Enhancing pre-service physics teachers' creative thinking skills through HOT lab design
NASA Astrophysics Data System (ADS)
Malik, Adam; Setiawan, Agus; Suhandi, Andi; Permanasari, Anna
2017-08-01
A research on the implementation of HOT (Higher Order Thinking) Laboratory has been carried out. This research is aimed to compare increasing of creative thinking skills of pre-service physics teachers who receive physics lesson with HOT Lab and with verification lab for the topic of electric circuit. This research used a quasi-experiment methods with control group pretest-posttest design. The subject of the research is 40 Physics Education pre-service physics teachers of UIN Sunan Gunung Djati Bandung. Research samples were selected by class random sampling technique. Data on pre-service physics teachers' creative thinking skills were collected using test of creative thinking skills in the form of essay. The results of the research reveal that average of N-gain of creative thinking skills are <0,69> for pre-service physics teachers who received lesson with HOT Lab design and <0,39> for pre-service physics teachers who received lesson with verification lab, respectively. Therefore, we conclude that application of HOT Lab design is more effective to increase creative thinking skills in the lesson of electric circuit.
Reflections on Three Corporate Research Labs: Bell Labs, HP Labs, Agilent Labs
NASA Astrophysics Data System (ADS)
Hollenhorst, James
2008-03-01
This will be a personal reflection on corporate life and physics-based research in three industrial research labs over three decades, Bell Labs during the 1980's, HP Labs during the 1990's, and Agilent Labs during the 2000's. These were times of great change in all three companies. I'll point out some of the similarities and differences in corporate cultures and how this impacted the research and development activities. Along the way I'll mention some of the great products that resulted from physics-based R&D.
NASA Astrophysics Data System (ADS)
Stanley, Jacob T.; Lewandowski, H. J.
2016-12-01
In experimental physics, lab notebooks play an essential role in the research process. For all of the ubiquity of lab notebooks, little formal attention has been paid to addressing what is considered "best practice" for scientific documentation and how researchers come to learn these practices in experimental physics. Using interviews with practicing researchers, namely, physics graduate students, we explore the different experiences researchers had in learning how to effectively use a notebook for scientific documentation. We find that very few of those interviewed thought that their undergraduate lab classes successfully taught them the benefit of maintaining a lab notebook. Most described training in lab notebook use as either ineffective or outright missing from their undergraduate lab course experience. Furthermore, a large majority of those interviewed explained that they did not receive any formal training in maintaining a lab notebook during their graduate school experience and received little to no feedback from their advisors on these records. Many of the interviewees describe learning the purpose of, and how to maintain, these kinds of lab records only after having a period of trial and error, having already started doing research in their graduate program. Despite the central role of scientific documentation in the research enterprise, these physics graduate students did not gain skills in documentation through formal instruction, but rather through informal hands-on practice.
Introductory labs; what they don't, should, and can teach (and why)
NASA Astrophysics Data System (ADS)
Wieman, Carl
2016-03-01
Introductory physics labs are widely used and expensive. They have a wide variety of potential learning goals, but these are seldom specified and less often measured if they are achieved. We cover three different research projects on introductory labs: 1) We have done cognitive task analyses of both experimental research in physics and instructional labs. The striking differences explain much of the unhappiness expressed by students with labs: 2) We have measured the effectiveness of two introductory physics lab courses specifically intended to teach the physics content covered in standard introductory courses on mechanics and E & M. As measured by course exams, the benefit is 0 +/-2% for both. 3) We show how it is possible to use lab courses to teach students to correctly evaluate physical models with uncertain data. Such quantitative critical thinking is an important skill that is not learned in typical lab courses, but is well learned by our modified lab instruction.
ERIC Educational Resources Information Center
Stanley, Jacob T.; Lewandowski, H. J.
2016-01-01
In experimental physics, lab notebooks play an essential role in the research process. For all of the ubiquity of lab notebooks, little formal attention has been paid to addressing what is considered "best practice" for scientific documentation and how researchers come to learn these practices in experimental physics. Using interviews…
The Golden Age of Radio: Solid State's Debt to the Rad Lab
NASA Astrophysics Data System (ADS)
Martin, Joseph D.
2011-03-01
While MIT's Radiation Laboratory is rightly celebrated for its contributions to World War II radar research, its legacy extended beyond the war. The Rad Lab provided a model for interdisciplinary collaboration that continued to influence research at MIT in the post-war decades. The Rad Lab's institutional legacy--MIT's interdepartmental laboratories--drove the Institute's postwar research agenda. This talk examines how solid state physics research at MIT was shaped by a laboratory structure that encouraged cross-disciplinary collaboration. As the sub-discipline of solid state physics emerged through the late-1940s and 1950s, MIT was unique among universities in its laboratory structure, made possible by a large degree of government and military funding. Nonetheless, the manner in which MIT research groups from physics, chemistry, engineering, and metallurgy interfaced through the medium of solid state physics exemplified how the discipline of solid state physics came to be structured in the rest of the country. Through examining the Rad Lab's institutional legacy, I argue that World War II radar research, by establishing precedent for a particular mode of interdisciplinary collaboration, shaped the future structure of solid state research in the United States. Research supported by a grant-in-aid from the Friends of the Center for the History of Physics, American Institute of Physics.
Advanced Physics Labs and Undergraduate Research: Helping Them Work Together
NASA Astrophysics Data System (ADS)
Peterson, Richard W.
2009-10-01
The 2009 Advanced Lab Topical Conference in Ann Arbor affirmed the importance of advanced labs that teach crucial skills and methodologies by carefully conducting a time-honored experiment. Others however argued that such a constrained experiment can play a complementary role to more open-ended, project experiences. A genuine ``experiment'' where neither student or faculty member is exactly sure of the best approach or anticipated result can often trigger real excitement, creativity, and career direction for students while reinforcing the advanced lab and undergraduate research interface. Several examples are cited in areas of AMO physics, optics, fluids, and acoustics. Colleges and universities that have dual-degree engineering, engineering physics, or applied physics programs may especially profit from interdisciplinary projects that utilize optical, electromagnetic, and acoustical measurements in conjunction with computational physics and simulation.
Exploring problem-based cooperative learning in undergraduate physics labs: student perspectives
NASA Astrophysics Data System (ADS)
Bergin, S. D.; Murphy, C.; Shuilleabhain, A. Ni
2018-03-01
This study examines the potential of problem-based cooperative learning (PBCL) in expanding undergraduate physics students’ understanding of, and engagement with, the scientific process. Two groups of first-year physics students (n = 180) completed a questionnaire which compared their perceptions of learning science with their engagement in physics labs. One cohort completed a lab based on a PBCL approach, whilst the other completed the same experiment, using a more traditional, manual-based lab. Utilising a participant research approach, the questionnaire was co-constructed by researchers and student advisers from each cohort in order to improve shared meaning between researchers and participants. Analysis of students’ responses suggests that students in the PBCL cohort engaged more in higher-order problem-solving skills and evidenced a deeper understanding of the scientific process than students in the more traditional, manual-based cohort. However, the latter cohort responses placed more emphasis on accuracy and measurement in lab science than the PBCL cohort. The students in the PBCL cohort were also more positively engaged with their learning than their counterparts in the manual led group.
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Lewandowski, H. J.
2016-01-01
Student learning in instructional physics labs represents a growing area of research that includes investigations of students' beliefs and expectations about the nature of experimental physics. To directly probe students' epistemologies about experimental physics and support broader lab transformation efforts at the University of Colorado Boulder…
A summary of research-based assessment of students' beliefs about the nature of experimental physics
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.; Lewandowski, H. J.
2018-03-01
Within the undergraduate physics curriculum, students' primary exposure to experimental physics comes from laboratory courses. Thus, as experimentation is a core component of physics as a discipline, lab courses can be gateways in terms of both recruiting and retaining students within the physics major. Physics lab courses have a wide variety of explicit and/or implicit goals for lab courses, including helping students to develop expert-like beliefs about the nature and importance of experimental physics. To assess students' beliefs, attitudes, and expectations about the nature of experimental physics, there is currently one research-based assessment instrument available—the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Since its development, the E-CLASS has been the subject of multiple research studies aimed at understanding and evaluating the effectiveness of various laboratory learning environments. This paper presents a description of the E-CLASS assessment and a summary of the research that has been done using E-CLASS data with a particular emphasis on the aspects of this work that are most relevant for instructors.
NASA Astrophysics Data System (ADS)
Chao, Jie; Chiu, Jennifer L.; DeJaegher, Crystal J.; Pan, Edward A.
2016-02-01
Deep learning of science involves integration of existing knowledge and normative science concepts. Past research demonstrates that combining physical and virtual labs sequentially or side by side can take advantage of the unique affordances each provides for helping students learn science concepts. However, providing simultaneously connected physical and virtual experiences has the potential to promote connections among ideas. This paper explores the effect of augmenting a virtual lab with physical controls on high school chemistry students' understanding of gas laws. We compared students using the augmented virtual lab to students using a similar sensor-based physical lab with teacher-led discussions. Results demonstrate that students in the augmented virtual lab condition made significant gains from pretest and posttest and outperformed traditional students on some but not all concepts. Results provide insight into incorporating mixed-reality technologies into authentic classroom settings.
Faculty Perceptions of Students in Life and Physical Science Research Labs
ERIC Educational Resources Information Center
Gonyo, Claire P.; Cantwell, Brendan
2015-01-01
This qualitative study involved interviews of 32 faculty principle investigators at three research institutions and explored how they view the role of students within physical and life science labs. We used socialization theory and student engagement literature to analyze faculty views, which can contribute to student investment in STEM fields.…
NASA Astrophysics Data System (ADS)
Malik, A.; Setiawan, A.; Suhandi, A.; Permanasari, A.; Dirgantara, Y.; Yuniarti, H.; Sapriadil, S.; Hermita, N.
2018-01-01
This study aimed to investigate the improvement to pre-service teacher’s communication skills through Higher Order Thinking Laboratory (HOT Lab) on electric circuit topic. This research used the quasi-experiment method with pretest-posttest control group design. Research subjects were 60 students of Physics Education in UIN Sunan Gunung Djati Bandung. The sample was chosen by random sampling technique. Students’ communication skill data collected using a communication skills test instruments-essays form and observations sheets. The results showed that pre-service teacher communication skills using HOT Lab were higher than verification lab. Student’s communication skills in groups using HOT Lab were not influenced by gender. Communication skills could increase due to HOT Lab based on problems solving that can develop communication through hands-on activities. Therefore, the conclusion of this research shows the application of HOT Lab is more effective than the verification lab to improve communication skills of pre-service teachers in electric circuit topic and gender is not related to a person’s communication skills.
Students' views about the nature of experimental physics
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.; Lewandowski, H. J.
2017-12-01
The physics community explores and explains the physical world through a blend of theoretical and experimental studies. The future of physics as a discipline depends on training of students in both the theoretical and experimental aspects of the field. However, while student learning within lecture courses has been the subject of extensive research, lab courses remain relatively under-studied. In particular, there is little, if any, data available that address the effectiveness of physics lab courses at encouraging students to recognize the nature and importance of experimental physics within the discipline as a whole. To address this gap, we present the first large-scale, national study (Ninstitutions=75 and Nstudents=7167 ) of undergraduate physics lab courses through analysis of students' responses to a research-validated assessment designed to investigate students' beliefs about the nature of experimental physics. We find that students often enter and leave physics lab courses with ideas about experimental physics as practiced in their courses that are inconsistent with the views of practicing experimental physicists, and this trend holds at both the introductory and upper-division levels. Despite this inconsistency, we find that both introductory and upper-division students are able to accurately predict the expertlike response even in cases where their views about experimentation in their lab courses disagree. These finding have implications for the recruitment, retention, and adequate preparation of students in physics.
Flexible Work Strategies | Climate Neutral Research Campuses | NREL
physical resources through shared offices and hotelling. Employees take turns using physical office and lab , telecommuting, and similar strategies make the most of limited physical space and, in some cases, avoid new construction. Hotelling is a popular option under which employees take turns using physical office and lab
Transforming the advanced lab: Part I - Learning goals
NASA Astrophysics Data System (ADS)
Zwickl, Benjamin; Finkelstein, Noah; Lewandowski, H. J.
2012-02-01
Within the physics education research community relatively little attention has been given to laboratory courses, especially at the upper-division undergraduate level. As part of transforming our senior-level Optics and Modern Physics Lab at the University of Colorado Boulder we are developing learning goals, revising curricula, and creating assessments. In this paper, we report on the establishment of our learning goals and a surrounding framework that have emerged from discussions with a wide variety of faculty, from a review of the literature on labs, and from identifying the goals of existing lab courses. Our goals go beyond those of specific physics content and apparatus, allowing instructors to personalize them to their contexts. We report on four broad themes and associated learning goals: Modeling (math-physics-data connection, statistical error analysis, systematic error, modeling of engineered "black boxes"), Design (of experiments, apparatus, programs, troubleshooting), Communication, and Technical Lab Skills (computer-aided data analysis, LabVIEW, test and measurement equipment).
Germany plans 60m euro physics and medicine lab
NASA Astrophysics Data System (ADS)
Stafford, Ned
2017-09-01
A new €60m medical-physics research lab is to be built in Erlangen, Germany, by the Max Planck Institute for the Science of Light (MPL) together with the Friedrich Alexander University Erlangen-Nürnberg and the University Hospital Erlangen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emmanuel, Glory Ruth; Silva, Austin Ray
Sandia Labs has corporate, lab-wide efforts to enhance the research environment as well as improve physical space. However, these two efforts are usually done in isolation. The integration of physical space design with the nurturing of what we call psychosocial space can foster more efficient and effective creativity, innovation, collaboration, and performance. This paper presents a brief literature review on how academia and industry are studying the integration of physical and psychosocial space and focuses on the efforts that we, the authors, have made to improve the research environment in the Cyber Engineering Research Lab (CERL), home to Group 1460.more » Interviews with subject matter experts from Silicon Valley and the University of New Mexico plus changes to actual spaces in CERL provided us with six lessons learned when integrating physical and psychosocial space. We describe these six key takeaways in hopes that Sandia will see this area as an evolving research capability that Sandia can both contribute to and benefit from.« less
2004-01-05
KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
2004-01-05
KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
2004-01-05
KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
2004-01-05
KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install a Dionex DX-500 IC/HPLC system in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
2004-01-05
KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
2004-01-05
KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
REU Solar and Space Physics Summer School
NASA Astrophysics Data System (ADS)
Snow, M. A.; Wood, E. L.
2011-12-01
The Research Experience for Undergrads (REU) program in Solar and Space Physics at the University of Colorado begins with a week of lectures and labs on Solar and Space Physics. The students in our program come from a variety of majors (physics, engineering, meteorology, etc.) and from a wide range of schools (small liberal arts colleges up through large research universities). The majority of the students have never been exposed to solar and space physics before arriving in Boulder to begin their research projects. We have developed a week-long crash course in the field using the expertise of scientists in Boulder and the labs designed by the Center for Integrated Space Weather Modeling (CISM).
Recommendations for the use of notebooks in upper-division physics lab courses
NASA Astrophysics Data System (ADS)
Stanley, Jacob T.; Lewandowski, H. J.
2018-01-01
The use of lab notebooks for scientific documentation is a ubiquitous part of physics research. However, it is common for undergraduate physics laboratory courses not to emphasize the development of documentation skills, despite the fact that such courses are some of the earliest opportunities for students to start engaging in this practice. One potential impediment to the inclusion of explicit documentation training is that it may be unclear to instructors which features of authentic documentation practice are efficacious to teach and how to incorporate these features into the lab class environment. In this work, we outline some of the salient features of authentic documentation, informed by interviews with physics researchers, and provide recommendations for how these can be incorporated into the lab curriculum. We do not focus on structural details or templates for notebooks. Instead, we address holistic considerations for the purpose of scientific documentation that can guide students to develop their own documentation style. While taking into consideration all the aspects that can help improve students' documentation, it is also important to consider the design of the lab activities themselves. Students should have experience with implementing these authentic features of documentation during lab activities in order for them to find practice with documentation beneficial.
Can Graduate Teaching Assistants Teach Inquiry-Based Geology Labs Effectively?
ERIC Educational Resources Information Center
Ryker, Katherine; McConnell, David
2014-01-01
This study examines the implementation of teaching strategies by graduate teaching assistants (GTAs) in inquiry-based introductory geology labs at a large research university. We assess the degree of inquiry present in each Physical Geology lab and compare and contrast the instructional practices of new and experienced GTAs teaching these labs. We…
Learning Experience on Transformer Using HOT Lab for Pre-service Physics Teacher’s
NASA Astrophysics Data System (ADS)
Malik, A.; Setiawan, A.; Suhandi, A.; Permanasari, A.
2017-09-01
This study aimed at investigating pre-service teacher’s critical thinking skills improvement through Higher Order Thinking (HOT) Lab on transformer learning. This research used mix method with the embedded experimental model. Research subjects are 60 students of Physics Education in UIN Sunan Gunung Djati Bandung. The results showed that based on the results of the analysis of practical reports and observation sheet shows students in the experimental group was better in carrying out the practicum and can solve the real problem while the control group was going on the opposite. The critical thinking skills of students applying the HOT Lab were higher than the verification lab. Critical thinking skills could increase due to HOT Lab based problems solving that can develop higher order thinking skills through laboratory activities. Therefore, it was concluded that the application of HOT Lab was more effective than verification lab on improving students’ thinking skills on transformer topic learning. Finally, HOT Lab can be implemented in other subject learning and could be used to improve another higher order thinking skills.
2004-01-05
KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
Students' views about the nature of experimental physics
NASA Astrophysics Data System (ADS)
Wilcox, Bethany
2017-04-01
The physics community explores and explains the physical world through a blend of theoretical and experimental studies. The future of physics as a discipline depends on training of students in both the theoretical and experimental aspects of the field. However, while student learning within lecture courses has been the subject of extensive research, lab courses remain relatively under-studied. In particular, there is little, if any, data available that addresses the effectiveness of physics lab courses at encouraging students to recognize the nature and importance of experimental physics within the discipline as a whole. To address this gap, we present the first large-scale, national study (Ninstitutions = 71 and Nstudents = 7167) of undergraduate physics lab courses through analysis of students' responses to a research-validated assessment designed to investigate students' beliefs about the nature of experimental physics. We find that students often enter and leave physics lab courses with ideas about experimental physics that are inconsistent with the views of practicing experimental physicists, and this trend holds at both the introductory and upper-division levels. Despite this inconsistency, we find that both introductory and upper-division students are able to accurately predict the expert-like response even in cases where their personal views disagree. These finding have implications for the recruitment, retention, and adequate preparation of students in physics. This work was funded by the NSF-IUSE Grant No. DUE-1432204 and NSF Grant No. PHY-1125844.
Helping Students to Think Like Scientists in Socratic Dialogue-Inducing Labs
ERIC Educational Resources Information Center
Hake, Richard
2012-01-01
Socratic dialogue-inducing (SDI) labs are based on Arnold Arons' half-century of ethnographic research, listening carefully to students' responses to probing Socratic questions on physics, science, and ways of thinking, and culminating in his landmark "Teaching Introductory Physics." They utilize "interactive engagement" methods and are designed,…
Making ideas at scientific fabrication laboratories
NASA Astrophysics Data System (ADS)
Fonda, Carlo; Canessa, Enrique
2016-11-01
Creativity, together with the making of ideas into fruition, is essential for progress. Today the evolution from an idea to its application can be facilitated by the implementation of Fabrication Laboratories, or FabLabs, having affordable digital tools for prototyping. FabLabs aiming at scientific research and invention are now starting to be established inside Universities, Research Centers and Schools. We review the setting up of the ICTP Scientific FabLab in Trieste, Italy, give concrete examples on the use in physics, and propose to replicate world-wide this class of multi-purpose workplaces within academia as a support for physics and math education and for community development.
Berkeley Lab - Materials Sciences Division
Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials Sciences Division About Organization Contact Research Core Programs Materials Discovery, Design and
Energy and technology review, July--August, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burnham, A.K.
1990-01-01
This report highlights various research programs conducted at the Lab to include: defense systems, laser research, fusion energy, biomedical and environmental sciences, engineering, physics, chemistry, materials science, and computational analysis. It also contains a statement on the state of the Lab and Laboratory Administration. (JEF)
ERIC Educational Resources Information Center
Chao, Jie; Chiu, Jennifer L.; DeJaegher, Crystal J.; Pan, Edward A.
2016-01-01
Deep learning of science involves integration of existing knowledge and normative science concepts. Past research demonstrates that combining physical and virtual labs sequentially or side by side can take advantage of the unique affordances each provides for helping students learn science concepts. However, providing simultaneously connected…
Guitars, Keyboards, Strobes, and Motors--From Vibrational Motion to Active Research
ERIC Educational Resources Information Center
Tagg, Randall; Carlson, John; Asadi-Zeydabadi, Masoud; Busley, Brad; Law-Balding, Katie; Juengel, Mattea
2013-01-01
Physics First is offered to ninth graders at high schools in Aurora, CO. A unique new asset of this school system is an embedded research lab called the "Innovation Hyperlab." The goal of the lab is to connect secondary school teaching to ongoing university scientific research, supporting the school district's aim to create opportunities to…
Physics division progress report for period ending September 30 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livingston, A.B.
1992-03-01
This report discusses research being conducted at Oak Ridge National Laboratory in physics. The areas covered are: Holifield Heavy Ion Research Facility; low/medium energy nuclear physics; high energy experimental physics; the Unisor program; experimental atomic physics; laser and electro-optics lab; theoretical physics; compilations and evaluations; and radioactive ion beam development. (LSP)
Open Innovation Labs for Physics Undergraduate Independent Research
NASA Astrophysics Data System (ADS)
Carlsmith, Duncan
2014-03-01
The open undergraduate laboratory Garage Physics at the University of Wisconsin-Madison is home to a variety of independent physics and multidisciplinary research projects. Its maker-style environment encourages innovation and entrepreneurship. Experience establishing and staffing the laboratory will be described.
Berkeley Lab - Materials Sciences Division
Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for materials and phenomena at multiple time and length scales. Through our core programs and research centers Berkeley Lab Berkeley Lab A-Z Index Phone Book Jobs Search DOE Search MSD Go MSD - Materials
2017-01-01
This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals’ pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers. PMID:28178270
Roach, Michael
2017-01-01
This paper investigates how the encouragement of entrepreneurship within university research labs relates with research activities, research outputs, and early doctorate careers. Utilizing a panel survey of 6,840 science & engineering doctoral students at 39 R1 research universities, this study shows that entrepreneurship is widely encouraged across university research labs, ranging from 54% in biomedical engineering to 18% in particle physics, while only a small share of labs openly discourage entrepreneurship, from approximately 3% in engineering to approximately 12% in the life sciences. Within fields, there is no difference between labs that encourage entrepreneurship and those that do not with respect to basic research activity and the number of publications. At the same time, labs that encourage entrepreneurship are significantly more likely to report invention disclosures, particularly in engineering where such labs are 41% more likely to disclose inventions. With respect to career pathways, PhDs students in labs that encourage entrepreneurship do not differ from other PhDs in their interest in academic careers, but they are 87% more likely to be interested in careers in entrepreneurship and 44% more likely to work in a startup after graduation. These results persist even when accounting for individuals' pre-PhD interest in entrepreneurship and the encouragement of other non-academic industry careers.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
Michel, Christiane Röckl; Standke, Gesche; Naef, Reto
2012-01-01
The Novartis School Lab (http://www.novartis.ch/schullabor) is an institution with an old tradition. The School Lab reaches about 5000 students through internal courses and an additional 5000 children at public science events where they can enjoy hands-on science in disciplines of biomedical research. The subjects range from chemistry, physics, molecular biology and genetics to toxicology and medical topics. The Novartis School Lab offers a variety of activities for youngsters aged 10-20 ranging from lab courses for school classes, continuing education for teachers and development of teaching kits, support for individual research projects to outreach for public science events. Innovation and adaptation to changes of current needs are essential aspects for the Novartis School Lab. Ongoing activities to shape the Novartis Biomedical Learning Lab include design of new teaching experiments, exploration into additional disciplines of biomedical science and the creation of a fascinating School Lab of the future.
Comparative Cognitive Task Analyses of Experimental Science and Instructional Laboratory Courses
NASA Astrophysics Data System (ADS)
Wieman, Carl
2015-09-01
Undergraduate instructional labs in physics generate intense opinions. Their advocates are passionate as to their importance for teaching physics as an experimental activity and providing "hands-on" learning experiences, while their detractors (often but not entirely students) offer harsh criticisms that they are pointless, confusing and unsatisfying, and "cookbook." Here, both to help understand the reason for such discrepant views and to aid in the design of instructional lab courses, I compare the mental tasks or types of thinking ("cognitive task analysis") associated with a physicist doing tabletop experimental research with the cognitive tasks of students in an introductory physics instructional lab involving traditional verification/confirmation exercises.
2000-06-28
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building (O&C), an overhead crane hovers over the U.S. Lab, named Destiny, while workers attach cables for lifting the Lab. The Lab will undergo testing in the altitude chamber in the O&C. Destiny is scheduled to fly on mission STS-98 in early 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-06-28
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building (O&C), an overhead crane hovers over the U.S. Lab, named Destiny, while workers attach cables for lifting the Lab. The Lab will undergo testing in the altitude chamber in the O&C. Destiny is scheduled to fly on mission STS-98 in early 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
Advanced teaching labs in physics - celebrating progress; challenges ahead
NASA Astrophysics Data System (ADS)
Peterson, Richard
A few examples of optical physics experiments may help us first reflect on significant progress on how advanced lab initiatives may now be more effectively developed, discussed, and disseminated - as opposed to only 10 or 15 years back. Many cooperative developments of the last decade are having profound impacts on advanced lab workers and students. Central to these changes are the programs of the Advanced Laboratory Physics Association (ALPhA) (Immersions, BFY conferences), AAPT (advlab-l server, ComPADRE, apparatus competitions, summer workshops/sessions), APS (Reichert Award, FEd activities and sessions), and the Jonathan F. Reichert Foundation (ALPhA support and institution matched equipment grants for Immersion participants). Broad NSF support has helped undergird several of these initiatives. Two of the most significant challenges before this new advanced lab community are (a) to somehow enhance funding opportunities for teaching equipment and apparatus in an era of minimal NSF equipment support, and (b) to help develop a more complementary relationship between research-based advanced lab pedagogies and the development of fresh physics experiments that help enable the mentoring and experimental challenge of our students.
NASA Astrophysics Data System (ADS)
Holmes, N. G.; Wieman, Carl E.
2016-12-01
While the positive outcomes of undergraduate research experiences (UREs) have been extensively categorized, the mechanisms for those outcomes are less understood. Through lightly structured focus group interviews, we have extracted the cognitive tasks that students identify as engaging in during their UREs. We also use their many comparative statements about their coursework, especially lab courses, to evaluate their experimental physics-related cognitive tasks in those environments. We find there are a number of cognitive tasks consistently encountered in physics UREs that are present in most experimental research. These are seldom encountered in lab or lecture courses, with some notable exceptions. Having time to reflect and fix or revise, and having a sense of autonomy, were both repeatedly cited as key enablers of the benefits of UREs. We also identify tasks encountered in actual experimental research that are not encountered in UREs. We use these findings to identify opportunities for better integration of the cognitive tasks in UREs and lab courses, as well as discussing the barriers that exist. This work responds to extensive calls for science education to better develop students' scientific skills and practices, as well as calls to expose more students to scientific research.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install new equipment for gas chromatography and mass spectrometry in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
From e-manufacturing to Internet Product Process Development (IPPD) through remote - labs
NASA Astrophysics Data System (ADS)
Córdoba Nieto, Ernesto; Andres Cifuentes Parra, Paulo; Camilo Parra Díaz, Juan
2014-07-01
This paper presents the research developed at Universidad Nacional de Colombia about the e-Manufacturing platform that is being developed and implemented at LabFabEx (acronym in Spanish as "Laboratorio Fabrica Experimental"). This platform besides has an approach to virtual-remote labs that have been tested by several students and engineers of different industrial fields. At this paper it is shown the physical and communication experimental platform, the general scope and characteristics of this e-Manufacturing platform and the virtual lab approach. This research project is funded by COLCIENCIAS (Administrative Department of science, technology and innovation in Colombia) and the enterprise IMOCOM S.A.
2000-07-01
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is centered over the three-story vacuum chamber in which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lifted above the three-story vacuum chamber into which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is moved toward the center over the three-story vacuum chamber in which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lifted out of the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lifted above the three-story vacuum chamber into which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is centered over the three-story vacuum chamber in which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lifted out of the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is moved toward the center over the three-story vacuum chamber in which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, after successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, is lifted up and away from the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, after successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, is lifted up and away from the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
NASA Astrophysics Data System (ADS)
Carroll, Brandon; Finneran, Ian; Blake, Geoffrey
2014-06-01
We present the design and construction of a simple and low-cost waveguide chirped pulse Fourier transform microwave (CP-FTMW) spectrometer suitable for gas-phase rotational spectroscopy experiments in undergraduate physical chemistry labs as well as graduate level research. The spectrometer operates with modest bandwidth, using phased locked loop (PLL) microwave sources and a direct digital synthesis (DDS) chirp source, making it an affordable for undergraduate labs. The performance of the instrument is benchmarked by acquiring the pure rotational spectrum of the J = 1 - 0 transition OCS and its isotopologues from 11-12.5 GHz.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Robert K.
Ernest Orland Lawrence Berkeley National Laboratory (Berkeley Lab) is the oldest of America's national laboratories and has been a leader in science and engineering technology for more than 65 years, serving as a powerful resource to meet Us national needs. As a multi-program Department of Energy laboratory, Berkeley Lab is dedicated to performing leading edge research in the biological, physical, materials, chemical, energy, environmental and computing sciences. Ernest Orlando Lawrence, the Lab's founder and the first of its nine Nobel prize winners, invented the cyclotron, which led to a Golden Age of particle physics and revolutionary discoveries about the naturemore » of the universe. To this day, the Lab remains a world center for accelerator and detector innovation and design. The Lab is the birthplace of nuclear medicine and the cradle of invention for medical imaging. In the field of heart disease, Lab researchers were the first to isolate lipoproteins and the first to determine that the ratio of high density to low density lipoproteins is a strong indicator of heart disease risk. The demise of the dinosaurs--the revelation that they had been killed off by a massive comet or asteroid that had slammed into the Earth--was a theory developed here. The invention of the chemical laser, the unlocking of the secrets of photosynthesis--this is a short preview of the legacy of this Laboratory.« less
Promoting Metacognition in Introductory Calculus-based Physics Labs
NASA Astrophysics Data System (ADS)
Grennell, Drew; Boudreaux, Andrew
2010-10-01
In the Western Washington University physics department, a project is underway to develop research-based laboratory curriculum for the introductory calculus-based course. Instructional goals not only include supporting students' conceptual understanding and reasoning ability, but also providing students with opportunities to engage in metacognition. For the latter, our approach has been to scaffold reflective thinking with guided questions. Specific instructional strategies include analysis of alternate reasoning presented in fictitious dialogues and comparison of students' initial ideas with their lab group's final, consensus understanding. Assessment of student metacognition includes pre- and post- course data from selected questions on the CLASS survey, analysis of written lab worksheets, and student opinion surveys. CLASS results are similar to a traditional physics course and analysis of lab sheets show that students struggle to engage in a metacognitive process. Future directions include video studies, as well as use of additional written assessments adapted from educational psychology.
Internet-Based Laboratory Immersion: When The Real Deal is Not Available
NASA Astrophysics Data System (ADS)
Meisner, Gerald; Hoffman, Harol
2004-11-01
Do you want all of your students to investigate equilibrium conditions in the physics lab, but don't have time for lab investigations? Do your under-prepared students need basic, careful and detailed remedial work to help them succeed? LAAPhysics provides an answer to these questions by means of robust online physics courseware based on: (1) a sound, research-based pedagogy (2) a rich laboratory environment with skills and operational knowledge transferable to the wet lab' and (3) a paradigm which is economically scalable. LAAPhysics provides both synchronous and asynchronous learning experiences for an introductory, algebra-based course for students (undergraduate, AP High School, seekers of a second degree), those seeking career changes, and pre-service and in-service teachers. We have developed a simulated physics laboratory comprised of virtual lab equipment and instruments, associated curriculum modules and virtual guidance for real time feedback, formative assessment and collaborative learning.
2000-07-01
KENNEDY SPACE CENTER, FLA. -- An overhead crane moves the lid over the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- An overhead crane moves the lid over the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
NASA Astrophysics Data System (ADS)
Oien, R. P.; Anders, A. M.; Long, A.
2014-12-01
We present the initial results of transitioning laboratory activities in an introductory physical geology course from passive to active learning. Educational research demonstrates that student-driven investigations promote increased engagement and better retention of material. Surveys of students in introductory physical geology helped us identify lab activities which do not engage students. We designed new lab activities to be more collaborative, open-ended and "hands-on". Student feedback was most negative for lab activities which are computer-based. In response, we have removed computers from the lab space and increased the length and number of activities involving physical manipulation of samples and models. These changes required investment in lab equipment and supplies. New lab activities also include student-driven exploration of data with open-ended responses. Student-evaluations of the new lab activities will be compiled during Fall 2014 and Spring 2015 to allow us to measure the impact of the changes on student satisfaction and we will report on our findings to date. Modification of this course has been sponsored by NSF's Widening Implementation & Demonstration of Evidence Based Reforms (WIDER) program through grant #1347722 to the University of Illinois. The overall goal of the grant is to increase retention and satisfaction of STEM students in introductory courses.
Chip in a lab: Microfluidics for next generation life science research
Streets, Aaron M.; Huang, Yanyi
2013-01-01
Microfluidic circuits are characterized by fluidic channels and chambers with a linear dimension on the order of tens to hundreds of micrometers. Components of this size enable lab-on-a-chip technology that has much promise, for example, in the development of point-of-care diagnostics. Micro-scale fluidic circuits also yield practical, physical, and technological advantages for studying biological systems, enhancing the ability of researchers to make more precise quantitative measurements. Microfluidic technology has thus become a powerful tool in the life science research laboratory over the past decade. Here we focus on chip-in-a-lab applications of microfluidics and survey some examples of how small fluidic components have provided researchers with new tools for life science research. PMID:23460772
ERIC Educational Resources Information Center
Darrah, Marjorie; Humbert, Roxann; Finstein, Jeanne; Simon, Marllin; Hopkins, John
2014-01-01
Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an…
Detoxification of cancerogenic compounds by lactic acid bacteria strains.
Lili, Zhao; Junyan, Wei; Hongfei, Zhao; Baoqing, Zhu; Bolin, Zhang
2017-10-20
Carcinogens in food are an important issue that threat people's health right now. Lactic acid bacteria (LAB) strains as well-known probiotics have shown numerous perspectives in being used as a good food additive to confront cancerogenic compounds in recent years. Some LAB strains can remove cancerogenic compounds from medium environment via direct physical binding and avoid re-pollution of poisonous secondary metabolites which are generated from degradation of cancerogenic compounds. This article presents a whole overview of the physical-binding of LAB strains to such common cancerogenic compounds existed in food and feed environments as mycotoxins, polycyclic aromatic hydrocarbons (PAHs), heterocyclic amines (HAs) and pthalic acid esters (PAEs).In most cases, summaries of these published researches show that the binding of LAB strains to cancerogenic compounds is a physical process. Binding sites generally take place in cell wall, and peptidoglycan from LAB cells is the chief binding site. The adsorption of lactic acid bacteria to cancerogenic compounds is strain-specific. Specially, the strains from the two genera Lactobacillus and Bifidobacterium show a better potential in binding cancerogenic compounds. Moreover, we firstly used molecular dynamic computer model as a highly potential tool to simulate the binding behavior of peptidoglycan from Lactobacillus acidophilus to DBP, one of pthalic acid esters with genetic toxicity. It was seen that the theoretical data were quite consistent with the experimental results in terms of the ability of this bacterium to bind DBP. Also, the toxicity reduction of cancerogenic compounds by LAB strains could be achieved either in gastrointestinal model or animal tests and clinical researches as well. In conclusion, carefully selected LAB strains should be a good solution as one of safety strategies to reduce potential risk of cancerogenic compounds from food-based products.
NASA Astrophysics Data System (ADS)
Malik, A.; Setiawan, A.; Suhandi, A.; Permanasari, A.; Samsudin, A.; Safitri, D.; Lisdiani, S. A. S.; Sapriadil, S.; Hermita, N.
2018-05-01
This research purposes to explore the used of Higher Order Thinking Laboratory (HOT-Lab) in enhancing the critical thinking skills of pre-service teachers related to the topic of Resistors, Inductors, Capacitor (RLC circuit). This study utilised a quasi-experiment method with Pretest-Posttest Control Group design. The sample of the study was 60 students that were divided into two groups covering in experiment and control group, consists of 30 students. The instrument for measuring critical thinking skills is essay test. Data has been analyzed using normalized gain average, effect size, and t-test. The results show that students’ critical thinking skills using the HOT Lab are higher than the verification lab. Using HOT-lab was implemented in the form of activity in the laboratory can improve high-order thinking skills. Hence, it was concluded that the use of HOT Lab had a greater impact on improving students’ critical thinking skills on RLC topic. Finally, HOT Lab can be used for other physics topics.
The Rise of Basic Research at tha Bell Labs: Young Turks and Younger Turks
NASA Astrophysics Data System (ADS)
Anderson, Philip
2004-03-01
ABSTRACT Even before World War II, a certain amount of fundamental physics research came out of the Bell Labs. Already in the 20's, before the Labs were five years old, the discoveries of electron diffraction by Davisson and Germer, and of thermal noise by Johnson and Nyquist, had come as byproducts of wide-ranging technological studies. By the late '30's, there was a small group of broadly-trained scientists who formed a nucleus around which the "young turks" in management --J B Fisk, M J Kelly, W Shockley, perhaps others--formed the postwar physical research department, comprising at first perhaps 50 people with a mandate to do exploratory but "relevant" research. This talk will diiscuss how some of the generation of postwar hires, with the cooperation of enlightened managers like W O Baker and A H White, further tested and enlarged their freedom to do basic, curiosity-driven research in an academic atmosphere. I call this group, consisting of individuals like B T Matthias, G H Wannier, R G Shulman, P A Wolff, myself , and a number of others, the "younger Turks".
Guitars, Keyboards, Strobes, and Motors -- From Vibrational Motion to Active Research
NASA Astrophysics Data System (ADS)
Tagg, Randall; Carlson, John; Asadi-Zeydabadi, Masoud; Busley, Brad; Law-Balding, Katie; Juengel, Mattea
2013-01-01
Physics First is offered to ninth graders at high schools in Aurora, CO. A unique new asset of this school system is an embedded research lab called the "Innovation Hyperlab." The goal of the lab is to connect secondary school teaching to ongoing university scientific research, supporting the school district's aim to create opportunities to integrate P-20 (preschool to graduate school) learning. This paper is an example of how we create research connections in the context of introductory physics lessons on vibrations and waves. Key to the process is the use of several different types of technical resources, hence the name "hyperlab." Students learn many practical experimental techniques, reinforcing their knowledge of fundamentals and preparing them to work effectively on open-ended research or engineering projects.
Laboratory Directed Research and Development Program FY 2006
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen
2007-03-08
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.« less
2000-07-07
KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is ready to be removed from the chamber. Workers check a crane being attached to the rotation and handling fixture that holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is ready to be removed from the chamber. Workers check a crane being attached to the rotation and handling fixture that holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
The U.S. Lab is moved toward the open floor in the O&C Building
NASA Technical Reports Server (NTRS)
2000-01-01
In the Operations and Checkout Building, the U.S. Lab moves overhead toward the open floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
NASA Astrophysics Data System (ADS)
Sokoloff, David R.
2005-10-01
Widespread physics education research has shown that most introductory physics students have difficulty learning essential optics concepts - even in the best of traditional courses, and that well-designed active learning approaches can remedy this problem. This mini-workshop and the associated poster session will provide direct experience with methods for promoting students' active involvement in the learning process in lecture and laboratory. Participants will have hands-on experience with activities from RealTime Physics labs and Interactive Lecture Demonstrations - a learning strategy for large (and small) lectures, including specially designed Optics Magic Tricks. The poster will provide more details on these highly effective curricula.
NASA Astrophysics Data System (ADS)
Chambers, Timothy
This dissertation presents the results of an experiment that measured the learning outcomes associated with three different pedagogical approaches to introductory physics labs. These three pedagogical approaches presented students with the same apparatus and covered the same physics content, but used different lab manuals to guide students through distinct cognitive processes in conducting their laboratory investigations. We administered post-tests containing multiple-choice conceptual questions and free-response quantitative problems one week after students completed these laboratory investigations. In addition, we collected data from the laboratory practical exam taken by students at the end of the semester. Using these data sets, we compared the learning outcomes for the three curricula in three dimensions of ability: conceptual understanding, quantitative problem-solving skill, and laboratory skills. Our three pedagogical approaches are as follows. Guided labs lead students through their investigations via a combination of Socratic-style questioning and direct instruction, while students record their data and answers to written questions in the manual during the experiment. Traditional labs provide detailed written instructions, which students follow to complete the lab objectives. Open labs provide students with a set of apparatus and a question to be answered, and leave students to devise and execute an experiment to answer the question. In general, we find that students performing Guided labs perform better on some conceptual assessment items, and that students performing Open labs perform significantly better on experimental tasks. Combining a classical test theory analysis of post-test results with in-lab classroom observations allows us to identify individual components of the laboratory manuals and investigations that are likely to have influenced the observed differences in learning outcomes associated with the different pedagogical approaches. Due to the novel nature of this research and the large number of item-level results we produced, we recommend additional research to determine the reproducibility of our results. Analyzing the data with item response theory yields additional information about the performance of our students on both conceptual questions and quantitative problems. We find that performing lab activities on a topic does lead to better-than-expected performance on some conceptual questions regardless of pedagogical approach, but that this acquired conceptual understanding is strongly context-dependent. The results also suggest that a single "Newtonian reasoning ability" is inadequate to explain student response patterns to items from the Force Concept Inventory. We develop a framework for applying polytomous item response theory to the analysis of quantitative free-response problems and for analyzing how features of student solutions are influenced by problem-solving ability. Patterns in how students at different abilities approach our post-test problems are revealed, and we find hints as to how features of a free-response problem influence its item parameters. The item-response theory framework we develop provides a foundation for future development of quantitative free-response research instruments. Chapter 1 of the dissertation presents a brief history of physics education research and motivates the present study. Chapter 2 describes our experimental methodology and discusses the treatments applied to students and the instruments used to measure their learning. Chapter 3 provides an introduction to the statistical and analytical methods used in our data analysis. Chapter 4 presents the full data set, analyzed using both classical test theory and item response theory. Chapter 5 contains a discussion of the implications of our results and a data-driven analysis of our experimental methods. Chapter 6 describes the importance of this work to the field and discusses the relevance of our research to curriculum development and to future work in physics education research.
