01-01

    Recent events in the International Space Station (ISS) Program have resulted in the necessity to re-examine the research priorities and research plans for future years. Due to both technical and fiscal resource constraints expected on the International Space Station, it is imperative that research priorities be carefully reviewed and clearly articulated. In consultation with OSTP and the Office of Management and budget (OMB), NASA's Office of Biological and Physical Research (OBPR) assembled an ad-hoc external advisory committee, the Biological and Physical Research Maximization and Prioritization (REMAP) Task Force. This paper describes the outcome of the Task Force and how it is being used to define a roadmap for near and long-term Biological and Physical Research objectives that supports NASA's Vision and Mission. Additionally, the paper discusses further prioritizations that were necessitated by budget and ISS resource constraints in order to maximize utilization of the International Space Station. Finally, a process has been developed to integrate the requirements for this prioritized research with other agency requirements to develop an integrated ISS assembly and utilization plan that maximizes scientific output. c2003 American Institute of Aeronautics and Astronautics. Published by Elsevier Science Ltd. All rights reserved.

  3. An experimental investigation of the flow physics of high-lift systems

    NASA Technical Reports Server (NTRS)

    Thomas, Flint O.; Nelson, R. C.

    1995-01-01

    This progress report is a series of overviews outlining experiments on the flow physics of confluent boundary layers for high-lift systems. The research objectives include establishing the role of confluent boundary layer flow physics in high-lift production; contrasting confluent boundary layer structures for optimum and non-optimum C(sub L) cases; forming a high quality, detailed archival data base for CFD/modelling; and examining the role of relaminarization and streamline curvature. Goals of this research include completing LDV study of an optimum C(sub L) case; performing detailed LDV confluent boundary layer surveys for multiple non-optimum C(sub L) cases; obtaining skin friction distributions for both optimum and non-optimum C(sub L) cases for scaling purposes; data analysis and inner and outer variable scaling; setting-up and performing relaminarization experiments; and a final report establishing the role of leading edge confluent boundary layer flow physics on high-lift performance.

  4. The Luminosity Measurement for the DZERO Experiment at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Snow, Gregory R.

    Primary project objective: The addition of University of Nebraska-Lincoln (UNL) human resources supported by this grant helped ensure that Fermilab’s DZERO experiment had a reliable luminosity measurement through the end of Run II data taking and an easily-accessible repository of luminosity information for all collaborators performing physics analyses through the publication of its final physics results. Secondary project objective: The collaboration between the UNL Instrument Shop and Fermilab’s Scintillation Detector Development Center enhanced the University of Nebraska’s future role as a particle detector R&D and production facility for future high energy physics experiments. Overall project objective: This targeted project enhancedmore » the University of Nebraska’s presence in both frontier high energy physics research in DZERO and particle detector development, and it thereby served the goals of the DOE Office of Science and the Experimental Program to Stimulate Competitive Research (EPSCoR) for the state of Nebraska.« less

  5. Strength and durability of concrete: Effects of cement paste-aggregate interfaces. Part 2: Significance of transition zones on physical and mechanical properties of portland cement mortar; Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, T.F.F.; Cohen, M.D.; Chen, W.F.

    1998-08-01

    The research was based on a two-part basic research investigation studying the effects of cement paste-aggregate interfaces (or interfacial transition zones-ITZ) on strength and durability of concrete. Part 1 dealt with the theoretical study and Part 2 dealt with the experimental.

  6. THE IMPACT OF IONIC LIQUID PHYSICAL PROPERTIES ON LIPASE ACTIVITY AND STABILITY. (R828131)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Evaluation of flyash in lean concrete base and continuously reinforced concrete pavements : final report.

    DOT National Transportation Integrated Search

    1991-07-01

    Proposed research on this project included five main objectives: 1) To test and evaluate the physical characteristics of flyash concrete in comparions to non-flyash concrete. Tests will be conducted to see if flyash concrete meets OSHD specifications...

  8. Graduate Training Program in Ocean Engineering. Final Report.

    ERIC Educational Resources Information Center

    Frey, Henry R.

    Activities during the first three years of New York University's Ocean Engineering Program are described including the development of new courses and summaries of graduate research projects. This interdepartmental program at the master's level includes aeronautics, chemical engineering, metallurgy, and physical oceanography. Eleven courses were…

  9. Religion, Spirituality, and Health: The Research and Clinical Implications

    PubMed Central

    Koenig, Harold G.

    2012-01-01

    This paper provides a concise but comprehensive review of research on religion/spirituality (R/S) and both mental health and physical health. It is based on a systematic review of original data-based quantitative research published in peer-reviewed journals between 1872 and 2010, including a few seminal articles published since 2010. First, I provide a brief historical background to set the stage. Then I review research on R/S and mental health, examining relationships with both positive and negative mental health outcomes, where positive outcomes include well-being, happiness, hope, optimism, and gratefulness, and negative outcomes involve depression, suicide, anxiety, psychosis, substance abuse, delinquency/crime, marital instability, and personality traits (positive and negative). I then explain how and why R/S might influence mental health. Next, I review research on R/S and health behaviors such as physical activity, cigarette smoking, diet, and sexual practices, followed by a review of relationships between R/S and heart disease, hypertension, cerebrovascular disease, Alzheimer's disease and dementia, immune functions, endocrine functions, cancer, overall mortality, physical disability, pain, and somatic symptoms. I then present a theoretical model explaining how R/S might influence physical health. Finally, I discuss what health professionals should do in light of these research findings and make recommendations in this regard. PMID:23762764

  10. Analytical and physical modeling program for the NASA Lewis Research Center's Altitude Wind Tunnel (AWT)

    NASA Technical Reports Server (NTRS)

    Abbott, J. M.; Deidrich, J. H.; Groeneweg, J. F.; Povinelli, L. A.; Reid, L.; Reinmann, J. J.; Szuch, J. R.

    1985-01-01

    An effort is currently underway at the NASA Lewis Research Center to rehabilitate and extend the capabilities of the Altitude Wind Tunnel (AWT). This extended capability will include a maximum test section Mach number of about 0.9 at an altitude of 55,000 ft and a -20 F stagnation temperature (octagonal test section, 20 ft across the flats). In addition, the AWT will include an icing and acoustic research capability. In order to insure a technically sound design, an AWT modeling program (both analytical and physical) was initiated to provide essential input to the AWT final design process. This paper describes the modeling program, including the rationale and criteria used in program definition, and presents some early program results.

  11. The early history of x-ray diagnosis with emphasis on the contributions of physics 1895-1915.

    PubMed

    Mould, R F

    1995-11-01

    The contribution of physics to the development of x-ray diagnosis was vital in the early years of this century following Röntgen's discovery of x-rays in November 1895. This review records some of the highlights during the period 1895-1915. Much of the information presented has been buried in libraries for more than 50 years and the selection of illustrations and text will be largely unknown to today's readership of Physics in Medicine and Biology. It is also a celebration of what could be achieved in physics before the occurrence of the technological revolution involving not only computer applications but also the disappearance of the small independent x-ray companies into today's multinational companies. Research and development is nowadays just too expensive for much independent practical high-technology contributions without financial backing. Hence this review takes us to those bygone years of experimental physics in home laboratories, poorly equipped university physics laboratories and of the lecture-demonstrations of the period. The sections are presented in a logical order beginning with the discovery of x-rays, followed by x-ray tube technology to the advent of the hot cathode Coolidge tube, with the third and final section covering diagnostic radiology physics. It has been compiled from personal research over 35 years in libraries worldwide, drawing on textbooks, journals, popular magazines, newspapers, x-ray company catalogues and museum exhibits. I have included a certain amount of anecdotal information, because after all, much of the early commentaries were indeed anecdotal--and make very interesting reading. Finally it is commented that although this review is devoted to x-ray diagnosis, x-ray therapy should not be forgotten, and readers are referred to another review by the author on early therapeutic advances.

  12. INEL Geothermal Environmental Program. Final environmental report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thurow, T.L.; Cahn, L.S.

    1982-09-01

    An overview of environmental monitoring programs and research during development of a moderate temperature geothermal resource in the Raft River Valley is presented. One of the major objectives was to develop programs for environmental assessment and protection that could serve as an example for similar types of development. The monitoring studies were designed to establish baseline conditions (predevelopment) of the physical, biological, and human environment. Potential changes were assessed and adverse environmental impacts minimized. No major environmental impacts resulted from development of the Raft River Geothermal Research Facility. The results of the physical, biological, and human environment monitoring programs aremore » summarized.« less

  13. Relativity, quantum physics and philosophy in the upper secondary curriculum: challenges, opportunities and proposed approaches

    NASA Astrophysics Data System (ADS)

    Henriksen, Ellen K.; Bungum, Berit; Angell, Carl; Tellefsen, Cathrine W.; Frågåt, Thomas; Vetleseter Bøe, Maria

    2014-11-01

    In this article, we discuss how quantum physics and relativity can be taught in upper secondary school, in ways that promote conceptual understanding and philosophical reflections. We present the ReleQuant project, in which web-based teaching modules have been developed. The modules address competence aims in the Norwegian national curriculum for physics (final year of upper secondary education), which is unique in that it includes general relativity, entangled photons and the epistemological consequences of modern physics. These topics, with their high demands on students’ understanding of abstract and counter-intuitive concepts and principles, are challenging for teachers to teach and for students to learn. However, they also provide opportunities to present modern physics in innovative ways that students may find motivating and relevant both in terms of modern technological applications and in terms of contributions to students’ intellectual development. Beginning with these challenges and opportunities, we briefly present previous research and theoretical perspectives with relevance to student learning and motivation in modern physics. Based on this, we outline the ReleQuant teaching approach, where students use written and oral language and a collaborative exploration of animations and simulations as part of their learning process. Finally, we present some of the first experiences from classroom tests of the quantum physics modules.

  14. PSU/WES Interlaboratory Comparative Methodology Study of an Experimental Cementitious Repository Seal Material. Report 2. Final Results.

    DTIC Science & Technology

    1982-03-01

    meter 25 11.0 Microstructure by SEM 11.1 Introduction In order to correlate observed physical and mechanical properties in cured grout samples, a...studied at the two laboratories has proper physical properties , phase composi- tions, and microstructures for the materials used and ages covered...Scanning Electron Microscope Resolution Test Specimen ( Al -W) D. B. Ballard Research Material 100 SEM Resolution Test Specimen (AI-W)., is an alloy of

  15. Definitions, Foundations and Associations of Physical Literacy: A Systematic Review.

    PubMed

    Edwards, Lowri C; Bryant, Anna S; Keegan, Richard J; Morgan, Kevin; Jones, Anwen M

    2017-01-01

    The concept of physical literacy has stimulated increased research attention in recent years-being deployed in physical education, sport participation, and the promotion of physical activity. Independent research groups currently operationalize the construct differently. The purpose of this systematic review was to conduct a systematic review of the physical literacy construct, as reflected in contemporary research literature. Five databases were searched using the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines for systematic reviews. Inclusion criteria were English language, peer reviewed, published by March 2016, and seeking to conceptualize physical literacy. Articles that met these criteria were analyzed in relation to three core areas: properties/attributes, philosophical foundations and theoretical associations with other constructs. A total of 50 published articles met the inclusion criteria and were analyzed qualitatively using inductive thematic analysis. The thematic analysis addressed the three core areas. Under definitions, core attributes that define physical literacy were identified, as well as areas of conflict between different approaches currently being adopted. One relatively clear philosophical approach was prominent in approximately half of the papers, based on a monist/holistic ontology and phenomenological epistemology. Finally, the analysis identified a number of theoretical associations, including health, physical activity and academic performance. Current literature contains different representations of the physical literacy construct. The costs and benefits of adopting an exclusive approach versus pluralism are considered. Recommendations for both researchers and practitioners focus on identifying and clearly articulating the definitions, philosophical assumptions and expected outcomes prior to evaluating the effectiveness of this emerging concept.

  16. Development of Policy on the Telecommunications-Transportation Tradeoff, Final Report.

    ERIC Educational Resources Information Center

    Nilles, Jack M.; And Others

    To identify and evaluate the implications of potential communications and computer technology alternatives to urban transportation, an extensive research study was made of telecommuting--bringing workers toegether by communication instead of physically. An attempt was made to formulate practical statements on telecommuting network design, policies…

  17. SINGLE-CYCLE TERAHERTZ ELECTROMAGNETIC PULSES: A NEW TEST BED FOR PHYSICAL SEISMIC MODELING. (R827122)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  18. Research on Mathematical Techniques in Psychology. Final Report.

    ERIC Educational Resources Information Center

    Gulliksen, Harold

    Mathematical techniques are developed for studying psychological problems in three fields: (1) psychological scaling, (2) learning and concept formation, and (3) mental measurement. Psychological scaling procedures are demonstrated to be useful in many areas, ranging from sensory discrimination of physical stimuli, such as colors, sounds, etc.,…

  19. Development of a thermionic magnicon amplifier at 11.4 GHz. Final report for period May 16, 1995 - May 15, 2001

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gold, Steven H.; Fliflet, Arne W.

    2001-08-25

    This is the final report on the research program ''Development of a Thermionic Magnicon Amplifier at 11.4 GHz,'' which was carried out by the Plasma Physics Division of the Naval Research Laboratory. Its goal was to develop a high-power, frequency-doubling X-band magnicon amplifier, an advanced scanning-beam amplifier, for use in future linear colliders. The final design parameters were 61 MW at 11.424 GHz, 59 dB gain, 59% efficiency, 1 microsecond pulselength and 10 Hz repetition rate. At the conclusion of this program, the magnicon was undergoing high-power conditioning, having already demonstrated high-power operation, phase stability, a linear drive curve, amore » small operational frequency bandwidth and a spectrally pure, single-mode output.« less

  20. Final Report: "Strings 2014"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witten, Edward

    2015-10-21

    The Strings 2014 meeting was held at Princeton University June 23-27, 2014, co-sponsored by Princeton University and the Institute for Advanced Study. The goal of the meeting was to provide a stimulating and up-to-date overview of research in string theory and its relations to other areas of physics and mathematics, ranging from geometry to quantum field theory, condensed matter physics, and more. This brief report lists committee members and speakers but contains no scientific information. Note that the talks at Strings 2014 were videotaped and are available on the conference website: http://physics.princeton.edustrings2014/Talk_titles.shtml.

  1. Semantic e-Science in Space Physics - A Case Study

    NASA Astrophysics Data System (ADS)

    Narock, T.; Yoon, V.; Merka, J.; Szabo, A.

    2009-05-01

    Several search and retrieval systems for space physics data are currently under development in NASA's heliophysics data environment. We present a case study of two such systems, and describe our efforts in implementing an ontology to aid in data discovery. In doing so we highlight the various aspects of knowledge representation and show how they led to our ontology design, creation, and implementation. We discuss advantages that scientific reasoning allows, as well as difficulties encountered in current tools and standards. Finally, we present a space physics research project conducted with and without e-Science and contrast the two approaches.

  2. Bruno, Galileo, Einstein: The Value of Myths in Physics

    NASA Astrophysics Data System (ADS)

    Martinez, Alberto

    2015-03-01

    Usually, historical myths are portrayed as something to be avoided in a physics classroom. Instead, I will discuss the positive function of myths and how they can be used to improve physics education. First, on the basis of historical research from primary sources and significant new findings about the Catholic Inquisition, I will discuss how to use the inspirational story of Giordano Bruno when discussing cosmology. Next, I will discuss the recurring story about Galileo and the Leaning Tower of Pisa. Finally, I will discuss how neglected stories about the young Albert Einstein can help to inspire students.

  3. Princeton University High Energy Physics Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marlow, Daniel R.

    This is the Final Report on research conducted by the Princeton Elementary Particles group over the approximately three-year period from May 1, 2012 to April 30, 2015. The goal of our research is to investigate the fundamental constituents of matter, their fields, and their interactions; to understand the properties of space and time; and to study the profound relationships between cosmology and particle physics. During the funding period covered by this report, the group has been organized into a subgroup concentrating on the theory of particles, strings, and cosmology; and four subgroups performing major experiments at laboratories around the world: CERN, Daya Bay, Gran Sasso as well as detector R\\&D on the Princeton campus. Highlights in of this research include the discovery of the Higgs Boson at CERN and the measurement ofmore » $$\\sin^22\\theta_{13}$$ by the Daya Bay experiment. In both cases, Princeton researchers supported by this grant played key roles.« less

  4. Microgravity: A Teacher's Guide With Activities in Science, Mathematics, and Technology

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Vogt, Gregory L.; Wargo, Michael J.

    1997-01-01

    The purpose of this curriculum supplement guide is to define and explain microgravity and show how microgravity can help us learn about the phenomena of our world. The front section of the guide is designed to provide teachers of science, mathematics, and technology at many levels with a foundation in microgravity science and applications. It begins with background information for the teacher on what microgravity is and how it is created. This is followed with information on the domains of microgravity science research; biotechnology, combustion science, fluid physics, fundamental physics, materials science, and microgravity research geared toward exploration. The background section concludes with a history of microgravity research and the expectations microgravity scientists have for research on the International Space Station. Finally, the guide concludes with a suggested reading list, NASA educational resources including electronic resources, and an evaluation questionnaire.

  5. Nuclear Air Blast Effects.

    DTIC Science & Technology

    1982-06-01

    AD-All? 43 SCIENCE APPLICATZOhu INC NCLAA VA F/6 19/4I NUICLEAR AIR BLAST IFPCTS(U) JUR " PRY UNCLASSIFID SAI-63-636-VA NLOOI I-C lit? I. 1174~ 132...SiCuftIt, CLASSFICA?1lOw OF fl.IS PAQ-C( fhbl Dal. Lnt.,.d, REPORT DOCUMENTATION4 PAGE apoI ct~ NUCLEAR AIR BLAST EFFECTS FINAL REPORT SAI-83-836-WA...TUCSON a WASHINGTON NUCLEAR AIR BLAST EFFECTS FINAL REPORT SAI-83-836-WA Submitted to: Laboratory for Computational Physics Naval Research Laboratory

  6. Intelligent diagnosis and prescription for a customized physical fitness and healthcare system.

    PubMed

    Huang, Chung-Chi; Liu, Hsiao-Man; Huang, Chung-Lin

    2015-01-01

    With the advent of the era of global high-tech industry and commerce and its associated sedentary lifestyle, opportunities for physical activity are reduced. People's physical fitness and health is deteriorating. Therefore, it is necessary to develop a system that can enhance people's physical fitness and health. However, it is difficult for general physical fitness and healthcare systems to meet individualized needs. The main purpose of this research is to develop a method of intelligent diagnosis and prescription for a customized physical fitness and healthcare system. The proposed system records all processes of the physical fitness and healthcare system via a wireless sensor network and the results of the diagnosis and prescription will be generated by fuzzy logic inference. It will improve individualized physical fitness and healthcare. Finally, we demonstrate the advantages of intelligent diagnosis and prescription for a customized physical fitness and healthcare system.

  7. MEMS sensor technologies for human centred applications in healthcare, physical activities, safety and environmental sensing: a review on research activities in Italy.

    PubMed

    Ciuti, Gastone; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo

    2015-03-17

    Over the past few decades the increased level of public awareness concerning healthcare, physical activities, safety and environmental sensing has created an emerging need for smart sensor technologies and monitoring devices able to sense, classify, and provide feedbacks to users' health status and physical activities, as well as to evaluate environmental and safety conditions in a pervasive, accurate and reliable fashion. Monitoring and precisely quantifying users' physical activity with inertial measurement unit-based devices, for instance, has also proven to be important in health management of patients affected by chronic diseases, e.g., Parkinson's disease, many of which are becoming highly prevalent in Italy and in the Western world. This review paper will focus on MEMS sensor technologies developed in Italy in the last three years describing research achievements for healthcare and physical activity, safety and environmental sensing, in addition to smart systems integration. Innovative and smart integrated solutions for sensing devices, pursued and implemented in Italian research centres, will be highlighted, together with specific applications of such technologies. Finally, the paper will depict the future perspective of sensor technologies and corresponding exploitation opportunities, again with a specific focus on Italy.

  8. Research on Gyrotrons.

    DTIC Science & Technology

    1985-04-15

    pace. The advent of the intense pulsed relativistic electron beam renewed the interest in the cyclotron maser mechanism as a source of high power...Acknowledgement The author would like to express his gratitude to his advisor , Professor Jay L. Hirshfield, for the indefatigable scientific discussion which...YALE UNIVERSIT N FINAL REPORT To The Office of Naval Research [! Lf For Contract N00014-80-C-0075 y b IApplied Physics Section Yale University, New

  9. Support of experimental high energy physics research at the University of South Carolina. Final technical report, 1980--1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childers, R.L.; Darden, C.W.; Rosenfeld, C.

    1992-12-31

    Twelve years of support by the US Department of Energy have turned a two man team with no equipment and no graduate students working on a single experiment into an active group of four professors, one post-doctoral research associate and three graduate students working with appropriate equipment on three major experiments and several other projects. 162 references.

  10. The McDonnell Douglas geophysical observatory program progress report 13 Conjugate point riometer program

    NASA Technical Reports Server (NTRS)

    Baker, M. B.

    1975-01-01

    This report, the thirteenth and final progress report on the McDonnell Douglas Geophysical Observatory Program, discusses history of the program from 1962 through 1973, and results of the research carried out in 1974. Topic areas covered include: Station operation; Ionospheric work; Solar studies, Magnetospheric studies; Satellite measurements; International participation; and, 1974 research on solar activity, ATS-6 studies, magnetospheric physics, and station operation.

  11. [Instrument for the assessment of middle-aged and older adults' physical activity: design, eliability and application of the German-PAQ-50+].

    PubMed

    Huy, Christina; Schneider, Sven

    2008-06-01

    Existing physical activity questionnaires have focused either on young and middle-aged adults or on the elderly. They have mainly assessed only a portion of possible physical activities or contained nation-specific sports. As there is no gold standard for a questionnaire-based assessment of physical activity in the over-50 population, recommendations for such a questionnaire relating to German-speaking countries were developed. This work included a systematic literature research, a survey of experts, and the design of a questionnaire based on validated measuring instruments. Finally, to test its reliability and application in the field, the complete questionnaire, including a retest, was applied by telephone interview (n = 57). The test-retest-correlation was r = 0.60 for the total time of physical activity and r = 0.52 for total energy expenditure. The researchers determined that the instrument is comprehensive in its coverage of all relevant domains of physical activity for the over-50 population; it is economically feasible and showed good acceptance.

  12. Her physics, his physics: gender issues in Israeli advanced placement physics classes

    NASA Astrophysics Data System (ADS)

    Zohar, Anat

    2003-02-01

    Gender gaps in physics in favour of boys are more prominent in Israel than in other countries. The main research question is to find out what gender issues are at play in Israeli advanced placement physics classes. Matriculation exam scores from approximately 400 high schools were analysed across 12 years. In addition, semi-constructed interviews were conducted with 50 advanced placement physics students (25 girls and 25 boys). In terms of participation, it was found that the ratio of girls to boys has been unchanged from 1988 to 2000 and is roughly 1:3. In terms of performance, it was found that the final matriculation scores of boys and girls are similar. However, breaking up the final scores into its two components - teachers' given grades and matriculation test scores - showed that boy's test scores are usually higher than girls' test scores, while girls' teachers' given grades are usually higher than boys'. Results from semi-constructed interviews pointed to two factors that are especially unfavourable to many girls: excessive competitiveness and lack of teaching for understanding. Girls' yearning for deep understanding is seen as a form of questing for connected knowledge. It is suggested that instructional methods that foster students' understanding while decreasing competitiveness in physics classes might contribute to girls' participation and performance in advanced physics classes while also supporting the learning of many boys.

  13. Learning from physics text: A synthesis of recent research

    NASA Astrophysics Data System (ADS)

    Alexander, Patricia A.; Kulikowich, Jonna M.

    Learning from physics text is described as a complex interaction of learner, text, and context variables. As a multidimensional procedure, text processing in the domain of physics relies on readers' knowledge and interest, and on readers' ability to monitor or regulate their processing. Certain textual features intended to assist readers in understanding and remembering physics content may actually work to the detriment of those very processes. Inclusion of seductive details and the incorporation of analogies may misdirect readers' attention or may increase processing demands, particularly in those cases when readers' physics knowledge is low. The questioning behaviors of teachers also impact on the task of comprehending physics texts. Finally, within the context of the classroom, the information that teachers dispense or the materials they employ can significantly influence the process of learning from physics text.

  14. Physical activity text messaging interventions in adults: a systematic review.

    PubMed

    Buchholz, Susan Weber; Wilbur, JoEllen; Ingram, Diana; Fogg, Louis

    2013-08-01

    Physical inactivity is a leading health risk factor for mortality worldwide. Researchers are examining innovative techniques including the use of mobile technology to promote physical activity. One such technology, text messaging, is emerging internationally as a method to communicate with and motivate individuals to engage in healthy behaviors, including physical activity. Review the existing scientific literature on adult physical activity text messaging interventions. This systematic review examined research papers that addressed physical activity text messaging intervention studies in adults. Using multiple databases, the search strategy included published English language studies through October 1, 2011. An author-developed data collection tool was used independently by two reviewers to extract and examine the selected study variables. The initial search resulted in the identification of 200 publications. Eleven publications representing 10 studies were included in the final review. Studies were conducted in seven countries with over half the studies being randomized controlled trials. Participants of the studies were predominantly young to middle aged women. Physical activity data were mainly obtained by self-report although three studies used pedometers or accelerometers. Interventions ranged from only sending out text messages to combining text messages with educational materials, staff support, and/or Internet technology. Minimal information was given regarding development or number of text messages used. The median effect size for the studies was 0.50. To date, using text messaging as a method to promote physical activity has only been studied by a small group of researchers. Current physical activity text messaging literature is characterized by small sample sizes, heterogeneous but positive effect sizes, and a lack of specificity as to the development of the text messages used in these studies. Further research in this area is imperative to facilitate the expansion of mobile technology to promote physical activity. © 2013 Sigma Theta Tau International.

  15. How Things Work, an Enrichment Class for Middle School Students

    NASA Astrophysics Data System (ADS)

    Goller, Tamara; Watson, Nancy; Watson, James

    1998-05-01

    Middle School students are curious about their surroundings. They are always asking questions about how things work. So this semester two middle school science teachers and a physicist combined their strengths and taught HOW THINGS WORK, THE PHYSICS OF EVERYDAY LIFE (a book by Louis A. Bloomfield). The students studied the physics behind everyday objects to see how they worked. They read, discussed the physics, and completed laboratory exercises using lasers, cameras, and other objects. Each student then picked an inventor that interested him/her and used the INTERNET to research the inventor and made a class presentation. For the final project, each students use the physics they learned and became an inventor and made an invention.

  16. Evolution of Theoretical Perspectives in My Research

    NASA Astrophysics Data System (ADS)

    Otero, Valerie K.

    2009-11-01

    Over the past 10 years I have been using socio-cultural theoretical perspectives to understand how people learn physics in a highly interactive, inquiry-based physics course such as Physics and Everyday Thinking [1]. As a result of using various perspectives (e.g. Distributed Cognition and Vygotsky's Theory of Concept Formation), my understanding of how these perspectives can be useful for investigating students' learning processes has changed. In this paper, I illustrate changes in my thinking about the role of socio-cultural perspectives in understanding physics learning and describe elements of my thinking that have remained fairly stable. Finally, I will discuss pitfalls in the use of certain perspectives and discuss areas that need attention in theoretical development for PER.

  17. Final Technical Report for DE-FG02-98ER45737

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ade, Harald W.

    This document represents the cumulative, final technical report for Grant No. DE-FG02- 98ER45737, the title of which has changed with each funding period, but the research pursued is within a coherent overall theme of methods and technique developments that exploit contrast at the carbon absorption edge to characterize complex organic materials and the use of these synchrotron radiation-based methods for important research challenges in polymer physics and Materials Science. The last three funding periods focused on organic devices and in particular organic solar cells (OSCs), owing to their extra-ordinarily complex morphology, yet high potential as a cheap and printable power-conversionmore » technology.« less

  18. A PHYSICAL MODEL FOR THE SIMULATION OF BIOTURBATION AND ITS COMPARISON TO EXPERIMENTS WITH OLIGOCHAETES. (R825513C011)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  19. THE FORMATION OF TWO CALCIUM DIETHYLENETRIAMINEPET (METHYLENEPHOSPHONIC ACID) PERCIPITATES AND THEIR PHYSICAL CHEMICAL PROPERTIES. (R825513C015)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  20. PHYSICAL PROPERTIES AND FIBER MORPHOLOGY OF POLY(LACTIC ACID) OBTAINED FROM CONTINUOUS TWO-STEP MELT SPINNING. (R826733)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  1. Accelerator-Detector Complex for Photonuclear Detection of Hidden Explosives Final Report CRADA No. TC2065.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowdermilk, W. H.; Brothers, L. J.

    This was a collaborative effort by Lawrence Livermore National Security (formerly the University of California)/Lawrence Livermore National Laboratory (LLNL), Valley Forge Composite Technologies, Inc., and the following Russian Institutes: P. N. Lebedev Physical Institute (LPI), Innovative Technologies Center.(AUO CIT), Central Design Bureau-Almas (CDB Almaz), Moscow Instrument Automation Research Institute, and Institute for High Energy Physics (IBEP) to develop equipment and procedures for detecting explosive materials concealed in airline checked baggage and cargo.

  2. Minute of physics

    NASA Astrophysics Data System (ADS)

    Page, Katie

    2011-05-01

    It's 7:23 a.m. sometime last fall, students are running through the halls to get to class, and as I stand in my doorway greeting kids, I notice that only about 2/3 of my students are seated and ready to go. 7:24…7:25, the final bell rings. As the next few minutes roll past, students continue to stroll in with a glare from me. I decided to try something new to get students to class on time, and, after some research, the "Minute of Physics" was born.

  3. Study of radiation damage to the CMS Hadronic Endcap Calorimeter and investigation into new physics using multi-boson measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belloni, Alberto

    This document is the final report for the U.S. D.O.E. Grant No. DE-SC0014088, which covers the period from May 15, 2015 to March 31, 2016. The funded research covered the study of multi-boson final states, culminated in the measurement of the W ±γγ and, for the first time at an hadronic collider, of the Zγγ production cross sections. These processes, among the rarest multi-boson final states measurable by LHC experiments, allow us to investigate the possibility of new physics in a model-independent way, by looking for anomalies in the standard model couplings among electroweak bosons. In particular, these 3-boson finalmore » states access quartic gauge couplings; the W ±γγ analysis performed as a part of this proposal sets limits on anomalies in the WWγγ quartic gauge coupling. The award also covered R&D activities to define a radiation-tolerant material to be used in the incoming upgrade of the CMS hadronic endcap calorimeter. In particular, the usage of a liquid-scintillator-based detector was investigated. The research work performed in this direction has been collected in a paper recently submitted for publication in the Journal of Instrumentation (JINST).« less

  4. FINAL REPORT: GEOMETRY AND ELEMENTARY PARTICLE PHYSICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, Isadore M.

    2008-03-04

    The effect on mathematics of collaborations between high-energy theoretical physics and modern mathematics has been remarkable. Mirror symmetry has revolutionized enumerative geometry, and Seiberg-Witten invariants have greatly simplified the study of four manifolds. And because of their application to string theory, physicists now need to know cohomology theory, characteristic classes, index theory, K-theory, algebraic geometry, differential geometry, and non-commutative geometry. Much more is coming. We are experiencing a deeper contact between the two sciences, which will stimulate new mathematics essential to the physicists’ quest for the unification of quantum mechanics and relativity. Our grant, supported by the Department of Energymore » for twelve years, has been instrumental in promoting an effective interaction between geometry and string theory, by supporting the Mathematical Physics seminar, postdoc research, collaborations, graduate students and several research papers.« less

  5. The effect of varying the introduction mode of reactants on electrical, physical and thermal stability properties of polypyrrole synthesized with CTAB

    NASA Astrophysics Data System (ADS)

    Vahidi, K.; Jalili, Y. Seyed; Salar Elahi, A.

    2017-10-01

    Electrical and physical properties of conducting polymers are generally enhanced via modifications in the chemical structure of the final product, there appears to be a void in facile physical means to improve the materials' properties without utilizing additives which remain in the final product as impurity. In this research, we presented the effect of altering the introduction method of reactants in emulsion polymerization of PPy with CTAB on the electrical, physical and stability properties of the final product. Three samples were prepared: one via a conventional non-emulsion polymerization method as a reference sample, the second in which the reactants were added simultaneously and the goal sample in which the monomer/surfactant mixture was allowed to be stirred separately then it was added dropwise to the oxidant solution. UV-vis, FTIR, 4-point Van Derr Paw probe, FESEM and contact angle measurements were used to investigate optical, electrical, physical, heat stability and solubility properties of the samples. The results indicate that since in the final sample a higher portion of the reaction occurred on the hydrophobic interior of the micelles, the final material had a lower number of structural and chemical defects which leads to higher conjugation lengths and thus higher properties such as a 9-fold difference in conductivity and improved solubility and thermal stability. The novelty of this work lies in the simplicity of the alterations that have been made, both in terms of optimization of the synthetic route which had been thoroughly investigated and also in terms of the differences that our work poses compared to that of the others; namely: the parameters have been thoroughly studied and analyzed but not the method of addition as in our experiments the sequence of addition and the method of addition of the reactants were altered to observe their effect on the physical and the electronic properties which has led to the conclusion that in case of drop-wise addition, a larger portion of the reaction occurs inside the micelles hence giving rise to inhibition of the defect-producing chemical bonds which is supported by the analysis in our investigations.

  6. Final Report for Research in High Energy Physics (University of Hawaii)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Browder, Thomas E.

    2013-08-31

    Here we present a final report for the DOE award for the University of Hawaii High Energy Physics Group (UHHEPG) for the period from December 1, 2009 to May 31, 2013 (including a period of no-cost extension). The high energy physics (HEP) group at the University of Hawaii (UH) has been engaged in experiments at the intensity frontier studying flavor physics (Task A: Belle, Belle-II and Task B: BES) and neutrinos (Task C: SuperK, LBNE, Double Chooz, DarkSide, and neutrino R\\&D). On the energy frontier, new types of pixel detectors were developed for upgrades of the ATLAS experiment at themore » LHC (Task D). On the cosmic frontier, there were investigations of ultra high-energy neutrino astrophysics and the highest energy cosmic rays using special radio detection techniques (Task E: AMBER, ANITA R\\&D) and results of the analysis of ANITA data. In addition, we have developed new types of sophisticated and cutting edge instrumentation based on novel ``oscilloscope on a chip'' electronics (Task F). Theoretical physics research (Task G) is phenomenologically oriented and has studied experimental consequences of existing and proposed new theories relevant to the energy, cosmic and intensity frontiers. The senior investigators for proposal were T. E. Browder (Task A), F. A. Harris (Task B), P. Gorham (Task E), J. Kumar (Task G), J. Maricic (Task C), J. G. Learned (Task C), S. Pakvasa (Task G), S. Parker (Task D), S. Matsuno (Task C), X. Tata (Task G) and G. S. Varner (Tasks F, A, E).« less

  7. Socioeconomic status and the health of youth: a multilevel, multidomain approach to conceptualizing pathways.

    PubMed

    Schreier, Hannah M C; Chen, Edith

    2013-05-01

    Previous research has clearly established associations between low socioeconomic status (SES) and poor youth physical health outcomes. This article provides an overview of the main pathways through which low SES environments come to influence youth health. We focus on 2 prevalent chronic health problems in youth today, asthma and obesity. We review and propose a model that encompasses (a) multiple levels of influence, including the neighborhood, family and person level; (b) both social and physical domains in the environment; and finally (c) dynamic relationships between these factors. A synthesis of existing research and our proposed model draw attention to the notion of adverse physical and social exposures in youth's neighborhood environments altering family characteristics and youth psychosocial and behavioral profiles, thereby increasing youth's risk for health problems. We also note the importance of acknowledging reciprocal influences across levels and domains (e.g., between family and child) that create self-perpetuating patterns of influence that further accentuate the impact of these factors on youth health. Finally, we document that factors across levels can interact (e.g., environmental pollution levels with child stress) to create unique, synergistic effects on youth health. Our model stresses the importance of evaluating influences on youth's physical health not in isolation but in the context of the broader social and physical environments in which youth live. Understanding the complex relationships between the factors that link low SES to youth's long-term health trajectories is necessary for the creation and implementation of successful interventions and policies to ultimately reduce health disparities. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  8. Socioeconomic Status and the Health of Youth: A Multi-level, Multi-domain Approach to Conceptualizing Pathways

    PubMed Central

    Schreier, Hannah M. C.; Chen, Edith

    2012-01-01

    Previous research has clearly established associations between low socioeconomic status (SES) and poor youth physical health outcomes. This article provides an overview of the main pathways through which low SES environments come to influence youth health. We focus on two of the most prevalent chronic health problems in youth today, asthma and obesity. We review and propose a model that encompasses (1) multiple levels of influence, including the neighborhood, family and person level, (2) both social and physical domains in the environment, and finally (3) dynamic relationships between these factors. A synthesis of existing research and our proposed model draw attention to the notion of adverse physical and social exposures in youth’s neighborhood environments altering family characteristics and youth psychosocial and behavioral profiles, thereby increasing youth’s risk for health problems. We also note the importance of acknowledging reciprocal influences across levels and domains (e.g., between family and child) that create self-perpetuating patterns of influence that further accentuate the impact of these factors on youth health. Finally, we document that factors across levels can interact (e.g., environmental pollution levels with child stress) to create unique, synergistic effects on youth health. Our model stresses the importance of evaluating influences on youth’s physical health not in isolation but in the context of the broader social and physical environments in which youth live. Understanding the complex relationships between the factors that link low SES to youth’s long-term health trajectories is necessary for the creation and implementation of successful interventions and policies to ultimately reduce health disparities. PMID:22845752

  9. Final Report of DOE Grant No. DE-FG02-04ER41306

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nandi, Satyanarayan; Babu, Kaladi S; Rizatdinova, Flera

    2013-12-10

    Project: Theoretical and Experimental Research in Weak, Electromagnetic and Strong Interactions: Investigators: S. Nandi, K.S. Babu, F. Rizatdinova Institution: Oklahoma State University, Stillwater, OK 74078 This completed project focused on the cutting edge research in theoretical and experimental high energy physics. In theoretical high energy physics, the two investigators (Nandi and Babu) worked on a variety of topics in model-building and phenomenological aspects of elementary particle physics. This includes unification of particles and forces, neutrino physics, Higgs boson physics, proton decay, supersymmetry, and collider physics. Novel physics ideas beyond the Standard Model with testable consequences at the LHC have beenmore » proposed. These ideas have stimulated the experimental community to look for new signals. The contributions of the experimental high energy physics group has been at the D0 experiment at the Fermilab Tevatraon and the ATLAS experiment at the Large Hadron Collider. At the D0 experiment, the main focus was search for the Higgs boson in the WH channel, where improved limits were obtained. At the LHC, the OSU group has made significant contributions to the top quark physics, and the calibration of the b-tagging algorithms. The group is also involved in the pixel detector upgrade. This DOE supported grant has resulted in 5 PhD degrees during the past three years. Three postdoctoral fellows were supported as well. In theoretical research over 40 refereed publications have resulted in the past three years, with several involving graduate students and postdoctoral fellows. It also resulted in over 30 conference presentations in the same time period. We are also involved in outreach activities through the Quarknet program, where we engage Oklahoma school teachers and students in our research.« less

  10. Introducing 12 year-olds to elementary particles

    NASA Astrophysics Data System (ADS)

    Wiener, Gerfried J.; Schmeling, Sascha M.; Hopf, Martin

    2017-07-01

    We present a new learning unit, which introduces 12 year-olds to the subatomic structure of matter. The learning unit was iteratively developed as a design-based research project using the technique of probing acceptance. We give a brief overview of the unit’s final version, discuss its key ideas and main concepts, and conclude by highlighting the main implications of our research, which we consider to be most promising for use in the physics classroom.

  11. Conceptual design project: Accelerator complex for nuclear physics studies and boron neutron capture therapy application at the Yerevan Physics Institute (YerPhI) Yerevan, Armenia

    NASA Astrophysics Data System (ADS)

    Avagyan, R. H.; Kerobyan, I. A.

    2015-07-01

    The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15-1.5 MeV/u) and LINAC2 (1.5-10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.

  12. You Don't Look Like a Physicist

    NASA Astrophysics Data System (ADS)

    Santos, Antonio Carlos Fontes

    2017-12-01

    "You don't look like a physicist!" "Sorry, this bus only goes to the university, Sir." "Where are you going, sir?" "So, you are a university professor? But a substitute one, aren't you?" "OK, you're a professor, but do you do research?" As a person of color teaching physics in Brazil, those are some comments that I usually hear. They are consequences of stereotypes, prejudices, and discrimination, which are related but different ideas. Stereotypes indicate expectations and beliefs about an individual or a group, prejudice denotes feelings, and discrimination expresses behaviors. People are likely to be astonished whenever a Black person says that he or she is a physicist. This paper aims to raise awareness of the underrepresentation of Black physics professors and researchers in Brazil and how the lack of quality high school physics education impacts Black and poor students in Brazil. Finally, some considerations on how physics education can assist minority students in overcoming social barriers that contribute to their underrepresentation are presented.

  13. Description of the supporting factors of final project in Mathematics and Natural Sciences Faculty of Syiah Kuala University with multiple correspondence analysis

    NASA Astrophysics Data System (ADS)

    Rusyana, Asep; Nurhasanah; Maulizasari

    2018-05-01

    Syiah Kuala University (Unsyiah) is hoped to have graduates who are qualified for working or creating a field of work. A final project course implementation process must be effective. This research uses data from the evaluation conducted by Mathematics and Natural Sciences Faculty (FMIPA) of Unsyiah. Some of the factors that support the completion of the final project are duration, guidance, the final project seminars, facility, public impact, and quality. This research aims to know the factors that have a relationship with the completion of the final project and identify similarities among variables. The factors that support the completion of the final project at every study program in FMIPA are (1) duration, (2) guidance and (3) facilities. These factors are examined for the correlations by chi-square test. After that, the variables are analyzed with multiple correspondence analysis. Based on the plot of correspondence, the activities of the guidance and facilities in Informatics Study Program are included in the fair category, while the guidance and facilities in the Chemistry are included in the best category. Besides that, students in Physics can finish the final project with the fastest completion duration, while students in Pharmacy finish for the longest time.

  14. Rewarding Work, Priceless Collaborations, Much Gratitude.

    PubMed

    Simoneau, Guy G

    2015-12-01

    In this editorial of his final issue as Editor-in-Chief, Dr Guy G. Simoneau shares his thoughts on how changes in the areas of physical therapy research design, professional collaboration, publishing and communication technology, and publication standards played out in the world of JOSPT and recognize the many people who supported and implemented the changes.

  15. Research in Chinese-English Machine Translation. Final Report.

    ERIC Educational Resources Information Center

    Wang, William S-Y.; And Others

    This report documents results of a two-year effort toward the study and investigation of the design of a prototype system for Chinese-English machine translation in the general area of physics. Previous work in Chinese-English machine translation is reviewed. Grammatical considerations in machine translation are discussed and detailed aspects of…

  16. Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wijewardhana, Rohana; Argyres, Philip

    2014-11-03

    Task A - Theory Research in theoretical physics in the Department of Physics at the University of Cincinnati has been funded by the U.S. Department of Energy starting in 1984. Professors Peter Suranyi, Louis Witten, Fred Mansouri, L.C.R. Wijewardhana, Alexander Kagan and Philip Argyres have served as P.I.'s of the Cincinnati DOE theory task. Task B - Heavy Flavor Physics Research in experimental particle physics in the Department of Physics at the University of Cincinnati has been funded by the U.S. Department of Energy since 1999. Professor Kay Kinoshita has served as P.I. on Task B since its inception. Taskmore » C - Neutrinos Over the past three years, Task C has been measuring the properties of neutrinos with the MiniBooNE and Daya Bay detectors and building two new neutrino experiments: MicroBooNE and LArIAT. In addition, the PI (Randy Johnson) has joined the long leadtime experiment, LBNE, and has participated in the R&D report for CHiPs. Results and progress on each of these experiments will be summarized below.« less

  17. A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring

    PubMed Central

    Yang, Che-Chang; Hsu, Yeh-Liang

    2010-01-01

    Characteristics of physical activity are indicative of one’s mobility level, latent chronic diseases and aging process. Accelerometers have been widely accepted as useful and practical sensors for wearable devices to measure and assess physical activity. This paper reviews the development of wearable accelerometry-based motion detectors. The principle of accelerometry measurement, sensor properties and sensor placements are first introduced. Various research using accelerometry-based wearable motion detectors for physical activity monitoring and assessment, including posture and movement classification, estimation of energy expenditure, fall detection and balance control evaluation, are also reviewed. Finally this paper reviews and compares existing commercial products to provide a comprehensive outlook of current development status and possible emerging technologies. PMID:22163626

  18. Aunting as a Call to Public Intellectualism: The Roles of (In)Visibility in Health Communication Research and Service.

    PubMed

    Tikkanen, Stephanie A

    2017-08-01

    In this essay, the author identifies the theme of (in)visibility permeating her research on fathers of children with a rare genetic condition, Sturge-Weber syndrome. The tension between physical visibility of the condition and lack of awareness is explored, alongside issues of (in)visibility in coping and support-seeking strategies of fathers. Finally, the author examines her own experiences in the research process through the lens of (in)visibility, in both managing her own emotions and exploring her roles as a researcher, an aunt, and a public intellectual.

  19. Research Experience for Undergrads with the Boulder Solar Alliance

    NASA Astrophysics Data System (ADS)

    Snow, M. A.; Raftery, C. L.

    2017-12-01

    The Research Experience for Undergraduates program operated by the Boulder Solar Alliance has just finished its eleventh year. Students from around the US come to Boulder, Colorado to work with a mentor in the field of solar and space physics. Mentors are drawn from all of the research institutes in Boulder. Students spend the first week getting acquianted with the interdisciplinary nature of the field and learning how to work collaboratively on a research project. We include several professional development activities at weekly brown bag lunches, and finally the students present their results in both oral and poster form.

  20. Fundamentals of Sports Analytics.

    PubMed

    Wasserman, Erin B; Herzog, Mackenzie M; Collins, Christy L; Morris, Sarah N; Marshall, Stephen W

    2018-07-01

    Recently, the importance of statistics and analytics in sports has increased. This review describes measures of sports injury and fundamentals of sports injury research with a brief overview of some of the emerging measures of sports performance. We describe research study designs that can be used to identify risk factors for injury, injury surveillance programs, and common measures of injury risk and association. Finally, we describe measures of physical performance and training and considerations for using these measures. This review provides sports medicine clinicians with an understanding of current research measures and considerations for designing sports injury research studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. MEMS Sensor Technologies for Human Centred Applications in Healthcare, Physical Activities, Safety and Environmental Sensing: A Review on Research Activities in Italy

    PubMed Central

    Ciuti, Gastone; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo

    2015-01-01

    Over the past few decades the increased level of public awareness concerning healthcare, physical activities, safety and environmental sensing has created an emerging need for smart sensor technologies and monitoring devices able to sense, classify, and provide feedbacks to users’ health status and physical activities, as well as to evaluate environmental and safety conditions in a pervasive, accurate and reliable fashion. Monitoring and precisely quantifying users’ physical activity with inertial measurement unit-based devices, for instance, has also proven to be important in health management of patients affected by chronic diseases, e.g., Parkinson’s disease, many of which are becoming highly prevalent in Italy and in the Western world. This review paper will focus on MEMS sensor technologies developed in Italy in the last three years describing research achievements for healthcare and physical activity, safety and environmental sensing, in addition to smart systems integration. Innovative and smart integrated solutions for sensing devices, pursued and implemented in Italian research centres, will be highlighted, together with specific applications of such technologies. Finally, the paper will depict the future perspective of sensor technologies and corresponding exploitation opportunities, again with a specific focus on Italy. PMID:25808763

  2. Is sexual behavior healthy for adolescents? A conceptual framework for research on adolescent sexual behavior and physical, mental, and social health.

    PubMed

    Vasilenko, Sara A; Lefkowitz, Eva S; Welsh, Deborah P

    2014-01-01

    Although research has increasingly emphasized how adolescent sexual behavior may be associated with aspects of health beyond unwanted pregnancy and sexually transmitted infections, no current theoretical or conceptual model fully explains associations between sexual behavior and multiple facets of health. We provide a conceptual model that explicates possible processes of how adolescent sexual behavior may influence physical, mental, and social health. Next, we review the current literature consistent with this conceptual model, demonstrating that although early sexual behavior can be associated with some negative outcomes, sex may be, on average, a positive experience in late adolescence. Finally, we discuss important future directions for research in these areas, including how individuals' attitudes about and perceptions of sexual behavior influence outcomes of sex. © 2014 Wiley Periodicals, Inc.

  3. Intimate partner violence and physical health consequences: policy and practice implications.

    PubMed

    Plichta, Stacey B

    2004-11-01

    Extensive research indicates that intimate partner violence (IPV) poses a significant risk to the physical health of women. IPV is associated with increased mortality, injury and disability, worse general health, chronic pain, substance abuse, reproductive disorders, and poorer pregnancy outcomes. IPV is also associated with an overuse of health services and unmet need for services, as well as strained relationships with providers. The body of IPV research has several critical gaps. There are almost no longitudinal studies of IPV and health. Most studies are clustered into a few specialties, with almost no research in the areas of allied health, dentistry, or management. A common definition of IPV is still not used. Finally, with some notable exceptions, there has been little success in moving the health care system to routinely screen women for IPV.

  4. Transparent Conducting Oxides: Status and Opportunities in Basic Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coutts, T. J.; Perkins, J. D.; Ginley, D.S.

    1999-08-01

    In this paper, we begin by discussing the historical background of transparent conducting oxides and then make some general remarks about their typical properties. This is followed by a short discussion of the desired properties for future applications (particularly photovoltaic devices). These are ambitious objectives but they provide targets for future basic research and development. Although it may be possible to obtain these properties in the laboratory, it is vital to ensure that account is taken of industrial perceptions to the development of the next generation of materials. Hence, we spend some time discussing industrial criteria. Next, we discuss keymore » physical properties that determine the macroscopic physical properties that, in turn, affect the performance of devices. Finally, we select several key topics that ought to be included in future basic research programs.« less

  5. Short communication: final year students' deficits in physical examination skills performance in Germany.

    PubMed

    Krautter, Markus; Diefenbacher, Katja; Koehl-Hackert, Nadja; Buss, Beate; Nagelmann, Lars; Herzog, Wolfgang; Jünger, Jana; Nikendei, Christoph

    2015-01-01

    The physical examination of patients is an important diagnostic competence, but little is known about the examination skills of final-year medical students. To investigate physical examination skills of final-year medical students. In a cross-sectional study, 40 final-year students were asked to perform a detailed physical examination on standardized patients. Their performances were video-recorded and rated by independent video assessors. Video ratings showed a mean success rate of 40.1 % (SD 8.2). As regards accompanying doctor-patient communication, final-year students achieved a mean of no more than 36.7 % (SD 8.9) in the appropriate use of the corresponding communication items. Our study revealed severe deficits among final-year medical students in performing a detailed physical examination on a standardized patient. Thus, physical examination skills training should aim to improve these deficits while also paying attention to communicative aspects. Copyright © 2015. Published by Elsevier GmbH.

  6. Physical break-down of the classical view on cancer cell invasion and metastasis.

    PubMed

    Mierke, Claudia T

    2013-03-01

    Eight classical hallmarks of cancer have been proposed and are well-defined by using biochemical or molecular genetic methods, but are not yet precisely defined by cellular biophysical processes. To define the malignant transformation of neoplasms and finally reveal the functional pathway, which enables cancer cells to promote cancer progression, these classical hallmarks of cancer require the inclusion of specific biomechanical properties of cancer cells and their microenvironment such as the extracellular matrix and embedded cells such as fibroblasts, macrophages or endothelial cells. Nonetheless a main novel ninth hallmark of cancer is still elusive in classical tumor biological reviews, which is the aspect of physics in cancer disease by the natural selection of an aggressive (highly invasive) subtype of cancer cells. The physical aspects can be analyzed by using state-of-the-art biophysical methods. Thus, this review will present current cancer research in a different light and will focus on novel physical methods to investigate the aggressiveness of cancer cells from a biophysicist's point of view. This may lead to novel insights into cancer disease and will overcome classical views on cancer. In addition, this review will discuss how physics of cancer can help to reveal whether cancer cells will invade connective tissue and metastasize. In particular, this review will point out how physics can improve, break-down or support classical approaches to examine tumor growth even across primary tumor boundaries, the invasion of single or collective cancer cells, transendothelial migration of cancer cells and metastasis in targeted organs. Finally, this review will show how physical measurements can be integrated into classical tumor biological analysis approaches. The insights into physical interactions between cancer cells, the primary tumor and the microenvironment may help to solve some "old" questions in cancer disease progression and may finally lead to novel approaches for development and improvement of cancer diagnostics and therapies. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. CERN and 60 years of science for peace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heuer, Rolf-Dieter, E-mail: Rolf.Heuer@cern.ch

    2015-02-24

    This paper presents CERN as it celebrates its 60{sup th} Anniversary since its founding. The presentation first discusses the mission of CERN and its role as an inter-governmental Organization. The paper also reviews aspects of the particle physics research programme, looking at both current and future accelerator-based facilities at the high-energy and intensity frontiers. Finally, the paper considers issues beyond fundamental research, such as capacity-building and the interface between Art and Science.

  8. Emerging Technologies for Assessing Physical Activity Behaviors in Space and Time

    PubMed Central

    Hurvitz, Philip M.; Moudon, Anne Vernez; Kang, Bumjoon; Saelens, Brian E.; Duncan, Glen E.

    2014-01-01

    Precise measurement of physical activity is important for health research, providing a better understanding of activity location, type, duration, and intensity. This article describes a novel suite of tools to measure and analyze physical activity behaviors in spatial epidemiology research. We use individual-level, high-resolution, objective data collected in a space-time framework to investigate built and social environment influences on activity. First, we collect data with accelerometers, global positioning system units, and smartphone-based digital travel and photo diaries to overcome many limitations inherent in self-reported data. Behaviors are measured continuously over the full spectrum of environmental exposures in daily life, instead of focusing exclusively on the home neighborhood. Second, data streams are integrated using common timestamps into a single data structure, the “LifeLog.” A graphic interface tool, “LifeLog View,” enables simultaneous visualization of all LifeLog data streams. Finally, we use geographic information system SmartMap rasters to measure spatially continuous environmental variables to capture exposures at the same spatial and temporal scale as in the LifeLog. These technologies enable precise measurement of behaviors in their spatial and temporal settings but also generate very large datasets; we discuss current limitations and promising methods for processing and analyzing such large datasets. Finally, we provide applications of these methods in spatially oriented research, including a natural experiment to evaluate the effects of new transportation infrastructure on activity levels, and a study of neighborhood environmental effects on activity using twins as quasi-causal controls to overcome self-selection and reverse causation problems. In summary, the integrative characteristics of large datasets contained in LifeLogs and SmartMaps hold great promise for advancing spatial epidemiologic research to promote healthy behaviors. PMID:24479113

  9. Science Education and the Material Culture of the Nineteenth-Century Classroom: Physics and Chemistry in Spanish Secondary Schools

    NASA Astrophysics Data System (ADS)

    Simon, Josep; Cuenca-Lorente, Mar

    2012-02-01

    Although a large number of Spanish secondary schools have preserved an important scientific heritage, including large scientific instrument collections, this heritage has never been officially protected. Their current state is very diverse, and although several research projects have attempted to initiate their recovery and use, their lack of coordination and wide range of methodological approaches has limited their impact. This paper presents a case-study integrated in a new project supported by the Catalan Scientific Instrument Commission (COMIC) whose final aim is the establishment of a research hub for the preservation, study and use of Spanish scientific instrument collections. Major aims in this project are promoting a better coordination of Spanish projects in this field, and furthering international research on science pedagogy and the material culture of science. The major focus of COMIC is currently the recovery of secondary school collections. This paper provides first, a historical account of the development of secondary education in Spain, and the contemporary establishment of physics and chemistry school collections. Second, we focus on a case-study of three Spanish schools (Valencia, Castellón, and Alicante). Finally, we provide a brief overview of current projects to preserve Spanish school collections, and discuss how COMIC can contribute to help to coordinate them, and to take a step forward interdisciplinary research in this context.