NASA Astrophysics Data System (ADS)
2011-11-01
WE RECOMMEND Quantitative Understanding of Biosystems: An Introduction to Biophysics Text applies physics to biology concepts Edison's Electric Light: The Art of Invention Edison's light still shines brightly The Edge of Physics: Dispatches from the Frontiers of Cosmology Anecdotes explore cosmology Voicebox Voicebox kit discovers the physics and evolution of speech Tracker 4 Free software tracks motion analysis Hands-On Introduction to NI LabVIEW with Vernier, and Engineering Projects with NI LabVIEW and Vernier Books support the LabVIEW software Discovery Museum Newcastle museum offers science enjoyment for all Philosophy of Science: A Very Short Introduction Philosophy opens up science questions WORTH A LOOK The 4% Universe: Dark Matter, Dark Energy and the Race to Discover the Rest of Reality Book researches the universe WEB WATCH Superconductivity websites are popular
LBNL
2017-12-09
This 1993 documentary chronicles the Bevatron at Berkeley Lab. During its operation from 1954 until 1993, the Bevatron was among the world's leading particle accelerators, and during the 1950s and ... This 1993 documentary chronicles the Bevatron at Berkeley Lab. During its operation from 1954 until 1993, the Bevatron was among the world's leading particle accelerators, and during the 1950s and 1960s, four Nobel Prizes were awarded for work conducted in whole or in part there. The accelerator made major contributions in four distinct areas of research: high-energy particle physics, nuclear heavy-ion physics, medical research and therapy, and space-related studies of radiation damage and heavy particles in space.
Making Physical Education a Fairer, Safer and Happier Place: Putting Critical Practices into Action
ERIC Educational Resources Information Center
Garrett, Robyne; Wrench, Alison
2011-01-01
In this research a number of approaches were used with pre-service physical education teachers in an attempt to foster inclusive and critical approaches to teaching physical education. Physical experiences, storytelling and lab school were used to highlight the multifaceted processes around students' engagement in physical education and…
2000-07-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab moves overhead toward the open floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Operations and Checkout Building check the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab is lowered toward the floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-06-30
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is moved to the vacuum chamber in the Operations and Checkout Building for testing. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
2000-07-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab moves overhead toward the open floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- A worker checks the cable fittings on the U.S. Lab, a component of the International Space Station, before it is lifted and placed inside the vacuum chamber in the Operations and Checkout Building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is ready to be lifted and removed from the chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- With the lid of the three-story vacuum chamber in place, a worker on top checks release of the cables. Inside the chamber is the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lifted off the floor of the Operations and Checkout Building in order to be placed inside the vacuum chamber in the building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-06-30
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is moved to the vacuum chamber in the Operations and Checkout Building for testing. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
2000-07-01
KENNEDY SPACE CENTER, FLA. -- A worker in the Operations and Checkout Building checks the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lowered inside the three-story vacuum chamber in the Operations and Checkout Building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- A worker in the Operations and Checkout Building checks the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lowered into a three-story vacuum chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab is lowered toward the floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- A worker checks the cable fittings on the U.S. Lab, a component of the International Space Station, before it is lifted and placed inside the vacuum chamber in the Operations and Checkout Building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Operations and Checkout Building check the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lowered inside the three-story vacuum chamber in the Operations and Checkout Building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is ready to be lifted and removed from the chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- With the lid of the three-story vacuum chamber in place, a worker on top checks release of the cables. Inside the chamber is the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab moves overhead after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lifted off the floor of the Operations and Checkout Building in order to be placed inside the vacuum chamber in the building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lowered into a three-story vacuum chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab moves overhead after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab reaches the open floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab is lowered toward the floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab is lowered toward the floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab reaches the open floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
Laboratory directed research and development program FY 1999
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Todd; Levy, Karin
2000-03-08
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darlene Roth
Completed in 2011, Albright's new Science Center includes three independent student and faculty research labs in Biology, Chemistry/Biochemistry, and Physics (separate from teaching labs). Providing independent research facilities, they eliminate disruptions in classrooms and teaching labs, encourage and accommodate increased student interest, and stimulate advanced research. The DOE grant of $369,943 enabled Albright to equip these advanced labs for 21st century science research, with much instrumentation shared among departments. The specialty labs will enable Albright to expand its student-faculty research program to meet growing interest, help attract superior science students, maximize faculty expertise, and continue exceeding its already high ratesmore » of acceptance for students applying for postgraduate education or pharmaceutical research positions. Biology instrumentation/equipment supports coursework and independent and collaborative research by students and faculty. The digital shaker, CO{sub 2} and water bath incubators (for controlled cell growth), balance, and micropipettes support cellular biology research in the advanced cell biology course and student-faculty research into heavy metal induction of heat shock proteins in cultured mammalian cells and the development of PCR markers from different populations of the native tree, Franklinia. The gravity convection oven and lyophilizer support research into physical and chemical analysis of floodplain sediments used in assessment of riparian restoration efforts. The Bio-Rad thermocycler permits fast and accurate DNA amplification as part of research into genetic diversity in small mammal populations and how those populations are affected by land-use practices and environmental management. The Millipore water deionizing system and glassware washer provide general support of the independent research lab and ensure quality control of coursework and interdisciplinary research at the intersection of biology, chemistry, and toxicology. Grant purchases support faculty and students working in the areas of plant cellular biology, landscape ecology and wildlife management, wetland restoration, and ecotoxicology of aquatic invertebrates. Chemistry/BioChemistry instrumentation supports a wide range of research and teaching needs. The Dell quad core Xeon processors and Gaussian 09 support computational research efforts of two of our faculty. The computational work of one of these groups is part of close collaboration with one organic chemist and provides support info for the synthetic work of this professor and his students. Computational chemistry studies were also introduced into the physical chemistry laboratory course for junior chemistry concentrators. The AKTA plus system and superdex columns, Thermoscientific Sorvall RC-6 plus superspeed centrifuge, Nanodrop spectrometer, Eppendorf microfuge, Homogenizer and Pipetman pipetters were incorporated into a research project involving purification and characterization of a construct of beta 2-microglobulin by one of our biochemists. The vacuum system (glove box, stand, and pump) makes a significant contribution to the research of our inorganic chemist, the newest department member, working on research projects with four students. The glove box provides the means to carry out their synthetic work in an oxygenless atmosphere. Supporting basic research pursued by faculty and students, the remaining items (refrigerator/freezer units for flammable storage, freezer, refrigerated water bath, rotary evaporator system, vacuum oven, analytical and top-loading balances) were distributed between our biochemistry and chemistry research labs. The Nanodrop spectrometer, Sorvall centrifuge, and rotary evaporator system are used in several junior/senior lab courses in both biochemistry and chemistry. To date, 14 undergraduate research students have been involved in projects using the new instrumentation and equipment provided by this grant. Physics equipment acquired is radically transforming Albright research and teaching capabilities. The two main purchases are an atomic force microscope (AFM) and a scanning tunneling microscope (STM). These two devices allow us to view surfaces at much higher resolution than ever before, even to the level of individual atoms. Already the AFM has been incorporated into courses for advanced physics and biology students, allowing them to view at high resolution material such as carbon nanotubes, cell structure, and proteins. These devices offer possibilities for interdisciplinary collaboration among students and faculty in various departments that have barely begun to be tapped. Additional equipment, such as software, optical tables, lasers, and other support equipment, is also strengthening our research and teaching capabilities in optics-related areas.« less
Bertram Gallant, Tricia; Anderson, Michael G; Killoran, Christine
2013-03-01
Research on academic cheating by high school students and undergraduates suggests that many students will do whatever it takes, including violating ethical classroom standards, to not be left behind or to race to the top. This behavior may be exacerbated among pre-med and pre-health professional school students enrolled in laboratory classes because of the typical disconnect between these students, their instructors and the perceived legitimacy of the laboratory work. There is little research, however, that has investigated the relationship between high aspirations and academic conduct. This study fills this research gap by investigating the beliefs, perceptions and self-reported academic conduct of highly aspirational students and their peers in mandatory physics labs. The findings suggest that physics laboratory classes may face particular challenges with highly aspirational students and cheating, but the paper offers practical solutions for addressing them.
NASA Astrophysics Data System (ADS)
Gallant, Tricia Bertram; Anderson, Michael G.; Killoran, Christine
2013-03-01
Research on academic cheating by high school students and undergraduates suggests that many students will do whatever it takes, including violating ethical classroom standards, to not be left behind or to race to the top. This behavior may be exacerbated among pre-med and pre-health professional school students enrolled in laboratory classes because of the typical disconnect between these students, their instructors and the perceived legitimacy of the laboratory work. There is little research, however, that has investigated the relationship between high aspirations and academic conduct. This study fills this research gap by investigating the beliefs, perceptions and self-reported academic conduct of highly aspirational students and their peers in mandatory physics labs. The findings suggest that physics laboratory classes may face particular challenges with highly aspirational students and cheating, but the paper offers practical solutions for addressing them.
Weak Interactions Group UC Berkeley UC Berkeley Physics Lawrence Berkeley Lab Nuclear Science Division at LBL Physics Division at LBL Phonebook A-Z Index Navigation Home Members Research Projects CUORE Design Concept Berkeley Projects People Publications Contact Links KamLAND Physics Impact Neutrino
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.; Lewandowski, H. J.
2017-12-01
Laboratory courses represent a unique and potentially important component of the undergraduate physics curriculum, which can be designed to allow students to authentically engage with the process of experimental physics. Among other possible benefits, participation in these courses throughout the undergraduate physics curriculum presents an opportunity to develop students' understanding of the nature and importance of experimental physics within the discipline as a whole. Here, we present and compare both a longitudinal and pseudolongitudinal analysis of students' responses to a research-based assessment targeting students' views about experimental physics—the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS)—across multiple, required lab courses at a single institution. We find that, while pseudolongitudinal averages showed increases in students' E-CLASS scores in each consecutive course, analysis of longitudinal data indicates that this increase was not driven by a cumulative impact of laboratory instruction. Rather, the increase was driven by a selection effect in which students who persisted into higher-level lab courses already had more expertlike beliefs, attitudes, and expectations than their peers when they started the lower-level courses.
A Scientific Approach To STEM Education
2011-06-16
T My Physics graduate students -- Why excellence in physics courses≠ competence in physics research ? Two years in lab transforms? approached as...learned? (100’s of courses/yr) improved methods average trad. Cal Poly instruction 2. Multiple instructors facilitating same established set of student ...Intro biology Univ. of Wash.– similar research - based instruction •All students improve •Underrepresented students improve more (+1/3 letter grade
The U.S. Lab placed in vacuum chamber for leak test
NASA Technical Reports Server (NTRS)
2000-01-01
In the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lowered into a three-story vacuum chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
Lab experiments are a major source of knowledge in the social sciences.
Falk, Armin; Heckman, James J
2009-10-23
Laboratory experiments are a widely used methodology for advancing causal knowledge in the physical and life sciences. With the exception of psychology, the adoption of laboratory experiments has been much slower in the social sciences, although during the past two decades the use of lab experiments has accelerated. Nonetheless, there remains considerable resistance among social scientists who argue that lab experiments lack "realism" and generalizability. In this article, we discuss the advantages and limitations of laboratory social science experiments by comparing them to research based on nonexperimental data and to field experiments. We argue that many recent objections against lab experiments are misguided and that even more lab experiments should be conducted.
Final Report on A. R. A. P.’s Model for the Atmospheric Marine Environment
1982-01-01
Around Airports," NASA CR-2752, prepared by A.R.A.P. for Marshall Space Center. 25. Brost , R.A. and Wyngaard, N.C., 1978: "A Model Study of the...FRANCE DR. R. A. BROST NCAR P.O. BOX 3000 BOULDER, CO 80307 JOHNS HOPKINS UNIV. APPLIED PHYSICS LAB R.E. GIBSON LIBRARY JOHNS HOPKINS ROAD...RESEARCH LABS BOULDER, CO 80303 DR. GEORGE L. HELLOR GEOPHYSICAL FLUID DYNAMICS LAE PRINCETON, NJ 08540 DR. TETSUJI YAMADA LOS ALAMOS NATIONAL LAB
NASA Astrophysics Data System (ADS)
Cunnings, Christopher P.
This teacher-driven, action research dissertation study chronicles the development and implementation of a transformative, two-pronged, student-centered secondary physics education curriculum. From an instructional perspective, the curriculum was situated in the "flipped classroom" teaching approach, which minimizes in-class lecturing and instead predicates classroom learning on collaborative, hands-on, and activity-based lessons. Additionally, all students were issued IO-Lab digital sensors--learning tools developed by professors at the University of Illinois at Urbana-Champaign capable of collecting a vast array of real-time physical data-- on a 1-to-1, 24/7 basis for both in-class and at-home use. In-class, students participated in predominantly activity-based learning, with a sizeable portion of in-class activities incorporating IO-Labs for experimental data collection. Outside of class, students designed real-world research projects using their IO-Labs to study the physics underlying their everyday experiences, and all projects were video recorded, uploaded to YouTube, and then watched in-class to simulate a "mock science conference" in which students provided constructive feedback to each other on their experimental methods and results. The synergistic blending of a) flipped physics instruction, and b) perpetual access to state-of-the-art laboratory equipment, the two prongs forming the basis of this research study, inspired the curriculum title "Flipped IO-Lab," or "F-IO" curriculum. This dissertation study will provide a comprehensive assessment of the benefits and challenges that emerged while designing and implementing the F-IO curriculum from a practitioner's perspective. The assessment of the F-IO curriculum came about through a mixed-methods research methodology during kinematics and dynamics instruction. Specifically, this study includes "Force Concept Inventory" (FCI) pretest/posttest analysis to gauge changes in students' conceptual understanding of physics, as well as "Colorado Learning Attitudes about Science Survey" (CLASS) pre/post data to monitor students' shifts in scientific attitudes throughout the study. The aforementioned pre/post data will be triangulated with field notes and web-based "course opinion survey questions" to provide a comprehensive view of the F-IO curriculum. Significant analysis of the development of the course, as well as the relevant benefits, challenges, and considerations for "flipping" physics instruction, is also contained in this dissertation. The results of the research study include an FCI normalized gain of 0.74 (a "high gain" course), which indicates significant improvement in students' conceptual understanding of Newtonian Mechanics. Additionally, CLASS results indicate significant shifts in student attitudes from generally novice initial scientific perspectives to predominantly expert scientific perspectives by the conclusion of the research study. Of particular interest was students' acknowledgement and appreciation of the real-world implications of what they learned in physics class, as evidenced by CLASS survey data, real-world video challenge projects, and student comments before, during, and after class sessions. However, even despite all of the positive results that emerged throughout the study, a variety of challenges and concerns also materialized with regards to the utilization of F-IO curriculum principles, with the most pronounced being a subset of students whom remained unwilling to embrace web-based and/or flipped instructional teaching methods, preferring instead a more traditional instructional approach. The results and implications of this research study may not only be of interest to physics instructors, but also STEM educators, secondary curriculum designers, digital learning tool designers and researchers, and educational researchers.
Have More Fun Teaching Physics: Simulating, Stimulating Software.
ERIC Educational Resources Information Center
Jenkins, Doug
1996-01-01
High school physics offers opportunities to use problem solving and lab practices as well as cement skills in research, technical writing, and software applications. Describes and evaluates computer software enhancing the high school physics curriculum including spreadsheets for laboratory data, all-in-one simulators, projectile motion simulators,…
SenseCube—a novel inexpensive wireless multisensor for physics lab experimentations
NASA Astrophysics Data System (ADS)
Mehta, Vedant; Lane, Charles D.
2018-07-01
SenseCube is a multisensor capable of measuring many different real-time events and changes in environment. Most conventional sensors used in introductory-physics labs use their own software and have wires that must be attached to a computer or an alternate device to analyze the data. This makes the standard sensors time consuming, tedious, and space-constricted. SenseCube was developed to overcome these limitations. This research was focused on developing a device that is all-encompassing, cost-effective, wireless, and compact, yet can perform the same tasks as the multiple standard sensors normally used in physics labs. It measures more than twenty distinct types of real-time events and transfers the data via Bluetooth. Both Windows and Mac software were developed so that the data from this device can be retrieved and/or saved on either platform. This paper describes the sensor itself, its development, its capabilities, and its cost comparison with standard sensors.
ERIC Educational Resources Information Center
Balakrishnan, B.; Woods, P. C.
2013-01-01
Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised…
The Correlation between Physical Environment and Student Engagement
NASA Astrophysics Data System (ADS)
Carmona-Reyes, Jorge; Wang, Li; Matthews, Lorin; Cook, Mike; Hyde, Truell
2016-10-01
In its second year of an educational research collaboration on the convergence between physical environment, pedagogical methods, student attainment and academic performance, CASPER along with the Region 12 Education Service Center and Huckabee Inc. have completed their initial quantitative study. This project examined the impact of the physical environment on student engagement, employing a flexibility construct and examination of teacher mobility and places of centeredness. Data analysis showed a positive correlation between student engagement and classroom flexibility for two locations having statistically significant differences in flexibility scores. The research is now being extended to examine a laboratory setting (in this case, a complex plasma lab) where the results will be used to enhance student work efficiency while also increasing safety within the lab. Details will be discussed in this presentation. Region 12 and Huckabee funding is gratefully acknowledged.
ERIC Educational Resources Information Center
Goldberg, Fred; Price, Edward; Robinson, Stephen; Boyd-Harlow, Danielle; McKean, Michael
2012-01-01
We report on the adaptation of the small enrollment, lab and discussion based physical science course, "Physical Science and Everyday Thinking" (PSET), for a large-enrollment, lecture-style setting. Like PSET, the new "Learning Physical Science" (LEPS) curriculum was designed around specific principles based on research on learning to meet the…
Senior Projects in Materials Research.
ERIC Educational Resources Information Center
Buxton, Richard
1999-01-01
A program in a materials/prototyping lab provided the structure for a year-long research activity. Students could test physical properties of a specific material or explore the use of a material in a new application. (Author/JOW)
Perspectives on Industrial Innovation from Agilent, HP, and Bell Labs
NASA Astrophysics Data System (ADS)
Hollenhorst, James
2014-03-01
Innovation is the life blood of technology companies. I will give perspectives gleaned from a career in research and development at Bell Labs, HP Labs, and Agilent Labs, from the point of view of an individual contributor and a manager. Physicists bring a unique set of skills to the corporate environment, including a desire to understand the fundamentals, a solid foundation in physical principles, expertise in applied mathematics, and most importantly, an attitude: namely, that hard problems can be solved by breaking them into manageable pieces. In my experience, hiring managers in industry seldom explicitly search for physicists, but they want people with those skills.
NASA Astrophysics Data System (ADS)
Balakrishnan, B.; Woods, P. C.
2013-05-01
Over the years, rapid development in computer technology has engendered simulation-based laboratory (lab) in addition to the traditional hands-on (physical) lab. Many higher education institutions adopt simulation lab, replacing some existing physical lab experiments. The creation of new systems for conducting engineering lab activities has raised concerns among educators on the merits and shortcomings of both physical and simulation labs; at the same time, many arguments have been raised on the differences of both labs. Investigating the effectiveness of both labs is complicated, as there are multiple factors that should be considered. In view of this challenge, a study on students' perspectives on their experience related to key aspects on engineering laboratory exercise was conducted. In this study, the Visual Auditory Read and Kinetic model was utilised to measure the students' cognitive styles. The investigation was done through a survey among participants from Multimedia University, Malaysia. The findings revealed that there are significant differences for most of the aspects in physical and simulation labs.
Undergraduate Skills Laboratories at Sonoma State University
NASA Astrophysics Data System (ADS)
Gill, Amandeep; Zack, K.; Mills, H.; Cunningham, B.; Jackowski, S.
2014-01-01
Due to the current economic climate, funding sources for many laboratory courses have been cut from university budgets. However, it is still necessary for undergraduates to master laboratory skills to be prepared and competitive applicants when entering the professional world and/or graduate school. In this context, student-led programs may be able to compensate for this lack of formal instruction and reinforce concepts from lecture by applying research techniques to develop hands-on comprehension. The Sonoma State University Chapter of Society of Physics Students has established a peer-led skills lab to teach research techniques in the fields of astronomy and physics. The goal is to alleviate the pressures of both independently learning and efficiently applying techniques to junior and senior-level research projects. These skill labs are especially valuable for nontraditional students who, due to work or family duties, may not get a chance to fully commit to research projects. For example, a topic such as Arduino programming has a multitude of applications in both astronomy and physics, but is not taught in traditional university courses. Although some programming and electronics skills are taught in (separate) classes, they are usually not applied to actual research projects, which combined expertise is needed. For example, in astronomy, there are many situations involving programming telescopes and taking data with electronic cameras. Often students will carry out research using these tools but when something goes wrong, the students will not have the skills to trouble shoot and fix the system. Another astronomical topic to be taught in the skills labs is the analysis of astronomical data, including running remote telescopes, analyzing photometric variability, and understanding the concepts of star magnitudes, flat fields, and biases. These workshops provide a setting in which the student teacher may strengthen his or her understanding of the topic by presenting it to peers. Students teaching fellow peers is an ideal method of furthering understanding for all participants, and the skills lab established by the SPS has begun this process at SSU.
NASA Astrophysics Data System (ADS)
Holmes, N. G.; Olsen, Jack; Thomas, James L.; Wieman, Carl E.
2017-06-01
Instructional labs are widely seen as a unique, albeit expensive, way to teach scientific content. We measured the effectiveness of introductory lab courses at achieving this educational goal across nine different lab courses at three very different institutions. These institutions and courses encompassed a broad range of student populations and instructional styles. The nine courses studied had two key things in common: the labs aimed to reinforce the content presented in lectures, and the labs were optional. By comparing the performance of students who did and did not take the labs (with careful normalization for selection effects), we found universally and precisely no added value to learning course content from taking the labs as measured by course exam performance. This work should motivate institutions and departments to reexamine the goals and conduct of their lab courses, given their resource-intensive nature. We show why these results make sense when looking at the comparative mental processes of students involved in research and instructional labs, and offer alternative goals and instructional approaches that would make lab courses more educationally valuable.
The U.S. Lab is placed in vacuum chamber for leak test
NASA Technical Reports Server (NTRS)
2000-01-01
With the lid of the three-story vacuum chamber in place, a worker on top checks release of the cables. Inside the chamber is the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
The U.S. Lab is placed in vacuum chamber for leak test
NASA Technical Reports Server (NTRS)
2000-01-01
A worker in the Operations and Checkout Building checks the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
The U.S. Lab is placed in vacuum chamber for leak test
NASA Technical Reports Server (NTRS)
2000-01-01
Workers in the Operations and Checkout Building check the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed.
Helu, Moneer; Hedberg, Thomas
2015-01-01
Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a "digital thread" of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies.
Enabling Smart Manufacturing Research and Development using a Product Lifecycle Test Bed
Helu, Moneer; Hedberg, Thomas
2017-01-01
Smart manufacturing technologies require a cyber-physical infrastructure to collect and analyze data and information across the manufacturing enterprise. This paper describes a concept for a product lifecycle test bed built on a cyber-physical infrastructure that enables smart manufacturing research and development. The test bed consists of a Computer-Aided Technologies (CAx) Lab and a Manufacturing Lab that interface through the product model creating a “digital thread” of information across the product lifecycle. The proposed structure and architecture of the test bed is presented, which highlights the challenges and requirements of implementing a cyber-physical infrastructure for manufacturing. The novel integration of systems across the product lifecycle also helps identify the technologies and standards needed to enable interoperability between design, fabrication, and inspection. Potential research opportunities enabled by the test bed are also discussed, such as providing publicly accessible CAx and manufacturing reference data, virtual factory data, and a representative industrial environment for creating, prototyping, and validating smart manufacturing technologies. PMID:28664167
Teaching Research in the Traditional Classroom: Why Make Graduate Students Wait?
NASA Astrophysics Data System (ADS)
Carr, Lincoln D.
2016-05-01
Physics graduate programs tend to divide the degree into two parts: (1) theory, taught in classes, almost totally divorced from the lab setting; and (2) research, taught in a research group through hands-on lab experience and mentorship. As we come to understand from undergraduate physics education research that modifying our teaching can rather easily produce quantifiably better results, it is reasonable to ask if we can make similar improvements at the graduate level. In this talk I will present the results of beginning research instruction in the classroom in the very first semester of graduate school, in the most traditional of classes - classical mechanics. In this approach, students build their knowledge from hands-on projects. They get immediately certified and experienced in the machine shop and electronics lab. There are no formal lectures. Students develop and present their own problems, and teach and challenge each other in the classroom. In contrast to polished lectures, both the instructor and the students together learn from their many public mistakes. Students give conference-style presentations instead of exams. As a result, students not only excel in analytical skills, but they also learn to tie theory to measurement, identify statistical and systematic errors, simulate computationally and model theoretically, and design their own experiments. Funded by NSF.
Undergraduate Student Construction and Interpretation of Graphs in Physics Lab Activities
ERIC Educational Resources Information Center
Nixon, Ryan S.; Godfrey, T. J.; Mayhew, Nicholas T.; Wiegert, Craig C.
2016-01-01
Lab activities are an important element of an undergraduate physics course. In these lab activities, students construct and interpret graphs in order to connect the procedures of the lab with an understanding of the related physics concepts. This study investigated undergraduate students' construction and interpretation of graphs with best-fit…
Integrating Mathematics into the Introductory Biology Laboratory Course
ERIC Educational Resources Information Center
White, James D.; Carpenter, Jenna P.
2008-01-01
Louisiana Tech University has an integrated science curriculum for its mathematics, chemistry, physics, computer science, biology-research track and secondary mathematics and science education majors. The curriculum focuses on the calculus sequence and introductory labs in biology, physics, and chemistry. In the introductory biology laboratory…
Epistemology and expectations survey about experimental physics: Development and initial results
NASA Astrophysics Data System (ADS)
Zwickl, Benjamin M.; Hirokawa, Takako; Finkelstein, Noah; Lewandowski, H. J.
2014-06-01
In response to national calls to better align physics laboratory courses with the way physicists engage in research, we have developed an epistemology and expectations survey to assess how students perceive the nature of physics experiments in the contexts of laboratory courses and the professional research laboratory. The Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS) evaluates students' epistemology at the beginning and end of a semester. Students respond to paired questions about how they personally perceive doing experiments in laboratory courses and how they perceive an experimental physicist might respond regarding their research. Also, at the end of the semester, the E-CLASS assesses a third dimension of laboratory instruction, students' reflections on their course's expectations for earning a good grade. By basing survey statements on widely embraced learning goals and common critiques of teaching labs, the E-CLASS serves as an assessment tool for lab courses across the undergraduate curriculum and as a tool for physics education research. We present the development, evidence of validation, and initial formative assessment results from a sample that includes 45 classes at 20 institutions. We also discuss feedback from instructors and reflect on the challenges of large-scale online administration and distribution of results.
The U.S. Lab is moved to payload canister
NASA Technical Reports Server (NTRS)
2000-01-01
The U.S. Laboratory Destiny, a component of the International Space Station, glides above two Multi-Purpose Logistics Modules (MPLMs), Raffaello (far left) and Leonardo, in the Space Station Processing Facility. Destiny is being moved to a payload canister for transfer to the Operations and Checkout Building where it will be tested in the altitude chamber. Destiny is scheduled to fly on mission STS-98 in early 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
The U.S. Lab is moved to payload canister
NASA Technical Reports Server (NTRS)
2000-01-01
- The U.S. Laboratory Destiny, a component of the International Space Station, is lifted off a weigh stand (below) in the Space Station Processing Facility. The module is being moved to a payload canister for transfer to the Operations and Checkout Building where it will be tested in the altitude chamber. Destiny is scheduled to fly on mission STS-98 in early 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
Workers in SSPF monitor Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
Workers in the Space Station Processing Facility control room check documentation during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny. Members of the STS-98 crew are taking part in the MEIT checking out some of the equipment in the Lab. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The crew comprises five members: Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
Workers in SSPF monitor Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
Workers in the Space Station Processing Facility control room monitor computers during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny. Members of the STS-98 crew are taking part in the MEIT checking out some of the equipment in the Lab. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The crew comprises five members: Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
2000-02-03
Workers in the Space Station Processing Facility control room monitor computers during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny. Members of the STS-98 crew are taking part in the MEIT checking out some of the equipment in the Lab. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The crew comprises five members: Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000
Revisiting lab-on-a-chip technology for drug discovery.
Neuži, Pavel; Giselbrecht, Stefan; Länge, Kerstin; Huang, Tony Jun; Manz, Andreas
2012-08-01
The field of microfluidics or lab-on-a-chip technology aims to improve and extend the possibilities of bioassays, cell biology and biomedical research based on the idea of miniaturization. Microfluidic systems allow more accurate modelling of physiological situations for both fundamental research and drug development, and enable systematic high-volume testing for various aspects of drug discovery. Microfluidic systems are in development that not only model biological environments but also physically mimic biological tissues and organs; such 'organs on a chip' could have an important role in expediting early stages of drug discovery and help reduce reliance on animal testing. This Review highlights the latest lab-on-a-chip technologies for drug discovery and discusses the potential for future developments in this field.
My Brother’s Keeper National Lab Week
2016-03-02
Students in the My Brother’s Keeper program watch as Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs demonstrates some of the hardware in the Electrostatic and Surface Physics Lab at the Florida spaceport. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.
My Brother’s Keeper National Lab Week
2016-03-02
Students in the My Brother’s Keeper program listen as Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs explains some of the hardware in the Electrostatic and Surface Physics Lab at the Florida spaceport. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.
Berkeley Lab - Materials Sciences Division
Synthesis Condensed Matter and Materials Physics Scattering and Instrumentation Science Centers Center for ; Finance Templates Travel One-Stop Latest News Postdoc Forum Research Highlights Awards Publications
ThinkSpace: Spatial Thinking in Middle School Astronomy Labs
NASA Astrophysics Data System (ADS)
Udomprasert, Patricia S.; Goodman, Alyssa A.; Plummer, Julia; Sadler, Philip M.; Johnson, Erin; Sunbury, Susan; Zhang, Helen; Dussault, Mary E.
2016-01-01
Critical breakthroughs in science (e.g., Einstein's Theory of General Relativity, and Watson & Crick's discovery of the structure of DNA), originated with those scientists' ability to think spatially, and research has shown that spatial ability correlates strongly with likelihood of entering a career in STEM. Mounting evidence also shows that spatial skills are malleable, i.e., they can be improved through training. We report early work from a new project that will build on this research to create a series of middle schools science labs called "Thinking Spatially about the Universe" (ThinkSpace), in which students will use a blend of physical and virtual models (in WorldWide Telescope) to explore complex 3-dimensional phenomena in space science. In the three-year ThinkSpace labs project, astronomers, technologists, and education researchers are collaborating to create and test a suite of three labs designed to improve learners' spatial abilities through studies of: 1) Moon phases and eclipses; 2) planetary systems around stars other than the Sun; and 3.) celestial motions within the broader universe. The research program will determine which elements in the labs will best promote improvement of spatial skills within activities that emphasize disciplinary core ideas; and how best to optimize interactive dynamic visualizations to maximize student understanding.
Validity of Selected Lab and Field Tests of Physical Working Capacity.
ERIC Educational Resources Information Center
Burke, Edmund J.
The validity of selected lab and field tests of physical working capacity was investigated. Forty-four male college students were administered a series of lab and field tests of physical working capacity. Lab tests include a test of maximum oxygen uptake, the PWC 170 test, the Harvard Step Test, the Progressive Pulse Ratio Test, Margaria Test of…
2015-06-15
What would a submarine to explore the liquid methane seas of Saturn's Moon Titan look like? This video shows one submarine concept that would explore both the shoreline and the depths of this strange world that has methane rain, rivers and seas! The design was developed for the NASA Innovative Advanced Concepts (NIAC) Program, by NASA Glenn's COMPASS Team, and technologists and scientists from the Applied Physics Lab and submarine designers from the Applied Research Lab.
Accessible Research Experiences: A New Paradigm for In-Lab Chemical Education
ERIC Educational Resources Information Center
Baum, Marc M.; Krider, Elizabeth S.; Moss, John A.
2006-01-01
The preliminary efforts to engage students in the physical sciences through research projects in environmental chemistry are described. The successful involvement of two demographics, community college (CC) students and female students in cutting-edge chemistry research suggests that recruiting methods were effective and the feedback from…
NSF Support for Physics at the Undergraduate Level: A View from Inside
NASA Astrophysics Data System (ADS)
McBride, Duncan
2015-03-01
NSF has supported a wide range of projects in physics that involve undergraduate students. These projects include NSF research grants in which undergraduates participate; Research Experiences for Undergraduates (REU) centers and supplements; and education grants that range from upper-division labs that may include research, to curriculum development for upper- and lower-level courses and labs, to courses for non-majors, to Physics Education Research (PER). The NSF Divisions of Physics, Materials Research, and Astronomy provide most of the disciplinary research support, with some from other parts of NSF. I recently retired as the permanent physicist in NSF's Division of Undergraduate Education (DUE), which supports the education grants. I was responsible for a majority of DUE's physics grants and was involved with others overseen by a series of physics rotators. There I worked in programs entitled Instrumentation and Laboratory Improvement (ILI); Course and Curriculum Development (CCD); Course, Curriculum, and Laboratory Improvement (CCLI); Transforming Undergraduate STEM Education (TUES); and Improving Undergraduate STEM Education (IUSE). NSF support has enabled physics Principal Investigators to change and improve substantially the way physics is taught and the way students learn physics. The most important changes are increased undergraduate participation in physics research; more teaching using interactive engagement methods in classes; and growth of PER as a legitimate field of physics research as well as outcomes from PER that guide physics teaching. In turn these have led, along with other factors, to students who are better-prepared for graduate school and work, and to increases in the number of undergraduate physics majors. In addition, students in disciplines that physics directly supports, notably engineering and chemistry, and increasingly biology, are better and more broadly prepared to use their physics education in these fields. I will describe NSF support for undergraduate physics with both statistics and examples. In addition I will talk about trends in support for undergraduate physics at NSF and speculate about directions such support might go. Contents of this paper reflect the opinions of the author and do not necessarily reflect those of the National Science Foundation.
Eagleworks Laboratories: Advanced Propulsion Physics Research
NASA Technical Reports Server (NTRS)
White, Harold; March, Paul; Williams, Nehemiah; ONeill, William
2011-01-01
NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (<1 uN), and commission the facility with an existing Quantum Vacuum Plasma Thruster. To date, the QVPT line of research has produced data suggesting very high specific impulse coupled with high specific force. If the physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.
Berkeley Lab's Saul Perlmutter wins Nobel Prize in Physics | Berkeley Lab
astrophysics, dark energy, physics Connect twitter instagram LinkedIn facebook youtube This form needs Berkeley Lab's Saul Perlmutter wins Nobel Prize in Physics News Release Paul Preuss 510-486-6249 * October professor of physics at the University of California at Berkeley, has won the 2011 Nobel Prize in Physics
Interesting Guided-Inquiry Labs for a Large-Enrollment, Active Learning Physics II Course
NASA Astrophysics Data System (ADS)
Wagoner, Kasey; Hynes, K. Mairin; Flanagan, Daniel
2018-04-01
Introductory physics labs often focus on a series of common experiments intending to teach the student the measurement side of physics. While these experiments have the potential to be quite instructive, we observed that our students often consider them to be boring and monotonous, which often leads to them being uninstructive. To combat this, we have designed a series of labs with two major goals: the experiments should be relevant to the students' world, and the labs should gently guide the students to develop the experimental process on their own. Meeting these goals is difficult, particularly in a course with large enrollment where labs are instructed by graduate students. We have had success meeting these goals in our classroom, where over the last decade our introductory physics course has transformed from a traditional, lecture-learning class to a flipped class based on the textbook Six Ideas that Shaped Physics. Here we describe the structure of the new labs we have designed to capitalize on our classroom success while overcoming the aforementioned difficulties. These new labs are more engaging and instructive for our introductory physics students.
It's a Snap! An Inquiry-Based, Snapping Shrimp Bioacoustics Activity
ERIC Educational Resources Information Center
Fox, Bradley K.; Gorospe, Kelvin D.; Haverkort-Yeh, Roxanne D.; Rivera, Malia Ana J.
2013-01-01
This bioacoustics activity combines concepts in invertebrate taxonomy, animal communication, and acoustical physics while providing a unique opportunity for physics and biology teachers to collaborate and introduce their students to an exciting, interdisciplinary research field. Here, we propose a lab-and field-based activity that uses hydrophones…
Outside the Research Lab; Volume 1: Physics in the arts, architecture and design
NASA Astrophysics Data System (ADS)
Holgate, Sharon Ann
2017-02-01
This book is written for students and other interested readers as a look inside the diverse range of applications for physics outside of the scientific research environment. This first volume covers several different areas of the arts and design ranging from stage lighting to sculpting. The author has interviewed experts in each area to explain how physics and technology impact their work. These are all useful examples of how physics encountered in taught courses relates to the real world. Audio files and videos are available within Book information
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.; Lewandowski, H. J.
2016-12-01
Improving students' understanding of the nature of experimental physics is often an explicit or implicit goal of undergraduate laboratory physics courses. However, lab activities in traditional lab courses are typically characterized by highly structured, guided labs that often do not require or encourage students to engage authentically in the process of experimental physics. Alternatively, open-ended laboratory activities can provide a more authentic learning environment by, for example, allowing students to exercise greater autonomy in what and how physical phenomena are investigated. Engaging in authentic practices may be a critical part of improving students' beliefs around the nature of experimental physics. Here, we investigate the impact of open-ended activities in undergraduate lab courses on students' epistemologies and expectations about the nature of experimental physics, as well as their confidence and affect, as measured by the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Using a national data set of student responses to the E-CLASS, we find that the inclusion of some open-ended lab activities in a lab course correlates with more expertlike postinstruction responses relative to courses that include only traditional guided lab activities. This finding holds when examining postinstruction E-CLASS scores while controlling for the variance associated with preinstruction scores, course level, student major, and student gender.
NASA Astrophysics Data System (ADS)
Goertzen, Renee Michelle; Brewe, Eric; Kramer, Laird H.; Wells, Leanne; Jones, David
2011-12-01
Florida International University has undergone a reform in the introductory physics classes by focusing on the laboratory component of these classes. We present results from the secondary implementation of two research-based instructional strategies: the implementation of the Learning Assistant model as developed by the University of Colorado at Boulder and the Open Source Tutorial curriculum developed at the University of Maryland, College Park. We examine the results of the Force Concept Inventory (FCI) for introductory students over five years (n=872) and find that the mean raw gain of students in transformed lab sections was 0.243, while the mean raw gain of the traditional labs was 0.159, with a Cohen’s d effect size of 0.59. Average raw gains on the FCI were 0.243 for Hispanic students and 0.213 for women in the transformed labs, indicating that these reforms are not widening the gaps between underrepresented student groups and majority groups. Our results illustrate how research-based instructional strategies can be successfully implemented in a physics department with minimal department engagement and in a sustainable manner.
ERIC Educational Resources Information Center
Arista, Fitra Suci; Kuswanto, Heru
2018-01-01
The research study concerned here was to: (1) produce a virtual physics laboratory application to be called ViPhyLab by using the Android smartphone as basis; (2) determine the appropriateness and quality of the virtual physics laboratory application that had been developed; and (3) describe the improvement in learning independence and conceptual…
Round, Jennifer; Lom, Barbara
2015-01-01
Undergraduate courses in the life sciences at most colleges and universities are traditionally composed of two or three weekly sessions in a classroom supplemented with a weekly three-hour session in a laboratory. We have found that many undergraduates can have difficulty making connections and/or transferring knowledge between lab activities and lecture material. Consequently, we are actively developing ways to decrease the physical and intellectual divides between lecture and lab to help students make more direct links between what they learn in the classroom and what they learn in the lab. In this article we discuss our experiences teaching fused laboratory biology courses that intentionally blurred the distinctions between lab and lecture to provide undergraduates with immersive experiences in science that promote discovery and understanding. PMID:26240531
Providing Real Research Opoportunities to Undergraduates
NASA Astrophysics Data System (ADS)
Ragozzine, Darin
2016-01-01
The current approach to undergraduate education focuses on teaching classes which provide the foundational knowledge for more applied experiences such as scientific research. Like most programs, Florida Institute of Technology (Florida Tech or FIT) strongly encourages undergraduate research, but is dominated by content-focused courses (e.g., "Physical Mechanics"). Research-like experiences are generally offered through "lab" classes, but these are almost always reproductions of past experiments: contrived, formulaic, and lacking the "heart" of real (i.e., potentially publishable) scientific research. Real research opportunities 1) provide students with realistic insight into the actual scientific process; 2) excite students far more than end-of-chapter problems; 3) provide context for the importance of learning math, physics, and astrophysics concepts; and 4) allow unique research progress for well-chosen problems. I have provided real research opportunities as an "Exoplanet Lab" component of my Introduction to Space Science (SPS1020) class at Florida Tech, generally taken by first-year majors in our Physics, Astronomy & Astrophysics, Planetary Science, and Astrobiology degree programs. These labs are a hybrid between citizen science (e.g., PlanetHunters) and simultaneously mentoring ~60 undergraduates in similar small research projects. These projects focus on problems that can be understood in the context of the course, but which benefit from "crowdsourcing". Examples include: dividing up the known planetary systems and developing a classification scheme and organizing them into populations (Fall 2013); searching through folded light curves to discover new exoplanets missed by previous pipelines (Fall 2014); and fitting n-body models to all exoplanets with known Transit Timing Variations to estimate planet masses (Fall 2015). The students love the fact that they are doing real potentially publishable research: not many undergraduates can claim to have discovered new exoplanets! Based on these experiences, I will present practical insights into successfully organizing real research opportunities. By employing some of these best practices, we can truly educate students and make scientific progress.
Medical Physics Panel Discussion
NASA Astrophysics Data System (ADS)
Guèye, Paul; Avery, Steven; Baird, Richard; Soares, Christopher; Amols, Howard; Tripuraneni, Prabhakar; Majewski, Stan; Weisenberger, Drew
2006-03-01
The panel discussion will explore opportunities and vistas in medical physics research and practice, medical imaging, teaching medical physics to undergraduates, and medical physics curricula as a recruiting tool for physics departments. Panel members consist of representatives from NSBP (Paul Guèye and Steven Avery), NIH/NIBIB (Richard Baird), NIST (Christopher Soares), AAPM (Howard Amols), ASTRO (Prabhakar Tripuraneni), and Jefferson Lab (Stan Majewski and Drew Weisenberger). Medical Physicists are part of Departments of Radiation Oncology at hospitals and medical centers. The field of medical physics includes radiation therapy physics, medical diagnostic and imaging physics, nuclear medicine physics, and medical radiation safety. It also ranges from basic researcher (at college institutions, industries, and laboratories) to applications in clinical environments.
Race to improve student understanding of uncertainty: Using LEGO race cars in the physics lab
NASA Astrophysics Data System (ADS)
Parappilly, Maria; Hassam, Christopher; Woodman, Richard J.
2018-01-01
Laboratories using LEGO race cars were developed for students in an introductory physics topic with a high early drop-out rate. In a 2014 pilot study, the labs were offered to improve students' confidence with experiments and laboratory skills, especially uncertainty propagation. This intervention was extended into the intro level physics topic the next year, for comparison and evaluation. Considering the pilot study, we subsequently adapted the delivery of the LEGO labs for a large Engineering Mechanics cohort. A qualitative survey of the students was taken to gain insight into their perception of the incorporation of LEGO race cars into physics labs. For Engineering, the findings show that LEGO physics was instrumental in teaching students the measurement and uncertainty, improving their lab reporting skills, and was a key factor in reducing the early attrition rate. This paper briefly recalls the results of the pilot study, and how variations in the delivery yielded better learning outcomes. A novel method is proposed for how LEGO race cars in a physics lab can help students increase their understanding of uncertainty and motivate them towards physics practicals.
Inexpensive DAQ based physics labs
NASA Astrophysics Data System (ADS)
Lewis, Benjamin; Clark, Shane
2015-11-01
Quality Data Acquisition (DAQ) based physics labs can be designed using microcontrollers and very low cost sensors with minimal lab equipment. A prototype device with several sensors and documentation for a number of DAQ-based labs is showcased. The device connects to a computer through Bluetooth and uses a simple interface to control the DAQ and display real time graphs, storing the data in .txt and .xls formats. A full device including a larger number of sensors combined with software interface and detailed documentation would provide a high quality physics lab education for minimal cost, for instance in high schools lacking lab equipment or students taking online classes. An entire semester’s lab course could be conducted using a single device with a manufacturing cost of under $20.
Practical Physics Labs: A Resource Manual.
ERIC Educational Resources Information Center
Goodwin, Peter
This resource manual focuses on physics labs that relate to the world around us and utilize simple equipment and situations. Forty-five laboratories are included that relate to thermodynamics, electricity, magnetism, dynamics, optics, wave transmission, centripetal force, and atomic physics. Each lab has three sections. The first section…
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
Inside a darkened U.S. Lab module, in the Space Station Processing Facility (SSPF), astronaut James Voss (left) joins STS-98 crew members Commander Kenneth D. Cockrell (foreground), and Pilot Mark Polansky (right) to check out equipment in the Lab. They are taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. Also participating in the MEIT is STS-98 Mission Specialist Thomas D. Jones (Ph.D.). Voss is assigned to mission STS-102 as part of the second crew to occupy the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
Teaching Physics Using PhET Simulations
ERIC Educational Resources Information Center
Wieman, C. E.; Adams, W. K.; Loeblein, P.; Perkins, K. K.
2010-01-01
PhET Interactive Simulations (sims) are now being widely used in teaching physics and chemistry. Sims can be used in many different educational settings, including lecture, individual or small group inquiry activities, homework, and lab. Here we will highlight a few ways to use them in teaching, based on our research and experiences using them in…
AAPT Lab Recommendations: Past, Present, and Future
NASA Astrophysics Data System (ADS)
Kozminski, Joseph
The ``AAPT Recommendations for the Undergraduate Physics Laboratory Curriculum'' was endorsed by the American Association of Physics Teachers Executive Board in November 2014. This set of curriculum recommendations focuses on developing skills and competencies that will prepare students for research in graduate school and for jobs in the STEM sector, education, and many other employment sectors. The recommendations can be used to guide changes in laboratory curricula, to assess department laboratory curricula during program reviews, and to educate university officials about the importance of laboratory experiences. The recommendations offer many potential opportunities for collaboration between physics education researchers and laboratory instructors in studying skill development in the lab and how various elements of the laboratory curriculum can best be assessed. There are also discussions underway to create an online resource for laboratory instructors to share implementation ideas and resources. This presentation provides an overview of these recommendations and their development, how the recommendations are currently being used, and opportunities for expanded use of the recommendations going forward.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
Members of the STS-98 crew check out equipment in the U.S. Lab Destiny during a Multi-Equipment Interface Test. During the mission, the crew will install the Lab in the International Space Station during a series of three space walks. The STS-98 mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. Making up the five-member crew on STS-98 are Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) gets a closeup view of the cover on the window of the U.S. Lab Destiny. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
STS-98 Commander Kenneth D. Cockrell (left) and Mission Specialist Thomas D. Jones (Ph.D.) check out equipment in the U.S. Lab Destiny during a Multi-Equipment Interface Test. During the mission, Jones will help install the Lab on the International Space Station in a series of three space walks. The STS-98 mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. Others in the five-member crew on STS-98 are Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
ERIC Educational Resources Information Center
Aydin, Abdullah; Biyikli, Filiz
2017-01-01
This research aims to compare the effects of Jigsaw technique from the cooperative learning methods and traditional learning method on laboratory material recognition and usage skills of students in General Physics Lab-I Course. This study was conducted with 63 students who took general physics laboratory-I course in the department of science…
NASA Astrophysics Data System (ADS)
Hawkins, Ian C.
The role of the teaching laboratory in science education has been debated over the last century. The goals and purposes of the laboratory are still debated and while most science educators consider laboratory a vital part of the education process, they differ widely on the purposes for laboratory and what methods should be used to teach laboratory. One method of instruction, virtual labs, has become popular among some as a possible way of capitalizing on the benefits of lab in a less costly and more time flexible format. The research regarding the use of virtual labs is limited and the few studies that have been done on General Chemistry labs do not use the virtual labs as a substitute for hands-on experiences, but rather as a supplement to a traditional laboratory program. This research seeks to determine the possible viability of a virtual simulation to replace a traditional hands-on electrochemistry lab in the General Chemistry II course sequence. The data indicate that for both content knowledge and the development of hands-on skills the virtual lab showed no significant difference in overall scores on the assessments, but that an individual item related to the physical set-up of a battery showed better scores for the hands-on labs over the virtual labs. Further research should be done to determine if these results are similar in other settings with the use of different virtual labs and how the virtual labs compare to other laboratories using different learning styles and learning goals. One often cited purpose of laboratory experiences in the context of preparing chemists is to simulate the experiences common in chemical research so graduate experience in a research laboratory was a necessary part of my education in the field of laboratory instruction. This research experience provided me the opportunity, to complete an organic synthesis of aurones using a deep eutectic solvent. These solvents show unique properties that make them a viable alternative to ionic liquids. Aurones are a unique biological product in many plants and preliminary research has shown that these chemicals could be viable drug candidates. The use of the deep eutectic solvent provides a green and inexpensive way to make large numbers of different aurones quickly. In this dissertation, we show the synthesis of 12 different aurones using this method.
Brůha, Petr; Mouček, Roman; Vacek, Vítězslav; Šnejdar, Pavel; Černá, Kateřina; Řehoř, Petr
2018-04-01
Smoking, excessive drinking, overeating and physical inactivity are well-established risk factors decreasing human physical performance. Moreover, epidemiological work has identified modifiable lifestyle factors, such as poor diet and physical and cognitive inactivity that are associated with the risk of reduced cognitive performance. Definition, collection and annotation of human reaction times and suitable health related data and metadata provides researchers with a necessary source for further analysis of human physical and cognitive performance. The collection of human reaction times and supporting health related data was obtained from two groups comprising together 349 people of all ages - the visitors of the Days of Science and Technology 2016 held on the Pilsen central square and members of the Mensa Czech Republic visiting the neuroinformatics lab at the University of West Bohemia. Each provided dataset contains a complete or partial set of data obtained from the following measurements: hands and legs reaction times, color vision, spirometry, electrocardiography, blood pressure, blood glucose, body proportions and flexibility. It also provides a sufficient set of metadata (age, gender and summary of the participant's current life style and health) to allow researchers to perform further analysis. This article has two main aims. The first aim is to provide a well annotated collection of human reaction times and health related data that is suitable for further analysis of lifestyle and human cognitive and physical performance. This data collection is complemented with a preliminarily statistical evaluation. The second aim is to present a procedure of efficient acquisition of human reaction times and supporting health related data in non-lab and lab conditions.
ERIC Educational Resources Information Center
Chambers, Timothy
2014-01-01
This dissertation presents the results of an experiment that measured the learning outcomes associated with three different pedagogical approaches to introductory physics labs. These three pedagogical approaches presented students with the same apparatus and covered the same physics content, but used different lab manuals to guide students through…
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Lewandowski, H. J.
2016-01-01
Improving students' understanding of the nature of experimental physics is often an explicit or implicit goal of undergraduate laboratory physics courses. However, lab activities in traditional lab courses are typically characterized by highly structured, guided labs that often do not require or encourage students to engage authentically in the…
Familiarizing Students with the Basics of a Smartphone's Internal Sensors
ERIC Educational Resources Information Center
Countryman, Colleen Lanz
2014-01-01
"The Physics Teacher's" "iPhysicsLabs" column has been dedicated to the implementation of smartphones in instructional physics labs as data collection devices. In order to understand any data set, however, one should first understand how it is obtained. This concern regarding the inclusion of smartphones in lab activities…
Youth's social network structures and peer influences: study protocol MyMovez project - Phase I.
Bevelander, Kirsten E; Smit, Crystal R; van Woudenberg, Thabo J; Buijs, Laura; Burk, William J; Buijzen, Moniek
2018-04-16
Youth are an important target group for social network interventions, because they are particularly susceptible to the adaptation of healthy and unhealthy habits and behaviors of others. They are surrounded by 'social influence agents' (i.e., role models such as family, friends and peers) that co-determine their dietary intake and physical activity. However, there is a lack of systematic and comprehensive research on the implementation of a social network approach in health campaigns. The MyMovez research project aims to fill this gap by developing a method for effective social network campaign implementation. This protocol paper describes the design and methods of Phase I of the MyMovez project, aiming to unravel youth's social network structures in combination with individual, psychosocial, and environmental factors related to energy intake and expenditure. In addition, the Wearable Lab is developed to enable an attractive and state-of-the-art way of collecting data and online campaign implementation via social networks. Phase I of the MyMovez project consists of a large-scale cross-sequential cohort study (N = 953; 8-12 and 12-15 y/o). In five waves during a 3-year period (2016-2018), data are collected about youth's social network exposure, media consumption, socialization experiences, psychological determinants of behavior, physical environment, dietary intake (snacking and drinking behavior) and physical activity using the Wearable Lab. The Wearable Lab exists of a smartphone-based research application (app) connected to an activity tracking bracelet, that is developed throughout the duration of the project. It generates peer- and self-reported (e.g., sociometric data and surveys) and experience sampling data, social network beacon data, real-time physical activity data (i.e., steps and cycling), location information, photos and chat conversation data from the app's social media platform Social Buzz. The MyMovez project - Phase I is an innovative cross-sequential research project that investigates how social influences co-determine youth's energy intake and expenditure. This project utilizes advanced research technologies (Wearable Lab) that provide unique opportunities to better understand the underlying processes that impact youths' health-related behaviors. The project is theoretically and methodologically pioneering and produces a unique and useful method for successfully implementing and improving health campaigns.
Toward Better Physics Labs for Future Biologists
NASA Astrophysics Data System (ADS)
Giannini, John; Moore, Kim; Losert, Wolfgang
2014-03-01
We have developed a set of laboratories and hands on activities to accompany a new two-semester interdisciplinary physics course that has been successfully developed and tested in two small test classes of students at the University of Maryland, College Park (UMD) in 2012-2013, and is currently being used on a wider scale. We have designed the laboratories to be taken accompanying a reformed course in the student's second year, with calculus, biology, and chemistry as prerequisites. This permits the laboratories to include significant content on physics relevant to cellular scales, from chemical interactions to random motion and charge screening in fluids. One major focus of the laboratories is to introduce the students to research-grade equipment and modern physics analysis tools in contexts relevant to biology, while maintaining the pedagogically valuable open-ended laboratory structure of reformed laboratories. Lab development procedures along with some preliminary student results from these two small test classes are discussed.
NASA Astrophysics Data System (ADS)
Wilcox, Bethany R.; Lewandowski, H. J.
2017-06-01
Physics laboratory courses have been generally acknowledged as an important component of the undergraduate curriculum, particularly with respect to developing students' interest in, and understanding of, experimental physics. There are a number of possible learning goals for these courses including reinforcing physics concepts, developing laboratory skills, and promoting expertlike beliefs about the nature of experimental physics. However, there is little consensus among instructors and researchers interested in the laboratory learning environment as to the relative importance of these various learning goals. Here, we contribute data to this debate through the analysis of students' responses to the laboratory-focused assessment known as the Colorado Learning Attitudes about Science Survey for Experimental Physics (E-CLASS). Using a large, national data set of students' responses, we compare students' E-CLASS performance in classes in which the instructor self-reported focusing on developing skills, reinforcing concepts, or both. As the classification of courses was based on instructor self-report, we also provide additional description of these courses with respect to how often students engage in particular activities in the lab. We find that courses that focus specifically on developing lab skills have more expertlike postinstruction E-CLASS responses than courses that focus either on reinforcing physics concepts or on both goals. Within first-year courses, this effect is larger for women. Moreover, these findings hold when controlling for the variance in postinstruction scores that is associated with preinstruction E-CLASS scores, student major, and student gender.
Cool Cities, Cool Planet (LBNL Science at the Theater)
Rosenfeld, Arthur; Pomerantz, Melvin; Levinson, Ronnen
2018-06-14
Science at the Theater: Berkeley Lab scientists discuss how cool roofs can cool your building, your city ... and our planet. Arthur Rosenfeld, Professor of Physics Emeritus at UC Berkeley, founded the Berkeley Lab Center for Building Science in 1974. He served on the California Energy Commission from 2000 to 2010 and is commonly referred to as California's godfather of energy efficiency. Melvin Pomerantz is a member of the Heat Island Group at Berkeley Lab. Trained as a physicist at UC Berkeley, he specializes in research on making cooler pavements and evaluating their effects. Ronnen Levinson is a staff scientist at Berkeley Lab and the acting leader of its Heat Island Group. He has developed cool roofing and paving materials and helped bring cool roof requirements into building energy efficiency standards.
Designing virtual science labs for the Islamic Academy of Delaware
NASA Astrophysics Data System (ADS)
AlZahrani, Nada Saeed
Science education is a basic part of the curriculum in modern day classrooms. Instructional approaches to science education can take many forms but hands-on application of theory via science laboratory activities for the learner is common. Not all schools have the resources to provide the laboratory environment necessary for hands-on application of science theory. Some settings rely on technology to provide a virtual laboratory experience instead. The Islamic Academy of Delaware (IAD), a typical community-based organization, was formed to support and meet the essential needs of the Muslim community of Delaware. IAD provides science education as part of the overall curriculum, but cannot provide laboratory activities as part of the science program. Virtual science labs may be a successful model for students at IAD. This study was conducted to investigate the potential of implementing virtual science labs at IAD and to develop an implementation plan for integrating the virtual labs. The literature has shown us that the lab experience is a valuable part of the science curriculum (NBPTS, 2013, Wolf, 2010, National Research Council, 1997 & 2012). The National Research Council (2012) stressed the inclusion of laboratory investigations in the science curriculum. The literature also supports the use of virtual labs as an effective substitute for classroom labs (Babateen, 2011; National Science Teachers Association, 2008). Pyatt and Simms (2011) found evidence that virtual labs were as good, if not better than physical lab experiences in some respects. Although not identical in experience to a live lab, the virtual lab has been shown to provide the student with an effective laboratory experience in situations where the live lab is not possible. The results of the IAD teacher interviews indicate that the teachers are well-prepared for, and supportive of, the implementation of virtual labs to improve the science education curriculum. The investigator believes that with the support of the literature and the readiness of the IAD administration and teachers, a recommendation to implement virtual labs into the curriculum can be made.
ERIC Educational Resources Information Center
Kuan, Wen-Hsuan; Tseng, Chi-Hung; Chen, Sufen; Wong, Ching-Chang
2016-01-01
We propose an integrated curriculum to establish essential abilities of computer programming for the freshmen of a physics department. The implementation of the graphical-based interfaces from Scratch to LabVIEW then to LabVIEW for Arduino in the curriculum "Computer-Assisted Instrumentation in the Design of Physics Laboratories" brings…
Using Guided Inquiry to Teach Academic Language
ERIC Educational Resources Information Center
Parent, Kelley
2017-01-01
Introducing new physics phenomena through inquiry labs has been a staple of the successful physics teacher for years. Introducing new vocabulary through lab work, however, is less common. This paper offers an example of a simple and short lab that does just that, and one that I have found to be quite useful in my college prep physics courses to…
Labatorials in introductory physics courses
NASA Astrophysics Data System (ADS)
Sobhanzadeh, Mandana; Kalman, Calvin S.; Thompson, R. I.
2017-11-01
Traditional lab sections in introductory physics courses at Mount Royal University were replaced by a new style of lab called ‘labatorials’ developed by the Physics Education Development Group at the University of Calgary. Using labatorials in introductory physics courses has lowered student anxiety and strengthened student engagement in lab sessions. Labatorials provide instant feedback to the students and instructors. Interviews with students who had completed Introductory Physics labatorials as well as the anonymous comments left by them showed that labatorials have improved student satisfaction. Students improved their understanding of concepts compared to students who had taken traditional labs in earlier years. Moreover a combination of labatorials and reflective writing can promote positive change in students’ epistemological beliefs.
Teaching Physics for the First Time
ERIC Educational Resources Information Center
Mader, Jan; Winn, Mary
2008-01-01
This book is designed to be a quick and easy resource for anyone teaching physics for the first time. Written after extensive research, this book is filled with reliable labs, demos and activities that work well in the classroom. Also included are lesson plans, diagrams, and teacher notes for every activity. The book is not the end--it is just a…
The national labs and their future
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crease, R.P.
National laboratories of the USA, born with the atomic age and raised to prominence by the need for scientific superiority during the long Cold War, are facing the most critical challenge: how best to support the nation's current need to improve its international competitiveness through superior technology The charge that the national laboratories are [open quotes]Cold War relics[close quotes] that have outlived their usefulness is based on a misunderstanding of their mission, says Robert P. Crease, historian for Brookhaven National laboratory. Three of the labs-Los Alamos, Sandia, and Lawrence Livermore- are weapons laboratories and their missions must change. Oak Ridge,more » Argonne, and Brookhaven laboratories are multipurpose: basic research facilities with a continuing role in the world of science The national laboratory system traces its origins to the Manhattan Project. Over the next half-century, America's national labs grew into part of the most effective scientific establishment in the world, a much-copied model for management of large-scale scientific programs. In the early years, each lab defined a niche in the complex world of reactors, accelerators, and high-energy proton and electron physics. In the 1970s, several labs worked on basic energy sciences to help solve a national energy crisis. Today, the labs are pressured to do more applied research-research to transfer to the private sector and will have to respond by devising more effective ways of coordinating basic and applied research. But, Crease warns, [open quotes]It also will be essential that any commitment to applied research not take place at the cost of reducing the wellspring of basic research from which so much applied research flows. [open quotes]Making a solid and persuasive case for the independent value of basic research, and for their own role in that enterprise, may be the most important task facing the laboratories in their next half-century,[close quotes].« less
HIGH ENERGY PHYSICS: Bulgarians Sue CERN for Leniency.
Koenig, R
2000-10-13
In cash-strapped Bulgaria, scientists are wondering whether a ticket for a front-row seat in high-energy physics is worth the price: Membership dues in CERN, the European particle physics lab, nearly equal the country's entire budget for competitive research grants. Faced with that grim statistic and a plea for leniency from Bulgaria's government, CERN's governing council is considering slashing the country's membership dues for the next 2 years.
Germany-US Nuclear Theory Exchange Program for QCD Studies of Hadrons & Nuclei 'GAUSTEQ'
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudek, Jozef; Melnitchouk, Wally
GAUSTEQ was a Germany-U.S. exchange program in nuclear theory whose purpose was to focus research efforts on QCD studies of hadrons and nuclei, centered around the current and future research programs of Jefferson Lab and the Gesellschaft fur Schwerionenforschung (GSI) in Germany. GAUSTEQ provided travel support for theoretical physicists at US institutions conducting collaborative research with physicists in Germany. GSI (with its Darmstadt and Helmholtz Institute Mainz braches) served as the German “hub” for visits of U.S. physicists, while Jefferson Lab served as the corresponding “hub” for visits of German physicists visiting U.S. institutions through the reciprocal GUSTEHP (German-US Theorymore » Exchange in Hadron Physics) program. GAUSTEQ was funded by the Office of Nuclear Physics of the U.S. Department of Energy, under Contract No.DE-SC0006758 and officially managed through Old Dominion University in Norfolk, Virginia. The program ran between 2011 and 2015.« less
A LabVIEW® based generic CT scanner control software platform.
Dierick, M; Van Loo, D; Masschaele, B; Boone, M; Van Hoorebeke, L
2010-01-01
UGCT, the Centre for X-ray tomography at Ghent University (Belgium) does research on X-ray tomography and its applications. This includes the development and construction of state-of-the-art CT scanners for scientific research. Because these scanners are built for very different purposes they differ considerably in their physical implementations. However, they all share common principle functionality. In this context a generic software platform was developed using LabVIEW® in order to provide the same interface and functionality on all scanners. This article describes the concept and features of this software, and its potential for tomography in a research setting. The core concept is to rigorously separate the abstract operation of a CT scanner from its actual physical configuration. This separation is achieved by implementing a sender-listener architecture. The advantages are that the resulting software platform is generic, scalable, highly efficient, easy to develop and to extend, and that it can be deployed on future scanners with minimal effort.
Familiarizing Students with the Basics of a Smartphone's Internal Sensors
NASA Astrophysics Data System (ADS)
Countryman, Colleen Lanz
2014-12-01
The Physics Teacher's "iPhysicsLabs" column has been dedicated to the implementation of smartphones in instructional physics labs as data collection devices. In order to understand any data set, however, one should first understand how it is obtained. This concern regarding the inclusion of smartphones in lab activities has arisen in response to the creation of this column1 as well as to a paper in a recent issue of Physics Today.2 The majority of the labs featured in the "iPhysicsLabs" column to date make use of the internal accelerometer, common to nearly all smartphones on the market today. In order to glean meaningful conclusions from their data, students should first understand how the sensor works, as was pointed out in the first article to be featured in that column.3 We attempt to elucidate this "iBlackBox" using a simple ball-and-spring model.
None
2017-12-09
This 1993 documentary chronicles the Bevatron at Berkeley Lab. During its operation from 1954 until 1993, the Bevatron was among the world's leading particle accelerators, and during the 1950s and 1960s, four Nobel Prizes were awarded for work conducted in whole or in part there. The accelerator made major contributions in four distinct areas of research: high-energy particle physics, nuclear heavy-ion physics, medical research and therapy, and space-related studies of radiation damage and heavy particles in space.
Wang, Wen-Bin; Li, Jang-Yuan; Wu, Qi-Jun
2007-01-01
A LabVIEW-based self-constructed chemical virtual instrument (VI) has been developed for determining temperatures and pressures. It can be put together easily and quickly by selecting hardware modules, such as the PCI-DAQ card or serial port method, different kinds of sensors, signal-conditioning circuits or finished chemical instruments, and software modules such as data acquisition, saving, proceeding. The VI system provides individual and extremely flexible solutions for automatic measurements in physical chemistry research.
Wang, Wen-Bin; Li, Jang-Yuan; Wu, Qi-Jun
2007-01-01
A LabVIEW-based self-constructed chemical virtual instrument (VI) has been developed for determining temperatures and pressures. It can be put together easily and quickly by selecting hardware modules, such as the PCI-DAQ card or serial port method, different kinds of sensors, signal-conditioning circuits or finished chemical instruments, and software modules such as data acquisition, saving, proceeding. The VI system provides individual and extremely flexible solutions for automatic measurements in physical chemistry research. PMID:17671611
Advanced Cathodes for Next Generation Electric Propulsion Technology
2008-03-01
learning opportunity- of which it did. Finally, Dr. Glen Perram of the physics department at AFIT was so gracious to let us borrow his Langmuir Probe in...Applications Like Hall thrusters, ion thrusters also employ hollow cathodes.15,18,19,20,21 Harold Kaufman at NASA Glen Research Center (GRC... brittle nature, a problem common to CeB6 and LaB6. As a result, easier to machine polycrystalline inserts for LaB6 have been used for hollow cathodes in
Baseball Physics: A New Mechanics Lab
NASA Astrophysics Data System (ADS)
Wagoner, Kasey; Flanagan, Daniel
2018-05-01
The game of baseball provides an interesting laboratory for experimenting with mechanical phenomena (there are many good examples in The Physics Teacher, available on Professor Alan Nathan's website, and discussed in Physics of Baseball & Softball). We have developed a lab, for an introductory-level physics course, that investigates many of these phenomena. The lab uses inexpensive, readily available equipment such as wooden baseball bats, baseballs, and actual Major League Baseball data. By the end of the lab, students have revisited many concepts they learned earlier in the semester and come away with an understanding of how to put seemingly disparate ideas together to analyze a fun sport.
Research Projects for Undergraduates
NASA Astrophysics Data System (ADS)
Troncalli, Andra
2010-03-01
Physics majors, by enrolling in our research experience in physics course, have the opportunity to work in small groups on independent research projects. Over the last few years, I have directed a few of these research projects; some were closely related to my own research in the field of high temperature superconductivity, and students participated in growing and characterizing samples. Other projects involved nanotechnology, Hall probes, and programming in LabVIEW. For some students, this was their very first research project, while others had more experience. I will talk about the projects and about the particular type of challenges and benefits this type of course brings to both students and instructors.
Inciting High-School interest in physics.
NASA Astrophysics Data System (ADS)
Zhang, Jiandi
2008-03-01
We report on our outreach effort on material-physics education program as one part of my NSF Career award project. This is a program incorporated with the NSF funded Physics Learning Center at FIU, focusing on the material physics enrichment both high school students and teachers. We particularly pay attention to minority students by taking the advantage of FIU's composition and location. The program offers a special/session-style workshop, demonstrations, research lab touring, as well as summer research activities. The goal is to enrich teacher's ability of instruction to their students and inspire students to pursue scientific careers. The detailed outreach activities will be discussed.
NASA Astrophysics Data System (ADS)
Akı, Fatma Nur; Gürel, Zeynep
2017-02-01
The purpose of this research is to determine the university students' learning experiences about flipped-physics laboratory class. The research has been completed during the fall semester of 2015 at Computer Engineering Department of Istanbul Commerce University. In this research, also known as a teacher qualitative research design, action research method is preferred to use. The participants are ten people, including seven freshman and three junior year students of Computer Engineering Department. The research data was collected at the end of the semester with the focus group interview which includes structured and open-ended questions. And data was evaluated with categorical content analysis. According to the results, students have some similar and different learning experiences to flipped education method for physics laboratory class.
ERIC Educational Resources Information Center
de los Santos, Desiree´ M.; Montes, Antonio; Sa´nchez-Coronilla, Antonio; Navas, Javier
2014-01-01
A Project Based Learning (PBL) methodology was used in the practical laboratories of the Advanced Physical Chemistry department. The project type proposed simulates "real research" focusing on sol-gel synthesis and the application of the obtained sol as a stone consolidant. Students were divided into small groups (2 to 3 students) to…
Pre-Service Physics Teachers’ Perception toward Hands-on Lab Activity and 21st Century Skills
NASA Astrophysics Data System (ADS)
Putri, D. H.; Risdianto, E.; Sutarno, S.
2017-09-01
This study aimed to describe the hands-on lab activities and 21st century skills of pre-service physics teachers at a university in Bengkulu. The respondents of this study were 113 students who have been finished and were following the laboratory course. The research instrument was questionnaire. The explored aspects of laboratory activities were motivation, the importance of laboratory activities, equipment, laboratory activities process, suitability of curriculum, assessment, laboratory design, and the 21st century skills training. The 21st century skills explored consist of learning and innovation skills, life and careers skills, and media, information and technology skills. The data obtained will be analyzed descriptively. Based on the results of data analysis was obtained that they have a good perception toward the aspect of motivation, the importance of hands-on lab activities, and laboratory activities process; and the perception was fair for other aspects. The lowest perception score was obtained in the aspects of the 21st century skills training. This result was in accordance with the 21st century skills of pre-service physics teachers which were still in moderate category. So it is necessary to develop a model of laboratory activities design that can training and enhancing the 21st century skills for pre-service physics teachers.
The U.S. Lab is moved to payload canister
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, the U.S. Laboratory Destiny, a component of the International Space Station, glides overhead other hardware while visitors watch from a window (right). On the floor, left to right, are two Multi-Purpose Logistics Modules (MPLMs), Raffaello (far left) and Leonardo, and a Pressurized Mating Adapter-3 (right). Destiny is being moved to a payload canister for transfer to the Operations and Checkout Building where it will be tested in the altitude chamber. Destiny is scheduled to fly on mission STS-98 in early 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks over documents as part of a Multi-Equipment Interface Test (MEIT) on the U.S. Lab Destiny. Other crew members taking part in the MEIT are Commander Kenneth D. Cockrell and Pilot Mark Polansky. The remaining members of the crew (not present for the MEIT) are and Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. During the STS-98 mission, the crew will install the Lab on the International Space Station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks up at the U.S. Lab Destiny with its debris shield blanket made of a material similar to that used in bullet-proof vests on Earth.. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks at electrical connections on the U.S. Lab Destiny as part of a Multi-Equipment Interface Test (MEIT). Other crew members taking part in the MEIT are Commander Kenneth D. Cockrell and Pilot Mark Polansky. The remaining members of the crew (not present for the MEIT) are Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. During the STS-98 mission, the crew will install the Lab on the International Space Station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
During a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny, which is in the Space Station Processing Facility, astronaut James Voss (left) joins STS-98 Pilot Mark Polansky (center) and Commander Kenneth D. Cockrell (right) in checking wiring against documentation on the floor. Also participating in the MEIT is Mission Specialist Thomas D. Jones (Ph.D.). Voss is assigned to mission STS-102 as part of the second crew to occupy the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
2000-02-03
In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks at electrical connections on the U.S. Lab Destiny as part of a Multi-Equipment Interface Test (MEIT). Other crew members taking part in the MEIT are Commander Kenneth D. Cockrell and Pilot Mark Polansky. The remaining members of the crew (not present for the MEIT) are Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. During the STS-98 mission, the crew will install the Lab on the International Space Station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000
Project-based physics labs using low-cost open-source hardware
NASA Astrophysics Data System (ADS)
Bouquet, F.; Bobroff, J.; Fuchs-Gallezot, M.; Maurines, L.
2017-03-01
We describe a project-based physics lab, which we proposed to third-year university students. These labs are based on new open-source low-cost equipment (Arduino microcontrollers and compatible sensors). Students are given complete autonomy: they develop their own experimental setup and study the physics topic of their choice. The goal of these projects is to let students to discover the reality of experimental physics. Technical specifications of the acquisition material and case studies are presented for practical implementation in other universities.
NASA Astrophysics Data System (ADS)
Jones, Barbara
2001-03-01
At UCSD biology majors are required to take 3 quarters of a calculus based physics course. This is taught in a standard format large lecture class partly by faculty and partly by freeway flyers. We are working with physics graduate students who are also participating in our PFPF (Preparing Future Physics Faculty) program to write, review, and teach new weekly labs for these biology students. This provides an experience for the grad student that is both rewarding to them and useful to the department. The grad students participate in curriculum development, they observe the students behaviour in the labs, and assess the effectiveness of different lab formats. The labs are intended to provide an interactive, hands on experience with a wide variety of equipment which is mostly both simple and inexpensive. Both students and grads find the labs to be engaging and fun. Based on group discussions the labs are modified to try to try to create the best teaching environment. The biology students benefit from the improvements both in the quality of the labs they do, and from the enthusiasm of the TAs who take an active interest in their learning. The ability to make significant changes to the material taught maintains the interest of the grad students and helps to make the labs a stable and robust environment.
NASA Astrophysics Data System (ADS)
Johnson, Anthony
2009-03-01
The Bell Labs Cooperative Research Fellowship Program for Minorities (CRFP), founded in 1972 was one of the first programs of its kind in the US to address the issue of under-representation of minorities in the fields of engineering, mathematics and science. As of 2000, well over 100 PhDs graduated with CRFP sponsorship and a significant fraction joined the research ranks of Bell Labs. In the early days of the program as much as 50% of African American PhDs in Physics in the US were granted to students supported by CRFP. Another unique program initiated by Bell Labs in 1974 that introduced undergraduate students to cutting edge research was the Summer Research Program for Minorities and Women (SRP). The SRP served as a natural feeder to the CRFP. Personally, my career in Optical Physics owes its foundation to these programs and I will give my perspective on participation and impact of the Bell Labs SRP (1974) and CRFP (1975) programs. The Meyerhoff Scholars Program at UMBC was developed in 1988. At that time, UMBC was graduating fewer than 18 African-American STEM majors per year. In 1996 the program was opened to all students with an interest in the advancement of minorities in STEM fields. The program enjoys an overall 18-year retention rate of greater than 95% and has over 500 graduates since 1993. As of May 2006, 75% of these graduates are enrolled in graduate and/or professional programs, with 49 PhDs and 20 MD/PhDs completed as of August 2006. The program challenges notions about minority achievement. Meyerhoff Scholars have changed the perceptions of those around them -- the expectations of faculty who instruct them, the attitudes of students who learn beside them, and the perspectives of scientists who engage them in research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-09-01
The Ernest Orlando Lawrence Berkeley National Laboratory`s Comprehensive Facilities Plan (CFP) document provides analysis and policy guidance for the effective use and orderly future development of land and capital assets at the Berkeley Lab site. The CFP directly supports Berkeley Lab`s role as a multiprogram national laboratory operated by the University of California (UC) for the Department of Energy (DOE). The CFP is revised annually on Berkeley Lab`s Facilities Planning Website. Major revisions are consistent with DOE policy and review guidance. Facilities planing is motivated by the need to develop facilities for DOE programmatic needs; to maintain, replace and rehabilitatemore » existing obsolete facilities; to identify sites for anticipated programmatic growth; and to establish a planning framework in recognition of site amenities and the surrounding community. The CFP presents a concise expression of the policy for the future physical development of the Laboratory, based upon anticipated operational needs of research programs and the environmental setting. It is a product of the ongoing planning processes and is a dynamic information source.« less
Baseball Physics: A New Mechanics Lab
ERIC Educational Resources Information Center
Wagoner, Kasey; Flanagan, Daniel
2018-01-01
The game of baseball provides an interesting laboratory for experimenting with mechanical phenomena (there are many good examples in "The Physics Teacher," available on Professor Alan Nathan's website, and discussed in "Physics of Baseball & Softball"). We have developed a lab, for an introductory-level physics course, that…
NASA Astrophysics Data System (ADS)
Sullivan, Sarah; Gnesdilow, Dana; Puntambekar, Sadhana; Kim, Jee-Seon
2017-08-01
Physical and virtual experimentation are thought to have different affordances for supporting students' learning. Research investigating the use of physical and virtual experiments to support students' learning has identified a variety of, sometimes conflicting, outcomes. Unanswered questions remain about how physical and virtual experiments may impact students' learning and for which contexts and content areas they may be most effective. Using a quasi-experimental design, we examined eighth grade students' (N = 100) learning of physics concepts related to pulleys depending on the sequence of physical and virtual labs they engaged in. Five classes of students were assigned to either the: physical first condition (PF) (n = 55), where students performed a physical pulley experiment and then performed the same experiment virtually, or virtual first condition (VF) (n = 45), with the opposite sequence. Repeated measures ANOVA's were conducted to examine how physical and virtual labs impacted students' learning of specific physics concepts. While we did not find clear-cut support that one sequence was better, we did find evidence that participating in virtual experiments may be more beneficial for learning certain physics concepts, such as work and mechanical advantage. Our findings support the idea that if time or physical materials are limited, using virtual experiments may help students understand work and mechanical advantage.
34 CFR Appendix A to Part 104 - Analysis of Final Regulation
Code of Federal Regulations, 2010 CFR
2010-07-01
... college to offer biology, the second physics, and the third chemistry to all students at the three... lab accessible, another its physics lab, and a third its chemistry lab, and under which mobility... provide health, welfare, or other social services may also comply with § 104.22 by delivering services at...
ERIC Educational Resources Information Center
Agrest, Mikhail M.
2009-01-01
This paper describes my attempts to look deeper into the so-called "shoot for your grade" labs, started in the '90s, when I began applying my teaching experience in Russia to introductory physics labs at the College of Charleston and other higher education institutions in South Carolina. The term "shoot for your grade" became popular among…
Engineering Students' Experiences from Physics Group Work in Learning Labs
ERIC Educational Resources Information Center
Mellingsaeter, Magnus Strøm
2014-01-01
Background: This paper presents a case study from a physics course at a Norwegian university college, investigating key aspects of a group-work project, so-called learning labs, from the participating students' perspective. Purpose: In order to develop these learning labs further, the students' perspective is important. Which aspects are essential…
NASA Astrophysics Data System (ADS)
Herold, George
2009-07-01
The old joke is, "If it squirms, it's a biology lab, if it stinks, it's a chemistry lab and if it doesn't work, it's a physics lab". My current job is to make a lie of the latter, by making physics apparatus that works for the students without needing a "resident expert" to maintain or explain it.
Peppytides: Interactive Models of Polypeptide Chains
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuckermann, Ron; Chakraborty, Promita; Derisi, Joe
2014-01-21
Peppytides are scaled, 3D-printed models of polypeptide chains that can be folded into accurate protein structures. Designed and created by Berkeley Lab Researcher, Promita Chakraborty, and Berkeley Lab Senior Scientist, Dr. Ron Zuckermann, Peppytides are accurate physical models of polypeptide chains that anyone can interact with and fold intro various protein structures - proving to be a great educational tool, resulting in a deeper understanding of these fascinating structures and how they function. Build your own Peppytide model and learn about how nature's machines fold into their intricate architectures!
Peppytides: Interactive Models of Polypeptide Chains
Zuckermann, Ron; Chakraborty, Promita; Derisi, Joe
2018-06-08
Peppytides are scaled, 3D-printed models of polypeptide chains that can be folded into accurate protein structures. Designed and created by Berkeley Lab Researcher, Promita Chakraborty, and Berkeley Lab Senior Scientist, Dr. Ron Zuckermann, Peppytides are accurate physical models of polypeptide chains that anyone can interact with and fold intro various protein structures - proving to be a great educational tool, resulting in a deeper understanding of these fascinating structures and how they function. Build your own Peppytide model and learn about how nature's machines fold into their intricate architectures!
Construct and test scale model box culvert design project.
DOT National Transportation Integrated Search
2010-11-01
The research team at the University of New Mexicos (UNM) hydraulics lab designed, constructed, and : tested a 1:20 scale physical model of a proposed culvert in Jemez Springs, New Mexico. The culvert : design was developed by the New Mexico Depart...
Physics and Physics Education at Clarion University
NASA Astrophysics Data System (ADS)
Aravind, Vasudeva
Clarion University is located in the rolling hills of western Pennsylvania. We are a primarily undergraduate public institution serving about 6000 students. We graduate students who take different career paths, one of them being teaching physics at high schools. Since educating teachers of tomorrow requires us to introduce currently trending, research proven pedagogical methods, we incorporate several aspects of physics pedagogies such as peer instruction, flipped classroom and hands on experimentation in a studio physics lab format. In this talk, I discuss some of our projects on physics education, and seek to find potential collaborators interested in working along similar lines.
Exploring Space Physics Concepts Using Simulation Results
NASA Astrophysics Data System (ADS)
Gross, N. A.
2008-05-01
The Center for Integrated Space Weather Modeling (CISM), a Science and Technology Center (STC) funded by the National Science Foundation, has the goal of developing a suite of integrated physics based computer models of the space environment that can follow the evolution of a space weather event from the Sun to the Earth. In addition to the research goals, CISM is also committed to training the next generation of space weather professionals who are imbued with a system view of space weather. This view should include an understanding of both helio-spheric and geo-space phenomena. To this end, CISM offers a yearly Space Weather Summer School targeted to first year graduate students, although advanced undergraduates and space weather professionals have also attended. This summer school uses a number of innovative pedagogical techniques including devoting each afternoon to a computer lab exercise that use results from research quality simulations and visualization techniques, along with ground based and satellite data to explore concepts introduced during the morning lectures. These labs are suitable for use in wide variety educational settings from formal classroom instruction to outreach programs. The goal of this poster is to outline the goals and content of the lab materials so that instructors may evaluate their potential use in the classroom or other settings.
Developing a Virtual Rock Deformation Laboratory
NASA Astrophysics Data System (ADS)
Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.
2012-12-01
Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In addition, some web based data collection tools are available to collect student feedback and opinions on their learning experience. The virtual laboratory is designed to be an online education tool that facilitates interactive learning.; Virtual Deformation Laboratory
Computational Labs Using VPython Complement Conventional Labs in Online and Regular Physics Classes
NASA Astrophysics Data System (ADS)
Bachlechner, Martina E.
2009-03-01
Fairmont State University has developed online physics classes for the high-school teaching certificate based on the text book Matter and Interaction by Chabay and Sherwood. This lead to using computational VPython labs also in the traditional class room setting to complement conventional labs. The computational modeling process has proven to provide an excellent basis for the subsequent conventional lab and allows for a concrete experience of the difference between behavior according to a model and realistic behavior. Observations in the regular class room setting feed back into the development of the online classes.
Quantitative Comparisons to Promote Inquiry in the Introductory Physics Lab
NASA Astrophysics Data System (ADS)
Holmes, N. G.; Bonn, D. A.