  10. The contribution of conceptual frameworks to knowledge translation interventions in physical therapy.

    PubMed

    Hudon, Anne; Gervais, Mathieu-Joël; Hunt, Matthew

    2015-04-01

    There is growing recognition of the importance of knowledge translation activities in physical therapy to ensure that research findings are integrated into clinical practice, and increasing numbers of knowledge translation interventions are being conducted. Although various frameworks have been developed to guide and facilitate the process of translating knowledge into practice, these tools have been infrequently used in physical therapy knowledge translation studies to date. Knowledge translation in physical therapy implicates multiple stakeholders and environments and involves numerous steps. In light of this complexity, the use of explicit conceptual frameworks by clinicians and researchers conducting knowledge translation interventions is associated with a range of potential benefits. This perspective article argues that such frameworks are important resources to promote the uptake of new evidence in physical therapist practice settings. Four key benefits associated with the use of conceptual frameworks in designing and implementing knowledge translation interventions are identified, and limits related to their use are considered. A sample of 5 conceptual frameworks is evaluated, and how they address common barriers to knowledge translation in physical therapy is assessed. The goal of this analysis is to provide guidance to physical therapists seeking to identify a framework to support the design and implementation of a knowledge translation intervention. Finally, the use of a conceptual framework is illustrated through a case example. Increased use of conceptual frameworks can have a positive impact on the field of knowledge translation in physical therapy and support the development and implementation of robust and effective knowledge translation interventions that help span the research-practice gap. © 2015 American Physical Therapy Association.

  11. Physics Teachers' Education (PTE): Problems and Challenges

    NASA Astrophysics Data System (ADS)

    Sassi, Elena; Michelini, Marisa

    A vast majority of the research results acknowledge the crucial role of teacher's education, as a vital tool in enhancing the quality of physics education. The projects like PISA, ROSE and TIMMS showcase the impact of teacher's education as a qualitative improvement in the physics learning environment. In Physics Education Research (PER), the impact of teacher's education had been addressed for the its role in the enhancement of positive interest among the students. The current world-wide state of the art characterizes a large variety of boundary conditions, traditions and practices that are being followed. In our present context, we foucus and discuss on the multidimensional challanges such as competencies needed, degrees required, problems encountered, support to be provided and the basic pre-requirements of Teacher's education for the secondary schools. We present some of the teaching methods and practices followed in coherent with, both, the Student centered and open learning environments along with some of the useful didactical indicators. Also, we potray a couple of research-based examples successfully experimented in Italy. Finally we propose some useful recommendations along with the criteria to be followed in the teachers education for the overall improvement.

  12. Pattern of mathematic representation ability in magnetic electricity problem

    NASA Astrophysics Data System (ADS)

    Hau, R. R. H.; Marwoto, P.; Putra, N. M. D.

    2018-03-01

    The mathematic representation ability in solving magnetic electricity problem gives information about the way students understand magnetic electricity. Students have varied mathematic representation pattern ability in solving magnetic electricity problem. This study aims to determine the pattern of students' mathematic representation ability in solving magnet electrical problems.The research method used is qualitative. The subject of this study is the fourth semester students of UNNES Physics Education Study Program. The data collection is done by giving a description test that refers to the test of mathematical representation ability and interview about field line topic and Gauss law. The result of data analysis of student's mathematical representation ability in solving magnet electric problem is categorized into high, medium and low category. The ability of mathematical representations in the high category tends to use a pattern of making known and asked symbols, writing equations, using quantities of physics, substituting quantities into equations, performing calculations and final answers. The ability of mathematical representation in the medium category tends to use several patterns of writing the known symbols, writing equations, using quantities of physics, substituting quantities into equations, performing calculations and final answers. The ability of mathematical representations in the low category tends to use several patterns of making known symbols, writing equations, substituting quantities into equations, performing calculations and final answer.

  13. Phase B: Final definition and preliminary design study for the initial Atmospheric Cloud Physics Laboratory (ACPL), a spacelab mission payload

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A preliminary identification of the Supporting Research and Technology (SR&T) necessary during the planned evolution of atmospheric cloud physics is discussed. All requirements are for subsequent flights over its expected ten year lifetime. Those components identified as requiring some SR&T work prior to inclusion are listed. A data sheet is included for each item, briefly justifying the need, giving general objectives for the proposed development effort and identifying approximate schedule requirements on the program.

  14. An Aerosol Physical Chemistry Model for the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Lin, Jin-Sheng

    2001-01-01

    This report is the final report for the Cooperative Agreement NCC2-1000. The tasks outlined in the various proposals are listed with a brief comment as to the research performed. The publications titles are: The effects of particle size and nitric acid uptake on the homogenous freezing of sulfate aerosols; Parameterization of an aerosol physical chemistry model (APCM) for the NH3/H2SO4/HNO3/H2O system at cold temperatures; and The onset, extent and duration of dehydration in the Southern Hemisphere polar vortex.

  15. High Performance Computing and Storage Requirements for Nuclear Physics: Target 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Richard; Wasserman, Harvey

    2014-04-30

    In April 2014, NERSC, ASCR, and the DOE Office of Nuclear Physics (NP) held a review to characterize high performance computing (HPC) and storage requirements for NP research through 2017. This review is the 12th in a series of reviews held by NERSC and Office of Science program offices that began in 2009. It is the second for NP, and the final in the second round of reviews that covered the six Office of Science program offices. This report is the result of that review

  16. Future directions in physical activity intervention research: expanding our focus to sedentary behaviors, technology, and dissemination.

    PubMed

    Lewis, Beth A; Napolitano, Melissa A; Buman, Matthew P; Williams, David M; Nigg, Claudio R

    2017-02-01

    Despite the increased health risks of a sedentary lifestyle, only 49 % of American adults participate in physical activity (PA) at the recommended levels. In an effort to move the PA field forward, we briefly review three emerging areas of PA intervention research. First, new intervention research has focused on not only increasing PA but also on decreasing sedentary behavior. Researchers should utilize randomized controlled trials, common terminology, investigate which behaviors should replace sedentary behaviors, evaluate long-term outcomes, and focus across the lifespan. Second, technology has contributed to an increase in sedentary behavior but has also led to innovative PA interventions. PA technology research should focus on large randomized trials with evidence-based components, explore social networking and innovative apps, improve PA monitoring, consider the lifespan, and be grounded in theory. Finally, in an effort to maximize public health impact, dissemination efforts should address the RE-AIM model, health disparities, and intervention costs.

  17. Future directions in physical activity intervention research: expanding our focus to sedentary behaviors, technology, and dissemination

    PubMed Central

    Napolitano, Melissa A.; Buman, Matthew P.; Williams, David M.; Nigg, Claudio R.

    2016-01-01

    Despite the increased health risks of a sedentary lifestyle, only 49 % of American adults participate in physical activity (PA) at the recommended levels. In an effort to move the PA field forward, we briefly review three emerging areas of PA intervention research. First, new intervention research has focused on not only increasing PA but also on decreasing sedentary behavior. Researchers should utilize randomized controlled trials, common terminology, investigate which behaviors should replace sedentary behaviors, evaluate long-term outcomes, and focus across the lifespan. Second, technology has contributed to an increase in sedentary behavior but has also led to innovative PA interventions. PA technology research should focus on large randomized trials with evidence-based components, explore social networking and innovative apps, improve PA monitoring, consider the lifespan, and be grounded in theory. Finally, in an effort to maximize public health impact, dissemination efforts should address the RE-AIM model, health disparities, and intervention costs. PMID:27722907

  18. Condensed Matter Physics at ONR - A Nanoelectronics Perspective

    NASA Astrophysics Data System (ADS)

    Baatar, Chagaan

    As a mission agency within the Department of Defense, the Office of Naval Research (ONR) currently does not have a program exclusively dedicated to condensed matter physics (CMP) research. Yet many CMP related topics are being funded under various programs scattered throughout the agency. In this talk I will provide an example of such a program - the ONR Nanoelectronics program, that I currently manage, and highlight some of the CMP related activities within the program. I may also mention a few topics that are funded by other ONR program officers. Finally, in addressing the theme of the session, I will describe the ONR Young Investigator Program (YIP) - its brief history, solicitation and evaluation processes involved, and provide a few examples from recent YIP projects.

  19. Obesity Prevention in Older Adults.

    PubMed

    Volpe, Stella Lucia; Sukumar, Deeptha; Milliron, Brandy-Joe

    2016-06-01

    The number of older adults living in the USA, 65 years of age and older, has been steadily increasing. Data from the National Health and Nutrition Examination Survey (NHANES), 2007-2010, indicate that more than one-third of older adults, 65 years of age and older, were obese. With the increased rate of obesity in older adults, the purpose of this paper is to present research on different methods to prevent or manage obesity in older adults, namely dietary interventions, physical activity interventions, and a combination of dietary and physical activity interventions. In addition, research on community assistance programs in the prevention of obesity with aging will be discussed. Finally, data on federal programs for older adults will also be presented.

  20. Deconvoluting physical and chemical heat: Temperature and spiciness influence flavor differently.

    PubMed

    Kapaun, Camille L; Dando, Robin

    2017-03-01

    Flavor is an essential, rich and rewarding part of human life. We refer to both physical and chemical heat in similar terms; elevated temperature and capsaicin are both termed hot. Both influence our perception of flavor, however little research exists into the possibly divergent effect of chemical and physical heat on flavor. A human sensory panel was recruited to determine the equivalent level of capsaicin to match the heat of several physical temperatures. In a subsequent session, the intensities of multiple concentrations of tastant solutions were scaled by the same panel. Finally, panelists evaluated tastants plus equivalent chemical or physical "heat". All basic tastes aside from umami were influenced by heat, capsaicin, or both. Interestingly, capsaicin blocked bitter taste input much more powerfully than elevated temperature. This suggests that despite converging percepts, chemical and physical heat have a fundamentally different effect on the perception of flavor. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Physical Test Prototypes Based on Microcontroller

    NASA Astrophysics Data System (ADS)

    Paramitha, S. T.

    2017-03-01

    The purpose of this study was to produce a prototype of a physical test-based microcontroller. The research method uses the research and development of the Borg and gall. The procedure starts from the study; research and information collecting, planning, develop preliminary form of product, preliminary field testing, main product revision, playing field testing, operational product revision, field operational testing, final product revision, dissemination and implementation. Validation of the product, obtained through expert evaluation; test products of small scale and large scale; effectiveness test; evaluation of respondents. The results showed that the eligibility assessment of prototype products based physical tests microcontroller. Based on the ratings of seven experts showed that 87% included in the category of “very good” and 13% included in the category of “good”. While the effectiveness of the test results showed that 1). The results of the experimental group to test sit-ups increase by 40% and the control group by 15%. 2). The results of the experimental group to test push-ups increased by 30% and the control group by 10%. 3). The results of the experimental group to test the Back-ups increased by 25% and the control group by 10%. With a significant value of 0.002 less than 0.05, product means a physical test prototype microcontroller based, proven effective in improving the results of physical tests. Conclusions and recommendations; Product physical microcontroller-based assays, can be used to measure the physical tests of pushups, sit ups, and back-ups.

  2. Imaging Multi-Particle Atomic and Molecular Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landers, Allen

    2016-02-12

    Final Report for Grant Number: DE- FG02-10ER16146 This grant supported research in basic atomic, molecular and optical physics related to the interactions of atoms and molecules with photons and electrons. The duration of the grant was the 5 year period from 4/1/2010 – 10/31/2015. All of the support from the grant was used to pay salaries of the PI, graduate students, and undergraduates and travel to conferences and meetings. The results were in the form of publications in peer reviewed journals. There were 20 peer reviewed publications over these 5 years with 2 of the publications in Physical Review Lettersmore » and 1 in Nature; all of the other articles were in respected peer reviewed journals (Physical Review A, New Journal of Physics, Journal of Physics B ...).« less

  3. Experimental Neutrino Physics: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, Charles E.; Maricic, Jelena

    2012-09-05

    Experimental studies of neutrino properties, with particular emphasis on neutrino oscillation, mass and mixing parameters. This research was pursued by means of underground detectors for reactor anti-neutrinos, measuring the flux and energy spectra of the neutrinos. More recent investigations have been aimed and developing detector technologies for a long-baseline neutrino experiment (LBNE) using a neutrino beam from Fermilab.

  4. Who will study HSC physics? Relationships between motivation, engagement and choice

    NASA Astrophysics Data System (ADS)

    Abraham, Jessy

    This study investigates the relationship between students' achievement motivation, sustained engagement and sustained enrolment intentions, in relation to senior secondary physics. Specifically, this study sought to determine the motivational factors that predict students' sustained engagement and sustained enrolment intentions in four physics modules, and tested whether there were gender differences. These issues were addressed through a multi-occasional exploration among senior secondary students in New South Wales during their first year of elective physics. This study pioneered an innovative approach to exploring sustained enrolment intentions in the enacted physics curriculum, since students were asked about their enrolment plans at a time when they were actually studying physics modules, rather than before they had studied the subject, which as has been the case for most research on science enrolment. An achievement motivation theoretical framework was employed to provide a more comprehensive explanation of students' sustained physics engagement and enrolment plans. A significant feature of this exploration is the topic (module) specificity of motivation. This study, based on Expectancy-Value (EV) theoretical underpinnings, has implications for strengthening physics enrolment research, and makes a significant contribution to advancing research and practice. While the declining trend in physics enrolment and the widening gender imbalance in physics participation have been explored widely, the retention of students in physics courses remains largely unexplored. The existing research mainly focuses on the main exit point from physics education, which is the transition from a general science course to non-compulsory, more specialised science courses that takes place during the transition from junior high school to senior high school in Australia. Another major exit point from physics education is the transition from senior high school to tertiary level. However, the Australian senior high school structure, where students can opt out of physics after the first year of senior secondary physics if they do not want to continue it to the final year, provides a unique exit point from physics education. This investigation examines the sustained enrolment intentions of students during their senior high school, and this adds an innovative variation to the enrolment research tradition. It further makes an original contribution to educational theory by fine-grained analysis of the retention motivations of physics students while they are studying the subject. The purpose of the study is to contribute to theory, practice and research knowledge of students' sustained engagement and enrolment plans in physics. The findings of the study inform educational practitioners and policy makers. A reliable, valid and gender invariant scale to measure the motivational and behavioural patterns of adolescent students across four physics modules was developed and tested specifically for this study. This provides researchers and educational practitioners with a sensitive measuring instrument of physics enrolment motivation. Furthermore, this study extends the current understanding of gender differences in major achievement motivational constructs and engagement constructs in relation to physics. Findings from this research hold important implications for understanding the motivational factors that affect student engagement, and also for educational practice and research relating to students' enrolment in physics.

  5. Excellence in Physics Education Award Talk: Revitalizing Introductory Physics at Community Colleges and More

    NASA Astrophysics Data System (ADS)

    Hieggelke, Curtis

    2009-05-01

    This project started because many community college physics instructors wanted to improve the learning and understanding of their students in physics. However, these teachers, at that time, were isolated from many of the emerging developments in physics education research and computer technology such as MBL (microcomputer based laboratories). While there were some opportunities within the American Association of Physics Teachers to learn about recent educational developments, there was nothing targeted directly to the unique needs of the two-year college physics community; nor did many of the curriculum developers have much knowledge about this group. The initial goal of this project was to design and provide hands-on workshops to introduce new computer technology, software, curricular materials and approaches arising from physics education research to community college physics teachers. They would then have the background to decide if these new ideas were worthy of adoption and feasible at their institutions. NSF's Division of Undergraduate Education supported these workshop efforts by funding seven different grants from three different programs. These grants have led to 61 workshops with 52 workshop leaders, which were held at 23 community colleges in 14 states for over 1300 participants. This presentation will provide more details about these workshops, and about the subsequent development of the Conceptual Survey on Electricity and Magnetism, and a book on Ranking Tasks edited by us, but written by many participants in the early workshops. In addition, grants were received from NSF for the acquisition and development of computer lab technology that was later featured in some of the workshops. Finally, three NSF grants were received for the development of new educational materials called TIPERs (Tasks Inspired by Physics Education Research) that will be described.

  6. Beauty at the ballot box: disease threats predict preferences for physically attractive leaders.

    PubMed

    White, Andrew Edward; Kenrick, Douglas T; Neuberg, Steven L

    2013-12-01

    Why does beauty win out at the ballot box? Some researchers have posited that it occurs because people ascribe generally positive characteristics to physically attractive candidates. We propose an alternative explanation-that leadership preferences are related to functional disease-avoidance mechanisms. Because physical attractiveness is a cue to health, people concerned with disease should especially prefer physically attractive leaders. Using real-world voting data and laboratory-based experiments, we found support for this relationship. In congressional districts with elevated disease threats, physically attractive candidates are more likely to be elected (Study 1). Experimentally activating disease concerns leads people to especially value physical attractiveness in leaders (Study 2) and prefer more physically attractive political candidates (Study 3). In a final study, we demonstrated that these findings are related to leadership preferences, specifically, rather than preferences for physically attractive group members more generally (Study 4). Together, these findings highlight the nuanced and functional nature of leadership preferences.

  7. Science and Science Fiction

    ScienceCinema

    Scherrer, Robert [Vanderbilt University, Nashville, Tennessee, United States

    2017-12-09

    I will explore the similarities and differences between the process of writing science fiction and the process of 'producing' science, specifically theoretical physics. What are the ground rules for introducing unproven new ideas in science fiction, and how do they differ from the corresponding rules in physics? How predictive is science fiction? (For that matter, how predictive is theoretical physics?) I will also contrast the way in which information is presented in science fiction, as opposed to its presentation in scientific papers, and I will examine the relative importance of ideas (as opposed to the importance of the way in which these ideas are presented). Finally, I will discuss whether a background as a research scientist provides any advantage in writing science fiction.

  8. Fundamental Physics Changes in Response to Evolving NASA Needs

    NASA Technical Reports Server (NTRS)

    Israelsson, Ulf

    2003-01-01

    To continue growing as a discipline, we need to establish a new vision of where we are going that is consistent with today s physics, NASA s strategic plan, and the new OBPR direction. 1998 Roadmap focused exclusively on Physics, and did not worry about boundaries between OBPR and OSS. Updated Roadmap: Must incorporate some strategic research activities to be fully responsive to the current OBPR direction. Must capture the imagination of OBPR leadership, OMB, and Congress. Must delineate OBPR from the "beyond Einstein" program in OSS. Must address relevancy to Society explicitly. Status of the Roadmap development will be discussed after lunch today. Seeking community inputs and endorsement. Draft update targeted for June, final in August.

  9. In Franklin's Path: Establishing Physics at the University of Pennsylvania

    NASA Astrophysics Data System (ADS)

    Halpern, Paul

    2008-04-01

    In 1751 Benjamin Franklin established the Academy of Philadelphia, the precursor of the University of Pennsylvania. Among its curricular mandates he envisioned included ``Natural and Mechanic History,'' using a popular text he suggested by No"el Antoine Pluche that encompassed optics and celestial dynamics among its subjects. This talk will trace the history of physics research and education at Penn from its establishment, to the appointment of the first designated physics professor, George Frederic Barker, in 1873, to the opening of the Randall Morgan Laboratory in 1901 under the directorship of Arthur Goodspeed, and finally to the inauguration of the David Rittenhouse Laboratory in 1954 under the university leadership of Gaylord Harnwell.

  10. The Contribution of Conceptual Frameworks to Knowledge Translation Interventions in Physical Therapy

    PubMed Central

    Gervais, Mathieu-Joël; Hunt, Matthew

    2015-01-01

    There is growing recognition of the importance of knowledge translation activities in physical therapy to ensure that research findings are integrated into clinical practice, and increasing numbers of knowledge translation interventions are being conducted. Although various frameworks have been developed to guide and facilitate the process of translating knowledge into practice, these tools have been infrequently used in physical therapy knowledge translation studies to date. Knowledge translation in physical therapy implicates multiple stakeholders and environments and involves numerous steps. In light of this complexity, the use of explicit conceptual frameworks by clinicians and researchers conducting knowledge translation interventions is associated with a range of potential benefits. This perspective article argues that such frameworks are important resources to promote the uptake of new evidence in physical therapist practice settings. Four key benefits associated with the use of conceptual frameworks in designing and implementing knowledge translation interventions are identified, and limits related to their use are considered. A sample of 5 conceptual frameworks is evaluated, and how they address common barriers to knowledge translation in physical therapy is assessed. The goal of this analysis is to provide guidance to physical therapists seeking to identify a framework to support the design and implementation of a knowledge translation intervention. Finally, the use of a conceptual framework is illustrated through a case example. Increased use of conceptual frameworks can have a positive impact on the field of knowledge translation in physical therapy and support the development and implementation of robust and effective knowledge translation interventions that help span the research-practice gap. PMID:25060959

  11. Report of the theory panel. [space physics

    NASA Technical Reports Server (NTRS)

    Ashourabdalla, Maha; Rosner, Robert; Antiochos, Spiro; Curtis, Steven; Fejer, B.; Goertz, Christoph K.; Goldstein, Melvyn L.; Holzer, Thomas E.; Jokipii, J. R.; Lee, Lou-Chuang

    1991-01-01

    The ultimate goal of this research is to develop an understanding which is sufficiently comprehensive to allow realistic predictions of the behavior of the physical systems. Theory has a central role to play in the quest for this understanding. The level of theoretical description is dependent on three constraints: (1) the available computer hardware may limit both the number and the size of physical processes the model system can describe; (2) the fact that some natural systems may only be described in a statistical manner; and (3) the fact that some natural systems may be observable only through remote sensing which is intrinsically limited by spatial resolution and line of sight integration. From this the report discusses present accomplishments and future goals of theoretical space physics. Finally, the development and use of new supercomputer is examined.

  12. Stereotyped: investigating gender in introductory science courses.

    PubMed

    Lauer, Shanda; Momsen, Jennifer; Offerdahl, Erika; Kryjevskaia, Mila; Christensen, Warren; Montplaisir, Lisa

    2013-01-01

    Research in science education has documented achievement gaps between men and women in math and physics that may reflect, in part, a response to perceived stereotype threat. Research efforts to reduce achievement gaps by mediating the impact of stereotype threat have found success with a short values-affirmation writing exercise. In biology and biochemistry, however, little attention has been paid to the performance of women in comparison with men or perceptions of stereotype threat, despite documentation of leaky pipelines into professional and academic careers. We used methodologies developed in physics education research and cognitive psychology to 1) investigate and compare the performance of women and men across three introductory science sequences (biology, biochemistry, physics), 2) document endorsement of stereotype threat in these science courses, and 3) investigate the utility of a values-affirmation writing task in reducing achievement gaps. In our study, analysis of final grades and normalized learning gains on content-specific concept inventories reveals no achievement gap in the courses sampled, little stereotype threat endorsement, and no impact of the values-affirmation writing task on student performance. These results underscore the context-dependent nature of achievement gaps and stereotype threat and highlight calls to replicate education research across a range of student populations.

  13. Stereotyped: Investigating Gender in Introductory Science Courses

    PubMed Central

    Lauer, Shanda; Momsen, Jennifer; Offerdahl, Erika; Kryjevskaia, Mila; Christensen, Warren; Montplaisir, Lisa

    2013-01-01

    Research in science education has documented achievement gaps between men and women in math and physics that may reflect, in part, a response to perceived stereotype threat. Research efforts to reduce achievement gaps by mediating the impact of stereotype threat have found success with a short values-affirmation writing exercise. In biology and biochemistry, however, little attention has been paid to the performance of women in comparison with men or perceptions of stereotype threat, despite documentation of leaky pipelines into professional and academic careers. We used methodologies developed in physics education research and cognitive psychology to 1) investigate and compare the performance of women and men across three introductory science sequences (biology, biochemistry, physics), 2) document endorsement of stereotype threat in these science courses, and 3) investigate the utility of a values-affirmation writing task in reducing achievement gaps. In our study, analysis of final grades and normalized learning gains on content-specific concept inventories reveals no achievement gap in the courses sampled, little stereotype threat endorsement, and no impact of the values-affirmation writing task on student performance. These results underscore the context-dependent nature of achievement gaps and stereotype threat and highlight calls to replicate education research across a range of student populations. PMID:23463226

  14. Theoretical nuclear physics. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-05-01

    As the three-year period FY93-FY96 ended, there were six senior investigators on the grant full-time: Bulgac, Henley, Miller, Savage, van Kolck and Wilets. This represents an increase of two members from the previous three-year period, achieved with only a two percent increase over the budget for FY90-FY93. In addition, the permanent staff of the Institute for Nuclear Theory (George Bertsch, Wick Haxton, and David Kaplan) continued to be intimately associated with our physics research efforts. Aurel Bulgac joined the Group in September, 1993 as an assistant professor, with promotion requested by the Department and College of Arts and Sciences bymore » September, 1997. Martin Savage, who was at Carnegie-Mellon University, jointed the Physics Department in September, 1996. U. van Kolck continued as research assistant professor, and we were supporting one postdoctoral research associate, Vesteinn Thorssen, who joined us in September, 1995. Seven graduate students were being supported by the Grant (Chuan-Tsung Chan, Michael Fosmire, William Hazelton, Jon Karakowski, Jeffrey Thompson, James Walden and Mitchell Watrous).« less

  15. Credit allocation for research institutes

    NASA Astrophysics Data System (ADS)

    Wang, J.-P.; Guo, Q.; Yang, K.; Han, J.-T.; Liu, J.-G.

    2017-05-01

    It is a challenging work to assess research performance of multiple institutes. Considering that it is unfair to average the credit to the institutes which is in the different order from a paper, in this paper, we present a credit allocation method (CAM) with a weighted order coefficient for multiple institutes. The results for the APS dataset with 18987 institutes show that top-ranked institutes obtained by the CAM method correspond to well-known universities or research labs with high reputation in physics. Moreover, we evaluate the performance of the CAM method when citation links are added or rewired randomly quantified by the Kendall's Tau and Jaccard index. The experimental results indicate that the CAM method has better performance in robustness compared with the total number of citations (TC) method and Shen's method. Finally, we give the first 20 Chinese universities in physics obtained by the CAM method. However, this method is valid for any other branch of sciences, not just for physics. The proposed method also provides universities and policy makers an effective tool to quantify and balance the academic performance of university.

  16. Physics of magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1995-01-01

    This final report was concerned with the ideas that: (1) magnetospheric boundary layers link disparate regions of the magnetosphere-solar wind system together; and (2) global behavior of the magnetosphere can be understood only by understanding its internal linking mechanisms and those with the solar wind. The research project involved simultaneous research on the global-, meso-, and micro-scale physics of the magnetosphere and its boundary layers, which included the bow shock, the magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical, and simulation projects were performed on these subjects, as well as comparisons of theoretical results with observational data. Other related activity included in the research included: (1) prediction of geomagnetic activity; (2) global MHD (magnetohydrodynamic) simulations; (3) Alfven resonance heating; and (4) Critical Ionization Velocity (CIV) effect. In the appendixes are list of personnel involved, list of papers published; and reprints or photocopies of papers produced for this report.

  17. Intelligent scheduling of execution for customized physical fitness and healthcare system.

    PubMed

    Huang, Chung-Chi; Liu, Hsiao-Man; Huang, Chung-Lin

    2015-01-01

    Physical fitness and health of white collar business person is getting worse and worse in recent years. Therefore, it is necessary to develop a system which can enhance physical fitness and health for people. Although the exercise prescription can be generated after diagnosing for customized physical fitness and healthcare. It is hard to meet individual execution needs for general scheduling of physical fitness and healthcare system. So the main purpose of this research is to develop an intelligent scheduling of execution for customized physical fitness and healthcare system. The results of diagnosis and prescription for customized physical fitness and healthcare system will be generated by fuzzy logic Inference. Then the results of diagnosis and prescription for customized physical fitness and healthcare system will be scheduled and executed by intelligent computing. The scheduling of execution is generated by using genetic algorithm method. It will improve traditional scheduling of exercise prescription for physical fitness and healthcare. Finally, we will demonstrate the advantages of the intelligent scheduling of execution for customized physical fitness and healthcare system.

  18. International Classification of Functioning, Disability and Health core set for physical health of older adults.

    PubMed

    Ruaro, João A; Ruaro, Marinêz B; Guerra, Ricardo O

    2014-01-01

    To facilitate a systematic, comprehensive description of functioning and to enable the use of the International Classification of Functioning, Disability and Health (ICF) in clinical practice and research, core sets have been developed. The aim of this study was to propose a version of the ICF core set to classify the physical health of older adults. The proposition of the ICF core set was based on the Delphi technique. The panel of experts included 8 Brazilian researchers (physical therapists, medical doctors, nurses, and physical educators). The communication was wholly electronic. In total, there were 5 rounds of interactivity between the participants to arrive at the final version of the construct. The ICF core set presented 30 categories (14 on body functions, 4 on body structures, 9 on activities or participation, and 3 on environmental factors) and had a Cronbach α of 0.964. The presented core set is a secure, fast, and accurate instrument for assessing the physical health and engagement of older adults. It defines points related to functioning and health that are relevant when evaluating this population, as well as when reevaluating it and monitoring changes.

  19. Human response to aircraft noise

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.; Fields, James M.

    1991-01-01

    The human auditory system and the perception of sound are discussed. The major concentration is on the annnoyance response and methods for relating the physical characteristics of sound to those psychosociological attributes associated with human response. Results selected from the extensive laboratory and field research conducted on human response to aircraft noise over the past several decades are presented along with discussions of the methodology commonly used in conducting that research. Finally, some of the more common criteria, regulations, and recommended practices for the control or limitation of aircraft noise are examined in light of the research findings on human response.

  20. Computational electromagnetics: the physics of smooth versus oscillatory fields.

    PubMed

    Chew, W C

    2004-03-15

    This paper starts by discussing the difference in the physics between solutions to Laplace's equation (static) and Maxwell's equations for dynamic problems (Helmholtz equation). Their differing physical characters are illustrated by how the two fields convey information away from their source point. The paper elucidates the fact that their differing physical characters affect the use of Laplacian field and Helmholtz field in imaging. They also affect the design of fast computational algorithms for electromagnetic scattering problems. Specifically, a comparison is made between fast algorithms developed using wavelets, the simple fast multipole method, and the multi-level fast multipole algorithm for electrodynamics. The impact of the physical characters of the dynamic field on the parallelization of the multi-level fast multipole algorithm is also discussed. The relationship of diagonalization of translators to group theory is presented. Finally, future areas of research for computational electromagnetics are described.

  1. Self-perceived assessment skill of prospective physics teachers

    NASA Astrophysics Data System (ADS)

    Efendi, R.; Rustaman, N. Y.; Kaniawati, I.

    2018-05-01

    Assessment skills are an important component of assessment practice, without adequate assessment skills it is unlikely that teacher assessment practices will produce desired student learning outcomes. This study was conducted to reveal self-perceived assessment skills of prospective physics teachers by using quantitative descriptive analysis, and involving 92 prospective physics teachers who were experiencing teaching practice in junior high school and final project related to assessment. Data was collected by using Self-Perceived Assessment Science Skills Questionnaire consisted of 29 items related seven assessment competencies was developed and used in the study. Internal consistency reliability coefficient for the total scale scores was 0.87 as measured by Cronbach’s alpha. Determination of self-perceived assessment science skills detected from prospective physics teachers was carried out in descriptive statistics, in the form of respondent average values. Research findings show that self-perceived assessment skills of prospective physics teachers was categorized as transition.

  2. Neuroimaging Techniques: a Conceptual Overview of Physical Principles, Contribution and History

    NASA Astrophysics Data System (ADS)

    Minati, Ludovico

    2006-06-01

    This paper is meant to provide a brief overview of the techniques currently used to image the brain and to study non-invasively its anatomy and function. After a historical summary in the first section, general aspects are outlined in the second section. The subsequent six sections survey, in order, computed tomography (CT), morphological magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), diffusion-tensor magnetic resonance imaging (DWI/DTI), positron emission tomography (PET), and electro- and magneto-encephalography (EEG/MEG) based imaging. Underlying physical principles, modelling and data processing approaches, as well as clinical and research relevance are briefly outlined for each technique. Given the breadth of the scope, there has been no attempt to be comprehensive. The ninth and final section outlines some aspects of active research in neuroimaging.

  3. Physical Training Methods For Mine Rescuers In 2015

    NASA Astrophysics Data System (ADS)

    Marin, Laurentiu; Pavel, Topala; Marin, Catalina Daniela; Sandu, Teodor

    2015-07-01

    Research and development activities presented were aimed at obtaining a nanocomposite polyurethane matrix with special anti-wear, anti-slip and fire-resistant properties. Research and development works were materialized by obtaining polyurethane nanocomposite matrix, by its physico-chemical modification in order to give the desired technological properties and by characterization of the obtained material. Polyurethane nanocomposite matrix was obtained by reacting a PETOL 3 type polyetherpolyol (having a molecular weight of 5000 UAM) with a diisocyanate under well-established reaction conditions. Target specific technological properties were obtained by physical and chemical modification of polyurethane nanocomposite matrix. The final result was getting a pellicle material based on modified nanocomposite polyurethane, with anti-wear, anti-slip and fire-resistant properties, compatible with most substrates encountered in civil and industrial construction: wood, concrete, metal.

  4. Near infrared spectrum simulation applied to human skin for diagnosis

    NASA Astrophysics Data System (ADS)

    Tsai, Chen-Mu; Fang, Yi-Chin; Wang, Chih-Yu; Chiu, Pin-Chun; Wu, Guo-Ying; Zheng, Wei-Chi; Chemg, Shih-Hao

    2007-11-01

    This research proposes a new method for skin diagnose using near infrared as the light source (750nm~1300nm). Compared to UV and visible light, near infrared might penetrate relatively deep into biological soft tissue in some cases although NIR absorption property of tissue is not a constant for water, fat, and collagen etc. In the research, NIR absorption and scattering properties for skin are discussed firstly using the theory of molecule vibration from Quantum physics and Solid State Physics; secondly the practical model for various NIR absorption spectrum to skin tissue are done by optical simulation for human skin. Finally, experiments are done for further identification of proposed model for human skin and its reaction to near infrared. Results show success with identification from both theory and experiments.

  5. Comparing Educational Tools Using Activity Theory: Clickers and Flashcards

    NASA Astrophysics Data System (ADS)

    Price, Edward; De Leone, Charles; Lasry, Nathaniel

    2010-10-01

    Physics educators and researchers have recently begun to distinguish between pedagogical approaches and the educational technologies that are used to implement them. For instance, peer instruction has been shown to be equally effective, in terms of student learning outcomes, when implemented with clickers or flashcards. Therefore, technological tools (clickers and flashcards) can be viewed as means to mediate pedagogical techniques (peer instruction or traditional instruction). In this paper, we use activity theory to examine peer instruction, with particular attention to the role of tools. This perspective helps clarify clickers' and flashcards' differences, similarities, impacts in the classroom, and utility to education researchers. Our analysis can suggest improvements and new uses. Finally, we propose activity theory as a useful approach in understanding and improving the use of technology in the physics classroom.

  6. Physics of heat pipe rewetting

    NASA Technical Reports Server (NTRS)

    Chan, S. H.

    1994-01-01

    This is the final report which summarizes the research accomplishments under the project entitled 'Physics of Heat Pipe Rewetting' under NASA Grant No. NAG 9-525, Basic, during the period of April 1, 1991 to January 31, 1994. The objective of the research project was to investigate both analytically and experimentally the rewetting characteristics of the heated, grooved plate. The grooved plate is to simulate the inner surface of the vapor channel in monogroove heat pipes for space station design. In such designs, the inner surface of the vapor channel is threaded with monogrooves. When the heat pipe is thermally overloaded, dryout of the monogroove surface occurs. Such a dryout surface should be promptly rewetted to prevent the failure of the heat pipe operation in the thermal radiator of the space station.

  7. Inventory of Health and Physical Fitness Promotion Materials, Research and Articles from Periodicals of General Interest. Final Report. Report No. 7.

    ERIC Educational Resources Information Center

    Bozzo, Robert; And Others

    This document reports on an effort to identify, collect, and catalog: (1) various fitness- and health-related promotion materials available to the general public by federal, state, and local agencies; and (2) informational items distributed by the private sector. Printed materials are categorized as: (1) currently available brochures and pamphlets…

  8. Public health research outputs from efficacy to dissemination: a bibliometric analysis

    PubMed Central

    2011-01-01

    Background More intervention research is needed, particularly 'real world' intervention replication and dissemination studies, to optimize improvements in health. This study assessed the proportion and type of published public health intervention research papers over time in physical activity and falls prevention, both important contributors to preventable morbidity and mortality. Methods A keyword search was conducted, using Medline and PsycINFO to locate publications in 1988-1989, 1998-1999, and 2008-2009 for the two topic areas. In stage 1, a random sample of 1200 publications per time period for both topics were categorized as: non-public health, non-data-based public health, or data-based public health. In stage 2 data-based public health articles were further classified as measurement, descriptive, etiological or intervention research. Finally, intervention papers were categorized as: efficacy, intervention replication or dissemination studies. Inter-rater reliability of paper classification was 88%. Results Descriptive studies were the most common data-based papers across all time periods (1988-89; 1998-1999;2008-2009) for both issues (physical activity: 47%; 54%; 65% and falls 75%; 64%; 63%), increasing significantly over time for physical activity. The proportion of intervention publications did not increase over time for physical activity comprising 23% across all time periods and fluctuated for falls across the time periods (10%; 21%; 17%). The proportion of intervention articles that were replication studies increased over the three time periods for physical activity (0%; 2%; 11%) and for falls (0%; 22%; 35%). Dissemination studies first appeared in the literature in 2008-2009, making up only 3% of physical activity and 7% of falls intervention studies. Conclusions Intervention research studies remain only a modest proportion of all published studies in physical activity and falls prevention; the majority of the intervention studies, are efficacy studies although there is growing evidence of a move towards replication and dissemination studies, which may have greater potential for improving population health. PMID:22168312

  9. Professional development

    NASA Astrophysics Data System (ADS)

    Yoon, Jin Hee; Hartline, Beverly Karplus; Milner-Bolotin, Marina

    2013-03-01

    The three sessions of the professional development workshop series were each designed for a different audience. The purpose of the first session was to help mid-career physicists aspire for and achieve leadership roles. The second session brought together students, postdoctoral fellows, and early-career physicists to help them plan their career goals and navigate the steps important to launching a successful career. The final session sought to increase awareness of the results of physics education research, and how to use them to help students-especially women-learn physics better. The presentations and discussions were valuable for both female and male physicists.

  10. Predictors of student success in entry-level science courses

    NASA Astrophysics Data System (ADS)

    Singh, Mamta K.

    Although the educational evaluation process is useful and valuable and is supported by the Higher Education Act, a strong research base for program evaluation of college entry-level science courses is still lacking. Studies in science disciplines such as, biology, chemistry, and physics have addressed various affective and demographic factors and their relationships to student achievement. However, the literature contains little information that specifically addresses student biology content knowledge skills (basics and higher order thinking skills) and identifies factors that affect students' success in entry-level college science courses. These gate-keeping courses require detailed evaluation if the goal of an institution is to increase students' performance and success in these courses. These factors are, in fact, a stepping stone for increasing the number of graduates in Science, Technology, Engineering, and Mathematics (STEM) majors. The present study measured students' biology content knowledge and investigated students' performance and success in college biology, chemistry, and physics entry-level courses. Seven variables---gender, ethnicity, high school Grade Point Average (GPA), high school science, college major, school financial aid support, and work hours were used as independent variables and course final performance as a dichotomous dependent variable. The sample comprised voluntary student participants in entry-level science courses. The study attempted to explore eight research questions. Content knowledge assessments, demographic information analysis, multiple regression analysis, and binary logistic regression analysis were used to address research questions. The results suggested that high school GPA was a consistently good predictor of students' performance and success in entry-level science courses. Additionally, high school chemistry was a significant predictor variable for student success in entry-level biology and chemistry courses. Similarly, students' performance and success in entry-level physics courses were influenced by high school physics. Finally, the study developed student success equation with high school GAP and high school chemistry as good predictors of students' success in entry-level science courses.

  11. Education and Research in the SEENET-MTP Regional Framework for Higher Education in Physics

    NASA Astrophysics Data System (ADS)

    Constantinescu, R.; Djordjevic, G. S.

    2010-01-01

    Southeastern European countries undergo significant changes in the demand/supply ratio on the labour market and in the structure of professional competences that are necessary for undertaking a professional activity. In addition, brain-drain process and decrease of interest for a career in basic sciences put many challenges for our community. Consequently, based on the activity of the Southeastern European Network in Mathematical and Theoretical Physics (SEENET MTP Network) in connecting groups and persons working in mathematics and theoretical physics, we investigate specific qualifications recognized in these fields in all the countries from the region, and the related competences necessary for practising the respective occupations. A list of new possible occupations will be promoted for inclusion in the National Qualifications Register for Higher Education. Finally, we analyze the vision existing in this region on the higher education qualifications against the European vision and experience, in particular in training of Master students, PhD students, and senior teaching and research staff through the Network, i.e. multilateral and bilateral programs.

  12. Exploring the Secrets of the Aurora

    NASA Astrophysics Data System (ADS)

    Siscoe, George

    Short, professional autobiographies of the founders of space physics have been solicited by AGU's History Committee and published in special sections of Space Physics issues of the Journal of Geophysical Research. Here we have a book-length professional autobiography by the discoverer of magnetospheric substorms, which is arguably the most intensely researched topic in the field.Probably the book's most valuable contribution to the history of space physics is precisely the narration of the discovery of substorms. Exploring the Secrets of the Aurora has an epic quality. It starts with Akasofu's insight that the auroral zone—a circumpolar zone that auroras inhabit, with geographic borders established in the previous century—is a fiction. There followed a struggle to replace it with the concept of an expandable auroral oval, which has quite a different shape. The road to final success entailed Akasofu's installing a chain of aurora-imaging, “all-sky” cameras stretching the north-south length of Alaska. These proved the point and set a precedent for north-south aligned magnetometer chains.

  13. The change in critical technologies for computational physics

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1990-01-01

    It is noted that the types of technology required for computational physics are changing as the field matures. Emphasis has shifted from computer technology to algorithm technology and, finally, to visual analysis technology as areas of critical research for this field. High-performance graphical workstations tied to a supercommunicator with high-speed communications along with the development of especially tailored visualization software has enabled analysis of highly complex fluid-dynamics simulations. Particular reference is made here to the development of visual analysis tools at NASA's Numerical Aerodynamics Simulation Facility. The next technology which this field requires is one that would eliminate visual clutter by extracting key features of simulations of physics and technology in order to create displays that clearly portray these key features. Research in the tuning of visual displays to human cognitive abilities is proposed. The immediate transfer of technology to all levels of computers, specifically the inclusion of visualization primitives in basic software developments for all work stations and PCs, is recommended.

  14. An assessment of professional development for astronomy and physics faculty: Expanding our vision of how to support faculty's learning about teaching

    NASA Astrophysics Data System (ADS)

    Olmstead, Alice Rose

    In this thesis, we will explore approaches to faculty instructional change in astronomy and physics. We primarily focus on professional development (PD) workshops, which are a central mechanism used within our community to help faculty improve their teaching. Although workshops serve a critical role for promoting more equitable instruction, we rarely assess them through careful consideration of how they engage faculty. To encourage a shift towards more reflective, research-informed PD, we developed the Real-Time Professional Development Observation Tool (R-PDOT), to document the form and focus of faculty's engagement during workshops. We then analyze video-recordings of faculty's interactions during the Physics and Astronomy New Faculty Workshop, focusing on instances where faculty might engage in pedagogical sense-making. Finally, we consider insights gained from our own local, team-based effort to improve a course sequence for astronomy majors. We conclude with recommendations for PD leaders and researchers.

  15. Physics of SrTiO3-based heterostructures and nanostructures: a review.

    PubMed

    Pai, Yun-Yi; Tylan-Tyler, Anthony; Irvin, Patrick; Levy, Jeremy

    2018-02-09

    This review provides a summary of the rich physics expressed within SrTiO 3 -based heterostructures and nanostructures. The intended audience is researchers who are working in the field of oxides, but also those with different backgrounds (e.g., semiconductor nanostructures). After reviewing the relevant properties of SrTiO 3 itself, we will then discuss the basics of SrTiO 3 -based heterostructures, how they can be grown, and how devices are typically fabricated. Next, we will cover the physics of these heterostructures, including their phase diagram and coupling between the various degrees of freedom. Finally, we will review the rich landscape of quantum transport phenomena, as well as the devices that elicit them.

  16. Science and Science Fiction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scherrer, Robert

    2006-03-29

    I will explore the similarities and differences between the process of writing science fiction and the process of 'producing' science, specifically theoretical physics. What are the ground rules for introducing unproven new ideas in science fiction, and how do they differ from the corresponding rules in physics? How predictive is science fiction? (For that matter, how predictive is theoretical physics?) I will also contrast the way in which information is presented in science fiction, as opposed to its presentation in scientific papers, and I will examine the relative importance of ideas (as opposed to the importance of the way inmore » which these ideas are presented). Finally, I will discuss whether a background as a research scientist provides any advantage in writing science fiction.« less

  17. Masculinity theory in applied research with men and boys with intellectual disability.

    PubMed

    Wilson, Nathan John; Shuttleworth, Russell; Stancliffe, Roger; Parmenter, Trevor

    2012-06-01

    Researchers in intellectual disability have had limited theoretical engagement with mainstream theories of masculinity. In this article, the authors consider what mainstream theories of masculinity may offer to applied research on, and hence to therapeutic interventions with, men and boys with intellectual disability. An example from one research project that explored male sexual health illustrates how using masculinity theory provided greater insight into gendered data. Finally, we discuss the following five topics to illustrate how researchers might use theories of masculinity: (a) fathering, (b) male physical expression, (c) sexual expression, (d) men's health, and (e) underweight and obesity. Theories of masculinity offer an additional framework to analyze and conceptualize gendered data; we challenge researchers to engage with this body of work.

  18. A Web 2.0 Interface to Ion Stopping Power and Other Physics Routines for High Energy Density Physics Applications

    NASA Astrophysics Data System (ADS)

    Stoltz, Peter; Veitzer, Seth

    2008-04-01

    We present a new Web 2.0-based interface to physics routines for High Energy Density Physics applications. These routines include models for ion stopping power, sputtering, secondary electron yields and energies, impact ionization cross sections, and atomic radiated power. The Web 2.0 interface allows users to easily explore the results of the models before using the routines within other codes or to analyze experimental results. We discuss how we used various Web 2.0 tools, including the Python 2.5, Django, and the Yahoo User Interface library. Finally, we demonstrate the interface by showing as an example the stopping power algorithms researchers are currently using within the Hydra code to analyze warm, dense matter experiments underway at the Neutralized Drift Compression Experiment facility at Lawrence Berkeley National Laboratory.

  19. The Physics of Open Ended Evolution

    NASA Astrophysics Data System (ADS)

    Adams, Alyssa M.

    What makes living systems different than non-living ones? Unfortunately this question is impossible to answer, at least currently. Instead, we must face computationally tangible questions based on our current understanding of physics, computation, information, and biology. Yet we have few insights into how living systems might quantifiably differ from their non-living counterparts, as in a mathematical foundation to explain away our observations of biological evolution, emergence, innovation, and organization. The development of a theory of living systems, if at all possible, demands a mathematical understanding of how data generated by complex biological systems changes over time. In addition, this theory ought to be broad enough as to not be constrained to an Earth-based biochemistry. In this dissertation, the philosophy of studying living systems from the perspective of traditional physics is first explored as a motivating discussion for subsequent research. Traditionally, we have often thought of the physical world from a bottom-up approach: things happening on a smaller scale aggregate into things happening on a larger scale. In addition, the laws of physics are generally considered static over time. Research suggests that biological evolution may follow dynamic laws that (at least in part) change as a function of the state of the system. Of the three featured research projects, cellular automata (CA) are used as a model to study certain aspects of living systems in two of them. These aspects include self-reference, open-ended evolution, local physical universality, subjectivity, and information processing. Open-ended evolution and local physical universality are attributed to the vast amount of innovation observed throughout biological evolution. Biological systems may distinguish themselves in terms of information processing and storage, not outside the theory of computation. The final research project concretely explores real-world phenomenon by means of mapping dominance hierarchies in the evolution of video game strategies. Though the main question of how life differs from non-life remains unanswered, the mechanisms behind open-ended evolution and physical universality are revealed.

  20. Physical punishment, culture, and rights: current issues for professionals.

    PubMed

    Durrant, Joan E

    2008-02-01

    Once considered a legitimate parenting tool, physical punishment is increasingly being redefined as a developmental risk factor by health professionals. Three forces that have contributed to this significant social change are the evolution of pediatric psychology, increasing understanding of the dynamics of parental violence, and growing recognition of children as rights bearers. However, despite the consistency of research findings demonstrating the risks of physical punishment, some practitioners still struggle with the question of whether physical punishment is an appropriate practice among some cultural or ethnic groups. This issue is explored through an analysis of studies examining cultural differences and similarities in physical punishment's effects, as well as legal decisions made throughout the world. Despite practitioners' awareness of the prevalence and impact of parental violence, some still struggle with deciding where to "draw the line" in advising parents about spanking. This issue is addressed through an examination of the role that physical punishment plays in child maltreatment. Finally, the human rights perspective on physical punishment is offered as a new lens through which practitioners may view physical punishment to clarify the fuzzy issues of cultural relativity and the punishment-abuse dichotomy.

  1. PREFACE: Statistical Physics of Complex Fluids

    NASA Astrophysics Data System (ADS)

    Golestanian, R.; Khajehpour, M. R. H.; Kolahchi, M. R.; Rouhani, S.

    2005-04-01

    The field of complex fluids is a rapidly developing, highly interdisciplinary field that brings together people from a plethora of backgrounds such as mechanical engineering, chemical engineering, materials science, applied mathematics, physics, chemistry and biology. In this melting pot of science, the traditional boundaries of various scientific disciplines have been set aside. It is this very property of the field that has guaranteed its richness and prosperity since the final decade of the 20th century and into the 21st. The C3 Commission of the International Union of Pure and Applied Physics (IUPAP), which is the commission for statistical physics that organizes the international STATPHYS conferences, encourages various, more focused, satellite meetings to complement the main event. For the STATPHYS22 conference in Bangalore (July 2004), Iran was recognized by the STATPHYS22 organizers as suitable to host such a satellite meeting and the Institute for Advanced Studies in Basic Sciences (IASBS) was chosen to be the site of this meeting. It was decided to organize a meeting in the field of complex fluids, which is a fairly developed field in Iran. This international meeting, and an accompanying summer school, were intended to boost international connections for both the research groups working in Iran, and several other groups working in the Middle East, South Asia and North Africa. The meeting, entitled `Statistical Physics of Complex Fluids' was held at the Institute for Advanced Studies in Basic Sciences (IASBS) in Zanjan, Iran, from 27 June to 1 July 2004. The main topics discussed at the meeting included: biological statistical physics, wetting and microfluidics, transport in complex media, soft and granular matter, and rheology of complex fluids. At this meeting, 22 invited lectures by eminent scientists were attended by 107 participants from different countries. The poster session consisted of 45 presentations which, in addition to the main topics of the meeting, covered some of the various areas in statistical physics currently active in Iran. About half of the participants came from countries other than Iran, with a relatively broad geographic distribution. The meeting benefited greatly from the excellent administrative assistance of the conference secretary Ms Ashraf Moosavi and the IASBS staff. We are grateful to Professor Yousef Sobouti, the Director of IASBS, and Professor Reza Mansouri, the Head of the Physical Society of Iran, for their support. We also thank the organizers of STATPHYS22, Professor Rahul Pandit and his colleagues, for their suggestions and support. The conference was supported by donations from the Center for International Research and Collaboration (ISMO) and the Institute for Research and Planning in Higher Education (IRPHE) of the Iranian Ministry of Science, Research and Technology, the Islamic Development Bank, the Abdus Salam International Centre for Theoretical Physics (ICTP), the Tehran Cluster Office of the United Nations Educational, Scientific and Cultural Organization (UNESCO), the Research and Development Directorate of the National Iranian Oil Company, the Physical Society of Iran, the Iranian Meteorological Organization, and the Zanjan City Water and Waste Water Company. Finally, we would like to express our gratitude to Institute of Physics Publishing, and in particular to Professor Alexei Kornyshev and Dr Richard Palmer for suggesting publishing the proceedings of the meeting and carrying through the editorial processes with the utmost efficiency. Participants

  2. Posttest analysis of beta (Na/S) cells from chloride silent power, limited. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Battles, J.E.; Mrazek, F.C.

    Researchers have developed a unique methodology for examining sodium/sulfur cells after testing to learn more about their behavior. The new techniques described in this report allow scientists to discern the physical and chemical states of these high-energy cells and to develop hypotheses about degradation mechanisms. This information may provide a basis for building cells with longer lives.

  3. Quantum Manybody Physics with Rydberg Polaritons

    DTIC Science & Technology

    2016-06-22

    report, such as final, technical, interim, memorandum, master’s thesis, progress, quarterly, research , special, group study, etc. 3. DATES COVERED...for public release. Over the course of this grant, we have seen tremendous progress, both theoretically and experimentally , in our control of photonic...shown in multiple stages of construction at left and below, spans three optical tables in two rooms: One for the experimental control system

  4. Interpreting Assessments of Student Learning in the Introductory Physics Classroom and Laboratory

    NASA Astrophysics Data System (ADS)

    Dowd, Jason Edward

    Assessment is the primary means of feedback between students and instructors. However, to effectively use assessment, the ability to interpret collected information is essential. We present insights into three unique, important avenues of assessment in the physics classroom and laboratory. First, we examine students' performance on conceptual surveys. The goal of this research project is to better utilize the information collected by instructors when they administer the Force Concept Inventory (FCI) to students as a pre-test and post-test of their conceptual understanding of Newtonian mechanics. We find that ambiguities in the use of the normalized gain, g, may influence comparisons among individual classes. Therefore, we propose using stratagrams, graphical summaries of the fraction of students who exhibit "Newtonian thinking," as a clearer, more informative method of both assessing a single class and comparing performance among classes. Next, we examine students' expressions of confusion when they initially encounter new material. The goal of this research project is to better understand what such confusion actually conveys to instructors about students' performance and engagement. We investigate the relationship between students' self-assessment of their confusion over material and their performance, confidence in reasoning, pre-course self-efficacy and several other measurable characteristics of engagement. We find that students' expressions of confusion are negatively related to initial performance, confidence and self-efficacy, but positively related to final performance when all factors are considered together. Finally, we examine students' exhibition of scientific reasoning abilities in the instructional laboratory. The goal of this research project is to explore two inquiry-based curricula, each of which proposes a different degree of scaffolding. Students engage in sequences of these laboratory activities during one semester of an introductory physics course. We find that students who participate in the less scaffolded activities exhibit marginally stronger scientific reasoning abilities in distinct exercises throughout the semester, but exhibit no differences in the final, common exercises. Overall, we find that, although students demonstrate some enhanced scientific reasoning skills, they fail to exhibit or retain even some of the most strongly emphasized skills.