2015-09-01
In a recent report, the American Association of Physics Teachers has developed an updated set of recommendations for curriculum of undergraduate physics labs. This document focuses on six major themes: constructing knowledge, modeling, designing experiments, developing technical and practical laboratory skills, analyzing and visualizing data, and communicating physics. These themes all tie together as a set of practical skills in scientific measurement, analysis, and experimentation. In addition to teaching students how to use these skills, it is important for students to know when to use them so that they can use them autonomously. This requires, especially in the case of analytical skills, high levels of inquiry behaviors to reflect on data and iterate measurements, which students rarely do in lab experiments. Often, they perform lab experiments in a plug-and-chug frame, procedurally completing each activity with little to no sensemaking. An emphasis on obtaining true theoretical values or agreement on individual measurements also reinforces inauthentic behaviors such as retroactively inflating measurement uncertainties. This paper aims to offer a relatively simple pedagogical framework for engaging students authentically in experimentation and inquiry in physics labs.
Comparing Physical, Virtual, and Hybrid Flipped Labs for General Education Biology
ERIC Educational Resources Information Center
Son, Ji Y.
2016-01-01
The purpose of this study was to examine the impact on learning, attitudes, and costs in a redesigned general education undergraduate biology course that implemented web-based virtual labs (VLs) to replace traditional physical labs (PLs). Over an academic year, two new modes of VL instruction were compared to the traditional PL offering: (1) all…
Examining students' views about validity of experiments: From introductory to Ph.D. students
NASA Astrophysics Data System (ADS)
Hu, Dehui; Zwickl, Benjamin M.
2018-06-01
We investigated physics students' epistemological views on measurements and validity of experimental results. The roles of experiments in physics have been underemphasized in previous research on students' personal epistemology, and there is a need for a broader view of personal epistemology that incorporates experiments. An epistemological framework incorporating the structure, methodology, and validity of scientific knowledge guided the development of an open-ended survey. The survey was administered to students in algebra-based and calculus-based introductory physics courses, upper-division physics labs, and physics Ph.D. students. Within our sample, we identified several differences in students' ideas about validity and uncertainty in measurement. The majority of introductory students justified the validity of results through agreement with theory or with results from others. Alternatively, Ph.D. students frequently justified the validity of results based on the quality of the experimental process and repeatability of results. When asked about the role of uncertainty analysis, introductory students tended to focus on the representational roles (e.g., describing imperfections, data variability, and human mistakes). However, advanced students focused on the inferential roles of uncertainty analysis (e.g., quantifying reliability, making comparisons, and guiding refinements). The findings suggest that lab courses could emphasize a variety of approaches to establish validity, such as by valuing documentation of the experimental process when evaluating the quality of student work. In order to emphasize the role of uncertainty in an authentic way, labs could provide opportunities to iterate, make repeated comparisons, and make decisions based on those comparisons.
Book Review - Panofsky on Physics, Politics, and Peace: Pief Remembers
NASA Astrophysics Data System (ADS)
Loew, Gregory
The following sections are included: * Introduction: Genesis of the Book * Nature and Nurture: Pief's Early Life * This Review * High School in Hamburg; University at Princeton and Caltech * Pief and the Bomb * Accelerators and Physics at UCRL * Events Leading up to the Loyalty Oath * Stanford, the Microwave Lab and HEPL * The Rise of SLAC * Building SLAC * Physics Research at SLAC in the First Ten Years * Other Accelerator Activities under Pief * Science Advising and International Science * Arms Control (1981-2007): The Unfinished Business
2000-02-03
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks up at the U.S. Lab Destiny with its debris shield blanket made of a material similar to that used in bullet-proof vests on Earth. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the Station during a series of three spacewalks. The mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion and life sciences reseach. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than August 19, 2000.
2000-02-03
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks up at the U.S. Lab Destiny with its debris shield blanket made of a material similar to that used in bullet-proof vests on Earth. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the Station during a series of three spacewalks. The mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion and life sciences reseach. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than August 19, 2000.
None
2018-05-01
A new Idaho National Laboratory supercomputer is helping scientists create more realistic simulations of nuclear fuel. Dubbed "Ice Storm" this 2048-processor machine allows researchers to model and predict the complex physics behind nuclear reactor behavior. And with a new visualization lab, the team can see the results of its simulations on the big screen. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.
How Data Becomes Physics: Inside the RACF
Ernst, Michael; Rind, Ofer; Rajagopalan, Srini; Lauret, Jerome; Pinkenburg, Chris
2018-06-22
The RHIC & ATLAS Computing Facility (RACF) at the U.S. Department of Energyâs (DOE) Brookhaven National Laboratory sits at the center of a global computing network. It connects more than 2,500 researchers around the world with the data generated by millions of particle collisions taking place each second at Brookhaven Lab's Relativistic Heavy Ion Collider (RHIC, a DOE Office of Science User Facility for nuclear physics research), and the ATLAS experiment at the Large Hadron Collider in Europe. Watch this video to learn how the people and computing resources of the RACF serve these scientists to turn petabytes of raw data into physics discoveries.
Quantum Materials at the Nanoscale - Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Stephen Lance
The central aim of the Quantum Materials at the Nanoscale (QMN) cluster was to understand and control collective behavior involving the interplay of spins, orbitals, and charges, which governs many scientifically interesting and technologically important phenomena in numerous complex materials. Because these phenomena involve various competing interactions, and influence properties on many different length and energy scales in complex materials, tackling this important area of study motivated a collaborative effort that combined the diverse capabilities of QMN cluster experimentalists, the essential theoretical analysis provided by QMN cluster theorists, and the outstanding facilities and staff of the FSMRL. During the fundingmore » period 2007-2014, the DOE cluster grant for the Quantum Materials at the Nanoscale (QMN) cluster supported, at various times, 15 different faculty members (14 in Physics and 1 in Materials Science and Engineering), 7 postdoctoral research associates, and 57 physics and materials science PhD students. 41 of these PhD students have since graduated and have gone on to a variety of advanced technical positions at universities, industries, and national labs: 25 obtained postdoctoral positions at universities (14), industrial labs (2 at IBM), DOE national facilities (3 at Argonne National Laboratory, 1 at Brookhaven National Lab, 1 at Lawrence Berkeley National Lab, and 1 at Sandia National Lab), and other federal facilities (2 at NIST); 13 took various industrial positions, including positions at Intel (5), Quantum Design (1), Lasque Industries (1), Amazon (1), Bloomberg (1), and J.P. Morgan (1). Thus, the QMN grant provided the essential support for training a large number of technically advanced personnel who have now entered key national facilities, industries, and institutions. Additionally, during the period 2007-2015, the QMN cluster produced 159 publications (see pages 14-23), including 23 papers published in Physical Review Letters; 16 papers in Nature, Nature Physics, Nature Materials, or Nature Communications; 4 papers in Science, and 8 papers in Applied Physics Letters. In this report, we provide some key highlights of the collaborative projects in which the QMN cluster members have been involved since 2007.« less
Undergraduate Student Involvement in International Research - The IRES Program at MAX-lab, Sweden
NASA Astrophysics Data System (ADS)
Briscoe, William; O'Rielly, Grant; Fissum, Kevin
2014-03-01
Undergraduate students associated with The George Washington University and UMass Dartmouth have had the opportunity to participate in nuclear physics research as a part of the PIONS@MAXLAB Collaboration performing experiments at MAX-lab at Lund University in Sweden. This project has supported thirteen undergraduate students during 2009 - 2011. The student researchers are involved with all aspects of the experiments performed at the laboratory, from set-up to analysis and presentation at national conferences. These experiments investigate the dynamics responsible for the internal structure of the nucleon through the study of pion photoproduction off the nucleon and high-energy Compton scattering. Along with the US and Swedish project leaders, members of the collaboration (from four different countries) have contributed to the training and mentoring of these students. This program provides students with international research experiences that prepare them to operate successfully in a global environment and encourages them to stay in areas of science, technology, engineering and math (STEM) that are crucial for our modern, technology-dependent society. We will present the history, goals and outcomes in both physics results and student success that have come from this program. This work supported by NSF OISE/IRES award 0553467.
Invention and History of the Bubble Chamber (LBNL Summer Lecture Series)
Glaser, Don [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-01-12
Summer Lecture Series 2006: Don Glaser won the 1960 Nobel Prize for Physics for his 1952 invention of the bubble chamber at Berkeley Lab, a type of particle detector that became the mainstay of high-energy physics research throughout the 1960s and 1970s. He discusses how, inspired by bubbles in a glass of beer, he invented the bubble chamber and detected cosmic-ray muons.
20th Annual Systems Engineering Conference, Thursday, Volume 4
2017-10-26
Daniel Dault, Air Force Research Lab 19809 Physics Based Modeling & Simulation For Shock and Vulnerability Assessments - Navy Enhanced Sierra...19811 Version 1.0 of the New INCOSE Competency Framework u Mr. Don Gelosh 19515 A Proposed Engineering Training Framework and Competency Methodology...nonlinearity ▪ QEV, Transient, Frequency Domain ▪ Inverse Methods Capability ▪ Coupled Physics ▪ Fluids: nemo, aero and sigma ▪ Thermal (unidirection): fuego
ASTRO 101 Labs and the Invasion of the Cognitive Scientists
NASA Astrophysics Data System (ADS)
Slater, Stephanie J.
2015-04-01
Since the mid 1800's there has been widespread agreement that we should be about the business of engaging students in the practices of scientific research in order to best teach the methods and practices of science. There has been significantly less agreement on precisely how to teach science by mimicking scientific inquiry in a way that can be empirically supported, even with our ``top students.'' Engaging ``ASTRO 101 students'' in scientific inquiry is a task that has left our astronomy education research community more than a little stymied, to the extent that it is difficult to find non-major science students practicing anything other than confirmation exercises in college labs. Researchers at the CAPER Center for Astronomy & Physics Education Research have struggled with this problem as well, until in our frustration we had to ask: ``Can research tell us anything about how to get students to do research?'' This talk presents an overview of the cognitive science that we've brought to bear in the ASTRO 101 laboratory setting for non-science majoring undergraduates and future teachers, along with the results of early studies that suggest that a ``backwards faded scaffolding'' approach to instruction in Intro Labs can successfully support large numbers of students in enhancing their understanding of the nature of scientific inquiry. Supported by NSF DUE 1312562.
Polarimetry of the polarized hydrogen deuteride HDice target under an electron beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laine, Vivien E.
2013-10-01
The study of the nucleon structure has been a major research focus in fundamental physics in the past decades and still is the main research line of the Thomas Jefferson National Accelerator Facility (Jefferson Lab). For this purpose and to obtain statistically meaningful results, having both a polarized beam and a highly efficient polarized target is essential. For the target, this means high polarization and high relative density of polarized material. A Hydrogen Deuteride (HD) target that presents both such characteristics has been developed first at Brookhaven National Lab (BNL) and brought to the Hall B of Jefferson Lab inmore » 2008. The HD target has been shown to work successfully under a high intensity photon beam (BNL and Jefferson Lab). However, it remained to be seen if the target could stand an electron beam of reasonably high current (nA). In this perspective, the target was tested for the first time in its frozen spin mode under an electron beam at Jefferson Lab in 2012 during the g14 experiment. This dissertation presents the principles and usage procedures of this HD target. The polarimetry of this target with Nuclear Magnetic Resonance (NMR) during the electron beam tests is also discussed. In addition, this dissertation also describes another way to perform target polarimetry with the elastic scattering of electrons off a polarized target by using data taken on helium-3 during the E97-110 experiment that occurred in Jefferson Lab's Hall A in 2003.« less
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
While checking out equipment during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny, astronaut James Voss (center) and STS-98 crew members Commander Kenneth D. Cockrell (foreground) and Pilot Mark Polansky (right) pause for the camera. They are taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. Also participating in the MEIT is STS-98 Mission Specialist Thomas D. Jones (Ph.D.). Voss is assigned to mission STS-102 as part of the second crew to occupy the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
Looking over equipment inside the U.S. Lab Destiny as part of a Multi-Equipment Interface Test are STS-98 Pilot Mark Polansky (left) and Commander Kenneth D. Cockrell (center). They are joined by astronaut James Voss (right), who will be among the first crew to inhabit the International Space Station on a flight in late 2000. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. Others in the five-member crew on STS-98 are Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) examines a power data grapple fixture outside the U.S. Lab Destiny. Jones is taking part in a Multi-Equipment Interface Test (MEIT), along with other crew members Commander Kenneth D. Cockrell and Pilot Mark Polansky. The remaining members of the crew (not present for the MEIT) are Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. During the STS-98 mission, the crew will install the Lab on the International Space Station during a series of three space walks. The grapple fixture will be the base of operations for the robotic arm on later flights The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samios, Nicholas
2009-05-06
The 450th Brookhaven Lecture, to be held today, Wednesday, May 6, will be given by BNL Distinguished Senior Physicist Nicholas Samios, director of the RIKEN BNL Research Center and former Lab Director. Samios will discuss "Personal Reflections on the Interaction of Science and Government and Possible Lessons for the Present Crisis" at 4 p.m. in Berkner Hall. As many members of his prospective audience know, Samios's distinguished achievements in science and administration qualify him more than most to take on this topic. Having received his B.A. and Ph.D. degrees in physics from Columbia University in 1953 and 1957, respectively, hemore » joined the Lab in 1959. In addition to his work in experimental physics, he served as Physics Department Chair from 1975 to 81 and Deputy Director for High-Energy & Nuclear Physics from 1981 to 82. As a researcher, Samios made many of the particle discoveries that have helped define and lead to the acceptance of the "Standard Model" of particle physics, the accepted theory that explains known particle interactions. In particular, he is noted for the discovery of the phi meson and the omega minus hyperon, crucial elements delineating the symmetry of hadrons, which ultimately led to the quark model of elementary particles, a pillar of the Standard Model.« less
Makransky, Guido; Thisgaard, Malene Warming; Gadegaard, Helen
2016-01-01
To investigate if a virtual laboratory simulation (vLAB) could be used to replace a face to face tutorial (demonstration) to prepare students for a laboratory exercise in microbiology. A total of 189 students who were participating in an undergraduate biology course were randomly selected into a vLAB or demonstration condition. In the vLAB condition students could use a vLAB at home to 'practice' streaking out bacteria on agar plates in a virtual environment. In the demonstration condition students were given a live demonstration from a lab tutor showing them how to streak out bacteria on agar plates. All students were blindly assessed on their ability to perform the streaking technique in the physical lab, and were administered a pre and post-test to determine their knowledge of microbiology, intrinsic motivation to study microbiology, and self-efficacy in the field of microbiology prior to, and after the experiment. The results showed that there were no significant differences between the two groups on their lab scores, and both groups had similar increases in knowledge of microbiology, intrinsic motivation to study microbiology, as well as self-efficacy in the field of microbiology. Our data show that vLABs function just as well as face to face tutorials in preparing students for a physical lab activity in microbiology. The results imply that vLABs could be used instead of face to face tutorials, and a combination of virtual and physical lab exercises could be the future of science education.
Time Trials--An AP Physics Challenge Lab
ERIC Educational Resources Information Center
Jones, David
2009-01-01
I have come to the conclusion that for high school physics classroom and laboratory experiences, simpler is better! In this paper I describe a very simple and effective lab experience that my AP students have thoroughly enjoyed year after year. I call this lab exercise "Time Trials." The experiment is simple in design and it is a lot of fun for…
ERIC Educational Resources Information Center
Donaldson, Nancy
2010-01-01
Several years ago I attended an AAPT Haunted Physics Workshop taught by Dr. Tom Zepf from Creighton University. Dr. Zepf's highly successful Haunted Physics Lab at Creighton was put on every October by his physics majors. I found the concept of exhibiting physics projects in a "fun" way to students, faculty, and the public very exciting, so an…
Curricular Adaptations in Introductory Physics Labs
NASA Astrophysics Data System (ADS)
Dreyfus, Benjamin W.; Ewell, Mary; Moore, Kimberly
2017-01-01
When curricular materials are disseminated to new sites, there can be a tension between fidelity to the original intent of the developers and adaptation to local needs. In this case study we look at a lab activity that was initially developed for an introductory physics for the life sciences (IPLS) course at the University of Maryland, then implemented at George Mason University with significant adaptations. The goals of the two implementations were overlapping, but also differed in ways that are reflected in the two versions of the lab. We compare student lab report data from the two sites to examine the impacts of the adaptation on how students engaged with the lab.
EDITORIAL: Student undergraduate laboratory and project work
NASA Astrophysics Data System (ADS)
Schumacher, Dieter
2007-05-01
During the last decade 'labwork' courses at university level have changed significantly. The beginning of this development was indicated and partly initiated by the EU-project 'Labwork in Science Education' funded by the European Community (1999-2001). The present special issue of the European Journal of Physics focuses on a multitude of different aspects of this process. The aim of this publication is to improve the exchange of experience and to promote this important trend. In physics research labs a silent revolution has taken place. Today the personal computer is omnipresent. It controls the experiment via stepping motors, piezo-microdrives etc, it monitors all parameters and collects the experimental data with the help of smart sensors. In particular, computer-based modern scanning and imaging techniques open the possibility of creating really new types of experiments. The computer allows data storage and processing on the one hand and simulation and modelling on the other. These processes occur in parallel or may even be interwoven. The web plays an important role in modern science for inquiry, communication, cooperation and publication. Traditional labwork courses do not prepare students for the many resulting demands. Therefore it is necessary to redefine the learning targets and to reconsider the learning methods. Two contributions show exemplarily how modern experimental devices could find their way into students' labs. In the article 'Infrared thermal imaging as a tool in university physics education' by Klaus-Peter Möllmann and Michael Vollmer we can see that infrared thermal imaging is a valuable tool in physics education at university level. It can help to visualize and thereby enhance understanding of physical phenomena of mechanics, thermal physics, electromagnetism, optics and radiation physics. The contribution 'Using Peltier cells to study solid-liquid-vapor transitions and supercooling' by Giacomo Torzo, Isabella Soletta and Mario Branca proves that new experiments which illustrate both fundamental physics and modern technology can be realized even with a small budget. Traditional labwork courses often provide a catalogue of well known experiments. The students must first learn the theoretical background. They then assemble the setup from specified equipment, collect the data and perform the default data processing. However, there is no way to learn to swim without water. In order to achieve a constructivist access to learning, 'project labs' are needed. In a project labwork course a small group of students works as a team on a mini research project. The students have to specify the question of research, develop a suitable experimental setup, conduct the experiment and find a suitable way to evaluate the data. Finally they must present their results e.g. in the framework of a public poster session. Three contributions refer to this approach, however they focus on different aspects: 'Project laboratory for first-year students' by Gorazd Planinšič, 'RealTime Physics: active learning laboratories' by David Sokoloff et al and 'Labs outside labs: miniprojects at a spring camp for future physics teachers' by Leos Dvorák. Is it possible to prepare the students specifically for project labwork? This question is answered by the contribution 'A new labwork course for physics students: devices, methods and research projects' by Knut Neumann and Manuela Welzel. The two main parts of the labwork course cover first experimental devices (e.g. multimeters, oscilloscopes, different sensors, operational amplifiers, step motors, AD/DA-converters). Then subjects such as data processing, consideration of measurement uncertainties, keeping records or using tools like LABVIEW etc are focused on. Another concrete proposal for a new curriculum is provided by James Sharp et al, in 'Computer based learning in an undergraduate physics laboratory: interfacing and instrument control using MATLAB'. One can well imagine that project labs will be the typical learning environment for physics students in the future. However, the details of this change should be based on a better understanding of the learning process in a students' lab. A deeper insight is given by the contribution of Claudia von Aufschnaiter and Stefan von Aufschnaiter in 'University students' activities, thinking and learning during laboratory work'. A second important alteration has taken place in physics education during the last decade. The so-called new media have changed the world of learning and teaching to an unprecedented extent. Learning with new media is often much more related to physics labwork than to traditional lectures or seminars (e.g. small learning groups, problem based learning, a high level of interactivity). We need to take these new tools into consideration as suitable amendment (blended learning) or substitution (e-learning, distance learning) of labwork courses. The developments with presumably the highest impact on physics education are modelling tools, interactive screen experiments and remote labs. Under 'modelling tools', all computer programs are summarized which enable the simulation of a physical process based on an explicit or implicit given formula. Many commercial program packages are available. The application of modelling tools in labwork courses permits a tight binding of theory and experiment. This is particularly valid and necessary in the case of project work. An interactive screen experiment (ISE) is a computer assisted representation of a physical experiment. When watching a video clip of an experiment students are forced to be passive observers. In the case of an ISE they can manipulate the setup on the screen with the help of a hand-like mouse pointer and the computer will show the appropriate result. The ISE consists of a large number of digital photos taken from the real experiment. From an epistemological point of view an ISE has the character of an experiment and can be used to discover or to prove a physical law. Many more details and an overview of possible applications can be found in the contribution 'Multimedia representation of experiments in physics' by Juergen Kirstein and Volkhard Nordmeier. A remotely controlled lab (RCL) or 'remote lab' (RL) is a physical experiment which can be remotely controlled via web-interface (server) and client-PC. During recent years a lot of RLs have appeared and also disappeared on the web. At first sight it seems fascinating to use a rare and sophisticated experiment from any PC which is connected to the web. However, in order to provide such a high level experiment continuously and to manage the schedule for sequential access, an enormous amount of manpower is necessary. Sebastian Gröber et al describe their efforts to provide a number of useful RCLs in the contribution 'Experimenting from a distance—remotely controlled laboratory (RCL)'. At many universities, physics labwork courses are also provided for students of other disciplines. Usually these groups are significantly larger than the group of physics students. Labwork courses for these groups must account for the specific objectives and students' learning conditions (previous knowledge, motivation). Heike Theyßen describes a targeted labwork course especially designed for medical students: 'Towards targeted labwork in physics as a subsidiary subject: enhancing the learning efficiency by new didactical concepts and media'. The term 'targeted' refers to the specific choice of content and methods regarding the students' learning conditions as well as the objectives of the labwork course. These differ significantly from those of labwork courses for physics students. In this case two targeted learning environments were developed, implemented and evaluated by means of several comparative studies. Both learning environments differ from traditional physics labwork courses in their objectives, didactical concept, content and experimental setups. One of them is a hypermedia learning environment, in which the real experiments are represented by ISEs. We are just at the beginning of the process of developing new labwork courses. Students' labs are often provided for large learning groups. Therefore the development of new methods as well as the acquisition of new equipment demands a large amount of investment. Using the paths of communication and cooperation established in science, we can optimize the process of renewal in order to spare manpower and financial means. Robert Lambourne exemplarily presented the cooperation project piCETL in his article 'Laboratory-based teaching and the Physics Innovations Centre for Excellence in Teaching and Learning'. The articles show that the renewal process has many different facets. New concepts are in demand as well as new experimental setups; the new media as well as the recent progress in didactic research have a strong influence on the trends. All aspects are closely linked, which can be seen by the number of mutual citations in the contributions. In order to give the reader an orientation we have structured the content of this special issue along the following lines: • successful new ideas for student labs and projects • new roles of student labs and project work • information and communication technology in laboratory and project work. This special issue provides an overview and examples of best practice as well as general concepts and personal contacts as stimuli for an enhancement of the renewal of labwork courses at university level.
A Personal Perspective on Triangle Universities Nuclear Laboratory Development
NASA Astrophysics Data System (ADS)
Clegg, Thomas B.
2011-10-01
Nuclear physics research in NC began seriously in 1950 when Henry Newson and his colleagues at Duke attracted support for a 4 MeV Van de Graaff accelerator with which they grew their doctoral training program. The lab's scientific achievements also grew, including the discovery in 1966 of fine structure of nuclear analog states. By then UNC and NC State had attracted Eugen Merzbacher and Worth Seagondollar who, with Newson, brought more faculty to work at an enlarged three-university, cooperative lab. Launched at Duke in 1967 with a 30 MeV Cyclograff accelerator, and subsequently equipped with a polarized H and D ion source and polarized H and ^3He targets, an extensive program in light-ion and neutron physics ensued. Faculty interest in electromagnetic interactions led to development since 2001 of TUNL's HIγS facility to produce intense 1-100 MeV polarized photon beams with small energy spread. Photonuclear reaction studies there today are producing results of unmatched quality. These 60 years of nuclear physics research have produced ˜250 doctoral graduates, many of whom have gone on to very distinguished careers. A personal perspective on these activities will be presented.
CERN launches high-school internship programme
NASA Astrophysics Data System (ADS)
Johnston, Hamish
2017-07-01
The CERN particle-physics lab has hosted 22 high-school students from Hungary in a pilot programme designed to show teenagers how science, technology, engineering and mathematics is used at the particle-physics lab.
NASA Astrophysics Data System (ADS)
Javidi, Giti
2005-07-01
This study was designed to investigate an alternative to the use of traditional physical laboratory activities in a communication systems course. Specifically, this study examined whether as an alternative, computer simulation is as effective as physical laboratory activities in teaching college-level electronics engineering education students about the concepts of signal transmission, modulation and demodulation. Eighty undergraduate engineering students participated in the study, which was conducted at a southeastern four-year university. The students were randomly assigned to two groups. The groups were compared on understanding the concepts, remembering the concepts, completion time of the lab experiments and perception toward the laboratory experiments. The physical group's (n = 40) treatment was to conduct laboratory experiments in a physical laboratory. The students in this group used equipment in a controlled electronics laboratory. The Simulation group's (n = 40) treatment was to conduct similar experiments in a PC laboratory. The students in this group used a simulation program in a controlled PC lab. At the completion of the treatment, scores on a validated conceptual test were collected once after the treatment and again three weeks after the treatment. Attitude surveys and qualitative study were administered at the completion of the treatment. The findings revealed significant differences, in favor of the simulation group, between the two groups on both the conceptual post-test and the follow-up test. The findings also revealed significant correlation between simulation groups' attitude toward the simulation program and their post-test scores. Moreover, there was a significant difference between the two groups on their attitude toward their laboratory experience in favor of the simulation group. In addition, there was significant difference between the two groups on their lab completion time in favor of the simulation group. At the same time, the qualitative research has uncovered several issues not explored by the quantitative research. It was concluded that incorporating the recommendations acquired from the qualitative research, especially elements of incorporating hardware experience to avoid lack of hands-on skills, into the laboratory pedagogy should help improve students' experience regardless of the environment in which the laboratory is conducted.
Physical Therapist Assistant Fitness Lab.
ERIC Educational Resources Information Center
Backstrom, Kurt; And Others
Colby Community College's (CCC) Fitness Lab was established to provide the Physical Therapist Assistant (PTA) Program with a learning laboratory in which students can practice classroom-acquired skills, while at the same time promoting the physical, emotional, social, and intellectual well-being of CCC students and staff, and community members. A…
Quantitative Comparisons to Promote Inquiry in the Introductory Physics Lab
ERIC Educational Resources Information Center
Holmes, N. G.; Bonn, D. A.
2015-01-01
In a recent report, the American Association of Physics Teachers has developed an updated set of recommendations for curriculum of undergraduate physics labs. This document focuses on six major themes: constructing knowledge, modeling, designing experiments, developing technical and practical laboratory skills, analyzing and visualizing data, and…
NASA Technical Reports Server (NTRS)
Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg
2012-01-01
The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.
ERIC Educational Resources Information Center
Amato, Joseph C.; Williams, Roger E.
2010-01-01
A common lab exercise in the introductory college physics course employs a low-friction cart and associated track to study the validity of Newton's second law. Yet for college students, especially those who have already encountered a good high school physics course, the exercise must seem a little pointless. These students have already learned to…
2007-03-01
Congress Facility 7366 30251 Hazardous Material Storage Shed 432 20447 Aircraft Research Lab 1630 20449 Aircraft Research Lab 2480 34042 Reserve Forces...Congress Facility 0.566 20055 Engineering Admin. Building 0.578 20449 Aircraft Research Lab 0.595 20447 Aircraft Research Lab 0.605 20464...0.525 $39.00 0.01346 20447 Aircraft Research Lab 0.605 $59.50 0.01017 20449 Aircraft Research Lab 0.595 $62.40 0.00954 20464 Area B Gas Station
NASA Astrophysics Data System (ADS)
Setiawan, A.; Malik, A.; Suhandi, A.; Permanasari, A.
2018-02-01
This research was based on the need for improving critical and creative thinking skills of student in the 21 -st century. In this research, we have implemented HOT-Lab model for topic of force. The model was characterized by problem solving and higher order thinking development through real laboratory activities. This research used a quasy experiment method with pre-test post-test control group design. Samples of this research were 60 students of Physics Education Program of Teacher Educatuon Institution in Bandung. The samples were divided into 2 classes, experiment class (HOT-lab model) and control class (verification lab model). Research instruments were essay tests for creative and critical thinking skills measurements. The results revealed that both the models have improved student’s creative and critical thinking skills. However, the improvement of the experiment class was significantly higher than that of the control class, as indicated by the average of normalized gains (N-gain) for critical thinking skills of 60.18 and 29.30 and for creative thinking skills of 70.71 and 29.40, respectively for the experimental class and the control class. In addition, there is no significant correlation between the improvement of critical thinking skills and creative thinking skills in both the classes.
Assessing student understanding of measurement and uncertainty
NASA Astrophysics Data System (ADS)
Abbott, David Scot
A test to assess student understanding of measurement and uncertainty has been developed and administered to more than 500 students at two large research universities. The aim is two-fold: (1) to assess what students learn in the first semester of introductory physics labs and (2) to uncover patterns in student reasoning and practice. The forty minute, eleven item test focuses on direct measurement and student attitudes toward multiple measurements. After one revision cycle using think-aloud interviews, the test was administered to students to three groups: students enrolled in traditional laboratory lab sections of first semester physics at North Carolina State University (NCSU), students in an experimental (SCALE-UP) section of first semester physics at NCSU, and students in first semester physics at the University of North Carolina at Chapel Hill. The results were analyzed using a mixture of qualitative and quantitative methods. In the traditional NCSU labs, where students receive no instruction in uncertainty and measurement, students show no improvement on any of the areas examined by the test. In SCALE-UP and at UNC, students show statistically significant gains in most areas of the test. Gains on specific test items in SCALE-UP and at UNC correspond to areas of instructional emphasis. Test items were grouped into four main aspects of performance: "point/set" reasoning, meaning of spread, ruler reading and "stacking." Student performance on the pretest was examined to identify links between these aspects. Items within each aspect are correlated to one another, sometimes quite strongly, but items from different aspects rarely show statistically significant correlation. Taken together, these results suggest that student difficulties may not be linked to a single underlying cause. The study shows that current instruction techniques improve student understanding, but that many students exit the introductory physics lab course without appreciation or coherent understanding for the concept of measurement uncertainty.
More than Meets the Eye--Infrared Cameras in Open-Ended University Thermodynamics Labs
ERIC Educational Resources Information Center
Melander, Emil; Haglund, Jesper; Weiszflog, Matthias; Andersson, Staffan
2016-01-01
Educational research has found that students have challenges understanding thermal science. Undergraduate physics students have difficulties differentiating basic thermal concepts, such as heat, temperature, and internal energy. Engineering students have been found to have difficulties grasping surface emissivity as a thermal material property.…
Soldiers’ Psychological Responses to Tactical Nuclear Warfare
1992-02-01
530. Greene , T.L. (1987). Description of a nuclear battlefield. In R.H. Young & B.H. Drum (Edo.), Proceedings of the Defense Nuclear Agency Symposium...ATTN: DEPT OF BEHAVOR SCI & LEADERSHIP ATTN: PMS/PMA-423 ATTN: DEPT OF PHYSICS COL J G CAMPBELL ATTN: SCIENCE RESEARCH LAB OPERATIONAL TEST & EVALUATION
Kinematic Labs with Mobile Devices
NASA Astrophysics Data System (ADS)
Kinser, Jason M.
2015-07-01
This book provides 13 labs spanning the common topics in the first semester of university-level physics. Each lab is designed to use only the student's smartphone, laptop and items easily found in big-box stores or a hobby shop. Each lab contains theory, set-up instructions and basic analysis techniques. All of these labs can be performed outside of the traditional university lab setting and initial costs averaging less than 8 per student, per lab.
NASA Astrophysics Data System (ADS)
Mohottala, Hashini
2014-03-01
The general student population enrolled in any college level class is highly diverse. An increasing number of ``nontraditional'' students return to college and most of these students follow distance learning degree programs while engaging in their other commitments, work and family. However, those students tend to avoid taking science courses with labs, mostly because of the incapability of remotely completing the lab components in such courses. In order to address this issue, we have come across a method where introductory level physics labs can be taught remotely. In this process a lab kit with the critical lab components that can be easily accessible are conveniently packed into a box and distributed among students at the beginning of the semester. Once the students are given the apparatus they perform the experiments at home and gather data All communications with reference to the lab was done through an interactive user-friendly webpage - Wikispaces (WikiS). Students who create pages on WikiS can submit their lab write-ups, embed videos of the experiments they perform, post pictures and direct questions to the lab instructor. The students who are enrolled in the same lab can interact with each other through WikiS to discuss labs and even get assistance.
Human perception testing methodology for evaluating EO/IR imaging systems
NASA Astrophysics Data System (ADS)
Graybeal, John J.; Monfort, Samuel S.; Du Bosq, Todd W.; Familoni, Babajide O.
2018-04-01
The U.S. Army's RDECOM CERDEC Night Vision and Electronic Sensors Directorate (NVESD) Perception Lab is tasked with supporting the development of sensor systems for the U.S. Army by evaluating human performance of emerging technologies. Typical research questions involve detection, recognition and identification as a function of range, blur, noise, spectral band, image processing techniques, image characteristics, and human factors. NVESD's Perception Lab provides an essential bridge between the physics of the imaging systems and the performance of the human operator. In addition to quantifying sensor performance, perception test results can also be used to generate models of human performance and to drive future sensor requirements. The Perception Lab seeks to develop and employ scientifically valid and efficient perception testing procedures within the practical constraints of Army research, including rapid development timelines for critical technologies, unique guidelines for ethical testing of Army personnel, and limited resources. The purpose of this paper is to describe NVESD Perception Lab capabilities, recent methodological improvements designed to align our methodology more closely with scientific best practice, and to discuss goals for future improvements and expanded capabilities. Specifically, we discuss modifying our methodology to improve training, to account for human fatigue, to improve assessments of human performance, and to increase experimental design consultation provided by research psychologists. Ultimately, this paper outlines a template for assessing human perception and overall system performance related to EO/IR imaging systems.
13. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), ...
13. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), VIEW NORTH AT SOUTH END OF BUILDING. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
Special Colloquium : Looking at High Energy Physics from a gender studies perspective
Goetschel, Helene
2018-01-23
Human actors, workplace cultures and knowledge production: Gender studies analyse the social constructions and cultural representations of gender. Using methods and tools from the humanities and social science, we look at all areas, including the natural sciences and technology, science education and research labs. After a short introduction to gender studies, the main focus of my talk will be the presentation of selected research findings on gender and high energy physics. You will hear about an ongoing research project on women in neutrino physics and learn about a study on the world of high energy physicists characterised by "rites of passage" and "male tales" told during a life in physics. I will also present a study on how the HEP community communicates, and research findings on the naming culture in HEP. Getting to know findings from another field on your own might contribute to create a high energy physics culture that is fair and welcoming to all genders.
Special Colloquium : Looking at High Energy Physics from a gender studies perspective
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goetschel, Helene
Human actors, workplace cultures and knowledge production: Gender studies analyse the social constructions and cultural representations of gender. Using methods and tools from the humanities and social science, we look at all areas, including the natural sciences and technology, science education and research labs. After a short introduction to gender studies, the main focus of my talk will be the presentation of selected research findings on gender and high energy physics. You will hear about an ongoing research project on women in neutrino physics and learn about a study on the world of high energy physicists characterised by "rites ofmore » passage" and "male tales" told during a life in physics. I will also present a study on how the HEP community communicates, and research findings on the naming culture in HEP. Getting to know findings from another field on your own might contribute to create a high energy physics culture that is fair and welcoming to all genders.« less
Applied Physics Lab Kennedy Space Center: Recent Contributions
NASA Technical Reports Server (NTRS)
Starr, Stan; Youngquist, Robert
2006-01-01
The mission of the Applied Physics Lab is: (1) Develop and deliver novel sensors and devices to support KSC mission operations. (2) Analyze operational issues and recommend or deliver practical solutions. (3) Apply physics to the resolution of long term space flight issues that affect space port operation on Earth or on other planets.
NASA Astrophysics Data System (ADS)
Rieben, James C., Jr.
This study focuses on the effects of relevance and lab design on student learning within the chemistry laboratory environment. A general chemistry conductivity of solutions experiment and an upper level organic chemistry cellulose regeneration experiment were employed. In the conductivity experiment, the two main variables studied were the effect of relevant (or "real world") samples on student learning and a verification-based lab design versus a discovery-based lab design. With the cellulose regeneration experiment, the effect of a discovery-based lab design vs. a verification-based lab design was the sole focus. Evaluation surveys consisting of six questions were used at three different times to assess student knowledge of experimental concepts. In the general chemistry laboratory portion of this study, four experimental variants were employed to investigate the effect of relevance and lab design on student learning. These variants consisted of a traditional (or verification) lab design, a traditional lab design using "real world" samples, a new lab design employing real world samples/situations using unknown samples, and the new lab design using real world samples/situations that were known to the student. Data used in this analysis were collected during the Fall 08, Winter 09, and Fall 09 terms. For the second part of this study a cellulose regeneration experiment was employed to investigate the effects of lab design. A demonstration creating regenerated cellulose "rayon" was modified and converted to an efficient and low-waste experiment. In the first variant students tested their products and verified a list of physical properties. In the second variant, students filled in a blank physical property chart with their own experimental results for the physical properties. Results from the conductivity experiment show significant student learning of the effects of concentration on conductivity and how to use conductivity to differentiate solution types with the use of real world samples. In the organic chemistry experiment, results suggest that the discovery-based design improved student retention of the chain length differentiation by physical properties relative to the verification-based design.
Introduction of optical tweezers in advanced physics laboratory
NASA Astrophysics Data System (ADS)
Wang, Gang
2017-08-01
Laboratories are an essential part of undergraduate optoelectronics and photonics education. Of particular interest are the sequence of laboratories which offer students meaningful research experience within a reasonable time-frame limited by regular laboratory hours. We will present our introduction of optical tweezers into the upper-level physics laboratory. We developed the sequence of experiments in the Advanced Lab to offer students sufficient freedom to explore, rather than simply setting up a demonstration following certain recipes. We will also present its impact on our current curriculum of optoelectronics concentration within the physics program.
ERIC Educational Resources Information Center
Szott, Aaron
2014-01-01
Traditional physics labs at the high school level are often closed-ended. The outcomes are known in advance and students replicate procedures recommended by the teacher. Over the years, I have come to appreciate the great opportunities created by allowing students investigative freedom in physics laboratories. I have realized that a laboratory…
Laboratory directed research and development program FY 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-03-01
This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.
Physical-level synthesis for digital lab-on-a-chip considering variation, contamination, and defect.
Liao, Chen; Hu, Shiyan
2014-03-01
Microfluidic lab-on-a-chips have been widely utilized in biochemical analysis and human health studies due to high detection accuracy, high timing efficiency, and low cost. The increasing design complexity of lab-on-a-chips necessitates the computer-aided design (CAD) methodology in contrast to the classical manual design methodology. A key part in lab-on-a-chip CAD is physical-level synthesis. It includes the lab-on-a-chip placement and routing, where placement is to determine the physical location and the starting time of each operation and routing is to transport each droplet from the source to the destination. In the lab-on-a-chip design, variation, contamination, and defect need to be considered. This work designs a physical-level synthesis flow which simultaneously considers variation, contamination, and defect of the lab-on-a-chip design. It proposes a maze routing based, variation, contamination, and defect aware droplet routing technique, which is seamlessly integrated into an existing placement technique. The proposed technique improves the placement solution for routing and achieves the placement and routing co-optimization to handle variation, contamination, and defect. The simulation results demonstrate that our technique does not use any defective/contaminated grids, while the technique without considering contamination and defect uses 17.0% of the defective/contaminated grids on average. In addition, our routing variation aware technique significantly improves the average routing yield by 51.2% with only 3.5% increase in completion time compared to a routing variation unaware technique.
Logistics in the Computer Lab.
ERIC Educational Resources Information Center
Cowles, Jim
1989-01-01
Discusses ways to provide good computer laboratory facilities for elementary and secondary schools. Topics discussed include establishing the computer lab and selecting hardware; types of software; physical layout of the room; printers; networking possibilities; considerations relating to the physical environment; and scheduling methods. (LRW)
Dunne, James R; McDonald, Claudia L
2010-07-01
Pulse!! The Virtual Clinical Learning Lab at Texas A&M University-Corpus Christi, in collaboration with the United States Navy, has developed a model for research and technological development that they believe is an essential element in the future of military and civilian medical education. The Pulse!! project models a strategy for providing cross-disciplinary expertise and resources to educational, governmental, and business entities challenged with meeting looming health care crises. It includes a three-dimensional virtual learning platform that provides unlimited, repeatable, immersive clinical experiences without risk to patients, and is available anywhere there is a computer. Pulse!! utilizes expertise in the fields of medicine, medical education, computer science, software engineering, physics, computer animation, art, and architecture. Lab scientists collaborate with the commercial virtual-reality simulation industry to produce research-based learning platforms based on cutting-edge computer technology.
Workshop on the Physics and Modeling of Submicron Structures.
1983-10-01
Health and Safety Research Division Oak Ridge National Laboratory P.O. Box X Oak Ridge, TN 37830 60. M. A. Littlejohn Electrical Engineering Dept. 232...HB16 Anaheim, CA 92803 76. Dick Reynolds ARPA 1400 Wilson Boulevard Arlington, VA 22209 77. R. H. Ritchie Oak Ridge National Lab Oak Ridge, TN 37830
International Teaching Assistants at Universities: A Research Agenda
ERIC Educational Resources Information Center
Gorsuch, Greta
2016-01-01
International teaching assistants (ITAs) are Indian, Chinese, Korean, Turkish, etc. international students who have been admitted to graduate study at universities in the U.S.A. and Canada, and are being supported as instructors of undergraduate-level classes and labs in biology, chemistry, physics, and math. For the past 30 years, the number of…
Sandia National Laboratories: Physical, Chemical, and Nano Sciences
Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Honey I shrunk the circuit CINT Virtual Tour Center for Integrated Nanotechnologies Honey I shrunk the circuit Ion Beam Lab Virtual Tour: Coming Soon! Honey I shrunk the circuit CINT 10 Year Anniversary Video
2010-03-11
Students, Ajay Ramesh and Prithvi Aiyaswamy in 7th grade, Chaboya Middle School, San Jose, have entered the Intel Inernational Science Fair (May 2010) They are here at the Ames Research center to test the drag of race cars in the Fluid Mechanics Lab (FML) with the guidance of Kurt Long of the Experimental Aero-Physics Branch.