  5. Promoting physical therapists' of research evidence to inform clinical practice: part 1--theoretical foundation, evidence, and description of the PEAK program.

    PubMed

    Tilson, Julie K; Mickan, Sharon

    2014-06-25

    There is a need for theoretically grounded and evidence-based interventions that enhance the use of research evidence in physical therapist practice. This paper and its companion paper introduce the Physical therapist-driven Education for Actionable Knowledge translation (PEAK) program, an educational program designed to promote physical therapists' integration of research evidence into clinical decision-making. The pedagogical foundations for the PEAK educational program include Albert Bandura's social cognitive theory and Malcolm Knowles's adult learning theory. Additionally, two complementary frameworks of knowledge translation, the Promoting Action on Research Implementation in Health Services (PARiHS) and Knowledge to Action (KTA) Cycle, were used to inform the organizational elements of the program. Finally, the program design was influenced by evidence from previous attempts to facilitate the use of research in practice at the individual and organizational levels. The 6-month PEAK program consisted of four consecutive and interdependent components. First, leadership support was secured and electronic resources were acquired and distributed to participants. Next, a two-day training workshop consisting of didactic and small group activities was conducted that addressed the five steps of evidence based practice. For five months following the workshop, participants worked in small groups to review and synthesize literature around a group-selected area of common clinical interest. Each group contributed to the generation of a "Best Practices List" - a list of locally generated, evidence-based, actionable behaviors relevant to the groups' clinical practice. Ultimately, participants agreed to implement the Best Practices List in their clinical practice. This, first of two companion papers, describes the underlying pedagogical theories, knowledge translation frameworks, and research evidence used to derive the PEAK program - an educational program designed to promote the use of research evidence to inform physical therapist practice. The four components of the program are described in detail. The companion paper reports the results of a mixed methods feasibility analysis of this complex educational intervention.

  6. The Discovery of Subatomic Particles Revised Edition

    NASA Astrophysics Data System (ADS)

    Weinberg, Steven

    2003-09-01

    This commentary on the discovery of the atom's constituents provides an historical account of key events in the physics of the twentieth century that led to the discoveries of the electron, proton and neutron. Steven Weinberg introduces the fundamentals of classical physics that played crucial roles in these discoveries. Connections are shown throughout the book between the historic discoveries of subatomic particles and contemporary research at the frontiers of physics, including the most current discoveries of new elementary particles. Steven Weinberg was Higgins Professor of Physics at Harvard before moving to The University of Texas at Austin, where he founded its Theory Group. At Texas he holds the Josey Regental Chair of Science and is a member of the Physics and Astronomy Departments. His research has spanned a broad range of topics in quantum field theory, elementary particle physics, and cosmology, and has been honored with numerous awards, including the Nobel Prize in Physics, the National Medal of Science, the Heinemann Prize in Mathematical Physics, the Cresson Medal of the Franklin Institute, the Madison Medal of Princeton University, and the Oppenheimer Prize. In addition to the well-known treatise, Gravitation and Cosmololgy, he has written several books for general readers, including the prize-winning The First Three Minutes (now translated into 22 foreign languages), and most recently Dreams of a Final Theory (Pantheon Books, 1993). He has also written a textbook The Quantum Theory of Fields, Vol.I, Vol. II, and Vol. III (Cambridge).

  7. Research on Matching Method of Power Supply Parameters for Dual Energy Source Electric Vehicles

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Luo, M. J.; Zhang, S. K.; Liao, M. W.

    2018-03-01

    A new type of power source is proposed, which is based on the traffic signal matching method of the dual energy source power supply composed of the batteries and the supercapacitors. First, analyzing the power characteristics is required to meet the excellent dynamic characteristics of EV, studying the energy characteristics is required to meet the mileage requirements and researching the physical boundary characteristics is required to meet the physical conditions of the power supply. Secondly, the parameter matching design with the highest energy efficiency is adopted to select the optimal parameter group with the method of matching deviation. Finally, the simulation analysis of the vehicle is carried out in MATLABSimulink, The mileage and energy efficiency of dual energy sources are analyzed in different parameter models, and the rationality of the matching method is verified.

  8. Final height in elite male artistic gymnasts.

    PubMed

    Georgopoulos, Neoklis A; Theodoropoulou, Anastasia; Roupas, Nikolaos D; Armeni, Anastasia K; Koukkou, Eftychia; Leglise, Michel; Markou, Kostas B

    2012-01-01

    Elite male artistic gymnasts (AG) are exposed to high levels of physical and psychological stress during adolescence and experience a significant late maturation in both linear growth and pubertal development. The aim of the present study was to determine the impact of intensive physical training on the adult final height in elite male AG. This study is unique in character, as all variables were measured on the field of competition. The study was prospective and longitudinal; however, the current analysis of data is cross-sectional. Data from 86 elite male AG were obtained during the gymnastics competitions of European and World Championships. Clinical evaluation included height and weight measurements, as well as assessment of pubic hair and genital development according to Tanner's stages of pubertal development. The laboratory investigation included determination of skeletal maturation. All athletes completed a questionnaire that included questions on personal (onset and intensity of training, number of competitions per year) and family data (paternal and maternal heights). Male AG were below the 50th percentile for both final height and weight. Elite male AG had final height standard deviation score (SDS) lower than their genetic predisposition. Final height SDS was correlated positively with target height SDS (r = 0.430, p < 0.001) and weight SDS (r = 0.477, p < 0.001) and negatively to the intensity of training (r = -0.252, p = 0.022). The main factors influencing final height, by multiple regression analysis were weight SDS (p < 0.001) and target height SDS (p = 0.003). In elite maleAG, final height falls short of genetic predisposition, still well within normal limits. Considering medical and psychological risks in general, and based on the results of this research project, the International Federation of Gymnastics has increased the age limit for participants in international gymnastics competitions by 1 year.

  9. The undergraduate optics course at Millersville University

    NASA Astrophysics Data System (ADS)

    Gilani, Tariq H.; Dushkina, Natalia M.

    2009-06-01

    For many years, there was no stand alone course in optics at Millersville University (MU). In the fall of 2007, the Physics Department offered for the first time PHYS 331: Fundamentals in Optics, a discovery based lab course in geometrical, physical and modern optics. This 300-level, 2 credits course consists of four contact hours per week including one-hour lecture and three hours laboratory. This course is required for BS in physics majors, but is open also to other science majors, who have the appropriate background and have met the prerequisites. This course deals with fundamental optics and optical techniques in greater depth so that the student is abreast of the activities in the forefront of the field. The goal of the course is to provide hands-on experience and in-depth preparation of our students for graduate programs in optics or as a workforce for new emerging high-tech local industries. Students learn applied optics through sequence of discovery based laboratory experiments chosen from a broad range of topics in optics and lasers, as the emphasis is on geometrical optics, geometrical aberrations in optical systems, wave optics, microscopy, spectroscopy, polarization, birefringence, laser generation, laser properties and applications, and optical standards. The peer-guided but open-ended approach provides excellent practice for the academic model of science research. Solving problems is embedded in the laboratory part as an introduction to or a conclusion of the experiment performed during the lab period. The homework problems are carefully chosen to reflect the most important relations from the covered material. Important part of the student learning strategy is the individual work on a final mini project which is presented in the class and is included in the final grading. This new course also impacted the department's undergraduate research and training programs. Some of the individual projects were extended to senior research projects in optics as part of the senior research and seminar courses, PHYS 492 and PHYS 498, which are required for graduation for all physics majors. The optics course also provides basic resources for both research and training in the classical and modern optics of high-school students and K-12 teachers. The successful implementation of the optics course was secured by a budget of about $60,000.

  10. A Comparison of Online, Video Synchronous, and Traditional Learning Modes for an Introductory Undergraduate Physics Course

    NASA Astrophysics Data System (ADS)

    Faulconer, E. K.; Griffith, J.; Wood, B.; Acharyya, S.; Roberts, D.

    2018-05-01

    While the equivalence between online and traditional classrooms has been well-researched, very little of this includes college-level introductory Physics. Only one study explored Physics at the whole-class level rather than specific course components such as a single lab or a homework platform. In this work, we compared the failure rate, grade distribution, and withdrawal rates in an introductory undergraduate Physics course across several learning modes including traditional face-to-face instruction, synchronous video instruction, and online classes. Statistically significant differences were found for student failure rates, grade distribution, and withdrawal rates but yielded small effect sizes. Post-hoc pair-wise test was run to determine differences between learning modes. Online students had a significantly lower failure rate than students who took the class via synchronous video classroom. While statistically significant differences were found for grade distributions, the pair-wise comparison yielded no statistically significance differences between learning modes when using the more conservative Bonferroni correction in post-hoc testing. Finally, in this study, student withdrawal rates were lowest for students who took the class in person (in-person classroom and synchronous video classroom) than online. Students that persist in an online introductory Physics class are more likely to achieve an A than in other modes. However, the withdrawal rate is higher from online Physics courses. Further research is warranted to better understand the reasons for higher withdrawal rates in online courses. Finding the root cause to help eliminate differences in student performance across learning modes should remain a high priority for education researchers and the education community as a whole.

  11. Physical Processes and Real-Time Chemical Measurement of the Insect Olfactory Environment

    PubMed Central

    Abrell, Leif; Hildebrand, John G.

    2009-01-01

    Odor-mediated insect navigation in airborne chemical plumes is vital to many ecological interactions, including mate finding, flower nectaring, and host locating (where disease transmission or herbivory may begin). After emission, volatile chemicals become rapidly mixed and diluted through physical processes that create a dynamic olfactory environment. This review examines those physical processes and some of the analytical technologies available to characterize those behavior-inducing chemical signals at temporal scales equivalent to the olfactory processing in insects. In particular, we focus on two areas of research that together may further our understanding of olfactory signal dynamics and its processing and perception by insects. First, measurement of physical atmospheric processes in the field can provide insight into the spatiotemporal dynamics of the odor signal available to insects. Field measurements in turn permit aspects of the physical environment to be simulated in the laboratory, thereby allowing careful investigation into the links between odor signal dynamics and insect behavior. Second, emerging analytical technologies with high recording frequencies and field-friendly inlet systems may offer new opportunities to characterize natural odors at spatiotemporal scales relevant to insect perception and behavior. Characterization of the chemical signal environment allows the determination of when and where olfactory-mediated behaviors may control ecological interactions. Finally, we argue that coupling of these two research areas will foster increased understanding of the physicochemical environment and enable researchers to determine how olfactory environments shape insect behaviors and sensory systems. PMID:18548311

  12. Analysis and projections of physics in Chile

    NASA Astrophysics Data System (ADS)

    Soto, Leopoldo; Zambra, Marcelo; Loewe, Marcelo; Gutiérrez, Gonzalo; Molina, Mario; Barra, Felipe; Lund, Fernando; Saavedra, Carlos; Haberle, Patricio

    2008-11-01

    In the present work, an assessment of the Physics research capacity in Chile is presented. For this, the period between 2000 and June 2005 has been studied. In this period almost 200 physicists have contributed to scientific production in terms of ISI publications. Amongst these 200, ~160 correspond to theoretical physicists and only ~40 to experimental physicists; ~178 are men and only ~22 are women. A more detailed analysis shows that ~160 physicists have at least one appearance in ISI publications per year considering the last 3 years. Ten years ago, a similar criteria (at least one appearance per year in ISI articles, considering mobile three-year periods), the number of active physicists in the Chilean community was estimated at 70. Therefore, the Chilean active physicists' community has doubled in 10 years. There exist 20 centres in which scientific research is developed: 18 university centres, a government institute and a private institute. As regards scientific productivity, both as related to disciplines or research areas, and well as in relation to research centres, it is found that, generally, scientific production, in a particular area in Physics or in a research centre, is directly related to the number of corresponding researchers; that is to say, the percentage of the national productivity in an area or research centre corresponds to its share in the total number of physicists in the country. A geographical analysis shows that 50% of the productivity corresponds to Santiago and 50% to the rest of the country. The impact of the different funds for research is assessed, also: FONDECYT, Presidential Chairs and large projects and centres of excellence. According to Physics researchers opinion, Fondo Nacional de Ciencia y Tecnología (FONDECYT, National Fund fro Science and Technology) has become the best instrument to support researchi activities in Chile. However, the amount of projects awarded has practically not been increased, which is insufficient for a community that has doubled. Likewise, even 50% of the productivity corresponds to regional centres, only 35% of projects coming from FONDECYT are awarded to the regions (away from the metropolitan region). Regarding experimental Physics, this represents 20% of the community in both, researchers and productivity of the community. However, in the regular FONDECYT contest in 2005, only 2 projects (10%) were awarded in experimental Physics, which is undoubtedly insufficient. The study also includes a brief analysis according to social appraisal of Physics, dissemination activities to other areas of national living, and relation of Physics with the productive sector. Finally, some recommendations are made: - To create a special fund for experimental Physics in the regular FONDECYT contest. Complementarily, experimental Physics should be one of the priority areas for the technological and scientific development of the country. - To duplicate the amount assigned to Physics in the regular FONDECYT contest. - To create a system that allows increasing the salaries of the researchers in Physics so they could be assimilated to other professional salaries in our country or at an international level. Not only demands must be globalized but also the benefits.

  13. Influence of individual and social contextual factors on changes in leisure-time physical activity in working-class populations: results of the Healthy Directions–Small Businesses Study

    PubMed Central

    Stoddard, Anne; Bennett, Gary G.; Wolin, Kathleen Y.; Sorensen, Glorian G.

    2012-01-01

    Background As part of the Harvard Cancer Prevention Program Project, we sought to address disparities reflected in social class and race/ethnicity by developing and testing a behavioral intervention model that targeted fruit and vegetable consumption, red meat consumption, multivitamin intake, and physical activity in working-class, multiethnic populations. Methods This paper examined the associations between change in leisure-time physical activity and individual and social contextual factors in participants employed in small businesses (n = 850) at both baseline and at 18-month final. Results In bivariate analyses, age, language acculturation, social ties, and workplace social capital were significantly associated with physical activity at final. In multivariable analyses, being younger and having high language acculturation were significantly associated with greater leisuretime physical activity at final; high workplace social capital was significantly associated with a decline in physical activity at final. Conclusion These findings have implications for understanding factors that are integral to promoting change in physical activity among working-class, multiethnic populations. PMID:22806257

  14. Contributions to the NUCLEI SciDAC-3 Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogner, Scott; Nazarewicz, Witek

    This is the Final Report for Michigan State University for the NUCLEI SciDAC-3 project. The NUCLEI project, as defined by the scope of work, has developed, implemented and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics studied included the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques used included Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program emphasized areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS at ANL and FRIB at MSU (nuclear structuremore » and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrinoless double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  15. Nuclear Computational Low Energy Initiative (NUCLEI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, Sanjay K.

    This is the final report for University of Washington for the NUCLEI SciDAC-3. The NUCLEI -project, as defined by the scope of work, will develop, implement and run codes for large-scale computations of many topics in low-energy nuclear physics. Physics to be studied include the properties of nuclei and nuclear decays, nuclear structure and reactions, and the properties of nuclear matter. The computational techniques to be used include Quantum Monte Carlo, Configuration Interaction, Coupled Cluster, and Density Functional methods. The research program will emphasize areas of high interest to current and possible future DOE nuclear physics facilities, including ATLAS andmore » FRIB (nuclear structure and reactions, and nuclear astrophysics), TJNAF (neutron distributions in nuclei, few body systems, and electroweak processes), NIF (thermonuclear reactions), MAJORANA and FNPB (neutrino-less double-beta decay and physics beyond the Standard Model), and LANSCE (fission studies).« less

  16. Passenger ride quality determined from commercial airline flights

    NASA Technical Reports Server (NTRS)

    Richards, L. G.; Kuhlthau, A. R.; Jacobson, I. D.

    1975-01-01

    The University of Virginia ride-quality research program is reviewed. Data from two flight programs, involving seven types of aircraft, are considered in detail. An apparatus for measuring physical variations in the flight environment and recording the subjective reactions of test subjects is described. Models are presented for predicting the comfort response of test subjects from the physical data, and predicting the overall comfort reaction of test subjects from their moment by moment responses. The correspondence of mean passenger comfort judgments and test subject response is shown. Finally, the models of comfort response based on data from the 5-point and 7-point comfort scales are shown to correspond.

  17. Pulsars and Extreme Physics

    NASA Astrophysics Data System (ADS)

    Bell-Burnell, Jocelyn

    2004-10-01

    Pulsars were discovered 35 years ago. What do we know about them now, and what have they taught us about the extremes of physics? With an average density comparable to that of the nucleus, magnetic fields around 108 T and speeds close to c these objects have stretched our understanding of the behaviour of matter. They serve as extrememly accurate clocks with which to carry out precision experiments in relativity. Created in cataclysmic explosions, pulsars are a (stellar) form of life after death. After half a billion revolutions most pulsars finally die, but amazingly some are born again to yet another, even weirder, afterlife. Pulsar research continues lively, delivering exciting, startling and almost unbelievable results!

  18. Physical Activity: A Viable Way to Reduce the Risks of Mild Cognitive Impairment, Alzheimer’s Disease, and Vascular Dementia in Older Adults

    PubMed Central

    Gallaway, Patrick J.; Miyake, Hiroji; Buchowski, Maciej S.; Shimada, Mieko; Yoshitake, Yutaka; Kim, Angela S.; Hongu, Nobuko

    2017-01-01

    A recent alarming rise of neurodegenerative diseases in the developed world is one of the major medical issues affecting older adults. In this review, we provide information about the associations of physical activity (PA) with major age-related neurodegenerative diseases and syndromes, including Alzheimer’s disease, vascular dementia, and mild cognitive impairment. We also provide evidence of PA’s role in reducing the risks of these diseases and helping to improve cognitive outcomes in older adults. Finally, we describe some potential mechanisms by which this protective effect occurs, providing guidelines for future research. PMID:28230730

  19. Image RPI Reawakens Plasmaspheric Refilling Research

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.; Smith, Z. B.

    2007-01-01

    The plasmasphere is a toroidal region of cold plasma surrounding the Earth that results from ionospheric outflow and accumulation. The physics of refilling and the dynamics of this region have been studied for nearly 50-years. During that time many models have been proposed, but little has been done to test these models due to a lack of observational information. With the launch of the IMAGE Mission in March 2000 the Radio Plasma Imager has provided true field aligned density measurements that uniquely enable the testing of these models and a final determination of the physical processes important for the plasmasphere's recovery from storm-time conditions.

  20. Plasma Physics Network Newsletter, No. 3

    NASA Astrophysics Data System (ADS)

    1991-02-01

    This issue of the Newsletter contains a report on the First South-North International Workshop on Fusion Theory, Tipaza, Algeria, 17-20 September, 1990; a report in the issuance of the 'Buenos Aires Memorandum' generated during the IV Latin American Workshop on Plasma Physics, Argentina, July 1990, and containing a proposal that the IFRC establish a 'Steering Committee on North-South Collaboration in Controlled Nuclear Fusion and Plasma Physics Research'; the announcement that the 14th International Conference on Plasma Physics and Controlled Nuclear Fusion will be held in Wuerzburg, Germany, September 30 to October 7, 1992; a list of IAEA technical committee meetings for 1991; an item on ITER news; an article 'Long Term Physics R and D Planning (for ITER)' by F. Engelmann; in the planned sequence of 'Reports on National Fusion Programs' contributions on the Chinese and Yugoslav programs; finally, the titles and contacts for two other newsletters of potential interest, i.e., the AAAPT (Asian African Association for Plasma Training) Newsletter, and the IPG (International physics Group-A sub unit of the American Physical Society) Newsletter.

  1. Compelling Research Opportunities using Isotopes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Isotopes are vital to the science and technology base of the US economy. Isotopes, both stable and radioactive, are essential tools in the growing science, technology, engineering, and health enterprises of the 21st century. The scientific discoveries and associated advances made as a result of the availability of isotopes today span widely from medicine to biology, physics, chemistry, and a broad range of applications in environmental and material sciences. Isotope issues have become crucial aspects of homeland security. Isotopes are utilized in new resource development, in energy from bio-fuels, petrochemical and nuclear fuels, in drug discovery, health care therapies andmore » diagnostics, in nutrition, in agriculture, and in many other areas. The development and production of isotope products unavailable or difficult to get commercially have been most recently the responsibility of the Department of Energy's Nuclear Energy program. The President's FY09 Budget request proposed the transfer of the Isotope Production program to the Department of Energy's Office of Science in Nuclear Physics and to rename it the National Isotope Production and Application program (NIPA). The transfer has now taken place with the signing of the 2009 appropriations bill. In preparation for this, the Nuclear Science Advisory Committee (NSAC) was requested to establish a standing subcommittee, the NSAC Isotope Subcommittee (NSACI), to advise the DOE Office of Nuclear Physics. The request came in the form of two charges: one, on setting research priorities in the short term for the most compelling opportunities from the vast array of disciplines that develop and use isotopes and two, on making a long term strategic plan for the NIPA program. This is the final report to address charge 1. NSACI membership is comprised of experts from the diverse research communities, industry, production, and homeland security. NSACI discussed research opportunities divided into three areas: (1) medicine, pharmaceuticals, and biology, (2) physical sciences and engineering, and (3) national security and other applications. In each area, compelling research opportunities were considered and the subcommittee as a whole determined the final priorities for research opportunities as the foundations for the recommendations. While it was challenging to prioritize across disciplines, our order of recommendations reflect the compelling research prioritization along with consideration of time urgency for action as well as various geopolitical market issues. Common observations to all areas of research include the needs for domestic availability of crucial stable and radioactive isotopes and the education of the skilled workforce that will develop new advances using isotopes in the future. The six recommendations of NSACI reflect these concerns and the compelling research opportunities for potential new discoveries. The science case for each of the recommendations is elaborated in the respective chapters.« less

  2. Physical frailty, sarcopenia, and the enablement of autonomy: philosophical issues in geriatric medicine.

    PubMed

    Blasimme, Alessandro

    2017-02-01

    Physical frailty and loss of muscular mass (sarcopenia) are believed to be predictors of age-related conditions, such as disability and loss of autonomy. In this paper, I show that what in political and moral philosophy has come to be known as "the capability approach" may indeed provide much needed conceptual clarification in the area of frailty research. Other than being useful at the theoretical level, the capability approach can definitely help in the implementation of clinical guidelines and public health measures aimed at translating the results that are accumulating from frailty research. I will first briefly review the main philosophical tenets of the capability approach, and then analyze how they relate to current debates about frailty and sarcopenia by introducing the notion of "enablement". Finally, I will show how my analysis bears on both clinical research in this domain and public policy aimed at tackling some of the age-related issues in an aging society.

  3. Worksite interventions for preventing physical deterioration among employees in job-groups with high physical work demands: background, design and conceptual model of FINALE.

    PubMed

    Holtermann, Andreas; Jørgensen, Marie B; Gram, Bibi; Christensen, Jeanette R; Faber, Anne; Overgaard, Kristian; Ektor-Andersen, John; Mortensen, Ole S; Sjøgaard, Gisela; Søgaard, Karen

    2010-03-09

    A mismatch between individual physical capacities and physical work demands enhance the risk for musculoskeletal disorders, poor work ability and sickness absence, termed physical deterioration. However, effective intervention strategies for preventing physical deterioration in job groups with high physical demands remains to be established. This paper describes the background, design and conceptual model of the FINALE programme, a framework for health promoting interventions at 4 Danish job groups (i.e. cleaners, health-care workers, construction workers and industrial workers) characterized by high physical work demands, musculoskeletal disorders, poor work ability and sickness absence. A novel approach of the FINALE programme is that the interventions, i.e. 3 randomized controlled trials (RCT) and 1 exploratory case-control study are tailored to the physical work demands, physical capacities and health profile of workers in each job-group. The RCT among cleaners, characterized by repetitive work tasks and musculoskeletal disorders, aims at making the cleaners less susceptible to musculoskeletal disorders by physical coordination training or cognitive behavioral theory based training (CBTr). Because health-care workers are reported to have high prevalence of overweight and heavy lifts, the aim of the RCT is long-term weight-loss by combined physical exercise training, CBTr and diet. Construction work, characterized by heavy lifting, pushing and pulling, the RCT aims at improving physical capacity and promoting musculoskeletal and cardiovascular health. At the industrial work-place characterized by repetitive work tasks, the intervention aims at reducing physical exertion and musculoskeletal disorders by combined physical exercise training, CBTr and participatory ergonomics. The overall aim of the FINALE programme is to improve the safety margin between individual resources (i.e. physical capacities, and cognitive and behavioral skills) and physical work demands, and thereby reduce the physical deterioration in a long term perspective by interventions tailored for each respective job-group. The FINALE programme has the potential to provide evidence-based knowledge of significant importance for public health policy and health promotion strategies for employees at high risk for physical deterioration. ISRCTN96241850, NCT01015716 and NCT01007669.

  4. Worksite interventions for preventing physical deterioration among employees in job-groups with high physical work demands: Background, design and conceptual model of FINALE

    PubMed Central

    2010-01-01

    Background A mismatch between individual physical capacities and physical work demands enhance the risk for musculoskeletal disorders, poor work ability and sickness absence, termed physical deterioration. However, effective intervention strategies for preventing physical deterioration in job groups with high physical demands remains to be established. This paper describes the background, design and conceptual model of the FINALE programme, a framework for health promoting interventions at 4 Danish job groups (i.e. cleaners, health-care workers, construction workers and industrial workers) characterized by high physical work demands, musculoskeletal disorders, poor work ability and sickness absence. Methods/Design A novel approach of the FINALE programme is that the interventions, i.e. 3 randomized controlled trials (RCT) and 1 exploratory case-control study are tailored to the physical work demands, physical capacities and health profile of workers in each job-group. The RCT among cleaners, characterized by repetitive work tasks and musculoskeletal disorders, aims at making the cleaners less susceptible to musculoskeletal disorders by physical coordination training or cognitive behavioral theory based training (CBTr). Because health-care workers are reported to have high prevalence of overweight and heavy lifts, the aim of the RCT is long-term weight-loss by combined physical exercise training, CBTr and diet. Construction work, characterized by heavy lifting, pushing and pulling, the RCT aims at improving physical capacity and promoting musculoskeletal and cardiovascular health. At the industrial work-place characterized by repetitive work tasks, the intervention aims at reducing physical exertion and musculoskeletal disorders by combined physical exercise training, CBTr and participatory ergonomics. The overall aim of the FINALE programme is to improve the safety margin between individual resources (i.e. physical capacities, and cognitive and behavioral skills) and physical work demands, and thereby reduce the physical deterioration in a long term perspective by interventions tailored for each respective job-group. Discussion The FINALE programme has the potential to provide evidence-based knowledge of significant importance for public health policy and health promotion strategies for employees at high risk for physical deterioration. Trial registrations ISRCTN96241850, NCT01015716 and NCT01007669 PMID:20214807

  5. Leisure-time physical activity and absenteeism.

    PubMed

    Kerner, Ivana; Rakovac, Marija; Lazinica, Bruno

    2017-09-26

    Regular physical activity has a significant impact on health. There is scientific evidence for prescription of exercise in the treatment of at least 26 different chronic non-communicable diseases. Furthermore, it has an indirect role in the preservation of work capacity. The aim of this study was to review the published results of research on the relationship between leisure-time PA and absenteeism due to sickness. Medline database was searched using the keywords "leisuretime physical activity AND (sick leave OR sickness absence OR absenteeism)". Fifteen studies were included in the final analysis. A negative correlation between leisure-time PA and absenteeism due to sickness in working population was determined in 11 studies. The results support the inclusion of PA promotion in the programmes intended to reduce absenteeism prevalence, the latter being an important public health issue.

  6. Physical activity in the prevention and treatment of anxiety and depression.

    PubMed

    Martinsen, Egil W

    2008-01-01

    Anxiety and depressive disorders are major public health problems, and desirable changes in lifestyle, such as physical exercise, can have great potential in prevention and treatment. There is growing evidence that physically active people are at a reduced risk of developing depression, and that exercise interventions are associated with significant benefits for patients with mild to moderate forms of depression as well as in reducing anxiety. These findings have led to the proposal that exercise may serve as an alternative or a supplement to traditional forms of therapy. This paper will present a broad overview of research involving the efficacy of exercise as means to prevent and treat depression and anxiety, and related issues regarding dosage and compliance. Finally, exercise will be discussed in the frame of cognitive-behavioural theory.

  7. Cyber-physical security of Wide-Area Monitoring, Protection and Control in a smart grid environment

    PubMed Central

    Ashok, Aditya; Hahn, Adam; Govindarasu, Manimaran

    2013-01-01

    Smart grid initiatives will produce a grid that is increasingly dependent on its cyber infrastructure in order to support the numerous power applications necessary to provide improved grid monitoring and control capabilities. However, recent findings documented in government reports and other literature, indicate the growing threat of cyber-based attacks in numbers and sophistication targeting the nation’s electric grid and other critical infrastructures. Specifically, this paper discusses cyber-physical security of Wide-Area Monitoring, Protection and Control (WAMPAC) from a coordinated cyber attack perspective and introduces a game-theoretic approach to address the issue. Finally, the paper briefly describes how cyber-physical testbeds can be used to evaluate the security research and perform realistic attack-defense studies for smart grid type environments. PMID:25685516

  8. Cyber-physical security of Wide-Area Monitoring, Protection and Control in a smart grid environment.

    PubMed

    Ashok, Aditya; Hahn, Adam; Govindarasu, Manimaran

    2014-07-01

    Smart grid initiatives will produce a grid that is increasingly dependent on its cyber infrastructure in order to support the numerous power applications necessary to provide improved grid monitoring and control capabilities. However, recent findings documented in government reports and other literature, indicate the growing threat of cyber-based attacks in numbers and sophistication targeting the nation's electric grid and other critical infrastructures. Specifically, this paper discusses cyber-physical security of Wide-Area Monitoring, Protection and Control (WAMPAC) from a coordinated cyber attack perspective and introduces a game-theoretic approach to address the issue. Finally, the paper briefly describes how cyber-physical testbeds can be used to evaluate the security research and perform realistic attack-defense studies for smart grid type environments.

  9. Internal consistency of the CHAMPS physical activity questionnaire for Spanish speaking older adults.

    PubMed

    Rosario, Martín G; Vázquez, Jenniffer M; Cruz, Wanda I; Ortiz, Alexis

    2008-09-01

    The Community Healthy Activities Model Program for Seniors (CHAMPS) is a physical activity monitoring questionnaire for people between 65 to 90 years old. This questionnaire has been previously translated to Spanish to be used in the Latin American population. To adapt the Spanish version of the CHAMPS questionnaire to Puerto Rico and assess its internal consistency. An external review committee adapted the existent Spanish version of the CHAMPS to be used in the Puerto Rican population. Three older adults participated in a second phase with the purpose of training the research team. After the second phase, 35 older adults participated in a third content adaptation phase. During the third phase, the preliminary Spanish version for Puerto Rico of the CHAMPS was given to the 35 participants to assess for clarity, vocabulary and understandability. Interviews to each participant in the third phase were carried out to obtain feedback and create a final Spanish version of the CHAMPS for Puerto Rico. After analyses of this phase, the external review committee prepared a final Spanish version of the CHAMPS for Puerto Rico. The final version was administered to 15 older adults (76 +/- 6.5 years) to assess the internal consistency by using Cronbach's Alpha analysis. The questionnaire showed a strong internal consistency of 0.76. The total time to answer the questionnaire was 17.4 minutes. The Spanish version of the CHAMPS questionnaire for Puerto Rico suggested being an easy to administer and consistent measurement tool to assess physical activity in older adults.

  10. Environmental Impact Analysis Process. Supplement to Final Environmental Impact Statement Space Shuttle Program, Vandenberg AFB, California

    DTIC Science & Technology

    1983-07-01

    problems . Six appendices offer more detailed environmental assessments for the key issues of air quality impacts, inadvertent weather modification...research studies in problem areas, and newly- acquired knowledge of the affected environment. The physical, chemi- cal, biological, and...Shuttle program, in conjunction with other projects within the county, will aggravate short-tenm problems concerning housing, and the quality and quantity

  11. Laboratory for Extraterrestrial Physics

    NASA Technical Reports Server (NTRS)

    Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    The NASA Goddard Space Flight Center (GSFC) Laboratory for Extraterrestrial Physics (LEP) performs experimental and theoretical research on the heliosphere, the interstellar medium, and the magnetospheres and upper atmospheres of the planets, including Earth. LEP space scientists investigate the structure and dynamics of the magnetospheres of the planets including Earth. Their research programs encompass the magnetic fields intrinsic to many planetary bodies as well as their charged-particle environments and plasma-wave emissions. The LEP also conducts research into the nature of planetary ionospheres and their coupling to both the upper atmospheres and their magnetospheres. Finally, the LEP carries out a broad-based research program in heliospheric physics covering the origins of the solar wind, its propagation outward through the solar system all the way to its termination where it encounters the local interstellar medium. Special emphasis is placed on the study of solar coronal mass ejections (CME's), shock waves, and the structure and properties of the fast and slow solar wind. LEP planetary scientists study the chemistry and physics of planetary stratospheres and tropospheres and of solar system bodies including meteorites, asteroids, comets, and planets. The LEP conducts a focused program in astronomy, particularly in the infrared and in short as well as very long radio wavelengths. We also perform an extensive program of laboratory research, including spectroscopy and physical chemistry related to astronomical objects. The Laboratory proposes, develops, fabricates, and integrates experiments on Earth-orbiting, planetary, and heliospheric spacecraft to measure the characteristics of planetary atmospheres and magnetic fields, and electromagnetic fields and plasmas in space. We design and develop spectrometric instrumentation for continuum and spectral line observations in the x-ray, gamma-ray, infrared, and radio regimes; these are flown on spacecraft to study the interplanetary medium, asteroids, comets, and planets. Suborbital sounding rockets and groundbased observing platforms form an integral part of these research activities. This report covers the period from approximately October 1999 through September 2000.

  12. Assessing Women’s Negative Sanitation Experiences and Concerns: The Development of a Novel Sanitation Insecurity Measure

    PubMed Central

    Caruso, Bethany A.; Clasen, Thomas; Yount, Kathryn M.; Cooper, Hannah L. F.; Hadley, Craig; Haardörfer, Regine

    2017-01-01

    Lack of access to acceptable sanitation facilities can expose individuals, particularly women, to physical, social, and mental health risks. While some of the challenges have been documented, standard metrics are needed to determine the extent to which women have urination- and defecation-related concerns and negative experiences. Such metrics also are needed to assess the effectiveness of interventions to mitigate them. We developed a sanitation insecurity measure to capture the range and frequency of women’s sanitation-related concerns and negative experiences. Research was conducted in rural Odisha, India with women across various life course stages to reflect a range of perspectives. This paper documents the mixed data collection methods and the exploratory and confirmatory factor analyses we employed to arrive at a final measure. The final sanitation insecurity measure includes 50 items across seven factors that reflect the physical environment, the social environment, and individual-level constraints. Most factor scores were significantly higher for unmarried women and for women who lacked access to functional latrines, indicating social and environmental influence on experiences. This measure will enable researchers to evaluate how sanitation insecurity affects health and to determine if and how sanitation interventions ameliorate women’s concerns and negative experiences associated with sanitation. PMID:28696405

  13. Connecting self-efficacy and views about the nature of science in undergraduate research experiences

    NASA Astrophysics Data System (ADS)

    Quan, Gina M.; Elby, Andrew

    2016-12-01

    Undergraduate research can support students' more central participation in physics. We analyze markers of two coupled shifts in participation: changes in students' views about the nature of science coupled to shifts in self-efficacy toward physics research. Students in the study worked with faculty and graduate student mentors on research projects while also participating in a seminar where they learned about research and reflected on their experiences. In classroom discussions and in clinical interviews, students described gaining more nuanced views about the nature of science, specifically related to who can participate in research and what participation in research looks like. This shift was coupled to gains in self-efficacy toward their ability to contribute to research; they felt like their contributions as novices mattered. We present two case studies of students who experienced coupled shifts in self-efficacy and views about nature-of-science shifts, and a case study of a student for whom we did not see either shift, to illustrate both the existence of the coupling and the different ways it can play out. After making the case that this coupling occurs, we discuss some potential underlying mechanisms. Finally, we use these results to argue for more nuanced interpretations of self-efficacy measurements.

  14. Quantifying site-specific physical heterogeneity within an estuarine seascape

    USGS Publications Warehouse

    Kennedy, Cristina G.; Mather, Martha E.; Smith, Joseph M.

    2017-01-01

    Quantifying physical heterogeneity is essential for meaningful ecological research and effective resource management. Spatial patterns of multiple, co-occurring physical features are rarely quantified across a seascape because of methodological challenges. Here, we identified approaches that measured total site-specific heterogeneity, an often overlooked aspect of estuarine ecosystems. Specifically, we examined 23 metrics that quantified four types of common physical features: (1) river and creek confluences, (2) bathymetric variation including underwater drop-offs, (3) land features such as islands/sandbars, and (4) major underwater channel networks. Our research at 40 sites throughout Plum Island Estuary (PIE) provided solutions to two problems. The first problem was that individual metrics that measured heterogeneity of a single physical feature showed different regional patterns. We solved this first problem by combining multiple metrics for a single feature using a within-physical feature cluster analysis. With this approach, we identified sites with four different types of confluences and three different types of underwater drop-offs. The second problem was that when multiple physical features co-occurred, new patterns of total site-specific heterogeneity were created across the seascape. This pattern of total heterogeneity has potential ecological relevance to structure-oriented predators. To address this second problem, we identified sites with similar types of total physical heterogeneity using an across-physical feature cluster analysis. Then, we calculated an additive heterogeneity index, which integrated all physical features at a site. Finally, we tested if site-specific additive heterogeneity index values differed for across-physical feature clusters. In PIE, the sites with the highest additive heterogeneity index values were clustered together and corresponded to sites where a fish predator, adult striped bass (Morone saxatilis), aggregated in a related acoustic tracking study. In summary, we have shown general approaches to quantifying site-specific heterogeneity.

  15. Speech pathology student clinician attitudes and beliefs towards people who stutter: A mixed-method pilot study.

    PubMed

    Koutsodimitropoulos, Ellen; Buultjens, Melissa; St Louis, Kenneth O; Monfries, Melissa

    2016-03-01

    Stuttering is a disorder of fluency that extends beyond its physical nature and has social, emotional and vocational impacts. Research shows that individuals often exhibit negative attitudes towards people who stutter; however, there is limited research on the attitudes and beliefs of speech pathology students towards people who stutter in Australia. Existing research is predominantly quantitative; whereas this mixed-method study placed an emphasis on the qualitative component. The purpose of this study was to explore the attitudes and beliefs of final year Australian speech pathology students towards people who stutter. This mixed-method study applied the Public Opinion Survey of Human Attributes - Stuttering (POSHA-S) and semi-structured interviews to gather data from final year speech pathology students from a major university in Australia. The overall qualitative findings identified that final year Australian speech pathology students exhibit positive attitudes towards people who stutter. The results also illustrated the role of education in influencing attitudes of students as well as increasing their confidence to work with people who stutter. This research revealed that Australian final year speech pathology students exhibit positive attitudes towards people who stutter. They displayed an understanding that people who stutter may have acquired traits such as shyness as a response to their personal situation and environment, rather than those traits being endemic to them. Results also suggested that education can play a role in creating confident student clinicians in their transition to practice, and positively influence their attitudes and beliefs. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Final Report on Activities Supported by Department of Energy Grant No. DE-FG02-02ER63397, 2002-August 31, 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madelaine Marquez; Neil Stillings

    The grant supported four projects that involved professional development for teachers and enrichment programs for students from under-funded and under-served school districts. The projects involved long-term partnerships between Hampshire College and the districts. All projects were concerned with the effective implementation of inquiry-based science learning and its alignment with state and national curriculum and assessment standards. One project, The Collaboration for Excellence in Science Education (CESE), was designed to support research on the development of concepts in the physical sciences, specifically energy and waves. Extensive data from student interviews and written essays supported the neo-Piagetian hierarchical complexity theory of thismore » area of conceptual development. New assessment techniques that can be used by teachers were also developed. The final report includes a full presentation of the methods and results of the research.« less

  17. Exploring the facilitators and barriers to engagement in physical activity for people with multiple sclerosis.

    PubMed

    Kayes, Nicola M; McPherson, Kathryn M; Schluter, Philip; Taylor, Denise; Leete, Marta; Kolt, Gregory S

    2011-01-01

    To explore the relationship that cognitive behavioural and other previously identified variables have with physical activity engagement in people with multiple sclerosis (MS). This study adopted a cross-sectional questionnaire design. Participants were 282 individuals with MS. Outcome measures included the Physical Activity Disability Survey--Revised, Cognitive and Behavioural Responses to Symptoms Questionnaire, Barriers to Health Promoting Activities for Disabled Persons Scale, Multiple Sclerosis Self-efficacy Scale, Self-Efficacy for Chronic Diseases Scales and Chalder Fatigue Questionnaire. Multivariable stepwise regression analyses found that greater self-efficacy, greater reported mental fatigue and lower number of perceived barriers to physical activity accounted for a significant proportion of variance in physical activity behaviour, over that accounted for by illness-related variables. Although fear-avoidance beliefs accounted for a significant proportion of variance in the initial analyses, its effect was explained by other factors in the final multivariable analyses. Self-efficacy, mental fatigue and perceived barriers to physical activity are potentially modifiable variables which could be incorporated into interventions designed to improve physical activity engagement. Future research should explore whether a measurement tool tailored to capture beliefs about physical activity identified by people with MS would better predict participation in physical activity.

  18. Leibniz on teleology and the laws of optics

    NASA Astrophysics Data System (ADS)

    McDonough, Jeffrey Keegan

    This essay explores Leibniz's defense of teleology and teleological explanations in the domain of physics in general, and the roles that teleology plays in his studies of optics in particular. I argue first that Leibniz draws upon Plato's defense of final causes to introduce a novel research program intended to steer a middle course, on the one hand, between Aristotelian-Scholasticism and the new mechanical philosophy, and, on the other hand, between Cartesian rationalism and Gassendist empiricism. The implementation of this program leads Leibniz to significant conceptual innovations, as he attempts to reconcile teleological and efficient explanatory frameworks, and important discoveries, as he tries to show how final causes can be used to achieve results in the study of the natural world. Having situated Leibniz's defense of final causes in the broader context of his general philosophy of physics, I turn to a more detailed investigation of the roles that teleology plays in his work in geometrical optics. Interest in final causes leads Leibniz to introduce his "Most Determined Path Principle" from which both of the central laws of geometrical optics may be derived. I argue that Leibniz uses the discovery of such principles to introduce a thin notion of final causation within the order of nature based on teleological laws that link prior events to subsequent events via the likely or expected outcomes of those events, and defend this view against objections made both by Leibniz's contemporaries and our own. I also argue that Leibniz uses the discovery of principles like Most Determined Path Principle to provide a novel connection within his system between considerations of divine perfection and the laws of nature. I defend the internal consistency of this connection, and explore its relations to Leibniz's mature physics, and to his view that the world is governed by two sets of equipotent laws, one teleological and one mechanical.

  19. Doing things my way: teaching physical education with a disability.

    PubMed

    Grenier, Michelle A; Horrell, Andrew; Genovese, Bryan

    2014-10-01

    Having a disability and being a teacher can be a critical site for examining practices associated with ability, competence, and pedagogy. While there is a growing literature base that examines the experiences of students with disabilities in physical education, there is virtually no research that examines the experiences of physical education teachers with disabilities. Using the capability approach, this article explores the experiences of a physical education teaching intern with a physical disability, significant school members, and the students he interacted with through interviews and documents. The results yielded 3 primary themes. The first, "the fluid nature of the disability discourse," demonstrated the complexity of disability and explored the contrast between static tendencies that stereotype disability and the disability experience. The second theme, "doing things my way," reflected the intern's need to distinguish himself as a teacher by defining contexts for experiencing competence. The third and final theme, "agent of change," explored how the intern's experiences as a teacher with a disability informed his educational narrative.

  20. History of Nuclear Fusion Research in Japan

    NASA Astrophysics Data System (ADS)

    Iguchi, Harukazu; Matsuoka, Keisuke; Kimura, Kazue; Namba, Chusei; Matsuda, Shinzaburo

    In the late 1950s just after the atomic energy research was opened worldwide, there was a lively discussion among scientists on the strategy of nuclear fusion research in Japan. Finally, decision was made that fusion research should be started from the basic, namely, research on plasma physics and from cultivation of human resources at universities under the Ministry of Education, Science and Culture (MOE). However, an endorsement was given that construction of an experimental device for fusion research would be approved sooner or later. Studies on toroidal plasma confinement started at Japan Atomic Energy Research Institute (JAERI) under the Science and Technology Agency (STA) in the mid-1960s. Dualistic fusion research framework in Japan was established. This structure has lasted until now. Fusion research activities over the last 50 years are described by the use of a flowchart, which is convenient to glance the historical development of fusion research in Japan.

  1. PREFACE: 1st Franco-Algerian Workshop on Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Mebarki, N.; Mimouni, J.; Vanucci, F.; Aissaoui, H.

    2015-04-01

    The first Franco-Algerian workshop on neutrino physics was held on 22-23 October 2013 at the University of Mentouri, Constantine, Algeria. It was jointly organized by the Laboratory of Mathematical and Subatomic Physics (LPMS) and the Direction of Scientific Research (DGRSTD) for the Algerian side, and for the French part by the IN2P3, CNRS and CEA IRFU. It is one of a series of international scientific meetings organized every two years by the LPMS at Constantine on high energy physics (theoretical, nuclear physics, classical and quantum cosmology, astrophysics, mathematical physics and quantum computing etc...) to maintain a high quality in scientific research and education at Algerian universities. This specific meeting brought together experts in particle physics, astrophysics and cosmology from France and Algeria. It touched upon several theoretical, phenomenological as well as experimental aspects of the neutrinos. The workshop participants were mostly young researchers from many universities and research institutes in Algeria. The physics of neutrinos is a very active field in particle physics, hence the importance for the High Energy community in Algeria to gain expertise in this ''strategic'' area at the intersection of various topics in theoretical physics and high energy astrophysics (SM physics, CP violation, in general, SNe explosions, baryogenesis...). The neutrino proposed by Pauli back in 1930 as a ''desperate remedy'' to save the law of energy conservation in beta decay had a bright early history. Discovered in 1956 in the Cowan-Reines experiment despite all odds, this elusive particle which enabled us to understand the chiral nature of the weak interactions which later lead to the electro-weak unification finally appears to hold a key role in understanding subatomic physics as well as the structure and structuration of the Universe. It is also, after the discovery of the Higgs particle at the LHC in 2012, the only grey area left today in the Standard Model of particle physics. The various contributions covered in this scientific meeting lie between oral and posters presentations including many specialized topics like neutrinos' oscillations, the various large experiments like Borexino and Opera, the geo-neutrinos, as more theoretical topics like Majorana neutrinos and the double beta decay, anomalies in neutrino physics, neutrino models beyond the standard model and in curved space-time. We hope that putting in print the various contributions to this exciting meeting will be a valuable contribution to the literature to both professional as well as young researchers in neutrino physics. This workshop couldn't have taken place without the generous and unfaltering support of the DGRSTD which fully financed it through its various stages. Editors Profs. The editors: Mebarki N., Mimouni J., Vanucci F., Aissaoui H.

  2. Interpersonal Effects of Suffering in Older Adult Caregiving Relationships

    PubMed Central

    Monin, Joan K.; Schulz, Richard

    2009-01-01

    Examining the interpersonal effects of suffering in the context of family caregiving is an important step to a broader understanding of how exposure to suffering affects humans. In this review article, we first describe existing evidence that being exposed to the suffering of a care recipient (conceptualized as psychological distress, physical symptoms, and existential/spiritual distress) directly influences caregivers’ emotional experiences. Drawing from past theory and research, we propose that caregivers experience similar, complementary, and/or defensive emotions in response to care recipient suffering through mechanisms such as cognitive empathy, mimicry, and conditioned learning, placing caregivers at risk for psychological and physical morbidity. We then describe how gender, relationship closeness, caregiving efficacy, and individual differences in emotion regulation moderate these processes. Finally, we provide directions for future research to deepen our understanding of interpersonal phenomena among older adults, and we discuss implications for clinical interventions to alleviate the suffering of both caregivers and care recipients. PMID:19739924

  3. Yoga clinical research review.

    PubMed

    Field, Tiffany

    2011-02-01

    In this paper recent research is reviewed on the effects of yoga poses on psychological conditions including anxiety and depression, on pain syndromes, cardiovascular, autoimmune and immune conditions and on pregnancy. Further, the physiological effects of yoga including decreased heartrate and blood pressure and the physical effects including weight loss and increased muscle strength are reviewed. Finally, potential underlying mechanisms are proposed including the stimulation of pressure receptors leading to enhanced vagal activity and reduced cortisol. The reduction in cortisol, in turn, may contribute to positive effects such as enhanced immune function and a lower prematurity rate. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Overview of the NASA space radiation laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung

    The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. Finally, this work contains a general overview of NSRL structure, capabilities and operation.

  5. Overview of the NASA space radiation laboratory

    DOE PAGES

    La Tessa, Chiara; Sivertz, Michael; Chiang, I-Hung; ...

    2016-11-11

    The NASA Space Radiation Laboratory (NSRL) is a multidisciplinary center for space radiation research funded by NASA and located at the Brookhaven National Laboratory (BNL), Upton NY. Operational since 2003, the scope of NSRL is to provide ion beams in support of the NASA Humans in Space program in radiobiology, physics and engineering to measure the risk and ameliorate the effect of radiation in space. Recently, it has also been recognized as the only facility in the U.S. currently capable of contributing to heavy ion radiotherapy research. Finally, this work contains a general overview of NSRL structure, capabilities and operation.

  6. PREFACE: First International Meeting on Applied Physics (APHYS-2003)

    NASA Astrophysics Data System (ADS)

    Méndez-Vilas, A.; Chacón, R.

    2005-01-01

    This special issue of Physica Scripta contains papers presented at the 1st International Meeting on Applied Physics (APHYS-2003), held in Badajoz (Spain), from 13th to 18th October 2003, and more specifically, selected papers presented during the conference sessions mainly on Applied Optics, Laser Physics, Ultrafast Phenomena, Optical Materials, Semiconductor Materials and Devices, Optoelectronics, Quantum Electronics and Applied Solid State Physics-Chemistry. APHYS-2003 was born as an attempt to create a new international forum on Applied Physics in Europe. Since Applied Physics is not really a branch of Physics, but the application of all the branches of Physics to the broad realms of practical problems in Science, Engineering and Industry, this conference was a truly multi and inter-disciplinary event. The organizers called for papers relating Physics with other sciences such as Biology, Chemistry, Information Science, Medicine, etc, or relating different Physics areas, and aimed at solving practical problems. In other words, the Conference was specifically interested in reports applying the techniques, the training, and the culture of Physics to research areas usually associated with other scientific and engineering disciplines. It was extremely rewarding that over 800 researchers, from over 65 countries, attended the conference, where more than 1000 research papers were presented. We feel really proud of this excellent response obtained (in number and quality), for this first edition of the conference. We are very grateful to all the members of the Organizing Committee, for the hard work done for the preparation of the Conference (which began one year before the conference start), and to the members of the International Advisory Committee, for the valuable contribution to the evaluation of submitted works. Also thank to the referees for the excellent work done in the revision of submitted papers. Finally, we would like to thank the Department of Physics of the University of Extremadura, for their support, and the Regional Government (Junta de Extremadura/Consejería de Educación, Ciencia y Tecnología), as well as INNOVA Instrumentación, for sponsoring the Conference.

  7. Evolution of accelerometer methods for physical activity research.

    PubMed

    Troiano, Richard P; McClain, James J; Brychta, Robert J; Chen, Kong Y

    2014-07-01

    The technology and application of current accelerometer-based devices in physical activity (PA) research allow the capture and storage or transmission of large volumes of raw acceleration signal data. These rich data not only provide opportunities to improve PA characterisation, but also bring logistical and analytic challenges. We discuss how researchers and developers from multiple disciplines are responding to the analytic challenges and how advances in data storage, transmission and big data computing will minimise logistical challenges. These new approaches also bring the need for several paradigm shifts for PA researchers, including a shift from count-based approaches and regression calibrations for PA energy expenditure (PAEE) estimation to activity characterisation and EE estimation based on features extracted from raw acceleration signals. Furthermore, a collaborative approach towards analytic methods is proposed to facilitate PA research, which requires a shift away from multiple independent calibration studies. Finally, we make the case for a distinction between PA represented by accelerometer-based devices and PA assessed by self-report. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  8. Perception of competence in middle school physical education: instrument development and validation.

    PubMed

    Scrabis-Fletcher, Kristin; Silverman, Stephen

    2010-03-01

    Perception of Competence (POC) has been studied extensively in physical activity (PA) research with similar instruments adapted for physical education (PE) research. Such instruments do not account for the unique PE learning environment. Therefore, an instrument was developed and the scores validated to measure POC in middle school PE. A multiphase design was used consisting of an intensive theoretical review, elicitation study, prepilot study, pilot study, content validation study, and final validation study (N=1281). Data analysis included a multistep iterative process to identify the best model fit. A three-factor model for POC was tested and resulted in root mean square error of approximation = .09, root mean square residual = .07, goodness offit index = .90, and adjusted goodness offit index = .86 values in the acceptable range (Hu & Bentler, 1999). A two-factor model was also tested and resulted in a good fit (two-factor fit indexes values = .05, .03, .98, .97, respectively). The results of this study suggest that an instrument using a three- or two-factor model provides reliable and valid scores ofPOC measurement in middle school PE.

  9. Opportunities for Undergraduate Research in Nuclear Physics

    DOE PAGES

    Hicks, S. F.; Nguyen, T. D.; Jackson, D. T.; ...

    2017-10-26

    University of Dallas (UD) physics majors are offered a variety of undergraduate research opportunities in nuclear physics through an established program at the University of Kentucky Accelerator Laboratory (UKAL). The 7-MV Model CN Van de Graaff accelerator and the neutron production and detection facilities located there are used by UD students to investigate how neutrons scatter from materials that are important in nuclear energy production and for our basic understanding of how neutrons interact with matter. Recent student projects include modeling of the laboratory using the neutron transport code MCNP to investigate the effectiveness of laboratory shielding, testing the long-termmore » gain stability of C 6D 6 liquid scintillation detectors, and deducing neutron elastic and inelastic scattering cross sections for 12C. Finally, results of these student projects are presented that indicate the pit below the scattering area reduces background by as much as 30%; the detectors show no significant gain instabilities; and new insights into existing 12C neutron inelastic scattering cross-section discrepancies near a neutron energy of 6.0 MeV are obtained.« less

  10. A Role for Exercise in Attenuating Unhealthy Food Consumption in Response to Stress

    PubMed Central

    Leow, Shina; Jackson, Ben; Alderson, Jacqueline A.; Guelfi, Kym J.; Dimmock, James A.