Lab-on-Fiber devices as an all around platform for sensing
NASA Astrophysics Data System (ADS)
Ricciardi, A.; Consales, M.; Quero, G.; Crescitelli, A.; Esposito, E.; Cusano, A.
2013-12-01
"Lab-on-Fiber" technology is an emerging field envisioning a novel class of advanced, multifunctional photonic devices and components arising from the integration onto optical fibers of different materials at micro and nano-scale with suitable physical, chemical and biological properties. This new fascinating and intriguing research field thus proposes a new technological platform where functionalized materials, devices and components are constructed, embedded all together in a single optical fiber providing the necessary physical connections and light matter interaction, exploitable in both communication and sensing applications. This technological innovation would open the way for the creation of a novel technological world completely integrated in a single optical fiber conferring unique and unprecedented performances and functionality degree. Although, the benefits provided by such a technology can be easily understood, many research efforts are, however, required to translate the vision in a technological reality. Indeed, the main issue to address concerns the identification and definition of viable fabrication methodologies, routes and strategies enabling the integration of a large set of functional materials at sub wavelength scale onto non conventional substrates as the case of optical fibers.
FOREWORD: Jefferson Lab: A Long Decade of Physics
NASA Astrophysics Data System (ADS)
Montgomery, Hugh
2011-04-01
Jefferson Lab Jefferson Lab was created in 1984 and started operating in about 1996. 2011 is an appropriate time to try to take a look at the results that have appeared, what has been learned, and what has been exciting for our scientific community. Rather than attempt to construct a coherent view with a single author or at least a small number, we have, instead, invited small groups of people who have been intimately involved in the work itself to make contributions. These people are accelerator experts, experimentalists and theorists, staff and users. We have, in the main, sought reviews of the actual sub-fields. The primary exception is the first paper, which sets the scene as it was, in one person's view, at the beginning of Jefferson Lab. In reviewing the material as it appeared, I was impressed by the breadth of the material. Major advances are documented from form factors to structure functions, from spectroscopy to physics beyond the standard model of nuclear and particle physics. Recognition of the part played by spin, the helicities of the beams, the polarizations of the targets, and the polarizations of final state particles, is inescapable. Access to the weak interaction amplitudes through measurements of the parity violating asymmetries has led to quantification of the strange content of the nucleon and the neutron radius of lead, and to measurements of the electroweak mixing angle. Lattice QCD calculations flourished and are setting the platform for understanding of the spectroscopy of baryons and mesons. But the star of the game was the accelerator. Its performance enabled the physics and also the use of the technology to generate a powerful free electron laser. These important pieces of Jefferson Lab physics are given their place. As the third Director of Jefferson Lab, and on behalf of the other physicists and others presently associated with the lab, I would like to express my admiration and gratitude for the efforts of the directors, chief scientists, associate directors, physicists, engineers, technicians and administrators who made it all possible. In sum, we should celebrate the science that Jefferson Lab has realized in this, its first long decade of physics. Hugh Montgomery, Director Hugh Montgomery signature
Innovative Use of a Classroom Response System During Physics Lab
NASA Astrophysics Data System (ADS)
Walgren, Jay
2011-01-01
More and more physics instructors are making use of personal/classroom response systems or "clickers." The use of clickers to engage students with multiple-choice questions during lecture and available instructor resources for clickers have been well documented in this journal.1-4 Newer-generation clickers, which I refer to as classroom response systems (CRS), have evolved to accept numeric answers (such as 9.81) instead of just single "multiple-choice" entries (Fig. 1). This advancement is available from most major clicker companies and allows for a greater variety of engaging questions during lecture. In addition, these new "numeric ready" clickers are marketed to be used for student assessments. During a test or quiz, students' answers are entered into their clicker instead of on paper or Scantron® and immediately absorbed by wireless connection into a computer for grading and analysis. I recognize the usefulness and benefit these new-generation CRSs provide for many instructors. However, I do not use my CRS in either of the aforementioned activities. Instead, I use it in an unconventional way. I use the CRS to electronically capture students' lab data as they are performing a physics lab (Fig. 2). I set up the clickers as if I were going to use them for a test, but instead of entering answers to a test, my students enter lab data as they collect it. In this paper I discuss my use of a classroom response system during physics laboratory and three benefits that result: 1) Students are encouraged to "take ownership of" and "have integrity with" their physics lab data. 2) Students' measuring and unit conversion deficiencies are identified immediately during the lab. 3) The process of grading students' labs is simplified because the results of each student's lab calculations can be pre-calculated for the instructor using a spreadsheet. My use of clickers during lab can be implemented with most clicker systems available to instructors today. The CRS I use is the eInstruction's® Classroom Performance System™ (CPS™).5 (Fig. 1)
Interesting Guided-Inquiry Labs for a Large-Enrollment, Active Learning Physics II Course
ERIC Educational Resources Information Center
Wagoner, Kasey; Hynes, K. Mairin; Flanagan, Daniel
2018-01-01
Introductory physics labs often focus on a series of common experiments intending to teach the student the measurement side of physics. While these experiments have the potential to be quite instructive, we observed that our students often consider them to be boring and monotonous, which often leads to them being uninstructive. To combat this, we…
16. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), ...
16. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), INTERIOR, SECOND LEVEL. LOOKING UP AT POWDER AND DISTRIBUTION TUBES. ELEVATOR SHAFT ON LEFT. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
Berkeley Lab's Saul Perlmutter Wins the Einstein Medal | Berkeley Lab
TAGS: awards, cosmology and astrophysics, physics Connect twitter instagram LinkedIn facebook youtube Physics + Cosmology Chemistry + Materials Sciences twitter instagram LinkedIn facebook youtube A U.S Privacy & Security Notice twitter instagram LinkedIn facebook youtube
2012-05-14
CAPE CANAVERAL, Fla. – Dr. Phil Metzger demonstrates an experiment to study the physics of granular materials to students in the Granular Physics and Regolith Operations Lab at the Space Life Sciences Lab facility. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann
Brendan Casey; Herman White; Craig Hogan; Denton Morris; Mary Convery; Bonnie Fleming; Deborah Harris; Dave Schmitz; Brenna Flaugher; Aron Soha
2018-05-04
Six days. Three frontiers. One amazing lab. From 2010 to 2012, a film crew followed a group of scientists at the Department of Energy's Fermilab and filmed them at work and at home. This 40-minute documentary shows the diversity of the people, research and work at Fermilab. Viewers catch a true behind-the-scenes look of the United States' premier particle physics laboratory while scientists explain why their research is important to them and the world.
NASA Astrophysics Data System (ADS)
Laws, Priscilla
2010-02-01
In June 1986 Ronald Thornton (at the Tufts University Center for Science and Mathematics Teaching) and Priscilla Laws (at Dickinson College) applied independently for grants to develop curricular materials based on both the outcomes of Physics Education Research and the use of Microcomputer Based Laboratory Tools (MBL) developed by Robert Tinker, Ron Thornton and others at Technical Education Research Centers (TERC). Thornton proposed to develop a series of Tools for Scientific Thinking (TST) laboratory exercises to address known learning difficulties using carefully sequenced MBL observations. These TST laboratories were to be beta tested at several types of institutions. Laws proposed to develop a Workshop Physics Activity Guide for a 2 semester calculus-based introductory course sequence centering on MBL-based guided inquiry. Workshop Physics was to be designed to replace traditional lectures and separate labs in relatively small classes and was to be tested at Dickinson College. In September 1986 a project officer at the Fund for Post-Secondary Education (FIPSE) awarded grants to Laws and Thornton provided that they would collaborate. David Sokoloff (at the University of Oregon) joined Thornton to develop and test the TST laboratories. This talk will describe the 23 year collaboration between Thornton, Laws, and Sokoloff that led to the development of a suite of Activity Based Physics curricular materials, new apparatus and enhanced computer tools for real time graphing, data collection and mathematical modeling. The Suite includes TST Labs, the Workshop Physics Activity Guide, RealTime Physics Laboratory Modules, and a series of Interactive Lecture Demonstrations. A textbook and a guide to using the Suite were also developed. The vital importance of obtaining continued grant support, doing continuous research on student learning, collaborating with instructors at other institutions, and forging relationships with vendors and publishers will be described. )
NASA Astrophysics Data System (ADS)
Kuan, Wen-Hsuan; Tseng, Chi-Hung; Chen, Sufen; Wong, Ching-Chang
2016-06-01
We propose an integrated curriculum to establish essential abilities of computer programming for the freshmen of a physics department. The implementation of the graphical-based interfaces from Scratch to LabVIEW then to LabVIEW for Arduino in the curriculum `Computer-Assisted Instrumentation in the Design of Physics Laboratories' brings rigorous algorithm and syntax protocols together with imagination, communication, scientific applications and experimental innovation. The effectiveness of the curriculum was evaluated via statistical analysis of questionnaires, interview responses, the increase in student numbers majoring in physics, and performance in a competition. The results provide quantitative support that the curriculum remove huge barriers to programming which occur in text-based environments, helped students gain knowledge of programming and instrumentation, and increased the students' confidence and motivation to learn physics and computer languages.
Opportunities for research on Space Station Freedom
NASA Technical Reports Server (NTRS)
Phillips, Robert W.
1992-01-01
NASA has allocated research accommodations on Freedom (equipment, utilities, etc.) to the program offices that sponsor space-based research and development as follows: Space Science and Applications (OSSA)--52 percent, Commercial Programs (OCP)--28 percent, Aeronautics and Space Technology (OAST)--12 percent, and Space Flight (OSF)--8 percent. Most of OSSA's allocation will be used for microgravity and life science experiments; although OSSA's space physics, astrophysics, earth science and applications, and solar system exploration divisions also will use some of this allocation. Other Federal agencies have expressed an interest in using Space Station Freedom. They include the National Institutes of Health (NIH), U.S. Geological Survey, National Science Foundation, National Oceanic and Atmospheric Administration, and U.S. Departments of Agriculture and Energy. Payload interfaces with space station lab support equipment must be simple, and experiment packages must be highly contained. Freedom's research facilities will feature International Standard Payload Racks (ISPR's), experiment racks that are about twice the size of a Spacelab rack. ESA's Columbus lab will feature 20 racks, the U.S. lab will have 12 racks, and the Japanese lab will have 10. Thus, Freedom will have a total of 42 racks versus 8 for Space lab. NASA is considering outfitting some rack space to accommodate small, self-contained payloads similar to the Get-Away-Special canisters and middeck-locker experiment packages flown on Space Shuttle missions. Crew time allotted to experiments on Freedom at permanently occupied capability will average 25 minutes per rack per day, compared to six hours per rack per day on Spacelab missions. Hence, telescience--the remote operation of space-based experiments by researchers on the ground--will play a very important role in space station research. Plans for supporting life sciences research on Freedom focus on the two basic goals of NASA 's space life sciences program: to ensure the health, safety, and productivity of humans in space and to acquire fundamental knowledge of biological processes. Space-based research has already shown that people and plants respond the same way to the microgravity environment: they lose structure. However, the mechanisms by which they respond are different, and researchers do not yet know much about these mechanisms. Life science research accommodations on Freedom will include facilities for experiments designed to address this and other questions, in fields such as gravitational biology, space physiology, and biomedical monitoring and countermeasures research.
Cookbook Procedures in MBL Physics Exercises.
ERIC Educational Resources Information Center
Royuk, Brent; Brooks, David W.
2003-01-01
Presents results of a controlled experiment comparing the conceptual mechanics learning gains as measured by the Force Concept Inventory (FCI) between two laboratory groups. One group completed cookbook labs while the other completed Interactive-Engagement (IE) labs in RealTime Physics. Suggests that laboratory activities should engage students in…
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
A reel of black & white film shot nearly 60 years ago has surfaced at Berkeley Lab, depicting the discovery of Mendelevium - or Element 101 - as reenacted by some of the legendary scientists who did the actual work at that time. Since the 1940s, Berkeley Lab scientists were locked in a race to synthesize new elements, and more often than not, they came out winners. Sixteen elements, most of them in the actinide series at the bottom of the periodic table, were discovered and synthesized by its researchers. Retired Berkeley Lab physicist Claude Lyneis found the reel inmore » a box of dusty and deteriorating films slated for disposal. Using digital editing skills he acquired to make videos of his son's lacrosse team, Lyneis has produced and narrated an excerpt of this nearly-lost footage. It is an entertaining and informative look at the pioneering physics performed at UC Berkeley and Lawrence Berkeley National Laboratory's hillside campus.« less
None
2018-05-30
A reel of black & white film shot nearly 60 years ago has surfaced at Berkeley Lab, depicting the discovery of Mendelevium - or Element 101 - as reenacted by some of the legendary scientists who did the actual work at that time. Since the 1940s, Berkeley Lab scientists were locked in a race to synthesize new elements, and more often than not, they came out winners. Sixteen elements, most of them in the actinide series at the bottom of the periodic table, were discovered and synthesized by its researchers. Retired Berkeley Lab physicist Claude Lyneis found the reel in a box of dusty and deteriorating films slated for disposal. Using digital editing skills he acquired to make videos of his son's lacrosse team, Lyneis has produced and narrated an excerpt of this nearly-lost footage. It is an entertaining and informative look at the pioneering physics performed at UC Berkeley and Lawrence Berkeley National Laboratory's hillside campus.
Measurement of light yield dependence on electron energy for SNO+ scintillator
NASA Astrophysics Data System (ADS)
Wan Chan Tseung, Hok
2011-10-01
SNO+ is a multi-purpose neutrino experiment whose reach extends to the following areas of neutrino physics: neutrinoless double beta decay (with Nd-loaded scintillator), geo-neutrinos, reactor and low-energy solar neutrinos, as well as supernova neutrinos. It is a ~780-tonne liquid scintillator detector currently under construction at the SNOLAB facility in Sudbury, Ontario,Canada. The scintillator to be used in SNO+ is linear alkylbenzene (LAB) with ~2 g/L of PPO (2,5-diphenyloxazole). In this talk, we describe an experiment to test the linearity of the response of LAB-PPO with respect to electrons. We find that below ~0.4 MeV, the energy scale of LAB-PPO becomes non-linear. An explanation is given in terms of Cherenkov light absorption and re-emission by the scintillator. This research has been supported under DOE Grant No. DE-FG02-97ER41020.
Laboratory Directed Research and Development Program FY 2008 Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
editor, Todd C Hansen
2009-02-23
The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operatemore » unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Berkeley Lab LDRD program also play an important role in leveraging DOE capabilities for national needs. The fundamental scientific research and development conducted in the program advances the skills and technologies of importance to our Work For Others (WFO) sponsors. Among many directions, these include a broad range of health-related science and technology of interest to the National Institutes of Health, breast cancer and accelerator research supported by the Department of Defense, detector technologies that should be useful to the Department of Homeland Security, and particle detection that will be valuable to the Environmental Protection Agency. The Berkeley Lab Laboratory Directed Research and Development Program FY2008 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation, and review.« less
The Effect of High School Physics Laboratories on Performance in Introductory College Physics
NASA Astrophysics Data System (ADS)
Maltese, Adam V.; Tai, Robert H.; Sadler, Philip M.
2010-05-01
Laboratory experiences play a substantial role in most high school science courses, and many teachers believe the number of labs they offer is a measure of the quality of their curriculum. While some teachers believe labs are meant to confirm concepts taught during lectures, others feel labs should address students' everyday beliefs about the world. Still other teachers emphasize learning of the scientific method and laboratory techniques. Accordingly, many articles offer advice on "effective" pedagogical practices.2-5
NASA Astrophysics Data System (ADS)
Banks, Michael
2008-09-01
For 63-year-old Sergio Ferrara, winning a multi-million-Euro grant from the European Research Council (ERC) will mean something special: being able to return to Italy to continue his research into high-energy physics. Without his European windfall, Ferrara, who currently works in the theory section at the CERN particle-physics lab near Geneva, would either have had to retire in a few years' time due to strict employment laws or emigrate to the US where there is no compulsory retirement age. So the news that he was among the first people to be awarded one of the ERC's generous new advanced grants came as a huge relief.
Online Physics Lab Exercises--A Binational Study on the Transfer of Teaching Resources
ERIC Educational Resources Information Center
Theyßen, Heike; Struzyna, Sarah; Mylott, Elliot; Widenhorn, Ralf
2016-01-01
In this paper, we present the design and the results of a comparative study that evaluated the success of a transfer of an online-teaching resource between two universities, one in Germany and one in the USA. The teaching resource is an online physics lab that has been used in the physics education of medical students in Germany since 2003. The…
Skepticism to Success: Meeting Critical Workforce Needs through Innovation and Collaboration
ERIC Educational Resources Information Center
Anderson, Margaret; Maier, Linda; Shepard, Michael
2010-01-01
To meet workforce demand and the needs of working or place-bound students, Whatcom Community College developed an online version of its existing face-to-face Physical Therapist Assistant program which became a model for other lab-based health science degrees. This article describes research studies that support the program's practices and includes…
WeFiLab: A Web-Based WiFi Laboratory Platform for Wireless Networking Education
ERIC Educational Resources Information Center
Cui, Lin; Tso, Fung Po; Yao, Di; Jia, Weijia
2012-01-01
Remote access to physical laboratories for education has received significant attention from both researchers and educators as it provides access at reduced cost in sharing manner of real devices and gives students practical training. With the rapid growing of wireless technologies, it has become an essential of learning to have the hand-on…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-08
... Agreement to the Johns Hopkins University, Applied Physics Lab (APL) and School of Public Health, To Support... DEPARTMENT OF HEALTH AND HUMAN SERVICES Administration for Children and Families Office of... a single-source cooperative agreement to the Johns Hopkins University (JHU), Applied Physics Lab...
[How the Outdoor Laboratory Can Be Used As An Instructional Aid.
ERIC Educational Resources Information Center
Richards, Donald J.; And Others
The outdoor lab was planned to serve all grade levels and incorporate all aspects of outdoor education. Ideas for lab and classroom activities are presented for the following subject areas: physical education, elementary grades, physics, chemistry, mathematics, English, industrial arts, home economics, biology, social studies, conservation, art…
10. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), ...
10. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), LOOKING AT SOUTHEAST CORNER. BUILDING NO. 332, CHANGE HOUSE, IN RIGHT BACKGROUND; BUILDING NO. 445-F, MAGAZINE, IN LEFT BACKGROUND. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
15. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), ...
15. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), INTERIOR, FOURTH LEVEL. POWDER HOPPER AT TOP OF ELEVATOR SHAFT. POWDER DISTRIBUTED FROM HERE TO LOADING ROOMS BY TUBES. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
ERIC Educational Resources Information Center
Bonner, David
2012-01-01
Conducting labs isn't a new way to teach physics, but labs have become increasingly prevalent with the rise of inquiry. Physics students collect mostly quantitative data, often represented by graphs or tables. Interpreting this data can be a challenge for students, especially when it comes to experimental error. To address this issue, this article…
NASA Astrophysics Data System (ADS)
Accomazzi, Alberto; Kurtz, M. J.; Henneken, E. A.; Grant, C. S.; Thompson, D.; Di Milia, G.; Luker, J.; Murray, S. S.
2013-01-01
The NASA Astrophysics Data System (ADS) has been working hard on updating its services and interfaces to better support our community's research needs. ADS Labs is a new interface built on the old tried-and-true ADS Abstract Databases, so all of ADS's content is available through it. In this presentation we highlight the new features that have been developed in ADS Labs over the last year: new recommendations, metrics, a citation tool and enhanced fulltext search. ADS Labs has long been providing article-level recommendations based on keyword similarity, co-readership and co-citation analysis of its corpus. We have now introduced personal recommendations, which provide a list of articles to be considered based on a individual user's readership history. A new metrics interface provides a summary of the basic impact indicators for a list of records. These include the total and normalized number of papers, citations, reads, and downloads. Also included are some of the popular indices such as the h, g and i10 index. The citation helper tool allows one to submit a set of records and obtain a list of top 10 papers which cite and/or are cited by papers in the original list (but which are not in it). The process closely resembles the network approach of establishing "friends of friends" via an analysis of the citation network. The full-text search service now covers more than 2.5 million documents, including all the major astronomy journals, as well as physics journals published by Springer, Elsevier, the American Physical Society, the American Geophysical Union, and all of the arXiv eprints. The full-text search interface interface allows users and librarians to dig deep and find words or phrases in the body of the indexed articles. ADS Labs is available at http://adslabs.org
NASA Astrophysics Data System (ADS)
Sidebottom, David
2015-09-01
The general physics course that is taught in most departments as a service course for pre-med or pre-health students is undergoing a large shift in course content to better appeal to this group of learners. This revision also extends to the laboratory component, where more emphasis is being placed on teaching physics through biological examples. Here, two undergraduate-level lab experiments, one dealing with buoyancy and the other with heat transfer, are described. The two labs were designed specifically to appeal to pre-med students taking introductory physics, and their novelty arises from the use of a bratwurst sausage as a miniature model cadaver. Results suggest that the sausage provides a suitable approximation to the mass density and thermal properties of the human body.
ERIC Educational Resources Information Center
Holmes, N. G.; Olsen, Jack; Thomas, James L.; Wieman, Carl E.
2017-01-01
Instructional labs are widely seen as a unique, albeit expensive, way to teach scientific content. We measured the effectiveness of introductory lab courses at achieving this educational goal across nine different lab courses at three very different institutions. These institutions and courses encompassed a broad range of student populations and…
Virtual Labs in proteomics: new E-learning tools.
Ray, Sandipan; Koshy, Nicole Rachel; Reddy, Panga Jaipal; Srivastava, Sanjeeva
2012-05-17
Web-based educational resources have gained enormous popularity recently and are increasingly becoming a part of modern educational systems. Virtual Labs are E-learning platforms where learners can gain the experience of practical experimentation without any direct physical involvement on real bench work. They use computerized simulations, models, videos, animations and other instructional technologies to create interactive content. Proteomics being one of the most rapidly growing fields of the biological sciences is now an important part of college and university curriculums. Consequently, many E-learning programs have started incorporating the theoretical and practical aspects of different proteomic techniques as an element of their course work in the form of Video Lectures and Virtual Labs. To this end, recently we have developed a Virtual Proteomics Lab at the Indian Institute of Technology Bombay, which demonstrates different proteomics techniques, including basic and advanced gel and MS-based protein separation and identification techniques, bioinformatics tools and molecular docking methods, and their applications in different biological samples. This Tutorial will discuss the prominent Virtual Labs featuring proteomics content, including the Virtual Proteomics Lab of IIT-Bombay, and E-resources available for proteomics study that are striving to make proteomic techniques and concepts available and accessible to the student and research community. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 14). Details can be found at: http://www.proteomicstutorials.org/. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Brinson, James R.
The current study compared the effects of virtual versus physical laboratory manipulatives on 84 undergraduate non-science majors' (a) conceptual understanding of density and (b) density-related inquiry skill acquisition. A pre-post comparison study design was used, which incorporated all components of an inquiry-guided classroom, except experimental mode, and which controlled for curriculum, instructor, instructional method, time spent on task, and availability of reference resources. Participants were randomly assigned to either a physical or virtual lab group. Pre- and post-assessments of conceptual understanding and inquiry skills were administered to both groups. Paired-samples t tests revealed a significant mean percent correct score increase for conceptual understanding in both the physical lab group (M = .103, SD = .168), t(38) = -3.82, p < .001, r = .53, two-tailed, and the virtual lab group (M = .084, SD = .177), t(44) = -3.20, p = .003, r = .43, two-tailed. However, a one-way ANCOVA (using pretest scores as the covariate) revealed that the main effect of lab group on conceptual learning gains was not significant, F(1, 81) = 0.081, p = .776, two-tailed. An omnibus test of model coefficients within hierarchical logistic regression revealed that a correct response on inquiry pretest scores was not a significant predictor of a correct post-test response, chi 2(1, N = 84) = 1.68, p = .195, and that when lab mode was added to the model, it did not significantly increase the model's predictive ability, chi2(2, N = 84) = 1.95, p = .377. Thus, the data in the current study revealed no significant difference in the effect of physical versus virtual manipulatives when used to teach conceptual understanding and inquiry skills related to density.
Adapting NBODY4 with a GRAPE-6a Supercomputer for Web Access, Using NBodyLab
NASA Astrophysics Data System (ADS)
Johnson, V.; Aarseth, S.
2006-07-01
A demonstration site has been developed by the authors that enables researchers and students to experiment with the capabilities and performance of NBODY4 running on a GRAPE-6a over the web. NBODY4 is a sophisticated open-source N-body code for high accuracy simulations of dense stellar systems (Aarseth 2003). In 2004, NBODY4 was successfully tested with a GRAPE-6a, yielding an unprecedented low-cost tool for astrophysical research. The GRAPE-6a is a supercomputer card developed by astrophysicists to accelerate high accuracy N-body simulations with a cluster or a desktop PC (Fukushige et al. 2005, Makino & Taiji 1998). The GRAPE-6a card became commercially available in 2004, runs at 125 Gflops peak, has a standard PCI interface and costs less than 10,000. Researchers running the widely used NBODY6 (which does not require GRAPE hardware) can compare their own PC or laptop performance with simulations run on http://www.NbodyLab.org. Such comparisons may help justify acquisition of a GRAPE-6a. For workgroups such as university physics or astronomy departments, the demonstration site may be replicated or serve as a model for a shared computing resource. The site was constructed using an NBodyLab server-side framework.
A History of Satellite Reconnaissance. Volume 1. CORONA (REDACTED)
1973-10-01
occurring in the Physics Research Lab, which had become more of an industrial research facility than a campus estab- lishment through the instrumentation...General Electric), and that spin stabilization had inherent disadvantages when BYE 17017-74 52 Handle via Byeman/Talent • Keyhole Controls Only —TOP...transfer to "other" ARPA programs. In the remainder, the first two were to be vehicle development tests, the next two were to carry mice , eight were to
Development of a Hampton University Program for Novel Breast Cancer Imaging and Therapy Research
2015-06-01
student ( Nanda Karthik) involved…. Should be able to give you some text!]. Aim 2 Develop and test a practical method for application of a magnetic field ...a Department of Energy (DOE) nuclear physics research facility operated by Jefferson Science Associates LLC. Jefferson Lab resources for this...minimally affected by breast density because of the higher energy photons of 99mTc. In a recent study that included patients who had inconclusive
Physlets and Web-based Physics Curricular Material
NASA Astrophysics Data System (ADS)
Cain, L. S.; Boye, D. M.; Christian, W.
1998-11-01
The WWW provides the most uniformly standardized and stable mode of networked information sharing available to date. Physlets, scriptable Java applets specific to physics pedagogy, provide the source around which interactive exercises can be created across the physics curriculum. We have developed WWW-based curricular materials appropriate for courses at the introductory and intermediate level. These include interactive demonstrations, homework assignments, pre-lab and post-lab exercises. A variety of examples, which have been used in courses in musical technology, general physics, physics for non-science majors, and modern physics, will be discussed.
A Simple Laboratory Scale Model of Iceberg Dynamics and its Role in Undergraduate Education
NASA Astrophysics Data System (ADS)
Burton, J. C.; MacAyeal, D. R.; Nakamura, N.
2011-12-01
Lab-scale models of geophysical phenomena have a long history in research and education. For example, at the University of Chicago, Dave Fultz developed laboratory-scale models of atmospheric flows. The results from his laboratory were so stimulating that similar laboratories were subsequently established at a number of other institutions. Today, the Dave Fultz Memorial Laboratory for Hydrodynamics (http://geosci.uchicago.edu/~nnn/LAB/) teaches general circulation of the atmosphere and oceans to hundreds of students each year. Following this tradition, we have constructed a lab model of iceberg-capsize dynamics for use in the Fultz Laboratory, which focuses on the interface between glaciology and physical oceanography. The experiment consists of a 2.5 meter long wave tank containing water and plastic "icebergs". The motion of the icebergs is tracked using digital video. Movies can be found at: http://geosci.uchicago.edu/research/glaciology_files/tsunamigenesis_research.shtml. We have had 3 successful undergraduate interns with backgrounds in mathematics, engineering, and geosciences perform experiments, analyze data, and interpret results. In addition to iceberg dynamics, the wave-tank has served as a teaching tool in undergraduate classes studying dam-breaking and tsunami run-up. Motivated by the relatively inexpensive cost of our apparatus (~1K-2K dollars) and positive experiences of undergraduate students, we hope to serve as a model for undergraduate research and education that other universities may follow.
ERIC Educational Resources Information Center
Olson, Susan J.
School building and classroom accessibility are the first factors considered in a discussion of making provisions for mainstreamed physically handicapped students in vocational home economics programs. Legal mandates are cited, and ideas for adapting food labs and sewing labs for wheelchair students and students with visual impairments are noted.…
Physics for the Technologies. Supplementary Units.
ERIC Educational Resources Information Center
Brown, Tim; And Others
These supplemental units contain four laboratory exercises that can be used to enhance the labs in "Physics for the Technologies." The four units (one mechanical, two thermal, and one electrical) are designed to enhance labs in presenting specific concepts. Each unit can be used as an example of how the concepts behind the theory apply…
45 CFR Appendix A to Part 84 - Analysis of Final Regulation
Code of Federal Regulations, 2010 CFR
2010-10-01
... 84 Public Welfare DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL ADMINISTRATION NONDISCRIMINATION ON... decide that it would be cost-efficient for one college to offer biology, the second physics, and the... which one college undertook to make its biology lab accessible, another its physics lab, and a third its...
Plasma Physics Lab and the Tokamak Fusion Test Reactor, 1989
None
2018-01-16
From the Princeton University Archives: Promotional video about the Plasma Physics Lab and the new Tokamak Fusion Test Reactor (TFTR), with footage of the interior, machines, and scientists at work. This film is discussed in the audiovisual blog of the Seeley G. Mudd Manuscript Library, which holds the archives of Princeton University.
Surfactant Adsorption: A Revised Physical Chemistry Lab
ERIC Educational Resources Information Center
Bresler, Marc R.; Hagen, John P.
2008-01-01
Many physical chemistry lab courses include an experiment in which students measure surface tension as a function of surfactant concentration. In the traditional experiment, the data are fit to the Gibbs isotherm to determine the molar area for the surfactant, and the critical micelle concentration is used to calculate the Gibbs energy of micelle…
The Advanced Lab Course at the University of Houston
NASA Astrophysics Data System (ADS)
Forrest, Rebecca
2009-04-01
The University of Houston Advanced Lab course is designed to help students understand the physics in classic experiments, become familiar with experimental equipment and techniques, gain experience with independent experimentation, and learn to communicate results orally and in writing. It is a two semester course, with a Lab Seminar also required during the first semester. In the Seminar class we discuss keeping a notebook and writing a laboratory report, error analysis, data fitting, and scientific ethics. The students give presentations, in pairs, on the workings and use of basic laboratory equipment. In the Lab courses students do a one week introductory experiment, followed by six two-week experiments each semester. These range from traditional experiments in modern physics to contemporary experiments with superconductivity and chaos. The students are required to keep a laboratory notebook and to write a four-page paper for each experiment in the publication style of the American Institute of Physics. This course introduces students to the experimental tools and techniques used in physics, engineering, and industry laboratories, and allows them to mature as experimentalists.
Boomwhackers and End-Pipe Corrections
NASA Astrophysics Data System (ADS)
Ruiz, Michael J.
2014-02-01
End-pipe corrections seldom come to mind as a suitable topic for an introductory physics lab. Yet, the end-pipe correction formula can be verified in an engaging and inexpensive lab that requires only two supplies: plastic-tube toys called boomwhackers and a meterstick. This article describes a lab activity in which students model data from plastic tubes to arrive at the end-correction formula for an open pipe. Students also learn the basic mathematics behind the musical scale, and come to appreciate the importance of end-pipe physics in the engineering design of toy musical tubes.
Archiving Student Solutions with Tablet PCs in a Discussion-based Introductory Physics Class
NASA Astrophysics Data System (ADS)
Price, Edward; De Leone, Charles
2008-10-01
Many active learning based physics courses use whiteboards as a space for groups to respond to prompts based on short lab activities, problem solving, or inquiry-oriented activities. Whiteboards are volatile; once erased, the material is lost. Tablet PCs and software such as Ubiquitous Presenter can be used as digital whiteboards in active learning classes. This enables automatic capture and archiving of student work for online review by students, instructors, and researchers. We studied the use of digital whiteboards in an active-learning introductory physics course at California State University, San Marcos. In this paper we examine the archival features of digital whiteboards', and characterize the use of these features by students and instructors, and explore possible uses for researchers and curriculum developers.
The Influence of Tablet PCs on Students' Use of Multiple Representations in Lab Reports
NASA Astrophysics Data System (ADS)
Guelman, Clarisa Bercovich; De Leone, Charles; Price, Edward
2009-11-01
This study examined how different tools influenced students' use of representations in the Physics laboratory. In one section of a lab course, every student had a Tablet PC that served as a digital-ink based lab notebook. Students could seamlessly create hand-drawn graphics and equations, and write lab reports on the same computer used for data acquisition, simulation, and analysis. In another lab section, students used traditional printed lab guides, kept paper notebooks, and then wrote lab reports on regular laptops. Analysis of the lab reports showed differences between the sections' use of multiple representations, including an increased use of diagrams and equations by the Tablet users.
1987-01-01
Haytiard California 49 CORNELL UNIVERSITY 11,196 * Long Beach Cilifornia 2,535 Ithaca New York 9, 62 Sacramento Califjrnia 39 Ithaca Collge New York... PHYSICAL SCIENCE LABPATORY 58 * NORTH DAKOTA ST UNIVER ALUMN4I 50 Las Cruces New Mexroc 58 Fargo N Dakota 50 PIERCE JOHN B FOUNDATION LAB 116 NORH TEXAS
NASA Astrophysics Data System (ADS)
Tai, Robert H.
Current science educational practice is coming under heavy criticism based on the dismaying results of the Third International Mathematics and Science Study of 1998, the latest in a series of large scale surveys; and from research showing the appallingly low representation of females in science-related fields. These critical evaluations serve to draw attention to science literacy in general and lack of persistence among females in particular, two issues that relate closely to the "preparation for future study" goal held by many high school science teachers. In other words, these teachers often seek to promote future success and to prevent future failure in their students' academic careers. This thesis studies the connection between the teaching practices recommended by reformers and researchers for high school teachers, and their students' subsequent college physics performance. The teaching practices studied were: laboratory experiences, class discussion experiences, content coverage, and reliance on textbooks. This study analyzed a survey of 1500 students from 16 different lecture-format college physics courses at 14 different universities. Using hierarchical linear modeling, this study accounted for course-level variables (Calculus-based/Non-calculus course type, professor's gender, and university selectivity). This study controlled for the student's parents education, high school science/mathematics achievement, high school calculus background, and racial background. In addition, the interactions between gender and both pedagogical/curricular and course-level variables were analyzed. The results indicated that teaching fewer topics in greater depth in high school physics appeared to be helpful to college physics students. An interaction between college course type and content coverage showed that students in Calculus-based physics reaped even greater benefits from a depth-oriented curriculum. Also students with fewer labs per month in high school physics appeared to perform better in college physics than did students with many more labs per month. The only significant interaction was between gender and Calculus-based/Non-calculus college course type. Females appeared to do better on average than their males counterparts in Non-calculus physics, but this trend is clearly reversed for Calculus-based physics. This is a disturbing result for educators who have worked to promote persistence among women in engineering and science research. Recommendations are included for high school physics teachers, students and their parents, and college physics instructors.
Basic guidelines to introduce electric circuit simulation software in a general physics course
NASA Astrophysics Data System (ADS)
Moya, A. A.
2018-05-01
The introduction of electric circuit simulation software for undergraduate students in a general physics course is proposed in order to contribute to the constructive learning of electric circuit theory. This work focuses on the lab exercises based on dc, transient and ac analysis in electric circuits found in introductory physics courses, and shows how students can use the simulation software to do simple activities associated with a lab exercise itself and with related topics. By introducing electric circuit simulation programs in a general physics course as a brief activitiy complementing lab exercise, students develop basic skills in using simulation software, improve their knowledge on the topology of electric circuits and perceive that the technology contributes to their learning, all without reducing the time spent on the actual content of the course.
Remote-controlled optics experiment for supporting senior high school and undergraduate teaching
NASA Astrophysics Data System (ADS)
Choy, S. H.; Jim, K. L.; Mak, C. L.; Leung, C. W.
2017-08-01
This paper reports the development of a remote laboratory (RemoteLab) platform for practising technologyenhanced learning of optics. The development of RemoteLab enhances students' understanding of experimental methodologies and outcomes, and enable students to conduct experiments everywhere at all times. While the initial goal of the system was for physics major undergradutes, the sytem was also made available for senior secondary school students. To gauge the impact of the RemoteLab, we evaluated two groups of students, which included 109 physics 1st-year undergraduates and 11 students from a local secondary school. After the experiments, evaluation including questionnaire survey and interviews were conducted to collect data on students' perceptions on RemoteLab and implementation issues related to the platform. The surveys focused on four main topics, including user interface, experiment setup, booking system and learning process. The survey results indicated that most of the participants' views towards RemoteLab was positive.
Letters Home as an Alternative to Lab Reports
ERIC Educational Resources Information Center
Lane, W. Brian
2014-01-01
The traditional lab report is known to create several pedagogical shortcomings in the introductory physics course, particularly with regard to promoting student engagement and encouraging quality writing. This paper discusses the use of a "letter home" written to a non-physicist as an alternative to lab reports that creates a more…
Networking Labs in the Online Environment: Indicators for Success
ERIC Educational Resources Information Center
Lahoud, Hilmi A.; Krichen, Jack P.
2010-01-01
Several techniques have been used to provide hands-on educational experiences to online learners, including remote labs, simulation software, and virtual labs, which offer a more structured environment, including simulations and scheduled asynchronous access to physical resources. This exploratory study investigated how these methods can be used…
Prager, Stewart; Zwicker, Andrew; Hammet, Greg; Tresemer, Kelsey; Diallo, Ahmed
2018-02-14
At the Energy Department's Princeton Plasma Physics Lab, scientists are trying to accomplish what was once considered the realm of science fiction: create a star on Earth. The National Spherical Torus Experiment (NSTX) is a magnetic fusion device that is used to study the physics principles of spherically shaped plasmas -- hot ionized gases in which, under the right conditions, nuclear fusion will occur. Fusion is the energy source of the sun and all of the stars. Not just limited to theoretical work, the NSTX is enabling cutting-edge research to develop fusion as a future energy source.
Eight year experience in open ended instrumentation laboratory
NASA Astrophysics Data System (ADS)
Marques, Manuel B.; Rosa, Carla C.; Marques, Paulo V. S.
2015-10-01
When designing laboratory courses in a Physics Major we consider a range of objectives: teaching Physics; developing lab competencies; instrument control and data acquisition; learning about measurement errors and error propagation; an introduction to project management; team work skills and scientific writing. But nowadays we face pressure to decrease laboratory hours due to the cost involved. Many universities are replacing lab classes for simulation activities, hiring PhD. and master students to give first year lab classes, and reducing lab hours. This leads to formatted lab scripts and poor autonomy of the students, and failure to enhance creativity and autonomy. In this paper we present our eight year experience with a laboratory course that is mandatory in the third year of Physics and Physical Engineering degrees. Since the students had previously two standard laboratory courses, we focused on teaching instrumentation and giving students autonomy. The course is divided in two parts: one third is dedicated to learn computer controlled instrumentation and data acquisition (based in LabView); the final 2/3 is dedicated to a group project. In this project, the team (2 or 3 students) must develop a project and present it in a typical conference format at the end of the semester. The project assignments are usually not very detailed (about two or three lines long), giving only general guidelines pointing to a successful project (students often recycle objectives putting forward a very personal project); all of them require assembling some hardware. Due to our background, about one third of the projects are related to Optics.
Mineral Physics Research on Earth's Core and UTeach Outreach Activities at UT Austin
NASA Astrophysics Data System (ADS)
Lin, J.; Wheat, A. J.
2011-12-01
Comprehension of the alloying effects of major candidate light elements on the phase diagram and elasticity of iron addresses pressing issues on the composition, thermal structures, and seismic features of the Earth's core. Integrating this mineral physics research with the educational objectives of the CAREER award was facilitated by collaboration with the University of Texas at Austin's premier teaching program, UTeach. The UTeach summer outreach program hosts three one-week summer camps every year exposing K-12th graders to university level academia, emphasizing math and science initiatives and research. Each week of the camp either focuses on math, chemistry, or geology. Many of the students were underrepresented minorities and some required simultaneous translation; this is an effect of the demographics of the region, and caused some language barrier challenges. The students' opportunity to see first-hand what it is like to be on a university campus, as well as being in a research environment, such as the mineral physics lab, helps them to visualize themselves in academia in the future. A collection of displayable materials with information about deep-Earth research were made available to participating students and teachers to disseminate accurate scientific knowledge and enthusiasm. These items included a diamond anvil cell and diagrams of the diamond crystal structure, the layers of the Earth, and the phases of carbon to show that one element can have very different physical properties purely based on differences in structure. The students learned how advanced X-ray and optical laser spectroscopies are used to study properties of planetary materials in the diamond anvil cell. Stress was greatly placed on the basic mathematical relationship between force, area, and pressure, the fundamental principle involved with diamond anvil cell research. Undergraduate researchers from the lab participated in the presentations and hands-on experiments, and answered any questions the young students had about college life and studies. Outreach benefits include effective and organized collaborations with the UTeach program, which prepares undergraduates at UT-Austin to teach secondary science courses, as well as positive connections made with Austin-area science teachers, providing them with alternative knowledge and experience to share with their students in the classroom. The CAREER award offers an excellent venue to connect the PI's research and educational activities, and has made constructive impacts on the PI's career development and on his continuation in this frontier research. The students who visited the lab wrote thank you cards, some expressing great interest in being scientists, geophysicists, and chemical engineers, as well as drawings of diamond anvil cells and the pressure/area relationship, showing excellent comprehension of the subject matter. Program improvements may lie in also outreaching to teachers to create stronger relationships in an effort to enrich curricula and keep students aware of research and degree options as the time to enter college nears.