    2018-01-01

    It is well established that both acute and chronic stress can be detrimental to health and wellbeing by directly increasing the risk of several chronic diseases and related health problems. In addition, stress may contribute to ill-health indirectly via its downstream effects on individuals’ health-related behaviour, such as promoting the intake of unhealthy palatable foods high in fat and sugar content. This paper reviews (a) the research literature on stress-models; (b) recent research investigating stress-induced eating and (c) the potential physiological and psychological pathways contributing to stress-induced eating. Particular attention is given to (d) the role of physical exercise in attenuating acute stress, with exploration of potential mechanisms through which exercise may reduce unhealthy food and drink consumption subsequent to stressor exposure. Finally, exercise motivation is discussed as an important psychological influence over the capacity for physical exercise to attenuate unhealthy food and drink consumption after exposure to stressors. This paper aims to provide a better understanding of how physical exercise might alleviate stress-induced unhealthy food choices. PMID:29415424

  11. A Role for Exercise in Attenuating Unhealthy Food Consumption in Response to Stress.

    PubMed

    Leow, Shina; Jackson, Ben; Alderson, Jacqueline A; Guelfi, Kym J; Dimmock, James A

    2018-02-06

    It is well established that both acute and chronic stress can be detrimental to health and wellbeing by directly increasing the risk of several chronic diseases and related health problems. In addition, stress may contribute to ill-health indirectly via its downstream effects on individuals' health-related behaviour, such as promoting the intake of unhealthy palatable foods high in fat and sugar content. This paper reviews (a) the research literature on stress-models; (b) recent research investigating stress-induced eating and (c) the potential physiological and psychological pathways contributing to stress-induced eating. Particular attention is given to (d) the role of physical exercise in attenuating acute stress, with exploration of potential mechanisms through which exercise may reduce unhealthy food and drink consumption subsequent to stressor exposure. Finally, exercise motivation is discussed as an important psychological influence over the capacity for physical exercise to attenuate unhealthy food and drink consumption after exposure to stressors. This paper aims to provide a better understanding of how physical exercise might alleviate stress-induced unhealthy food choices.

  12. Opportunities for Undergraduate Research in Nuclear Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hicks, S. F.; Nguyen, T. D.; Jackson, D. T.

    University of Dallas (UD) physics majors are offered a variety of undergraduate research opportunities in nuclear physics through an established program at the University of Kentucky Accelerator Laboratory (UKAL). The 7-MV Model CN Van de Graaff accelerator and the neutron production and detection facilities located there are used by UD students to investigate how neutrons scatter from materials that are important in nuclear energy production and for our basic understanding of how neutrons interact with matter. Recent student projects include modeling of the laboratory using the neutron transport code MCNP to investigate the effectiveness of laboratory shielding, testing the long-termmore » gain stability of C 6D 6 liquid scintillation detectors, and deducing neutron elastic and inelastic scattering cross sections for 12C. Finally, results of these student projects are presented that indicate the pit below the scattering area reduces background by as much as 30%; the detectors show no significant gain instabilities; and new insights into existing 12C neutron inelastic scattering cross-section discrepancies near a neutron energy of 6.0 MeV are obtained.« less

  13. Setting research priorities to improve the health of children and young people with neurodisability: a British Academy of Childhood Disability-James Lind Alliance Research Priority Setting Partnership

    PubMed Central

    Morris, Christopher; Simkiss, Doug; Busk, Mary; Morris, Maureen; Allard, Amanda; Denness, Jacob; Janssens, Astrid; Stimson, Anna; Coghill, Joanna; Robinson, Kelly; Fenton, Mark; Cowan, Katherine

    2015-01-01

    Objectives To engage young people, parent carers and clinicians in a systematic process to identify and prioritise research questions regarding ways to improve the health and well-being of children and young people with neurodisability. Design British Academy of Childhood Disability (BACD)-James Lind Alliance research priority setting partnership bringing together patients, carers and clinicians as equal stakeholders. Setting UK health service and community. Methods The BACD Strategic Research Group formed the partnership. A Steering Group was established; charity and professional partner organisations were recruited. Suggestions were gathered in an open survey and from research recommendations for statutory guidance. Items were aggregated to formulate indicative research questions and verified as uncertainties from research evidence. An interim survey was used to rank the questions to shortlist topics. A mixed group of stakeholders discussed the top 25 questions at the final priority setting workshop agreeing a final rank order and the top 10 research priorities. Participants Partner organisations were 13 charities and 8 professional societies. 369 people submitted suggestions (40% non-clinicians). 76 people participated in the interim prioritisation (26 parents, 1 young person, 10 charity representatives, 39 clinicians); 22 took part in the final workshop (3 young people, 7 parents, 3 charity representatives, 9 professionals). Results The top three research priorities related to (1) establishing the optimal frequency and intensity (dose) for mainstream therapies, (2) means for selecting and encouraging use of communication strategies and (3) ways to improve children's attitudes towards disability. The top 10 included evaluating interventions to promote mobility, self-efficacy, mental health, continence, physical fitness, educational inclusion and reduce impacts of sleep disturbance. Conclusions The methodology provided a systematic and transparent process to identify research priorities that included stakeholders that have typically not contributed to setting the research agenda. The top 10 and other topics identified provide a resource for researchers and agencies that fund research PMID:25631309

  14. The new AP Physics exams: Integrating qualitative and quantitative reasoning

    NASA Astrophysics Data System (ADS)

    Elby, Andrew

    2015-04-01

    When physics instructors and education researchers emphasize the importance of integrating qualitative and quantitative reasoning in problem solving, they usually mean using those types of reasoning serially and separately: first students should analyze the physical situation qualitatively/conceptually to figure out the relevant equations, then they should process those equations quantitatively to generate a solution, and finally they should use qualitative reasoning to check that answer for plausibility (Heller, Keith, & Anderson, 1992). The new AP Physics 1 and 2 exams will, of course, reward this approach to problem solving. But one kind of free response question will demand and reward a further integration of qualitative and quantitative reasoning, namely mathematical modeling and sense-making--inventing new equations to capture a physical situation and focusing on proportionalities, inverse proportionalities, and other functional relations to infer what the equation ``says'' about the physical world. In this talk, I discuss examples of these qualitative-quantitative translation questions, highlighting how they differ from both standard quantitative and standard qualitative questions. I then discuss the kinds of modeling activities that can help AP and college students develop these skills and habits of mind.

  15. Parental physical activity, safety perceptions and children’s independent mobility

    PubMed Central

    2013-01-01

    Background Parents are likely to be a basic influence on their children's behavior. There is an absence of information about the associations between parents' physical activity and perception of neighborhood environment with children’s independent mobility. The purpose of this study is to examine the contribution of parental physical activity and perception of neighborhood safety to children’s independent mobility. Methods In this cross-sectional study of 354 pupils and their parents, independent mobility, perceptions of neighborhood safety and physical activity were evaluated by questionnaire. Categorical principal components analyses were used to determine the underlying dimensions of both independent mobility and perceptions of neighborhood safety items. Results The strongest predictor of independent mobility was the parental perception of sidewalk and street safety (ß = 0.132). Parent’s physical activity was also a significant predictor. The final model accounted for 13.0% of the variance. Conclusions Parental perception of neighborhood safety and parents’ self reported physical activity might be associated with children’s independent mobility. Further research in this topic is needed to explore this possible association. PMID:23767778

  16. Investigating and improving introductory physics students’ understanding of the electric field and superposition principle

    NASA Astrophysics Data System (ADS)

    Li, Jing; Singh, Chandralekha

    2017-09-01

    We discuss an investigation of the difficulties that students in a university introductory physics course have with the electric field and superposition principle and how that research was used as a guide in the development and evaluation of a research-validated tutorial on these topics to help students learn these concepts better. The tutorial uses a guided enquiry-based approach to learning and involved an iterative process of development and evaluation. During its development, we obtained feedback both from physics instructors who regularly teach introductory physics in which these concepts are taught and from students for whom the tutorial is intended. The iterative process continued and the feedback was incorporated in the later versions of the tutorial until the researchers were satisfied with the performance of a diverse group of introductory physics students on the post-test after they worked on the tutorial in an individual one-on-one interview situation. Then the final version of the tutorial was administered in several sections of the university physics course after traditional instruction in relevant concepts. We discuss the performance of students in individual interviews and on the pre-test administered before the tutorial (but after traditional lecture-based instruction) and on the post-test administered after the tutorial. We also compare student performance in sections of the class in which students worked on the tutorial with other similar sections of the class in which students only learned via traditional instruction. We find that students performed significantly better in the sections of the class in which the tutorial was used compared to when students learned the material via only lecture-based instruction.

  17. Astronomy and Cancer Research: X-Rays and Nanotechnology from Black Holes to Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Pradhan, Anil K.; Nahar, Sultana N.

    It seems highly unlikely that any connection is to be found between astronomy and medicine. But then it also appears to be obvious: X-rays. However, that is quite superficial because the nature of X-rays in the two disciplines is quite different. Nevertheless, we describe recent research on exactly that kind of link. Furthermore, the linkage lies in atomic physics, and via spectroscopy which is a vital tool in astronomy and may also be equally valuable in biomedical research. This review begins with the physics of black hole environments as viewed through X-ray spectroscopy. It is then shown that similar physics can be applied to spectroscopic imaging and therapeutics using heavy-element (high-Z) moieties designed to target cancerous tumors. X-ray irradiation of high-Z nanomaterials as radiosensitizing agents should be extremely efficient for therapy and diagnostics (theranostics). However, broadband radiation from conventional X-ray sources (such as CT scanners) results in vast and unnecessary radiation exposure. Monochromatic X-ray sources are expected to be considerably more efficient. We have developed a new and comprehensive methodology—Resonant Nano-Plasma Theranostics (RNPT)—that encompasses the use of monochromatic X-ray sources and high-Z nanoparticles. Ongoing research entails theoretical computations, numerical simulations, and in vitro and in vivo biomedical experiments. Stemming from basic theoretical studies of Kα resonant photoabsorption and fluorescence in all elements of the Periodic Table, we have established a comprehensive multi-disciplinary program involving researchers from physics, chemistry, astronomy, pathology, radiation oncology and radiology. Large-scale calculations necessary for theory and modeling are done at a variety of computational platforms at the Ohio Supercomputer Center. The final goal is the implementation of RNPT for clinical applications.

  18. Pure Electron Plasmas near Thermal Equilibrium

    DTIC Science & Technology

    1990-11-01

    I University of California, San Diego Institute of Pure and Applied Physical Sciences La Jolla, CA 92093 N 0 (V) Final Technical Report N "Pure...Research/code -..... " 1112AI. VC 1/8/91 ’ , .... i ; () -ii- r INTRODUCTION Since 1982 the plasma group at UCSD has been conducting an experimental and...scale. We have also observed an unusual I = 1 instability which the previously published theoretical literature stated unconditionally was stable. The

  19. The Unfit Majority: A Research Study of the Rehabilitation of Selective Service Rejectees in South Carolina. Final Report for: Experimental Demonstration Project for Servicing Selective Service Rejectees.

    ERIC Educational Resources Information Center

    Clements, Hubert M.; And Others

    A 3-year demonstration project focused on the vocational rehabilitation rehabilitation of selective service rejectees in a five-county area in Central South Carolina. In 1962, over 50 percent of South Carolina's young men who were examined for military service were rejected for failure to meet physical and/or mental requirements. Of 1,450…

  20. Fractal astronomy.

    NASA Astrophysics Data System (ADS)

    Beech, M.

    1989-02-01

    The author discusses some of the more recent research on fractal astronomy and results presented in several astronomical studies. First, the large-scale structure of the universe is considered, while in another section one drops in scale to examine some of the smallest bodies in our solar system; the comets and meteoroids. The final section presents some thoughts on what influence the fractal ideology might have on astronomy, focusing particularly on the question recently raised by Kadanoff, "Fractals: where's the physics?"

  1. Buried Object Detection

    DTIC Science & Technology

    1988-01-22

    Final Report 19 January 1987 Army Research OfficeM Contract No. DAAL03..87-K-0052 National Center for Physical Acoustics D T ! C " Naioal P. 0. Box 847...black . umberJ FIELO I GROUP I SU9GROU-p Acoustic , Seismic, Acoustic seismic coupling, porefluid, pulse echo, propagation, soils, sound speed...seismic transfer function. /’An acoustic scheme for buried object detection is thought to involve a sound source above the ground and a microphone as a

  2. May the Circle Be Unbroken: A New Decade. Final Report on the National Indian Conference on Aging (3rd, Albuquerque, New Mexico, September 8-10, 1980).

    ERIC Educational Resources Information Center

    National Indian Council on Aging, Albuquerque, NM.

    Focusing on six major topics to be addressed at the 1981 White House Conference (economic security, physical and mental health, social well being, older Americans as a national resource, creating an age-integrated society, and research), the National Indian Conference attracted 1,165 persons from more than 140 tribes (592 being Indian elders over…

  3. The use of multiple representations and visualizations in student learning of introductory physics: An example from work and energy

    NASA Astrophysics Data System (ADS)

    Zou, Xueli

    In the past three decades, physics education research has primarily focused on student conceptual understanding; little work has been conducted to investigate student difficulties in problem solving. In cognitive science and psychology, however, extensive studies have explored the differences in problem solving between experts and naive students. A major finding indicates that experts often apply qualitative representations in problem solving, but that novices use an equation-centered method. This dissertation describes investigations into the use of multiple representations and visualizations in student understanding and problem solving with the concepts of work and energy. A multiple-representation strategy was developed to help students acquire expertise in solving work-energy problems. In this approach, a typical work-energy problem is considered as a physical process. The process is first described in words-the verbal representation of the process. Next, a sketch or a picture, called a pictorial representation, is used to represent the process. This is followed by work-energy bar charts-a physical representation of the same processes. Finally, this process is represented mathematically by using a generalized work-energy equation. In terms of the multiple representations, the goal of solving a work- energy problem is to represent the physical process the more intuitive pictorial and diagrammatic physical representations. Ongoing assessment of student learning indicates that this multiple-representation technique is more effective than standard instruction methods in student problem solving. visualize this difficult-to-understand concept, a guided- inquiry learning activity using a pair of model carts and an experiment problem using a sandbag were developed. Assessment results have shown that these research-based materials are effective in helping students visualize this concept and give a pictorial idea of ``where the kinetic energy goes'' during inelastic collisions. The research and curriculum development was conducted in the context of the introductory calculus-based physics course. Investigations were carried out using common physics education research tools, including open-ended surveys, written test questions, and individual student interviews.

  4. Is physical exercise a multiple sclerosis disease modifying treatment?

    PubMed

    Motl, Robert W; Pilutti, Lara A

    2016-08-01

    There is consensus that exercise represents a behavioral approach for the restoration of function and management of symptoms among persons with multiple sclerosis (MS). The current paper provides a review on the topic of exercise and physical activity as MS-disease modifying treatments. Firstly, metrics for evaluating disease modification and progression in MS are described. Secondly, evidence for exercise as a MS-disease modifying therapy based on individual studies, literature reviews, and meta-analyses is summarized. Finally, the paper focuses on major limitations of the existing body of research. Expert commentary: Exercise and physical activity have been associated with reduced relapse rate, mobility disability and its progression, and lesion volume, and improved neuroperformance, particularly walking outcomes. This evidence provides a positive, yet preliminary, picture for exercise having possible effects on markers of disease modification and progression in MS.

  5. The polymer physics of single DNA confined in nanochannels.

    PubMed

    Dai, Liang; Renner, C Benjamin; Doyle, Patrick S

    2016-06-01

    In recent years, applications and experimental studies of DNA in nanochannels have stimulated the investigation of the polymer physics of DNA in confinement. Recent advances in the physics of confined polymers, using DNA as a model polymer, have moved beyond the classic Odijk theory for the strong confinement, and the classic blob theory for the weak confinement. In this review, we present the current understanding of the behaviors of confined polymers while briefly reviewing classic theories. Three aspects of confined DNA are presented: static, dynamic, and topological properties. The relevant simulation methods are also summarized. In addition, comparisons of confined DNA with DNA under tension and DNA in semidilute solution are made to emphasize universal behaviors. Finally, an outlook of the possible future research for confined DNA is given. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. The physics of pollinator attraction.

    PubMed

    Moyroud, Edwige; Glover, Beverley J

    2017-10-01

    Contents 350 I. 350 II. 350 III. 352 IV. 353 V. 353 353 References 354 SUMMARY: This Tansley Insight focuses on recent advances in our understanding of how flowers manipulate physical forces to attract animal pollinators and ensure reproductive success. Research has traditionally explored the role of chemical pigments and volatile organic compounds as cues for pollinators, but recent reports have demonstrated the importance of physical and structural means of pollinator attraction. Here we explore the role of petal microstructure in influencing floral light capture and optics, analysing colour, gloss and polarization effects. We discuss the interaction between flower, pollinator and gravity, and how petal surface structure can influence that interaction. Finally, we consider the role of electrostatic forces in pollen transfer and pollinator attraction. We conclude that this new interdisciplinary field is evolving rapidly. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. Physical, policy, and sociocultural characteristics of the primary school environment are positively associated with children's physical activity during class time.

    PubMed

    Martin, Karen; Bremner, Alexandra; Salmon, Jo; Rosenberg, Michael; Giles-Corti, Billie

    2014-03-01

    The objective of this study was to develop a multidomain model to identify key characteristics of the primary school environment associated with children's physical activity (PA) during class-time. Accelerometers were used to calculate time spent in moderate-to-vigorous physical activity during class-time (CMVPA) of 408 sixth-grade children (mean ± SD age 11.1 ± 0.43 years) attending 27 metropolitan primary schools in Perth Western Australia. Child and staff self-report instruments and a school physical environment scan administered by the research team were used to collect data about children and the class and school environments. Hierarchical modeling identified key variables associated with CMVPA. The final multilevel model explained 49% of CMVPA. A physically active physical education (PE) coordinator, fitness sessions incorporated into PE sessions and either a trained PE specialist, classroom teacher or nobody coordinating PE in the school, rather than the deputy principal, were associated with higher CMVPA. The amount of grassed area per student and sporting apparatus on grass were also associated with higher CMVPA. These results highlight the relevance of the school's sociocultural, policy and physical environments in supporting class-based PA. Interventions testing optimization of the school physical, sociocultural and policy environments to support physical activity are warranted.

  8. The Physical Fitness of Adolescents with Cerebral Palsy. Project UNIQUE II. Final Report.

    ERIC Educational Resources Information Center

    Winnick, Joseph P.; Short, Francis X.

    The final report describes a 2-year project of the State University of New York, College at Brockport, to study the physical fitness of nonretarded and retarded adolescents with cerebral palsy. The UNIQUE Physical Fitness Test was administered to 203 cerebral palsied adolescents throughout the United States and from segregated and nonsegregated…

  9. Experimental projects in graduate theoretical physics courses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosner, J.L.

    1996-10-01

    Some beginning graduate courses in physics at the University of Chicago have been taught with final projects in addition to or in place of written final examinations. Although these courses and many of the projects are theoretical, experimental projects have been encouraged, with some success. A few examples are discussed. {copyright} {ital 1996 American Association of Physics Teachers.}

  10. Taking evolution seriously in political science.

    PubMed

    Lewis, Orion; Steinmo, Sven

    2010-09-01

    In this essay, we explore the epistemological and ontological assumptions that have been made to make political science "scientific." We show how political science has generally adopted an ontologically reductionist philosophy of science derived from Newtonian physics and mechanics. This mechanical framework has encountered problems and constraints on its explanatory power, because an emphasis on equilibrium analysis is ill-suited for the study of political change. We outline the primary differences between an evolutionary ontology of social science and the physics-based philosophy commonly employed. Finally, we show how evolutionary thinking adds insight into the study of political phenomena and research questions that are of central importance to the field, such as preference formation.

  11. Tribology theory versus experiment

    NASA Technical Reports Server (NTRS)

    Ferrante, John

    1987-01-01

    Tribology, the study of friction and wear of materials, has achieved a new interest because of the need for energy conservation. Fundamental understanding of this field is very complex and requires a knowledge of solid-state physics, material science, chemistry, and mechanical engineering. This paper is meant to be didactic in nature and outlines some of the considerations needed for a tribology research program. The approach is first to present a simple model, a field emission tip in contact with a flat surface, in order to elucidate important considerations, such as contact area, mechanical deformations, and interfacial bonding. Then examples from illustrative experiments are presented. Finally, the current status of physical theories concerning interfacial bonding are presented.

  12. A framework to enhance security of physically unclonable functions using chaotic circuits

    NASA Astrophysics Data System (ADS)

    Chen, Lanxiang

    2018-05-01

    As a new technique for authentication and key generation, physically unclonable function (PUF) has attracted considerable attentions, with extensive research results achieved already. To resist the popular machine learning modeling attacks, a framework to enhance the security of PUFs is proposed. The basic idea is to combine PUFs with a chaotic system of which the response is highly sensitive to initial conditions. For this framework, a specific construction which combines the common arbiter PUF circuit, a converter, and the Chua's circuit is given to implement a more secure PUF. Simulation experiments are presented to further validate the framework. Finally, some practical suggestions for the framework and specific construction are also discussed.

  13. Optics and communication technology major of physics undergraduate degree at King Mongkut's Institute of Technology Ladkrabang

    NASA Astrophysics Data System (ADS)

    Buranasiri, Prathan

    2014-09-01

    A physics undergraduate degree major in optics and communication technology has been offered at King Mongkut's Institute of Technology Ladkrabang (KMITL), Bangkok, Thailand. There are nine required three credit hour courses including two laboratory courses plus a number of selections in optics and communication based technology courses. For independent thinking and industrial working skills, nine credit hours of research project, practical training or overseas studies are included for selection in the final semester. Students are encouraged to participate in international conferences and professional organizations. Recently the program, with support from SPIE and OSA, has organized its first international conference on photonic solutions 2013 (ICPS 2013).

  14. Tomographic phase microscopy: principles and applications in bioimaging [Invited

    PubMed Central

    Jin, Di; Zhou, Renjie; Yaqoob, Zahid; So, Peter T. C.

    2017-01-01

    Tomographic phase microscopy (TPM) is an emerging optical microscopic technique for bioimaging. TPM uses digital holographic measurements of complex scattered fields to reconstruct three-dimensional refractive index (RI) maps of cells with diffraction-limited resolution by solving inverse scattering problems. In this paper, we review the developments of TPM from the fundamental physics to its applications in bioimaging. We first provide a comprehensive description of the tomographic reconstruction physical models used in TPM. The RI map reconstruction algorithms and various regularization methods are discussed. Selected TPM applications for cellular imaging, particularly in hematology, are reviewed. Finally, we examine the limitations of current TPM systems, propose future solutions, and envision promising directions in biomedical research. PMID:29386746

  15. A New Direction for NASA Materials Science Research Using the International Space Station

    NASA Technical Reports Server (NTRS)

    Schlagheck, Ronald; Trach, Brian; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    NASA recently created a fifth Strategic Enterprise, the Office of Biological and Physical Research (OBPR), to bring together physics, chemistry, biology, and engineering to foster interdisciplinary research. The Materials Science Program is one of five Microgravity Research disciplines within this new enterprise's Division of Physical Sciences Research. The Materials Science Program will participate within this new enterprise structure in order to facilitate effective use of ISS facilities, target scientific and technology questions and transfer scientific and technology results for Earth benefits. The Materials Science research will use a low gravity environment for flight and ground-based research in crystallization, fundamental processing, properties characterization, and biomaterials in order to obtain fundamental understanding of various phenomena effects and relationships to the structures, processing, and properties of materials. Completion of the International Space Station's (ISS) first major assembly, during the past year, provides new opportunities for on-orbit research and scientific utilization. Accommodations will support a variety of Materials Science payload hardware both in the US and international partner modules with emphasis on early use of Express Rack and Glovebox facilities. This paper addresses the current scope of the flight investigator program. These investigators will use the various capabilities of the ISS to achieve their research objectives. The type of research and classification of materials being studied will be addressed. This includes the recent emphasis being placed on nanomaterials and biomaterials type research. Materials Science Program will pursue a new, interdisciplinary approach, which contributes, to Human Space Flight Exploration research. The Materials Science Research Facility (MSRF) and other related American and International experiment modules will serve as the foundation for this research. Discussion will be included to explain the changing concept for materials science research processing capabilities aboard the ISS along with the various ground facilities necessary to support the program. Finally, the paper will address the initial utilization schedule and strategy for the various materials science payloads including their corresponding hardware.

  16. A patient-centered research agenda for the care of the acutely ill older patient.

    PubMed

    Wald, Heidi L; Leykum, Luci K; Mattison, Melissa L P; Vasilevskis, Eduard E; Meltzer, David O

    2015-05-01

    Hospitalists and others acute-care providers are limited by gaps in evidence addressing the needs of the acutely ill older adult population. The Society of Hospital Medicine sponsored the Acute Care of Older Patients Priority Setting Partnership to develop a research agenda focused on bridging this gap. Informed by the Patient-Centered Outcomes Research Institute framework for identification and prioritization of research areas, we adapted a methodology developed by the James Lind Alliance to engage diverse stakeholders in the research agenda setting process. The work of the Partnership proceeded through 4 steps: convening, consulting, collating, and prioritizing. First, the steering committee convened a partnership of 18 stakeholder organizations in May 2013. Next, stakeholder organizations surveyed members to identify important unanswered questions in the acute care of older persons, receiving 1299 responses from 580 individuals. Finally, an extensive and structured process of collation and prioritization resulted in a final list of 10 research questions in the following areas: advanced-care planning, care transitions, delirium, dementia, depression, medications, models of care, physical function, surgery, and training. With the changing demographics of the hospitalized population, a workforce with limited geriatrics training, and gaps in evidence to inform clinical decision making for acutely ill older patients, the identified research questions deserve the highest priority in directing future research efforts to improve care for the older hospitalized patient and enrich training. © 2015 Society of Hospital Medicine.

  17. The Colorado Plateau: cultural, biological, and physical research

    USGS Publications Warehouse

    Cole, Kenneth L.; van Riper, Charles

    2004-01-01

    Stretching from the four corners of Arizona, New Mexico, Colorado, and Utah, the Colorado Plateau is a natural laboratory for a wide range of studies. This volume presents 23 original articles drawn from more than 100 research projects presented at the Sixth Biennial Conference of Research on the Colorado Plateau. This scientific gathering revolved around research, inventory, and monitoring of lands in the region. The book's contents cover management techniques for cultural, biological, and physical resources, representing collaborative efforts among federal, university, and private sector scientists and land managers. Chapters on cultural concerns cover benchmarks of modern southwestern anthropological knowledge, models of past human activity and impact of modern visitation at newly established national monuments, challenges in implementing the 1964 Wilderness Act, and opportunities for increased federal research on Native American lands. The section on biological resources comprises sixteen chapters, with coverage that ranges from mammalian biogeography to responses of elk at the urban-wildland interface. Additional biological studies include the effects of fire and grazing on vegetation; research on bald eagles at Grand Canyon and tracking wild turkeys using radio collars; and management of palentological resources. Two final chapters on physical resources consider a proposed rerouting of the Rio de Flag River in urban Flagstaff, Arizona, and an examination of past climate patterns over the Plateau, using stream flow records and tree ring data. In light of similarities in habitat and climate across the Colorado Plateau, techniques useful to particular management units have been found to be applicable in many locations. This volume highlights an abundance of research that will prove useful for all of those working in the region, as well as for others seeking comparative studies that integrate research into land management actions.

  18. Determinants of diet and physical activity (DEDIPAC): a summary of findings.

    PubMed

    Brug, Johannes; van der Ploeg, Hidde P; Loyen, Anne; Ahrens, Wolfgang; Allais, Oliver; Andersen, Lene F; Cardon, Greet; Capranica, Laura; Chastin, Sebastien; De Bourdeaudhuij, Ilse; De Craemer, Marieke; Donnelly, Alan; Ekelund, Ulf; Finglas, Paul; Flechtner-Mors, Marion; Hebestreit, Antje; Kubiak, Thomas; Lanza, Massimo; Lien, Nanna; MacDonncha, Ciaran; Mazzocchi, Mario; Monsivais, Pablo; Murphy, Marie; Nicolaou, Mary; Nöthlings, Ute; O'Gorman, Donal J; Renner, Britta; Roos, Gun; van den Berg, Matthijs; Schulze, Matthias B; Steinacker, Jürgen M; Stronks, Karien; Volkert, Dorothee; Lakerveld, Jeroen

    2017-11-03

    The establishment of the Determinants of Diet and Physical Activity (DEDIPAC) Knowledge Hub, 2013-2016, was the first action taken by the 'Healthy Diet for a Healthy Life' European Joint Programming Initiative. DEDIPAC aimed to provide better insight into the determinants of diet, physical activity and sedentary behaviour across the life course, i.e. insight into the causes of the causes of important, non-communicable diseases across Europe and beyond. DEDIPAC was launched in late 2013, and delivered its final report in late 2016. In this paper we give an overview of what was achieved in terms of furthering measurement and monitoring, providing overviews of the state-of-the-art in the field, and building toolboxes for further research and practice. Additionally, we propose some of the next steps that are now required to move forward in this field, arguing in favour of 1) sustaining the Knowledge Hub and developing it into a European virtual research institute and knowledge centre for determinants of behavioural nutrition and physical activity with close links to other parts of the world; 2) establishing a cohort study of families across all regions of Europe focusing specifically on the individual and contextual determinants of major, non-communicable disease; and 3) furthering DEDIPAC's work on nutrition, physical activity, and sedentary behaviour policy evaluation and benchmarking across Europe by aligning with other international initiatives and by supporting harmonisation of pan-European surveillance.

  19. Exercise for adults with fibromyalgia: an umbrella systematic review with synthesis of best evidence.

    PubMed

    Bidonde, Julia; Busch, Angela Jean; Bath, Brenna; Milosavljevic, Stephan

    2014-01-01

    The objective of this umbrella systematic review was to identify, evaluate, and synthesize systematic reviews of physical activity interventions for adults with fibromyalgia (FM) focussing on four outcomes: pain, multidimensional function (wellness or quality of life), physical function (self-reported physical function or measured physical fitness) and adverse effects. A further objective was to link these outcomes with details of the interventions so as to guide and shape future practice and research. Electronic databases including Medline, EMBASE, CINAHL, AMED, the Cochrane Library, and DARE, were searched for the January 1(st) 2007 to March 31(st) 2013 period. Nine systematic reviews (60 RCTs with 3816 participants) were included. Meta-analysis was not conducted due to the heterogeneity of the sample. We found positive results of diverse exercise interventions on pain, multidimensional function, and self-reported physical function, and no supporting evidence for new (to FM) interventions (i.e., qigong, tai chi). There were no serious adverse effects reported. The variability of the interventions in the reviews prevented us from answering important clinical questions to guide practical decisions about optimal modes or dosages (i.e., frequency, intensity, duration). Finally, the number of review articles is proliferating, leading researchers and reviewers to consider the rigor and quality of the information being reviewed. As well, consumers of these reviews (i.e., clinicians, individuals with FM) should not rely on them without careful consideration.

  20. Can We Practically Bring Physics-based Modeling Into Operational Analytics Tools?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granderson, Jessica; Bonvini, Marco; Piette, Mary Ann

    We present that analytics software is increasingly used to improve and maintain operational efficiency in commercial buildings. Energy managers, owners, and operators are using a diversity of commercial offerings often referred to as Energy Information Systems, Fault Detection and Diagnostic (FDD) systems, or more broadly Energy Management and Information Systems, to cost-effectively enable savings on the order of ten to twenty percent. Most of these systems use data from meters and sensors, with rule-based and/or data-driven models to characterize system and building behavior. In contrast, physics-based modeling uses first-principles and engineering models (e.g., efficiency curves) to characterize system and buildingmore » behavior. Historically, these physics-based approaches have been used in the design phase of the building life cycle or in retrofit analyses. Researchers have begun exploring the benefits of integrating physics-based models with operational data analytics tools, bridging the gap between design and operations. In this paper, we detail the development and operator use of a software tool that uses hybrid data-driven and physics-based approaches to cooling plant FDD and optimization. Specifically, we describe the system architecture, models, and FDD and optimization algorithms; advantages and disadvantages with respect to purely data-driven approaches; and practical implications for scaling and replicating these techniques. Finally, we conclude with an evaluation of the future potential for such tools and future research opportunities.« less

  1. Promoting physical therapists’ of research evidence to inform clinical practice: part 1 - theoretical foundation, evidence, and description of the PEAK program

    PubMed Central

    2014-01-01

    Background There is a need for theoretically grounded and evidence-based interventions that enhance the use of research evidence in physical therapist practice. This paper and its companion paper introduce the Physical therapist-driven Education for Actionable Knowledge translation (PEAK) program, an educational program designed to promote physical therapists’ integration of research evidence into clinical decision-making. The pedagogical foundations for the PEAK educational program include Albert Bandura’s social cognitive theory and Malcolm Knowles’s adult learning theory. Additionally, two complementary frameworks of knowledge translation, the Promoting Action on Research Implementation in Health Services (PARiHS) and Knowledge to Action (KTA) Cycle, were used to inform the organizational elements of the program. Finally, the program design was influenced by evidence from previous attempts to facilitate the use of research in practice at the individual and organizational levels. Discussion The 6-month PEAK program consisted of four consecutive and interdependent components. First, leadership support was secured and electronic resources were acquired and distributed to participants. Next, a two-day training workshop consisting of didactic and small group activities was conducted that addressed the five steps of evidence based practice. For five months following the workshop, participants worked in small groups to review and synthesize literature around a group-selected area of common clinical interest. Each group contributed to the generation of a “Best Practices List” - a list of locally generated, evidence-based, actionable behaviors relevant to the groups’ clinical practice. Ultimately, participants agreed to implement the Best Practices List in their clinical practice. Summary This, first of two companion papers, describes the underlying pedagogical theories, knowledge translation frameworks, and research evidence used to derive the PEAK program – an educational program designed to promote the use of research evidence to inform physical therapist practice. The four components of the program are described in detail. The companion paper reports the results of a mixed methods feasibility analysis of this complex educational intervention. PMID:24965501

  2. Self-Regulation in the Midst of Complexity: A Case Study of High School Physics Students Engaged in Ill-Structured Problem Solving

    NASA Astrophysics Data System (ADS)

    Milbourne, Jeffrey David

    The purpose of this dissertation study was to explore the experiences of high school physics students who were solving complex, ill-structured problems, in an effort to better understand how self-regulatory behavior mediated the project experience. Consistent with Voss, Green, Post, and Penner's (1983) conception of an ill-structured problem in the natural sciences, the 'problems' consisted of scientific research projects that students completed under the supervision of a faculty mentor. Zimmerman and Campillo's (2003) self-regulatory framework of problem solving provided a holistic guide to data collection and analysis of this multi-case study, with five individual student cases. The study's results are explored in two manuscripts, each targeting a different audience. The first manuscript, intended for the Science Education Research community, presents a thick, rich description of the students' project experiences, consistent with a qualitative, case study analysis. Findings suggest that intrinsic interest was an important self-regulatory factor that helped motivate students throughout their project work, and that the self-regulatory cycle of forethought, performance monitoring, and self-reflection was an important component of the problem-solving process. Findings also support the application of Zimmerman and Campillo's framework to complex, ill-structured problems, particularly the cyclical nature of the framework. Finally, this study suggests that scientific research projects, with the appropriate support, can be a mechanism for improving students' selfregulatory behavior. The second manuscript, intended for Physics practitioners, combines the findings of the first manuscript with the perspectives of the primary, on-site research mentor, who has over a decade's worth of experience mentoring students doing physics research. His experience suggests that a successful research experience requires certain characteristics, including: a slow, 'on-ramp' to the research experience, space to experience productive failure, and an opportunity to enjoy the work they are doing.

  3. Calibration and validation of wearable monitors.

    PubMed

    Bassett, David R; Rowlands, Alex; Trost, Stewart G

    2012-01-01

    Wearable monitors are increasingly being used to objectively monitor physical activity in research studies within the field of exercise science. Calibration and validation of these devices are vital to obtaining accurate data. This article is aimed primarily at the physical activity measurement specialist, although the end user who is conducting studies with these devices also may benefit from knowing about this topic. Initially, wearable physical activity monitors should undergo unit calibration to ensure interinstrument reliability. The next step is to simultaneously collect both raw signal data (e.g., acceleration) from the wearable monitors and rates of energy expenditure, so that algorithms can be developed to convert the direct signals into energy expenditure. This process should use multiple wearable monitors and a large and diverse subject group and should include a wide range of physical activities commonly performed in daily life (from sedentary to vigorous). New methods of calibration now use "pattern recognition" approaches to train the algorithms on various activities, and they provide estimates of energy expenditure that are much better than those previously available with the single-regression approach. Once a method of predicting energy expenditure has been established, the next step is to examine its predictive accuracy by cross-validating it in other populations. In this article, we attempt to summarize the best practices for calibration and validation of wearable physical activity monitors. Finally, we conclude with some ideas for future research ideas that will move the field of physical activity measurement forward.

  4. A Mobile Phone App to Stimulate Daily Physical Activity in Patients with Chronic Obstructive Pulmonary Disease: Development, Feasibility, and Pilot Studies

    PubMed Central

    2016-01-01

    Background Patients with chronic obstructive pulmonary disease (COPD) demonstrate reduced levels of daily physical activity (DPA) compared to healthy controls. This results in a higher risk of hospital admission and shorter survival. Performing regular DPA reduces these risks. Objective To develop an eHealth intervention that will support patients with COPD to improve or maintain their DPA after pulmonary rehabilitation. Methods The design process consisted of literature research and the iterative developing and piloting phases of the Medical Research Council (MRC) model for complex clinical interventions and the involvement of end users. Participants were healthy adults and persons with COPD. Results The mobile phone interface met all the set requirements. Participants found that the app was stimulating and that reaching their DPA goals was rewarding. The mean (SD) scores on a 7-point scale for usability, ease of use, ease of learning, and contentment were 3.8 (1.8), 5.1 (1.1), 6.0 (1.6), and 4.8 (1.3), respectively. The mean (SD) correlation between the mobile phone and a validated accelerometer was 0.88 (0.12) in the final test. The idea of providing their health care professional with their DPA data caused no privacy issues in the participants. Battery life lasted for an entire day with the final version, and readability and comprehensibility of text and colors were favorable. Conclusions By employing a user-centered design approach, a mobile phone was found to be an adequate and feasible interface for an eHealth intervention. The mobile phone and app are easy to learn and use by patients with COPD. In the final test, the accuracy of the DPA measurement was good. The final version of the eHealth intervention is presently being tested by our group for efficacy in a randomized controlled trial in COPD patients. PMID:26813682

  5. Variable Stars as an Introduction to Computational Research

    NASA Astrophysics Data System (ADS)

    Cash, Jennifer; Walter, Donald K.

    2017-01-01

    As a part of larger effort to enhance the research activity at SC State and involve more undergraduates in research activities, we present our efforts to develop an introductory research experience where the goal is a balance of astrophysical understanding, general research skills, and programming skills which the students can carry into a wide variety of future research activities. We have found that variable stars are a very good topic for this sort of introductory experience due to a combination of factors including: accessibility of data, easily understandable physical processes, and a relatively straight forward data analysis process. We will present an outline of our research experiences to guide a student from the very initial stages of learning to final presentation of the student's work.“This work was supported in part by NSF PAARE award AST-1358913 and NSF HBCU-UP award HRD-1332449 to SCSU.”

  6. 75 FR 32972 - Office of New Reactors: Notice of Availability of the Final Staff Guidance; Section 14.3.12 on...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-10

    ... the Final Staff Guidance; Section 14.3.12 on Physical Security Hardware Inspections, Tests, Analyses...: The NRC is issuing its Final Revision 1 to NUREG-0800, ``Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants,'' Section 14.3.12 on ``Physical Security Hardware...

  7. 75 FR 68009 - Office of New Reactors; Notice of Availability of the Final Staff Guidance Standard Review Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... the Final Staff Guidance Standard Review Plan Section 13.6.3, Revision 1 on Physical Security--Early... NRC is issuing its Final Revision 1 to NUREG-0800, ``Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants,'' Section 13.6.3, Revision 1 on Physical Security...

  8. 75 FR 68009 - Office of New Reactors; Notice of Availability of the Final Staff Guidance Standard Review Plan...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-04

    ... the Final Staff Guidance Standard Review Plan Section 13.6.2, Revision 1 on Physical Security--Design... issuing its Final Revision 1 to NUREG-0800, ``Standard Review Plan (SRP) for the Review of Safety Analysis Reports for Nuclear Power Plants,'' Section 13.6.2, Revision 1 on Physical Security--Design Certification...

  9. Relationships between Physical Activity Levels, Self-Identity, Body Dissatisfaction and Motivation among Spanish High School Students

    PubMed Central

    Sánchez-Miguel, Pedro Antonio; Leo, Francisco Miguel; Amado, Diana; Pulido, Juan José; Sánchez-Oliva, David

    2017-01-01

    Abstract The aim of this study was to examine the relationships between gender and the educational grade on the one hand, and physical activity levels, motivation, self-identity, body dissatisfaction, the intention to be physically active and daily sitting time on the other, in a sample of Spanish high school adolescents. The sample consisted of 2087 Spanish students from the 3rd (n = 1141) and 4th grade (n = 946), both male (n = 1046) and female (n = 1041), ranging in age from 15 to 17 years old (M = 15.42; SD = .86). Students completed questionnaires to assess their levels of physical activity, self-identity, motivation, intention to be physically active and daily sitting time. The students’ perceptions of their body height and mass were also tested. With the exception of walking MET values, the results showed gender differences in the variables tested. Male participants showed higher intrinsic motivation and lower amotivation than female participants. Furthermore, male students revealed higher levels of physical activity than female students. Finally, the research concluded with the importance of promoting intrinsic reasons for physical activity in order to encourage positive consequences in high school students. PMID:29134046

  10. Relationships between Physical Activity Levels, Self-Identity, Body Dissatisfaction and Motivation among Spanish High School Students.

    PubMed

    Sánchez-Miguel, Pedro Antonio; Leo, Francisco Miguel; Amado, Diana; Pulido, Juan José; Sánchez-Oliva, David

    2017-10-01

    The aim of this study was to examine the relationships between gender and the educational grade on the one hand, and physical activity levels, motivation, self-identity, body dissatisfaction, the intention to be physically active and daily sitting time on the other, in a sample of Spanish high school adolescents. The sample consisted of 2087 Spanish students from the 3rd (n = 1141) and 4th grade (n = 946), both male (n = 1046) and female (n = 1041), ranging in age from 15 to 17 years old (M = 15.42; SD = .86). Students completed questionnaires to assess their levels of physical activity, self-identity, motivation, intention to be physically active and daily sitting time. The students' perceptions of their body height and mass were also tested. With the exception of walking MET values, the results showed gender differences in the variables tested. Male participants showed higher intrinsic motivation and lower amotivation than female participants. Furthermore, male students revealed higher levels of physical activity than female students. Finally, the research concluded with the importance of promoting intrinsic reasons for physical activity in order to encourage positive consequences in high school students.

  11. An IYPT-based undergraduate physics tournament in China

    NASA Astrophysics Data System (ADS)

    Li, Chuanyong; Song, Feng; Liu, Yubin; Sun, Qian

    2013-03-01

    International Young Physicists' Tournament (IYPT) is a team-oriented scientific competition of secondary school students. The participants present their solutions to scientific problems they have prepared over several months and discuss their solutions with other teams. It can also be implemented in university level as its physics problems are all open questions and have no standard answers, especially suitable for undergraduates' ability training in China. The annual tournament of physics learning of undergraduates in our school of physics was started in 2008. Each year, there are 15-18 teams, 20 more student volunteers and 30 more faculty jurors involved. The students benefited in different ways. It is project-based, requiring students to solve the problems in a research way. Team work is developed in both experimenting and discussing stages. The knowledge learned in classrooms can be used to solve these practical and life-related problems, raising their interest and initiative in physics learning. Finally, they are building up their skills in scientific presentation and communication. An IYPT-based program called CUPT (China undergraduate physics tournament) was launched in 2010 and annually attracts about 40 universities to attend. It gains its important role in physics education. National Fund for Talent Training in Basic Sciences (J1103208)

  12. Influence of the impact energy on the pattern of blood drip stains

    NASA Astrophysics Data System (ADS)

    Smith, F. R.; Nicloux, C.; Brutin, D.

    2018-01-01

    The maximum spreading diameter of complex fluid droplets has been extensively studied and explained by numerous physical models. This research focuses therefore on a different aspect, the bulging outer rim observed after evaporation on the final dried pattern of blood droplets. A correlation is found between the inner diameter, the maximum outer diameter, and the impact speed. This shows how the drying mechanism of a blood drip stain is influenced by the impact energy, which induces a larger spreading diameter and thus a different redistribution of red blood cells inside the droplet. An empirical relation is established between the final dried pattern of a passive bloodstain and its impact speed, yielding a possible forensic application. Indeed, being able to relate accurately the energy of the drop with its final pattern would give a clue to investigators, as currently no such simple and accurate tool exists.

  13. Research in Neutrino Physics and Particle Astrophysics: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kearns, Edward

    The Boston University Neutrino Physics and Particle Astrophysics Group investigates the fundamental laws of particle physics using natural and man-made neutrinos and rare processes such as proton decay. The primary instrument for this research is the massive Super-Kamiokande (SK) water Cherenkov detector, operating since 1996 at the Kamioka Neutrino Observatory, one kilometer underground in a mine in Japan. We study atmospheric neutrinos from cosmic rays, which were first used to discover that neutrinos have mass, as recognized by the 2015 Nobel Prize in Physics. Our latest measurements with atmospheric neutrinos are giving valuable information, complementary to longbaseline experiments, on themore » ordering of massive neutrino states and as to whether neutrinos violate CP symmetry. We have studied a variety of proton decay modes, including the most frequently predicted modes such as p → e +π 0 and p → ν K +, as well as more exotic baryon number violating processes such as dinucleon decay and neutronantineutron oscillation. We search for neutrinos from dark matter annihilation or decay in the universe. Our group has made significant contributions to detector operation, particularly in the area of electronics. Most recently, we have contributed to planning for an upgrade to the SK detector by the addition of gadolinium to the water, which will enable efficient neutron capture detection.« less

  14. Do evidence-based active-engagement courses reduce the gender gap in introductory physics?

    NASA Astrophysics Data System (ADS)

    Karim, Nafis I.; Maries, Alexandru; Singh, Chandralekha

    2018-03-01

    Prior research suggests that using evidence-based pedagogies can not only improve learning for all students, it can also reduce the gender gap. We describe the impact of physics education research-based pedagogical techniques in flipped and active-engagement non-flipped courses on the gender gap observed with validated conceptual surveys. We compare male and female students’ performance in courses which make significant use of evidence-based active-engagement (EBAE) strategies with courses that primarily use lecture-based (LB) instruction. All courses had large enrolment and often had more than 100 students. The analysis of data for validated conceptual surveys presented here includes data from two-semester sequences of algebra-based and calculus-based introductory physics courses. The conceptual surveys used to assess student learning in the first and second semester courses were the force concept inventory and the conceptual survey of electricity and magnetism, respectively. In the research discussed here, the performance of male and female students in EBAE courses at a particular level is compared with LB courses in two situations: (I) the same instructor taught two courses, one of which was an EBAE course and the other an LB course, while the homework, recitations and final exams were kept the same; (II) student performance in all of the EBAE courses taught by different instructors was averaged and compared with LB courses of the same type also averaged over different instructors. In all cases, on conceptual surveys we find that students in courses which make significant use of active-engagement strategies, on average, outperformed students in courses of the same type using primarily lecture-based instruction even though there was no statistically significant difference on the pre-test before instruction. However, the gender gap persisted even in courses using EBAE methods. We also discuss correlations between the performance of male and female students on the validated conceptual surveys and the final exam, which had a heavy weight on quantitative problem solving.

  15. Qualitative Development of a Discrete Choice Experiment for Physical Activity Interventions to Improve Knee Osteoarthritis.

    PubMed

    Pinto, Daniel; Danilovich, Margaret K; Hansen, Paul; Finn, Daniel J; Chang, Rowland W; Holl, Jane L; Heinemann, Allen W; Bockenholt, Ulf

    2017-06-01

    To describe the qualitative process used to develop attributes and attribute levels for inclusion in a discrete choice experiments (DCE) for older adult physical activity interventions. Five focus groups (n=41) were conducted, grounded in the Health Action Process Approach framework. Discussion emphasized identification and prioritization attributes for a DCE on physical activity. Semi-structured interviews (n=6) investigated attribute levels and lay-language for the DCE. A focus group with physical activity researchers and health care providers was the final stakeholder group used to establish a comprehensive approach for the generation of attributes and levels. A DCE pilot test (n=8) was then conducted with individuals of the target patient population. All transcripts were analyzed using a constant comparative approach. General community and university-based research setting. Volunteers (N=55) aged >45 years with knee pain, aches, or stiffness for at least 1 month over the previous 12 months. Not applicable. Interview guides, attributes, attribute levels, and discrete choice experiment. The most influential identified attributes for physical activity were time, effort, cost, convenience, enjoyment, and health benefits. Each attribute had 3 levels that were understandable in the pilot test of the DCE. The identification of 6 physical activity attributes that are most salient to adults with knee osteoarthritis resulted from a systematic qualitative process, including attribute-ranking exercises. A DCE will provide insight into the relative importance of these attributes for participating in physical activity, which can guide intervention development. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  16. The Impact of the Pre-Instructional Cognitive Profile on Learning Gain and Final Exam of Physics Courses: A Case Study

    ERIC Educational Resources Information Center

    Capizzo, Maria Concetta; Nuzzo, Silvana; Zarcone, Michelangelo

    2006-01-01

    The case study described in this paper investigates the relationship among some pre-instructional knowledge, the learning gain and the final physics performance of computing engineering students in the introductory physics course. The results of the entrance engineering test (EET) have been used as a measurement of reading comprehension, logic and…

  17. Project on Academic Striving: The Moderation of Stress in the Lives of the Students of an Urban Intermediate School. A Project to Coordinate Research and Environmental Intervention. Final Report. Executive Summary.

    ERIC Educational Resources Information Center

    Grannis, Joseph C.; Fahs, Mary Ellen

    This document summarizes the evaluation of a project that studied social, physical, and academic stress in the lives of students in an inner-city intermediate school and developed interventions to reduce that stress. Over 242 students, most of whom were from low-income families and almost all of whom were black, participated in the project. The…

  18. A Guide to the Computerized Medical Data Resources of the Naval Health Research Center.

    DTIC Science & Technology

    1987-04-09

    Selection Test Score o Mental group o Education certificate o SCREEN Score The GCT Score is designed to measure ability to understand verbal relationships...available on some members before that date. For female members this field will contain Armed Forces Women’s Selection Test Scores. Norms provided for 16...the Board are recorded in this file. Finally, disposition by the Board is indicated. Physical Evaluation Board File. Selected data elements in the

  19. Integration Process for Payloads in the Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    Free, James M.; Nall, Marsha M.

    2001-01-01

    The Fluids and Combustion Facility (FCF) is an ISS research facility located in the United States Laboratory (US Lab), Destiny. The FCF is a multi-discipline facility that performs microgravity research primarily in fluids physics science and combustion science. This facility remains on-orbit and provides accommodations to multi-user and Principal investigator (PI) unique hardware. The FCF is designed to accommodate 15 PI's per year. In order to allow for this number of payloads per year, the FCF has developed an end-to-end analytical and physical integration process. The process includes provision of integration tools, products and interface management throughout the life of the payload. The payload is provided with a single point of contact from the facility and works with that interface from PI selection through post flight processing. The process utilizes electronic tools for creation of interface documents/agreements, storage of payload data and rollup for facility submittals to ISS. Additionally, the process provides integration to and testing with flight-like simulators prior to payload delivery to KSC. These simulators allow the payload to test in the flight configuration and perform final facility interface and science verifications. The process also provides for support to the payload from the FCF through the Payload Safety Review Panel (PSRP). Finally, the process includes support in the development of operational products and the operation of the payload on-orbit.

  20. Semiconductor Characterization: from Growth to Manufacturing

    NASA Astrophysics Data System (ADS)

    Colombo, Luigi

    The successful growth and/or deposition of materials for any application require basic understanding of the materials physics for a given device. At the beginning, the first and most obvious characterization tool is visual observation; this is particularly true for single crystal growth. The characterization tools are usually prioritized in order of ease of measurement, and have become especially sophisticated as we have moved from the characterization of macroscopic crystals and films to atomically thin materials and nanostructures. While a lot attention is devoted to characterization and understanding of materials physics at the nano level, the characterization of single crystals as substrates or active components is still critically important. In this presentation, I will review and discuss the basic materials characterization techniques used to get to the materials physics to bring crystals and thin films from research to manufacturing in the fields of infrared detection, non-volatile memories, and transistors. Finally I will present and discuss metrology techniques used to understand the physics and chemistry of atomically thin two-dimensional materials for future device applications.

  1. The effect of physical height on workplace success and income: preliminary test of a theoretical model.

    PubMed

    Judge, Timothy A; Cable, Daniel M

    2004-06-01

    In this article, the authors propose a theoretical model of the relationship between physical height and career success. We then test several linkages in the model based on a meta-analysis of the literature, with results indicating that physical height is significantly related to measures of social esteem (rho =.41), leader emergence (rho =.24), and performance (rho =.18). Height was somewhat more strongly related to success for men (rho =.29) than for women (rho =.21), although this difference was not significant. Finally, given that almost no research has examined the relationship between individuals' physical height and their incomes, we present four large-sample studies (total N = 8,590) showing that height is positively related to income (beta =.26) after controlling for sex, age, and weight. Overall, this article presents the most comprehensive analysis of the relationship of height to workplace success to date, and the results suggest that tall individuals have advantages in several important aspects of their careers and organizational lives. (c) 2004 APA

  2. Physics and the role of mind

    NASA Astrophysics Data System (ADS)

    Klein, Stanley A.; Cochran, Christopher

    2017-05-01

    This paper explores the role of the mind in the physical world. We begin with a brief introduction to distinct types of retrocausal phenomena connected with parapsychology and physics. We provide an introduction to laws of quantum mechanics (QM) that lead some to surmise connections between QM and psychic phenomena (psi). Next, we present our argument that verification of psi will require changes to QM. As a possible placeholder for these changes we introduce "Mind", from Cartesian dualism. This area of research points the way to connections between two fundamental issues in science: the mind-matter hard problem and the measurement problem of QM. Positive outcomes of carefully executed experiments could demonstrate a close relationship between these two problems, including the possibility that sentience plays an important role in the fundamental laws of physics. We focus on a version of Daryl Bem's seeing the future experiments, which should allow for discrimination between various interpretations of QM. Finally, although the authors are psi skeptics, we suggest methodologies that may enable psi phenomena to be acceptable to mainstream science.

  3. A Review of Activity Trackers for Senior Citizens: Research Perspectives, Commercial Landscape and the Role of the Insurance Industry.

    PubMed

    Tedesco, Salvatore; Barton, John; O'Flynn, Brendan

    2017-06-03

    The objective assessment of physical activity levels through wearable inertial-based motion detectors for the automatic, continuous and long-term monitoring of people in free-living environments is a well-known research area in the literature. However, their application to older adults can present particular constraints. This paper reviews the adoption of wearable devices in senior citizens by describing various researches for monitoring physical activity indicators, such as energy expenditure, posture transitions, activity classification, fall detection and prediction, gait and balance analysis, also by adopting consumer-grade fitness trackers with the associated limitations regarding acceptability. This review also describes and compares existing commercial products encompassing activity trackers tailored for older adults, thus providing a comprehensive outlook of the status of commercially available motion tracking systems. Finally, the impact of wearable devices on life and health insurance companies, with a description of the potential benefits for the industry and the wearables market, was analyzed as an example of the potential emerging market drivers for such technology in the future.

  4. The NWRA Classification Infrastructure: description and extension to the Discriminant Analysis Flare Forecasting System (DAFFS)

    NASA Astrophysics Data System (ADS)

    Leka, K. D.; Barnes, Graham; Wagner, Eric

    2018-04-01

    A classification infrastructure built upon Discriminant Analysis (DA) has been developed at NorthWest Research Associates for examining the statistical differences between samples of two known populations. Originating to examine the physical differences between flare-quiet and flare-imminent solar active regions, we describe herein some details of the infrastructure including: parametrization of large datasets, schemes for handling "null" and "bad" data in multi-parameter analysis, application of non-parametric multi-dimensional DA, an extension through Bayes' theorem to probabilistic classification, and methods invoked for evaluating classifier success. The classifier infrastructure is applicable to a wide range of scientific questions in solar physics. We demonstrate its application to the question of distinguishing flare-imminent from flare-quiet solar active regions, updating results from the original publications that were based on different data and much smaller sample sizes. Finally, as a demonstration of "Research to Operations" efforts in the space-weather forecasting context, we present the Discriminant Analysis Flare Forecasting System (DAFFS), a near-real-time operationally-running solar flare forecasting tool that was developed from the research-directed infrastructure.

  5. Exploring the differences between pet and non-pet owners: Implications for human-animal interaction research and policy

    PubMed Central

    Saunders, Jessica; Parast, Layla; Babey, Susan H.; Miles, Jeremy V.

    2017-01-01

    There is conflicting evidence about whether living with pets results in better mental and physical health outcomes, with the majority of the empirical research evidence being inconclusive due to methodological limitations. We briefly review the research evidence, including the hypothesized mechanisms through which pet ownership may influence health outcomes. This study examines how pet and non-pet owners differ across a variety of socio-demographic and health measures, which has implications for the proper interpretation of a large number of correlational studies that attempt to draw causal attributions. We use a large, population-based survey from California administered in 2003 (n = 42,044) and find that pet owners and non-pet owners differ across many traits, including gender, age, race/ethnicity, living arrangements, and income. We include a discussion about how the factors associated with the selection into the pet ownership group are related to a range of mental and physical health outcomes. Finally, we provide guidance on how to properly model the effects of pet ownership on health to accurately estimate this relationship in the general population. PMID:28644848

  6. A Review of Activity Trackers for Senior Citizens: Research Perspectives, Commercial Landscape and the Role of the Insurance Industry

    PubMed Central

    Tedesco, Salvatore; Barton, John; O’Flynn, Brendan

    2017-01-01

    The objective assessment of physical activity levels through wearable inertial-based motion detectors for the automatic, continuous and long-term monitoring of people in free-living environments is a well-known research area in the literature. However, their application to older adults can present particular constraints. This paper reviews the adoption of wearable devices in senior citizens by describing various researches for monitoring physical activity indicators, such as energy expenditure, posture transitions, activity classification, fall detection and prediction, gait and balance analysis, also by adopting consumer-grade fitness trackers with the associated limitations regarding acceptability. This review also describes and compares existing commercial products encompassing activity trackers tailored for older adults, thus providing a comprehensive outlook of the status of commercially available motion tracking systems. Finally, the impact of wearable devices on life and health insurance companies, with a description of the potential benefits for the industry and the wearables market, was analyzed as an example of the potential emerging market drivers for such technology in the future. PMID:28587188

  7. Physics of magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.

    1993-01-01

    The central ideas of this grant are that the magnetospheric boundary layers link disparate regions of the magnetosphere together, and the global behavior of the magnetosphere can be understood only by understanding the linking mechanisms. Accordingly the present grant includes simultaneous research on the global, meso-, and micro-scale physics of the magnetosphere and its boundary layers. These boundary layers include the bow shock, magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical and simulation projects have been performed on these subjects, as well as comparison of theoretical results with observational data. Very good progress has been made, with four papers published or in press and two additional papers submitted for publication during the six month period 1 June - 30 November 1993. At least two projects are currently being written up. In addition, members of the group have given papers at scientific meetings. The further structure of this report is as follows: section two contains brief accounts of research completed during the last six months, while section three describes the research projects intended for the grant's final period.

  8. STEM contents in pre-service teacher curriculum: Case study at physics faculty

    NASA Astrophysics Data System (ADS)

    Linh, Nguyen Quang; Suong, Huynh Thi Hong; Khoa, Cao Tien

    2018-01-01

    STEM education; the encompassment of the four fields including science, technology, engineering, and mathematics; is introduced to provide students with chances to confront and solve real world problems and situations. Literature has evidence that this approach has positive impacts on students' learning motivation, learning engagement, learning achievements, and participation in STEM subjects and careers. This further lead to assurance of enough qualified STEM staffs for cross economic and mixed cultural working environment of the 21st century world. Our paper explores STEM factors underneath what is considered as traditional ways of teaching in a specific subject in pre-service teacher curriculum at Physics Faculty, Thai Nguyen University of Education, Vietnam. Data of the research were collected from a variety of sources including field notes, observation notes, analyzing of the course syllabus and students' final products. Data were analyzed based on the STS approach and SWOT analysis. The research reveals different kinds of STEM factors and manifestations that has been organized and introduced to the students. The research implications propose further research and directions to take the available advantages to benefit and ease the integration of STEM programs into specific educational context in Vietnam.

  9. Brains in the City: Neurobiological effects of urbanization

    PubMed Central

    Lambert, Kelly G.; Nelson, Randy J.; Jovanovic, Tanja; Cerdá, Magdalena

    2016-01-01

    With a majority of humans now living in cities, strategic research is necessary to elucidate the impact of this evolutionarily unfamiliar habitat on neural functions and well-being. In this review, both rodent and human models are considered in the evaluation of the changing physical and social landscapes associated with urban dwellings. Animal models assessing increased exposure to artificial physical elements characteristic of urban settings, as well as exposure to unnatural sources of light for extended durations, are reviewed. In both cases, increased biomarkers of mental illnesses such as major depression have been observed. Additionally, applied human research emphasizing the emotional impact of environmental threats associated with urban habitats is considered. Subjects evaluated in an inner-city hospital reveal the impact of combined specific genetic vulnerabilities and heightened stress responses in the expression of posttraumatic stress disorder. Finally, algorithm-based models of cities have been developed utilizing population-level analyses to identify risk factors for psychiatric illness. Although complex, the use of multiple research approaches, as described herein, results in an enhanced understanding of urbanization and its far-reaching effects--confirming the importance of continued research directed toward the identification of putative risk factors associated with psychiatric illness in urban settings. PMID:25936504

  10. Investigation on the Physics and Microfluidics of the Decomposition of Hydrogen Peroxide in MEMS Microthrusters

    DTIC Science & Technology

    2017-05-23

    YYYY)      24-05-2017 2. REPORT TYPE Final 3. DATES COVERED (From - To) 01 Dec 2015 to 30 Nov 2016 4. TITLE AND SUBTITLE Investigation on the Physics ... physics and microfluidics of the decomposition of H2O2 in MEMS µ-thrusters Funding Institution: USAF AFOSR EOARD Grant Number: FA9550-16-1-0081...PVD Physical Vapor Deposition UniBO University of Bologna DISTRIBUTION A. Approved for public release: distribution unlimited. Final Report Version

  11. Strategies and help-seeking behavior among Mexican women experiencing partner violence.

    PubMed

    Frías, Sonia M

    2013-01-01

    According to a recent Mexican survey, 10.72% of women have at some point experienced sexual partner violence, and 23.71% physical violence at the hands of their current or last partner. Using this survey and a series of semi-structured interviews with experts, this study used a mixed-methods approach to examine, first, whether women who experienced violence turned to law enforcement agencies for help, and the characteristics of these women. Second, the research examined what type of service and treatment they reported receiving from these agencies. Finally, the research examined reasons women did not request help from police and law enforcement agencies.

  12. Final Report for DOE Grant Number DE-SC0001481

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, Edison

    2013-12-02

    This report covers research activities, major results and publications supported by DE-SC-000-1481. This project was funded by the DOE OFES-NNSA HEDLP program. It was a joint research program between Rice University and the University of Texas at Austin. The physics of relativistic plasmas was investigated in the context of ultra-intense laser irradiation of high-Z solid targets. Laser experiments using the Texas Petawatt Laser were performed in the summers of 2011, 2012 and 2013. Numerical simulations of laser-plasma interactions were performed using Monte Carlo and Particle-in-Cell codes to design and support these experiments. Astrophysical applications of these results were also investigated.

  13. Proceedings of RIKEN BNL Research Center Workshop: Progress in High-pT Physics at RHIC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bazilevsky, A.; Bland, L.; Vogelsang, W.

    2010-03-17

    This volume archives the presentations at the RIKEN BNL Research Center workshop 'Progress in High-PT Physics at RHIC', held at BNL in March 2010. Much has been learned from high-p{sub T} physics after 10 years of RHIC operations for heavy-ion collisions, polarized proton collisions and d+Au collisions. The workshop focused on recent progress in these areas by both theory and experiment. The first morning saw review talks on the theory of RHIC high-p{sub T} physics by G. Sterman and J. Soffer, and on the experimental results by M. Tannenbaum. One of the most exciting recent results from the RHIC spinmore » program is the first observation of W bosons and their associated single-spin asymmetry. The new preliminary data were reported on the first day of our workshop, along with a theoretical perspective. There also were detailed discussions on the global analysis of polarized parton distributions, including the knowledge on gluon polarization and the impact of the W-data. The main topic of the second workshop day were single-transverse spin asymmetries and their analysis in terms of transverse-momentum dependent parton distributions. There is currently much interest in a future Drell-Yan program at RHIC, thanks to the exciting physics opportunities this would offer. This was addressed in some of the talks. There also were presentations on the latest results on transverse-spin physics from HERMES and BELLE. On the final day of the workshop, the focus shifted toward forward and small-x physics at RHIC, which has become a cornerstone of the whole RHIC program. Exciting new data were presented and discussed in terms of their possible implications for our understanding of strong color-field phenomena in QCD. In the afternoon, there were discussions of nuclear parton distributions and jet observables, among them fragmentation. The workshop was concluded with outlooks toward the near-term (LHC, JLab) and longer-term (EIC) future. The workshop has been a great success. We had excellent presentations throughout and productive discussions, which showed the importance and unique value of the RHIC high-p{sub T} program. We are grateful to all participants for coming to BNL. The support provided by the RIKEN-BNL Research Center for this workshop has been magnificent, and we are most grateful for it. We also thank Brookhaven National Laboratory and the U.S. Department of Energy for providing additional support and for the facilities to hold this workshop. Finally, sincere thanks go to Pamela Esposito for her most efficient and tireless work in organizing and running the workshop.« less

  14. Final Progress Report for Award DE-FG07-05ID14637.pdf

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cathy Dixon

    2012-03-09

    2004-2011 Final Report for AFCI University Fellowship Program. The goal of this effort was to be supportive of university students and university programs - particularly those students and programs that will help to strengthen the development of nuclear-related fields. The program also supported the stability of the nuclear infrastructure and developed research partnerships that are helping to enlarge the national nuclear science technology base. In this fellowship program, the U.S. Department of Energy sought master's degree students in nuclear, mechanical, or chemical engineering, engineering/applied physics, physics, chemistry, radiochemistry, or fields of science and engineering applicable to the AFCI/Gen IV/GNEP missionsmore » in order to meet future U.S. nuclear program needs. The fellowship program identified candidates and selected full time students of high-caliber who were taking nuclear courses as part of their degree programs. The DOE Academic Program Managers encouraged fellows to pursue summer internships at national laboratories and supported the students with appropriate information so that both the fellows and the nation's nuclear energy objectives were successful.« less

  15. Relationships between gross- and fine motor functions, cognitive abilities, and self-regulatory aspects of students with physical disabilities.

    PubMed

    Varsamis, Panagiotis; Agaliotis, Ioannis

    2015-12-01

    This article reports research on self-regulatory aspects (i.e., goal-setting, self-efficacy and self-evaluation) of secondary and post-secondary students with congenital motor disabilities, who performed a ball-throwing-at-a-target task. Participants were divided into four subgroups presenting distinct combinations of motor and cognitive abilities (i.e., normal cognitive development and mild physical disabilities, normal cognitive development and severe physical disabilities, mild-to-moderate intellectual disability and mild physical disabilities, and mild-to-moderate intellectual disability and severe physical disabilities). Results showed that students presenting mild motor disabilities exhibited a positive self-concept and self-regulation profile, irrespective of their cognitive functioning. Students with considerable motor disabilities, but without cognitive challenges, presented a negative, though realistic self-concept and self-regulation profile. Finally, students with considerable motor disabilities and mild-to-moderate cognitive disabilities showed a positive, though unrealistic, self-regulation profile. The nature of the diverse relationship of motor and cognitive (dis)abilities to specific self-regulatory aspects are discussed, and important instructional implications are mentioned. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Bending the Arc of Exercise and Recreation Technology Toward People With Disabilities.

    PubMed

    Rimmer, James H; Lai, Byron; Young, Hui-Ju

    2016-09-01

    Most of the published research on exercise and disability has focused on short-term efficacy studies targeting specific disability groups. These studies often use grant-related or other financial resources to temporarily remove the many barriers that people with physical/mobility disability experience when attempting to become physically active. In this commentary, we explore how technology can be used to promote more sustainable physical activity outcomes in the home and community using a set of 4 overlapping domains: Access, Usability, Adherence, and Health and Function. In addition, we describe how the order in which these domains should be addressed will vary depending on the needs of the target group and the context of their environment. Finally, we provide examples of various types of technologies (eg, hardware and software) that can support the "afterlife" of successful short-term exercise and rehabilitation trials in people with physical/mobility disability who desire to self-manage their own health and maintain a regular and sustainable pattern of physical activity across their life span. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. A geographical analysis of trafficking on a popular darknet market.

    PubMed

    Broséus, Julian; Rhumorbarbe, Damien; Morelato, Marie; Staehli, Ludovic; Rossy, Quentin

    2017-08-01

    Cryptomarkets are online marketplaces, located on the darknet, that facilitate the trading of a variety of illegal goods, mostly drugs. While the literature essentially focus on drugs, various other goods and products related to financial or identity fraud, firearms, counterfeit goods, as well as doping products are also offered on these marketplaces. Through the analysis of relevant data collected on a popular marketplace in 2014-2015, Evolution, this research provides an analysis of the structure of trafficking (types and proportions of products, number of vendors and shipping countries). It also aims at highlighting geographical patterns in the trafficking of these products (e.g. trafficking flows, specialisation of vendors and assessment of their role in the distribution chain). The analysis of the flow of goods between countries emphasises the role of specific countries in the international and domestic trafficking, potentially informing law enforcement agencies to target domestic mails or international posts from specific countries. The research also highlights the large proportion of licit and illicit drug listings and vendors on Evolution, followed by various fraud issues (in particular, financial fraud), the sharing of knowledge (tutorials) and finally goods, currencies and precious metals (principally luxury goods). Looking at the shipping country, there seems to be a clear division between digital and physical products, with more specific information for physical goods. This reveals that the spatial analysis of trafficking is particularly meaningful in the case of physical products (such as illicit drugs) and to a lesser extent for digital products. Finally, the geographical analysis reveals that spatial patterns on Evolution tend to reflect the structure of the traditional illicit market. However, regarding illicit drugs, country-specificity has been observed and are presented in this article. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. [Evolution of the diet from the paleolithic to today: progress or regress?].

    PubMed

    Chauveau, Philippe; Fouque, Denis; Combe, Christian; Aparicio, Michel

    2013-07-01

    The changes in eating habits and decreased physical activity have been responsible for part of the high prevalence of chronic diseases such as hypertension or diabetes, currently observed in the so-called civilized societies. These diseases are less prevalent in previous civilizations and several decades of nutrition research have enabled better understanding of the eating habits of our ancestors, and have demonstrated the value of diet called "Mediterranean or Paleolithic". This review provides an update on the latest research. What dietary changes since the Paleolithic period, and finally how can we adapt our current diet? Several animal studies or human clinical demonstrate the value of historical research and nutrition. Copyright © 2013. Published by Elsevier SAS.

  19. The harm of petroleum-polluted soil and its remediation research

    NASA Astrophysics Data System (ADS)

    Wang, Shuguang; Xu, Yan; Lin, Zhaofeng; Zhang, Jishi; Norbu, Namkha; Liu, Wei

    2017-08-01

    Land resources are the foundation of human's survival and development, and it's one of the most valuable natural resources of each country. In view of the serious problems of petroleum pollution to soil caused during the exploration and development processes, this article based on a large number of literature researches, firstly discussed the compositions and properties of petroleum contaminants, secondly investigated some restoration methods for the current situation of petroleum polluted soil, compared and analyzed the advantages and disadvantages of three kinds of bioremediation technologies. Finally, according to the deficiencies of previous research and existing problems, made an outlook of the physical and chemical remediation, bioremediation, and microbe-plant remediation, to provide some enlightenments for petroleum-contaminated soil remediation.

  20. Promoting Metacognition in Introductory Calculus-based Physics Labs

    NASA Astrophysics Data System (ADS)

    Grennell, Drew; Boudreaux, Andrew

    2010-10-01

    In the Western Washington University physics department, a project is underway to develop research-based laboratory curriculum for the introductory calculus-based course. Instructional goals not only include supporting students' conceptual understanding and reasoning ability, but also providing students with opportunities to engage in metacognition. For the latter, our approach has been to scaffold reflective thinking with guided questions. Specific instructional strategies include analysis of alternate reasoning presented in fictitious dialogues and comparison of students' initial ideas with their lab group's final, consensus understanding. Assessment of student metacognition includes pre- and post- course data from selected questions on the CLASS survey, analysis of written lab worksheets, and student opinion surveys. CLASS results are similar to a traditional physics course and analysis of lab sheets show that students struggle to engage in a metacognitive process. Future directions include video studies, as well as use of additional written assessments adapted from educational psychology.

  1. Connected and leading disconnected hadronic light-by-light contribution to the muon anomalous magnetic moment with a physical pion mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blum, Thomas; Christ, Norman; Hayakawa, Masashi

    We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at a physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the 48 3 × 96 ensemble generated with a physical pion mass and a 5.5 fm spatial extent by the RBC and UKQCD Collaborations using the chiral, domain wall fermion formulation. We find a HLbL μ = 5.35(1.35) × 10 –10, where the error is statistical only. The finite-volume and finite lattice-spacing errorsmore » could be quite large and are the subject of ongoing research. Finally, the omitted disconnected graphs, while expected to give a correction of order 10%, also need to be computed.« less

  2. Connected and leading disconnected hadronic light-by-light contribution to the muon anomalous magnetic moment with a physical pion mass

    DOE PAGES

    Blum, Thomas; Christ, Norman; Hayakawa, Masashi; ...

    2017-01-11

    We report a lattice QCD calculation of the hadronic light-by-light contribution to the muon anomalous magnetic moment at a physical pion mass. The calculation includes the connected diagrams and the leading, quark-line-disconnected diagrams. We incorporate algorithmic improvements developed in our previous work. The calculation was performed on the 48 3 × 96 ensemble generated with a physical pion mass and a 5.5 fm spatial extent by the RBC and UKQCD Collaborations using the chiral, domain wall fermion formulation. We find a HLbL μ = 5.35(1.35) × 10 –10, where the error is statistical only. The finite-volume and finite lattice-spacing errorsmore » could be quite large and are the subject of ongoing research. Finally, the omitted disconnected graphs, while expected to give a correction of order 10%, also need to be computed.« less

  3. Test on the effectiveness of the sum over paths approach in favoring the construction of an integrated knowledge of quantum physics in high school

    NASA Astrophysics Data System (ADS)

    Malgieri, Massimiliano; Onorato, Pasquale; De Ambrosis, Anna

    2017-06-01

    In this paper we present the results of a research-based teaching-learning sequence on introductory quantum physics based on Feynman's sum over paths approach in the Italian high school. Our study focuses on students' understanding of two founding ideas of quantum physics, wave particle duality and the uncertainty principle. In view of recent research reporting the fragmentation of students' mental models of quantum concepts after initial instruction, we collected and analyzed data using the assessment tools provided by knowledge integration theory. Our results on the group of n =14 students who performed the final test indicate that the functional explanation of wave particle duality provided by the sum over paths approach may be effective in leading students to build consistent mental models of quantum objects, and in providing them with a unified perspective on both the photon and the electron. Results on the uncertainty principle are less clear cut, as the improvements over traditional instruction appear less significant. Given the low number of students in the sample, this work should be interpreted as a case study, and we do not attempt to draw definitive conclusions. However, our study suggests that (i) the sum over paths approach may deserve more attention from researchers and educators as a possible route to introduce basic concepts of quantum physics in high school, and (ii) more research should be focused not only on the correctness of students' mental models on individual concepts, but also on the ability of students to connect different ideas and experiments related to quantum theory in an organized whole.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thayer, K.J.

    The past year has seen several of the Physics Division`s new research projects reach major milestones with first successful experiments and results: the atomic physics station in the Basic Energy Sciences Research Center at the Argonne Advanced Photon Source was used in first high-energy, high-brilliance x-ray studies in atomic and molecular physics; the Short Orbit Spectrometer in Hall C at the Thomas Jefferson National Accelerator (TJNAF) Facility that the Argonne medium energy nuclear physics group was responsible for, was used extensively in the first round of experiments at TJNAF; at ATLAS, several new beams of radioactive isotopes were developed andmore » used in studies of nuclear physics and nuclear astrophysics; the new ECR ion source at ATLAS was completed and first commissioning tests indicate excellent performance characteristics; Quantum Monte Carlo calculations of mass-8 nuclei were performed for the first time with realistic nucleon-nucleon interactions using state-of-the-art computers, including Argonne`s massively parallel IBM SP. At the same time other future projects are well under way: preparations for the move of Gammasphere to ATLAS in September 1997 have progressed as planned. These new efforts are imbedded in, or flowing from, the vibrant ongoing research program described in some detail in this report: nuclear structure and reactions with heavy ions; measurements of reactions of astrophysical interest; studies of nucleon and sub-nucleon structures using leptonic probes at intermediate and high energies; atomic and molecular structure with high-energy x-rays. The experimental efforts are being complemented with efforts in theory, from QCD to nucleon-meson systems to structure and reactions of nuclei. Finally, the operation of ATLAS as a national users facility has achieved a new milestone, with 5,800 hours beam on target for experiments during the past fiscal year.« less

  5. PREFACE: The first meeting of the APS Topical Group on Hadronic Physics

    NASA Astrophysics Data System (ADS)

    Barnes, Ted; Godfrey, Steve; Petrov, Alexey A.; Swanson, Eric

    2005-01-01

    The first meeting of the APS Topical Group on Hadronic Physics (`GHP') took place on 24-26 October 2004, at Fermilab. Two factors contributed to the decision to hold this meeting. First, the Topical Group on Hadronic Physics had recently been established, and there was general agreement that a conference devoted to the physics of hadrons was an important group activity. Second, many exciting new experimental results on hadron spectroscopy had been announced recently, and there was intense interest in these new developments. The meeting was very well attended, with over 120 scientists participating; this was triple our original estimate of the likely audience for this meeting. The plenary sessions covered a broad range of topics, as we considered it important to promote communication between the communities pursuing research in different areas of hadron physics. The topics discussed included new results from RHIC on the QGP, the status of experiments on the flavour-exotic pentaquark and other new baryons, the new open-charm Ds and hidden-charm X states, conventional light quark resonances, glueballs and hybrids, and new facilities. Finally, a `town meeting' was held to discuss funding prospects for hadronic physics and related issues, which included a panel discussion with representatives from DOE, NSF and JLab. These plenary sessions were supplemented by 14 parallel sessions, giving a total of approximately 80 presentations. To make the conference more accessible to younger researchers, as well as to simiplify administration, there was no conference fee for this meeting. This was possible as a result of the generous financial support of our hosts at Fermilab, for which we are very appreciative. We are also grateful to Larry Cardman for arranging Jlab assistance in producing and distributing the conference poster, to Gerald Ragghianti for designing the poster and proceedings cover, and to Lali Chatterjee and the Institute of Physics for arranging publication of the proceedings at no cost to the topical group. The efforts of the session organizers and chairs, which were crucial for the smooth operation of the conference, are also gratefully acknowledged. Finally, we were extremely fortunate to have the local assistance of Cynthia Sazama and Suzanne Weber at Fermilab, who dealt with the many details of conference organization with good cheer, exemplary competence and unstinting loyalty, even to the extent of sacrificing their weekends. We hope that this first GHP conference has been a useful contribution to the field of hadron physics, and that it may encourage the organization of subsequent APS conferences on this diverse, challenging and fascinating field.

  6. An Eroding Social Justice Agenda: The Case of Physical Education and Health Edu-Business in Schools.

    PubMed

    McCuaig, Louise; Enright, Eimear; Rossi, Anthony; Macdonald, Doune; Hansen, Scott

    2016-06-01

    In this article, we draw on current research to explore notions of socially just health and physical education (HPE) programs, in light of claims that a neoliberal globalization promotes markets over the states and a new individualism that privileges self-interest over the collective good. We also invite readers to consider the UN Educational, Scientific, and Cultural Organization's ambition for physical education in light of preliminary findings from an Australian-led research project exploring national and international patterns of outsourcing HPE curricula. Data were sourced from this international research project through a mixed-methods approach. Each external provider engaged in 4 phases of research activity: (a) Web audits, (b) interviews with external providers, (c) network diagrams, and (d) school partner interviews and observations. We then used these data to pose what we believe to be three emerging lines of inquiry and challenge for a socially just school HPE in neoliberal times. In particular, our data indicate that the marketization of school HPE is strengthening an emphasis on individual responsibility for personal health, thereby elevating expectations that schools and teachers will "fill the welfare gap" and, finally, influencing the nature and purchase of educative HPE programs in schools. The apparent proliferation of external providers of health work and HPE resources and services reflects the rise and pervasiveness of neoliberalism in education. We conclude that this global HPE landscape warrants attention to investigate the extent to which external providers' resources are compatible with schooling's educative and inclusive mandates.

  7. Defining Bladder Health in Women and Girls: Implications for Research, Clinical Practice, and Public Health Promotion.

    PubMed

    Lukacz, Emily S; Bavendam, Tamara G; Berry, Amanda; Fok, Cynthia S; Gahagan, Sheila; Goode, Patricia S; Hardacker, Cecilia T; Hebert-Beirne, Jeni; Lewis, Cora E; Lewis, Jessica; Low, Lisa Kane; Lowder, Jerry L; Palmer, Mary H; Smith, Ariana L; Brady, Sonya S

    2018-05-24

    Bladder health in women and girls is poorly understood, in part, due to absence of a definition for clinical or research purposes. This article describes the process used by a National Institutes of Health funded transdisciplinary research team (The Prevention of Lower Urinary Tract Symptoms [PLUS] Consortium) to develop a definition of bladder health. The PLUS Consortium identified currently accepted lower urinary tract symptoms (LUTS) and outlined elements of storage and emptying functions of the bladder. Consistent with the World Health Organization's definition of health, PLUS concluded that absence of LUTS was insufficient and emphasizes the bladder's ability to adapt to short-term physical, psychosocial, and environmental challenges for the final definition. Definitions for subjective experiences and objective measures of bladder dysfunction and health were drafted. An additional bioregulatory function to protect against infection, neoplasia, chemical, or biologic threats was proposed. PLUS proposes that bladder health be defined as: "A complete state of physical, mental, and social well-being related to bladder function and not merely the absence of LUTS. Healthy bladder function permits daily activities, adapts to short-term physical or environmental stressors, and allows optimal well-being (e.g., travel, exercise, social, occupational, or other activities)." Definitions for each element of bladder function are reported with suggested subjective and objective measures. PLUS used a comprehensive transdisciplinary process to develop a bladder health definition. This will inform instrument development for evaluation of bladder health promotion and prevention of LUTS in research, practice, and public health initiatives.

  8. An overview of thermionic power conversion technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Morgan C.

    1996-12-01

    Thermionic energy conversion is one of the many concepts which make up the direct power conversion technologies. Specifically, thermionics is the process of changing heat directly into electricity via a material`s ability to emit electrons when heated. This thesis presents a broad overview of the engineering and physics necessary to make thermionic energy conversion (TEC) a practical reality. It begins with an introduction to the technology and the history of its development. This is followed by a discussion of the physics and engineering necessary to develop practical power systems. Special emphasis is placed on the critical issues which are stillmore » being researched. Finally, there is a discussion of the missions which this technology may fulfill.« less

  9. Effects of Instructor Attractiveness on Learning.

    PubMed

    Westfall, Richard; Millar, Murray; Walsh, Mandy

    2016-01-01

    Although a considerable body of research has examined the impact of student attractiveness on instructors, little attention has been given to the influence of instructor attractiveness on students. This study tested the hypothesis that persons would perform significantly better on a learning task when they perceived their instructor to be high in physical attractiveness. To test the hypothesis, participants listened to an audio lecture while viewing a photograph of instructor. The photograph depicted either a physically attractive instructor or a less attractive instructor. Following the lecture, participants completed a forced choice recognition task covering material from the lecture. Consistent with the predictions; attractive instructors were associated with more learning. Finally, we replicated previous findings demonstrating the role attractiveness plays in person perception.

  10. Results From South Korea's 2016 Report Card on Physical Activity for Children and Youth.

    PubMed

    Song, Yoonkyung; Yang, Hyuk In; Lee, Eun-Young; Yu, Mi-Seong; Kang, Min Jae; Kang, Hyun Joo; Song, Wook; Kim, YeonSoo; Park, Hyon; Lee, Han Joo; Suh, Sang-Hoon; Spence, John C; Jeon, Justin Y

    2016-11-01

    South Korea's 2016 Report Card on Physical Activity for Children and Youth is the first assessment of physical activity according to the indicators set by Active Healthy Kids Global Alliance. National surveys were used as preferred sources of data. This was then supported by peer-reviewed papers and government reports identified by a systematic search of the literature written in English or Korean. A Research Working Group then graded indicators based on the collected evidence. Each indicator was graded as follows: Overall Physical Activity, D-; Organized Sport and Physical Activity Participation, C-; Active Transport, C+; Sedentary Behavior, F; School, D; Government and Investment, C; Active Play, Physical Literacy, Family and Peers, and Community and Built Environment were graded INC (incomplete) due to lack of available evidence. Though the final grades of key indicators for South Korean children and youth are not satisfactory, increasing interests and investments have been demonstrated at a national level. More evidence is required for comprehensive assessment on all indicators to better inform policy and practice. This should be accompanied by the use of consistent criteria to contribute to global efforts for active healthy kids.

  11. Psychogenic Explanations of Physical Illness: Time to Examine the Evidence.

    PubMed

    Wilshire, Carolyn E; Ward, Tony

    2016-09-01

    In some patients with chronic physical complaints, detailed examination fails to reveal a well-recognized underlying disease process. In this situation, the physician may suspect a psychological cause. In this review, we critically evaluated the evidence for this causal claim, focusing on complaints presenting as neurological disorders. There were four main conclusions. First, patients with these complaints frequently exhibit psychopathology but not consistently more often than patients with a comparable "organic" diagnosis, so a causal role cannot be inferred. Second, these patients report a high incidence of adverse life experiences, but again, there is insufficient evidence to indicate a causal role for any particular type of experience. Third, although psychogenic illnesses are believed to be more responsive to psychological interventions than comparable "organic" illnesses, there is currently no evidence to support this claim. Finally, recent evidence suggests that biological and physical factors play a much greater causal role in these illnesses than previously believed. We conclude that there is currently little evidential support for psychogenic theories of illness in the neurological domain. In future research, researchers need to take a wider view concerning the etiology of these illnesses. © The Author(s) 2016.

  12. Do We Know Where We Stand? Neighborhood Relative Income, Subjective Social Status, and Health.

    PubMed

    Roy, Amanda L; Godfrey, Erin B; Rarick, Jason R D

    2016-06-01

    Bridging research on relative income and subjective social status (SSS), this study examines how neighborhood relative income is related to ones' SSS, and in turn, physical and mental health. Using a survey sample of 1807 U.S. adults, we find that neighborhood median income significantly moderates the relationship between household income and self-reported physical and mental health. Low-income individuals living in high-income neighborhoods (i.e., relative disadvantage) report better physical and mental health than low-income individuals living in low-income neighborhoods. In addition, high-income individuals living in low-income neighborhoods (i.e., relative advantage) report higher SSS (relative to neighbors), whereas low-income individuals living in high-income neighborhoods (i.e., relative disadvantage) also report higher SSS. We draw from social comparison theory to interpret these results positing that downward comparisons may serve an evaluative function while upward comparisons may result in affiliation with better-off others. Finally, we demonstrate that SSS explains the relationship between neighborhood relative income and health outcomes, providing empirical support for the underlying influence of perceived social position. © Society for Community Research and Action 2016.

  13. Knowledge evolution in physics research: An analysis of bibliographic coupling networks.

    PubMed

    Liu, Wenyuan; Nanetti, Andrea; Cheong, Siew Ann

    2017-01-01

    Even as we advance the frontiers of physics knowledge, our understanding of how this knowledge evolves remains at the descriptive levels of Popper and Kuhn. Using the American Physical Society (APS) publications data sets, we ask in this paper how new knowledge is built upon old knowledge. We do so by constructing year-to-year bibliographic coupling networks, and identify in them validated communities that represent different research fields. We then visualize their evolutionary relationships in the form of alluvial diagrams, and show how they remain intact through APS journal splits. Quantitatively, we see that most fields undergo weak Popperian mixing, and it is rare for a field to remain isolated/undergo strong mixing. The sizes of fields obey a simple linear growth with recombination. We can also reliably predict the merging between two fields, but not for the considerably more complex splitting. Finally, we report a case study of two fields that underwent repeated merging and splitting around 1995, and how these Kuhnian events are correlated with breakthroughs on Bose-Einstein condensation (BEC), quantum teleportation, and slow light. This impact showed up quantitatively in the citations of the BEC field as a larger proportion of references from during and shortly after these events.

  14. Simulating industrial plasma reactors - A fresh perspective

    NASA Astrophysics Data System (ADS)

    Mohr, Sebastian; Rahimi, Sara; Tennyson, Jonathan; Ansell, Oliver; Patel, Jash

    2016-09-01

    A key goal of the presented research project PowerBase is to produce new integration schemes which enable the manufacturability of 3D integrated power smart systems with high precision TSV etched features. The necessary high aspect ratio etch is performed via the BOSCH process. Investigations in industrial research are often use trial and improvement experimental methods. Simulations provide an alternative way to study the influence of external parameters on the final product, whilst also giving insights into the physical processes. This presentation investigates the process of simulating an industrial ICP reactor used over high power (up to 2x5 kW) and pressure (up to 200 mTorr) ranges, analysing the specific procedures to achieve a compromise between physical correctness and computational speed, while testing commonly made assumptions. This includes, for example, the effect of different physical models and the inclusion of different gas phase and surface reactions with the aim of accurately predicting the dependence of surface rates and profiles on external parameters in SF6 and C4F8 discharges. This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under Grant Agreement No. 662133 PowerBase.

  15. Sedentary Behavior Research Network (SBRN) - Terminology Consensus Project process and outcome.

    PubMed

    Tremblay, Mark S; Aubert, Salomé; Barnes, Joel D; Saunders, Travis J; Carson, Valerie; Latimer-Cheung, Amy E; Chastin, Sebastien F M; Altenburg, Teatske M; Chinapaw, Mai J M

    2017-06-10

    The prominence of sedentary behavior research in health science has grown rapidly. With this growth there is increasing urgency for clear, common and accepted terminology and definitions. Such standardization is difficult to achieve, especially across multi-disciplinary researchers, practitioners, and industries. The Sedentary Behavior Research Network (SBRN) undertook a Terminology Consensus Project to address this need. First, a literature review was completed to identify key terms in sedentary behavior research. These key terms were then reviewed and modified by a Steering Committee formed by SBRN. Next, SBRN members were invited to contribute to this project and interested participants reviewed and provided feedback on the proposed list of terms and draft definitions through an online survey. Finally, a conceptual model and consensus definitions (including caveats and examples for all age groups and functional abilities) were finalized based on the feedback received from the 87 SBRN member participants who responded to the original invitation and survey. Consensus definitions for the terms physical inactivity, stationary behavior, sedentary behavior, standing, screen time, non-screen-based sedentary time, sitting, reclining, lying, sedentary behavior pattern, as well as how the terms bouts, breaks, and interruptions should be used in this context are provided. It is hoped that the definitions resulting from this comprehensive, transparent, and broad-based participatory process will result in standardized terminology that is widely supported and adopted, thereby advancing future research, interventions, policies, and practices related to sedentary behaviors.

  16. Artium mater in relativistic astrophysics : New perspectives for a European-Latin American PhD program

    NASA Astrophysics Data System (ADS)

    Chardonnet, Pascal

    2015-12-01

    Following the successful scientific space missions by the European Space Agency (ESA) and the European Southern Observatory (ESO) in Chile, as well as the high-energy particle activities at CERN in Genve, we have created a Ph.D. program dedicated to the formation of scientists in the field of relativistic astrophysics. The students of such a program will lead the theoretical developments of one of the most active fields of research, based on the above observational and experimental facilities. This program needs expertise in the most advanced topics of mathematical and theoretical physics, and in relativistic field theories. It requires the ability to model the observational data received from the above facilities, as well as all the basic knowledge in astronomy, astrophysics and cosmology. This activity is necessarily international, no single university can cover the broad expertises. From this, the proposed program of the IRAP Ph.D., in one of the youngest and most dynamical French universities, pole of research and teaching in the Euro-Mediterranean region (PRES): the University of Nice. It benefits from the presence of the astrophysics research institute of Observatoire de la Cte d'Azur involved in relativistic and non-photonic astrophysics. The participation of the Freie Universitaet Berlin, Oldenburg and Bremen Universities and of the Einstein Institute in Potsdam offers the possibility of teaching in relativistic field theories at the highest level. The University of Savoy offers the link to the particle physics at CERN. The activities at the University of Rome, at Stockholm University and at ICRANet offer teaching programs in all the fields of relativistic astrophysics, including cosmology, the physics of gravitational collapse, gamma-ray bursts, and black hole physics. Finally, the University of Ferrara will be present with lectures and researches in the topics they have pioneered such as x-ray astrophysics and observational cosmology. Through ICRANet the extra-European connections with Brazil, China and India will be guaranteed: in China, with the Shanghai Observatory of the Chinese Academy of Science, studying the formation and evolution of large-scale structure and galaxies; in India, with the Indian Centre for Space Physics (ICSP), renowned for its research on compact objects as well as on solar physics and astrochemistry; in Brazil with ICRANet Brazil where a successful program of research and teaching in relativistic astrophysics has been established in recent years.

  17. Artium mater in relativistic astrophysics : New perspectives for a European-Latin American PhD program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chardonnet, Pascal; LAPTh, Université de Savoie, CNRS, B.P. 110, Annecy-le-Vieux F-74941; ICRANet, Piazza della Repubblica 10, 65122 Pescara

    Following the successful scientific space missions by the European Space Agency (ESA) and the European Southern Observatory (ESO) in Chile, as well as the high-energy particle activities at CERN in Genve, we have created a Ph.D. program dedicated to the formation of scientists in the field of relativistic astrophysics. The students of such a program will lead the theoretical developments of one of the most active fields of research, based on the above observational and experimental facilities. This program needs expertise in the most advanced topics of mathematical and theoretical physics, and in relativistic field theories. It requires the abilitymore » to model the observational data received from the above facilities, as well as all the basic knowledge in astronomy, astrophysics and cosmology. This activity is necessarily international, no single university can cover the broad expertises. From this, the proposed program of the IRAP Ph.D., in one of the youngest and most dynamical French universities, pole of research and teaching in the Euro-Mediterranean region (PRES): the University of Nice. It benefits from the presence of the astrophysics research institute of Observatoire de la Cte d’Azur involved in relativistic and non-photonic astrophysics. The participation of the Freie Universitaet Berlin, Oldenburg and Bremen Universities and of the Einstein Institute in Potsdam offers the possibility of teaching in relativistic field theories at the highest level. The University of Savoy offers the link to the particle physics at CERN. The activities at the University of Rome, at Stockholm University and at ICRANet offer teaching programs in all the fields of relativistic astrophysics, including cosmology, the physics of gravitational collapse, gamma-ray bursts, and black hole physics. Finally, the University of Ferrara will be present with lectures and researches in the topics they have pioneered such as x-ray astrophysics and observational cosmology. Through ICRANet the extra-European connections with Brazil, China and India will be guaranteed: in China, with the Shanghai Observatory of the Chinese Academy of Science, studying the formation and evolution of large-scale structure and galaxies; in India, with the Indian Centre for Space Physics (ICSP), renowned for its research on compact objects as well as on solar physics and astrochemistry; in Brazil with ICRANet Brazil where a successful program of research and teaching in relativistic astrophysics has been established in recent years.« less

  18. Examining the Effectiveness of Mindfulness Meditation for Chronic Pain Management in Combat Veterans with Traumatic Brain Injury

    DTIC Science & Technology

    2013-01-01

    third had commented on issues related to his work schedule before losing contact with the researchers. Finally, one patient was excluded due to a...M., Keller, S., & Ware, J. E. (2001). Sleep problems, health- related quality of life, work functioning and health care utilization among the...et al., 2006). Military deployment to a war zone may significantly alter health status and quality of life, elevating the risk of long -term physical

  19. The Potential of ESO for Asteroseismology

    NASA Astrophysics Data System (ADS)

    Aerts, Conny

    2017-08-01

    The research field of asteroseismology is currently undergoing its first revolution. We start with a brief history of how this field of stellar physics evolved from dream to reality, including ESO's role in it. Subsequently, we highlight how asteroseismology can serve various topics in astrophysics and focus on the current status. We discuss recent findings on the rotation and chemical mixing inside stars. Finally, we look at the perspectives of the second and third revolution in this area and highlight how ESO can play an optimal role in it.

  20. Reliability Evaluation of Next Generation Inverter: Cooperative Research and Development Final Report, CRADA Number CRD-12-478

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paret, Paul

    The National Renewable Energy Laboratory (NREL) will conduct thermal and reliability modeling on three sets of power modules for the development of a next generation inverter for electric traction drive vehicles. These modules will be chosen by General Motors (GM) to represent three distinct technological approaches to inverter power module packaging. Likely failure mechanisms will be identified in each package and a physics-of-failure-based reliability assessment will be conducted.

  1. Development of Predictive Models of Advanced Propulsion Concepts for Low Cost Space Transportation

    NASA Technical Reports Server (NTRS)

    Morrell, Michael Randy

    2002-01-01

    This final report presents the Graduate Student Research Program (GSRP) work Mr. Morrell was able to complete as a summer intern at NASA MSFS during the summer of 2001, and represents work completed from inception through project termination. The topics include: 1) NASA TD40 Organization; 2) Combustion Physics Lab; 3) Advanced Hydrocarbon Fuels; 4) GSRP Summer Tasks; 5) High Pressure Facility Installation; 6) High Pressure Combustion Issues; 7) High Energy Density Matter (HEDM) Hydrocarbons; and 8) GSRP Summer Intern Summary.

  2. Support of the Laboratory for Terrestrial Physics for Dynamics of the Solid Earth (DOSE)

    NASA Technical Reports Server (NTRS)

    Vandenberg, Nancy R.; Ma, C. (Technical Monitor)

    2001-01-01

    This final report summarizes the accomplishments during the contract period. Under the contract NVI, Inc. provided support to the VLBI group at NASA's Goddard Space Flight Center. The contract covered a period of approximately eight years during which geodetic and astrometric VLBI evolved through several major changes. This report is divided into four sections which correspond to major task areas in the contract: A) Coordination and Scheduling, B) Field System, C) Station Support, and D) Analysis and Research and Development.

  3. Support for the Laboratory for Terrestrial Physics for Dynamics of the Solid Earth (DOSE)

    NASA Technical Reports Server (NTRS)

    Ma, C. (Technical Monitor)

    2001-01-01

    This final report summarizes the accomplishments during the contract period. Under the contract NVI, Inc. provided support to the VLBI group at NASA's Goddard Space Flight Center. The contract covered a period of approximately eight years during which geodetic and astrometric VLBI evolved through several major changes. This report is divided into four sections which correspond to major task areas in the contract: A) Coordination and Scheduling, B) Field System, C) Station Support, and D) Analysis and Research and Development.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katz, Ulrich F., E-mail: katz@physik.uni-erlangen.de; Collaboration: KM3NeT Collaboration

    KM3NeT is a future research infrastructure in the Mediterranean Sea, hosting a multi-cubic-kilometre neutrino telescope and nodes for Earth and Sea sciences. In this report we shortly summarise the genesis of the KM3NeT project and present key elements of its technical design. The physics objectives of the KM3NeT neutrino telescope and some selected sensitivity estimates are discussed. Finally, some first results from prototype operations and the next steps towards implementation – in particular the first construction phase in 2014/15 – are described.

  5. Final Report on A. R. A. P.’s Model for the Atmospheric Marine Environment

    DTIC Science & Technology

    1982-01-01

    Around Airports," NASA CR-2752, prepared by A.R.A.P. for Marshall Space Center. 25. Brost , R.A. and Wyngaard, N.C., 1978: "A Model Study of the...FRANCE DR. R. A. BROST NCAR P.O. BOX 3000 BOULDER, CO 80307 JOHNS HOPKINS UNIV. APPLIED PHYSICS LAB R.E. GIBSON LIBRARY JOHNS HOPKINS ROAD...RESEARCH LABS BOULDER, CO 80303 DR. GEORGE L. HELLOR GEOPHYSICAL FLUID DYNAMICS LAE PRINCETON, NJ 08540 DR. TETSUJI YAMADA LOS ALAMOS NATIONAL LAB

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doering, C.; Bier, M.; Christodoulou, K.

    This is the final report of a one-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Polymers, composites, and synthetic modern materials are replacing traditional materials in many older scientific, engineering, commercial, and military applications. This project sought to focus on the new polymeric materials, deriving and analyzing models that predict their seemingly mysterious transport properties. It sought to identify the dominant physical mechanisms and the pertinent dimensionless parameters, produce viable theoretical models, and devise asymptotic and numerical methods for use in specific problems.

  7. Provincial Reconstruction Teams (PRTs) Negotiation Skill Requirements in Afghanistan: Afghanistan Security Issues Final Research Paper

    DTIC Science & Technology

    2010-01-01

    culture shock” that soldiers experienced as “the anxiety and physical and emotional discomfort that can occur when a person moves to an unfa- miliar...Afghanistan. Don‟t Believe it.” Newsweek, 14 December 2009, 48. Jalali, Ali A. “The Future of Security Institutions.” In Warfare Studies AY10 Coursebook ...62-69. Rubin, Barnett R. “The Transformation of the Afghan State.” In Warfare Studies AY10 Coursebook , edited by Sharon McBride, 351-356. Maxwell

  8. Advanced Cathodes for Next Generation Electric Propulsion Technology

    DTIC Science & Technology

    2008-03-01

    learning opportunity- of which it did. Finally, Dr. Glen Perram of the physics department at AFIT was so gracious to let us borrow his Langmuir Probe in...Applications Like Hall thrusters, ion thrusters also employ hollow cathodes.15,18,19,20,21 Harold Kaufman at NASA Glen Research Center (GRC... brittle nature, a problem common to CeB6 and LaB6. As a result, easier to machine polycrystalline inserts for LaB6 have been used for hollow cathodes in

  9. "Don't crack under pressure!"--Do leisure time physical activity and self-esteem moderate the relationship between school-based stress and psychosomatic complaints?

    PubMed

    Gerber, Markus; Pühse, Uwe

    2008-10-01

    Stressful experiences occupy a central role in most etiological models of developmental psychopathology. Stress alone, however, insufficiently explains negative health outcomes. This raises the question why some children and adolescents are more vulnerable to the development of psychopathological symptoms than others. The primary purpose of this research was to demonstrate whether leisure time physical activity and self-esteem protect against stress-induced health problems. The findings are based on a cross-sectional study of 407 Swiss boys and girls (M=14.01 years). All variables are self-reported. Analyses of covariance were applied to test for main and moderator effects. The findings suggest that school-based stress and psychosomatic complaints are important issues during adolescence. The results show that a higher level of psychosomatic complaints accompanies stress. Surprisingly, psychosomatic complaints and physical activity were unrelated. Likewise, no association was found between physical activity and stress. In contrast, students with high self-esteem reported significantly less complaints and a lower extent of perceived stress. Finally, the results do not support the stress-moderation hypothesis. Neither physical activity nor self-esteem buffered against the detrimental effects of school-based stress on psychosomatic health. The findings lend support to previous research with German-speaking samples but are in marked contrast to Anglo-Saxon studies, which generally support the role of physical activity as a moderator of the health-illness relationship. In this investigation, developmental features and methodological limitations may have accounted for the insignificant results.

  10. Progress with High-Field Superconducting Magnets for High-Energy Colliders

    NASA Astrophysics Data System (ADS)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ˜10 T at 1.9 K. Fields above 10 T became possible with the use of Nb3Sn superconductors. Nb3Sn accelerator magnets can provide operating fields up to ˜15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. This review discusses the status and main results of Nb3Sn accelerator magnet research and development and work toward 20-T magnets.

  11. A framework for analyzing interdisciplinary tasks: implications for student learning and curricular design.

    PubMed

    Gouvea, Julia Svoboda; Sawtelle, Vashti; Geller, Benjamin D; Turpen, Chandra

    2013-06-01

    The national conversation around undergraduate science instruction is calling for increased interdisciplinarity. As these calls increase, there is a need to consider the learning objectives of interdisciplinary science courses and how to design curricula to support those objectives. We present a framework that can help support interdisciplinary design research. We developed this framework in an introductory physics for life sciences majors (IPLS) course for which we designed a series of interdisciplinary tasks that bridge physics and biology. We illustrate how this framework can be used to describe the variation in the nature and degree of interdisciplinary interaction in tasks, to aid in redesigning tasks to better align with interdisciplinary learning objectives, and finally, to articulate design conjectures that posit how different characteristics of these tasks might support or impede interdisciplinary learning objectives. This framework will be useful for both curriculum designers and education researchers seeking to understand, in more concrete terms, what interdisciplinary learning means and how integrated science curricula can be designed to support interdisciplinary learning objectives.

  12. Drop "impact" on an airfoil surface.

    PubMed

    Wu, Zhenlong

    2018-06-01

    Drop impact on an airfoil surface takes place in drop-laden two-phase flow conditions such as rain and icing, which are encountered by wind turbines or airplanes. This phenomenon is characterized by complex nonlinear interactions that manifest rich flow physics and pose unique modeling challenges. In this article, the state of the art of the research about drop impact on airfoil surface in the natural drop-laden two-phase flow environment is presented. The potential flow physics, hazards, characteristic parameters, droplet trajectory calculation, drop impact dynamics and effects are discussed. The most key points in establishing the governing equations for a drop-laden flow lie in the modeling of raindrop splash and water film. The various factors affecting the drop impact dynamics and the effects of drop impact on airfoil aerodynamic performance are summarized. Finally, the principle challenges and future research directions in the field as well as some promising measures to deal with the adverse effects of drop-laden flows on airfoil performance are proposed. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. An item response theory analysis of Harter's Self-Perception Profile for children or why strong clinical scales should be distrusted.

    PubMed

    Egberink, Iris J L; Meijer, Rob R

    2011-06-01

    The authors investigated the psychometric properties of the subscales of the Self-Perception Profile for Children with item response theory (IRT) models using a sample of 611 children. Results from a nonparametric Mokken analysis and a parametric IRT approach for boys (n = 268) and girls (n = 343) were compared. The authors found that most scales formed weak scales and that measurement precision was relatively low and only present for latent trait values indicating low self-perception. The subscales Physical Appearance and Global Self-Worth formed one strong scale. Children seem to interpret Global Self-Worth items as if they measure Physical Appearance. Furthermore, the authors found that strong Mokken scales (such as Global Self-Worth) consisted mostly of items that repeat the same item content. They conclude that researchers should be very careful in interpreting the total scores on the different Self-Perception Profile for Children scales. Finally, implications for further research are discussed.

  14. Progress with high-field superconducting magnets for high-energy colliders

    DOE PAGES

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nbmore » $$_3$$Sn superconductors. Nb$$_3$$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$$_3$$Sn accelerator magnet research and development and work toward 20-T magnets.« less

  15. Laboratory and Space Plasma Studies

    NASA Astrophysics Data System (ADS)

    Hyman, Ellis

    1996-08-01

    The work performed by Science Applications International Corporation (SAIC), encompasses a wide range of topics in experimental, computational, and analytical laboratory and space plasma physics. The accomplishments described in this report have been in support of the programs of the Laser Plasma Branch (Code 6730) and other segments of the Plasma Physics Division at the Naval Research Laboratory (NRL) and cover the period 27 September 1993 to August 1, 1996. SAIC's efforts have been supported by sub-contracts or consulting agreements with Pulse Sciences, Inc., Clark Richardson, and Biskup Consulting Engineers, Pharos Technical Enterprises, Plex Corporation, Cornell University, Stevens Institute of Technology, the University of Connecticut, Plasma Materials and Technologies, Inc., and GaSonics International, Inc. In the following discussions section we will describe each of the topics investigated and the results obtained. Much of the research work has resulted in journal publications and NRL Memorandum Reports in which the investigation is described in detail. These reports are included as Appendices to this Final Report.

  16. A Framework for Analyzing Interdisciplinary Tasks: Implications for Student Learning and Curricular Design

    PubMed Central

    Gouvea, Julia Svoboda; Sawtelle, Vashti; Geller, Benjamin D.; Turpen, Chandra

    2013-01-01

    The national conversation around undergraduate science instruction is calling for increased interdisciplinarity. As these calls increase, there is a need to consider the learning objectives of interdisciplinary science courses and how to design curricula to support those objectives. We present a framework that can help support interdisciplinary design research. We developed this framework in an introductory physics for life sciences majors (IPLS) course for which we designed a series of interdisciplinary tasks that bridge physics and biology. We illustrate how this framework can be used to describe the variation in the nature and degree of interdisciplinary interaction in tasks, to aid in redesigning tasks to better align with interdisciplinary learning objectives, and finally, to articulate design conjectures that posit how different characteristics of these tasks might support or impede interdisciplinary learning objectives. This framework will be useful for both curriculum designers and education researchers seeking to understand, in more concrete terms, what interdisciplinary learning means and how integrated science curricula can be designed to support interdisciplinary learning objectives. PMID:23737627

  17. The role and position of passive intervertebral motion assessment within clinical reasoning and decision-making in manual physical therapy: a qualitative interview study.