Pulse Oximetry in the Physics Lab: A Colorful Alternative to Traditional Optics Curricula
ERIC Educational Resources Information Center
Kutschera, Ellynne; Dunlap, Justin C.; Byrd, Misti; Norlin, Casey; Widenhorn, Ralf
2013-01-01
We designed a physics laboratory exercise around pulse oximetry, a noninvasive medical technique used to assess a patient's blood oxygen saturation. An alternative to a traditional optics and light lab, this exercise teaches the principles of light absorption, spectroscopy, and the properties of light, while simultaneously studying a common…
SenseCube--A Novel Inexpensive Wireless Multisensor for Physics Lab Experimentations
ERIC Educational Resources Information Center
Mehta, Vedant; Lane, Charles D.
2018-01-01
SenseCube is a multisensor capable of measuring many different real-time events and changes in environment. Most conventional sensors used in introductory-physics labs use their own software and have wires that must be attached to a computer or an alternate device to analyze the data. This makes the standard sensors time consuming, tedious, and…
Arduino-Based Data Acquisition into Excel, LabVIEW, and MATLAB
ERIC Educational Resources Information Center
Nichols, Daniel
2017-01-01
Data acquisition equipment for physics can be quite expensive. As an alternative, data can be acquired using a low-cost Arduino microcontroller. The Arduino has been used in physics labs where the data are acquired using the Arduino software. The Arduino software, however, does not contain a suite of tools for data fitting and analysis. The data…
Faraday's Principle and Air Travel in the Introductory Labs
ERIC Educational Resources Information Center
Abdul-Razzaq, Wathiq; Thakur, Saikat Chakraborty
2017-01-01
We all know that we must improve the quality of teaching in science at all levels. Not only physicists but also many students from other areas of study take the introductory physics courses in college. Physics introductory laboratories (labs) can be one of the best tools to help these students understand applications of scientific principles that…
A Guide to Oceanic Sedimentary Layering.
1983-07-28
Profiling," J. Geophys. Res. 73, 2597-2614. L3 Lee, H. J., 1980. "Physical Properties of Northeast Pacific Sedi- ments Related to Sedimentary Environment and...7i -AI33 060 A GUIDE TO OCEANIC SEDIMENTARY LAYERING(U) TEXAS UNIV 1/i AT AUSTIN APPLIED RESEARCH LABS C B BENNETT ET AL, 28 JUL 83 RRL-TR-83-25...Copy No. 3 A GUIDE TO OCEANIC SEDIMENTARY LAYERING Christopher B. Bennett J. Mark Daniels APPLIED RESEARCH LABORATORIES THE UNIVERSITY OF TEXAS AT
Open web system of Virtual labs for nuclear and applied physics
NASA Astrophysics Data System (ADS)
Saldikov, I. S.; Afanasyev, V. V.; Petrov, V. I.; Ternovykh, M. Yu
2017-01-01
An example of virtual lab work on unique experimental equipment is presented. The virtual lab work is software based on a model of real equipment. Virtual labs can be used for educational process in nuclear safety and analysis field. As an example it includes the virtual lab called “Experimental determination of the material parameter depending on the pitch of a uranium-water lattice”. This paper included general description of this lab. A description of a database on the support of laboratory work on unique experimental equipment which is included this work, its concept development are also presented.
Uncertainty Calculations in the First Introductory Physics Laboratory
NASA Astrophysics Data System (ADS)
Rahman, Shafiqur
2005-03-01
Uncertainty in a measured quantity is an integral part of reporting any experimental data. Consequently, Introductory Physics laboratories at many institutions require that students report the values of the quantities being measured as well as their uncertainties. Unfortunately, given that there are three main ways of calculating uncertainty, each suitable for particular situations (which is usually not explained in the lab manual), this is also an area that students feel highly confused about. It frequently generates large number of complaints in the end-of-the semester course evaluations. Students at some institutions are not asked to calculate uncertainty at all, which gives them a fall sense of the nature of experimental data. Taking advantage of the increased sophistication in the use of computers and spreadsheets that students are coming to college with, we have completely restructured our first Introductory Physics Lab to address this problem. Always in the context of a typical lab, we now systematically and sequentially introduce the various ways of calculating uncertainty including a theoretical understanding as opposed to a cookbook approach, all within the context of six three-hour labs. Complaints about the lab in student evaluations have dropped by 80%. * supported by a grant from A. V. Davis Foundation
Fully On-line Introductory Physics with a Lab
NASA Astrophysics Data System (ADS)
Schatz, Michael
We describe the development and implementation of a college-level introductory physics (mechanics) course and laboratory that is suited for both on-campus and on-line environments. The course emphasizes a ``Your World is Your Lab'' approach whereby students first examine and capture on video (using cellphones) motion in their immediate surroundings, and then use free, open-source software both to extract data from the video and to apply physics principles to build models that describe, predict, and visualize the observations. Each student reports findings by creating a video lab report and posting it online; these video lab reports are then distributed to the rest of the class for peer review. In this talk, we will discuss the student and instructor experiences in courses offered to three distinct audiences in different venues: (1) a Massively Open On-line Course (MOOC) for off-campus participants, (2) a flipped/blended course for on-campus students, and, most recently, (3) a fully-online course for off-campus students.
Forging new, non-traditional partnerships among physicists, teachers and students
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bardeen, Marjorie; Adams, Mark; Wayne, Mitchell
The QuarkNet collaboration has forged new, nontraditional relationships among particle physicists, high school teachers and their students. QuarkNet provides professional development for teachers and creates opportunities for teachers and students to engage in particle physics data investigations and join research teams. Embedded in the U.S. particle research community, QuarkNet leverages the nature of particle physics research$-$the long duration of the experiments with extensive lead times, construction periods, and data collection and analysis periods. QuarkNet is patterned after the large collaborations with a central management infrastructure and a distributed workload across university- and lab-based research groups. As a result, we describemore » the important benefits of the QuarkNet outreach program that flow to university faculty and present successful strategies that others can adapt for use in their countries.« less
Forging new, non-traditional partnerships among physicists, teachers and students
Bardeen, Marjorie; Adams, Mark; Wayne, Mitchell; ...
2016-10-26
The QuarkNet collaboration has forged new, nontraditional relationships among particle physicists, high school teachers and their students. QuarkNet provides professional development for teachers and creates opportunities for teachers and students to engage in particle physics data investigations and join research teams. Embedded in the U.S. particle research community, QuarkNet leverages the nature of particle physics research$-$the long duration of the experiments with extensive lead times, construction periods, and data collection and analysis periods. QuarkNet is patterned after the large collaborations with a central management infrastructure and a distributed workload across university- and lab-based research groups. As a result, we describemore » the important benefits of the QuarkNet outreach program that flow to university faculty and present successful strategies that others can adapt for use in their countries.« less
The Development of Virtual Laboratory Using ICT for Physics in Senior High School
NASA Astrophysics Data System (ADS)
Masril, M.; Hidayati, H.; Darvina, Y.
2018-04-01
One of the problems found in the implementation of the curriculum in 2013 is not all competency skills can be performed well. Therefore, to overcome these problems, virtual laboratory designed to improve the mastery of concepts of physics. One of the design objectives virtual laboratories is to improve the quality of education and learning in physics in high school. The method used in this study is a research method development four D model with the definition phase, design phase, development phase, and dissemination phase. Research has reached the stage of development and has been tested valid specialist. The instrument used in the research is a questionnaire consisting of: 1) the material substance; 2) The display of visual communication; 3) instructional design; 4) the use of software; and 5) Linguistic. The research results is validity in general has been a very good category (85.6), so that the design of virtual labs designed can already be used in high school.
Design and implementation of an internet-based electrical engineering laboratory.
He, Zhenlei; Shen, Zhangbiao; Zhu, Shanan
2014-09-01
This paper describes an internet-based electrical engineering laboratory (IEE-Lab) with virtual and physical experiments at Zhejiang University. In order to synthesize the advantages of both experiment styles, the IEE-Lab is come up with Client/Server/Application framework and combines the virtual and physical experiments. The design and workflow of IEE-Lab are introduced. The analog electronic experiment is taken as an example to show Flex plug-in design, data communication based on XML (Extensible Markup Language), experiment simulation modeled by Modelica and control terminals' design. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Interactive Problem Solving Tutorials Through Visual Programming
NASA Astrophysics Data System (ADS)
Undreiu, Lucian; Schuster, David; Undreiu, Adriana
2008-10-01
We have used LabVIEW visual programming to build an interactive tutorial to promote conceptual understanding in physics problem solving. This programming environment is able to offer a web-accessible problem solving experience that enables students to work at their own pace and receive feedback. Intuitive graphical symbols, modular structures and the ability to create templates are just a few of the advantages this software has to offer. The architecture of an application can be designed in a way that allows instructors with little knowledge of LabVIEW to easily personalize it. Both the physics solution and the interactive pedagogy can be visually programmed in LabVIEW. Our physics pedagogy approach is that of cognitive apprenticeship, in that the tutorial guides students to develop conceptual understanding and physical insight into phenomena, rather than purely formula-based solutions. We demonstrate how this model is reflected in the design and programming of the interactive tutorials.
Boomwhackers and End-Pipe Corrections
ERIC Educational Resources Information Center
Ruiz, Michael J.
2014-01-01
End-pipe corrections seldom come to mind as a suitable topic for an introductory physics lab. Yet, the end-pipe correction formula can be verified in an engaging and inexpensive lab that requires only two supplies: plastic-tube toys called boomwhackers and a meter-stick. This article describes a lab activity in which students model data from…
Assessment of Student Learning in Modern Experiments in the Introductory Calculus-Based Physics Labs
NASA Astrophysics Data System (ADS)
Woodahl, Brian; Ross, John; Lang, Sarah; Scott, Derek; Williams, Jeremy
2010-10-01
With the advent of newer microelectronic sensors it's now possible to modernize introductory physics labs with the latest technology and this may allow for enhanced student participation/learning in the experiments. For example, force plate sensors can digitize and record the force on an object, later it can be analyzed in detail (i.e, impulse from force vs. time). Small 3-axis accelerometers can record 3-dim, time-dependent acceleration of objects undergoing complex motions. These devices are small, fairly easy to use, and importantly, are likely to enhance student learning by ``personalizing'' data collection, i.e. making the student an active part of the measurement process and no longer a passive observer. To assess whether these new high-tech labs enhance student learning, we have implemented pre- and post- test sessions to measure the effectiveness of student learning. Four of our calculus-based lab sections were used: Two sections the control group, using the previous ``old technology'' labs, the other two, the experimental group, using the new ``modern technology'' labs. Initial returns of assessment data offer some surprising insight.
Retention of young female post-doc physics researchers in the UK
NASA Astrophysics Data System (ADS)
Whitelegg, Elizabeth
2004-03-01
The talk will describe the results of a research project to investigate the problems young women physics researchers encountered during early stages of their careers and their perceptions of the longer-term difficulties they anticipated were they to pursue a career in physics research. The project examined quantitative data from a large sample of female members of the UK Institute of Physics (IOP) and qualitative data from intensive interviews with 27 young female doctoral and post-doctoral researchers at an early stage in their careers. In the survey of women PhD members of the IOP, only 15% of the younger women (aged under 30) said they had encountered gender barriers compared with 45% of older women. However, within a few years of completing their PhDs only 25% of the young women remained in physics research although they had previously aspired to work in this area. The reasons given for leaving physics included a dislike of the male culture or atmosphere in research labs, the fact that few of the young women thought that they would ever attain a senior physics post, concerns about balancing a research career with raising a young family and anticipating a need to relocate to match a partners career moves. These are clearly gender-related barriers and constraints although these young women often did not perceive them in this way. This research examines the notion of direct and indirect gender barriers. It addresses the idea of subtle discrimination by examining both institutional employment practices and the prevalent male culture or atmosphere in physics research, which contribute to the leaky pipeline in womens physics employment in the UK.
14. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), ...
14. BUILDING NO. 445, PHYSICS LAB (FORMERLY GUN BAG LOADING), LOOKING EAST AT SOUTHWEST END OF BUILDING. HVAC EQUIPMENT LOCATED OUTDOORS IN FOREGROUND. DUCTS CONDUCT HOT OR COLD AIR INDOORS. ROUND PIPES ARE INSULATED STEAM LINES. BUILDING NO. 448, ORDNANCE FACILITY, IN BACKGROUND. - Picatinny Arsenal, 400 Area, Gun Bag Loading District, State Route 15 near I-80, Dover, Morris County, NJ
Problem-Based Labs and Group Projects in an Introductory University Physics Course
ERIC Educational Resources Information Center
Kohnle, Antje; Brown, C. Tom A.; Rae, Cameron F.; Sinclair, Bruce D.
2012-01-01
This article describes problem-based labs and analytical and computational project work we have been running at the University of St Andrews in an introductory physics course since 2008/2009. We have found the choice of topics, scaffolding of the process, timing in the year and facilitator guidance decisive for the success of these activities.…
NASA Astrophysics Data System (ADS)
Kourkoumelis, Christine
2014-04-01
It has been noted by various reports that during recent years, there has been an alarming decline in young people's interest for science studies and mathematics. Since it is believed that the traditional teaching methods often fail to foster positive attitudes towards learning science, the European Commission has made intensive efforts to promote science education in schools though new methods based on the inquiry methodology of learning: questions, search and answers. This should be coupled to laboratories and hands-on experience which should be structured and scaffolded in a pedagogically meaningful way. "PATHWAY", "Discover the COSMOS" and "ISE" have been providing the lesson plans and the best practices for teachers and students and "Go-lab" is working towards an integrated set up of on-line labs for large scale use in science education. In the next sections some concrete examples which aim to bring the High Energy Physics (HEP) frontier research to schools will be given.
Modifying your Physics and Astronomy Courses to Incorporate Heliophysics - Some Examples
NASA Astrophysics Data System (ADS)
Cebulka, Rebecca; Cox, Amanda; Rodriguez Garrigues, Alvar; Hoshino, Laura; Fitzgerald, Cullen; Montgomery, M.; Al-Rawi, Ahlam N.; Velissaris, Christos; Flitsiyan, Elena
2016-01-01
Although physics and astronomy courses include heliophysics topics, students still leave the courses without knowing what heliophysics is and how heliophysics relates to their daily lives. To meet goals of NASA's Living With a Star Program, UCF Physics has modified courses such as SCALE-UP: Electricity and Magnetism for Engineers and Scientists, Astronomy (for non-science majors), and Astrophysics to include heliophysics topics. In this poster, we present the previous labs, the student-modified labs to incorporate heliophysics, and we present student learning statistics.
Scientometric analysis of physics (1979-2008): A quantitative description of scientific impact
NASA Astrophysics Data System (ADS)
Zheng, YanNing; Yuan, JunPeng; Pan, YunTao; Zhao, XiaoYuan
2011-01-01
Citations are a way to show how researchers build on existing research to further evolve research. The citation count is an indication of the influence of specific articles. The importance of citations means that it is valuable to analyze the articles that are cited the most. This research investigates highly-cited articles in physics (1979-2008) using citation data from the ISI Web of Science. In this study, 1544205 articles were examined. The objective of the analysis was to identify and list the highly-productive countries, institutions, authors, and fields in physics. Based on the analysis, it was found that the USA is the world leader in physics, and Japan has maintained the highest growth rate in physics research since 1990. Furthermore, the research focus at Bell Labs and IBM has played important roles in physics. A striking fact is that the five most active authors are all Japanese, but the five most active institutions are all in the USA. In fact, only The University of Tokyo is ranked among the top 11 institutions, and only American authors have single-author articles ranked among the top 19 articles. The highest-impact articles are distributed across 25 subjects categories. Physics, Multidisciplinary has 424 articles, and is ranked at No. 1 in total articles; followed by Physics, Condensed Matter. The study can provide science policy makers with a picture of innovation capability in this field and help them make better decisions. Hopefully, this study will stimulate useful discussion among scientists and research managers about future research directions.
ERIC Educational Resources Information Center
Stadtlander, Lee; Giles, Martha; Sickel, Amy
2013-01-01
This paper examines the complexities of working with student researchers in a virtual lab setting, logistics, and methods to resolve issues. To demonstrate the feasibility of a virtual lab, a mixed-methods study consisting of quantitative surveys and qualitative data examined changes in doctoral students' confidence as measured by research outcome…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundstrom, Blake R.; Palmintier, Bryan S.; Rowe, Daniel
Electric system operators are increasingly concerned with the potential system-wide impacts of the large-scale integration of distributed energy resources (DERs) including voltage control, protection coordination, and equipment wear. This prompts a need for new simulation techniques that can simultaneously capture all the components of these large integrated smart grid systems. This paper describes a novel platform that combines three emerging research areas: power systems co-simulation, power hardware in the loop (PHIL) simulation, and lab-lab links. The platform is distributed, real-time capable, allows for easy internet-based connection from geographically-dispersed participants, and is software platform agnostic. We demonstrate its utility by studyingmore » real-time PHIL co-simulation of coordinated solar PV firming control of two inverters connected in multiple electric distribution network models, prototypical of U.S. and Australian systems. Here, the novel trans-pacific closed-loop system simulation was conducted in real-time using a power network simulator and physical PV/battery inverter at power at the National Renewable Energy Laboratory in Golden, CO, USA and a physical PV inverter at power at the Commonwealth Scientific and Industrial Research Organisation's Energy Centre in Newcastle, NSW, Australia. This capability enables smart grid researchers throughout the world to leverage their unique simulation capabilities for multi-site collaborations that can effectively simulate and validate emerging smart grid technology solutions.« less
Lundstrom, Blake R.; Palmintier, Bryan S.; Rowe, Daniel; ...
2017-07-24
Electric system operators are increasingly concerned with the potential system-wide impacts of the large-scale integration of distributed energy resources (DERs) including voltage control, protection coordination, and equipment wear. This prompts a need for new simulation techniques that can simultaneously capture all the components of these large integrated smart grid systems. This paper describes a novel platform that combines three emerging research areas: power systems co-simulation, power hardware in the loop (PHIL) simulation, and lab-lab links. The platform is distributed, real-time capable, allows for easy internet-based connection from geographically-dispersed participants, and is software platform agnostic. We demonstrate its utility by studyingmore » real-time PHIL co-simulation of coordinated solar PV firming control of two inverters connected in multiple electric distribution network models, prototypical of U.S. and Australian systems. Here, the novel trans-pacific closed-loop system simulation was conducted in real-time using a power network simulator and physical PV/battery inverter at power at the National Renewable Energy Laboratory in Golden, CO, USA and a physical PV inverter at power at the Commonwealth Scientific and Industrial Research Organisation's Energy Centre in Newcastle, NSW, Australia. This capability enables smart grid researchers throughout the world to leverage their unique simulation capabilities for multi-site collaborations that can effectively simulate and validate emerging smart grid technology solutions.« less
Developing a Standard Based Advanced Lab Course that Fulfills COM3 Requirements
NASA Astrophysics Data System (ADS)
Michalak, Rudi
2015-03-01
An advanced physics lab has been developed into a course that fulfills the requirements for a university studies program `COM3' course using Standard Teaching (ST) methods. The COM3 course is a capstone course under the new USP2015 study requirements for all majors. It replaces the WC writing requirement, typically filled in the English Dept., and adds the teaching of oral and digital communication skills. ST is a method that replaces typical assessments (homework / exam grades) with new assessments that measure certain specified learning outcomes. In combination with oral assessments and an oral final exam, the ST proves an efficient tool to implement the USP Learning Outcomes into a physics course. COM3 requires an unprecedented seven learning outcomes in a single course. Variety of learning outcomes: interdisciplinary goals, levels of writing (with drafting steps), organizational structure, standard language metrics, research and presentation deliverance skills, appropriate addressing of a variety of audiences, etc. With other assessment approaches than ST this variety would be difficult to meet in a physics course. An extended ST rubric has been developed for this course and will be presented and discussed in some detail.
Innovation - A view from the Lab
USDA-ARS?s Scientific Manuscript database
The USDA Ag Lab in Peoria helps bridge the gap between agricultural producers and commercial manufacturers. In 2015, the Ag Lab, officially known as the Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR), is celebrating 75 years of research in Peoria. T...
DoD Research Labs 101: Who They Are, What They Do | DoDLive
Corner Behind the Lens DoD Research Labs 101: Who They Are, What They Do Posted on March 24, 2016 by service branch has several research labs across the country that focus on specific technologies. I could just going to fill you in on what each of the main labs does and give some examples of the cool things
Bridging Physics and Biology Using Resistance and Axons
NASA Astrophysics Data System (ADS)
Dyer, Joshua M.
2014-11-01
When teaching physics, it is often difficult to get biology-oriented students to see the relevance of physics.1 A complaint often heard is that biology students are required to take physics for the Medical College Admission Test (MCAT) as part of a "weeding out" process, but that they don't feel like they need physics for biology. Despite this impression held by students, there have been calls for better physics education for future physicians and life scientists.2,3 Research is being performed to improve physics classes and labs by linking topics in biology and physics.4,5 Described here is a laboratory experiment covering the topics of resistance of materials and circuits/Kirchhoff's laws in a biology context with their direct application to neurons, axons, and electrical impulse transmission within animals. This experiment will also demonstrate the mechanism believed to cause multiple sclerosis. The apparatus was designed with low-cost and readily available materials in mind.
Quantifying the Level of Inquiry in a Reformed Introductory Geology Lab Course
ERIC Educational Resources Information Center
Moss, Elizabeth; Cervato, Cinzia
2016-01-01
As part of a campus-wide effort to transform introductory science courses to be more engaging and more accurately convey the excitement of discovery in science, the curriculum of an introductory physical geology lab course was redesigned. What had been a series of ''cookbook'' lab activities was transformed into a sequence of activities based on…
Assessment Outcomes: Computerized Instruction in a Human Gross Anatomy Course.
ERIC Educational Resources Information Center
Bukowski, Elaine L.
2002-01-01
The first of three successive classes of beginning physical therapy students (n=17) completed traditional cadaver anatomy lecture/lab; the next 17 a self-study computerized anatomy lab, and the next 20 both lectures and computer lab. No differences in study times and course or licensure exam performance appeared. Computerized self-study is a…
Jefferson Lab Science: Present and Future
McKeown, Robert D.
2015-02-12
The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment at Jefferson Lab comprise a unique facility for experimental nuclear physics. Furthermore, this facility is presently being upgraded, which will enable a new experimental program with substantial discovery potential to address important topics in nuclear, hadronic, and electroweak physics. Further in the future, it is envisioned that the Laboratory will evolve into an electron-ion colliding beam facility.
Improving the Quality of Lab Reports by Using Them as Lab Instructions
ERIC Educational Resources Information Center
Haagen-Schuetzenhoefer, Claudia
2012-01-01
Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab…
75 FR 6997 - Federal Property Suitable as Facilities To Assist the Homeless
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-12
... Agency, 143 Billy Mitchell Blvd., Suite 1, San Antonio, TX 78226; (210) 925-3047; GSA: Gordon Creed... Research Lab Bldg. 247 Rome Lab Rome Co: Oneida NY 13441 Property Number: 18200340024 Status: Unutilized Comments: 13199 sq. ft., presence of asbestos, most recent use-- Electronic Research Lab Bldg. 248 Rome Lab...
Outreach Science Education: Evidence-Based Studies in a Gene Technology Lab
ERIC Educational Resources Information Center
Scharfenberg, Franz-Josef; Bogner, Franz X.
2014-01-01
Nowadays, outreach labs are important informal learning environments in science education. After summarizing research to goals outreach labs focus on, we describe our evidence-based gene technology lab as a model of a research-driven outreach program. Evaluation-based optimizations of hands-on teaching based on cognitive load theory (additional…
The Portable Usability Testing Lab: A Flexible Research Tool.
ERIC Educational Resources Information Center
Hale, Michael E.; And Others
A group of faculty at the University of Georgia obtained funding for a research and development facility called the Learning and Performance Support Laboratory (LPSL). One of the LPSL's primary needs was obtaining a portable usability lab for software testing, so the facility obtained the "Luggage Lab 2000." The lab is transportable to…
Selected KSC Applied Physics Lab Responses to Shuttle Processing Measurement Requests
NASA Technical Reports Server (NTRS)
Youngquist, Robert C.
2010-01-01
The KSC Applied Physics Lab has been supporting Shuttle Ground Processing for over 20 years by solving problems brought to us by Shuttle personnel. Roughly half of the requests to our lab have been to find ways to make measurements, or to improve on an existing measurement process. This talk will briefly cover: 1) Centering the aft end of the External Tank between the Solid Rocket Boosters; 2) Positioning the GOX Vent Hood over the External Tank; 3) Remote Measurements of External Tank Damage; 4) Strain Measurement in the Orbiter Sling; and 5) Over-center Distance Measurement in an Over-center Mechanism.
Continuous wave superconducting radio frequency electron linac for nuclear physics research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reece, Charles E.
CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac) at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF) technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. Lastly, we review the development, implementation, and performance of SRF systems for CEBAF from itsmore » early beginnings to the commissioning of the 12 GeV era.« less
Continuous wave superconducting radio frequency electron linac for nuclear physics research
Reece, Charles E.
2016-12-28
CEBAF, the Continuous Electron Beam Accelerator Facility, has been actively serving the nuclear physics research community as a unique forefront international resource since 1995. This cw electron linear accelerator (linac) at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility (Jefferson Lab) has continued to evolve as a precision tool for discerning the structure and dynamics within nuclei. Superconducting rf (SRF) technology has been the essential foundation for CEBAF, first as a 4 GeV machine, then 6 GeV, and currently capable of 12 GeV. Lastly, we review the development, implementation, and performance of SRF systems for CEBAF from itsmore » early beginnings to the commissioning of the 12 GeV era.« less
Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S
2017-01-01
The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants. PMID:28670468
Arvidsson, Per I; Sandberg, Kristian; Sakariassen, Kjell S
2017-06-01
The Science for Life Laboratory Drug Discovery and Development Platform (SciLifeLab DDD) was established in Stockholm and Uppsala, Sweden, in 2014. It is one of ten platforms of the Swedish national SciLifeLab which support projects run by Swedish academic researchers with large-scale technologies for molecular biosciences with a focus on health and environment. SciLifeLab was created by the coordinated effort of four universities in Stockholm and Uppsala: Stockholm University, Karolinska Institutet, KTH Royal Institute of Technology and Uppsala University, and has recently expanded to other Swedish university locations. The primary goal of the SciLifeLab DDD is to support selected academic discovery and development research projects with tools and resources to discover novel lead therapeutics, either molecules or human antibodies. Intellectual property developed with the help of SciLifeLab DDD is wholly owned by the academic research group. The bulk of SciLifeLab DDD's research and service activities are funded from the Swedish state, with only consumables paid by the academic research group through individual grants.
2009-01-01
Inquiry-driven lab exercises require students to think carefully about a question, carry out an investigation of that question, and critically analyze the results of their investigation. Here, we describe the implementation and assessment of an inquiry-based laboratory exercise in which students obtain and analyze novel data that contribute to our understanding of macromolecular trafficking between the nucleus and cytoplasm in eukaryotic cells. Although many of the proteins involved in nucleocytoplasmic transport are known, the physical interactions between some of these polypeptides remain uncharacterized. In this cell and molecular biology lab exercise, students investigate novel protein–protein interactions between factors involved in nuclear RNA export. Using recombinant protein expression, protein extraction, affinity chromatography, SDS-polyacrylamide gel electrophoresis, and Western blotting, undergraduates in a sophomore-level lab course identified a previously unreported association between the soluble mRNA transport factor Mex67 and the C-terminal region of the yeast nuclear pore complex protein Nup1. This exercise immersed students in the process of investigative science, from proposing and performing experiments through analyzing data and reporting outcomes. On completion of this investigative lab sequence, students reported enhanced understanding of the scientific process, increased proficiency with cellular and molecular methods and content, greater understanding of data analysis and the importance of appropriate controls, an enhanced ability to communicate science effectively, and an increased enthusiasm for scientific research and for the lab component of the course. The modular nature of this exercise and its focus on asking novel questions about protein–protein interactions make it easily transferable to undergraduate lab courses performed in a wide variety of contexts. PMID:19723816
NASA Astrophysics Data System (ADS)
Kim, C. S.
2013-12-01
Maintaining a productive research lab at the undergraduate level requires a savvy combination of internal organization, high (but realistic) expectations, and adaptation of one's research interests into semester- and summer-length projects. Several key strategies can help achieve the goal of building a lab culture that both enriches students' academic experiences and advances one's own scholarly research and visibility. Foremost among these is the need to maintain momentum and preserve institutional knowledge in an environment where undergraduate students' lifetime in an individual lab may only last a year or two. Examples from the Environmental Geochemistry Lab at Chapman University (www.chapman.edu/envgeo) developed over several years and with 40+ undergraduate students will be presented which can be transferable to other faculty research labs in the earth sciences. Approaches to writing successful external research grant proposals at a primarily undergraduate institution (PUI) and strategies for both personal and institutional time management/savings will also be discussed, with a focus on new models at Chapman offered to further incentivize faculty involvement in undergraduate research.
NASA Astrophysics Data System (ADS)
Moran, J. E.
2011-12-01
The wide range of abilities in the student population at California State University East Bay, with a significant fraction of students under-prepared and requiring mathematics remediation, is a challenge to including mathematical concepts and exercises in our introductory geoscience courses. Student expectations that a geoscience course will not include quantitative work may result in math-phobics choosing the course and resisting quantitative work when presented with it. Introductory courses that are required for Geology and Environmental Science majors are also designated as General Education, which gives rise to a student group with a wide range of abilities and expectations. This presentation will focus on implementation of a series of online math tutorials for students in introductory geoscience courses called 'The Math You Need' (TMYN; http://serc.carleton.edu/mathyouneed/index.html). The program is implemented in a Physical Geology course, in which 2/3 of the students are typically non-majors. The Physical Geology course has a three hour lab each week and the lab exercises and lab manual offer several opportunities for application of TMYN. Many of the lab exercises include graphing, profiling, working with map scales, converting units, or using equations to calculate some parameter or solve for an unknown. Six TMYN modules covering topics using density calculations as applied to mineral properties and isostasy, graphing as applied to rock properties, earthquake location, and radiometric dating, and calculation of rates as applied to plate movement, stream discharge, and groundwater flow, are assigned as pre-labs to be completed before lab classes. TMYN skills are reinforced during lectures and lab exercises, as close in time as possible to students' exposure via TMYN. Pre- and post-tests give a measure of the effectiveness of TMYN in improving students' quantitative literacy.
Genomics Education in Practice: Evaluation of a Mobile Lab Design
ERIC Educational Resources Information Center
Van Mil, Marc H. W.; Boerwinkel, Dirk Jan; Buizer-Voskamp, Jacobine E.; Speksnijder, Annelies; Waarlo, Arend Jan
2010-01-01
Dutch genomics research centers have developed the "DNA labs on the road" to bridge the gap between modern genomics research practice and secondary-school curriculum in the Netherlands. These mobile DNA labs offer upper-secondary students the opportunity to experience genomics research through experiments with laboratory equipment that…
Gordon Research Conferences on Polymers(W).
1985-04-06
Robert B-303 Silberman, Ruth B-204 Ford Motor Company State Univ. of N.Y. Research Staff Dept. of Chemistry Science Lab. S-3049 223 Baker Lab. Dearborn...Fundamental Relation between the Breadth of R. Rendell the Relaxation Spectrum and Relaxation Time Naval Research Lab Scale: Application to Volume and
Multiscale Modeling of Non-crystalline Ceramics (Glass) (FY11)
2012-01-01
interatomic potential model for oxides, silicates, and silica-based glasses. J. Phys. Chem. B 2006, 110 (24), 11780–11795. 9. van Beest , B. W. H.; Kramer, G. J...DIRECTOR US ARMY RESEARCH LAB IMNE ALC HRR 2800 POWDER MILL RD ADELPHI MD 20783-1197 1 DIRECTOR US ARMY RESEARCH LAB RDRL CIO LL 2800 POWDER MILL RD...ADELPHI MD 20783-1197 1 DIRECTOR US ARMY RESEARCH LAB RDRL CIO MT 2800 POWDER MILL RD ADELPHI MD 20783-1197 1 DIRECTOR US ARMY RESEARCH LAB RDRL D 2800
ERIC Educational Resources Information Center
Stanley, Jacob T.; Su, Weifeng; Lewandowski, H. J.
2017-01-01
We demonstrate how students' use of modeling can be examined and assessed using student notebooks collected from an upper-division electronics lab course. The use of models is a ubiquitous practice in undergraduate physics education, but the process of constructing, testing, and refining these models is much less common. We focus our attention on…
Proton Radiography at Los Alamos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saunders, Alexander
2017-02-28
The proton radiography (pRad) facility at Los Alamos National Lab uses high energy protons to acquire multiple frame flash radiographic sequences at megahertz speeds: that is, it can make movies of the inside of explosions as they happen. The facility is primarily used to study the damage to and failure of metals subjected to the shock forces of high explosives as well as to study the detonation of the explosives themselves. Applications include improving our understanding of the underlying physical processes that drive the performance of the nuclear weapons in the United States stockpile and developing novel armor technologies inmore » collaboration with the Army Research Lab. The principle and techniques of pRad will be described, and examples of some recent results will be shown.« less
The Undergraduate Research Resources at the Pisgah Astronomical Research Institute
NASA Astrophysics Data System (ADS)
Cline, J. Donald; Castelaz, Michael W.
2016-01-01
Pisgah Astronomical Research Institute (PARI), a former NASA tracking station located in western North Carolina, has been offering programs, campus, and instrument use for undergraduate research and learning experiences since 2000. Over these years, PARI has collaborated with universities and colleges in the Southeastern U.S. Sharing its campus with institutions of higher learning is a priority for PARI as part of its mission to "to providing hands-on educational and research opportunities for a broad cross-section of users in science, technology, engineering and math (STEM) disciplines."PARI is a 200 acre campus for environmental, earth, geological, physical, and astronomical sciences. For example, the PARI 26-m and 4.6-m radio telescopes are excellent for teaching electromagnetic theory, spectroscopy, atomic and molecular emission processes, and general physics and astronomy concepts. The PARI campus has lab and office space, data centers with high speed internet, distance learning capabilities, radio and optical telescopes, earth science sensors, housing and cafeteria.Also, the campus is in an excellent spot for environmental and biological sciences lab and classroom experiences for students. The campus has the capability to put power and Internet access almost anywhere on its 200 acre campus so experiments can be set up in a protected area of a national forest. For example, Earthscope operates a Plate Boundary Observatory sensor on campus to measure plate tectonic motion. And, Clemson University has an instrument measuring winds and temperatures in the Thermsophere. The use of thePARI campus is limited only by the creativity faculty to provide a rich educational environment for their students. An overview of PARI will be presented along with a summary of programs, and a summary of undergraduate research experiences over the past 15 years. Access to PARI and collaboration possibilities will be presented.
Heat Treat Shop in the Technical Services Building
1948-01-21
A technician prepares a metal component for a high-temperature bake in the Heat Treatment Shop at the National Advisory Committee for Aeronautics (NACA) Lewis Flight Propulsion Laboratory. Fabrication Division under Dan White and John Dalgleish created almost all of the equipment and models used at the laboratory. The Technical Services Building, referred to as the Fab Shop, contained a number of specialized shops in the 1940s and 1950s. These included a Machine Shop, Sheet Metal Shop, Wood and Pattern Shop, Instrument Shop, Thermocouple Shop, Heat Treating Shop, Metallurgical Laboratory, and Fabrication Office. The Metallurgical Laboratory contained a control lab for the Heat Treating Shop and a service lab for the NACA Lewis research divisions. This metallurgical group performed tensile and impact tests on metals to determine their suitability for specific research or equipment. The Heat Treating Shop heated metal parts to optimize their physical properties and contained a Precision Castings Foundry to manufacture equipment made of heat resisting alloys.
Virtual Doppelgangers: Psychological Effects of Avatars Who Ignore Their Owners
NASA Astrophysics Data System (ADS)
Bailenson, Jeremy N.; Segovia, Kathryn Y.
For a decade, the Virtual Human Interaction Lab has been creating doppelgangers, virtual versions of the self, for research purposes. This chapter considers how humans may be affected by confrontation with virtual versions of themselves, on the basis of well-established psychological theories, including social cognitive theory (social learning theory), media richness theory (information richness theory), and self-perception theory. Experiments carried out in the Lab, and informed by these theories, have explored such notable topics as health communication, marketing, and false memories. The findings of one series of studies suggest that doppelgangerscan show the rewards of exercise and proper eating habits, changing people's health-related behavior as a result. Other studies showed that doppelgangers are powerful marketing agents and can be used in advertisements to create favorable brand impressions among consumers. Other research documented that children have difficulty in distinguishing between an actual memory elicited by a physical world event and a false memory elicited by mental image or doppelganger.
The QuarkNet CMS masterclass: bringing the LHC to students
NASA Astrophysics Data System (ADS)
Cecire, Kenneth; McCauley, Thomas
2016-04-01
QuarkNet is an educational program which brings high school teachers and their students into the particle physics research community. The program supports research experiences and professional development workshops and provides inquiry-oriented investigations, some using real experimental data. The CMS experiment at the LHC has released several thousand proton-proton collision events for use in education and outreach. QuarkNet, in collaboration with CMS, has developed a physics masterclass and e-Lab based on this data. A masterclass is a day-long educational workshop where high school students travel to nearby universities and research laboratories. There they learn from LHC physicists about the basics of particle physics and detectors. They then perform a simple measurement using LHC data, and share their results with other students around the world via videoconference. Since 2011 thousands of students from over 25 countries have participated in the CMS masterclass as organized by QuarkNet and the International Particle Physics Outreach Group (IPPOG).We describe here the masterclass exercise: the physics, the online event display and database preparation behind it, the measurement the students undertake, their results and experiences, and future plans for the exercise.
Improving the Quality of Lab Reports by Using Them as Lab Instructions
NASA Astrophysics Data System (ADS)
Haagen-Schuetzenhoefer, Claudia
2012-10-01
Lab exercises are quite popular in teaching science. Teachers have numerous goals in mind when teaching science laboratories. Nevertheless, empirical research draws a heterogeneous picture of the benefits of lab work. Research has shown that it does not necessarily contribute to the enhancement of practical abilities or content knowledge. Lab activities are frequently based on recipe-like, step-by-step instructions ("cookbook style"), which do not motivate students to engage cognitively. Consequently, students put the emphasis on "task completion" or "manipulating equipment."2
Toward better physics labs for future biologists
NASA Astrophysics Data System (ADS)
Moore, K.; Giannini, J.; Losert, W.
2014-05-01
We have developed a set of laboratories and hands on activities to accompany a new two-semester interdisciplinary physics course that has been developed and tested in two small test classes at the University of Maryland, College Park (UMD) in 2012-2013. We have designed the laboratories to be taken accompanying a reformed course in the student's second year, with calculus, biology, and chemistry as prerequisites. These prerequisites permit the laboratories to include significant content on physics relevant to cellular scales, from chemical interactions to random motion and charge screening in fluids. We also introduce students to research-grade equipment and modern physics analysis tools in contexts relevant to biology while maintaining the pedagogically valuable open-ended laboratory structure of reformed laboratories. Preliminary student response results from these two classes are discussed.
Mills, Katelyn E.; Han, Zetta; Robbins, Jesse
2018-01-01
The use of animals in research is controversial and often takes place under a veil of secrecy. Lab animal technicians responsible for the care of animals at research institutions are sometimes described as performing ‘dirty work’ (i.e. professions that are viewed as morally tainted), and may be stigmatized by negative perceptions of their job. This study assessed if transparency affects public perceptions of lab animal technicians and support for animal research. Participants (n = 550) were randomly assigned to one of six scenarios (using a 3x2 design) that described identical research varying only the transparency of the facility (low, high) and the species used (mice, dogs, cows). Participants provided Likert-type and open-ended responses to questions about the personal characteristics (warmth, competence) of a hypothetical lab technician ‘Cathy’ and their support for the described research. Quantitative analysis showed participants in the low-transparency condition perceived Cathy to be less warm and were less supportive of the research regardless of animal species. Qualitative responses varied greatly, with some participants expressing support for both Cathy and the research. These results suggest that increasing transparency in lab animal institutions could result in a more positive perception of lab animal researchers and the work that they do. PMID:29466425
Mills, Katelyn E; Han, Zetta; Robbins, Jesse; Weary, Daniel M
2018-01-01
The use of animals in research is controversial and often takes place under a veil of secrecy. Lab animal technicians responsible for the care of animals at research institutions are sometimes described as performing 'dirty work' (i.e. professions that are viewed as morally tainted), and may be stigmatized by negative perceptions of their job. This study assessed if transparency affects public perceptions of lab animal technicians and support for animal research. Participants (n = 550) were randomly assigned to one of six scenarios (using a 3x2 design) that described identical research varying only the transparency of the facility (low, high) and the species used (mice, dogs, cows). Participants provided Likert-type and open-ended responses to questions about the personal characteristics (warmth, competence) of a hypothetical lab technician 'Cathy' and their support for the described research. Quantitative analysis showed participants in the low-transparency condition perceived Cathy to be less warm and were less supportive of the research regardless of animal species. Qualitative responses varied greatly, with some participants expressing support for both Cathy and the research. These results suggest that increasing transparency in lab animal institutions could result in a more positive perception of lab animal researchers and the work that they do.
Promoting Scientist Communications Through Graduate Summer School in Heliophysics and Space Physics
NASA Astrophysics Data System (ADS)
Gross, N. A.; Schrijver, K.; Bagenal, F.; Sojka, J. J.; Wiltberger, M. J.
2014-12-01
edagogical tools that promote student interaction can be applied successfully during graduate workshops to enhance community and communication among the participants and instructors. The NASA/LWS funded Heliophysics Summer School and the NSF funded Space Weather Summer School provide graduate students starting research in the field, and others who are involved in space physics, an opportunity to learn from and interact with leaders in the field and each other. These interactions can happen casually, but there are a number of programatic aspects that foster the interaction so that they can be as fruitful as possible during the short period. These include: specific "ice-breaker" activities, practicing "elevator speeches", embedded lecture questions, question cards, discussion questions, interactive lab activities, structured lab groups, and use of social media. We are continuing to develop new ways to foster profession interaction during these short courses. Along with enhancing their own learning, the inclusion of these strategies provides both the participants and the instructors with models of good pedagogical tools and builds community among the students. Our specific implementation of these strategies and evidence of success will be presented.