    PubMed

    van Trijffel, Emiel; Plochg, Thomas; van Hartingsveld, Frank; Lucas, Cees; Oostendorp, Rob A B

    2010-06-01

    Passive intervertebral motion (PIVM) assessment is a characterizing skill of manual physical therapists (MPTs) and is important for judgments about impairments in spinal joint function. It is unknown as to why and how MPTs use this mobility testing of spinal motion segments within their clinical reasoning and decision-making. This qualitative study aimed to explore and understand the role and position of PIVM assessment within the manual diagnostic process. Eight semistructured individual interviews with expert MPTs and three subsequent group interviews using manual physical therapy consultation platforms were conducted. Line-by-line coding was performed on the transcribed data, and final main themes were identified from subcategories. Three researchers were involved in the analysis process. Four themes emerged from the data: contextuality, consistency, impairment orientedness, and subjectivity. These themes were interrelated and linked to concepts of professionalism and clinical reasoning. MPTs used PIVM assessment within a multidimensional, biopsychosocial framework incorporating clinical data relating to mechanical dysfunction as well as to personal factors while applying various clinical reasoning strategies. Interpretation of PIVM assessment and subsequent decisions on manipulative treatment were strongly rooted within practitioners' practical knowledge. This study has identified the specific role and position of PIVM assessment as related to other clinical findings within clinical reasoning and decision-making in manual physical therapy in The Netherlands. We recommend future research in manual diagnostics to account for the multivariable character of physical examination of the spine.

  18. The role and position of passive intervertebral motion assessment within clinical reasoning and decision-making in manual physical therapy: a qualitative interview study

    PubMed Central

    van Trijffel, Emiel; Plochg, Thomas; van Hartingsveld, Frank; Lucas, Cees; Oostendorp, Rob A B

    2010-01-01

    Passive intervertebral motion (PIVM) assessment is a characterizing skill of manual physical therapists (MPTs) and is important for judgments about impairments in spinal joint function. It is unknown as to why and how MPTs use this mobility testing of spinal motion segments within their clinical reasoning and decision-making. This qualitative study aimed to explore and understand the role and position of PIVM assessment within the manual diagnostic process. Eight semistructured individual interviews with expert MPTs and three subsequent group interviews using manual physical therapy consultation platforms were conducted. Line-by-line coding was performed on the transcribed data, and final main themes were identified from subcategories. Three researchers were involved in the analysis process. Four themes emerged from the data: contextuality, consistency, impairment orientedness, and subjectivity. These themes were interrelated and linked to concepts of professionalism and clinical reasoning. MPTs used PIVM assessment within a multidimensional, biopsychosocial framework incorporating clinical data relating to mechanical dysfunction as well as to personal factors while applying various clinical reasoning strategies. Interpretation of PIVM assessment and subsequent decisions on manipulative treatment were strongly rooted within practitioners’ practical knowledge. This study has identified the specific role and position of PIVM assessment as related to other clinical findings within clinical reasoning and decision-making in manual physical therapy in The Netherlands. We recommend future research in manual diagnostics to account for the multivariable character of physical examination of the spine. PMID:21655394

  19. Setting research priorities to improve the health of children and young people with neurodisability: a British Academy of Childhood Disability-James Lind Alliance Research Priority Setting Partnership.

    PubMed

    Morris, Christopher; Simkiss, Doug; Busk, Mary; Morris, Maureen; Allard, Amanda; Denness, Jacob; Janssens, Astrid; Stimson, Anna; Coghill, Joanna; Robinson, Kelly; Fenton, Mark; Cowan, Katherine

    2015-01-28

    To engage young people, parent carers and clinicians in a systematic process to identify and prioritise research questions regarding ways to improve the health and well-being of children and young people with neurodisability. British Academy of Childhood Disability (BACD)-James Lind Alliance research priority setting partnership bringing together patients, carers and clinicians as equal stakeholders. UK health service and community. The BACD Strategic Research Group formed the partnership. A Steering Group was established; charity and professional partner organisations were recruited. Suggestions were gathered in an open survey and from research recommendations for statutory guidance. Items were aggregated to formulate indicative research questions and verified as uncertainties from research evidence. An interim survey was used to rank the questions to shortlist topics. A mixed group of stakeholders discussed the top 25 questions at the final priority setting workshop agreeing a final rank order and the top 10 research priorities. Partner organisations were 13 charities and 8 professional societies. 369 people submitted suggestions (40% non-clinicians). 76 people participated in the interim prioritisation (26 parents, 1 young person, 10 charity representatives, 39 clinicians); 22 took part in the final workshop (3 young people, 7 parents, 3 charity representatives, 9 professionals). The top three research priorities related to (1) establishing the optimal frequency and intensity (dose) for mainstream therapies, (2) means for selecting and encouraging use of communication strategies and (3) ways to improve children's attitudes towards disability. The top 10 included evaluating interventions to promote mobility, self-efficacy, mental health, continence, physical fitness, educational inclusion and reduce impacts of sleep disturbance. The methodology provided a systematic and transparent process to identify research priorities that included stakeholders that have typically not contributed to setting the research agenda. The top 10 and other topics identified provide a resource for researchers and agencies that fund research. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  20. Assessment of computational issues associated with analysis of high-lift systems

    NASA Technical Reports Server (NTRS)

    Balasubramanian, R.; Jones, Kenneth M.; Waggoner, Edgar G.

    1992-01-01

    Thin-layer Navier-Stokes calculations for wing-fuselage configurations from subsonic to hypersonic flow regimes are now possible. However, efficient, accurate solutions for using these codes for two- and three-dimensional high-lift systems have yet to be realized. A brief overview of salient experimental and computational research is presented. An assessment of the state-of-the-art relative to high-lift system analysis and identification of issues related to grid generation and flow physics which are crucial for computational success in this area are also provided. Research in support of the high-lift elements of NASA's High Speed Research and Advanced Subsonic Transport Programs which addresses some of the computational issues is presented. Finally, fruitful areas of concentrated research are identified to accelerate overall progress for high lift system analysis and design.

  1. Testing the Standard Model and Fundamental Symmetries in Nuclear Physics with Lattice QCD and Effective Field Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walker-Loud, Andre

    The research supported by this grant is aimed at probing the limits of the Standard Model through precision low-energy nuclear physics. The work of the PI (AWL) and additional personnel is to provide theory input needed for a number of potentially high-impact experiments, notably, hadronic parity violation, Dark Matter direct detection and searches for permanent electric dipole moments (EDMs) in nucleons and nuclei. In all these examples, a quantitative understanding of low-energy nuclear physics from the fundamental theory of strong interactions, Quantum Chromo-Dynamics (QCD), is necessary to interpret the experimental results. The main theoretical tools used and developed in thismore » work are the numerical solution to QCD known as lattice QCD (LQCD) and Effective Field Theory (EFT). This grant is supporting a new research program for the PI, and as such, needed to be developed from the ground up. Therefore, the first fiscal year of this grant, 08/01/2014-07/31/2015, has been spent predominantly establishing this new research effort. Very good progress has been made, although, at this time, there are not many publications to show for the effort. After one year, the PI accepted a job at Lawrence Berkeley National Laboratory, so this final report covers just a single year of five years of the grant.« less

  2. Program of Fundamental-Interaction Research for the Ultracold-Neutron Source at the the WWR-M Reactor

    NASA Astrophysics Data System (ADS)

    Serebrov, A. P.

    2018-03-01

    The use of ultracold neutrons opens unique possibilities for studying fundamental interactions in particles physics. Searches for the neutron electric dipole moment are aimed at testing models of CP violation. A precise measurement of the neutron lifetime is of paramount importance for cosmology and astrophysics. Considerable advances in these realms can be made with the aid of a new ultracold-neutron (UCN) supersource presently under construction at Petersburg Nuclear Physics Institute. With this source, it would be possible to obtain an UCN density approximately 100 times as high as that at currently the best UCN source at the high-flux reactor of the Institute Laue-Langevin (ILL, Grenoble, France). To date, the design and basic elements of the source have been prepared, tests of a full-scale source model have been performed, and the research program has been developed. It is planned to improve accuracy in measuring the neutron electric dipole moment by one order of magnitude to a level of 10-27 to 10-28 e cm. This is of crucial importance for particle physics. The accuracy in measuring the neutron lifetime can also be improved by one order of magnitude. Finally, experiments that would seek neutron-antineutron oscillations by employing ultracold neutrons will become possible upon reaching an UCN density of 103 to 104 cm-3. The current status of the source and the proposed research program are discussed.

  3. Physical activity and breast cancer risk by pathological subtype.

    PubMed

    Lope, Virginia; Martín, Miguel; Castelló, Adela; Casla, Soraya; Ruiz, Amparo; Baena-Cañada, Jose Manuel; Casas, Ana Mª; Calvo, Lourdes; Bermejo, Begoña; Muñoz, Montserrat; Ramos, Manuel; de Juan-Ferré, Ana; Jara, Carlos; Antón, Antonio; Jimeno, Mª Ángeles; Lluch, Ana; Antolín, Silvia; García-Sáenz, José Ángel; Estévez, Purificación; Arriola-Arellano, Esperanza; Gavilá, Joaquín; Pérez-Gómez, Beatriz; Carrasco, Eva; Pollán, Marina

    2017-03-01

    To examine the influence of physical activity on breast cancer risk and evaluate whether adherence to international recommendations is associated with a decreased risk. This is a multicenter matched case-control study where 698 pairs completed a physical activity questionnaire. Recreational physical activity during the last year was quantified in metabolic equivalent hours per week (MET-h/week) and categorized in activities of moderate (3.0-5.9 MET) and vigorous (>6 MET) intensity. The adherence to World Cancer Research Fund and the American Institute for Cancer Research recommendation was also assessed. The association with breast cancer risk, overall and by pathologic subtype, was evaluated using conditional and multinomial logistic regression models. Mean MET-h/week was 16.6 among cases and 20.4 among controls. Premenopausal breast cancer risk decreased by 5% (P=0.007) for every 6 MET-h/week increase in energy expenditure. By contrast, postmenopausal women needed to do more intense exercise to observe benefits. The protection was more pronounced for nulliparous women, as well as for hormone receptor positive and HER2+ tumors. Physically inactive women displayed a 71% increased risk when compared with those who met the international recommendation (P=0.001). Finally, women who were inactive during the previous year, regardless of the overall physical activity reported in previous periods, showed an increased risk when compared to always active women. Women who report adherence to international physical activity recommendations entail a significant decrease in risk for all pathologic breast cancer subtypes. This is of particular interest in Spain, where a significant increase in overweight and obesity in recent decades is observed. Copyright © 2016. Published by Elsevier Inc.

  4. Personality disorders and physical comorbidities in adults from the United States: data from the National Epidemiologic Survey on Alcohol and Related Conditions.

    PubMed

    Quirk, Shae E; El-Gabalawy, Renée; Brennan, Sharon L; Bolton, James M; Sareen, Jitender; Berk, Michael; Chanen, Andrew M; Pasco, Julie A; Williams, Lana J

    2015-05-01

    There is a paucity of research examining the relationship between personality disorders (PDs) and chronic physical comorbidities. Consequently, we investigated associations between individual PDs and PD Clusters, and various common disease groups [cardiovascular disease (CVD), diabetes, arthritis and gastrointestinal disease (GI)] in a nationally representative survey of adults from the United States. This study utilized pooled data (n = 34,653; ≥20 years) from Waves 1 and 2 of the National Epidemiologic Survey on Alcohol and Related Conditions. PDs were assessed using the Alcohol Use Disorder and Associated Disabilities Interview Schedule- Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. Physical conditions were based on self-reports of being diagnosed by a health professional. Unadjusted and adjusted logistic regressions examined the relationship between PDs and physical conditions. After adjustment (sociodemographic factors, past-year mood, anxiety and substance use disorders), Clusters A, B and C PDs were each associated with physical conditions (all p ≤ 0.01). Of the individual PDs, schizoid, schizotypal, narcissistic, borderline and obsessive-compulsive PDs were associated with CVD (all p ≤ 0.01) among younger adults. Paranoid, antisocial, borderline and avoidant PDs and younger adults with schizoid, schizotypal and obsessive-compulsive PDs were each associated with arthritis (all p ≤ 0.01). Significant associations were seen between paranoid, schizoid and schizotypal PDs and diabetes (all p ≤ 0.01). Finally, schizotypal, antisocial, borderline and narcissistic PDs were associated with GI conditions (all p ≤ 0.01). PDs were consistently associated with physical conditions. Investigation of PDs and their relationship with physical health outcomes warrant further research attention as these findings have important clinical implications.

  5. PREFACE: Sixth International Conference on Dissociative Recombination: Theory, Experiments and Applications

    NASA Astrophysics Data System (ADS)

    Wolf, Andreas; Lammich, Lutz; Schmelcher, Peter

    2005-01-01

    Dissociative recombination between electrons and molecular ions is an elementary reaction in electron-induced chemistry attracting strong attention across discipline boundaries, from fundamental questions of intramolecular dynamics to astrophysics, plasma science, as well as atmospheric and planetary physics. The process is explored on the level of atomic quantum dynamics both experimentally and theoretically, employing cold collisions at temperatures down to 10 Kelvin involving small molecules or also very large systems ranging up to biomolecules. Dissociative recombination (DR) and related processes, such as dissociative excitation, collisional cooling of vibrations and rotations, photodissociation via high-lying electronic states, resonant electron attachment, and electron-induced processes in large molecules and clusters, are studied by a variety of experimental methods, including stored and trapped molecular ions, plasma techniques such as stationary and flowing afterglow, and laser spectroscopic diagnostic of molecular excitations. The Sixth International Conference on Dissociative Recombination: Theory, Experiments and Applications (DR2004) was organized by the Research Group on Atomic and Molecular Physics with Stored Ions at the Max-Planck Institute for Nuclear Physics in Heidelberg, Germany, and held near Heidelberg in the town of Mosbach in July 2004. It was attended by about 90 scientists working in atomic and molecular physics, astrophysics, plasma- and biophysics. International Conferences on Dissociative Recombination and related processes were held before at Lake Louise, Alberta, Canada (1988), Saint Jacut, Brittany, France (1992), Ein Gedi, Israel (1995), Nässlingen, Stockholm Archipelago, Sweden (1999), and last within a symposium at the American Chemical Society meeting in Chicago, USA (2001). The presentations of this conference document a strong development of theoretical ideas towards the understanding of DR in particular in polyatomic systems. Strong attention was given to the elementary triatomic benchmark system H3+, characterized by ambitious, complementary experimental projects. Interaction of experiment and theory improves in particular the understanding of non-adiabatic molecular interactions involving electronic continuum states. New experimental techniques focus on a detailed control of the internal molecular excitation on the level of single quantum states, which gives increasing importance to laser interactions and ion storage at cryogenic temperatures. Apart from its place in the series of "DR conferences", this meeting is also the final assembly of the EU Research Training Network "Electron Transfer Reactions" (ETR) which in the period from 2000 to 2004 helped to establish many invaluable links between 15 experimental and theoretical institutes active in the field of DR and related processes. We express our gratitude to the EU for the support through the Research Training Network Programme, which has made possible the attendance of many students and young researchers. Furthermore, generous financial support for this conference was provided by the Max-Planck Institute for Nuclear Physics in Heidelberg. The efficient support of the conference center "Alte Mälzerei", operated by the city of Mosbach, is gratefully acknowledged. Finally we warmly thank the staff and the students of the Max-Planck Institute for Nuclear Physics for the dedicated help during the conference.

  6. The association between physical activity and neck and low back pain: a systematic review.

    PubMed

    Sitthipornvorakul, Ekalak; Janwantanakul, Prawit; Purepong, Nithima; Pensri, Praneet; van der Beek, Allard J

    2011-05-01

    The effect of physical activity on neck and low back pain is still controversial. No systematic review has been conducted on the association between daily physical activity and neck and low back pain. The objective of this study was to evaluate the association between physical activity and the incidence/prevalence of neck and low back pain. Publications were systematically searched from 1980 to June 2009 in several databases. The following key words were used: neck pain, back pain, physical activity, leisure time activity, daily activity, everyday activity, lifestyle activity, sedentary, and physical inactivity. A hand search of relevant journals was also carried out. Relevant studies were retrieved and assessed for methodological quality by two independent reviewers. The strength of the evidence was based on methodological quality and consistency of the results. Seventeen studies were included in this review, of which 13 were rated as high-quality studies. Of high-quality studies, there was limited evidence for no association between physical activity and neck pain in workers and strong evidence for no association in school children. Conflicting evidence was found for the association between physical activity and low back pain in both general population and school children. Literature with respect to the effect of physical activity on neck and low back pain was too heterogeneous and more research is needed before any final conclusion can be reached.

  7. Hypothesis-driven physical examination curriculum.

    PubMed

    Allen, Sharon; Olson, Andrew; Menk, Jeremiah; Nixon, James

    2017-12-01

    Medical students traditionally learn physical examination skills as a rote list of manoeuvres. Alternatives like hypothesis-driven physical examination (HDPE) may promote students' understanding of the contribution of physical examination to diagnostic reasoning. We sought to determine whether first-year medical students can effectively learn to perform a physical examination using an HDPE approach, and then tailor the examination to specific clinical scenarios. Medical students traditionally learn physical examination skills as a rote list of manoeuvres CONTEXT: First-year medical students at the University of Minnesota were taught both traditional and HDPE approaches during a required 17-week clinical skills course in their first semester. The end-of-course evaluation assessed HDPE skills: students were assigned one of two cardiopulmonary cases. Each case included two diagnostic hypotheses. During an interaction with a standardised patient, students were asked to select physical examination manoeuvres in order to make a final diagnosis. Items were weighted and selection order was recorded. First-year students with minimal pathophysiology performed well. All students selected the correct diagnosis. Importantly, students varied the order when selecting examination manoeuvres depending on the diagnoses under consideration, demonstrating early clinical decision-making skills. An early introduction to HDPE may reinforce physical examination skills for hypothesis generation and testing, and can foster early clinical decision-making skills. This has important implications for further research in physical examination instruction. © 2016 John Wiley & Sons Ltd and The Association for the Study of Medical Education.

  8. Gravitational Waves from Neutron Stars

    NASA Astrophysics Data System (ADS)

    Kokkotas, Konstantinos

    2016-03-01

    Neutron stars are the densest objects in the present Universe, attaining physical conditions of matter that cannot be replicated on Earth. These unique and irreproducible laboratories allow us to study physics in some of its most extreme regimes. More importantly, however, neutron stars allow us to formulate a number of fundamental questions that explore, in an intricate manner, the boundaries of our understanding of physics and of the Universe. The multifaceted nature of neutron stars involves a delicate interplay among astrophysics, gravitational physics, and nuclear physics. The research in the physics and astrophysics of neutron stars is expected to flourish and thrive in the next decade. The imminent direct detection of gravitational waves will turn gravitational physics into an observational science, and will provide us with a unique opportunity to make major breakthroughs in gravitational physics, in particle and high-energy astrophysics. These waves, which represent a basic prediction of Einstein's theory of general relativity but have yet to be detected directly, are produced in copious amounts, for instance, by tight binary neutron star and black hole systems, supernovae explosions, non-axisymmetric or unstable spinning neutron stars. The focus of the talk will be on the neutron star instabilities induced by rotation and the magnetic field. The conditions for the onset of these instabilities and their efficiency in gravitational waves will be presented. Finally, the dependence of the results and their impact on astrophysics and especially nuclear physics will be discussed.

  9. Impacts of curatorial and research practices on the preservation of fossil hominid remains.

    PubMed

    Le Cabec, Adeline; Toussaint, Michel

    2017-12-30

    Fossil remains are the only physical evidence of past forms of life which researchers can use to study the evolutionary biology of a species, especially regarding the human lineage. We review and consider the way in which the conditions surrounding a fossil's discovery and its use for scientific research impacts its long-term preservation. The deterioration of the body starts soon after death, continues in the sediments and only a subsample of the anatomical elements will persist and may finally be unearthed by archeologists. From their recovery onwards, fossil remains are exposed to many sources of further damage: from handling, restoration, measuring to invasive sampling. On the one hand, curators are faced with the inherent challenge of balancing their responsibility to protect fossil specimens with allowing researchers to perform specific analyses or invasive sampling detrimental to the preservation of the fossil. On the other hand, scientists may find their analyses complicated by multiple factors including taphonomy, or restoration techniques (e.g., consolidants, cleaning chemicals). We provide several historical examples illustrating the complex nature of the factors acting on fossil preservation. We discuss concerns about producing and sharing (digital) data from fossils. Finally, we also suggest and support some curatorial practices which maximize the traceability of treatments underwent by a fossil.

  10. Development of a theater-based nutrition and physical activity intervention for low-income, urban, African American adolescents.

    PubMed

    Jackson, Caree J; Mullis, Rebecca M; Hughes, Marilyn

    2010-01-01

    Childhood overweight is disproportionately worse in minority and low-income populations. Theater is a promising and effective tool for delivering health education to these underserved populations, but no known studies have examined the use of theater to promote both nutrition and physical activity to minority youth. To develop an interactive, theater-based intervention that conveys health messages to low-income, urban, African Americans and engages them in learning ways to adopt a healthy lifestyle. Community partners worked to develop a theater-based nutrition and physical activity intervention. A focus group provided urban adolescents' thoughts about their desires for the intervention. Based on input from all community partners, the group created a theater-based intervention. Researchers used a quasi-experimental (pre-/posttest) design with a community-based participatory research (CBPR) approach. Participants learned health messages through theater, dance, and music and gave feedback on the program sessions and materials. The program ended with a dinner theater performance showcasing information that students learned during the intervention. Participants received six theater-based health lessons. Learning objectives for each health education session were achieved. Each participant contributed to and performed in the final performance. All program participants were highly satisfied with the theater-based method of learning health messages. A community-academic partnership succeeded in developing a theater-based nutrition and physical activity intervention that satisfied participating adolescents.

  11. [Nucleosynthesis, Rotation and Magnetism in Accreting Neutron Stars

    NASA Technical Reports Server (NTRS)

    Bildsten, Lars

    2004-01-01

    This is my final report on the NASA ATP grant on nucleosynthesis, rotation and magnetism in accreting neutron stars (NAG5-8658). In my last two reports, I summarized the science that I have accomplished, which covered a large range of topics. For this report, I want to point out the graduate students that were partially supported on this grant and where they are now. Andrew Cumming is an Assistant Professor of Physics at McGill University, Greg Ushomirsky is a researcher at MIT s Lincoln Laboratories, Dean Townsley is a postdoctoral researcher at Univ. of Chicago, Chris Deloye is a postdoctoral researcher at Northwestern University. The other two students, Phil Chang and Tony Piro, are still at UCSB and will be completing their PhD s in Summer 05 and Summer 06.

  12. The CP-PACS project

    NASA Astrophysics Data System (ADS)

    Iwasaki, Y.; CP-PACS Collaboration

    1998-01-01

    The CP-PACS project is a five year plan, which formally started in April 1992 and has been completed in March 1997, to develop a massively parallel computer for carrying out research in computational physics with primary emphasis on lattice QCD. The initial version of the CP-PACS computer with a theoretical peak speed of 307 GFLOPS with 1024 processors was completed in March 1996. The final version with a peak speed of 614 GFLOPS with 2048 processors was completed in September 1996, and has been in full operation since October 1996. We describe the architecture, the final specification, the hardware implementation, and the software of the CP-PACS computer. The CP-PACS has been used for hadron spectroscopy production runs since July 1996. The performance for lattice QCD applications and the LINPACK benchmark are given.

  13. Nicholas Metropolis Award for Outstanding Doctoral Thesis Work in Computational Physics: Quantum many-body physics of ultracold molecules in optical lattices: models and simulation methods

    NASA Astrophysics Data System (ADS)

    Wall, Michael

    2014-03-01

    Experimental progress in generating and manipulating synthetic quantum systems, such as ultracold atoms and molecules in optical lattices, has revolutionized our understanding of quantum many-body phenomena and posed new challenges for modern numerical techniques. Ultracold molecules, in particular, feature long-range dipole-dipole interactions and a complex and selectively accessible internal structure of rotational and hyperfine states, leading to many-body models with long range interactions and many internal degrees of freedom. Additionally, the many-body physics of ultracold molecules is often probed far from equilibrium, and so algorithms which simulate quantum many-body dynamics are essential. Numerical methods which are to have significant impact in the design and understanding of such synthetic quantum materials must be able to adapt to a variety of different interactions, physical degrees of freedom, and out-of-equilibrium dynamical protocols. Matrix product state (MPS)-based methods, such as the density-matrix renormalization group (DMRG), have become the de facto standard for strongly interacting low-dimensional systems. Moreover, the flexibility of MPS-based methods makes them ideally suited both to generic, open source implementation as well as to studies of the quantum many-body dynamics of ultracold molecules. After introducing MPSs and variational algorithms using MPSs generally, I will discuss my own research using MPSs for many-body dynamics of long-range interacting systems. In addition, I will describe two open source implementations of MPS-based algorithms in which I was involved, as well as educational materials designed to help undergraduates and graduates perform research in computational quantum many-body physics using a variety of numerical methods including exact diagonalization and static and dynamic variational MPS methods. Finally, I will mention present research on ultracold molecules in optical lattices, such as the exploration of many-body physics with polyatomic molecules, and the next generation of open source matrix product state codes. This work was performed in the research group of Prof. Lincoln D. Carr.

  14. Correlating student interest and high school preparation with learning and performance in an introductory university physics course

    NASA Astrophysics Data System (ADS)

    Harlow, Jason J. B.; Harrison, David M.; Meyertholen, Andrew

    2014-06-01

    We have studied the correlation of student performance in a large first year university physics course with their reasons for taking the course and whether or not the student took a senior-level high school physics course. Performance was measured both by the Force Concept Inventory and by the grade on the final examination. Students who took the course primarily for their own interest outperformed students who took the course primarily because it was required, both on the Force Concept Inventory and on the final examination; students who took a senior-level high school physics course outperformed students who did not, also both on the Force Concept Inventory and on the final exam. Students who took the course for their own interest and took high school physics outperformed students who took the course because it was required and did not take high school physics by a wide margin. However, the normalized gain on the Force Concept Inventory was the same within uncertainties for all groups and subgroups of students.

  15. Robot design for a vacuum environment

    NASA Technical Reports Server (NTRS)

    Belinski, S.; Trento, W.; Imani-Shikhabadi, R.; Hackwood, S.

    1987-01-01

    The cleanliness requirements for many processing and manufacturing tasks are becoming ever stricter, resulting in a greater interest in the vacuum environment. Researchers discuss the importance of this special environment, and the development of robots which are physically and functionally suited to vacuum processing tasks. Work is in progress at the Center for robotic Systems in Microelectronics (CRSM) to provide a robot for the manufacture of a revolutionary new gyroscope in high vacuum. The need for vacuum in this and other processes is discussed as well as the requirements for a vacuum-compatible robot. Finally, researchers present details on work done at the CRSM to modify an existing clean-room compatible robot for use at high vacuum.

  16. Final Report - X-ray Studies of Highly Correlated Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burns, Clement

    2017-11-27

    The overall goal of the research was to improve the capabilities of x-ray synchrotron instrumentation to enable cutting-edge research in condensed matter physics. The main goal of the current grant cycle was to find a method to measure the polarization of the scattered x-ray in resonant inelastic x-ray scattering. To do this, we developed a polarization analysis apparatus using a thin, toroidally bent single crystal, which could be set to reflect one or the other of the two polarization components in the scattered x-ray beam. Resonant x-ray scattering measurements were also carried out on interfaces and the charge density wavemore » in high temperature superconducting materials.« less

  17. Tissue Doppler and strain imaging: anything left in the echo-lab?

    PubMed Central

    Citro, Rodolfo; Bossone, Eduardo; Kuersten, Bettina; Gregorio, Giovanni; Salustri, Alessandro

    2008-01-01

    Medline research indicates that an increasing number of manuscripts have been published in the last decade claiming, the feasibility and the potential clinical role of tissue Doppler and strain/strain rate imaging. However, despite this amount of scientific evidence, these technologies are still confined to dedicated, high-tech, research-oriented echocardiography laboratories. In this review we have critically evaluated these techniques, analysing their physical principles, the technical problems related to their current clinical application, and the future perspectives. Finally, this review explores the reasons why these technologies are still defined "new technologies" and the impact of their implementation on the current clinical activity of an echocardiography laboratory. PMID:18973677

  18. Space physics education via examples in the undergraduate physics curriculum

    NASA Astrophysics Data System (ADS)

    Martin, R.; Holland, D. L.

    2011-12-01

    The field of space physics is rich with examples of basic physics and analysis techniques, yet it is rarely seen in physics courses or textbooks. As space physicists in an undergraduate physics department we like to use research to inform teaching, and we find that students respond well to examples from magnetospheric science. While we integrate examples into general education courses as well, this talk will focus on physics major courses. Space physics examples are typically selected to illustrate a particular concept or method taught in the course. Four examples will be discussed, from an introductory electricity and magnetism course, a mechanics/nonlinear dynamics course, a computational physics course, and a plasma physics course. Space physics provides examples of many concepts from introductory E&M, including the application of Faraday's law to terrestrial magnetic storm effects and the use of the basic motion of charged particles as a springboard to discussion of the inner magnetosphere and the aurora. In the mechanics and nonlinear dynamics courses, the motion of charged particles in a magnetotail current sheet magnetic field is treated as a Newtonian dynamical system, illustrating the Poincaré surface-of-section technique, the partitioning of phase space, and the KAM theorem. Neural network time series analysis of AE data is used as an example in the computational physics course. Finally, among several examples, current sheet particle dynamics is utilized in the plasma physics course to illustrate the notion of adiabatic/guiding center motion and the breakdown of the adiabatic approximation. We will present short descriptions of our pedagogy and student assignments in this "backdoor" method of space physics education.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, J.H.; Im, C.J.

    Under the sponsorship of DOE/METC, UCC Research completed a program in 1984 concerned with the development, testing, and manufacture of an ultra-clean coal-water mixture fuel using the UCC two-stage physical beneficiation and coal-water mixture preparation process. Several gallons of ultra-clean coal-water slurry produced at the UCC Research pilot facility was supplied to DOE/METC for combustion testing. The finalization of this project resulted in the presentation of a conceptual design and economic analysis of an ultra-clean coal-water mixture processing facility sufficient in size to continuously supply fuel to a 100 MW turbine power generation system. Upon completion of the above program,more » it became evident that substantial technological and economic improvement could be realized through further laboratory and engineering investigation of the UCC two-stage physical beneficiation process. Therefore, as an extension to the previous work, the purpose of the present program was to define the relationship between the controlling technical parameters as related to coal-water slurry quality and product price, and to determine the areas of improvement in the existing flow-scheme, associated cost savings, and the overall effect of these savings on final coal-water slurry price. Contents of this report include: (1) introduction; (2) process refinement (improvement of coal beneficiation process, different source coals and related cleanability, dispersants and other additives); (3) coal beneficiation and cost parametrics summary; (4) revised conceptual design and economic analysis; (5) operating and capital cost reduction; (6) conclusion; and (7) appendices. 24 figs., 12 tabs.« less

  20. Project Target: Criterion-Referenced Physical Fitness Standards for Adolescents with Disabilities. Final Report.

    ERIC Educational Resources Information Center

    Winnick, Joseph P.; Short, Francis X.

    This final report discusses the outcomes of a project designed to extend the nation's current emphasis on health-related, criterion-referenced fitness testing and programming to children and adolescents with disabilities. It summarizes project activities leading up to the Brockport Physical Fitness Test and related measures. Activities included:…

  1. Final Report May 1, 2012 to May 31, 2015: "Theoretical Studies in Elementary Particle Physics"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, John C.; Roiban, Radu

    2015-08-19

    This final report summarizes work at Penn State University from May 1, 2012 to May 31, 2015. The work was in theoretical elementary particle physics. Many new results in perturbative QCD, in string theory, and in related areas were obtained, with a substantial impact on the experimental program.

  2. Progress in thermal comfort research over the last twenty years.

    PubMed

    de Dear, R J; Akimoto, T; Arens, E A; Brager, G; Candido, C; Cheong, K W D; Li, B; Nishihara, N; Sekhar, S C; Tanabe, S; Toftum, J; Zhang, H; Zhu, Y

    2013-12-01

    Climate change and the urgency of decarbonizing the built environment are driving technological innovation in the way we deliver thermal comfort to occupants. These changes, in turn, seem to be setting the directions for contemporary thermal comfort research. This article presents a literature review of major changes, developments, and trends in the field of thermal comfort research over the last 20 years. One of the main paradigm shift was the fundamental conceptual reorientation that has taken place in thermal comfort thinking over the last 20 years; a shift away from the physically based determinism of Fanger's comfort model toward the mainstream and acceptance of the adaptive comfort model. Another noticeable shift has been from the undesirable toward the desirable qualities of air movement. Additionally, sophisticated models covering the physics and physiology of the human body were developed, driven by the continuous challenge to model thermal comfort at the same anatomical resolution and to combine these localized signals into a coherent, global thermal perception. Finally, the demand for ever increasing building energy efficiency is pushing technological innovation in the way we deliver comfortable indoor environments. These trends, in turn, continue setting the directions for contemporary thermal comfort research for the next decades. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Developing Bridges from Earth Magnetism Research to Pre-College Physics Education

    NASA Astrophysics Data System (ADS)

    Anderson, K.; Smirnov, A. V.; Bluth, G. J.; Schepke, C.; Piispa, E. J.

    2012-12-01

    We present a 5-year NSF CAREER project incorporating educational outreach for high school science teachers. Teachers are integrated into field and research components of this project in order to provide the most meaningful and classroom-translatable experience. The associated research project is aimed at quantifying the strength and morphology of the Precambrian geomagnetic field via detailed paleomagnetic analyses of reliably dated mafic sequences known to contain pristine paleomagnetic records. Investigation of the geomagnetic field behavior is crucial for understanding the mechanisms of field generation, has important implications for the development of the Earth's atmosphere and biosphere, and can serve as a focus for connecting high-level Earth science research with a standard physics curriculum. Educational outreach objectives include developing effective methods for pre-college physics teachers to gain the experience and expertise to (1) use paleomagnetic research to motivate and help students understand the physics of magnetism, from microscopic to planetary scales; (2) transfer key experiences of scientific processes to classroom activities, specifically the skills of patience, innovation, flexibility, and collaboration; and (3) help students integrate mathematics and physics into logical problem-solving approaches. Because the teacher participants are directly involved with our research, they are able to provide significant contributions to project outreach and dissemination efforts. This year's work focused on sampling and analyzing mafic dikes from northern Wisconsin and Michigan. The summer phase featured a 3-week field/lab/classroom session. In week one, a 4-person field team (including two teacher participants) conducted field work - the small size of the team ensured that every participant gained skills on aspects of site location, rock identification, and paleomagnetic field procedures. During week two, participants gained proficiency at processing samples, magnetic characterization, and demagnetization experiments in an effort to characterize the orientation and strength of the Earth's magnetic field at the time of rock formation. In week three, the team analyzed data and developed classroom activities to transfer experiences to the pre-college physics classroom. Teacher researchers will work throughout the project's duration to apply and monitor the effectiveness of these efforts. During the next several years, new teams of teacher researchers will help advance this project with work in Arizona, Canada, and Minnesota, ending with a reunion of all participants back to Michigan Tech during the final year for an exchange of outcomes, both from the classroom and the university. Close collaboration with all cohorts will be maintained by participation at scientific and educational meetings, publication in research and education journals, etc. Outcomes from this outreach program will be made available to the scientific and education communities with the hope of creating an accessible and meaningful vehicle by which the intricacies of Earth magnetism can be conveyed to the next generation.

  4. Managing climate change refugia for climate adaptation

    USGS Publications Warehouse

    Morelli, Toni L.; Jackson, Stephen T.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  5. Boron neutron capture therapy (BNCT) in Finland: technological and physical prospects after 20 years of experiences.

    PubMed

    Savolainen, Sauli; Kortesniemi, Mika; Timonen, Marjut; Reijonen, Vappu; Kuusela, Linda; Uusi-Simola, Jouni; Salli, Eero; Koivunoro, Hanna; Seppälä, Tiina; Lönnroth, Nadja; Välimäki, Petteri; Hyvönen, Heini; Kotiluoto, Petri; Serén, Tom; Kuronen, Antti; Heikkinen, Sami; Kosunen, Antti; Auterinen, Iiro

    2013-05-01

    Boron Neutron Capture Therapy (BNCT) is a binary radiotherapy method developed to treat patients with certain malignant tumours. To date, over 300 treatments have been carried out at the Finnish BNCT facility in various on-going and past clinical trials. In this technical review, we discuss our research work in the field of medical physics to form the groundwork for the Finnish BNCT patient treatments, as well as the possibilities to further develop and optimize the method in the future. Accordingly, the following aspects are described: neutron sources, beam dosimetry, treatment planning, boron imaging and determination, and finally the possibilities to detect the efficacy and effects of BNCT on patients. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Energy Frontier Research With ATLAS: Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butler, John; Black, Kevin; Ahlen, Steve

    2016-06-14

    The Boston University (BU) group is playing key roles across the ATLAS experiment: in detector operations, the online trigger, the upgrade, computing, and physics analysis. Our team has been critical to the maintenance and operations of the muon system since its installation. During Run 1 we led the muon trigger group and that responsibility continues into Run 2. BU maintains and operates the ATLAS Northeast Tier 2 computing center. We are actively engaged in the analysis of ATLAS data from Run 1 and Run 2. Physics analyses we have contributed to include Standard Model measurements (W and Z cross sections,more » t\\bar{t} differential cross sections, WWW^* production), evidence for the Higgs decaying to \\tau^+\\tau^-, and searches for new phenomena (technicolor, Z' and W', vector-like quarks, dark matter).« less

  7. Chirality and gravitational parity violation.

    PubMed

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. © 2015 Wiley Periodicals, Inc.

  8. Managing Climate Change Refugia for Climate Adaptation.

    PubMed

    Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  9. Managing Climate Change Refugia for Climate Adaptation

    PubMed Central

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  10. Dual-surface dielectric depth detector for holographic millimeter-wave security scanners

    NASA Astrophysics Data System (ADS)

    McMakin, Douglas L.; Keller, Paul E.; Sheen, David M.; Hall, Thomas E.

    2009-05-01

    The Transportation Security Administration (TSA) is presently deploying millimeter-wave whole body scanners at over 20 airports in the United States. Threats that may be concealed on a person are displayed to the security operator of this scanner. "Passenger privacy is ensured through the anonymity of the image. The officer attending the passenger cannot view the image, and the officer viewing the image is remotely located and cannot see the passenger. Additionally, the image cannot be stored, transmitted or printed and is deleted immediately after being viewed. Finally, the facial area of the image has been blurred to further ensure privacy." Pacific Northwest National Laboratory (PNNL) originated research into this novel security technology which has been independently commercialized by L-3 Communications, SafeView, Inc. PNNL continues to perform fundamental research into improved software techniques which are applicable to the field of holographic security screening technology. This includes performing significant research to remove human features from the imagery. Both physical and software imaging techniques have been employed. The physical imaging techniques include polarization diversity illumination and reception, dual frequency implementation, and high frequency imaging at 100 GHz. This paper will focus on a software privacy technique using a dual surface dielectric depth detector method.

  11. Phosphorene for energy and catalytic application—filling the gap between graphene and 2D metal chalcogenides

    NASA Astrophysics Data System (ADS)

    Jain, Rishabh; Narayan, Rekha; Padmajan Sasikala, Suchithra; Lee, Kyung Eun; Jung, Hong Ju; Ouk Kim, Sang

    2017-12-01

    Phosphorene, a newly emerging graphene analogous 2D elemental material of phosphorous atoms, is unique on the grounds of its natural direct band gap opening, highly anisotropic and extraordinary physical properties. This review highlights the current status of phosphorene research in energy and catalytic applications. The initial part illustrates the typical physical properties of phosphorene, which successfully bridge the prolonged gap between graphene and 2D metal chalcogenides. Various synthetic methods available for black phosphorus (BP) and the exfoliation/growth techniques for single to few-layer phosphorene are also overviewed. The latter part of this review details the working mechanisms and performances of phosphorene/BP in batteries, supercapacitors, photocatalysis, and electrocatalysis. Special attention has been paid to the research efforts to overcome the inherent shortcomings faced by phosphorene based devices. The relevant device performances are compared with graphene and 2D metal chalcogenides based counterparts. Furthermore, the underlying mechanism behind the unstable nature of phosphorene under ambient condition is discussed along with the various approaches to avoid ambient degradation. Finally, comments are offered for the future prospective explorations and outlook as well as challenges lying in the road ahead for phosphorene research.

  12. Shadow Formation at Preschool from a Socio-materiality Perspective

    NASA Astrophysics Data System (ADS)

    Impedovo, Maria Antonietta; Delserieys-Pedregosa, Alice; Jégou, Corinne; Ravanis, Konstantinos

    2017-06-01

    The paper is set in socio-material farming to offer a way of conceptualising actions and interactions of children in preschool involved in the understanding of scientific concepts. A model of early science education about the physical phenomena of shadow formation is implemented in group work in a French context. The research involved 44 children (13 females and 31 males) of 5-6 years old. The research design was organised in three video recording steps: pre-test, teaching session and post-test. We focus on the analysis of nine teaching sessions to investigate children's `understanding' of shadow formation. A descriptive and qualitative approach was used. In particular, we have identified three main categories (the interaction of the children with the tools, the embodiment and verbal dimension)—with respective indicators—to perform the analysis. From the results, all the categories explored seem to influence each other: all material, human and social dimensions contribute to the children's understanding of shadow formation. Also we have identified some elements that can serve as a potential source of improvement of the teaching session on shadow formation. Finally, the research provides insights on how to improve science activities in preschool with the aim of supporting early understanding of physical phenomena.

  13. Integration of topological modification within the modeling of multi-physics systems: Application to a Pogo-stick

    NASA Astrophysics Data System (ADS)

    Abdeljabbar Kharrat, Nourhene; Plateaux, Régis; Miladi Chaabane, Mariem; Choley, Jean-Yves; Karra, Chafik; Haddar, Mohamed

    2018-05-01

    The present work tackles the modeling of multi-physics systems applying a topological approach while proceeding with a new methodology using a topological modification to the structure of systems. Then the comparison with the Magos' methodology is made. Their common ground is the use of connectivity within systems. The comparison and analysis of the different types of modeling show the importance of the topological methodology through the integration of the topological modification to the topological structure of a multi-physics system. In order to validate this methodology, the case of Pogo-stick is studied. The first step consists in generating a topological graph of the system. Then the connectivity step takes into account the contact with the ground. During the last step of this research; the MGS language (Modeling of General System) is used to model the system through equations. Finally, the results are compared to those obtained by MODELICA. Therefore, this proposed methodology may be generalized to model multi-physics systems that can be considered as a set of local elements.

  14. The influence of school furniture on students' performance and physical responses: results of a systematic review.

    PubMed

    Castellucci, H I; Arezes, P M; Molenbroek, J F M; de Bruin, R; Viviani, C

    2017-01-01

    The purpose of this study was to determine, using a systematic review, whether the design and/or dimensions of school furniture affect the students' physical responses and/or their performance. Of the review studies, 64% presented positive results, i.e. proven effects; 24% presented negative effects or no change/effect; and the remaining 12% showed an unclear effect. The compatibility between school furniture dimensions and students' anthropometric characteristics was identified as a key factor for improving some students' physical responses. Design characteristics such as high furniture, sit-stand furniture, and tilt tables and seats also present positive effects. Finally, we concluded that further research should be conducted exploring various aspects of those variables, particularly focusing on more objective measures complemented by controlled and prospective design. Practitioner Summary: A systematic review of the literature presents a clearly positive effect of school furniture dimensions on students' performance and physical responses. Similar results appeared when school furniture design was tested. However, studying the effects of design and dimensions together produced an unclear positive effect.

  15. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP, VOLUME 57, HIGH PT PHYSICS AT RHIC, DECEMBER 2-6, 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kretzer, Stefan; Venugopalan, Raju; Vogelsang, Werner

    The AuAu, dAu, and pp collision modes of the RHIC collider at BNL have led to the publication of exciting high p{perpendicular} particle production data. There have also been two physics runs with polarized protons, and preliminary results on the double-spin asymmetry for pion production had been presented very recently. The ontological questions behind these measurements are fascinating: Did RHIC collisions create a Quark-Gluon-Plasma phase and did they verify the Color Glass Condensate as the high energy limit of QCD? Will the Spin Crisis finally be resolved in terms of gluon polarization and what new surprises are we yet tomore » meet for Transverse Spin? Phenomena related to sub-microscopic questions as important as these call for interpretations that are footed in solid theory. At large p{perpendicular}, perturbative concepts are legitimately expected to provide useful approaches. The corresponding hard parton dynamics are, in several ways, key to unraveling the initial or final state and collisional phase of hard scattering events in vacuum as well as in hot or cold nuclear matter. Before the advent of RHIC data, a RIKEN-BNL workshop had been held at BNL in March 1999 on ''Hard Parton Physics in High Energy Nuclear Collisions''. The 2003 workshop on ''High p{perpendicular} Physics at RHIC'' was a logical continuation of this previous workshop. It gave the opportunity to revisit the 1999 expectations in the light of what has been found in the meantime and, at the same time, to critically discuss the underlying theoretical concepts. We brought together theorists who have done seminal work on the foundations of parton phenomenology in field theory, with theorists and experimentalists who are presently working on RHIC phenomenology. The participants were both from a high-energy physics and nuclear physics background and it remains only to be said here that this chemistry worked perfectly and the workshop was a great success.« less

  16. The Role of Habit and Perceived Control on Health Behavior among Pregnant Women.

    PubMed

    Mullan, Barbara; Henderson, Joanna; Kothe, Emily; Allom, Vanessa; Orbell, Sheina; Hamilton, Kyra

    2016-05-01

    Many pregnant women do not adhere to physical activity and dietary recommendations. Research investigating what psychological processes might predict physical activity and healthy eating (fruit and vegetable consumption) during pregnancy is scant. We explored the role of intention, habit, and perceived behavioral control as predictors of physical activity and healthy eating. Pregnant women (N = 195, Mage = 30.17, SDage = 4.46) completed questionnaires at 2 time points. At Time 1, participants completed measures of intention, habit, and perceived behavioral control. At Time 2, participants reported on their behavior (physical activity and healthy eating) within the intervening week. Regression analysis determined whether Time 1 variables predicted behavior at Time 2. Interaction terms also were tested. Final regression models indicated that only intention and habit explained significant variance in physical activity, whereas habit and the interaction between intention and habit explained significant variance in healthy eating. Simple slopes analysis indicated that the relationship between intention and healthy eating behavior was only significant at high levels of habit. Findings highlight the influence of habit on behavior and suggest that automaticity interventions may be useful in changing health behaviors during pregnancy.

  17. Graduate Physics Education Adding Industrial Culture and Methods to a Traditional Graduate Physics Department

    NASA Astrophysics Data System (ADS)

    Vickers, Ken

    2005-03-01

    The education and training of the workforce needed to assure global competitiveness of American industry in high technology areas, along with the proper role of various disciplines in that educational process, is currently being re-examined. Several academic areas in science and engineering have reported results from such studies that revealed several broad themes of educational need that span and cross the boundaries of science and engineering. They included greater attention to and the development of team-building skills, personal or interactive skills, creative ability, and a business or entrepreneurial where-with-all. We will report in this paper the results of a fall 2000 Department of Education FIPSE grant to implement changes in its graduate physics program to address these issues. The proposal goal was to produce next-generation physics graduate students that are trained to evaluate and overcome complex technical problems by their participation in courses emphasizing the commercialization of technology research. To produce next-generation physics graduates who have learned to work with their student colleagues for their mutual success in an industrial-like group setting. And finally, to produce graduates who can lead interdisciplinary groups in solving complex problems in their career field.

  18. Development of strategies for changing in physical activity behaviors on older adults with disabilities

    PubMed Central

    Koo, Kyo-Man; Park, Chae-Hee; Kim, Chun-Jong

    2017-01-01

    The purpose of this study was to develop strategies for promoting physical activity for the disabled older adults who were in the transtheoretical model of precontemplation, contemplation, and preparation stages about participating physical activities for promoting healthy life-styles. In order to achieve this goal, we developed a preliminary strategy for promoting physical activity for the elderly with disabilities based on the data gathered through the ground-work studies and the results of the research on the changes of the exercise behavior directly investigated from the elderly with disabilities. Then the strategies were verified to completion of the final promoting strategies. The elderly with disabilities in the three stages of precontemplation, contemplation, and preparation should develop strategies to think positively about themselves and their surroundings as well as strengthen their appropriate healthy behaviors. Additionally, families, physicians, and healthy seniors who spent time with disabled older adults could help to promote physical activities. However, overall administrative support, in-stitutional system construction, and public policy support were needed and it suggested that multifaceted supports and a variety of cooperation were necessary to improve a quality of life among older adults with disabilities. PMID:29326900

  19. PREFACE: 24th Summer School and International Symposium on the Physics of Ionized Gases

    NASA Astrophysics Data System (ADS)

    Malović, Gordana; Popović, Luka Č.; Dimitrijević, Milan S.

    2008-02-01

    This volume of the Journal of Physics: Conference Series contains the Invited lectures, Topical invited lectures and Progress reports presented at the 24th Summer School and International Symposium on the Physics of Ionized Gases - SPIG 2008. The conference was held in Novi Sad, Serbia, 25-29 August 2008. Throughout the history of scientific discovery, one can see repeatedly how fundamental sciences have solved basic questions and opened new frontiers. In the field of physics, there are many key discoveries, resulting in their useful applications for the benefit of the mankind. It is very important to have meetings to discuss actual problems in particular fields of physics. This Conference provided a forum for 160 active researchers from 25 countries to discuss current advances in the physics of ionized gases and related fields. The Conference has a long tradition. Let us remember that the first SPIG was organized in 1968. The decay of former Yugoslavia in 1991, caused a disturbance in SPIG meetings, but fortunately, in 1993, SPIG meetings were successfully revitalized. During recent years we have met successively in Belgrade, Kotor, Zlatibor, Soko Banja, Tara, Kopaonik and finally this time in Novi Sad. The structure of the papers in this Proceedings is as follows: Atomic Collision Processes, Particle and Laser Beam Interactions with Solids, Low Temperature Plasmas and General Plasmas. We hope that this Proceedings will be an important source of information, first of all to students, and also to plasma physics scientists. First of all, we would like to thank to the invited speakers for participating at the SPIG 2008 and for their efforts writing contributions for this Proceedings. We also express our gratitude to the members of the Scientific and Organizing committees for their efforts in organizing the Conference. Especially we would like to thank the Ministry of Science and Technological Development of the Republic of Serbia for financial support. Also, this Conference was a conference sponsored by the European Physical Society (EPS). And finally we are grateful to all participants for useful contributions and useful discussions. Gordana Malović, Luka Č Popović and Milan S Dimitrijević

  20. A journey into medical physics as viewed by a physicist

    NASA Astrophysics Data System (ADS)

    Gueye, Paul

    2007-03-01

    The world of physics is usually linked to a large variety of subjects spanning from astrophysics, nuclear/high energy physics, materials and optical sciences, plasma physics etc. Lesser is known about the exciting world of medical physics that includes radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. These physicists are typically based in hospital departments of radiation oncology or radiology, and provide technical support for patient diagnosis and treatment in a clinical environment. This talk will focus on providing a bridge between selected areas of physics and their medical applications. The journey will first start from our understanding of high energy beam production and transport beamlines for external beam treatment of diseases (e.g., electron, gamma, X-ray and proton machines) as they relate to accelerator physics. We will then embrace the world of nuclear/high energy physics where detectors development provide a unique tool for understanding low energy beam distribution emitted from radioactive sources used in Brachytherapy treatment modality. Because the ultimate goal of radiation based therapy is its killing power on tumor cells, the next topic will be microdosimetry where responses of biological systems can be studied via electromagnetic systems. Finally, the impact on the imaging world will be embraced using tools heavily used in plasma physics, fluid mechanics and Monte Carlo simulations. These various scientific areas provide unique opportunities for faculty and students at universities, as well as for staff from research centers and laboratories to contribute in this field. We will conclude with the educational training related to medical physics programs.

  1. 2016 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runnels, Scott Robert; Bachrach, Harrison Ian; Carlson, Nils

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transportmore » and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it.« less

  2. LHC vector resonance searches in the t\\overline{t}Z final state

    NASA Astrophysics Data System (ADS)

    Backović, Mihailo; Flacke, Thomas; Jain, Bithika; Lee, Seung J.

    2017-03-01

    LHC searches for BSM resonances in l + l - , jj, t\\overline{t} , γγ and VV final states have so far not resulted in discovery of new physics. Current results set lower limits on mass scales of new physics resonances well into the O(1) TeV range, assuming that the new resonance decays dominantly to a pair of Standard Model particles. While the SM pair searches are a vital probe of possible new physics, it is important to re-examine the scope of new physics scenarios probed with such final states. Scenarios where new resonances decay dominantly to final states other than SM pairs, even though well theoretically motivated, lie beyond the scope of SM pair searches. In this paper we argue that LHC searches for (vector) resonances beyond two particle final states would be useful complementary probes of new physics scenarios. As an example, we consider a class of composite Higgs models, and identify specific model parameter points where the color singlet, electrically neutral vector resonance ρ0 decays dominantly not to a pair of SM particles, but to a fermionic top partner T f1 and a top quark, with T f1 → tZ. We show that dominant decays of ρ 0 → T f1 t in the context of Composite Higgs models are possible even when the decay channel to a pair of T f1 is kinematically open. Our analysis deals with scenarios where both m ρ and {m}_T{{}{_f}}{_1} are of O(1) TeV, leading to highly boosted t\\overline{t}Z final state topologies. We show that the particular composite Higgs scenario we consider is discoverable at the LHC13 with as little as 30 fb-1, while being allowed by other existing experimental constraints.

  3. The relationship and effects of golf on physical and mental health: a scoping review protocol.

    PubMed

    Murray, A; Daines, L; Archibald, D; Hawkes, R; Grant, L; Mutrie, N

    2016-06-01

    Golf is a sport played in 206 countries worldwide by over 50 million people. It is possible that participation in golf, which is a form of physical activity, may be associated with effects on longevity, the cardiovascular, metabolic and musculoskeletal systems, as well as on mental health and well-being. We outline our scoping review protocol to examine the relationships and effects of golf on physical and mental health. Best practice methodological frameworks suggested by Arksey and O'Malley, Levac et al and the Joanna Briggs Institute will serve as our guide, providing clarity and rigour. A scoping review provides a framework to (1) map the key concepts and evidence, (2) summarise and disseminate existing research findings to practitioners and policymakers and (3) identify gaps in the existing research. A three-step search strategy will identify reviews as well as original research, published and grey literature. An initial search will identify suitable search terms, followed by a search using keyword and index terms. Two reviewers will independently screen identified studies for final inclusion. We will map key concepts and evidence, and disseminate existing research findings to practitioners and policymakers through peer-reviewed and non-peer reviewed publications, conferences and in-person communications. We will identify priorities for further study. This method may prove useful to examine the relationships and effects of other sports on health. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  4. Gamifying quantum research: harnessing human intuition

    NASA Astrophysics Data System (ADS)

    Sherson, Jacob

    In the emerging field of citizen science ordinary citizens have already contributed to research in as diverse fields as astronomy, protein and RNA folding, and neuron mapping by playing online games. In the www.scienceathome.org project, we have extended this democratized research to the realm of quantum physics by gamifying a class of challenges related to optimization of gate operations in a quantum computer. The games have been played by more than 150,000 players and perhaps surprisingly we observe that a large fraction of the players outperform state-of-the-art optimization algorithms. With a palette of additional games within cognitive science, behavioral economics, and corporate innovation we investigate the general features of individual and collaborative problem solving to shed additional light on the process of human intuition and innovation and potentially develop novel models of artificial intelligence. We have also developed and tested in classrooms educational games within classical and quantum physics and mathematics at high-school and university level. The games provide individualized learning and enhance motivation for the core curriculum by actively creating links to modern research challenges, see eg. Finally, we have recently launched our new democratic lab: an easily accessible remote interface for our ultra-cold atoms experiment allowing amateur scientists, students, and research institutions world-wide to perform state-of-the-art quantum experimentation. In first tests, nearly a thousand players helped optimize the production of our BEC and discovered novel efficient strategies.

  5. Work Models in the Design Process for House Interior and Exterior: Physical or Virtual?

    NASA Astrophysics Data System (ADS)

    Bradecki, Tomasz; Uherek-Bradecka, Barbara

    2017-10-01

    The article presents the effects of research on different types of models of single family houses and multifamily houses. Exterior layout and interior functional layout are the main drivers for the final result of a design. Models are an important medium for presentation of architectural designs and play a pivotal role in explaining the first idea to people and potential clients. Although 3D models have unlimited possibilities of representation, some people cannot understand or ‘feel’ the designed space. The authors try to test how to combine the interior and the exterior in a single synthetic model. Several models of different houses have been presented in the article. All the case studies were developed with physical models, 3D models, and 2D hand sketches. The main focus of the work with the models was to achieve a coherent vision for future feeling of open space in designed houses. The research shows how synthetic models might be helpful in the design process. The research was carried in the URBAN model research group (urbanmodel.org, Gliwice, Poland) that consists of academic researchers and architects. The models reflect architectural experience gathered by the authors during their work on theoretical models, architectural projects and by supervision on site during construction site visits. Conclusions might be helpful for developers, architects, interior designers and architecture students.

  6. Effects of Physical Activity on Children’s Executive Function: Contributions of Experimental Research on Aerobic Exercise

    PubMed Central

    Best, John R.

    2011-01-01

    Executive function refers to the cognitive processes necessary for goal-directed cognition and behavior, which develop across childhood and adolescence. Recent experimental research indicates that both acute and chronic aerobic exercise promote children’s executive function. Furthermore, there is tentative evidence that not all forms of aerobic exercise benefit executive function equally: Cognitively-engaging exercise appears to have a stronger effect than non-engaging exercise on children’s executive function. This review discusses this evidence as well as the mechanisms that may underlie the association between exercise and executive function. Research from a variety of disciplines is covered, including developmental psychology, kinesiology, cognitive neuroscience, and biopsychology. Finally, these experimental findings are placed within the larger context of known links between action and cognition in infancy and early childhood, and the clinical and practical implications of this research are discussed. PMID:21818169

  7. The Social Side Effects of Acetaminophen

    NASA Astrophysics Data System (ADS)

    Mischkowski, Dominik

    About 23% of all adults in the US take acetaminophen during an average week (Kaufman, Kelly, Rosenberg, Anderson, & Mitchell, 2002) because acetaminophen is an effective physical painkiller and easily accessible over the counter. The physiological side effects of acetaminophen are well documented and generally mild when acetaminophen is consumed in the appropriate dosage. In contrast, the psychological and social side effects of acetaminophen are largely unknown. Recent functional neuroimaging research suggests that the experience of physical pain is fundamentally related to the experience of empathy for the pain of other people, indicating that pharmacologically reducing responsiveness to physical pain also reduces cognitive, affective, and behavioral responsiveness to the pain of others. I tested this hypothesis across three double-blind between-subjects drug intervention studies. Two experiments showed that acetaminophen had moderate effects on empathic affect, specifically personal distress and empathic concern, and a small effect on empathic cognition, specifically perceived pain, when facing physical and social pain of others. The same two experiments and a third experiment also showed that acetaminophen can increase the willingness to inflict pain on other people, i.e., actual aggressive behavior. This effect was especially pronounced among people low in dispositional empathic concern. Together, these findings suggest that the physical pain system is more involved in the regulation of social cognition, affect, and behavior than previously assumed and that the experience of physical pain and responsiveness to the pain of others share a common neurochemical basis. Furthermore, these findings suggest that acetaminophen has unappreciated but serious social side effects, and that these side effects may depend on psychological characteristics of the drug consumer. This idea is consistent with recent theory and research on the context-dependency of neurochemical processes. Finally, public health and legal implications of the social side effects of acetaminophen are discussed.

  8. Contemporary Issues of Social Justice: A Focus on Race and Physical Education in the United States.

    PubMed

    Harrison, Louis; Clark, Langston

    2016-09-01

    Ongoing events in the United States show the continual need to address issues of social justice in every social context. Of particular note in this article, the contemporary national focus on race has thrust social justice issues into the forefront of the country's conscious. Although legal segregation has ran its course, schools and many neighborhoods remain, to a large degree, culturally, ethnically, linguistically, economically, and racially segregated and unequal (Orfield & Lee, 2005). Even though an African American president presently occupies the White House, the idea of a postracial America remains an unrealized ideal. Though social justice and racial discussions are firmly entrenched in educational research, investigations that focus on race are scant in physical education literature. Here, we attempt to develop an understanding of social justice in physical education with a focus on racial concerns. We purposely confine the examination to the U.S. context to avoid the dilution of the importance of these issues, while recognizing other international landscapes may differ significantly. To accomplish this goal, we hope to explicate the undergirding theoretical tenants of critical race theory and culturally relevant pedagogy in relation to social justice in physical education. Finally, we make observations of social justice in the physical education and physical education teacher education realms to address and illuminate areas of concern.

  9. Phase B: Final definition and preliminary design study for the initial Atmospheric Cloud Physics Laboratory (ACPL): A spacelab mission payload. Final review (DR-MA-03)

    NASA Technical Reports Server (NTRS)

    Clausen, O. W.

    1976-01-01

    Systems design for an initial atmospheric cloud physics laboratory to study microphysical processes in zero gravity is presented. Included are descriptions of the fluid, thermal, mechanical, control and data, and electrical distribution interfaces with Spacelab. Schedule and cost analysis are discussed.

  10. Physical activity behaviour in men with inflammatory joint disease: a cross-sectional register-based study.

    PubMed

    Hammer, Nanna Maria; Midtgaard, Julie; Hetland, Merete Lund; Krogh, Niels Steen; Esbensen, Bente Appel

    2018-05-01

    Physical activity is recommended as an essential part of the non-pharmacological management of inflammatory joint disease, but previous research in this area has predominantly included women. The aim of this study was to examine physical activity behaviour in men with inflammatory joint disease. The study was conducted as a cross-sectional register-based study. Data on physical activity behaviour in men with RA, PsA and AS were matched with sociodemographic and clinical variables extracted from the DANBIO registry. Logistic regression analyses using multiple imputations were performed to investigate demographic and clinical variables associated with regular engagement in physical activity (moderate-vigorous ⩾2 h/week). Descriptive statistics were applied to explore motivation, barriers and preferences for physical activity. A total of 325 men were included of whom 129 (40%) engaged in regular physical activity. In univariate analyses, higher age, visual analogue scale (VAS) for pain, VAS fatigue, VAS patient's global, CRP level, disease activity, functional disability and current smoking were negatively associated with regular engagement in physical activity. In the final multivariable regression model only a high VAS fatigue score (⩾61 mm) (OR = 0.228; CI: 0.119, 0.436) remained significantly independently associated with regular physical activity. A majority of men with inflammatory joint disease do not meet the recommendations of regular physical activity. Both sociodemographic and clinical parameters were associated with engagement in physical activity, and fatigue especially seems to play a pivotal role in explaining suboptimal physical activity behaviour in this patient group.

  11. Recent Advances in Atmospheric, Solar-Terrestrial Physics and Space Weather From a North-South network of scientists [2006-2016] PART B : Results and Capacity Building

    NASA Astrophysics Data System (ADS)

    Amory-Mazaudier, C.; Fleury, R.; Petitdidier, M.; Soula, S.; Masson, F.; Davila, J.; Doherty, P.; Elias, A.; Gadimova, S.; Makela, J.; Nava, B.; Radicella, S.; Richardson, J.; Touzani, A.; Girgea Team

    2017-12-01

    This paper reviews scientific advances achieved by a North-South network between 2006 and 2016. These scientific advances concern solar terrestrial physics, atmospheric physics and space weather. This part B is devoted to the results and capacity building. Our network began in 1991, in solar terrestrial physics, by our participation in the two projects: International Equatorial Electrojet Year IEEY [1992-1993] and International Heliophysical Year IHY [2007-2009]. These two projects were mainly focused on the equatorial ionosphere in Africa. In Atmospheric physics our research focused on gravity waves in the framework of the African Multidisciplinary Monsoon Analysis project n°1 [2005-2009 ], on hydrology in the Congo river basin and on lightning in Central Africa, the most lightning part of the world. In Vietnam the study of a broad climate data base highlighted global warming. In space weather, our results essentially concern the impact of solar events on global navigation satellite system GNSS and on the effects of solar events on the circulation of electric currents in the earth (GIC). This research began in the framework of the international space weather initiative project ISWI [2010-2012]. Finally, all these scientific projects have enabled young scientists from the South to publish original results and to obtain positions in their countries. These projects have also crossed disciplinary boundaries and defined a more diversified education which led to the training of specialists in a specific field with knowledge of related scientific fields.

  12. BOOK REVIEW: Fundamentals of Plasma Physics

    NASA Astrophysics Data System (ADS)

    Cargill, P. J.

    2007-02-01

    The widespread importance of plasmas in many areas of contemporary physics makes good textbooks in the field that are both introductory and comprehensive invaluable. This new book by Paul Bellen from CalTech by and large meets these goals. It covers the traditional textbook topics such as particle orbits, the derivation of the MHD equations from Vlasov theory, cold and warm plasma waves, Landau damping, as well as in the later chapters less common subjects such as magnetic helicity, nonlinear processes and dusty plasmas. The book is clearly written, neatly presented, and each chapter has a number of exercises or problems at their end. The author has also thankfully steered clear of the pitfall of filling the book with his own research results. The preface notes that the book is designed to provide an introduction to plasma physics for final year undergraduate and post-graduate students. However, it is difficult to see many physics undergraduates now at UK universities getting to grips with much of the content since their mathematics is not of a high enough standard. Students in Applied Mathematics departments would certainly fare better. An additional problem for the beginner is that some of the chapters do not lead the reader gently into a subject, but begin with quite advanced concepts. Being a multi-disciplinary subject, beginners tend to find plasma physics quite hard enough even when done simply. For postgraduate students these criticisms fade away and this book provides an excellent introduction. More senior researchers should also enjoy the book, especially Chapters 11-17 where more advanced topics are discussed. I found myself continually comparing the book with my favourite text for many years, `The Physics of Plasmas' by T J M Boyd and J J Sanderson, reissued by Cambridge University Press in 2003. Researchers would want both books on their shelves, both for the different ways basic plasma physics is covered, and the diversity of more advanced topics. For the undergraduate level, I would find it easier to construct an introductory course from Boyd and Sanderson.

  13. Knowledge evolution in physics research: An analysis of bibliographic coupling networks

    PubMed Central

    Nanetti, Andrea; Cheong, Siew Ann

    2017-01-01

    Even as we advance the frontiers of physics knowledge, our understanding of how this knowledge evolves remains at the descriptive levels of Popper and Kuhn. Using the American Physical Society (APS) publications data sets, we ask in this paper how new knowledge is built upon old knowledge. We do so by constructing year-to-year bibliographic coupling networks, and identify in them validated communities that represent different research fields. We then visualize their evolutionary relationships in the form of alluvial diagrams, and show how they remain intact through APS journal splits. Quantitatively, we see that most fields undergo weak Popperian mixing, and it is rare for a field to remain isolated/undergo strong mixing. The sizes of fields obey a simple linear growth with recombination. We can also reliably predict the merging between two fields, but not for the considerably more complex splitting. Finally, we report a case study of two fields that underwent repeated merging and splitting around 1995, and how these Kuhnian events are correlated with breakthroughs on Bose-Einstein condensation (BEC), quantum teleportation, and slow light. This impact showed up quantitatively in the citations of the BEC field as a larger proportion of references from during and shortly after these events. PMID:28922427

  14. A GeoWall with Physics and Astronomy Applications

    NASA Astrophysics Data System (ADS)

    Dukes, Phillip; Bruton, Dan

    2008-03-01

    A GeoWall is a passive stereoscopic projection system that can be used by students, teachers, and researchers for visualization of the structure and dynamics of three-dimensional systems and data. The type of system described here adequately provides 3-D visualization in natural color for large or small groups of viewers. The name ``GeoWall'' derives from its initial development to visualize data in the geosciences.1 An early GeoWall system was developed by Paul Morin at the electronic visualization laboratory at the University of Minnesota and was applied in an introductory geology course in spring of 2001. Since that time, several stereoscopic media, which are applicable to introductory-level physics and astronomy classes, have been developed and released into the public domain. In addition to the GeoWall's application in the classroom, there is considerable value in its use as part of a general science outreach program. In this paper we briefly describe the theory of operation of stereoscopic projection and the basic necessary components of a GeoWall system. Then we briefly describe how we are using a GeoWall as an instructional tool for the classroom and informal astronomy education and in research. Finally, we list sources for several of the free software media in physics and astronomy available for use with a GeoWall system.

  15. Problem-solving rubrics revisited: Attending to the blending of informal conceptual and formal mathematical reasoning

    NASA Astrophysics Data System (ADS)

    Hull, Michael M.; Kuo, Eric; Gupta, Ayush; Elby, Andrew

    2013-06-01

    Much research in engineering and physics education has focused on improving students’ problem-solving skills. This research has led to the development of step-by-step problem-solving strategies and grading rubrics to assess a student’s expertise in solving problems using these strategies. These rubrics value “communication” between the student’s qualitative description of the physical situation and the student’s formal mathematical descriptions (usually equations) at two points: when initially setting up the equations, and when evaluating the final mathematical answer for meaning and plausibility. We argue that (i) neither the rubrics nor the associated problem-solving strategies explicitly value this kind of communication during mathematical manipulations of the chosen equations, and (ii) such communication is an aspect of problem-solving expertise. To make this argument, we present a case study of two students, Alex and Pat, solving the same kinematics problem in clinical interviews. We argue that Pat’s solution, which connects manipulation of equations to their physical interpretation, is more expertlike than Alex’s solution, which uses equations more algorithmically. We then show that the types of problem-solving rubrics currently available do not discriminate between these two types of solutions. We conclude that problem-solving rubrics should be revised or repurposed to more accurately assess problem-solving expertise.

  16. Objectification of people and thoughts: An attitude change perspective.

    PubMed

    Briñol, Pablo; Petty, Richard E; Belding, Jennifer

    2017-06-01

    Many objectification phenomena can be understood from a mind-body dualism perspective in which the more people focus on their bodies, the less they focus on their minds. Instead of viewing mind and body in opposition to each other, we advocate for a more reciprocal view in which mind and body work in conjunction. Consistent with an integrated mind-body approach, we begin our review by describing research on embodied persuasion revealing that focusing on our own body can reduce but also increase thinking (elaboration), as well as affecting the use of thoughts in forming evaluations (validation). Next, we extend our integrated view to a new domain and suggest that physical objects can influence thoughts and that one's thoughts can also be objectified. The first portion of this section focuses on research on enclothed cognition revealing that wearing physical objects can operate through the same processes of elaboration (increasing and decreasing thinking) and validation (increasing and decreasing thought usage) as the body. The second portion reveals that thoughts can be understood and treated as if they were physical objects affecting evaluative processes by influencing elaboration and validation processes. The final section provides some practical guidance relevant to campaigns designed to reduce the objectification of women and the infrahumanization of stigmatized groups. © 2017 The British Psychological Society.

  17. Marshak Lectureship: Women in Physics: Increasing in Number, and What Else?

    NASA Astrophysics Data System (ADS)

    Meza-Montes, Lilia

    2013-03-01

    Latin America is a region with high contrasts. With abundant natural resources and home of several celebrities among the wealthiest in the world, the zone has elevated indexes of poverty. In spite of this, and mostly thanks to the continuing intense efforts of the scientific community, it has been possible to create many excellence research centers. In contrast, illiteracy and lack of access to information and communication technologies are widely spread across our countries. Attitudes toward women have even coined a term, machismo. The situation of female physicists in this scenario is analyzed. We present a statistical overview of the participation of women as students or researchers in physics and related areas, for countries where data are available. Initiatives and ongoing programs to support and promote participation of women in science are discussed. Beyond statistics, some comments are given, as expressed by colleagues about work environment and gender issues in general, which have been collected through several years of exchanging concerns on the topic. Mexico and Brazil are discussed in more detail. Finally, we propose some joint actions to increase and improve the participation of women in our scientific field, which will give rise to better conditions for us but will also contribute to building a more equitable and developed region. Member of IUPAP Working Group on Women in Physics.

  18. Development and evaluation of clicker methodology for introductory physics courses

    NASA Astrophysics Data System (ADS)

    Lee, Albert H.

    Many educators understand that lectures are cost effective but not learning efficient, so continue to search for ways to increase active student participation in this traditionally passive learning environment. In-class polling systems, or "clickers", are inexpensive and reliable tools allowing students to actively participate in lectures by answering multiple-choice questions. Students assess their learning in real time by observing instant polling summaries displayed in front of them. This in turn motivates additional discussions which increase the opportunity for active learning. We wanted to develop a comprehensive clicker methodology that creates an active lecture environment for a broad spectrum of students taking introductory physics courses. We wanted our methodology to incorporate many findings of contemporary learning science. It is recognized that learning requires active construction; students need to be actively involved in their own learning process. Learning also depends on preexisting knowledge; students construct new knowledge and understandings based on what they already know and believe. Learning is context dependent; students who have learned to apply a concept in one context may not be able to recognize and apply the same concept in a different context, even when both contexts are considered to be isomorphic by experts. On this basis, we developed question sequences, each involving the same concept but having different contexts. Answer choices are designed to address students preexisting knowledge. These sequences are used with the clickers to promote active discussions and multiple assessments. We have created, validated, and evaluated sequences sufficient in number to populate all of introductory physics courses. Our research has found that using clickers with our question sequences significantly improved student conceptual understanding. Our research has also found how to best measure student conceptual gain using research-based instruments. Finally, we discovered that students need to have full access to the question sequences after lectures to reap the maximum benefit. Chapter 1 provides an introduction to our research. Chapter 2 provides a literature review relevant for our research. Chapter 3 discusses the creation of the clicker question sequences. Chapter 4 provides a picture of the validation process involving both physics experts and the introductory physics students. Chapter 5 describes how the sequences have been used with clickers in lectures. Chapter 6 provides the evaluation of the effectiveness of the clicker methodology. Chapter 7 contains a brief summary of research results and conclusions.

  19. Project on Academic Striving: The Moderation of Stress in the Lives of the Students of an Urban Intermediate School. A Project To Coordinate Research and Environmental Intervention. Final Report to the William T. Grant Foundation. Volume One [and] Volume Two.

    ERIC Educational Resources Information Center

    Grannis, Joseph C.; Fahs, Mary Ellen

    This report evaluates a project that studied social, physical, and academic stress in the lives of students in an inner-city intermediate school and developed interventions to reduce that stress. Over 242 students, most of whom were from low-income families and almost all of whom were black, participated in the project. The following findings are…

  20. Game Theory for Proactive Dynamic Defense and Attack Mitigation in Cyber-Physical Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Letchford, Joshua

    While there has been a great deal of security research focused on preventing attacks, there has been less work on how one should balance security and resilience investments. In this work we developed and evaluated models that captured both explicit defenses and other mitigations that reduce the impact of attacks. We examined these issues both in more broadly applicable general Stackelberg models and in more specific network and power grid settings. Finally, we compared these solutions to existing work in terms of both solution quality and computational overhead.

  1. Diffraction radiation generators

    NASA Astrophysics Data System (ADS)

    Shestopalov, Viktor P.; Vertii, Aleksei A.; Ermak, Gennadii P.; Skrynnik, Boris K.; Khlopov, Grigorii I.; Tsvyk, Aleksei I.

    Research in the field of diffraction radiation generators (DRG) conducted at the Radio Physics and electronics Institute of the Ukranian Academy of Sciences over the past 25 years is reviewed. The effect of diffraction radiation is analyzed in detail, and various operating regimes of DRGs are discussed. The discussion then focuses on the principal requirements for the design of packaged DRGs and their principal parameters. Finally, applications of DRGs in various fields of science and technology are reviewed, including such applications as DRG spectroscopy, diagnostics of plasma, biological specimens, and vibration, and DRG radar systems.

  2. Winter losses of Canada geese at Pea Island, North Carolina

    USGS Publications Warehouse

    Cowan, A.B.; Herman, C.M.

    1955-01-01

    Report of research and findings to date. Topics discussed include: studies on life history and biology of gizzard worm; results of autopsies; experiments on survival and transmission of gizzard worm eggs and larvae in both field and laboratory; persistence of infections; and results of infections in geese of different ages. Cause of deaths has not been finally determined, but indications are that gizzard worm is an important contributing factor and that poor physical condition, brought about at least partially by malnutrition, also contributes to the losses.

  3. Iowa State University – Final Report for SciDAC3/NUCLEI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vary, James P

    The Iowa State University (ISU) contributions to the NUCLEI project are focused on developing, implementing and running an efficient and scalable configuration interaction code (Many-Fermion Dynamics – nuclear or MFDn) for leadership class supercomputers addressing forefront research problems in low-energy nuclear physics. We investigate nuclear structure and reactions with realistic nucleon-nucleon (NN) and three-nucleon (3N) interactions. We select a few highlights from our work that has produced a total of more than 82 refereed publications and more than 109 invited talks under SciDAC3/NUCLEI.

  4. Final Scientific Report - Electromagnetic Interactions in Self-Assembled Metallo-Dielectric Biomaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragnea, Bogdan G.

    Achievements which resulted from previous DOE funding include: templated virus-like particle assembly thermodynamics, development of single particle photothermal absorption spectroscopy and dark- field spectroscopy instrumentation for the measurement of optical properties of virus-like nanoparticles, electromagnetic simulations of coupled nanoparticle cluster systems, virus contact mechanics, energy transfer and fluorescence quenching in multichromophore systems supported on biomolecular templates, and photo physical work on virus-aptamer systems. A current total of eight published research articles and a book chapter are acknowledging DOE support for the period 2013-2016.

  5. New atmospheric sensor analysis study

    NASA Technical Reports Server (NTRS)

    Parker, K. G.

    1989-01-01

    The functional capabilities of the ESAD Research Computing Facility are discussed. The system is used in processing atmospheric measurements which are used in the evaluation of sensor performance, conducting design-concept simulation studies, and also in modeling the physical and dynamical nature of atmospheric processes. The results may then be evaluated to furnish inputs into the final design specifications for new space sensors intended for future Spacelab, Space Station, and free-flying missions. In addition, data gathered from these missions may subsequently be analyzed to provide better understanding of requirements for numerical modeling of atmospheric phenomena.

  6. Support of the Laboratory for Terrestrial Physics for Dynamics of the Solid Earth (DOSE)

    NASA Technical Reports Server (NTRS)

    Vandenberg, N. R.; Ma, C. (Technical Monitor)

    2002-01-01

    This final report summarizes the accomplishments during the contract period. Under the contract Nepal, Inc. provided support to the VLBI group at NASA's Goddard Space Flight Center. The contract covered a period of approximately eight years during high geodetic and astrometric VLBI evolved through several major changes. This report is divided into five sections that correspond to major task areas in the contract: A) Coordination rid Scheduling, B) Field System, CN Station Support, D) Analysis and Research and Development, and E) Computer Support.

  7. Mathematical and computational modelling of skin biophysics: a review

    PubMed Central

    2017-01-01

    The objective of this paper is to provide a review on some aspects of the mathematical and computational modelling of skin biophysics, with special focus on constitutive theories based on nonlinear continuum mechanics from elasticity, through anelasticity, including growth, to thermoelasticity. Microstructural and phenomenological approaches combining imaging techniques are also discussed. Finally, recent research applications on skin wrinkles will be presented to highlight the potential of physics-based modelling of skin in tackling global challenges such as ageing of the population and the associated skin degradation, diseases and traumas. PMID:28804267

  8. Mathematical and computational modelling of skin biophysics: a review

    NASA Astrophysics Data System (ADS)

    Limbert, Georges

    2017-07-01

    The objective of this paper is to provide a review on some aspects of the mathematical and computational modelling of skin biophysics, with special focus on constitutive theories based on nonlinear continuum mechanics from elasticity, through anelasticity, including growth, to thermoelasticity. Microstructural and phenomenological approaches combining imaging techniques are also discussed. Finally, recent research applications on skin wrinkles will be presented to highlight the potential of physics-based modelling of skin in tackling global challenges such as ageing of the population and the associated skin degradation, diseases and traumas.

  9. MiniBooNE Neutrino Physics at the University of Alabama

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stancu, Ion

    2007-04-27

    This report summarizes the activities conducted by the UA group under the auspices of the DoE/EPSCoR grant number DE--FG02--04ER46112 since the date of the previous progress report, i.e., since November 2005. It also provides a final report of the accomplishments achieved during the entire period of this grant (February 2004 to January 2007). The grant has fully supported the work of Dr. Yong Liu (postdoctoral research assistant -- in residence at Fermilab) on the MiniBooNE reconstruction and particle identification (PID) algorithms.

  10. Tip-Based Nanofabrication for Scalable Manufacturing

    DOE PAGES

    Hu, Huan; Kim, Hoe; Somnath, Suhas

    2017-03-16

    Tip-based nanofabrication (TBN) is a family of emerging nanofabrication techniques that use a nanometer scale tip to fabricate nanostructures. Here in this review, we first introduce the history of the TBN and the technology development. We then briefly review various TBN techniques that use different physical or chemical mechanisms to fabricate features and discuss some of the state-of-the-art techniques. Subsequently, we focus on those TBN methods that have demonstrated potential to scale up the manufacturing throughput. Finally, we discuss several research directions that are essential for making TBN a scalable nano-manufacturing technology.

  11. Tip-Based Nanofabrication for Scalable Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Huan; Kim, Hoe; Somnath, Suhas

    Tip-based nanofabrication (TBN) is a family of emerging nanofabrication techniques that use a nanometer scale tip to fabricate nanostructures. Here in this review, we first introduce the history of the TBN and the technology development. We then briefly review various TBN techniques that use different physical or chemical mechanisms to fabricate features and discuss some of the state-of-the-art techniques. Subsequently, we focus on those TBN methods that have demonstrated potential to scale up the manufacturing throughput. Finally, we discuss several research directions that are essential for making TBN a scalable nano-manufacturing technology.

  12. The physics, chemistry and dynamics of explosions.

    PubMed

    Oran, Elaine S; Williams, Forman A

    2012-02-13

    The motivation for devoting a Theme Issue to explosions is discussed. As subsequent articles in the issue are written with the assumption that the reader has had a certain amount of previous exposure to the subject, some of the history and necessary background information are presented here. The topics on explosions that will be encountered in the remaining articles are previewed. Finally, several important future outstanding research problems, beyond those addressed in the following articles, are discussed, with the objective of complementing the coverage of explosions in this issue.

  13. The neural bases of social pain: Evidence for shared representations with physical pain

    PubMed Central

    Eisenberger, Naomi I.

    2012-01-01

    Experiences of social rejection or loss have been described as some of the most ‘painful’ experiences that we, as humans, face and perhaps for good reason. Because of our prolonged period of immaturity, the social attachment system may have co-opted the pain system, borrowing the pain signal to prevent the detrimental consequences of social separation. This review summarizes a program of research that has explored the idea that experiences of physical and social pain rely on shared neural substrates. First, evidence showing that social pain activates pain-related neural regions is reviewed. Then, studies exploring some of the expected consequences of such a physical-social pain overlap are summarized. These studies demonstrate: 1) that individuals who are more sensitive to one kind of pain are also more sensitive to the other and 2) that factors that increase or decrease one kind of pain alter the other in a similar manner. Finally, what these shared neural substrates mean for our understanding of socially painful experience is discussed. PMID:22286852

  14. Effect of a multi-dimensional intervention programme on the motivation of physical education students.

    PubMed

    Amado, Diana; Del Villar, Fernando; Leo, Francisco Miguel; Sánchez-Oliva, David; Sánchez-Miguel, Pedro Antonio; García-Calvo, Tomás

    2014-01-01

    This research study purports to verify the effect produced on the motivation of physical education students of a multi-dimensional programme in dance teaching sessions. This programme incorporates the application of teaching skills directed towards supporting the needs of autonomy, competence and relatedness. A quasi-experimental design was carried out with two natural groups of 4(th) year Secondary Education students--control and experimental -, delivering 12 dance teaching sessions. A prior training programme was carried out with the teacher in the experimental group to support these needs. An initial and final measurement was taken in both groups and the results revealed that the students from the experimental group showed an increase of the perception of autonomy and, in general, of the level of self-determination towards the curricular content of corporal expression focused on dance in physical education. To this end, we highlight the programme's usefulness in increasing the students' motivation towards this content, which is so complicated for teachers of this area to develop.

  15. Biochar amendment for batch composting of nitrogen rich organic waste: Effect on degradation kinetics, composting physics and nutritional properties.

    PubMed

    Jain, Mayur Shirish; Jambhulkar, Rohit; Kalamdhad, Ajay S

    2018-04-01

    Composting is an efficient technology to reduce pathogenic bodies and stabilize the organic matter in organic wastes. This research work investigates an effect of biochar as amendment to improve the composting efficiency and its effect on degradation kinetics, physical and nutritional properties. Biochar (2.5, 5 and 10% (w/w)) were added into a mixture of Hydrilla verticillata, cow dung and sawdust having ratio of 8:1:1 (control), respectively. Biochar addition resulted in advanced thermophilic temperatures (59 °C) and could improve the physical properties of composting process. Owing to addition of 5% biochar as a bulking agent in composting mixture, the final product from composting, total nitrogen increased by 45% compared to the other trials, and air-filled porosity decreased by 39% and was found to be within recommended range from literature studies. Considering temperature, degradation rate and nitrogen transformation the amendment of 5% biochar is recommended for Hydrilla verticillata composting. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. The metaphysics of quantum mechanics: Modal interpretations

    NASA Astrophysics Data System (ADS)

    Gluck, Stuart Murray

    2004-11-01

    This dissertation begins with the argument that a preferred way of doing metaphysics is through philosophy of physics. An understanding of quantum physics is vital to answering questions such as: What counts as an individual object in physical ontology? Is the universe fundamentally indeterministic? Are indiscernibles identical? This study explores how the various modal interpretations of quantum mechanics answer these sorts of questions; modal accounts are one of the two classes of interpretations along with so-called collapse accounts. This study suggests a new alternative within the class of modal views that yields a more plausible ontology, one in which the Principle of the Identity of Indisceribles is necessarily true. Next, it shows that modal interpretations can consistently deny that the universe must be fundamentally indeterministic so long as they accept certain other metaphysical commitments: either a perfect initial distribution of states in the universe or some form of primitive dispositional properties. Finally, the study sketches out a future research project for modal interpretations based on developing quantified quantum logic.

  17. Physical Activity Monitoring in Patients with Chronic Obstructive Pulmonary Disease

    PubMed Central

    Liao, Shu-Yi; Benzo, Roberto; Ries, Andrew L.; Soler, Xavier

    2014-01-01

    Reduced physical activity (PA) in patients with chronic obstructive pulmonary disease (COPD) is associated with increased morbidity and mortality (e.g. exacerbations) and eventually leads to disability, depression, and social and physical isolation. Measuring PA in this population is important to accurately characterize COPD and to help clinicians during a baseline evaluation and patient follow-up. Also, it may help increase adherence to PA programs. There are reliable objective and subjective methods available to measure PA. Recently, several new monitors have been developed that have improved accuracy of such measurements. Because these devices provide real-time feedback, they may help to improve participant self-motivation strategies and reinforce daily lifestyle modifications, one of the main goals in COPD management. This review focuses on describing available instruments to measure PA, specifically in patients with COPD. The reliability, validity, advantages, limitations, and clinical applications of questionnaires, pedometers, and accelerometers are discussed. Finally, based on current published literature, we propose recommendations about which methods may be most useful in different research or clinical settings. PMID:28848818

  18. Proceedings of the NASA First Wake Vortex Dynamic Spacing Workshop

    NASA Technical Reports Server (NTRS)

    Creduer, Leonard (Editor); Perry, R. Brad (Editor)

    1997-01-01

    A Government and Industry workshop on wake vortex dynamic spacing systems was conducted on May 13-15, 1997, at the NASA Langley Research Center. The purpose of the workshop was to disclose the status of ongoing NASA wake vortex R&D to the international community and to seek feedback on the direction of future work to assure an optimized research approach. Workshop sessions examined wake vortex characterization and physics, wake sensor technologies, aircraft/wake encounters, terminal area weather characterization and prediction, and wake vortex systems integration and implementation. A final workshop session surveyed the Government and Industry perspectives on the NASA research underway and related international wake vortex activities. This document contains the proceedings of the workshop including the presenters' slides, the discussion following each presentation, the wrap-up panel discussion, and the attendees' evaluation feedback.

  19. A research study for the preliminary definition of an aerophysics free-flight laboratory facility

    NASA Technical Reports Server (NTRS)

    Canning, Thomas N.

    1988-01-01

    A renewed interest in hypervelocity vehicles requires an increase in the knowledge of aerodynamic phenomena. Tests conducted with ground-based facilities can be used both to better understand the physics of hypervelocity flight, and to calibrate and validate computer codes designed to predict vehicle performance in the hypervelocity environment. This research reviews the requirements for aerothermodynamic testing and discusses the ballistic range and its capabilities. Examples of the kinds of testing performed in typical high performance ballistic ranges are described. We draw heavily on experience obtained in the ballistics facilities at NASA Ames Research Center, Moffett Field, California. Prospects for improving the capabilities of the ballistic range by using advanced instrumentation are discussed. Finally, recent developments in gun technology and their application to extend the capability of the ballistic range are summarized.

  20. The role of mesocosm studies in ecological risk analysis

    USGS Publications Warehouse

    Boyle, Terence P.; Fairchild, James F.

    1997-01-01

    Mesocosms have been primarily used as research tools for the evaluation of the fate and effects of xenobiotic chemicals at the population, community, and ecosystem levels of biological organization. This paper provides suggestions for future applications of mesocosm research. Attention should be given to the configuration of mesocosm parameters to explicitly study regional questions of ecological interest. The initial physical, chemical, and biological conditions within mesocosms should be considered as factors shaping the final results of experiments. Certain fundamental questions such as the ecological inertia and resilience of systems with different initial ecological properties should be addressed. Researchers should develop closer working relationships with mathematical modelers in linking computer models to the outcomes of mesocosm studies. Mesocosm tests, linked with models, could enable managers and regulators to forecast the regional consequences of chemicals released into the environment.

  1. Systematic review of the association between physical activity and burnout.

    PubMed

    Naczenski, Lea M; Vries, Juriena D de; Hooff, Madelon L M van; Kompier, Michiel A J

    2017-11-25

    Burnout constitutes a health risk, and interventions are needed to reduce it. The aim of this study was to synthesize evidence regarding the relationship between physical activity and burnout by conducting a systematic review of longitudinal and intervention studies. A literature search resulted in the identification of a final set of ten studies: four longitudinal and six intervention studies. In separate analyses for each category, evidence was synthesized by extracting the study characteristics and assessing the methodological quality of each study. The strength of evidence was calculated with the standardized index of convergence (SIC). In longitudinal studies, we found moderately strong evidence (SIC (4) = -1) for a negative relationship between physical activity and the key component of burnout, i.e., exhaustion. We found strong evidence (SIC (6) = -0.86) for the effect of physical activity on reducing exhaustion in intervention studies. As only one study could be classified as a high quality study, these results of previous studies need to be interpreted with some caution. This systematic review suggests that physical activity constitutes an effective medium for the reduction of burnout. Although consistent evidence was found, there is a lack of high quality longitudinal and intervention studies considering the influence of physical activity on burnout. Therefore, future research should be conducted with the aim to produce high quality studies, to develop a full picture of physical activity as a strategy to reduce burnout.

  2. Model Independent Search For New Physics At The Tevatron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudalakis, Georgios

    2008-04-01

    The Standard Model of elementary particles can not be the final theory. There are theoretical reasons to expect the appearance of new physics, possibly at the energy scale of few TeV. Several possible theories of new physics have been proposed, each with unknown probability to be confirmed. Instead of arbitrarily choosing to examine one of those theories, this thesis is about searching for any sign of new physics in a model-independent way. This search is performed at the Collider Detector at Fermilab (CDF). The Standard Model prediction is implemented in all final states simultaneously, and an array of statistical probesmore » is employed to search for significant discrepancies between data and prediction. The probes are sensitive to overall population discrepancies, shape disagreements in distributions of kinematic quantities of final particles, excesses of events of large total transverse momentum, and local excesses of data expected from resonances due to new massive particles. The result of this search, first in 1 fb -1 and then in 2 fb -1, is null, namely no considerable evidence of new physics was found.« less

  3. The NanoSustain and NanoValid project--two new EU FP7 research initiatives to assess the unique physical-chemical and toxicological properties of engineered nanomaterials.

    PubMed

    Reuther, Rudolf

    2011-02-01

    In 2010, the EU FP NanoSustain project (247989) has been successfully launched with the objective to develop innovative solutions for the sustainable use, recycling and final treatment of engineered nanomaterials (ENMs). The same year, NanoValid (263147), a large-scale integrating EU FP7 project has been initiated and contract negotiations with the European Commission commenced, to develop new reference methods and materials applicable to the unique properties of ENMs. The paper presented will give an overview on the main objectives of these 2 new European research initiatives, on main tasks to achieve objectives, and on the impact on current standardization efforts and technical innovations.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    DUFTY J W

    This is the final report for the project 'Correlations in Confined Quantum Plasmas', NSF-DOE Partnership Grant DE FG02 07ER54946, 8/1/2007 - 7/30/2010. The research was performed in collaboration with a group at Christian Albrechts University (CAU), Kiel, Germany. That collaboration, almost 15 years old, was formalized during the past four years under this NSF-DOE Partnership Grant to support graduate students at the two institutions and to facilitate frequent exchange visits. The research was focused on exploring the frontiers of charged particle physics evolving from new experimental access to unusual states associated with confinement. Particular attention was paid to combined effectsmore » of quantum mechanics and confinement. A suite of analytical and numerical tools tailored to the specific inquiry has been developed and employed« less

  5. Research of pulse signal processing based on sleep-monitoring alarm system

    NASA Astrophysics Data System (ADS)

    Zhang, Kaisheng; Zeng, Yuan

    2009-07-01

    From pulse diagnosis of Chinese herbalist doctor to the research of cardiovascular system by modem iatrology,they all have showed and proved that human pulse has a good affinity with diseases,especially cardiovascular diseases. Human pulse contains much physical information, and it will be propitious to know the human healthy state early so as to get therapy and recovery early when pulse signal is often detected and analyzed. study how to use the embedded microcontroller to transmit physiological signal from human to personal computer by infrared communication, and the normal sphygmic parameter in one's sleeping is compared with the one measured in order to judge whether one's sleeping condition is normal, finally ascertain the best control plan.

  6. Gender and Conflict Resolution Strategies in Spanish Teen Couples: Their Relationship With Jealousy and Emotional Dependency.

    PubMed

    Perles, Fabiola; San Martín, Jesús; Canto, Jesús M

    2016-06-08

    Previous research has pointed to the need to address the study of violence in teen couples. However, research has not delved into the study of the variables related to the different types of violence employed by boys and girls. The purpose of this study was to test whether gender, jealousy, and dependency predict specific strategies for conflict resolution (psychological aggression and mild physical aggression). Another objective of the study was to test gender differences in the conflict resolution strategies used by Spanish teen couples and to test the association between these variables and jealousy and emotional dependency. A sample of 296 adolescent high school students between 14 and 19 years of age of both genders from the south of Spain participated in this study. Hierarchical regression models were used to estimate the relationship between psychological aggression and mild physical aggression, and jealousy, and dependency. Results showed that jealousy correlated with psychological aggression and mild physical aggression in girls but not in boys. Psychological aggression and mild physical aggression were associated with dependency in boys. Girls scored higher in psychological aggression and jealousy than did boys. Finally, the interaction between jealousy and dependency predicted psychological aggression only in girls. These results highlight the need to address the role of the interaction between dependence and jealousy in the types of violence employed in teen dating. However, it is necessary to delve into the gender differences and similarities to develop appropriate prevention programs. © The Author(s) 2016.

  7. ANNOUNCEMENT: Greetings from the Editor and Publisher

    NASA Astrophysics Data System (ADS)

    Wäppling, Roger; Williams, Sarah

    2006-01-01

    Physica Scripta is an international physics journal published for the Royal Swedish Academy of Sciences on behalf of the Nordic Science Academies and Physical Societies. This issue marks the beginning of the partnership between the Royal Swedish Academy of Sciences and Institute of Physics Publishing (IOP). We look forward to a fruitful relationship in which Physica Scripta can profit from the international reach of IOP. Authors and readers will benefit from advance publication of articles on the web prior to receiving each month's journal issue. The peer-review system will continue to be managed by Professor Roger Wäppling who will assess each paper before assigning it to an external editor or sending it for refereeing. IOP will receive new article submissions and generate electronic documents suitable for use in the refereeing process. The editorial office in Sweden will then be responsible for these manuscripts up to the final publication decision. Accepted articles will be sent to IOP for copy-editing, typesetting, production and distribution. We aim to provide our authors, referees and readers with an enhanced service for this well-established journal. IOP will maintain and augment Physica Scripta's record in publishing a broad range of high-quality research papers and we will continue to publish Topical Issues as supplements to the regular 12 issues. The popular Comments articles will continue to be published in conjunction with regular papers under this new partnership. We hope that our subscribers will continue to enjoy reading Physica Scripta as a valuable resource for general physics research.

  8. Research on heating, instabilities, turbulence and RF emission from electric field dominated plasmas

    NASA Astrophysics Data System (ADS)

    Roth, J. R.; Alexeff, Igor

    1989-07-01

    This contract has supported four research programs: (1) a program of research on plasma turbulence; (2) a program of research on plasma heating by collisional magnetic pumping; (3) a research program on the Orbitron submillimeter maser; and (4) the initial phase of a program on plasma cloaking of military targets for protection against radar and directed microwave energy weapons. Progress in these areas is documented in the text of this final report and in the twenty archival publications included in the appendices to this report. In addition to the above four research areas, work was continued on plasma diagnostic development, and the development of new state-of-the-art data analysis and reduction methods, including software development for online reduction of Langmuir probe, capacitive probe, and other diagnostic information. Also being developed is the capability to analyze electrostatic potential fluctuations by the methods of nonlinear dynamics. An important part of the research program was the training of graduate and undergraduate research assistants in state-of-the-art methods in the fields of high temperature plasma physics, plasma diagnostics, communications, and related areas.

  9. Relevance and limitations of crowding, fractal, and polymer models to describe nuclear architecture.

    PubMed

    Huet, Sébastien; Lavelle, Christophe; Ranchon, Hubert; Carrivain, Pascal; Victor, Jean-Marc; Bancaud, Aurélien

    2014-01-01

    Chromosome architecture plays an essential role for all nuclear functions, and its physical description has attracted considerable interest over the last few years among the biophysics community. These researches at the frontiers of physics and biology have been stimulated by the demand for quantitative analysis of molecular biology experiments, which provide comprehensive data on chromosome folding, or of live cell imaging experiments that enable researchers to visualize selected chromosome loci in living or fixed cells. In this review our goal is to survey several nonmutually exclusive models that have emerged to describe the folding of DNA in the nucleus, the dynamics of proteins in the nucleoplasm, or the movements of chromosome loci. We focus on three classes of models, namely molecular crowding, fractal, and polymer models, draw comparisons, and discuss their merits and limitations in the context of chromosome structure and dynamics, or nuclear protein navigation in the nucleoplasm. Finally, we identify future challenges in the roadmap to a unified model of the nuclear environment. © 2014 Elsevier Inc. All rights reserved.

  10. Proximity coupling in superconductor-graphene heterostructures.

    PubMed

    Lee, Gil-Ho; Lee, Hu-Jong

    2018-05-01

    This review discusses the electronic properties and the prospective research directions of superconductor-graphene heterostructures. The basic electronic properties of graphene are introduced to highlight the unique possibility of combining two seemingly unrelated physics, superconductivity and relativity. We then focus on graphene-based Josephson junctions, one of the most versatile superconducting quantum devices. The various theoretical methods that have been developed to describe graphene Josephson junctions are examined, together with their advantages and limitations, followed by a discussion on the advances in device fabrication and the relevant length scales. The phase-sensitive properties and phase-particle dynamics of graphene Josephson junctions are examined to provide an understanding of the underlying mechanisms of Josephson coupling via graphene. Thereafter, microscopic transport of correlated quasiparticles produced by Andreev reflections at superconducting interfaces and their phase-coherent behaviors are discussed. Quantum phase transitions studied with graphene as an electrostatically tunable 2D platform are reviewed. The interplay between proximity-induced superconductivity and the quantum-Hall phase is discussed as a possible route to study topological superconductivity and non-Abelian physics. Finally, a brief summary on the prospective future research directions is given.

  11. Proximity coupling in superconductor-graphene heterostructures

    NASA Astrophysics Data System (ADS)

    Lee, Gil-Ho; Lee, Hu-Jong

    2018-05-01

    This review discusses the electronic properties and the prospective research directions of superconductor-graphene heterostructures. The basic electronic properties of graphene are introduced to highlight the unique possibility of combining two seemingly unrelated physics, superconductivity and relativity. We then focus on graphene-based Josephson junctions, one of the most versatile superconducting quantum devices. The various theoretical methods that have been developed to describe graphene Josephson junctions are examined, together with their advantages and limitations, followed by a discussion on the advances in device fabrication and the relevant length scales. The phase-sensitive properties and phase-particle dynamics of graphene Josephson junctions are examined to provide an understanding of the underlying mechanisms of Josephson coupling via graphene. Thereafter, microscopic transport of correlated quasiparticles produced by Andreev reflections at superconducting interfaces and their phase-coherent behaviors are discussed. Quantum phase transitions studied with graphene as an electrostatically tunable 2D platform are reviewed. The interplay between proximity-induced superconductivity and the quantum-Hall phase is discussed as a possible route to study topological superconductivity and non-Abelian physics. Finally, a brief summary on the prospective future research directions is given.

  12. Learning Experience on Transformer Using HOT Lab for Pre-service Physics Teacher’s

    NASA Astrophysics Data System (ADS)

    Malik, A.; Setiawan, A.; Suhandi, A.; Permanasari, A.

    2017-09-01

    This study aimed at investigating pre-service teacher’s critical thinking skills improvement through Higher Order Thinking (HOT) Lab on transformer learning. This research used mix method with the embedded experimental model. Research subjects are 60 students of Physics Education in UIN Sunan Gunung Djati Bandung. The results showed that based on the results of the analysis of practical reports and observation sheet shows students in the experimental group was better in carrying out the practicum and can solve the real problem while the control group was going on the opposite. The critical thinking skills of students applying the HOT Lab were higher than the verification lab. Critical thinking skills could increase due to HOT Lab based problems solving that can develop higher order thinking skills through laboratory activities. Therefore, it was concluded that the application of HOT Lab was more effective than verification lab on improving students’ thinking skills on transformer topic learning. Finally, HOT Lab can be implemented in other subject learning and could be used to improve another higher order thinking skills.

  13. Predictors of body mass index in female parents whose children participate in a competitive, creative, problem-solving program

    PubMed Central

    Moustaid-Moussa, Naima; Costello, Carol A.; Greer, Betty P.; Spence, Marsha; Fitzhugh, Eugene; Muenchen, Robert; Kalupahana, Nishan S.

    2012-01-01

    Background Recent findings from our research indicate that children participating in a creative afterschool program exhibit overall healthier lifestyle practices compared to the average US pediatric population. This observation led us to investigate the prevalence of overweight/obesity and lifestyle practices of their parents. Objective To determine the strongest predictors of weight status for female parents whose children were participating in such creative afterschool program. Design Surveyed subjects were parents of children who competed in the 2008 and 2009 Destination ImagiNation® Global Finals in Knoxville, Tennessee. A total of 4,608 children participated in data collection, with parental consent. For the combined 2 years, 1,118 parents, 87% of whom were females (n=1,032) completed online questionnaires, which were based on the Behavioral Risk Factor Surveillance System and included self-reported height, weight, dietary intake, physical activity, and socioeconomic status. The majority of this population was white, and less than 5% were African American or Hispanic. Results We report here results obtained for the female parents. Only 45.2% of these female parents were overweight/obese, compared to a national average of 64.1% reported by the National Health Nutrition Examination Surveys for 2007—2008. Furthermore, this population was significantly more physically active compared to national average. Most parents (76%) had completed a college degree and reported high incomes. Parents with the lowest income were the most obese in this population. Finally, we found a significant association between parent and child weight status. Conclusions These studies demonstrate that female parents of children who have healthy lifestyles were physically active, which likely accounts for the parents’ lower overweight/obesity rates. In addition to physical activity, income and percentage of calories from fat were all predictors of weight status. PMID:22912600

  14. Predictors of body mass index in female parents whose children participate in a competitive, creative, problem-solving program.

    PubMed

    Moustaid-Moussa, Naima; Costello, Carol A; Greer, Betty P; Spence, Marsha; Fitzhugh, Eugene; Muenchen, Robert; Kalupahana, Nishan S

    2012-01-01

    Recent findings from our research indicate that children participating in a creative afterschool program exhibit overall healthier lifestyle practices compared to the average US pediatric population. This observation led us to investigate the prevalence of overweight/obesity and lifestyle practices of their parents. To determine the strongest predictors of weight status for female parents whose children were participating in such creative afterschool program. Surveyed subjects were parents of children who competed in the 2008 and 2009 Destination ImagiNation(®) Global Finals in Knoxville, Tennessee. A total of 4,608 children participated in data collection, with parental consent. For the combined 2 years, 1,118 parents, 87% of whom were females (n=1,032) completed online questionnaires, which were based on the Behavioral Risk Factor Surveillance System and included self-reported height, weight, dietary intake, physical activity, and socioeconomic status. The majority of this population was white, and less than 5% were African American or Hispanic. We report here results obtained for the female parents. Only 45.2% of these female parents were overweight/obese, compared to a national average of 64.1% reported by the National Health Nutrition Examination Surveys for 2007-2008. Furthermore, this population was significantly more physically active compared to national average. Most parents (76%) had completed a college degree and reported high incomes. Parents with the lowest income were the most obese in this population. Finally, we found a significant association between parent and child weight status. These studies demonstrate that female parents of children who have healthy lifestyles were physically active, which likely accounts for the parents' lower overweight/obesity rates. In addition to physical activity, income and percentage of calories from fat were all predictors of weight status.

  15. Methodology for the development and calibration of the SCI-QOL item banks

    PubMed Central

    Tulsky, David S.; Kisala, Pamela A.; Victorson, David; Choi, Seung W.; Gershon, Richard; Heinemann, Allen W.; Cella, David

    2015-01-01

    Objective To develop a comprehensive, psychometrically sound, and conceptually grounded patient reported outcomes (PRO) measurement system for individuals with spinal cord injury (SCI). Methods Individual interviews (n = 44) and focus groups (n = 65 individuals with SCI and n = 42 SCI clinicians) were used to select key domains for inclusion and to develop PRO items. Verbatim items from other cutting-edge measurement systems (i.e. PROMIS, Neuro-QOL) were included to facilitate linkage and cross-population comparison. Items were field tested in a large sample of individuals with traumatic SCI (n = 877). Dimensionality was assessed with confirmatory factor analysis. Local item dependence and differential item functioning were assessed, and items were calibrated using the item response theory (IRT) graded response model. Finally, computer adaptive tests (CATs) and short forms were administered in a new sample (n = 245) to assess test-retest reliability and stability. Participants and Procedures A calibration sample of 877 individuals with traumatic SCI across five SCI Model Systems sites and one Department of Veterans Affairs medical center completed SCI-QOL items in interview format. Results We developed 14 unidimensional calibrated item banks and 3 calibrated scales across physical, emotional, and social health domains. When combined with the five Spinal Cord Injury – Functional Index physical function banks, the final SCI-QOL system consists of 22 IRT-calibrated item banks/scales. Item banks may be administered as CATs or short forms. Scales may be administered in a fixed-length format only. Conclusions The SCI-QOL measurement system provides SCI researchers and clinicians with a comprehensive, relevant and psychometrically robust system for measurement of physical-medical, physical-functional, emotional, and social outcomes. All SCI-QOL instruments are freely available on Assessment CenterSM. PMID:26010963

  16. Methodology for the development and calibration of the SCI-QOL item banks.

    PubMed

    Tulsky, David S; Kisala, Pamela A; Victorson, David; Choi, Seung W; Gershon, Richard; Heinemann, Allen W; Cella, David

    2015-05-01

    To develop a comprehensive, psychometrically sound, and conceptually grounded patient reported outcomes (PRO) measurement system for individuals with spinal cord injury (SCI). Individual interviews (n=44) and focus groups (n=65 individuals with SCI and n=42 SCI clinicians) were used to select key domains for inclusion and to develop PRO items. Verbatim items from other cutting-edge measurement systems (i.e. PROMIS, Neuro-QOL) were included to facilitate linkage and cross-population comparison. Items were field tested in a large sample of individuals with traumatic SCI (n=877). Dimensionality was assessed with confirmatory factor analysis. Local item dependence and differential item functioning were assessed, and items were calibrated using the item response theory (IRT) graded response model. Finally, computer adaptive tests (CATs) and short forms were administered in a new sample (n=245) to assess test-retest reliability and stability. A calibration sample of 877 individuals with traumatic SCI across five SCI Model Systems sites and one Department of Veterans Affairs medical center completed SCI-QOL items in interview format. We developed 14 unidimensional calibrated item banks and 3 calibrated scales across physical, emotional, and social health domains. When combined with the five Spinal Cord Injury--Functional Index physical function banks, the final SCI-QOL system consists of 22 IRT-calibrated item banks/scales. Item banks may be administered as CATs or short forms. Scales may be administered in a fixed-length format only. The SCI-QOL measurement system provides SCI researchers and clinicians with a comprehensive, relevant and psychometrically robust system for measurement of physical-medical, physical-functional, emotional, and social outcomes. All SCI-QOL instruments are freely available on Assessment CenterSM.

  17. The Rhetoric of Physics: AN Ethnography of the Research and Writing Processes in a Physics Laboratory.

    NASA Astrophysics Data System (ADS)

    Graves, Heather Ann Brodie

    1992-01-01

    This dissertation explores the extent to which rhetoric plays a role in the research and writing processes of physicists. It seeks to join the on-going conversation in the rhetoric of inquiry about the ways in which rhetorical forces shape all knowledge systems. Based on data collected during a six-month ethnography in a thin films laboratory, this study argues that these physicists use rhetoric in all stages of the knowledge creation process. After following the experimental process through all its stages from the inception of an experiment through to publication, this study maps out the types of heuristic devices employed by the physicists as they analyzed, interpreted, and presented their research data in a persuasive scientific article. In light of the insights gained from studying the dynamic interactions between physicists, this dissertation also comments on the theoretical and philosophical debates under discussion in the rhetoric of inquiry and the rhetoric of science. It examines current theories of language (as expressed by rhetoricians, critical theorists, and the physicists in this laboratory) to explore the relationship between reality and language, the role that rhetoric plays in knowledge creation in physics, and the ways in which reality and knowledge may be socially constructed. It concludes that these physicists use rhetorical invention strategies to interpret and present their data. It also argues that scientific knowledge is subject to rhetorical forces because it deals with contingent affairs--phenomena about which scientists advance propositions which appear to be true but about which there is no way to gain absolute certainty or truth. Finally, it concludes that rhetoric both is and is not epistemic in the physics research studied here, and it argues that instead of asking "Is rhetoric epistemic?" perhaps we might shift our attention to inquiring "When is rhetoric epistemic?".