NASA Astrophysics Data System (ADS)
Harkay, Gregory
2001-11-01
Interest on the part of the Physics Department at KSC in developing a computer interfaced lab with appeal to biology majors and a need to perform a clinical pulmonological study to fulfill a biology requirement led to the author's undergraduate research project in which a recording spirometer (typical cost: $15K) was constructed from readily available materials and a typical undergraduate lab computer interface. Simple components, including a basic photogate circuit, CPU fan, and PVC couplings were used to construct an instrument for measuring flow rates as a function of time. Pasco software was used to build an experiment in which data was collected and integration performed such that one could obtain accurate values for FEV1 (forced expiratory volume for one second) and FVC (forced vital capacity) and their ratio for a large sample of subjects. Results were compared to published norms and subjects with impaired respiratory mechanisms identified. This laboratory exercise is one with which biology students can clearly identify and would be a robust addition to the repertoire for a HS or college physics or biology teaching laboratory.
NASA Astrophysics Data System (ADS)
Boyd, Beth Nichols
The calculation of workload for science instructors who teach classes with laboratory components at the community college level is inconsistent. Despite recommendations from the National Research Council (1996) and the large body of evidence which indicates that activity-based instruction produces greater learning gains than passive, lecture-based instruction, many community colleges assign less value to the time spent in science lab than in lecture in workload calculations. This discrepancy is inconsistent with both current state and nation-wide goals of science excellence and the standards set by the American Chemical Society (2009) and the American Association of Physics Teachers (2002). One implication of this differential lab-loading policy is that the science instructors must teach more hours per week to make the same workload as their colleagues in other disciplines which have no formal laboratory activities. Prior to this study, there was no aggregate data regarding the extent of this policy at the community college level nor of its possible impact upon instruction. The input of full-time two-year college members of four different professional science organizations was solicited and from their responses, it is clear that differential loading of lab hours is common and widely variable. A majority of the respondents to this study had their hours in lab assigned less credit than their hours in lecture, with multiple perceived impacts upon lab preparation, assistance, revision, and follow-up activities. In combination with open-ended comments made by study participants, the results suggest that science instructors do perceive impacts upon their ability to teach science labs in a pedagogically current and challenging manner when their hours spent in lab instruction are counted for less than their hours in lecture. It is hoped that the information from this study will be used to implement improvements in the working conditions needed to advance science instruction and student science outcomes at the community college level.
Viscosity of Common Seed and Vegetable Oils
NASA Astrophysics Data System (ADS)
Wes Fountain, C.; Jennings, Jeanne; McKie, Cheryl K.; Oakman, Patrice; Fetterolf, Monty L.
1997-02-01
Viscosity experiments using Ostwald-type gravity flow viscometers are not new to the physical chemistry laboratory. Several physical chemistry laboratory texts (1 - 3) contain at least one experiment studying polymer solutions or other well-defined systems. Several recently published articles (4 - 8) indicated the continued interest in using viscosity measurements in the teaching lab to illustrate molecular interpretation of bulk phenomena. Most of these discussions and teaching experiments are designed around an extensive theory of viscous flow and models of molecular shape that allow a full data interpretation to be attempted. This approach to viscosity experiments may not be appropriate for all teaching situations (e.g., high schools, general chemistry labs, and nonmajor physical chemistry labs). A viscosity experiment is presented here that is designed around common seed and vegetable oils. With the importance of viscosity to foodstuffs (9) and the importance of fatty acids to nutrition (10), an experiment using these common, recognizable oils has broad appeal.
Angelo State SPS Marsh White Award: Physics After School Special (P.A.S.S.)
NASA Astrophysics Data System (ADS)
Desai, Vikesh; Sauncy, Toni
2012-03-01
With a recent Marsh White Award from the SPS National Office, the Angelo State SPS has teamed up with a local YMCA after school program to provide fun lab experiences for the diverse group of K-3^rd graders. Several undergraduate presenters are involved, and the funding was used to purchase tshirts for all participants. The afterschool group of approximately 30 children has visited the campus for the first lab session and plans three additional hands on lab experiences over the course of the semester. For the final visit, the Peer Pressure Team will conduct a full demonstration show and P.A.S.S. Party. The goal of this public engagement is to motivate these young students to learn more about physics with hands on activities in a fun and safe environment and to establish meaningful mentoring relationships between undergraduate physics majors and younger students.
2003-11-19
KENNEDY SPACE CENTER, FLA. - The Honorable Toni Jennings (left), lieutenant governor of the state of Florida, and Frank T. Brogan, president of Florida Atlantic University, receive a briefing on the research that will be conducted in the Space Life Sciences Lab from Dr. Robert J. Ferl (right), director of Space Agriculture Biotechnology Research and Education (SABRE), University of Florida. Jennings and Brogan are speaking at a dedication and ribbon-cutting ceremony for the lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
A digital frequency stabilization system of external cavity diode laser based on LabVIEW FPGA
NASA Astrophysics Data System (ADS)
Liu, Zhuohuan; Hu, Zhaohui; Qi, Lu; Wang, Tao
2015-10-01
Frequency stabilization for external cavity diode laser has played an important role in physics research. Many laser frequency locking solutions have been proposed by researchers. Traditionally, the locking process was accomplished by analog system, which has fast feedback control response speed. However, analog system is susceptible to the effects of environment. In order to improve the automation level and reliability of the frequency stabilization system, we take a grating-feedback external cavity diode laser as the laser source and set up a digital frequency stabilization system based on National Instrument's FPGA (NI FPGA). The system consists of a saturated absorption frequency stabilization of beam path, a differential photoelectric detector, a NI FPGA board and a host computer. Many functions, such as piezoelectric transducer (PZT) sweeping, atomic saturation absorption signal acquisition, signal peak identification, error signal obtaining and laser PZT voltage feedback controlling, are totally completed by LabVIEW FPGA program. Compared with the analog system, the system built by the logic gate circuits, performs stable and reliable. User interface programmed by LabVIEW is friendly. Besides, benefited from the characteristics of reconfiguration, the LabVIEW program is good at transplanting in other NI FPGA boards. Most of all, the system periodically checks the error signal. Once the abnormal error signal is detected, FPGA will restart frequency stabilization process without manual control. Through detecting the fluctuation of error signal of the atomic saturation absorption spectrum line in the frequency locking state, we can infer that the laser frequency stability can reach 1MHz.
Simulation-Based e-Learning Tools for Science,Engineering, and Technology Education(SimBeLT)
NASA Astrophysics Data System (ADS)
Davis, Doyle V.; Cherner, Y.
2006-12-01
The focus of Project SimBeLT is the research, development, testing, and dissemination of a new type of simulation-based integrated e-learning set of modules for two-year college technical and engineering curricula in the areas of thermodynamics, fluid physics, and fiber optics that can also be used in secondary schools and four-year colleges. A collection of sophisticated virtual labs is the core component of the SimBeLT modules. These labs will be designed to enhance the understanding of technical concepts and underlying fundamental principles of these topics, as well as to master certain performance based skills online. SimBeLT software will help educators to meet the National Science Education Standard that "learning science and technology is something that students do, not something that is done to them". A major component of Project SimBeLT is the development of multi-layered technology-oriented virtual labs that realistically mimic workplace-like environments. Dynamic data exchange between simulations will be implemented and links with instant instructional messages and data handling tools will be realized. A second important goal of Project SimBeLT labs is to bridge technical skills and scientific knowledge by enhancing the teaching and learning of specific scientific or engineering subjects. SimBeLT builds upon research and outcomes of interactive teaching strategies and tools developed through prior NSF funding (http://webphysics.nhctc.edu/compact/index.html) (Project SimBeLT is partially supported by a grant from the National Science Foundation DUE-0603277)
ERIC Educational Resources Information Center
Kloser, Matthew J.; Brownell, Sara E.; Shavelson, Richard J.; Fukami, Tadashi
2013-01-01
Undergraduate biology lab courses have long been criticized for engaging students in "cookbook" experiences in which students follow a given protocol to collect data that help answer a predetermined question. Recent reform documents in biology education have suggested that students should engage in lab courses that provide more authentic…
Leveraging R&D Resources via the Joint LLC Model
NASA Astrophysics Data System (ADS)
Ganz, Matthew W.
2008-03-01
Industrial scientific research labs have become increasingly stressed in recent years by a variety of external forces. Both corporations and government funding agencies have shifted their priorities from long-term fundamental research toward projects that have a high probability of shorter-term payoff. Industrial funding has been further stressed by an increasing demand for quarterly results and fierce global competition. Industry leaders are now asking their R&D labs for ``home runs” and not just a solid base in the physical sciences. The end of the Cold War has also left the US without a declared enemy whose overt intention was to defeat us through a mastery of large-scale weaponry based upon exploitation of fundamental physics. This, when combined with a bona-fide need for technology gap fillers to respond to on-the-ground threats in the current Middle East conflicts, has led to diminished government emphasis on long-term research in the physical sciences. Simultaneously, the global sources of R&D spending are expanding. The dramatic growth of private equity in the technology development arena has both drawn talent from industry and changed the expectations on researchers. R&D spending in China, India and many other countries is growing significantly. Thus, in order to become relevant, industry must now keep its finger on the pulse of the hundreds of billions of dollars being invested privately and publicly around the world. HRL Laboratories, LLC in Malibu, California represents a unique and successful new business model for industrial R&D. HRL was founded by Howard Hughes in 1948 as the Hughes Research Laboratory and for more than four decades was the internal R&D lab for the Hughes Aircraft Company. After a series of mergers, acquisitions and divestitures over the past 15 years, HRL is now a stand-alone LLC that is owned jointly by General Motors and the Boeing Company. HRL, with a staff of about 300, performs R&D services for GM and Boeing as well as for government and commercial entities. The central themes to HRL’s business model are innovation, value and leverage. Leverage is key to the company’s success. HRL’s business model has been carefully honed to allow its parent companies to perform proprietary R&D in certain areas and joint, collaborative R&D among the LLC members in others. The intellectual property arrangements are skillfully organized so that the LLC Members receive a greater than 4:1 leverage of their research dollars in terms of the IP rights gained. This briefing will describe an overview of the current industrial research environment, HRL’s business model, and challenges to future success.
ERIC Educational Resources Information Center
Rose, Chantelle M.; Adams, Jacqueline M.; Hinchey, Elizabeth K.; Nestlerode, Janet A.; Patterson, Mark R.
2013-01-01
Pressure increases rapidly with depth in a water body. Ocean and Great Lakes scientists often use this physical feature of water as the basis of a fun pastime performed aboard research vessels around the world: the shrinking of polystyrene cups. Depending on the depth to which the cups are deployed, the results can be quite striking! Capitalizing…
SD46 Facilities and Capabilities
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Curreri, Peter A. (Technical Monitor)
2002-01-01
The displays for the Materials Conference presents some of the facilities and capabilities in SD46 that can be useful to a prospective researcher from University, Academia or other government labs. Several of these already have associated personnel as principal and co-investigators on NASA peer reviewed science investigations. 1. SCN purification facility 2. ESL facility 3. Static and Dynamic magnetic field facility 4. Microanalysis facility 5. MSG Investigation - PFMI 6. Thermo physical Properties Measurement Capabilities.
Understanding the Femtosecond Laser-Solid Interaction Near and Beyond the Material Damage Threshold
2016-05-23
study of the fundamentals of femtosecond laser damage as a function of various parameters, laser wavelength, pulsewidth, pulse number, experimental ... experimental observation without any free parameters. The brand new FSD Lab constructed under the BRI grant in the Physics Research Building at the Ohio... studied across a range of band-gaps for s- and p-polarized light and it is found that conventional theoretical prediction on laser damage threshold
NASA Astrophysics Data System (ADS)
Gallagher, L.; Morse, M.; Maxwell, R. M.; Cottrell, S.; Mattor, K.
2016-12-01
An ongoing NSF-WSC project was used as a launchpad for implementing a collaborative honors course at the Colorado School of Mines (CSM) and Colorado State University (CSU). The course examined current physical and social science research on the effects of the Mountain Pine Beetle (MPB) on regional social and hydro-ecological systems in the Rocky Mountain West. In addition to general classroom content delivery, community outreach experience and development for the participating undergraduate students was integrated into the course. Upon learning about ongoing MPB research from project PIs and researchers, students were guided to develop their own methodology to educate students and the community about the main project findings. Participants at CSM and CSU worked together to this end in a synchronous remote classroom environment. Students at both universities practiced their methods and activities with various audiences, including local elementary students, other undergraduate and graduate peers, and delivered their activities to sixth-grade students at a local outdoor lab program (Windy Peak Outdoor Lab, Jefferson County, CO). Windy Peak Outdoor Lab has integrated the student-developed content into their curriculum, which reaches approximately 6,000 students in the Jefferson County, CO school district each year. This experiential learning course will be used as a template for future Honors STEM education course development at CSM and was a unique vessel for conveying the studied effects of the MPB to a K-12 audience.
Virtual and remote experiments for radiometric and photometric measurements
NASA Astrophysics Data System (ADS)
Thoms, L.-J.; Girwidz, R.
2017-09-01
The analysis of spectra is fundamental to our modern understanding of wave optics and colour perception. Since spectrometers are expensive, and accurate calibration is necessary to achieve high quality spectra, we developed a remote lab on optical spectrometry. With this tool, students can carry out real experiments over the Internet. In this article the pros and cons of remote labs, the physical background of optical spectrometry, and the development and use of a radiometric remote lab for higher education are discussed. The remote lab is freely accessible to everyone at http://virtualremotelab.net.
GeneLab: Multi-Omics Investigation of Rodent Research-1 Bio-Banked Tissues
NASA Technical Reports Server (NTRS)
Lai, San-Huei; Boyko, Valery; Chakravarty, Kaushik; Chen, Rick; Dueck, Sandra; Berrios, Daniel C.; Fogle, Homer; Marcu, Oana; Timucin, Linda; Reinsch, Sigrid;
2016-01-01
NASAs Rodent Research (RR) project is playing a critical role in advancing biomedical research on the physiological effects of space environments. Due to the limited resources for conducting biological experiments aboard the International Space Station (ISS), it is imperative to use crew time efficiently while maximizing high-quality science return. NASAs GeneLab project has as its primary objectives to 1) further increase the value of these experiments using a multi-omics, systems biology-based approach, and 2) disseminate these data without restrictions to the scientific community. The current investigation assessed viability of RNA, DNA, and protein extracted from archived RR-1 tissue samples for epigenomic, transcriptomic, and proteomic assays. During the first RR spaceflight experiment, a variety of tissue types were harvested from subjects, snap-frozen or RNAlater-preserved, and then stored at least a year at -80OC after return to Earth. They were then prioritized for this investigation based on likelihood of significant scientific value for spaceflight research. All tissues were made available to GeneLab through the bio-specimen sharing program managed by the Ames Life Science Data Archive and included mouse adrenal glands, quadriceps, gastrocnemius, tibialis anterior, extensor digitorum longus, soleus, eye, and kidney. We report here protocols for and results of these tissue extractions, and thus, the feasibility and value of these kinds of omics analyses. In addition to providing additional opportunities for investigation of spaceflight effects on the mouse transcriptome and proteome in new kinds of tissues, our results may also be of value to program managers for the prioritization of ISS crew time for rodent research activities. Support from the NASA Space Life and Physical Sciences Division and the International Space Station Program is gratefully acknowledged.
Inductance Scaling of a Helicoil Using ALEGRA
2013-05-01
HOUSKAMP 3 US ARMY RESEARCH LAB RDRL WMP E P BARTKOWSKI D HORNBAKER P SWOBODA 1 US ARMY RESEARCH LAB RDRL WMP F N GNIAZDOWSKI 1 US ARMY RESEARCH LAB RDRL...HAILL 1 UNIVERSITY OF ALABAMA AT BIRMINGHAM D LITTLEFIELD 1 DEFENSE RESEARCH AGENCY B JAMES 2 ENIG ASSOCIATES, INC. E ENIG D BENTZ 42 ...January 2012 Inductance Scaling of a Helicoil Using ALEGRA Robert Doney U.S. Army Research Laboratory ATTN: RDRL-WMP- D Aberdeen Proving Ground, MD 21005
Physical Warmth and Perceptual Focus: A Replication of IJzerman and Semin (2009)
Schilder, Janneke D.; IJzerman, Hans; Denissen, Jaap J. A.
2014-01-01
With the changing of modal research practices in psychology, the grounded cognition perspective (sometimes categorized under the more popular term of “social priming”) has become heavily criticized. Specifically, LeBel and Campbell (2013) reported a failed replication of a study involving what some would call “social priming.” We sought to replicate a study from our own lab (IJzerman & Semin, 2009), to investigate the reproducibility of the reported effect that physical warmth leads to a greater focus on perceptual relations. We also improved our methods to reduce potential experimenter's bias (cf. Doyen, Klein, Pichon, & Cleeremans, 2012). We successfully replicated the finding that a simple cue of physical warmth makes people more likely to adopt a relational focus. PMID:25402343
A Project To Make the Laboratory More Accessible to Students with Disabilities
NASA Astrophysics Data System (ADS)
Lunsford, Suzanne K.; Bargerhuff, Mary Ellen
2006-03-01
This article describes project CLASS (Creating Laboratory Access for Science Students) an innovative NSF-funded project originating at Wright State University in Dayton, Ohio. Project CLASS enables students to participate in chemistry labs regardless of physical or learning disabilities in grades 7 12. This nationally recognized project prepares educators to accommodate and develop adaptive lab equipment to meet the needs of students with physical and learning disabilities while maintaining the integrity of the science curriculum.
NASA Technical Reports Server (NTRS)
Spivey, Reggie A.; Jordan, Lee P.
2012-01-01
The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas.
Undergraduate Research in Physics as a course for Engineering and Computer Science Majors
NASA Astrophysics Data System (ADS)
O'Brien, James; Rueckert, Franz; Sirokman, Greg
2017-01-01
Undergraduate research has become more and more integral to the functioning of higher educational institutions. At many institutions undergraduate research is conducted as capstone projects in the pure sciences, however, science faculty at some schools (including that of the authors) face the challenge of not having science majors. Even at these institutions, a select population of high achieving engineering students will often express a keen interest in conducting pure science research. Since a foray into science research provides the student the full exposure to the scientific method and scientific collaboration, the experience can be quite rewarding and beneficial to the development of the student as a professional. To this end, the authors have been working to find new contexts in which to offer research experiences to non- science majors, including a new undergraduate research class conducted by physics and chemistry faculty. An added benefit is that these courses are inherently interdisciplinary. Students in the engineering and computer science fields step into physics and chemistry labs to solve science problems, often invoking their own relevant expertise. In this paper we start by discussing the common themes and outcomes of the course. We then discuss three particular projects that were conducted with engineering students and focus on how the undergraduate research experience enhanced their already rigorous engineering curriculum.
Maalej, N; Al-Karmi, A; Al-Sadah, J; Abdel-Rahman, W
2012-06-01
The first medical physics Master's program in the Arabian Gulf region was started in 2002 at King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia. After consulting with national and international representatives from the AAPM, IOMP, the University of Wisconsin-Madison and King Faisal Specialist Hospital and Research Center (KFSHRC) we constructed a versatile and rigorous curriculum. The program requires the completion of 7 core courses, 7 required labs, a minimum of 3 elective courses, a research project, a four-month clinical rotation and passing and a comprehensive examination. The success of the program required very close collaboration with national hospitals such as King Fahad Specialist Hospital in Dammam (KFSH-D), KFSHRC, and Riyadh Military Hospital. We cemented the collaboration with a formal agreement between KFUPM and KFSH-D, whereby the clinical medical physicists are actively involved in teaching lectures and labs, evaluating students' performance and co-supervising their clinical rotation and research projects. In order to prepare our graduates for their medical physics careers, we emphasize innovative learning methods such as students centered learning, execution of course projects, experiential learning and acquiring research skills and tools such as Monte Carlo simulations. Our graduates have succeeded in securing clinical positions in some of the best hospitals in the region and achieved high employer satisfaction. Some students have gone to pursue their PhD's in North America and Europe. Many of our students succeeded in publishing their projects in international journals and international conferences. One of our students was instrumental in obtaining a US patent (US Patent # 785298) for an innovative x-ray tube design. We have achieved national recognition through the excellence of our graduates. In order to maintain high education quality standards and achieve international recognition, we are presently working to acquire IAEA approval and CAMPEP accreditation. © 2012 American Association of Physicists in Medicine.
Replacing textbook problems with lab experiences
NASA Astrophysics Data System (ADS)
Register, Trevor
2017-10-01
End-of-the-chapter textbook problems are often the bread and butter of any traditional physics classroom. However, research strongly suggests that students be given the opportunity to apply their knowledge in multiple contexts as well as be provided with opportunities to do the process of science through laboratory experiences. Little correlation has been shown linking the number of textbook problems solved with conceptual understanding of topics in mechanics. Furthermore, textbook problems as the primary source of practice for students robs them of the joy and productive struggle of learning how to think like an experimental physicist. Methods such as Modeling Instruction tackle this problem head-on by starting each instructional unit with an inquiry-based lab aimed at establishing the important concepts and equations for the unit, and this article will discuss ideas and experiences for how to carry that philosophy throughout a unit.
Student Self-Efficacy in Introductory Project-Based Learning Courses
NASA Astrophysics Data System (ADS)
Pleiss, Geoffrey; Zastavker, Yevgeniya V.
2012-02-01
This study investigates first-year engineering students' self-efficacy in two introductory Project-Based Learning (PjBL) courses -- Physics (Mechanics) Laboratory and Engineering Design -- taught at a small technical institution. Twelve students participated in semi-structured open-ended interviews about their experiences in both courses. Analysis was performed using grounded theory. Results indicate that students had lower self-efficacy in Physics Lab than in Engineering Design. In Physics Lab, students reported high levels of faculty-supported scaffolding related to final project deliverables, which in turn established perceptions of an outcome-based course emphasis. Conversely, in Engineering Design, students observed high levels of scaffolding related to the intermediate project deliverables, highlighting process-centered aspects of the course. Our analyses indicate that this difference in student perceptions of course emphases -- resulting from the differences in scaffolding -- is a primary factor for the discrepancy in self-efficacy between Physics Lab and Engineering Design. Future work will examine how other variables (e.g., academic background, perception of community, gender) affect students' self-efficacy and perception of scaffolding in these PjBL courses.
Scientist to appeal misconduct charge
NASA Astrophysics Data System (ADS)
Gwynne, Peter
2008-08-01
Lawyers for the "bubble-fusion" researcher Rusi Taleyarkhan have told Physics World that he will appeal over the findings of a panel that last month found him guilty of two charges of scientific misconduct. Taleyarkhan, a nuclear engineer at Purdue University in the US, was charged by a sixmember internal committee, which concluded that he had cited a paper by researchers in his own lab as if it were an independent confirmation of his alleged discovery of bubble fusion in 2002. The committee also found him guilty of adding the name of a student who had not contributed to that paper as an author.
Teaching Plasmonics, Scanning Probe Microscopy and Other Useful Experiments at the Upper Level
NASA Astrophysics Data System (ADS)
Sanchez, Erik
2012-10-01
It is important to teach students concepts and experimental skills relating to modern research being performed today. Experiments that help educate students about the latest research helps them get jobs and into the doors at many great academic institutions. PSU's Advanced Experimental Class for physics undergraduates offers many novel experiments to help the students accomplish this task. Labs involving Plasmonics, thin film deposition, scanning probe microscopy (SPM) and more will be discussed. In addition, a new NSF funded project involving the building of a Do-It-Yourself (DIY) SPM will be discussed.
Activity Report of the Language Laboratory of the University of Zurich
ERIC Educational Resources Information Center
Ebneter, Theodor
1975-01-01
Reports on the lab's activities as a center for the development of university language lab courses and for research into contemporary oral colloquial French, a part of the applied linguistics research area, and a center for the development of a language lab grammar for Zurich German. (RM)
ERIC Educational Resources Information Center
Pilarz, Matthew
2013-01-01
For this study, a research-based lab module was implemented in two high school chemistry classes for the purpose of examining classroom dynamics throughout the process of students completing the module. A research-based lab module developed for use in undergraduate laboratories by the Center for Authentic Science Practice in Education (CASPiE) was…
250 Years of Physics at the College of William and Mary: 1760-2010
NASA Astrophysics Data System (ADS)
von Baeyer, Hans
2010-02-01
The recorded history of physics at William and Mary begins when Thomas Jefferson, the College's most distinguished alumnus, meets his mentor, Dr. William Small of Scotland, who opens his eyes to the wonders of natural philosophy. After the vicissitudes of the Revolution and the Civil War, physics enjoys a revival in the twentieth century, culminating in the creation of a Ph.D. program in the 1960s and the building of the William Small Physical Laboratory in Williamsburg. In the 1980s the modern era is launched by the establishment of the US Department of Energy's Jefferson Lab for nuclear physics in nearby Newport News. Today both Small Hall and Jefferson Lab are in the process of renovation. The legacies of Small and Jefferson for physics at William and Mary are secure! )
NASA Technical Reports Server (NTRS)
Monroe, Joseph; Kelkar, Ajit
2003-01-01
The NASA PAIR program incorporated the NASA-Sponsored research into the undergraduate environment at North Carolina Agricultural and Technical State University. This program is designed to significantly improve undergraduate education in the areas of mathematics, science, engineering, and technology (MSET) by directly benefiting from the experiences of NASA field centers, affiliated industrial partners and academic institutions. The three basic goals of the program were enhancing core courses in MSET curriculum, upgrading core-engineering laboratories to compliment upgraded MSET curriculum, and conduct research training for undergraduates in MSET disciplines through a sophomore shadow program and through Research Experience for Undergraduates (REU) programs. Since the inception of the program nine courses have been modified to include NASA related topics and research. These courses have impacted over 900 students in the first three years of the program. The Electrical Engineering circuit's lab is completely re-equipped to include Computer controlled and data acquisition equipment. The Physics lab is upgraded to implement better sensory data acquisition to enhance students understanding of course concepts. In addition a new instrumentation laboratory in the department of Mechanical Engineering is developed. Research training for A&T students was conducted through four different programs: Apprentice program, Developers program, Sophomore Shadow program and Independent Research program. These programs provided opportunities for an average of forty students per semester.
Long-Time Scientist Works to Prove Chemistry’s Place in Cancer Research | Poster
By Carolynne Keenan, Contributing Writer When Larry Keefer, Ph.D., first arrived at the National Cancer Institute (NCI) more than 40 years ago, he didn’t have a physical lab to call his own. Not immediately, anyway, due to a glitch in the construction schedule, he explained. So he spent his first few years in Bethesda doing administrative work, like reviewing
HOLONET: a network for training holography
NASA Astrophysics Data System (ADS)
Pombo, Pedro; Santos, Emanuel
2014-07-01
Holography is an optics technique based on wave physics and lasers with several applications at our day life. The production of holograms involves experimental work based on hands-on activities and creativity. All these elements can contribute to the promotion of experimental teaching of optics and training on holography. The hologram itself acting as a final result from a long process of research and study can enable the engagement of high school students on physics and promote the stimulus on optics learning. Taking these assumptions into account a network of schools working on holography was built involving thirty schools from all country. Holography systems were developed and several hands-on activities were constructed. During last sixteen years students are working on laser optics and holography producing different kinds of holograms. This study presents all holography labs implemented at schools and it will analyzed the holography systems and materials developed for students. Training strategy will be discussed and holograms obtained by students will be presented. Results obtained show us that holography can be implemented as a strategy for promoting the learning of optics and it is a particular way to involve students on experimental work and lab research. Results obtained during this study will be presented in detail and analyzed with focus on students performance. Educational results, teachers training, prizes and other positive outcomes will be discussed and compared.
LBNL Computational ResearchTheory Facility Groundbreaking - Full Press Conference. Feb 1st, 2012
Yelick, Kathy
2018-01-24
Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.
LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yelick, Kathy
2012-02-02
Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.
LBNL Computational Research and Theory Facility Groundbreaking. February 1st, 2012
Yelick, Kathy
2017-12-09
Energy Secretary Steven Chu, along with Berkeley Lab and UC leaders, broke ground on the Lab's Computational Research and Theory (CRT) facility yesterday. The CRT will be at the forefront of high-performance supercomputing research and be DOE's most efficient facility of its kind. Joining Secretary Chu as speakers were Lab Director Paul Alivisatos, UC President Mark Yudof, Office of Science Director Bill Brinkman, and UC Berkeley Chancellor Robert Birgeneau. The festivities were emceed by Associate Lab Director for Computing Sciences, Kathy Yelick, and Berkeley Mayor Tom Bates joined in the shovel ceremony.
2003-11-19
KENNEDY SPACE CENTER, FLA. - Frank T. Brogan, president of the Florida Atlantic University, speaks at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
2003-11-19
KENNEDY SPACE CENTER, FLA. - Dignitaries, invited guests, space center employees, and the media gather for a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
2003-11-19
KENNEDY SPACE CENTER, FLA. - Capt. Winston Scott, executive director of the Florida Space Authority, speaks at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
Lab-on-Skin: A Review of Flexible and Stretchable Electronics for Wearable Health Monitoring.
Liu, Yuhao; Pharr, Matt; Salvatore, Giovanni Antonio
2017-10-24
Skin is the largest organ of the human body, and it offers a diagnostic interface rich with vital biological signals from the inner organs, blood vessels, muscles, and dermis/epidermis. Soft, flexible, and stretchable electronic devices provide a novel platform to interface with soft tissues for robotic feedback and control, regenerative medicine, and continuous health monitoring. Here, we introduce the term "lab-on-skin" to describe a set of electronic devices that have physical properties, such as thickness, thermal mass, elastic modulus, and water-vapor permeability, which resemble those of the skin. These devices can conformally laminate on the epidermis to mitigate motion artifacts and mismatches in mechanical properties created by conventional, rigid electronics while simultaneously providing accurate, non-invasive, long-term, and continuous health monitoring. Recent progress in the design and fabrication of soft sensors with more advanced capabilities and enhanced reliability suggest an impending translation of these devices from the research lab to clinical environments. Regarding these advances, the first part of this manuscript reviews materials, design strategies, and powering systems used in soft electronics. Next, the paper provides an overview of applications of these devices in cardiology, dermatology, electrophysiology, and sweat diagnostics, with an emphasis on how these systems may replace conventional clinical tools. The review concludes with an outlook on current challenges and opportunities for future research directions in wearable health monitoring.
NASA Astrophysics Data System (ADS)
Brinson, James R.
2017-10-01
This paper further characterizes recently reviewed literature related to student learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) science labs, as well as factors to consider when evaluating the state and progress of research in this field as a whole. Current research is characterized according to (1) participant nationality and culture, (2) participant education level, (3) participant demography, (4) scientific discipline, and (5) research methodology, which could provide avenues for further research and useful dialog regarding the measurement and interpretation of data related to student learning outcome achievement in, and thus the efficacy of, non-traditional versus traditional science labs. Current research is also characterized by (6) research publication media and (7) availability of non-traditional labs used, which demonstrate some of the obstacles to progress and consensus in this research field.
NASA Astrophysics Data System (ADS)
Gourlay, Barbara Elas
This research project investigates communication between international teaching assistants and their undergraduate students in university-level chemistry labs. During the fall semester, introductory-level chemistry lab sections of three experienced non-native speaking teaching assistants and their undergraduate students were observed. Digital audio and video recordings documented fifteen hours of lab communication, focusing on the activities and interactions in the first hour of the chemistry laboratory sessions. In follow-up one-on-one semi-structured interviews, the participants (undergraduates, teaching assistants, and faculty member) reviewed interactions and responded to a 10-item, 7-point Likert-scaled interview. Interactions were classified into success categories based on participants' opinions. Quantitative and qualitative data from the observations and interviews guided the analysis of the laboratory interactions, which examined patterns of conversational listening. Analysis of laboratory communication reveals that undergraduates initiated nearly two-thirds of laboratory communication, with three-fourths of interactions less than 30 seconds in duration. Issues of gender and topics of interaction activity were also explored. Interview data identified that successful undergraduate-teaching assistant communication in interactive science labs depends on teaching assistant listening comprehension skills to interpret and respond successfully to undergraduate questions. Successful communication in the chemistry lab depended on the coordination of visual and verbal sources of information. Teaching assistant responses that included explanations and elaborations were also seen as positive features in the communicative exchanges. Interaction analysis focusing on the listening comprehension demands placed on international teaching assistants revealed that undergraduate-initiated questions often employ deixis (exophoric reference), requiring teaching assistants to demonstrate skills at disambiguating undergraduate discourse. Interaction analysis reinforced that successful undergraduate-teaching assistant communication depends on the coordination of verbal and visual channels of communication, with the physical objects of the chemistry lab environment playing a pivotal role in expressing information and in mutual understanding. These results have implications for the evaluation of English proficiency and the preparation of non-native speaking teaching assistants by pointing out that teaching assistant listening comprehension skills and the use of contextual artifacts contribute to successful communication and are areas that, to date, have been underrepresented in the research literature on international teaching assistant communication.
Implementing Inclusive Design for Learning in an introductory geology laboratory
NASA Astrophysics Data System (ADS)
Robert, G.; Merriman, J. D.; Ceylan, G. M.
2013-12-01
As an expansion of universal design for learning, IDL provides a framework for opening up and adapting classroom interaction systems, minimizing barriers through promoting perception, engagement, expression, and accommodation for diverse learners. We implemented an introductory-level laboratory for communicating the concept of magma viscosity using the guidelines and principles of IDL. We developed the lab as a mini-implementation project for an IDL course offered by the University of Missouri (MU) Graduate School. The laboratory was subsequently taught during the summer session of Principles of Geology in our Department of Geological Sciences. Traditional geology laboratories rely heavily on visual aids, either physical (rocks and minerals) or representative (idealized cartoons of processes, videos), with very few alternative representations and descriptions made available to the students. Our main focus for this new lab was to diversify the means of representation available to the students (and instructor) to make the lab as equitable and flexible as possible. We considered potential barriers to learning arising from the physical lab environment, from the means of representation, engagement and expression, and tried to minimize them upfront. We centred the laboratory on the link between volcano shape and viscosity as an applied way to convey that viscosity is the resistance to flow. The learning goal was to have the students observe that more viscous eruptives resulted in steeper-sided volcanoes through experimentation. Students built their own volcanoes by erupting lava (foods of various viscosities) onto the Earth's surface (a piece of sturdy cardboard with a hole for the 'vent') through a conduit (pastry bag). Such a hands on lab exercise allows students to gain a tactile and visual, i.e., physical representation of an abstract concept. This specific exercise was supported by other, more traditional, means of representation (e.g., lecture, videos, cartoons, 3D models, online resources, textbook) in lecture and lab. We will discuss the details of the design, the implementation experience, and the insights for lab improvement in future iterations. This exercise represents the initial steps toward (re)designing introductory geoscience labs to more effectively include diverse learners.
ERIC Educational Resources Information Center
Abdul-Razzaq, Wathiq N.; Bushey, Ryan K.
2009-01-01
Introductory physics labs provide many challenging yet applicable experiments and concepts to the many fields of engineering. One such lab has been developed at West Virginia University that explores resistivities of several different materials and ties this concept into electrical engineering practices and standards. Many students do not realize…
Berkeley Lab Scientist Named MacArthur "Genius" Fellow for Audio
Preservation Research | Berkeley Lab Berkeley Lab A-Z Index Directory Submit Web People Navigation Berkeley Lab Search Submit Web People Close About the Lab Leadership/Organization Calendar News to digitally recover a 128-year-old recording of Alexander Graham Bell's voice, enabling people to
NASA Astrophysics Data System (ADS)
Purwaningsih, E.; Sutoyo, S.; Wasis; Prahani, B. K.
2018-03-01
This research is aimed to analyse the effectiveness of ComCoReLS (Concept Mapping Content Representation Lesson Study) model towards the improvement skills of Creating Physics Lesson Plan (CPLP) for pre-service physics teacher. This research used one group pre-test and post-test design on 12 pre-service physics teacher at University of Malang State (Indonesia) in academic year 2016/2017. Data collection was conducted through test and interview. Skills of creating physics lesson plan for pre-service physics teacher measurement were conducted through Physics Lesson Plan Evaluation Sheet (PLPES). The data analysis technique was done by using paired t-test and n-gain. The CoMCoReLS model consists of 5 phases, including (1) Preparation, (2) Coaching, (3) Guided Practice, (4) Independent Practice, and (5) Evaluation. In the first, second, third and fifth phases are done at University of Malang State, while the fourth phase (Independent Practice) is done in SMAN 1 Singosari, SMAN 2 Malang, SMA Lab UM, MAN 3 Malang. The results showed that there was a significant increase in skills of creating physics lesson plan for pre-service physics teacher at α = 5% and n-gain average of high category. Thus, the ComCoReLS model is effective for improving skills of creating physics lesson plan for pre-service physics teacher.
Addressing the Underrepresentation of Women in Physics at Multiple Levels
NASA Astrophysics Data System (ADS)
Greco, Shannon; Dominguez, Arturo; Ortiz, Deedee; Zwicker, Andrew
2016-10-01
APS provides support to several universities and research institutions to host Conferences for Undergraduate Women in Physics (CUWiP). The goal of these Conferences is to provide practical tools and a community to help women persist in physics and STEM careers. This is particularly relevant for the DPP where women make up only 7% of the membership. In January 2017, Princeton University and the Princeton Plasma Physics Laboratory (PPPL) will host a CUWiP. CUWiP and the Science Undergraduate Laboratory Internship (SULI) program expose undergraduates to the variety of possible careers in plasma physics and fusion energy in academia, government labs or private industry. We will report on the success of a number of PPPL programs to engage women at all levels in physics and highlight how programs such as CUWiP and SULI contribute to this goal. Special thanks to the Department of Energy for supporting PPPL's education programs and to APS for supporting the Conference for Undergraduate Women in Physics.
The "Finding Physics" Project: Recognizing and Exploring Physics outside the Classroom
ERIC Educational Resources Information Center
Beck, Judith; Perkins, James
2016-01-01
Students in introductory physics classes often have difficulty recognizing the relevance of physics concepts outside the confines of the physics classroom, lab, and textbook. Even though textbooks and instructors often provide examples of physics applications from a wide array of areas, students have difficulty relating physics to their own lives.…
Rosenfeld, Art [California Energy Commission, Sacramento, CA (United States)
2018-02-16
Summer Lecture Series 2006: Art Rosenfeld, an appointee to the California Energy Commission and one of the architects of energy efficiency research at Berkeley Lab in the 1970s, discusses what it takes to shepherd innovative energy efficiency research from the lab to the real world.
Credit allocation for research institutes
NASA Astrophysics Data System (ADS)
Wang, J.-P.; Guo, Q.; Yang, K.; Han, J.-T.; Liu, J.-G.
2017-05-01
It is a challenging work to assess research performance of multiple institutes. Considering that it is unfair to average the credit to the institutes which is in the different order from a paper, in this paper, we present a credit allocation method (CAM) with a weighted order coefficient for multiple institutes. The results for the APS dataset with 18987 institutes show that top-ranked institutes obtained by the CAM method correspond to well-known universities or research labs with high reputation in physics. Moreover, we evaluate the performance of the CAM method when citation links are added or rewired randomly quantified by the Kendall's Tau and Jaccard index. The experimental results indicate that the CAM method has better performance in robustness compared with the total number of citations (TC) method and Shen's method. Finally, we give the first 20 Chinese universities in physics obtained by the CAM method. However, this method is valid for any other branch of sciences, not just for physics. The proposed method also provides universities and policy makers an effective tool to quantify and balance the academic performance of university.
Data Portfolio: instructional materials provide particle physics data in high school classrooms
NASA Astrophysics Data System (ADS)
Bardeen, Marjorie G.
2016-04-01
We discuss Data Portfolio (DP), a new suite of activities that provide experimental particle physics data to high school students and a professional development program for their teachers. DP is a website resource with a broad range of instructional materials that allows teachers to select activities of the correct level and scope for their students. Activities range from introductory to survey, investigation and exploration. DP incorporates existing elements such as masterclasses and e-Labs along with new ways of introducing students to physics concepts that underlie the data measurements and investigations. Evaluators have determined that these elements are in line with the latest standards and effective instructional models. To be successful, teachers need to be confident to use the materials, comfortable to step back so students can guide their own learning, and clever to convince administrators that they are meeting school and district requirements. Professional development workshops accompany the DP where participants experience some of these activities as their students would and plan how to use them in their classes. The first weeklong DP workshop was held in July at Fermilab. We have also held outreach workshops in conjunction with ILC workshops around the world. DP is a product of QuarkNet, a long-term professional development program embedded in the U.S. particle physics research community and funded by the National Science Foundation and the U.S. Department of Energy and supported by universities and labs across the country.
Successes and Challenges in Transitioning to Large Enrollment NEXUS/Physics IPLS Labs
NASA Astrophysics Data System (ADS)
Moore, Kimberly
2017-01-01
UMd-PERG's NEXUS/Physics for Life Sciences laboratory curriculum, piloted in 2012-2013 in small test classes, has been implemented in large-enrollment environments at UMD from 2013-present. These labs address physical issues at biological scales using microscopy, image and video analysis, electrophoresis, and spectroscopy in an open, non-protocol-driven environment. We have collected a wealth of data (surveys, video analysis, etc.) that enables us to get a sense of the students' responses to this curriculum in a large-enrollment environment and with teaching assistants both `new to' and `experienced in' the labs. In this talk, we will provide a brief overview of what we have learned, including the challenges of transitioning to large N, student perception then and now, and comparisons of our large-enrollment results to the results from our pilot study. We will close with a discussion of the acculturation of teaching assistants to this novel environment and suggestions for sustainability.
Jefferson Lab 12 GEV Cebaf Upgrade
NASA Astrophysics Data System (ADS)
Rode, C. H.
2010-04-01
The existing continuous electron beam accelerator facility (CEBAF) at Thomas Jefferson National Accelerator Facility (TJNAF) is a 5-pass, recirculating cw electron Linac operating at ˜6 GeV and is devoted to basic research in nuclear physics. The 12 GeV CEBAF Upgrade is a 310 M project, sponsored by the Department of Energy (DOE) Office of Nuclear Physics, that will expand its research capabilities substantially by doubling the maximum energy and adding major new experimental apparatus. The project received construction approval in September 2008 and has started the major procurement process. The cryogenic aspects of the 12 GeV CEBAF Upgrade includes: doubling the accelerating voltages of the Linacs by adding ten new high-performance, superconducting radiofrequency (SRF) cryomodules (CMs) to the existing 42 1/4 cryomodules; doubling of the 2 K cryogenics plant; and the addition of eight superconducting magnets.
Physics Learning Strategies with Multi-touch Technology
NASA Astrophysics Data System (ADS)
Potter, Mark; Ilie, C.; Schofield, D.
2011-03-01
Advancements in technology have opened doorways to build new teaching and learning methods. Through conjunctive use of these technologies and methods, a classroom can be enriched to stimulate and improve student learning. The purpose of our research is to ascertain whether or not multi-touch technology enhances students' abilities to better comprehend and retain the knowledge taught in physics. At their basis, students learn via visual, aural, reading/writing, and kinesthetic styles. Labs provide for all but the aural style, while lectures lack kinesthetic learning. Pedagogical research indicates that kinesthetic learning is a fundamental, powerful, and ubiquitous learning style. By using multi-touch technology in lecture, not only can we accommodate kinesthetic learners, but we can also enrich the experiences of visual learners. Ushering to this wider array of students will hopefully lead to an increase in meaningful learning.
The status of the Callio Lab Underground Laboratory in the Pyhäsalmi mine
NASA Astrophysics Data System (ADS)
Joutsenvaara, Jari; Enqvist, Timo; Isoherranen, Ville; Jalas, Panu; Kutuniva, Johanna; Kuusiniemi, Pasi
2017-04-01
We present the structure and the latest technical characteristics of the Callio Lab, the new underground laboratory managing the scientific and other non-mining related operations in the Pyhäsalmi mine in Pyhäjärvi, Finland. The very deep laboratory hall space, called Lab 2 of Callio Lab, was finished in spring 2016 at the depth of 1 430 metres (4 100 m.w.e.). Callio Lab has also other easily accessible (by car or truck) halls for laboratory use, for example at the depths of 440 m, 600 m and 990 m. We also review the current and planned activities related to particle physics, applied sciences, industrial R&D and production.
Using RSpec in an introductory bright star spectroscopy lab activity
NASA Astrophysics Data System (ADS)
Howe, James; Sitar, David J.
2018-01-01
After presenting at the North Carolina Section of the American Association of Physics Teachers during the fall 2016 meeting, we were encouraged to turn our poster into a paper. This article describes the strengthening of a bright star spectroscopy lab activity for introductory astronomy lab students (AST1002) at Appalachian State University. Explanations of the tools and methods used in the activity are included, particularly the preparation of additional materials using RSpec and calibrated instrument response curves.
A Student View of Experimental Physics
NASA Astrophysics Data System (ADS)
Bu, Frank; Marlowe, Robert Lloyd; Whitson, Kristin
2017-03-01
This is the story of how an enterprising high school student came to my lab one afternoon, asking if there were any way that he could gain "hands-on" lab experience by working with me. While I had some doubts about allowing him to work in an area with an expensive 150-mW focused laser beam, I eventually said yes. I was well aware that a couple of weeks of lab work could lead to interesting investigations for him….
NASA Astrophysics Data System (ADS)
Gwinn, Elisabeth; Goodchild, Fiona; Garza, Marilyn
2005-03-01
The NSF-funded GK-12 program at UCSB, ``Let's Explore Applied Physical Science'' (LEAPS), awards full fellowships to competitively selected graduate students in the physical sciences and engineering, to support their engagement in local 8th and 9th grade science classrooms. The Fellows' responsibilities to LEAPS total 15 hours per week during the school year. They join consistently in the same classes to collaborate with teachers on delivery of discovery-oriented science instruction. Fellows work in 3-member, interdisciplinary teams. They benefit from this team approach through interaction with colleagues in other disciplines, validation from peers who share enthusiasm for science and mentoring, increased leadership and teaching skills, and a research safety net provided by teammates who can pick up the slack when one Fellow's research requires undivided attention. For teachers, the disciplinary breadth of the Fellow teams is an enormous asset in covering the broad physical science curriculum in CA. Students benefit from hands-on labs and small-group problem-solving exercises enabled by the Fellows' presence and from mentoring by these young scientists.
2017 Report for New LANL Physical Vapor Deposition Capability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roman, Audrey Rae; Zhao, Xinxin; Bond, Evelyn M.
There is an urgent need at LANL to achieve uniform, thin film actinide targets that are essential for nuclear physics experiments. The target preparation work is currently performed externally by Professor Walter Loveland at Oregon State University, who has made various evaporated actinide targets such as Th and U for use on several nuclear physics measurements at LANSCE. We are developing a vapor deposition capability, with the goal of evaporating Th and U in the Actinide Research Facility (ARF) at TA-48. In the future we plan to expand this work to evaporating transuranic elements, such as Pu. The ARF ismore » the optimal location for evaporating actinides because this lab is specifically dedicated to actinide research. There are numerous instruments in the ARF that can be used to provide detailed characterization of the evaporated thin films such as: Table top Scanning Electron Microscope, In-situ X-Ray Diffraction, and 3D Raman spectroscopy. These techniques have the ability to determine the uniformity, surface characterization, and composition of the deposits.« less
It Takes a Village: Documenting the Contributions of Non-Scientific Staff to Scientific Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higgins, Valerie
Documenting the Contributions of Non-Scientific Staff to Scientific Research Science, especially large-scale basic research, is a collaborative endeavor, often drawing on the skills of people from a wide variety of disciplines. These people include not just scientists, but also administrators, engineers, and many others. Fermilab, a Department of Energy National Laboratory and the United States’ premier particle physics laboratory, exemplifies this kind of research; many of its high-energy physics experiments involve hundreds of collaborators from all over the world. The Fermilab Archives seeks to document the history of the lab and the unique scientific research its staff and visitors perform.more » Adequately documenting the lab’s work often requires us to go far beyond things like the writings and correspondence of scientists to also capture the administrative and social histories of the experiments and the context in which they were performed. At Fermilab, we have sought to capture these elements of the lab’s activities through an oral history program that focuses on support staff as well as physicists and collection development choices that recognize the importance of records documenting the cultural life of the lab. These materials are not merely supplementary, but rather essential documentation of the many types of labor that go into the planning and execution of an experiment or the construction of an accelerator and the context in which this work is performed. Any picture of these experiments and accelerators that did not include this type of information would be incomplete. While the importance and richness of this material is especially pronounced at Fermilab due to the massive size of its experiments and accelerator facilities and its vibrant cultural life, the fruitfulness of these collecting efforts at Fermilab suggests that other archives documenting modern STEM research should also make sure the contributions of non-technical and non-scientific staff are preserved and that researchers interested in this subject should not neglect such sources.« less
EarthLabs - Investigating Hurricanes: Earth's Meteorological Monsters
NASA Astrophysics Data System (ADS)
McDaris, J. R.; Dahlman, L.; Barstow, D.
2007-12-01
Earth science is one of the most important tools that the global community needs to address the pressing environmental, social, and economic issues of our time. While, at times considered a second-rate science at the high school level, it is currently undergoing a major revolution in the depth of content and pedagogical vitality. As part of this revolution, labs in Earth science courses need to shift their focus from cookbook-like activities with known outcomes to open-ended investigations that challenge students to think, explore and apply their learning. We need to establish a new model for Earth science as a rigorous lab science in policy, perception, and reality. As a concerted response to this need, five states, a coalition of scientists and educators, and an experienced curriculum team are creating a national model for a lab-based high school Earth science course named EarthLabs. This lab course will comply with the National Science Education Standards as well as the states' curriculum frameworks. The content will focus on Earth system science and environmental literacy. The lab experiences will feature a combination of field work, classroom experiments, and computer access to data and visualizations, and demonstrate the rigor and depth of a true lab course. The effort is being funded by NOAA's Environmental Literacy program. One of the prototype units of the course is Investigating Hurricanes. Hurricanes are phenomena which have tremendous impact on humanity and the resources we use. They are also the result of complex interacting Earth systems, making them perfect objects for rigorous investigation of many concepts commonly covered in Earth science courses, such as meteorology, climate, and global wind circulation. Students are able to use the same data sets, analysis tools, and research techniques that scientists employ in their research, yielding truly authentic learning opportunities. This month-long integrated unit uses hurricanes as the story line by which students investigate the different interactions involved in hurricane generation, steering, and intensification. Students analyze a variety of visualization resources looking for patterns in occurrence and to develop an understanding of hurricane structure. They download archived data about past hurricanes and produce temporal and spatial plots to discover patterns in hurricane life cycles. They investigate the relationship between hurricane wind speed and factors such as barometric pressure and sea surface temperature by conducting spreadsheet analyses on archived data. They also conduct hands-on laboratory experiments in order to understand the physical processes that underpin energy transfer in convection, condensation, and latent heat. These activities highlight Earth science as a vital, rich, invigorating course, employing state-of-the-art technologies and in-depth labs with high relevance for our daily lives and the future.
2003-11-19
KENNEDY SPACE CENTER, FLA. - Dignitaries, invited guests, space center employees, and the media show their appreciation for the speakers at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
LIVING LAB: User-Driven Innovation for Sustainability
ERIC Educational Resources Information Center
Liedtke, Christa; Welfens, Maria Jolanta; Rohn, Holger; Nordmann, Julia
2012-01-01
Purpose: The purpose of this paper is to summarize and discuss the results from the LIVING LAB design study, a project within the 7th Framework Programme of the European Union. The aim of this project was to develop the conceptual design of the LIVING LAB Research Infrastructure that will be used to research human interaction with, and stimulate…
Celebrating 75 years of research
USDA-ARS?s Scientific Manuscript database
The USDA Ag Lab in Peoria helps bridge the gap between agricultural producers and commercial manufacturers. In 2015, the Ag Lab, officially known as the Agricultural Research Service (ARS) National Center for Agricultural Utilization Research (NCAUR), is celebrating 75 years of research in Peoria. T...
ERIC Educational Resources Information Center
Lane, W. Brian
2014-01-01
The traditional introductory-level meterstick-balancing lab assumes that students already know what torque is and that they readily identify it as a physical quantity of interest. We propose a modified version of this activity in which students qualitatively and quantitatively measure the amount of force required to keep the meterstick level. The…
Digital signal processing at Bell Labs-Foundations for speech and acoustics research
NASA Astrophysics Data System (ADS)
Rabiner, Lawrence R.
2004-05-01
Digital signal processing (DSP) is a fundamental tool for much of the research that has been carried out of Bell Labs in the areas of speech and acoustics research. The fundamental bases for DSP include the sampling theorem of Nyquist, the method for digitization of analog signals by Shannon et al., methods of spectral analysis by Tukey, the cepstrum by Bogert et al., and the FFT by Tukey (and Cooley of IBM). Essentially all of these early foundations of DSP came out of the Bell Labs Research Lab in the 1930s, 1940s, 1950s, and 1960s. This fundamental research was motivated by fundamental applications (mainly in the areas of speech, sonar, and acoustics) that led to novel design methods for digital filters (Kaiser, Golden, Rabiner, Schafer), spectrum analysis methods (Rabiner, Schafer, Allen, Crochiere), fast convolution methods based on the FFT (Helms, Bergland), and advanced digital systems used to implement telephony channel banks (Jackson, McDonald, Freeny, Tewksbury). This talk summarizes the key contributions to DSP made at Bell Labs, and illustrates how DSP was utilized in the areas of speech and acoustics research. It also shows the vast, worldwide impact of this DSP research on modern consumer electronics.
Developing Guided Inquiry-Based Student Lab Worksheet for Laboratory Knowledge Course
NASA Astrophysics Data System (ADS)
Rahmi, Y. L.; Novriyanti, E.; Ardi, A.; Rifandi, R.
2018-04-01
The course of laboratory knowledge is an introductory course for biology students to follow various lectures practicing in the biology laboratory. Learning activities of laboratory knowledge course at this time in the Biology Department, Universitas Negeri Padang has not been completed by supporting learning media such as student lab worksheet. Guided inquiry learning model is one of the learning models that can be integrated into laboratory activity. The study aimed to produce student lab worksheet based on guided inquiry for laboratory knowledge course and to determine the validity of lab worksheet. The research was conducted using research and developmet (R&D) model. The instruments used in data collection in this research were questionnaire for student needed analysis and questionnaire to measure the student lab worksheet validity. The data obtained was quantitative from several validators. The validators consist of three lecturers. The percentage of a student lab worksheet validity was 94.18 which can be categorized was very good.
FY2014 LBNL LDRD Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ho, Darren
2015-06-01
Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE’s National Laboratory System, Berkeley Lab supports DOE’s missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation. The LDRD program supports Berkeley Lab’s mission in many ways. First, because LDRD funds can be allocated within a relatively short time frame, Berkeley Lab researchers can support the mission of the Department of Energy (DOE) and serve the needs of the nationmore » by quickly responding to forefront scientific problems. Second, LDRD enables Berkeley Lab to attract and retain highly qualified scientists and to support their efforts to carry out worldleading research. In addition, the LDRD program also supports new projects that involve graduate students and postdoctoral fellows, thus contributing to the education mission of Berkeley Lab.« less
Communication & Negotiation Skills Workshop for Women I
NASA Astrophysics Data System (ADS)
2016-03-01
This workshop is designed to provide women physics students and postdocs with the professional skills they need to effectively perform research, including: negotiating a position in academia, industry or at a national lab, interacting positively on teams and with a mentor or advisor, thinking tactically, articulating goals, enhancing their personal presence, and developing alliances. We will discuss negotiation strategies and tactics that are useful for achieving professional goals. This is a highly interactive workshop where participants are invited to bring examples of difficult professional situations to discuss.
Communication & Negotiation Skills Workshop for Women II
NASA Astrophysics Data System (ADS)
2016-03-01
This workshop is designed to provide women physics students and postdocs with the professional skills they need to effectively perform research, including: negotiating a position in academia, industry or at a national lab, interacting positively on teams and with a mentor or advisor, thinking tactically, articulating goals, enhancing their personal presence, and developing alliances. We will discuss negotiation strategies and tactics that are useful for achieving professional goals. This is a highly interactive workshop where participants are invited to bring examples of difficult professional situations to discuss.
Haber, Carl [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2018-01-23
Summer Lecture Series 2006: Physicist Carl Haber and colleagues have found a way to digitize century-old recordings believed to be unplayable, and as a result, some of the music and spoken word recordings in the Library of Congress collection may spring back to life. Learn how basic scientific research done at Berkeley Lab may yield results of benefit in other areas of science and culture. Series: "Lawrence Berkeley National Laboratory Summer Lecture Series"
Development of Predictive Models of Advanced Propulsion Concepts for Low Cost Space Transportation
NASA Technical Reports Server (NTRS)
Morrell, Michael Randy
2002-01-01
This final report presents the Graduate Student Research Program (GSRP) work Mr. Morrell was able to complete as a summer intern at NASA MSFS during the summer of 2001, and represents work completed from inception through project termination. The topics include: 1) NASA TD40 Organization; 2) Combustion Physics Lab; 3) Advanced Hydrocarbon Fuels; 4) GSRP Summer Tasks; 5) High Pressure Facility Installation; 6) High Pressure Combustion Issues; 7) High Energy Density Matter (HEDM) Hydrocarbons; and 8) GSRP Summer Intern Summary.
2017-06-09
Jay Phillips, a research physicist in the Kennedy Space Center's Electrostatics and Surface Physics Laboratory, left, and Dr. Carlos Calle, lead scientist in the lab, are modifying an electrostatic precipitator to help remove dust from simulated Martian atmosphere. NASA's Journey to Mars requires cutting-edge technologies to solve the problems explorers will face on the Red Planet. Scientists are developing some of the needed solutions by adapting a device to remove the ever-present dust from valuable elements in the Martian atmosphere. Those commodities include oxygen, water and methane.
Long-Time Scientist Works to Prove Chemistry’s Place in Cancer Research | Poster
By Carolynne Keenan, Contributing Writer When Larry Keefer, Ph.D., first arrived at the National Cancer Institute (NCI) more than 40 years ago, he didn’t have a physical lab to call his own. Not immediately, anyway, due to a glitch in the construction schedule, he explained. So he spent his first few years in Bethesda doing administrative work, like reviewing proposals and serving as a project officer on contracts.
NASA Astrophysics Data System (ADS)
2011-07-01
WE RECOMMEND Fun Fly Stick Science Kit Fun fly stick introduces electrostatics to youngsters Special Relativity Text makes a useful addition to the study of relativity as an undergraduate LabVIEWTM 2009 Education Edition LabVIEW sets industry standard for gathering and analysing data, signal processing, instrumentation design and control, and automation and robotics Edison and Ford Winter Estates Thomas Edison's home is open to the public The Computer History Museum Take a walk through technology history at this computer museum WORTH A LOOK Fast Car Physics Book races through physics Beautiful Invisible The main subject of this book is theoretical physics Quantum Theory Cannot Hurt You A guide to physics on the large and small scale Chaos: The Science of Predictable Random Motion Book explores the mathematics behind chaotic behaviour Seven Wonders of the Universe A textual trip through the wonderful universe HANDLE WITH CARE Marie Curie: A Biography Book fails to capture Curie's science WEB WATCH Web clips to liven up science lessons
Teaching Ocean Sciences in the 21st Century Classroom: Lab to Classroom Videoconferencing
NASA Astrophysics Data System (ADS)
Peach, C. L.; Gerwick, W.; Gerwick, L.; Senise, M.; Jones, C. S.; Malloy, K.; Jones, A.; Trentacoste, E.; Nunnery, J.; Mendibles, T.; Tayco, D.; Justice, L.; Deutscher, R.
2010-12-01
Teaching Ocean Science in the 21st Century Classroom (TOST) is a Center for Ocean Sciences Education Excellence (COSEE CA) initiative aimed at developing and disseminating technology-based instructional strategies, tools and ocean science resources for both formal and informal science education. San Diego Unified School District (SDUSD), Scripps Institution of Oceanography (SIO) and the Lawrence Hall of Science (LHS) have established a proving ground for TOST activities and for development of effective, sustainable solutions for researchers seeking to fulfill NSF and other funding agency broader impact requirements. Lab to Classroom Videoconferencing: Advances in Information and Communications Technology (ICT) are making it easier to connect students and researchers using simple online tools that allow them to interact in novel ways. COSEE CA is experimenting with these tools and approaches to identify effective practices for providing students with insight into the research process and close connections to researchers and their laboratory activities. At the same time researchers, including graduate students, are learning effective communication skills and how to align their presentations to specific classroom needs - all from the comfort of their own lab. The lab to classroom videoconferencing described here is an ongoing partnership between the Gerwick marine biomedical research lab and a group of three life science teachers (7th grade) at Pershing Middle School (SDUSD) that started in 2007. Over the last 5 years, the Pershing science teachers have created an intensive, semester-long unit focused on drug discovery. Capitalizing on the teacher team’s well-developed unit of study and the overlap with leading-edge research at SIO, COSEE CA created the videoconferencing program as a broader impact solution for the lab. The team has refined the program over 3 iterations, experimenting with structuring the activities to most effectively reach the students. In the 2009 3-day videoconferencing event, 3 graduate students and the lab PI connected to nine, 7th grade life science classes (~300 students) using SKYPE. Each of the nine videoconferences lasted for ~50 minutes and included a mini-lab tour, a short presentation on the graduate students’ field and lab-based research activities, and interspersed question and answer sessions. Teachers are currently exploring ways they can further capitalize on the connection to the research lab and are writing up a “how to” guide for SKYPE lab to classroom videoconferencing. LHS has been evaluating this videoconference project to get feedback from the participants about the collaboration, the technology, and the format in order to improve the program in the future. The collaboration has now been turned over to the graduate students and teachers with little facilitation by COSEE CA staff. COSEE CA is applying the approach to other earth and ocean science topics by offering “Virtual Lab Tours” as a broader impact option.
New paradigms for musical control-A decade of development at the MIT Media Lab
NASA Astrophysics Data System (ADS)
Paradiso, Joseph A.
2004-05-01
As electronic musical instruments liberate the action and energy of control from physical sound production, they are free to mutate into many different forms-the constraints on instrument design have shifted from physics to ergonomics, applications, and aesthetics. Low-cost sensors enable stimuli of all types to act as input, and with a computer interposed between action and sound production, essentially any sonic or musical dynamic can be mapped onto any gesture or activity with an increasingly high degree of interpretation or ``mapping,'' Accordingly, the notion of a musical instrument is being redefined, and as possibilities broaden, some researchers and artists are striving to break boundaries while others work to quantify and understand expanded metrics for musical interaction. Over the past decade, the author and his colleagues have adapted a wealth of sensor technologies and developed many interaction paradigms to scratch away at the evolving frontier of electronic musical instruments [J. Paradiso, ``Electronic music interfaces: new ways to play,'' IEEE Spectrum 34(12), 18-30 (1997)]. This presentation will review the status of electronic music controllers, provide a snapshot of current issues that the field is facing, and present various examples of new musical interfaces developed at the MIT Media Lab.
EUSO@TurLab: An experimental replica of ISS orbits
NASA Astrophysics Data System (ADS)
Bertaina, M.; Bowaire, A.; Cambursano, S.; Caruso, R.; Contino, G.; Cotto, G.; Crivello, F.; Forza, R.; Guardone, N.; Manfrin, M.; Mignone, M.; Mulas, R.; Suino, G.; Tibaldi, P. S.
2015-03-01
The EUSO@TurLab project is an on-going activity aimed to reproduce atmospheric and luminous conditions that JEM-EUSO will encounter on its orbits around the Earth. The use of the TurLab facility, part of the Department of Physics of the University of Torino, allows the simulation of different surface conditions in a very dark and rotating environment in order to test the response of JEM-EUSO's sensors and sensitivity. The experimental setup currently in operation has been used to check the potential of the TurLab facility for the above purposes, and the acquired data will be used to test the concept of JEM-EUSO's trigger system.
NASA Astrophysics Data System (ADS)
Moldwin, M.; Mexicotte, D.
2017-12-01
A new Arts/Lab Student Residence program was developed at the University of Michigan that brings artists into a research lab. Science and Engineering undergraduate and graduate students working in the lab describe their research and allow the artists to shadow them to learn more about the work. The Arts/Lab Student Residencies are designed to be unique and fun, while encouraging interdisciplinary learning and creative production by exposing students to life and work in an alternate discipline's maker space - i.e. the artist in the engineering lab, the engineer in the artist's studio or performance space. Each residency comes with a cash prize and the expectation that a work of some kind will be produced as a response to experience. The Moldwin Prize is designed for an undergraduate student currently enrolled in the Penny W. Stamps School of Art & Design, the Taubman School of Architecture and Urban Planning or the School of Music, Theatre and Dance who is interested in exchange and collaboration with students engaged in research practice in an engineering lab. No previous science or engineering experience is required, although curiosity and a willingness to explore are essential! Students receiving the residency spend 20 hours over 8 weeks (February-April) participating with the undergraduate research team in the lab of Professor Mark Moldwin, which is currently doing work in the areas of space weather (how the Sun influences the space environment of Earth and society) and magnetic sensor development. The resident student artist will gain a greater understanding of research methodologies in the space and climate fields, data visualization and communication techniques, and how the collision of disciplinary knowledge in the arts, engineering and sciences deepens the creative practice and production of each discipline. The student is expected to produce a final work of some kind within their discipline that reflects, builds on, explores, integrates or traces their experience in the residency. This talk will describe the program, the inaugural year's outcomes, and plans to expand the program to other research labs.
NASA Astrophysics Data System (ADS)
Schlattauer, Leo; Parali, Levent; Pechousek, Jiri; Sabikoglu, Israfil; Celiktas, Cuneyt; Tektas, Gozde; Novak, Petr; Jancar, Ales; Prochazka, Vit
2017-09-01
This paper reports on the development of a gamma-ray spectroscopic system for the (i) recording and (ii) processing of spectra. The utilized data read-out unit consists of a PCI digital oscilloscope, personal computer and LabVIEW™ programming environment. A pulse-height spectra of various sources were recorded with two NaI(Tl) detectors and analyzed, demonstrating the proper usage of the detectors. A multichannel analyzer implements the Gaussian photopeak fitting. The presented method provides results which are in compliance to the ones taken from commercial spectroscopy systems. Each individual hardware or software unit can be further utilized in different spectrometric user-systems. An application of the developed system for research and teaching purposes regarding the design of digital spectrometric systems has been successfully tested at the laboratories of the Department of Experimental Physics.
The undergraduate optics course at Millersville University
NASA Astrophysics Data System (ADS)
Gilani, Tariq H.; Dushkina, Natalia M.
2009-06-01
For many years, there was no stand alone course in optics at Millersville University (MU). In the fall of 2007, the Physics Department offered for the first time PHYS 331: Fundamentals in Optics, a discovery based lab course in geometrical, physical and modern optics. This 300-level, 2 credits course consists of four contact hours per week including one-hour lecture and three hours laboratory. This course is required for BS in physics majors, but is open also to other science majors, who have the appropriate background and have met the prerequisites. This course deals with fundamental optics and optical techniques in greater depth so that the student is abreast of the activities in the forefront of the field. The goal of the course is to provide hands-on experience and in-depth preparation of our students for graduate programs in optics or as a workforce for new emerging high-tech local industries. Students learn applied optics through sequence of discovery based laboratory experiments chosen from a broad range of topics in optics and lasers, as the emphasis is on geometrical optics, geometrical aberrations in optical systems, wave optics, microscopy, spectroscopy, polarization, birefringence, laser generation, laser properties and applications, and optical standards. The peer-guided but open-ended approach provides excellent practice for the academic model of science research. Solving problems is embedded in the laboratory part as an introduction to or a conclusion of the experiment performed during the lab period. The homework problems are carefully chosen to reflect the most important relations from the covered material. Important part of the student learning strategy is the individual work on a final mini project which is presented in the class and is included in the final grading. This new course also impacted the department's undergraduate research and training programs. Some of the individual projects were extended to senior research projects in optics as part of the senior research and seminar courses, PHYS 492 and PHYS 498, which are required for graduation for all physics majors. The optics course also provides basic resources for both research and training in the classical and modern optics of high-school students and K-12 teachers. The successful implementation of the optics course was secured by a budget of about $60,000.
Computational Accelerator Physics. Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bisognano, J.J.; Mondelli, A.A.
1997-04-01
The sixty two papers appearing in this volume were presented at CAP96, the Computational Accelerator Physics Conference held in Williamsburg, Virginia from September 24{minus}27,1996. Science Applications International Corporation (SAIC) and the Thomas Jefferson National Accelerator Facility (Jefferson lab) jointly hosted CAP96, with financial support from the U.S. department of Energy`s Office of Energy Research and the Office of Naval reasearch. Topics ranged from descriptions of specific codes to advanced computing techniques and numerical methods. Update talks were presented on nearly all of the accelerator community`s major electromagnetic and particle tracking codes. Among all papers, thirty of them are abstracted formore » the Energy Science and Technology database.(AIP)« less
Department of Chemistry and Biochemistry - University of Maryland,
Access Analytical Facilities? New Labs Catalyze Chemistry Learning Inclusive & Interdisciplinary New Collaborative Research New Labs Catalyze Chemistry Learning Inclusive & Interdisciplinary New Molecule Shows Author's profile esj-lab New Labs Catalyze Chemistry Learning The Edward St. John Learning and Teaching
The experiment editor: supporting inquiry-based learning with virtual labs
NASA Astrophysics Data System (ADS)
Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F.
2017-05-01
Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perlmutter, Saul
2012-01-13
The Department of Energy (DOE) hosted an event Friday, January 13, with 2011 Physics Nobel Laureate Saul Perlmutter. Dr. Perlmutter, a physicist at the Department’s Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, won the 2011 Nobel Prize in Physics “for the discovery of the accelerating expansion of the Universe through observations of distant supernovae.” DOE’s Office of Science has supported Dr. Perlmutter’s research at Berkeley Lab since 1983. After the introduction from Secretary of Energy Steven Chu, Dr. Perlmutter delivered a presentation entitled "Supernovae, Dark Energy and the Accelerating Universe: Howmore » DOE Helped to Win (yet another) Nobel Prize." [Copied with editing from DOE Media Advisory issued January 10th, found at http://energy.gov/articles/energy-department-host-event-2011-physics-nobel-laureate-saul-perlmutter]« less
Learning From Where Students Look While Observing Simulated Physical Phenomena
NASA Astrophysics Data System (ADS)
Demaree, Dedra
2005-04-01
The Physics Education Research (PER) Group at the Ohio State University (OSU) has developed Virtual Reality (VR) programs for teaching introductory physics concepts. Winter 2005, the PER group worked with OSU's cognitive science eye-tracking lab to probe what features students look at while using our VR programs. We see distinct differences in the features students fixate on depending upon whether or not they have formally studied the related physics. Students who first make predictions seem to fixate more on the relevant features of the simulation than those who do not, regardless of their level of education. It is known that students sometimes perform an experiment and report results consistent with their misconceptions but inconsistent with the experimental outcome. We see direct evidence of one student holding onto misconceptions despite fixating frequently on the information needed to understand the correct answer. Future studies using these technologies may prove valuable for tackling difficult questions regarding student learning.
Ma, Teng; Lu, Deyi; Zhu, Yin-Sheng; Chu, Xue-Feng; Wang, Yong; Shi, Guo-Ping; Wang, Zheng-Dong; Yu, Li; Jiang, Xiao-Yan; Wang, Xiao-Feng
2018-05-01
To examine the associations of the actinin alpha 3 gene (ACTN3) R577X polymorphism with physical performance and frailty in an older Chinese population. Data from 1,463 individuals (57.8% female) aged 70-87 years from the Rugao Longevity and Ageing Study were used. The associations between R577X and timed 5-m walk, grip strength, timed Up and Go test, and frailty index (FI) based on deficits of 23 laboratory tests (FI-Lab) were examined. Analysis of variance and linear regression models were used to evaluate the genetic effects of ACTN3 R577X on physical performance and FI-Lab. The XX and RX genotypes of the ACTN3 R557X polymorphism accounted for 17.1 and 46.9%, respectively. Multivariate regression analysis revealed that in men aged 70-79 years, the ACTN3 577X allele was significantly associated with physical performance (5-m walk time, regression coefficient (β) = 0.258, P = 0.006; grip strength, β = -1.062, P = 0.012; Up and Go test time β = 0.368, P = 0.019). In women aged 70-79 years, a significant association between the ACTN3 577X allele and the FI-Lab score was observed, with a regression coefficient of β = 0.019 (P = 0.003). These findings suggest an age- and gender-specific X-additive model of R577X for 5-m walk time, grip strength, Up and Go Test time, and FI-Lab score. The ACTN3 577X allele is associated with an age- and sex-specific decrease in physical performance and an increase in frailty in an older population.
2011-04-01
oils, and bonds leather , nitrile rubber, most plastics, and gasketing materials to a variety of substrates. This product has previously been...DIRECTOR US ARMY RESEARCH LAB IMNE ALC HRR 2800 POWDER MILL RD ADELPHI MD 20783-1197 1 DIRECTOR US ARMY RESEARCH LAB RDRL CIM L 2800... POWDER MILL RD ADELPHI MD 20783-1197 1 DIRECTOR US ARMY RESEARCH LAB RDRL CIM P 2800 POWDER MILL RD ADELPHI MD 20783-1197 1
Model-Based Reasoning in Upper-division Lab Courses
NASA Astrophysics Data System (ADS)
Lewandowski, Heather
2015-05-01
Modeling, which includes developing, testing, and refining models, is a central activity in physics. Well-known examples from AMO physics include everything from the Bohr model of the hydrogen atom to the Bose-Hubbard model of interacting bosons in a lattice. Modeling, while typically considered a theoretical activity, is most fully represented in the laboratory where measurements of real phenomena intersect with theoretical models, leading to refinement of models and experimental apparatus. However, experimental physicists use models in complex ways and the process is often not made explicit in physics laboratory courses. We have developed a framework to describe the modeling process in physics laboratory activities. The framework attempts to abstract and simplify the complex modeling process undertaken by expert experimentalists. The framework can be applied to understand typical processes such the modeling of the measurement tools, modeling ``black boxes,'' and signal processing. We demonstrate that the framework captures several important features of model-based reasoning in a way that can reveal common student difficulties in the lab and guide the development of curricula that emphasize modeling in the laboratory. We also use the framework to examine troubleshooting in the lab and guide students to effective methods and strategies.
77 FR 34025 - Procurement List; Addition
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-08
..., Engineering Research & Development Center (ERDC), Construction Engineering Research Lab (CERL), 2902 Newmark... W2R2 Const Engrg Lab, Champaign, IL Patricia Briscoe, Deputy Director, Business Operations (Pricing and...
Art, Science, and the Choreography of Creative Process
NASA Astrophysics Data System (ADS)
Lomask, Jodi
2010-03-01
Through my performance company, Capacitor, I have designed a novel conceptual space - ``the Capacitor Lab'' - where artists and scientists exchange ideas and information about a concept that underlies my next performance piece. In 2000, I invited astronomers to advise my company on Earth's relationship to outer space. In 2003, we invited geophysicists into the dance studio to advise us about the layers of the Earth. In 2006, we invited an ecologist to the Monteverde Cloud forest to advise us on the on the quiet interactions among animals and plants in the forest. Currently we are working on a piece about ocean exploration, marine ecology, and the physics of sound underwater. Each of these Capacitor Labs results in a conceptually-rich dance piece which we perform in cities nationally and internationally. In my talk, I take a deeper look at the creative process that scientists and artists share. In the Capacitor labs, the process serves not only our creative team, but also our participating scientists by giving them an opportunity to view their own work in a new light. These collaborations are part of my ongoing research into creative problem solving and my belief that it is essentially the same process regardless of its application.
Antibody Characterization Lab | Office of Cancer Clinical Proteomics Research
The Antibody Characterization Lab (ACL), an intramural reference laboratory located at the Frederick National Laboratory for Cancer Research in Frederick, Maryland, thoroughly characterizes monoclonal antibodies or other renewable affinity binding reagents for use in cancer related research.
Build your own social network laboratory with Social Lab: a tool for research in social media.
Garaizar, Pablo; Reips, Ulf-Dietrich
2014-06-01
Social networking has surpassed e-mail and instant messaging as the dominant form of online communication (Meeker, Devitt, & Wu, 2010). Currently, all large social networks are proprietary, making it difficult to impossible for researchers to make changes to such networks for the purpose of study design and access to user-generated data from the networks. To address this issue, the authors have developed and present Social Lab, an Internet-based free and open-source social network software system available from http://www.sociallab.es . Having full availability of navigation and communication data in Social Lab allows researchers to investigate behavior in social media on an individual and group level. Automated artificial users ("bots") are available to the researcher to simulate and stimulate social networking situations. These bots respond dynamically to situations as they unfold. The bots can easily be configured with scripts and can be used to experimentally manipulate social networking situations in Social Lab. Examples for setting up, configuring, and using Social Lab as a tool for research in social media are provided.
ERIC Educational Resources Information Center
Wilcox, Bethany R.; Lewandowski, H. J.
2017-01-01
Physics laboratory courses have been generally acknowledged as an important component of the undergraduate curriculum, particularly with respect to developing students' interest in, and understanding of, experimental physics. There are a number of possible learning goals for these courses including reinforcing physics concepts, developing…
Trading Carbon: Can Cookstoves Light the Way (LBNL Science at the Theater)
Gadgil, Ashok; Booker, Kayje; Rausch, Adam
2018-06-08
Science at the Theater: Get smart about carbon! Learn how families in Africa, using stoves designed by Berkeley Lab, are at the forefront of global carbon reduction. Ashok Gadgil is the driving force behind the Berkeley-Darfur Cookstove. He is a researcher, inventor, renowned humanitarian, and director of Berkeley Lab's Environmental Energy Technologies Division. Kayje Booker is a Berkeley Lab researcher and UC Berkeley graduate student in ecosystem sciences. She is exploring how carbon markets can serve as catalysts for innovation in technologies for the poor. Adam Rausch is a Berkeley Lab researcher and UC Berkeley graduate student in civil environmental engineering. He helps to design and test stove designs in Ethiopia and elsewhere.
Conducting On-orbit Gene Expression Analysis on ISS: WetLab-2
NASA Technical Reports Server (NTRS)
Parra, Macarena; Almeida, Eduardo; Boone, Travis; Jung, Jimmy; Lera, Matthew P.; Ricco, Antonio; Souza, Kenneth; Wu, Diana; Richey, C. Scott
2013-01-01
WetLab-2 will enable expanded genomic research on orbit by developing tools that support in situ sample collection, processing, and analysis on ISS. This capability will reduce the time-to-results for investigators and define new pathways for discovery on the ISS National Lab. The primary objective is to develop a research platform on ISS that will facilitate real-time quantitative gene expression analysis of biological samples collected on orbit. WetLab-2 will be capable of processing multiple sample types ranging from microbial cultures to animal tissues dissected on orbit. WetLab-2 will significantly expand the analytical capabilities onboard ISS and enhance science return from ISS.
Integration of MSFC Usability Lab with Usability Testing
NASA Technical Reports Server (NTRS)
Cheng, Yiwei; Richardson, Sally
2010-01-01
As part of the Stage Analysis Branch, human factors engineering plays an important role in relating humans to the systems of hardware and structure designs of the new launch vehicle. While many branches are involved in the technical aspects of creating a launch vehicle, human factors connects humans to the scientific systems with the goal of improving operational performance and safety while reducing operational error and damage to the hardware. Human factors engineers use physical and computerized models to visualize possible areas for improvements to ensure human accessibility to components requiring maintenance and that the necessary maintenance activities can be accomplished with minimal risks to human and hardware. Many methods of testing are used to fulfill this goal, such as physical mockups, computerized visualization, and usability testing. In this analysis, a usability test is conducted to test how usable a website is to users who are and are not familiar with it. The testing is performed using participants and Morae software to record and analyze the results. This analysis will be a preliminary test of the usability lab in preparation for use in new spacecraft programs, NASA Enterprise, or other NASA websites. The usability lab project is divided into two parts: integration of the usability lab and a preliminary test of the usability lab.
2003-09-10
KENNEDY SPACE CENTER, FLA. - The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is nearing completion. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.
About the Frederick National Laboratory for Cancer Research | FNLCR Staging
The Frederick National Lab is a Federally Funded Research and Development Center (FFRDC) sponsored by the National Cancer Institute (NCI) and operated by Leidos Biomedical Research, Inc. The lab addresses some of the most urgent and intractable probl
Peer Assessment of Student-Produced Mechanics Lab Report Videos
ERIC Educational Resources Information Center
Douglas, Scott S.; Aiken, John M.; Lin, Shih-Yin; Greco, Edwin F.; Alicea-Muñoz, Emily; Schatz, Michael F.
2017-01-01
We examine changes in students' rating behavior during a semester-long sequence of peer evaluation laboratory exercises in an introductory mechanics course. We perform a quantitative analysis of the ratings given by students to peers' physics lab reports, and conduct interviews with students. We find that peers persistently assign higher ratings…
Virtual Computing Laboratories: A Case Study with Comparisons to Physical Computing Laboratories
ERIC Educational Resources Information Center
Burd, Stephen D.; Seazzu, Alessandro F.; Conway, Christopher
2009-01-01
Current technology enables schools to provide remote or virtual computing labs that can be implemented in multiple ways ranging from remote access to banks of dedicated workstations to sophisticated access to large-scale servers hosting virtualized workstations. This paper reports on the implementation of a specific lab using remote access to…
"Probeware" on Increase in Schools' Science Labs
ERIC Educational Resources Information Center
Trotter, Andrew
2008-01-01
Though the term, "probeware" may not be a household word, it has grown more familiar to science educators over the past decade, as a new generation of high-tech instruments for collecting and analyzing data from the physical world have been introduced into school science labs. Today, those tools include digital scientific probes or sensors that…
Modeling the Compact Disc Read System in Lab
ERIC Educational Resources Information Center
Hinaus, Brad; Veum, Mick
2009-01-01
One of the great, engaging aspects of physics is its application to everyday technology. The compact disc player is an example of one such technology that applies fundamental principles from optics in order to efficiently store and quickly retrieve information. We have created a lab in which students use simple optical components to assemble a…
Examining problem solving in physics-intensive Ph.D. research
NASA Astrophysics Data System (ADS)
Leak, Anne E.; Rothwell, Susan L.; Olivera, Javier; Zwickl, Benjamin; Vosburg, Jarrett; Martin, Kelly Norris
2017-12-01
Problem-solving strategies learned by physics undergraduates should prepare them for real-world contexts as they transition from students to professionals. Yet, graduate students in physics-intensive research face problems that go beyond problem sets they experienced as undergraduates and are solved by different strategies than are typically learned in undergraduate coursework. This paper expands the notion of problem solving by characterizing the breadth of problems and problem-solving processes carried out by graduate students in physics-intensive research. We conducted semi-structured interviews with ten graduate students to determine the routine, difficult, and important problems they engage in and problem-solving strategies they found useful in their research. A qualitative typological analysis resulted in the creation of a three-dimensional framework: context, activity, and feature (that made the problem challenging). Problem contexts extended beyond theory and mathematics to include interactions with lab equipment, data, software, and people. Important and difficult contexts blended social and technical skills. Routine problem activities were typically well defined (e.g., troubleshooting), while difficult and important ones were more open ended and had multiple solution paths (e.g., evaluating options). In addition to broadening our understanding of problems faced by graduate students, our findings explore problem-solving strategies (e.g., breaking down problems, evaluating options, using test cases or approximations) and characteristics of successful problem solvers (e.g., initiative, persistence, and motivation). Our research provides evidence of the influence that problems students are exposed to have on the strategies they use and learn. Using this evidence, we have developed a preliminary framework for exploring problems from the solver's perspective. This framework will be examined and refined in future work. Understanding problems graduate students face and the strategies they use has implications for improving how we approach problem solving in undergraduate physics and physics education research.
Postdoctoral Fellow | Center for Cancer Research
The Khare lab in the Laboratory of Molecular Biology, NCI Center for Cancer Research, NIH, is looking to recruit highly motivated researchers interested in a postdoctoral fellowship to study the molecular and genetic basis of complex microbial behaviors. Our lab is focused on multiple research avenues including interspecies interactions, antibiotic persistence, and adaptation
Optical Atomic Clock for Fundamental Physics and Precision Metrology in Space
NASA Astrophysics Data System (ADS)
Williams, Jason; Le, Thanh; Kulas, Sascha; Yu, Nan
2017-04-01
The maturity of optical atomic clocks (OC), which operate at optical frequencies for higher quality-factor as compared to their microwave counterparts, has rapidly progressed to the point where lab-based systems now outperform the record cesium clocks by orders of magnitude in both accuracy and stability. We will present our efforts to develop a strontium optical clock testbed at JPL, aimed towards extending the exceptional performance demonstrated by OCs from state-of-the-art laboratory designs to a transportable instrument that can fit within the space and power constraints of e.g. a single express rack onboard the International Space Station. The overall technology will find applications for future fundamental physics research, both on ground and in space, precision time keeping, and NASA/JPL time and frequency test capabilities. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.