  18. Combustion, Complex Fluids, and Fluid Physics Experiments on the ISS

    NASA Technical Reports Server (NTRS)

    Motil, Brian; Urban, David

    2012-01-01

    From the very first days of human spaceflight, NASA has been conducting experiments in space to understand the effect of weightlessness on physical and chemically reacting systems. NASA Glenn Research Center (GRC) in Cleveland, Ohio has been at the forefront of this research looking at both fundamental studies in microgravity as well as experiments targeted at reducing the risks to long duration human missions to the moon, Mars, and beyond. In the current International Space Station (ISS) era, we now have an orbiting laboratory that provides the highly desired condition of long-duration microgravity. This allows continuous and interactive research similar to Earth-based laboratories. Because of these capabilities, the ISS is an indispensible laboratory for low gravity research. NASA GRC has been actively involved in developing and operating facilities and experiments on the ISS since the beginning of a permanent human presence on November 2, 2000. As the lead Center both Combustion, Fluid Physics, and Acceleration Measurement GRC has led the successful implementation of an Acceleration Measurement systems, the Combustion Integrated Rack (CIR), the Fluids Integrated Rack (FIR) as well as the continued use of other facilities on the ISS. These facilities have supported combustion experiments in fundamental droplet combustion fire detection fire extinguishment soot phenomena flame liftoff and stability and material flammability. The fluids experiments have studied capillary flow magneto-rheological fluids colloidal systems extensional rheology pool and nucleate boiling phenomena. In this paper, we provide an overview of the experiments conducted on the ISS over the past 12 years. We also provide a look to the future development. Experiments presented in combustion include areas such as droplet combustion, gaseous diffusion flames, solid fuels, premixed flame studies, fire safety, and super critical oxidation processes. In fluid physics, experiments are discussed in multiphase flows, capillary phenomena, and heat pipes. Finally in complex fluids, experiments in rheology and soft condensed materials will be presented.

  19. Computational Fluid Dynamics Program at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1989-01-01

    The Computational Fluid Dynamics (CFD) Program at NASA Ames Research Center is reviewed and discussed. The technical elements of the CFD Program are listed and briefly discussed. These elements include algorithm research, research and pilot code development, scientific visualization, advanced surface representation, volume grid generation, and numerical optimization. Next, the discipline of CFD is briefly discussed and related to other areas of research at NASA Ames including experimental fluid dynamics, computer science research, computational chemistry, and numerical aerodynamic simulation. These areas combine with CFD to form a larger area of research, which might collectively be called computational technology. The ultimate goal of computational technology research at NASA Ames is to increase the physical understanding of the world in which we live, solve problems of national importance, and increase the technical capabilities of the aerospace community. Next, the major programs at NASA Ames that either use CFD technology or perform research in CFD are listed and discussed. Briefly, this list includes turbulent/transition physics and modeling, high-speed real gas flows, interdisciplinary research, turbomachinery demonstration computations, complete aircraft aerodynamics, rotorcraft applications, powered lift flows, high alpha flows, multiple body aerodynamics, and incompressible flow applications. Some of the individual problems actively being worked in each of these areas is listed to help define the breadth or extent of CFD involvement in each of these major programs. State-of-the-art examples of various CFD applications are presented to highlight most of these areas. The main emphasis of this portion of the presentation is on examples which will not otherwise be treated at this conference by the individual presentations. Finally, a list of principal current limitations and expected future directions is given.

  20. Science Education Research vs. Physics Education Research: A Structural Comparison

    ERIC Educational Resources Information Center

    Akarsu, Bayram

    2010-01-01

    The main goal of this article is to introduce physics education research (PER) to researchers in other fields. Topics include discussion of differences between science education research (SER) and physics education research (PER), physics educators, research design and methodology in physics education research and current research traditions and…

  1. What Fraction of Papers in Astronomy and Physics Are Not Cited in 40 Years?

    NASA Astrophysics Data System (ADS)

    Abt, Helmut A.

    2018-07-01

    Of 4000 papers published in astronomy and in physics in the past 40 years, 40.3%, and 23.4%, respectively, have not been cited (referenced). However, if we limit this to the final research papers (excluding announcements, book reviews, proposals for funding, and observing time, obituaries, etc.), the fractions are 1.4% and 1.5%, respectively. So virtually all the papers in these two sciences are useful. These data also tell us that the productivities of astronomers peak at age 40.4 years. and that 43.0% were published after the age of 50 years. For physicists, the peak occurs at 36.6 years. and only 33.7% were published after the age of 50 years. Therefore physicists peak about four years earlier than astronomers and they produce 9% fewer citations after the age of 50 years.

  2. TOPICAL REVIEW: The physics, biophysics and technology of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Wilson, Brian C.; Patterson, Michael S.

    2008-05-01

    Photodynamic therapy (PDT) uses light-activated drugs to treat diseases ranging from cancer to age-related macular degeneration and antibiotic-resistant infections. This paper reviews the current status of PDT with an emphasis on the contributions of physics, biophysics and technology, and the challenges remaining in the optimization and adoption of this treatment modality. A theme of the review is the complexity of PDT dosimetry due to the dynamic nature of the three essential components—light, photosensitizer and oxygen. Considerable progress has been made in understanding the problem and in developing instruments to measure all three, so that optimization of individual PDT treatments is becoming a feasible target. The final section of the review introduces some new frontiers of research including low dose rate (metronomic) PDT, two-photon PDT, activatable PDT molecular beacons and nanoparticle-based PDT.

  3. Flow in porous media, phase behavior and ultralow interfacial tensions: mechanisms of enhanced petroleum recovery. Final technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, H.T.; Scriven, L.E.

    1982-01-01

    A major program of university research, longer-ranged and more fundamental in approach than industrial research, into basic mechanisms of enhancing petroleum recovery and into underlying physics, chemistry, geology, applied mathematics, computation, and engineering science has been built at Minnesota. The 1982 outputs of the interdisciplinary team of investigators were again ideas, instruments, techniques, data, understanding and skilled people: forty-one scientific and engineering papers in leading journals; four pioneering Ph.D. theses; numerous presentations to scientific and technical meetings, and to industrial, governmental and university laboratories; vigorous program of research visits to and from Minnesota; and two outstanding Ph.D.'s to research positionsmore » in the petroleum industry, one to a university faculty position, one to research leadership in a governmental institute. This report summarizes the 1982 papers and theses and features sixteen major accomplishments of the program during that year. Abstracts of all forty-five publications in the permanent literature are appended. Further details of information transfer and personnel exchange with industrial, governmental and university laboratories appear in 1982 Quarterly Reports available from the Department of Energy and are not reproduced here. The Minnesota program continues in 1983, notwithstanding earlier uncertainty about the DOE funding which finally materialized and is the bulk of support. Supplemental grants-in-aid from nine companies in the petroleum industry are important, as are the limited University and departmental contributions. 839 references, 172 figures, 29 tables.« less

  4. PREFACE: XV Chilean Physics Symposium, 2006

    NASA Astrophysics Data System (ADS)

    Soto, Leopoldo; Moreno, José; Ávila, Ricardo; Cubillos, Karla

    2008-02-01

    The Chilean Physics Symposium is the main gathering of Physics in Chile, and its organization is one of the central activities of the Chilean Physical Society (Sociedad Chilena de Física, SOCHIFI). The Symposium assembles the largest number of Chilean and foreign physicists resident in the country. Recent advances in the various research areas in Physics are presented, by researchers from Universities and national research centres. At the same time this is an occasion for the participation of Physics students from both the pre- and post-graduate programs. The Symposium has gathered continuously every two years, since 1978. The organization of the XV symposium was in charge of the Thermonuclear Plasma Department of the Chilean Nuclear Energy Commission, and it took place on 15-17 November 2006, at La Reina Nuclear Studies Centre, in the city of Santiago, Chile. During this symposium the relation of research in Physics with education and with the productive sector in the country was also analysed. During the Symposium, 121 abstracts were submitted, from 255 authors. All authors were invited to submit articles for publication in the Symposium Proceedings. The articles received were reviewed by the Symposium Scientific Committee and by invited peers. The criteria for review focussed on the demand for a consistent piece of research, and a clear statement of results. Most of the articles received report the work of research groups where advanced students and young investigators are prominent. Thanks to their enthusiasm, 52 articles are presented in this issue. We would like to express our appreciation to their authors. Finally, my personal apology is in order regarding my delay in publishing these proceedings. A sequence of personal and professional highly demanding circumstances have been in the way. I would like to thank Journal of Physics: Conference Series for providing very fast publication of the proceedings, having published them online less than 4 weeks after my initial contact with the journal. Leopoldo Soto President, Chilean Physical Society Head of Plasma Department, Chilean Nuclear Energy Commission Editors: Leopoldo Soto, José Moreno, Ricardo Ávila, Karla Cubillos Scientific Committee Physicists from various research institutions, specialty areas, and regions of the country were invited by the Board of SOCHIFI to join the Symposium Scientific Committee, which was formed by: Julio Yánez, Universidad de Antofagasta Sergio del Campo, Pontificia Universidad Católica de Valparaíso Patricio Vargas, Universidad Técnica Federico Santa María Rodrigo Soto, Universidad de Chile Ulrich Volkmann, Pontificia Universidad Católica de Chile Víctor Muñoz, Universidad de Chile Rodrigo Aros, Universidad Andrés Bello Leopoldo Soto (Chairman), Comisión Chilena de Energía Nuclear Luis Huerta, Universidad de Talca Patricio Salgado, Universidad de Concepción Luis Roa, Universidad de Concepción Asticio Vargas, Universidad de la Frontera, Temuco Cristian Martínez, Centro de Estudios Científicos, Valdivia Organizing Commitee Leopoldo Soto (Chairman), Comisión Chilena de Energía Nuclear Erik Herrera, Comisión Chilena de Energía Nuclear José Moreno, Comisión Chilena de Energía Nuclear Andrea Rozas, Comisión Chilena de Energía Nuclear Rodrigo Aros, Universidad Andrés Bello Gonzalo Gutiérrez, Universidad de Chile Executive Board, Chilean Physical Society April 2006 - April 2008 Leopoldo Soto, President Joel Saavedra, Secretary Rodrigo Aros: Treasurer Rodolfo Figueroa: Director Luis Huerta: Director Conference photograph

  5. Associations of built environment and children's physical activity: a narrative review.

    PubMed

    Masoumi, Houshmand E

    2017-12-20

    Childhood obesity has been an epidemic particularly in high-income countries. There is a considerable volume of data and studies depicting the rising number of obese children and adolescents in different countries. As suggested by the literature, physical inactivity is one the main drivers of childhood obesity. This paper addresses the associations of the built environment with physical activity of children in order to find to theoretically facilitate intervention and prevention measures. Literature: There is a large body of literature describing the overall determinants of children's physical activity. The built environment is one of the influential factors that have been partially examined. Among the physical environment indicators, distance to school has been repeatedly reported to be negatively associated with active travels to school; thus, it indirectly affects physical activity of children. Apart from distance to school, some other built environment indicators have also been less researched, such as population and construction densities, distance to the city center, land use mix, and type of urban fabric (urban, suburban, etc.). The purpose of this review was to shed light on some of the less-studied areas of the existing literature related to the relationship between the built environment and physical activity of children aged between 3 and 12 years. The English-language publications, majority of which were peer-reviewed journal papers published in recent years, were collected and descriptively analyzed. Two large categories were the backbone of this narrative review: (1) non-school outdoor activities of children that take place in the residential neighborhood and (2) commuting to school and the related interventions such as safe routes to school. Seven areas were synthesized by this review of the literature. Differences in associations of the built environment and physical activity in (1) different types of urban forms and land uses such as urban, suburban, high-density, etc.; (2) different city sizes such as small towns, mid-sized cities, large cities and megacities; (3) different cultures, subcultures and ethnicities in the same city of country, e.g. the Asian minority of London or the Turkish minority of Germany; (4) between perceptions of parents and children and associations with children's physical activity, e.g. how they perceive safety and security of the neighborhood; (5) associations of the built environment with children's physical activity in less-studied contexts, e.g. many developing and under-developed countries or eastern European countries; (6) differences in built environment - physical activity associations in different regions of the world, e.g. continents; and finally (7) associations between mobility patterns of parents and their children's physical activity, for instance, the frequencies of taking public transport or walk as a commute mode. Researchers are recommended to focus their less-researched subtopics mentioned under the Results section in accordance with local conditions observed in less-researched contexts so that measures and interventions are accordingly planned.

  6. Passive Endwall Treatments for Enhancing Stability

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.

    2007-01-01

    These lecture notes were presented at the von Karman Institutes lecture series on Advances in Axial Compressor Aerodynamics, May 2006. They provide a fairly extensive overview of what's been learned from numerous investigations of various passive casing endwall technologies that have been proposed for alleviating the stall limiting physics associated with the compressor endwall flow field. The lecture notes are organized to give an appreciation for the inventiveness and understanding of the earliest compressor technologists and to provide a coherent thread of understanding that has arisen out of the early investigations. As such the lecture notes begin with a historical overview of casing treatments from their infancy through the earliest proposed concepts involving blowing, suction and flow recirculation. A summary of lessons learned from these early investigations is provided at the end of this section. The lecture notes then provide a somewhat more in-depth overview of recent advancements in the development of passive casing treatments from the late 1990's through 2006, including advancements in understanding the flow mechanism of circumferential groove casing treatments, and the development of discrete tip injection and self-recirculating casing treatments. At the conclusion of the lecture notes a final summary of lessons learned throughout the history of the development of passive casing treatments is provided. Finally, a list of future needs is given. It is hoped that these lecture notes will be a useful reference for future research endeavors to improve our understanding of the fluid physics of passive casing treatments and how they act to enhance compressor stability, and that they will perhaps provide a springboard for future research activities in this area of interest

  7. Physical biology in cancer. 4. Physical cues guide tumor cell adhesion and migration.

    PubMed

    Stroka, Kimberly M; Konstantopoulos, Konstantinos

    2014-01-15

    As tumor cells metastasize from the primary tumor location to a distant secondary site, they encounter an array of biologically and physically heterogeneous microenvironments. While it is well established that biochemical signals guide all stages of the metastatic cascade, mounting evidence indicates that physical cues also direct tumor cell behavior, including adhesion and migration phenotypes. Physical cues acting on tumor cells in vivo include extracellular matrix mechanical properties, dimensionality, and topography, as well as interstitial flow, hydrodynamic shear stresses, and local forces due to neighboring cells. State-of-the-art technologies have recently enabled us and other researchers to engineer cell microenvironments that mimic specific physical properties of the cellular milieu. Through integration of these engineering strategies, along with physics, molecular biology, and imaging techniques, we have acquired new insights into tumor cell adhesion and migration mechanisms. In this review, we focus on the extravasation and invasion stages of the metastatic cascade. We first discuss the physical role of the endothelium during tumor cell extravasation and invasion and how contractility of endothelial and tumor cells contributes to the ability of tumor cells to exit the vasculature. Next, we examine how matrix dimensionality and stiffness coregulate tumor cell adhesion and migration beyond the vasculature. Finally, we summarize how tumor cells translate and respond to physical cues through mechanotransduction. Because of the critical role of tumor cell mechanotransduction at various stages of the metastatic cascade, targeting signaling pathways involved in tumor cell mechanosensing of physical stimuli may prove to be an effective therapeutic strategy for cancer patients.

  8. 2015 Final Reports from the Los Alamos National Laboratory Computational Physics Student Summer Workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runnels, Scott Robert; Caldwell, Wendy; Brown, Barton Jed

    The two primary purposes of LANL’s Computational Physics Student Summer Workshop are (1) To educate graduate and exceptional undergraduate students in the challenges and applications of computational physics of interest to LANL, and (2) Entice their interest toward those challenges. Computational physics is emerging as a discipline in its own right, combining expertise in mathematics, physics, and computer science. The mathematical aspects focus on numerical methods for solving equations on the computer as well as developing test problems with analytical solutions. The physics aspects are very broad, ranging from low-temperature material modeling to extremely high temperature plasma physics, radiation transportmore » and neutron transport. The computer science issues are concerned with matching numerical algorithms to emerging architectures and maintaining the quality of extremely large codes built to perform multi-physics calculations. Although graduate programs associated with computational physics are emerging, it is apparent that the pool of U.S. citizens in this multi-disciplinary field is relatively small and is typically not focused on the aspects that are of primary interest to LANL. Furthermore, more structured foundations for LANL interaction with universities in computational physics is needed; historically interactions rely heavily on individuals’ personalities and personal contacts. Thus a tertiary purpose of the Summer Workshop is to build an educational network of LANL researchers, university professors, and emerging students to advance the field and LANL’s involvement in it. This report includes both the background for the program and the reports from the students.« less

  9. Evaluation of potentially modifiable physical factors as predictors of health status in knee osteoarthritis patients referred for physical therapy.

    PubMed

    Gonçalves, Rui Soles; Pinheiro, João Páscoa; Cabri, Jan

    2012-08-01

    The purpose of this cross sectional study was to estimate the contributions of potentially modifiable physical factors to variations in perceived health status in knee osteoarthritis (OA) patients referred for physical therapy. Health status was measured by three questionnaires: Knee injury and Osteoarthritis Outcome Score (KOOS); Knee Outcome Survey - Activities of Daily Living Scale (KOS-ADLS); and Medical Outcomes Study - 36 item Short Form (SF-36). Physical factors were measured by a battery of tests: body mass index (BMI); visual analog scale (VAS) of pain intensity; isometric dynamometry; universal goniometry; step test (ST); timed "up and go" test (TUGT); 20-meter walk test (20MWT); and 6-minute walk test (6MWT). All tests were administered to 136 subjects with symptomatic knee OA (94 females, 42 males; age: 67.2 ± 7.1 years). Multiple stepwise regression analyses revealed that knee muscle strength, VAS of pain intensity, 6MWT, degree of knee flexion and BMI were moderate predictors of health status. In the final models, selected combinations of these potentially modifiable physical factors explained 22% to 37% of the variance in KOOS subscale scores, 40% of the variance in the KOS-ADLS scale score, and 21% to 34% of the variance in physical health SF-36 subscale scores. More research is required in order to evaluate whether therapeutic interventions targeting these potentially modifiable physical factors would improve health status in knee OA patients. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Concepts first: A course with improved educational outcomes and parity for underrepresented minority groups

    NASA Astrophysics Data System (ADS)

    Webb, D. J.

    2017-08-01

    Two active learning physics courses were taught and compared. The "concepts first" course was organized to teach only concepts in the first part of the class, the ultimate goal being to increase students' problem-solving abilities much later in the class. The other course was taught in the same quarter by the same instructor using the same curricular materials, but covered material in the standard (chapter-by-chapter) order. After accounting for incoming student characteristics, students from the concepts-first course scored significantly better in two outcome measures: their grade on the final exam and the grade received in their subsequent physics course. Moreover, in the concepts-first class course, students from groups underrepresented in physics had final exam scores and class grades that were indistinguishable from other students. Finally, students who took at least one concepts-first course in introductory physics were found to have significantly higher rates of graduation with a STEM major than students from this cohort who did not.

  11. Cosmic Rays at Earth

    NASA Astrophysics Data System (ADS)

    Grieder, P. K. F.

    In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery. Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological and medical aspects of the cosmic radiation because of it ionizing character and the inevitable irradiation to which we are exposed. This book is a reference manual for researchers and students of cosmic ray physics and associated fields and phenomena. It is not intended to be a tutorial. However, the book contains an adequate amount of background materials that its content should be useful to a broad community of scientists and professionals. The present book contains chiefly a data collection in compact form that covers the cosmic radiation in the vicinity of the Earth, in the Earth's atmosphere, at sea level and underground. Included are predominantly experimental but also theoretical data. In addition the book contains related data, definitions and important relations. The aim of this book is to offer the reader in a single volume a readily available comprehensive set of data that will save him the need of frequent time consuming literature searches.

  12. A Study of the Relationship between Student Placement Test Scores and Final Grades in Physics 121 at Pima College.

    ERIC Educational Resources Information Center

    Iadevaia, David G.

    A study was conducted at Pima Community College to determine the relationship between the final grade received by students in an introductory, algebra-based physics course (PHY 121) and their scores on the reading, writing, and mathematics portions of the college's nonmandatory assessment test. Between 1983 and 1988, 639 students obtained a final…

  13. Development of Audio and Visual Media to Accompany Sequenced Instructional Programs in Physical Education for the Handicapped. Final Report. July 31, 1972.

    ERIC Educational Resources Information Center

    Avance, Lyonel D.; Carr, Dorothy B.

    Presented is the final report of a project to develop and field test audio and visual media to accompany developmentally sequenced activities appropriate for a physical education program for handicapped children from preschool through high school. Brief sections cover the following: the purposes and accomplishments of the project; the population…

  14. Dynamics of co-authorship and productivity across different fields of scientific research.

    PubMed

    Parish, Austin J; Boyack, Kevin W; Ioannidis, John P A

    2018-01-01

    We aimed to assess which factors correlate with collaborative behavior and whether such behavior associates with scientific impact (citations and becoming a principal investigator). We used the R index which is defined for each author as log(Np)/log(I1), where I1 is the number of co-authors who appear in at least I1 papers written by that author and Np are his/her total papers. Higher R means lower collaborative behavior, i.e. not working much with others, or not collaborating repeatedly with the same co-authors. Across 249,054 researchers who had published ≥30 papers in 2000-2015 but had not published anything before 2000, R varied across scientific fields. Lower values of R (more collaboration) were seen in physics, medicine, infectious disease and brain sciences and higher values of R were seen for social science, computer science and engineering. Among the 9,314 most productive researchers already reaching Np ≥ 30 and I1 ≥ 4 by the end of 2006, R mostly remained stable for most fields from 2006 to 2015 with small increases seen in physics, chemistry, and medicine. Both US-based authorship and male gender were associated with higher values of R (lower collaboration), although the effect was small. Lower values of R (more collaboration) were associated with higher citation impact (h-index), and the effect was stronger in certain fields (physics, medicine, engineering, health sciences) than in others (brain sciences, computer science, infectious disease, chemistry). Finally, for a subset of 400 U.S. researchers in medicine, infectious disease and brain sciences, higher R (lower collaboration) was associated with a higher chance of being a principal investigator by 2016. Our analysis maps the patterns and evolution of collaborative behavior across scientific disciplines.

  15. Behavioural aspects of the control of parasitic diseases*

    PubMed Central

    Dunn, Frederick L.

    1979-01-01

    Human behaviour has been largely neglected in research on the parasitic diseases, in part because of the long-standing separation of the behavioural disciplines from the physical and biomedical sciences. Some of the reasons for the persistence of this ”intellectual discontinuity” are discussed. The paper is principally concerned with the prospects for greater use of the methods and orientations of the behavioural sciences in parasitic disease research and control programmes. Behavioural research tends to fall into two categories employing, on the one hand, survey research and epidemiological methods and, on the other, participant observation and interviewing in depth. These approaches are shown to be complementary—equally useful and necessary. Various categories of health-related behaviour and kinds of research objective are reviewed in the following sections. Special attention is given to psychosocial cost—benefit studies, to analyses of control sectors, and to the formulation of a control philosophy. Finally, some specific behavioural research needs are discussed for some of the parasitic diseases of priority in the UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases—schistosomiasis, filariasis, American and African trypanosomiases, and malaria. PMID:316733

  16. Development and outcomes of a program to translate the evidence for spinal manipulation into physical therapy practice

    PubMed Central

    Kramer, Christopher D; Koch, William H; Fritz, Julie M

    2013-01-01

    Objectives: To describe a program to translate evidence into practice for the use of manipulation with a sub-group of patients with low back pain and report the program's outcomes following implementation. We compared outcomes based on appropriate inclusion in the program and compliance with the evidence being translated. Methods: The evidence translation program was based on evidence that patients meeting two criteria (duration of symptoms <16 days, no symptoms distal to knee) were likely to respond to a physical therapy that included manipulation in the first two visits. Implementation addressed potential barriers with referring physicians, physical therapists, and scheduling staff to this evidence. Outcomes for patients in the program were tracked following implementation. Process outcomes were appropriateness of inclusion (met both criteria), compliance with evidence for providing thrust manipulation in the first two visits, and number of physical therapy visits. Clinical outcomes were based on Oswestry scores from the first, interim (after two to three visits), and final visit. Results: A total of 577 patients entered the evidence translation program (mean age  =  43.0, 56.8% female); 79.5% were appropriate inclusions and 83.0% received manipulation. The use of manipulation was associated with fewer visits (mean difference  =  0.54 visits, 95% CI: 0.037, 1.04, P  =  0.035), and appropriate inclusion was associated with greater Oswestry change (mean difference at the final visit  =  6.6 points, 95% CI: 1.6, 11.6; P  =  0.010). Discussion: Implementing evidence into practice is difficult; however, barriers can be anticipated and overcome. Tracking the outcomes of an implementation program is critical to evaluating its benefit to patients. Additional research using experimental designs are necessary to evaluate the effectiveness of various treatments implemented in physical therapy practice. PMID:24421630

  17. Monolithic circuits for barium fluoride detectors used in nuclear physics experiments. CRADA final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varner, R.L.; Blankenship, J.L.; Beene, J.R.

    1998-02-01

    Custom monolithic electronic circuits have been developed recently for large detector applications in high energy physics where subsystems require tens of thousands of channels of signal processing and data acquisition. In the design and construction of these enormous detectors, it has been found that monolithic circuits offer significant advantages over discrete implementations through increased performance, flexible packaging, lower power and reduced cost per channel. Much of the integrated circuit design for the high energy physics community is directly applicable to intermediate energy heavy-ion and electron physics. This STTR project conducted in collaboration with researchers at the Holifield Radioactive Ion Beammore » Facility (HRIBF) at Oak Ridge National Laboratory, sought to develop a new integrated circuit chip set for barium fluoride (BaF{sub 2}) detector arrays based upon existing CMOS monolithic circuit designs created for the high energy physics experiments. The work under the STTR Phase 1 demonstrated through the design, simulation, and testing of several prototype chips the feasibility of using custom CMOS integrated circuits for processing signals from BaF{sub 2} detectors. Function blocks including charge-sensitive amplifiers, comparators, one shots, time-to-amplitude converters, analog memory circuits and buffer amplifiers were implemented during Phase 1 effort. Experimental results from bench testing and laboratory testing with sources were documented.« less

  18. Investigating the Usability and Efficacy of Customizable Computer Coaches for Introductory Physics Problem Solving

    NASA Astrophysics Data System (ADS)

    Aryal, Bijaya

    2016-03-01

    We have studied the impacts of web-based Computer Coaches on educational outputs and outcomes. This presentation will describe the technical and conceptual framework related to the Coaches and discuss undergraduate students' favorability of the Coaches. Moreover, its impacts on students' physics problem solving performance and on their conceptual understanding of physics will be reported. We used a qualitative research technique to collect and analyze interview data from 19 undergraduate students who used the Coaches in the interview setting. The empirical results show that the favorability and efficacy of the Computer Coaches differ considerably across students of different educational backgrounds, preparation levels, attitudes and epistemologies about physics learning. The interview data shows that female students tend to have more favorability supporting the use of the Coach. Likewise, our assessment suggests that female students seem to benefit more from the Coaches in their problem solving performance and in conceptual learning of physics. Finally, the analysis finds evidence that the Coach has potential for increasing efficiency in usage and for improving students' educational outputs and outcomes under its customized usage. This work was partially supported by the Center for Educational Innovation, Office of the Senior Vice President for Academic Affairs and Provost, University of Minnesota.

  19. PREFACE: 3rd International Conference on Science & Engineering in Mathematics, Chemistry and Physics 2015 (ScieTech 2015)

    NASA Astrophysics Data System (ADS)

    Gaol, F. L.

    2015-06-01

    The 3rd International Conference on Science & Engineering in Mathematics, Chemistry and Physics 2015 (ScieTech 2015), was held at The Westin Resort Nusa Dua, Bali on 31 January - 1 February 2015. The ScieTech 2015 conference is aimed to bring together researchers, engineers and scientists from around the world. ScieTech 2015 is placed on promoting interaction between the theoretical, experimental, and applied communities, so that a high level exchange is achieved in new and emerging areas within mathematics, chemistry and physics. As we already know that science and technology have brought tremendous benefits for human civilization. People are becoming healthier, wealthier, better educated, more peaceful, increasingly connected, and living longer. Of course, science and technology provide many answers to global challenges, but we will face more complex problems in the next decade due to increasing world population, limitation of energy, and climate change. Therefore, researchers should be more active in conducting research that enables collaboration between one and the others. Interdisciplinary cooperation is absolutely necessary in order to create a smart system for solving the global problems. We need a global and general long-term view of the future with long-range goals for solving complex problems in next decade. Therefore the conference was held to be a forum for researchers from different disciplines to start collaborating and conducting research that provides a solution to the global issues. The theme of ScieTech 2015 was ''The interdisciplinary Application between Mathematics, Chemistry and Physics to enhance the Quality of Life''. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting conference program as well as the invited and plenary speakers. This year, we received 197 papers and after rigorous review, 59 papers were accepted. The participants came from 19 countries, and there were six paralell sessions and four keynote speakers. It is an honour to present this volume of Journal of Physics: Conference Series (JPCS) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, members of the steering committee, the organizing committee, the organizing secretariat and the financial support from the conference sponsors that allowed the success of ScieTech 2015.

  20. PREFACE: Preface

    NASA Astrophysics Data System (ADS)

    2014-11-01

    The National Seminar on Medical Physics (NSMP) is a scientific conference organised every two years by the Malaysian Association of Medical Physics (MAMP). Its purpose is to provide a platform for researchers, medical physicists and clinicians from Malaysia and surrounding nations to discuss recent advances of research and development in medical imaging and radiotherapy. NSMP 2014, the 9th national medical physics conference was held in Marriott Hotel, Putrajaya, Malaysia on 5 April 2014. The conference was organised in parallel to the College of Radiology (COR) Malaysia Scientific Meeting. The theme for the 9th NSMP is "Advances in Multidisciplinary Research and Clinical Practice". About 65 participants from universities and hospitals participated in the conference. 17 oral contributions and 12 posters were presented at the conference. We had three invited lectures at the conference; two of the lectures were presented by international experts on state-of-the-art medical imaging and radiotherapy. The lectures were: bold dot "Hybrid imaging: research and clinical practice" by Prof David Townsend, A*STAR-National University Singapore Clinical Imaging Research Centre bold dot "Outline of treatment planning for carbon-ion radiotherapy" by Dr Nobuyuki Kanematsu, National Institute of Radiological Sciences, Japan bold dot "Implementing medical physics clinical training programme in Malaysia: challenges and experiences" by Dr Noriah Jamal, Malaysian Nuclear Agency Many thanks to all invited speakers for their participation and to the Organising Committee members for all their hard work in making the conference happen. Thanks to all who submitted an abstract and making this a successful conference. The Scientific Committee members and reviewers are also thanked for reviewing the submitted manuscripts and improve the scientific quality of this proceedings. Finally, thanks to all who attended the conference and the sponsors for their financial support. The proceedings consists of 22 manuscripts, organised into five different topics; medical imaging, nuclear medicine, radiation therapy, radiation protection and dosimetry, and biomedical engineering. All papers published in this volume of Journal of Physics: Conference Series have been peer reviewed through processes administered by the proceedings Editors. Reviews were conducted by expert referees to the professional and scientific standards expected of a proceedings journal published by IOP Publishing. We would like to thank all authors and reviewers for their contribution to this proceedings. We look forward to seeing everyone in 2016 for the 10th anniversary. Hafiz M Zin, Ahmad Taufek Abdul Rahman, Nahzirul Adib and Rafidah Zainon Editors, Proceedings of NSMP 2014

  1. The Physical Activities Survey of Police Officers in New Jersey. Final Report.

    ERIC Educational Resources Information Center

    Goldstein, Leo S.

    A survey of the physical activities of police officers in New Jersey was conducted to collect information about the kinds of physical activities they perform, their present health status, the measures they take to maintain good physical condition, and their appraisal of the present civil service physical performance test battery. Another purpose…

  2. Research Exploring Physical Activity in Care Homes (REACH): study protocol for a randomised controlled trial.

    PubMed

    Forster, Anne; Airlie, Jennifer; Birch, Karen; Cicero, Robert; Cundill, Bonnie; Ellwood, Alison; Godfrey, Mary; Graham, Liz; Green, John; Hulme, Claire; Lawton, Rebecca; McLellan, Vicki; McMaster, Nicola; Farrin, Amanda

    2017-04-19

    As life expectancy increases and the number of older people, particularly those aged 85 years and over, expands there is an increase in demand for long-term care. A large proportion of people in a care home setting spend most of their time sedentary, and this is one of the leading preventable causes of death. Encouraging residents to engage in more physical activity could deliver benefits in terms of physical and psychological health, and quality of life. This study is the final stage of a programme of research to develop and preliminarily test an evidence-based intervention designed to enhance opportunities for movement amongst care home residents, thereby increasing levels of physical activity. This is a cluster randomised feasibility trial, aiming to recruit at least 8-12 residents at each of 12 residential care homes across Yorkshire, UK. Care homes will be randomly allocated on a 1:1 basis to receive either the intervention alongside usual care, or to continue to provide usual care alone. Assessment will be undertaken with participating residents at baseline (prior to care home randomisation) and at 3, 6, and 9 months post-randomisation. Data relating to changes in physical activity, physical function, level of cognitive impairment, mood, perceived health and wellbeing, and quality of life will be collected. Data at the level of the home will also be collected and will include staff experience of care, and changes in the numbers and types of adverse events residents experience (for example, hospital admissions, falls). Details of National Health Service (NHS) usage will be collected to inform the economic analysis. An embedded process evaluation will obtain information to test out the theory of change underpinning the intervention and its acceptability to staff and residents. This feasibility trial with embedded process evaluation and collection of health economic data will allow us to undertake detailed feasibility work to inform a future large-scale trial. It will provide valuable information to inform research procedures in this important but challenging area. ISRCTN registry, ISRCTN16076575 . Registered on 25 June 2015.

  3. PREFACE: Nanostructured surfaces

    NASA Astrophysics Data System (ADS)

    Palmer, Richard E.

    2003-10-01

    We can define nanostructured surfaces as well-defined surfaces which contain lateral features of size 1-100 nm. This length range lies well below the micron regime but equally above the Ångstrom regime, which corresponds to the interatomic distances on single-crystal surfaces. This special issue of Journal of Physics: Condensed Matter presents a collection of twelve papers which together address the fabrication, characterization, properties and applications of such nanostructured surfaces. Taken together they represent, in effect, a status report on the rapid progress taking place in this burgeoning area. The first four papers in this special issue have been contributed by members of the European Research Training Network ‘NanoCluster’, which is concerned with the deposition, growth and characterization of nanometre-scale clusters on solid surfaces—prototypical examples of nanoscale surface features. The paper by Vandamme is concerned with the fundamentals of the cluster-surface interaction; the papers by Gonzalo and Moisala address, respectively, the optical and catalytic properties of deposited clusters; and the paper by van Tendeloo reports the application of transmission electron microscopy (TEM) to elucidate the surface structure of spherical particles in a catalyst support. The fifth paper, by Mendes, is also the fruit of a European Research Training Network (‘Micro-Nano’) and is jointly contributed by three research groups; it reviews the creation of nanostructured surface architectures from chemically-synthesized nanoparticles. The next five papers in this special issue are all concerned with the characterization of nanostructured surfaces with scanning tunnelling microscopy (STM) and atomic force microscopy (AFM). The papers by Bolotov, Hamilton and Dunstan demonstrate that the STM can be employed for local electrical measurements as well as imaging, as illustrated by the examples of deposited clusters, model semiconductor structures and real devices, respectively, while the papers by Ledieu and Guo report the structural characterization of novel surface systems—quasicrystal surfaces and supramolecular monolayers, respectively. The final two papers, by Bennett and Smith, demonstrate the positive interplay between experimental measurements and theoretical modelling in the investigation of nanostructured surfaces. The examples discussed include, respectively, the growth of metal clusters on oxide surfaces and the deposition of fullerenes and energetic clusters from the gas phase. We note finally that the last six papers in this special issue have been contributed by members of the Committee of the newly-formed Nanoscale Physics and Technology Group of the Institute of Physics. The Group shares with this special issue the aim of promoting and disseminating exciting advances in the flourishing field of nanoscale physics.

  4. Development of a problem solving evaluation instrument; untangling of specific problem solving assets

    NASA Astrophysics Data System (ADS)

    Adams, Wendy Kristine

    The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.

  5. Impact of a didactic sequence on basic Astronomy concepts for graduates in physics of online and classroom modalities

    NASA Astrophysics Data System (ADS)

    Voelzke, M. R.; Barbosa, J. I. L.

    2017-07-01

    In the transition from elementary school to high school, the topics related to astronomy are studied within the curriculae component of physics. In this context, at some point of time a Physic's teacher at this level of education will be faced with the need to work with the contents related to this science. In this way, it is important to broaden the discussion about teacher education, as well as to apply in practice the means for it. Therefore, this work has the objective to present the results, obtained by application of a questionnaire at the beginning (a pre-test), and at the final stage by a course for physics graduates of online and classroom modalities (completed with a post-test), which was organized through the Potentially Significant Teaching Units - PSTUs; and this work also presents the level of satisfaction of them in relation to the course. It is an applied and descriptive research, and the adopted technical procedures consisted of the survey and a participatory research. The data were organized in spreadsheets and the statistical analyzes were made in the sequence, with the objective of establishing comparisons between the studied groups, of their evolution of acquired knowledge and their level of satisfaction, resulting from the development in the course. The results indicate that there has been an evolution of the student's s basic knowledge with relation to the proposed topics of Astronomy in the didactic sequences, i.e., the activities developed in the administered course created a favorable atmosphere for the learning, which is therefore contributing to the initial formation of these physics teachers.

  6. The Physics of NASCAR

    NASA Astrophysics Data System (ADS)

    Leslie-Pelecky, Diandra

    2008-10-01

    A group of racecars piloted by the best drivers in NASCAR are turning a corner. Without warning, one of the cars suddenly hits the outside wall. There were no engine failures, no flat tires, and none of the cars touched so what happened? Understanding and being able to apply physics is a necessary (but far from sufficient) condition for winning races.ootnotetextDiandra Leslie-Pelecky, The Physics of NASCAR (Dutton, New York City, 2008). Every competitive race team has a technical staff involved in everything from applied engineering to basic research and development. Aerodynamicists, chemical engineers, statisticians and physicists have become important participants in the high-stakes world of motorsports. Although some drivers have engineering degrees, even those without them have developed a highly intuitive understanding of physics -- you don't keep your job long without a working knowledge of Newton's Laws of Motion. The inherent science in NASCAR is of interest at many levels, from the fan who wants to understand changes made to the car at pit stops to nanomaterials researchers looking for new ways to make racing simultaneously faster and safer. This presentation will introduce some of the fascinating physics of NASCAR and give teachers some ideas to use in the classroom. I'll touch on a range of topics from: how computational fluid dynamics is used to address the aerodynamic changes that challenge the driver by making his car behave differently around every corner; how advanced materials such as energy-absorbing foams have made racing significantly safer; and how nanoparticles may be able to keep engines from overheating despite running at 9500 rpm for three or four hours. Finally, I'll explore NASCAR, its teams and its sponsors are helping address the challenge of getting people interest math and science.

  7. Arab American college students' physical activity and body composition: reconciling Middle East-West differences using the socioecological model.

    PubMed

    Kahan, David

    2011-03-01

    In this study, I conducted focus group interviews with 21 Arab American college students (9 men, 12 women; 9 Muslims, 12 non-Muslims), who were selected for extreme manifestation of religiosity or acculturation, to explore their beliefs and attitudes toward socioecological (SE) factors that facilitated and hindered their individual physical activity (PA) and body composition (I also considered body image and food and eating behavior). To analyze responses, I used a combination of deductive coding, which used levels of the SE model and demographic variable groupings, and inductive coding, to search for common themes among participants within and between research questions. Results revealed that (a) the context of physical activity participation differed by gender; (b) ideal body image was conflicted and varied by gender; and (c) consumption of cultural foods diminished along with Arab social customs related to eating. Interpersonal and cultural/community levels of the SE model were identified as primary influences, with parents regulating and instilling values backed by cultural norms to preserve Arab identity, especially in women. Finally, I identified an indeterminate adjustment period, during which immigrants transitioned between physical activity purpose/form in the Middle East and the United States.

  8. A Feasibility Study of Wearable Activity Monitors for Pre-Adolescent School-Age Children

    PubMed Central

    Van Loan, Marta; German, J. Bruce

    2014-01-01

    Introduction Understanding physical activity is key in the fight against childhood obesity. The objective of this study was to examine the feasibility of using certain wearable devices to measure physical activity among children. Methods A qualitative study was conducted with 25 children aged 7 to 10 years to assess acceptability and compliance of wearable activity devices in this age group. During March through August 2012, children participated in a 4-week study of 3 accelerometer models and a heart rate monitor. Children were asked to use a different device each week for 7 consecutive days. Children and their parents completed structured interviews after using each device; they also completed a final exit interview. Results The wrist-worn Polar Active was the device most preferred by children and was associated with the highest level of compliance. Devices that are comfortable to wear, fit properly, have engaging features, and are waterproof increase feasibility and are associated with higher levels of compliance. Conclusion The wrist-worn device was the most feasible for measuring physical activity among children aged 7 to 10 years. These findings will inform researchers in selecting tools for measuring children’s physical activity. PMID:24854236

  9. Logistics Response to the Industry 4.0: the Physical Internet

    NASA Astrophysics Data System (ADS)

    Maslarić, Marinko; Nikoličić, Svetlana; Mirčetić, Dejan

    2016-11-01

    Today's mankind and all human activities are constantly changing and evolving in response to changes in technology, social and economic environments and climate. Those changes drive a "new" way of manufacturing industry. That novelty could be described as the organization of production processes based on technology and devices autonomously communicating with each other along the value chain. Decision-makers have to address this novelty (usually named as Industry 4.0) and try to develop appropriate information systems, physical facilities, and different kind of technologies capable of meeting the future needs of economy. As a consequence, there is a need for new paradigms of the way freight is move, store, realize, and supply through the world (logistics system). One of the proposed solutions is the Physical Internet, concept of open global logistics system which completely redefines current supply chain configuration, business models, and value-creation patterns.However, further detailed research on this topic is much needed. This paper aims to provide a balanced review of the variety of views considered among professionals in the field of Physical Internet with the final aim to identify the biggest challenges (technological, societal, business paradigm) of proposed new logistics paradigm as a practical solution in supporting Industry 4.0.

  10. From Student of Physics to Historian of Science: T.S. Kuhn's Education and Early Career, 1940-1958

    NASA Astrophysics Data System (ADS)

    Hufbauer, Karl

    2012-12-01

    I first show that Kuhn came to have doubts about physics soon after entering college but did not make up his mind to leave the discipline until 1947-1948 when a close association with Harvard's President James B. Conant convinced him of the desirability of an alternative career in the history of science. I go on to maintain that it was realistic for Kuhn to prepare for such a career in essentially autodidactic ways both because he enjoyed Conant's patronage and because he could expect that his credentials in physics would be an asset in this relatively young interdisciplinary specialty. I then suggest that it was through his work as a teacher, researcher, and journeyman gatekeeper in the history of science that Kuhn gradually came to identify with the field. Finally, I argue that his training in physics, his teaching of general-education courses, and his hopes of influencing current philosophy of science helped shape his early practice as a historian of science. By way of epilogue, I briefly consider Kuhn's path from his tenuring at Berkeley in 1958 to the appearance of The Structure of Scientific Revolutions in 1962.

  11. Virtual worlds and avatars as the new frontier of telehealth care.

    PubMed

    Morie, J; Haynes, E; Chance, E; Purohit, D

    2012-01-01

    We are entering a new age where people routinely visit, inhabit, play in and learn within virtual worlds (VWs). One in eight people worldwide are VW participants, according to the latest 2011 figures from KZERO [1]. VWs are also emerging as a new and advanced form of telehealth care delivery. In addition to existing telehealth care advantages; VWs feature three powerful affordances that can benefit a wide range of physical and psychological issues. First, the highly social nature of VWs encourages social networking and the formation of essential support groups. Secondly, the type of spaces that have been proven in the physical world to promote psychological health and well-being can be virtually recreated. Finally, research suggests that embodied avatar representation within VWs can affect users psychologically and physically. These three aspects of VWs can be leveraged for enhanced patient-client interactions, spaces that promote healing and positive responses, and avatar activities that transfer real benefits from the virtual to the physical world. This paper explains the mounting evidence behind these claims and provides examples of VWs as an innovative and compelling form of telehealth care destined to become commonplace in the future.

  12. An Intervention to Improve Teachers' Interpersonally Involving Instructional Practices in High School Physical Education: Implications for Student Relatedness Support and In-Class Experiences.

    PubMed

    Sparks, Cassandra; Lonsdale, Chris; Dimmock, James; Jackson, Ben

    2017-04-01

    Research grounded in self-determination theory has demonstrated the important role of teachers in shaping students' physical education experiences. Utilizing a cluster-randomized controlled design, this study aimed to examine whether an interpersonally involving training program based on self-determination theory principles could enhance students' in-class experiences. With 18 teachers (males = 8, females = 10, M age  = 32.75, SD = 8.14) and a final sample of 382 students (males = 155, females = 227, M age  = 13.20, SD = 1.66), we implemented linear mixed modeling to investigate the effects on students' (a) perceived relatedness support and (b) enjoyment of physical education, tripartite efficacy beliefs (i.e., self-efficacy, other-efficacy, relation-inferred self-efficacy), self-determined motivation, and amotivation. Relative to those in the control condition, students in the treatment condition reported positive changes in teacher-provided relatedness support, enjoyment, other-efficacy, and peer-focused relation-inferred self-efficacy. These findings demonstrate support for strategies designed to aid physical education teachers' relatedness-supportive instructional behaviors.

  13. Exploring New Physics Beyond the Standard Model: Final Technical Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Liantao

    This grant in 2015 to 2016 was for support in the area of theoretical High Energy Physics. The research supported focused mainly on the energy frontier, but it also has connections to both the cosmic and intensity frontiers. Lian-Tao Wang (PI) focused mainly on signal of new physics at colliders. The year 2015 - 2016, covered by this grant, has been an exciting period of digesting the influx of LHC data, understanding its meaning, and using it to refine strategies for deeper exploration. The PI proposed new methods of searching for new physics at the LHC, such as for themore » compressed stops. He also investigated in detail the signal of composite Higgs models, focusing on spin-1 composite resonances in the di-boson channel. He has also considered di-photon as a probe for such models. He has also made contributions in formulating search strategies of dark matter at the LHC, resulting in two documents with recommendations. The PI has also been active in studying the physics potential of future colliders, including Higgs factories and 100 TeV pp colliders. He has given comprehensive overview of the physics potential of the high energy proton collider, and outline its luminosity targets. He has also studied the use of lepton colliders to probe fermionic Higgs portal and bottom quark couplings to the Z boson.« less

  14. Physical and relational bullying and victimization: Differential relations with adolescent dating and sexual behavior.

    PubMed

    Dane, Andrew V; Marini, Zopito A; Volk, Anthony A; Vaillancourt, Tracy

    2017-04-01

    Taking an evolutionary psychological perspective, we investigated whether involvement in bullying as a perpetrator or victim was more likely if adolescents reported having more dating and sexual partners than their peers, an indication of greater engagement in competition for mates. A total of 334 adolescents (173 boys, 160 girls) between the ages of 12 and 16 years (M = 13.6, SD = 1.3), recruited from community youth organizations, completed self-report measures of physical and relational bullying and victimization, as well as dating and sexual behavior. As predicted, pure physical bullying was positively associated with the number of dating and sexual partners, primarily for adolescent boys. Adolescent girls with more dating partners had greater odds of being relational bully-victims, in line with predictions. Finally, adolescent girls with more sexual partners were at greater risk of being physically victimized by peers, and greater involvement with dating and sexual partners was associated with higher odds of being a physical bully-victim. Results are discussed with respect to evolutionary theory and research in which adolescent boys may display strength and athleticism through physical bullying to facilitate intersexual selection, whereas relational bullying may be employed as a strategy to engage in intrasexual competition with rivals for mates. Aggr. Behav. 43:111-122, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. How teaching practices are connected to student intention to enrol in upper secondary school physics courses

    NASA Astrophysics Data System (ADS)

    Juuti, Kalle; Lavonen, Jari

    2016-05-01

    Background: In developed countries, it is challenging for teachers to select pedagogical practices that encourage students to enrol in science and technology courses in upper secondary school. Purpose: Aiming to understand the enrolment dynamics, this study analyses sample-based data from Finland's National Assessment in Science to determine whether pedagogical approaches influence student intention to enrol in upper secondary school physics courses. Sample: This study examined a clustered sample of 2949 Finnish students in the final year of comprehensive school (15-16 years old). Methods: Through explorative factor analysis, we extracted several variables that were expected to influence student intention to enrol in physics courses. We applied partial correlation to determine the underlying interdependencies of the variables. Results: The analysis revealed that the main predictor of enrolment in upper secondary school physics courses is whether students feel that physics is important. Although statistically significant, partial correlations between variables were rather small. However, the analysis of partial correlations revealed that pedagogical practices influence inquiry and attitudinal factors. Pedagogical practices that emphasise science experimentation and the social construction of knowledge had the strongest influence. Conclusions: The research implies that to increase student enrolment in physics courses, the way students interpret the subject's importance needs to be addressed, which can be done by the pedagogical practices of discussion, teacher demonstrations, and practical work.

  16. Development, content validity and test-retest reliability of the Lifelong Physical Activity Skills Battery in adolescents.

    PubMed

    Hulteen, Ryan M; Barnett, Lisa M; Morgan, Philip J; Robinson, Leah E; Barton, Christian J; Wrotniak, Brian H; Lubans, David R

    2018-03-28

    Numerous skill batteries assess fundamental motor skill (e.g., kick, hop) competence. Few skill batteries examine lifelong physical activity skill competence (e.g., resistance training). This study aimed to develop and assess the content validity, test-retest and inter-rater reliability of the "Lifelong Physical Activity Skills Battery". Development of the skill battery occurred in three stages: i) systematic reviews of lifelong physical activity participation rates and existing motor skill assessment tools, ii) practitioner consultation and iii) research expert consultation. The final battery included eight skills: grapevine, golf swing, jog, push-up, squat, tennis forehand, upward dog and warrior I. Adolescents (28 boys, 29 girls; M = 15.8 years, SD = 0.4 years) completed the Lifelong Physical Activity Skills Battery on two occasions two weeks apart. The skill battery was highly reliable (ICC = 0.84, 95% CI = 0.72-0.90) with individual skill reliability scores ranging from moderate (warrior I; ICC = 0.56) to high (tennis forehand; ICC = 0.82). Typical error (4.0; 95% CI 3.4-5.0) and proportional bias (r = -0.21, p = .323) were low. This study has provided preliminary evidence for the content validity and reliability of the Lifelong Physical Activity Skills Battery in an adolescent population.

  17. Sex moderates associations between perceptions of the physical and social environments and physical activity in youth.

    PubMed

    Moore, Justin B; Beets, Michael W; Kaczynski, Andrew T; Besenyi, Gina M; Morris, Sara F; Kolbe, Mary Bea

    2014-01-01

    To determine if the sex of the child moderates the relationships between perceptions of the physical/social environments and moderate to vigorous physical activity (MVPA) in youth. Cross-sectional. North Carolina. A final sample of 711 children, 8 to 17 years of age, was available for analysis. Self-reported presence of environmental factors previously identified to be associated with physical activity in youth was collected via survey. Daily MVPA was assessed via accelerometry for a minimum of 4 days. Multilevel linear regression models were employed, adjusted for clustering at the county and individual level. MVPA was first regressed onto sex and environmental perception items while controlling for grade and race. The interaction term between sex and environmental perception was then added to the model. A significant positive association was observed in the first models between MVPA and two items related to parent permission to (1) walk and (2) ride a bike in the neighborhood. These effects were fully moderated by sex, with males indicating "yes" on these items exhibiting 6.87 and 5.21 more minutes of MVPA (respectively) than males indicating "no." Environmental perceptions appear to be related to MVPA, but this relationship is present only in males. Future research should be conducted to identify modifiable social and physical characteristics that are associated with MVPA in females.

  18. Feasibility Study for a Plasma Dynamo Facility to Investigate Fundamental Processes in Plasma Astrophysics. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forest, Cary B.

    The scientific equipment purchased on this grant was used on the Plasma Dynamo Prototype Experiment as part of Professor Forest's feasibility study for determining if it would be worthwhile to propose building a larger plasma physics experiment to investigate various fundamental processes in plasma astrophysics. The initial research on the Plasma Dynamo Prototype Experiment was successful so Professor Forest and Professor Ellen Zweibel at UW-Madison submitted an NSF Major Research Instrumentation proposal titled "ARRA MRI: Development of a Plasma Dynamo Facility for Experimental Investigations of Fundamental Processes in Plasma Astrophysics." They received funding for this project and the Plasma Dynamomore » Facility also known as the "Madison Plasma Dynamo Experiment" was constructed. This experiment achieved its first plasma in the fall of 2012 and U.S. Dept. of Energy Grant No. DE-SC0008709 "Experimental Studies of Plasma Dynamos," now supports the research.« less

  19. Patterns of gender development.

    PubMed

    Martin, Carol Lynn; Ruble, Diane N

    2010-01-01

    A comprehensive theory of gender development must describe and explain long-term developmental patterning and changes and how gender is experienced in the short term. This review considers multiple views on gender patterning, illustrated with contemporary research. First, because developmental research involves understanding normative patterns of change with age, several theoretically important topics illustrate gender development: how children come to recognize gender distinctions and understand stereotypes, and the emergence of prejudice and sexism. Second, developmental researchers study the stability of individual differences over time, which elucidates developmental processes. We review stability in two domains-sex segregation and activities/interests. Finally, a new approach advances understanding of developmental patterns, based on dynamic systems theory. Dynamic systems theory is a metatheoretical framework for studying stability and change, which developed from the study of complex and nonlinear systems in physics and mathematics. Some major features and examples show how dynamic approaches have been and could be applied in studying gender development.

  20. Advanced Scientific Computing Research Network Requirements: ASCR Network Requirements Review Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacon, Charles; Bell, Greg; Canon, Shane

    The Energy Sciences Network (ESnet) is the primary provider of network connectivity for the U.S. Department of Energy (DOE) Office of Science (SC), the single largest supporter of basic research in the physical sciences in the United States. In support of SC programs, ESnet regularly updates and refreshes its understanding of the networking requirements of the instruments, facilities, scientists, and science programs that it serves. This focus has helped ESnet to be a highly successful enabler of scientific discovery for over 25 years. In October 2012, ESnet and the Office of Advanced Scientific Computing Research (ASCR) of the DOE SCmore » organized a review to characterize the networking requirements of the programs funded by the ASCR program office. The requirements identified at the review are summarized in the Findings section, and are described in more detail in the body of the report.« less

Top